
Research Institute for Advanced Computer Science
NASA Ames Research Center

/
/
t

Sparse Distributed Memory and Related Models

Pentti Kanerva

RIACS Technical Report 92.10

April 1992

SPARSE

A_ RELATEO

Inst. for

Science) 5_ r_

N92-_0724

Unclas

G3/60 0109037

Sparse Distributed Memory and Related Models

Pentti Kanerva

The Research Institute for Advanced Computer Science is operated by

Universities Space Research Association (USRA),

The American City Building, Suite 311, Columbia, MD 21044, (301)730-2656.

Work reported herein was supported by the National Aeronautics and Space

Administration (NASA) under Cooperative Agreement NC2-387 with the Univer-

sities Space Research Association (USRA).

RIACSTechnicalReport92.10

April 1992

Sparse Distributed Memory and Related Models

Pentti Kanerva

Research Institute for Advanced Computer Science

Mail Stop T041-5

NASA Ames Research Center

Moffett Field, CA 94035

e-mail: kanerva@riacs.edu

Abstract

This paper describes sparse dislributed memory (SDM) as a neural-net associative

memory. It is characterized by two weight matrices and by a large internal dimen-

sion-the number of hidden units is much larger than the number of input or output

units. The first man'ix, A, is fixed and possibly random, and the second matrix, C,

is modifiable. The paper compares and contrasts SDM to (1) computer memory,

(2) correlation-matrix memory, (3) feed-forward artificial neural network, (4) cor-

tex of the cerebellum, (5) Mart and Albus models of the cerebellum, and (6) Albus'

cerebellar model arithmetic computer (CMAC). Several variations of the basic

SDM design are discussed: the selected-coordinate and hyperplane designs of

Jaeckel, the pseudorandom associative neural memory of Hassoun, and SDM with

real-valued input variables by Prager and Fallside. SDM research conducted mainly

at RIACS in 1986-1991 is highlighted.

3
To appear as Chapter_'_n H. M. Hassoun, ed. Associative Neural Memories." Theory and

Implementation. New York: Oxford University Press.

PRECEDING PAGE BLA,NK NOr F_LMED

°,.

111

l

t

Contents

1. Introduction /1

1.1 Sparse Distributed Memory as a Model of Human Long-Term Memory, 1

2. SDM as a Random-Access Memory / 2

2.1 Random-Access Memory, 3

2.2 Sparse Distributed Memory, 3

Construction / Activation / Storage / Retrieval / Random

Access Memory as a Special Case / Parallel Realization

3. SDM as a Matrix Memory / 7

3.1 Notation, 7

3.2 Memory Parameters, 8

3.3 Summary Specification, 10

3.4 Relation to Correlation-Matrix Memories, 11

3.5 Recall Fidelity (¢p), 12

3.6 Signal (g), Noise (_), and Probability of Activation (p), 14

3.7 Memory Capacity (x), 15

4. SDM as an Artificial Neural Network / 17

5. SDM as a Model of the Cerebellum / 19

5.1 Modeling Biology with Artificial Neural Networks, 19

5.2 The Cortex of the Cerebellum, 21

6. Variations of the Model / 23

6.1 Jaeckel's Selected-Coordinate Design, 23

6.2 Jaeckel's Hyperplane Design, 24

6.3 Hassoun's Pseudorandom Associative Neural Memory, 25

6.4 Adaptation to Continuous Variables by Prager and FaUside, 26

7. Relation to the Cerebellar Models of Mart and of Albus / 27

7.1 Marr's Model of the Cerebellum, 27

7.2 Albus' Cerebellar Model Arithmetic Computer (CMAC), 29

8. SDM Research /31

9. Associative Memory as a Component of a System / 33

10. Summary / 34

Pattern Computing

Acknowledgments / 35

References / 36

iv

I. Introduction

This chapter describes one basic model of associative memory, called the sparse

distributed memory, and relates it to other models and circuits: to ordinary computer

memory, to correlation-matrix memories, to feed-forward artificial neural nets, to

neural circuits in the brain, and to associative-memory models of the cerebellum.

Presenting the various designs within one framework will hopefully help the reader

see the similarities and the differences in designs that are often described in

different ways.

1.1 Sparse Distributed Memory as a Model of Human Long-Term Memory

Sparse Distributed Memory (SDM) was developed as a mathematical model of

human long-term memory (Kanerva 1988). The pursuit of a simple idea led to the

discovery of the model, namely, that the distances between concepts in our minds

correspond to the distances between points of a high-dimensional space. In what

follows, 'high-dimensional' means that the number of dimensions is at least in the

hundreds, although smaller numbers of dimensions are often found in examples.

If a concept, or a percept, or a moment of experience, or a piece of information

in memory--a point of interest--is represented by a high-dimensional (or "long")

vector, the representation need not be exact. This follows from the distribution of

points of a high-dimensional space: Any point of the space that might be a point of

interest is relatively far from most of the space and from other points of interest.

Therefore, a point of interest can be represented with considerable slop before it is

confused with other points of interest. In this sense, long vectors are fault-tolerant

or robust, and a device based on them can take advantage of the robustness.

This corresponds beautifully to how humans and animals with advanced sensory

systems and brains work. The signals received by us at two different times are

hardly ever identical, and yet we can identify the source of the signal as a specific

individual, object, place, scene, thing. The representations used by the brain must

allow for such identification, in fact, they must make the identification nearly

automatic, and high-dimensional vectors as internal representations of things do

that.

Another property of high-dimensional spaces also has to do with the distances

between points. If we take two points (of interest) at random, they are relatively far

from each other, on the average: they are uncorrelated. However, there are many

points between the two that are close to both, in the sense that the amount of space

around an intermediate point in a hypersphere--that contains both of the two

original points is very small. This corresponds to the relative ease with which we

can find a concept that links two unrelated concepts.

Strictly speaking, a mathematical space need not be a high-dimensional vector

2

spacetohavethedesiredproperties;it needsto beahugespace,with anappropriate
similarity measurefor pairsof points,but themeasureneednotdefinea metricon
thespace.

Theimportantpropertiesof high-dimensionalspacesareevidentevenwith the
simplestof suchspaces--thatis, whenthedimensionsarebinary.Therefore,the
sparsedistributedmemorymodelwasdevelopedusinglong (i.e.,high-
dimensional)binaryvectorsorwords.Thememoryisaddressedbysuchwords,and
suchwordsarestoredandretrievedasdata.

Thefollowing two examplesdemonstratethememory'srobustnessin dealing
with approximatedata.Thememoryworkswith 256-bitwords:it is addressedby
them,andit storesandretrievesthem.Ontop of Figure2-1 areninesimilar (20%
noisy)256-bitwords.To helpuscomparelong words,their 256bitsarelaid ona
16-by-16grid,with 1sshownin black.Thenoise-freeprototypewordwasdesigned
in theshapeof acircle within thegrid. (Thisexampleis confusingin thatit might
betakento imply thathumansrecognizecirclesbasedonstoredretinal imagesof
circles.No suchclaim is intended.)Theninenoisywordswerestoredin asparse
distributedmemoryautoassociatively,meaningthateachwordwasstoredwith
itselfastheaddress.Whenatenthnoisyword(bottomleft), differentfrom thenine,
wasusedastheaddress,arelativelynoise-freellth word wasretrieved(bottom
middle),andwith that astheaddress,anearlynoise-free12thword wasretrieved
(bottomright), which in turnretrieveditself.This exampledemonstratesthe
memory'stendencyto constructaprototypefrom noisydata.

((FIGURE 2-1. Nine noisy words are stored ...))

Figure 2-2 demonstrates sequence storage and recall. Six words, shaped as

Roman numerals, are stored in a linked list: I is used as the address to store II, II is

used as the address to store [!1, and so forth. Any of the words I-V can then be used

to recall the rest of the sequence. For example, ill will retrieve IV will retrieve V

will retrieve VI. The retrieval cue for the sequence can be noisy, as demonstrated at

the bottom of the figure. As the retrieval progresses, a retrieved word, which then

serves as the next address, is less and less noisy. This example resembles human

ability to find a familiar tune by hearing a piece of it in the middle, and to recall the

rest. This kind of recall applies to a multitude of human and animal skills.

((FIGURE 2-2. Recalling a stored sequence ...))

2. SDM as a Random-Access Memory

Except for the lengths of the address and data words, the memory resembles

ordinary computer memory. It is a generalized random-access memory for long

words, as will be seen shortly, and its construction and operation can be explained

in terms of an ordinary random-access memory. We will start by describing an

ordinary random-access memory.

3

2.1 Random-Access Memory

A random-access memory (RAM) is an array of M addressable storage registers or

memory locations of fixed capacity. A location's place in the memory array is called

the location's address, and the value stored in the register is called the location's

contents. Figure 2-3 represents such a memory, and a horizontal row through the

figure represents one memory location. The first location is shown shaded. The

addresses of the locations are on the left, in matrix A, and the contents are on the

right, in matrix C.

((FIGURE 2-3. Organization of a random-access memory.))

A memory with a million locations (M = 220) is addressed by 20-bit words. The

length of the address will be denoted by N (N = 20 in Fig. 2-3). The capacity of a

location is referred to as the memory's word size, U (U = 32 bits in Fig. 2-3), and

the capacity of the entire memory is defined conventionally as the word size

multiplied by the number of memory locations (i.e., M x U bits).

Storage and retrieval happen one word at a time through three special registers:

the address register, for an N-bit address into the memory array; the word-in

register, for a U-bit word that is to be stored in memory; and the word-out register,

for a U-bit word retrieved from memory. To store the word w in location x (the

location's address is used as a name for the location), x is placed in the address

register, w is placed in the word-in register, and a write-into-memory command is

issued. Consequently, w replaces the old contents of location x, while all other

locations remain unchanged. To retrieve the word w that was last stored in location

x, x is placed in the address register and a read-from-memory command is issued.

The result w appears in the word-out register. The figure shows (a possible) state of

the memory after w = 010...110 has been stored in location x = 000...011 (the

word-in register holds w) and then retrieved from the same location (the address

register holds x).

Between matrices A and C in the figure is an activation vector, y. Its components

are 0s except for one 1, which indicates the memory location that is selected for

reading or writing (i.e., the location's address matches the address register). In a

hardware realization of a random-access memory, a location's activation is

determined by an address-decoder circuit, so that the address matrix A is implicit.

However, the contents matrix C is an explicit array of 220 x 32 one-bit registers or

flip-flops.

2.2 Sparse Distributed Memory

Figure 2-4 represents a sparse distributed memory. From the outside, it is like a

random-access memory: it has the same three special registers--address, word-in,

and word-out--and they are used in the same way when words are stored and

4

retrieved,exceptthattheseregistersarelarge(e.g.,N = U = 1,000).

((FIGURE 2-4. Organization of a sparse distributed memory.))

Construction. The internal organization of sparse distributed memory,

likewise, is an array of addressable storage locations of fixed capacity. However,

since the addresses are long, it is impossible to build a hardware locationma hard

location, for short--for each of the 2N addresses. (Neither is it necessary,

considering the enormous capacity that such a memory would have.)

A memory of reasonable size and capacity can be built by taking a reasonably

large sample of the 2N addresses and by building a hard location for each address in

the sample. Let M be the size of the sample: we want a memory with M locations

(M = 1,000,000 in Fig. 2--4). The sample can be chosen in many ways, and only

some will be considered here.

A good choice of addresses for the hard locations depends on the data to be

stored in the memory. The data consist of the words to be stored and of the addresses

used in storing them. For simplicity, we assume in the basic model that the data are

distributed randomly and uniformly (i.e., bits are independent of each other, and 0s

and ls are equally likely, both in the words being stored and in the addresses used

for storing them). Then the M hard locations can be picked at random; that is to say,

we can take a uniform random sample, of size M, of all N-bit addresses. Such a

choice of locations is shown in Figure 2-4, where the addresses of the locations are

given in matrix A and the contents are given in matrix C, and where a row through

the figure represents a hard location, just as in Figure 2-3 (row A m of matrix A is

the mth hard address, and C m is the contents of location Am; as with RAM, we use

A m to name the ruth location).

Activation. In a random-access memory, to store or retrieve a word with x as

the address, x is placed in the (20-bit) address register, which activates location x.

We say that the address register points to location x, and that whatever location the

address register points to is activated. This does not work with a sparse distributed

memory because its (1,000-bit) address register nevermpractically never--points

to a hard location because the hard locations are so few compared to the number of

possible addresses (e.g., 1,000,000 hard addresses vs. 21'000 possible addresses;

matrix A is an exceedingly sparse sampling of the address space).

To compensate for the extreme sparseness of the memory, a set of nearby

locations is activated at once, for example, all the locations that are within a certain

distance from x. Since the addresses are binary, we can use Hamming distance,

which is the number of places at which two binary vectors differ. Thus, in a sparse

distributed memory, the mth location is activated by x (which is in the address

register) if the Hamming distance between x and the location's address A m is below

or equal to a threshold value H (H stands for a [Hamming] radius of activation). The

threshold is chosen so that but a small fraction of the hard locations are activated by

anygivenx.WhenthehardaddressesA areauniformrandomsampleof theN-

dimensional address space, the binomial distribution with parameters N and 1/2 can

be used to find the activation radius H that corresponds to a given probability p of

activating a location. Notice that, in a random-access memory, a location is

activated only if its address matches x, meaning that H = 0.

Vectors d and y in Figure 2--4 show the activation of locations by address x. The

distance vector d gives the Hamming distances from the address register to each of

the hard locations, and the ls of the activation vector y mark the locations that are

close enough to x to be activated by it: Yrn = 1 if d m < H, and Ym = 0 otherwise,

where d m = h (x, Am) is the Hamming distance from x to location A m. The number

of ls in y therefore equals the size of the set activated by x.

Figure 2-5 is another way of representing the activation of locations. The large

circle represents the space of 2N addresses. Each tiny square is a hard location, and

its position within the large circle represents the location's addresses. The small

circle around x includes the locations that are within H bits of x and that therefore

are activated by x.

((FIGURE 2-5. Address space, hard locations, and the set ...))

Storage. To store U-bit words, a hard location has U up-down counters. The

range of a counter can be small, for example, the integers from -15 to 15. The U

counters for each of the M hard locations constitute the M x U contents malrix, C,

shown on the right in Figure 2-4, and they correspond to the M x U flip-flops of

Figure 2-3. We will assume that all counters are initially set to zero.

When x is used as the storage address for the word w, w is stored in each of the

locations activated by x. Thus, multiple copies of w are stored; in other words, w is

distributed over a (small) number of locations. The word w is stored in, or written

into, an active location as follows: Each 1-bit of w increments, and each 0-bit of w

decrements, the corresponding counter of the location. This is equivalent to saying

that the word w" of-ls and ls is added (vector addition) to the contents of each

active location, where w' is gotten from w by replacing 0s with -Is. Furthermore,

the counters in C are not incremented or decremented past their limits (i.e., overflow

and underflow are lost).

Figure 2-4 depicts the memory after the word w = 010... 110 (in the word-in

register) has been stored with x = 100... 101 as the address (in the address register).

Several locations are shown as selected, and the vector w" = (-1, 1, -1 ,1, 1,-1)

has been added to their contents. The figure also shows that many locations have

been selected for writing in the past (e.g., the first location has nonzero counters),

that the last location appears never to have been selected, and that w appears to be

the first word written into the selected location near the bottom of the memory (the

location contains w'). Notice that a positive value of a counter, +5, say, tells that five

more ls than 0s have been stored in it; similarly, -5 tells that five more 0s than Is

havebeenstored(providedthatthecapacityof thecounterhasneverbeen
exceeded).

Retrieval. Whenx is usedastheretrievaladdress,the locationsactivatedby x
arepooledasfollows:their contentsareaccumulated(vectoraddition)intoavector
of U sums, s, and the sums are compared to a threshold value 0 to get an output

vector z, which then appears in the word-out register (z u = 1 iff s u > 0; s and z are

below matrix C in Fig. 2--4). This pooling constitutes a majority rule, in the sense

that the uth output bit is 1 if, and only if, more 1s than 0s have been stored in the uth

counters of the activated locations; otherwise, the output bit is 0.

In Figure 2-4 the word retrieved, z, is the same as, or very similar to, the word

w that was stored, for the following reason: The same x is used as both storage and

retrieval address, so that the same set of locations is activated both times. In storing,

each active location receives one copy of w', as described above; in retrieving, we

get back all of them, plus a few copies of many other words that have been stored.

This biases the sums, s, in the direction of w', so that w is a likely result after

thresholding. This principle holds even when the retrieval address is not exactly x

but is close to it. Then we get back most of the copies of w'.

The ideas of storing multiple copies of target words in memory, and of retrieving

the most likely target word based on the majority rule, are found already in the

redundant hash addressing method of Kohonen and Reuhkala (1978, Kohonen

1980). The method of realizing these ideas in redundant hash addressing is very

different from their realization in a sparse distributed memory.

Retrieval and memory capacity will be analyzed statistically at the end of the

next section, after a uniform set of symbols and conventions for the remainder of

this chapter has been established. We will note here, however, that the intersections

of activation sets play a key role in the analysis, for they appear as weights for the

words stored in the memory when the sum vector s is evaluated.

Random-Access Memory as a Special Case. One more comment about a

random-access memory: Proper choice of parameters for a sparse distributed

memory yields an ordinary random-access memory. First, the address matrix A

must contain all 2N addresses; second, the activation radius H must be zero; and,

third, the capacity of each counter in C must be one bit. The first condition

guarantees that every possible address x points to at least one hard location. The

second condition guarantees that only a location that is pointed to is activated. The

third condition guarantees that when a word is written into a location, it replaces the

location's old contents, because overflow and underflow are lost. In memory

retrieval, the contents of all active locations are added together; in this case, the sum

is over one or more locations with hard address x. Any particular coordinate of the

sum is zero if the word last written (with address x) has a 0 in that position; and it

is positive if the word has a 1, so that after thresholding we get the word last written

with addressx. Therefore,thesparsedistributedmemoryis ageneralizationof the
random-accessmemory.

Parallel Realization. Storingaword,or retrievinga word, in a sparse
distributedmemoryinvolvesmassivecomputation.Thecontentsof theaddress
registerarecomparedto eachhardaddress,to determinewhich locationsto
activate.For themodelmemorywith a million locations,this meanscomputing
one-millionHammingdistancesinvolving 1,000bits each,andcomparingthe
distancestoathreshold.This isvery time-consumingif doneserially.However,the
activationsof thehardlocationsareindependentof eachothersothattheycanbe
computedin parallel;oncetheaddressisbroadcastto all thelocations,million-fold
parallelismis possible.Theaddressingcomputationthatdeterminesthesetof active
locationscorrespondsto addressdecodingby theaddress-decodercircuit in a
random-accessmemory.

In storinga word,eachcolumnof countersin matrix C (seeFig. 2-4) canbe
updatedindependentlyof all othercolumns,sothatthereis anopportunityfor
thousand-foldparallelismwhen1,000-bitwordsarestored.Similarly, in retrieving
a 1,000-bitword, thereis anopportunityfor thousand-foldparallelism.Further
parallelismis achievedby updatingmanylocationsat oncewhena wordis stored,
andbyaccumulatingmanypartialsumsatoncewhenawordisretrieved.It appears
thatneuralcircuits in thebrainarewiredfor thesekindsof parallelism.

3. SDM as a Matrix Memory

The construction of the memory was described above in terms of vectors and

matrices. We will now see that its operation is described naturally in vector-matrix

notation. Such description is convenient in relating the sparse distributed memory

to the correlation-matrix memories described by Anderson (1968) and Kohonen

(1972)--see also Hopfield (1982), Kohonen (1984), Willshaw (1981), and Chapter

1 by Hassoun--and in relating it to many other kinds of artificial neural networks.

The notation will also be used for describing variations and generalizations of the

basic sparse distributed memory model.

3.1 Notation

In comparing the memory to a random-access memory, it is convenient to express

binary addresses and words in 0s and 1 s. In comparing it to a matrix memory,

however, it is more convenient to express them in -ls and Is (also called bipolar

representation). This transformation is already implicit in the storage algorithm

described above: a binary word w of 0s and Is is stored by adding the corresponding

word w' of-Is and ls into (the contents of) the active locations. From here on, we

assume that the binary components of A and x (and of w and z) are -Is and Is, and

whether bit refers to 0 and 1 or to -1 and 1 will depend on the context.

How is the activation of a location determined after this transformation? In the

same way as before, provided that Hamming distance is defined as the number of

places at which two vectors differ. However, we can also use the inner product

(scalar product, dot product) of the hard address A m and the address register x to

measure their similarity: d = d(A m, x) = A m • x. It ranges from -N to N (d = N means

that the two addresses are most similar--they are identical), and it relates linearly

to the Hamming distance, which ranges from 0 to N (0 means identical). Therefore,

Hamming distance h(A m, x) < H if, and only if, A m • x > N - 2H (= D). In a computer

simulation of the memory, however, the exclusive-or (XOR) operation on addresses

of 0s and ls usually results in the most efficient computation of distances and of the

activation vector y.

The following typographic conventions will be used:

s italic lowercase for a scalar or a function name.

S

V

vi
M

Mi

M.j

M i .
Mf

0

n=l,

u= 1,2,3 U

t=1,2,3 T

m=1,2,3 M

italic uppercase for a scalar upper bound or a threshold.

bold lowercase for a (column) vector.

ith component of a vector, a scalar.

bold uppercase for a matrix.

ith row of a matrix, a (column) vector.

jth column of a matrix, a (column) vector.

scalar component of a matrix.

transpose of a matrix (or of a vector).

scalar (inner) product of two vectors: u. v = uTv.

matrix (outer) product of two vectors: uDv = uv T.

2, 3 N index into the bits of an address.

index into the bits of a word.

index into the data.

index into the hard locations.

3.2 Memory Parameters

The sparse distributed memory, as a matrix memory, is described below in terms of

its parameters, progressing with the information flow from upper left to lower right

in Figure 2--4. Sample memory refers to a memory whose parameter values appear

in parentheses in the descriptions below, as in "(e.g., N = 1,000)".

The external dimensions of the memory are given by:

N Address length; dimension of the address space; input dimension (e.g., N =

1,000). Small demonstrations can be made with N as small as 25, but N > 100 is

recommended, as the properties of high-dimensional spaces will then be evident.

U Word length; the number of bits (-Is and ls) in the words stored; output

dimension (e.g., U = 1,000). The minimum, U = 1, corresponds to classifying the

data into two classes. If U = N, it is possible to store words autoassociatively and to

storesequencesof wordsaspointerchains,asdemonstratedin Figures2-1 and2-2.
Thedata set to be stored--the training set (X, W)--is given by:

T Training-set size; number of elements in the data set (e.g., T = 10,000).

X Data-address matrix; Ttraining addresses; T×N -Is and ls (e.g., uniform

random).

W Data-word matrix; Ttraining words; T × U -Is and ls (e.g., uniform

random). Autoassociative data (self-addressing) means that X = W, and sequence

data means that X t = W t_ 1 (t > 1).

The memory's internal parameters are:

M Memory size; number of hard locations (e.g., M = 1,000,000). Memory

needs to be sufficient for the data being stored and for the amount of noise to be

tolerated in retrieval. Memory capacity is low, so that T should be 1-5 percent of M

(T is the number of stored patterns; storing many noisy versions of the same pattern

[cf. Fig. 2-1] counts as storing one pattern, or as storing few).

A Hard-address matrix; M hard addresses; M × N -1 s and 1s (e.g., uniform

random). This matrix is fixed. Efficient use of memory requires that A correspond

to the set of data addresses X (see Sec. 8 on SDM research).

p Probability of activation (e.g., p = 0.000445; "ideally,"p = 0.000368). This

important parameter determines the number of hard locations that are activated, on

the average, by an address, which, in turn, determines how well stored words are

retrieved. The best p maximizes the signal (due to the target word that is being

retrieved) relative to the noise (due to all other stored words) in the sum, s, and is

approximately (2MT) -1/3 (see end of this section, where signal, noise, and memory

capacity are discussed).

H Radius of activation (e.g., H = 447 bits). The binomial distribution or its

normal approximation can be used to find the (Hamming) radius for a given

probability. For the sample memory, optimal p is 0.000368, so that about 368

locations should be activated at a time. Radius H = 446 captures 354 locations, and

H = 447 captures 445 locations, on the average. We choose the latter.

D Activation threshold on similarity (e.g., D = 106). This threshold is related

to the radius of activation by D = N- 2H, so that D = 108 and D = 106 correspond

to the two values of H given above.

c Range of a counter in the M × U contents matrix C (e.g., c = {-15, -14, -13,

.... 14, 15}). If the range is one bit (c = {0, 1 }), the contents of a location are

determined wholly by the most-recent word written into the location. An 8-bit byte,

an integer variable, and a floating-point variable are convenient counters in

computer simulations of the memory.

The following variables describe the memory's state and operation:

x Storage or retrieval address; contents of the address register; N -Is and ls

(e.g., x = Xt).

10

d Similarity vector; M integers in {-N, -N + 2, -N + 4 N - 2, N}. Since

the similarity between the mth hard address and the address register is given by their

inner product A m • x (see Sec. 3.1 on Notation), the similarity vector can be

expressed as d = Ax.

y Activation vector; M 0s and 1s. The similarity vector d is converted into the

activation vector y by the (nonlinear) threshold function y defined by y(d) = y,

where Ym = 1 ifd m > D, and Yrn = 0 otherwise. The number of ls in y, lYl, is small

compared to the number of 0s (IYl = pM); the activation vector is a very sparse

vector in a very-high-dimensional space. Notice that this is the only vector of 0s and

is; all other binary vectors consist of-Is and ls.

w Input word; U -Is and ls (e.g., w = Wt).

C Contents matrix; U x M up-down counters with range c, initial value

usually assumed to be 0. Since the word w is stored in active location A m (i.e., when

Ym = 1) by adding w into the location's contents C m, it is stored in all active

locations indicated by y by adding the (outer-product) matrix y[SIw (most of whose

rows are 0) into C, so that C := C + yOw, where := means substitution, and where

addition beyond the range of a counter is ignored. This is known as the outer-

product, or Hebbian, leaming rule.

s Sum vector; U sums (each sum has [at most] lYl nonzero terms). Because the

sum vector is made up of the contents of the active locations, it can be expressed as

s = CTy. The U sums give us the final output word z, but they also tell us how

reliable each of the output bits is. The further a sum is from the threshold, the

stronger is the memory's evidence for the corresponding output bit.

z Output word; U -Is and Is. The sum vector s is converted into the output

vector z by the (nonlinear) threshold function z defined by z(s) = z, where z u = 1 if

s u > 0, and z u = -1 otherwise.

In summary, storing the word w into the memory with x as the address can be

expressed as

C := C + y(Ax)[_w

and relrieving the word z corresponding to the address x can be expressed as

z = z (CTy (Ax))

3.3 Summary Specification

The following matrices describe the memory's operation on the data set--the

training set (X, W)---as a whole:

D T x M matrix of similarities corresponding to the data addresses X: D =

(AxT)T = XA T.

Y Corresponding T x M matrix of activations: Y = y(D).

S T × U matrix of sums for the data set: S = YC.

11

Z Corresponding T x U matrix of output words: Z = z(S) = z(YC).

If the initial contents of the memory are 0, and if the capacities of the counters

are never exceeded, storing the T-element data set yields memory contents

T T

C = Z YtDwt = Z y (AX,) [_]w t

t=l t=l

This expression for C follows from the outer-product learning rule (see C above),

as it is the sum of T matrices, each of which represents an item in the data set.

However, C can be viewed equivalently as a matrix of M x U inner products Cm, u

of pairs of vectors of length T. One set of these vectors is the M columns of Y, and

the other set is the U columns of W, so that Cm, u = Y., m" W., u, and

C = yTw = y (AxT)w

The accuracy of recall of the training set after it has been stored in memory, is then

given by

Z - W = z(YC) - W

= z (yyTw) - W

This form is convenient in the mathematical analysis of the memory. For example,

it is readily seen that if the T rows of Y are orthogonal to one another, yyT is a

diagonal matrix approximately equal to pMI (I is the identity matrix), so that

z(yyTw) = W and recall is perfect. Notice that the rows of Y for the sample

memory are nearly orthogonal to one another, and that the purpose of addressing

through A is to produce (nearly) orthogonal activation vectors for most pairs of

addresses, which is a way of saying that the sets of locations activated by dissimilar

addresses overlap as little as possible.

3.4 Relation to Correlation-Matrix Memories

The M × U inner products that make up C are correlations of a sort: they are

unnormalized correlations that reflect agreement between the M variables

represented by the columns of Y, and the U variables represented by the columns of

W. If the columns were normalized to zero mean and to unit length, their inner

products would equal the correlation coefficients used commonly in statistics.

Furthermore, the inner products of activation vectors (i.e., unnormalized

correlations) Yt" Y serve as weights for the training words in memory retrieval,

further justifying the term correlation-matrix memory.

The Y-variables are derived from the X-variables (each Y-variable compares the

data addresses X to a specific hard address), whereas in the original correlation-

matrix memories (Anderson 1968; Kohonen 1972), the X-variables are used

directly, and the variables are continuous. Changing from the X-variables to the Y-

12

variables means, mathematically, that the input dimension is blown way up (from a

thousand to a million); in practice it means that the memory can be made arbitrarily

large, rendering its capacity independent of the input dimension N. The idea of

expanding the input dimension goes back at least to Rosenblatt's (1962) ot-

perceptron network.

3.5 Recall Fidelity (¢p)

We will now look at the retrieval of words stored in memory, that is, how faithfully

are the stored words reconstructed by the retrieval procedure. The asymptotic

behavior of the memory, as the input dimension N grows without bound, has been

analyzed in depth by Chou (1989). Specific dimension N is assumed here, and the

analysis is simple but approximate. The analysis follows one given by Jaeckel

(1989a) and uses some of the same symbols.

What happens when we use one of the addresses, say, the last data address X T,

to retrieve a word from memory; how close to the stored word W T is the retrieved

word ZT? The output word Z T is gotten from the sum vector ST by comparing its U

sums to zero. Therefore, we need to find out how likely will a sum in S T be on the

correct side of zero. Since the data are uniform random, all columns of C have the

same statistics, and all sums in ST have the same statistics. So it suffices to look at

a single coordinate of the data words, say, the last, and to assume that the last bit of

the last data word, WT, U, is 1. How likely is ST, U > 0 if WT, U = 1 ? This likelihood

is called the fidelity for a single bit, denoted here by tp (phi for 'fidelity'), and we

now proceed to estimate it.

The sum vector ST retrieved by the address XTiS a sum over the locations

activated by X T. The locations are indicated by the is of the activation vector YT_

so that S T = yTc, which equals YTTyTw (that C = yTw was shown above). The

last coordinate of the sum vector is then ST, U = yTc., u = YT TYTw., U =

(YYT) Tw-, u = (YYT)" W., U, which shows that only the last bits of the data words

contribute to it. Thus, the Uth bit-sum is the (inner) product of two vectors, YYT

and W., U, where the T-vector W., u consists of the stored bits (the last bit of each

stored word), and the T components of YYT act as weights for the stored bits.

The weights YYT have a clear interpretation in terms of activation sets and their

intersections or overlaps: they equal the sizes of the overlaps. This is illustrated in

Figure 2--6 (cf. Fig. 2-5). For example, since the 1s of Yt and YT mark the locations

activated by X t and XT_ respectively, the weight Yt" YT for the tth data word in the

sum S T equals the number of locations activated by both X t and X_ Because the

addresses are uniform random, this overlap isp2M locations on the average, where

p is the probability of activating a location, except that for t = T the two activation

sets are the same and the overlap is complete, coveringpM locations on the average.

((FIGURE 2-6. Activation overlaps as weights for stored words.))

13

In computing fidelity, we will abbreviate notation as follows: Let B t (= Wt, U)

be the last bit of the tth data word, let L t = Yt" YT be its weight in the sum ST, U, and

let Z (= ST, U) be the last bit sum. Regard the bits B t and their weights L t as two sets

of T random variables, and recall our assumption that addresses and data are

uniform random. Then the bits B t are independent-1 s and 1s with equal probability

(i.e., mean E{B t } = 0), and they are also independent of the weights. The weights

Lt, being sizes of activation overlaps, are nonnegative integers. When activation is

low, as it is in the sample memory (p = 0.000445), the weights resemble

independent Poisson variables: the first T - 1 of them have a mean (and variance

Var{Lt} -) E{Lt} = _Lt = _L=p2M and the last has a mean (and variance Var{L T} =)

E {LT} = _,T = A = pM (i.e., complete overlap). For the sample memory these values

are: mean activation A =pM = 445 locations (out of a million), and mean activation

overlap k = p2M = 0.2 locations (t < T). We will proceed as if the weights L t were

independent Poisson variables, and hence our result will be approximate.

We are assuming that the bit we are trying to recover equals 1 (i.e., B T = WT, u

= 1); by symmetry, the analysis ofB T = -1 is equivalent. The sum E is then the sum

of T products LtB t, and its mean, or expectation, is

g=E{Z)=

T-1

__.E{LtBt} +E{L T. I}

t=l

= EILT}

=A

because independence and E{Bt} = 0 yieldE{LtBt} = 0 when t< T.The mean sum

can be interpreted as follows: it contains all A (= 445) copies of the target bit B T that

have been stored and they reinforce each other, while the other (T- 1)k (= 2,000)

bits in E tend to cancel out each other.

Retrieval is correct when the sum Z is greater than 0. However, random variation

can make Z < 0. The likelihood of that happening, depends on the variance 0.2 of

the sum, which variance we will now estimate. When the terms are approximately

independent, their variances are approximately additive, so that

0.2 = Var{Z} = (T- 1)VarIL1B 1} + Var{L T • 1 }

The second variance is simply Var{L T} = A. The first variance can be rewritten as

Var{L1B1 } = E{L12B12} _ (E{L1B 1 })2

= E{L12}

because B12 = 1, and because E{L1B 1 } = 0 as above. It can be rewritten further as

=- Var{L1 } + 0S{L1}) 2

=k+_. 2

14

and we get, for the variance of the sum,

0 2-- (T- 1) (k+_2) +A

Substituting p21Vl for ;_ and pM for A, approximating T - 1 with T, and rearranging

finally yields

t_2= VarlZ} -pM[1 +pT(1 +p2M)]

We can now estimate the probability of incorrect recall, that is, the probability

that Z < 0 when B T = 1. We will use the fact that if the products LtB t are T

independent random variables, their sum Z tends to the normal (Gaussian)

distribution with mean and variance equal to those of £. We then get, for the

probability of a single-bit failure,

Pr{£ < 01 It, o} = o(-la/_)

where • is the normal distribution function; and for the probability of recalling a

bit correctly, or bit-fidelity tp, we get 1 - _(-_/g), which equals _(ix/o).

3.6 Signal (It),Noise (_),and Probability of Activation (p)

We can regardthe mean value IX(=pM) ofthe sum Z as signal,and thevariance0.2

(=pM[i+ pT(I + p2M)]) of thesum as noise.The standardquantityP = IX/_isthen

a signal-to-noiseratio(rhofor 'ratio')thatcan be compared to thenormal

distribution,toestimatebit-fidelity,as was done above:

q)= Pr{bitrecalledcorrectly}= _(p)

The higherthe signal-to-noiseration,the more likelyare storedwords recalled

correctly.Thispointstoa way tofindgood valuesfortheprobabilitypofactivating

locationsand,hence,for theactivationradiusH: We wantp thatmaximizes P.To

findthisvalue ofp,itisconvenient tostartwith theexpressionforp2 and toreduce

itto

p2 = [.1,2/0.2 = pM
1 + pT (1 + p2M)

Taking the derivative with respect to p, setting it to O, and solving for p gives

1
p --- -m

as the best probability of activation. This value ofp was mentioned earlier, and it

was used to set parameters for the sample memory.

The probability p = (2MT) -1/3 of activating a location is optimal only when

exact storage addresses are used for retrieval. When a retrieval address is

approximate (i.e., when it equals a storage address plus some noise), both the signal

15

andthenoisearereduced,andalsotheirratio is reduced.Analysisof this is more
complicatedthantheoneabove,andit isnotcarriedouthere.Theresultis that,for
maximumrecoveryof storedwordswith approximateretrievaladdresses,p should

be somewhat larger than (2MT) -1/3 (typically, less than twice as large); however,

when the data are clustered rather than uniform random, optimum p tends to be

smaller than (2MT) -1/3.

In a case yet more general, the training set is not "clean" but contains many

noisy copies of each word to be stored, and the data addresses are noisy (cf. Fig. 2-

1). Then it makes sense to store words within a smaller radius and to retrieve them

within a larger. To allow such memories to be analyzed, Avery Wang (unpublished)

and Jaeckel (1988) have derived formulas for the size of the overlap of activation

sets with different radii of activation. As a rule, the overlap decreases rapidly with

increasing distance between the centers of activation.

3.7 Memory Capacity (x)

Storage and retrieval in a standard random-access memory are deterministic.

Therefore, its capacity (in words) can be expressed simply as the number of

memory locations. In a sparse distributed memory, retrieval of words is statistical.

However, its capacity, too, can be defined as a limit on the number T of words that

can be stored and retrieved successfully, although the limit depends on what we

mean by success.

A simple criterion of success is that a stored bit is retrieved correctly with high

probability tp (e.g., 0.99 < 9 < 1). Other criteria can be derived from it or are related

to it. Specifically, capacity here is the maximum T, Tma x, such that Pr{ Zt, u = Wt, u }

> _p; we are assuming that exact storage addresses are used to retrieve the words. It

is convenient to relate capacity to memory size M and to define it as "c= Tmax/M. As

fidelity tp approaches 1, capacity x approaches 0, and the values of x that concern us

here are smaller than 1. We will now proceed to estimate x.

In Section 3.5 on Recall Fidelity we saw that the bit-recall probability tp is

approximated by _(p), where p is the si2.1 Razdcm Acce_z Meme._,gnal-to-noise

ratio as defined above. By writing out p and substituting x3,/for T we get

11/2)1 +p'cM (1 +p2M)

which leads to

2 p2 pM[_-1 (tp)] --- -----
1 + pxM (1 + p2M)

where _-1 is the inverse of the normal distribution function. Dividing by pM in the

16

numeratorandthedenominatorgives

2 1
[O -1 (q))] =

-_-1 +'c(l+p2M)
pM

The right side goes to 1/z as the memory size M grows without bound, giving us a

simple expression for the asymptotic capacity:

1

2
[(I) -1 (t0)]

To verify this limit, we use the optimal probability of activation, taking note that

it depends on both M and x: p = (2MT) -1/3 = (2xM2) -1/3. Then, in the expression

above, 1/(pM) = (2x/M) 1/3 and goes to zero as M goes to infinity, because '_ < 1.

1 z/M)l/3 and goes to z.Similarly, x(1 +p2M) = x + (_

To compare this asymptotic capacity to the capacity of a finite memory, consider

q) = 0.999, meaning that about one bit in a thousand is retrieved incorrectly. Then

the asymptotic capacity is x - 0.105, and the capacity of the million-location sample

memory is 0.096. Keeler (1988) has shown that the sparse distributed memory and

the binary Hopfield net trained with the outer-product leaning rule, which is

equivalent to a correlation-matrix memory, have the same capacity per storage

element or counter. The 0.15N capacity of the Hopfield net (x = 0.15) corresponds

to fidelity q_= 0.995, meaning that about one bit in 200 is retrieved incorrectly. The

practical significance of the sparse distributed memory design is that, by virtue of

the hard locations, the number of storage elements is independent of the input and

output dimensions. Doubling the hardware doubles

size that can be stored, whereas the capacity of the

word size.

the number of words of a given

Hopfield net is limited by the

A very simple notion of capacity has been used here, and it results in capacities

of about 10 percent of memory size. However, the assumption has been that exact

storage addresses are used in retrieval. If approximate addresses are used, and if less

error is tolerated in the words retrieved than in the addresses used for retrieving

them, the capacity goes down. The most complete analysis of capacity under such

general conditions has been given by Chou (1989). Expressing capacity in absolute

terms, for example, as Shannon's information capacity, is perhaps the most

satisfying. This approach has been taken by Keeler (1988). Allocating the capacity

is then a separate issue: whether to store many words or to correct many errors. A

practical guide is that the number of stored words should be from 1 to 5 percent of

memory size (the number of hard locations).

17

4. SDM as an Artificial Neural Network

The sparse distributed memory, as an artificial neural network, is a synchronous,

fully connected, three-layer (or two-layer, see below), feed-forward net illustrated

by Figure 2-7. The flow of information in the figure is from left to right. The column

of N circles on the left is called the input layer, the column of M circles in the middle

is called the hidden layer, and the column of U circles on the right is called the

output layer, and the circles in the three columns are called input units, hidden units,

and output units, respectively.

((FIGURE 2-7. Feed-forward artificial neural network.))

The hidden units and the output units are bonaJide artificial neurons, so that, in

fact, there are only two layers of "neurons." The input units merely represent the

outputs of some other neurons. The inputs x n to the hidden units label the input

layer, the input coefficients Am, n of the hidden units label the lines leading into the

hidden units, and the outputs Ym of the hidden units label the hidden layer. Ify is the

activation function of the hidden units (e.g., y(d) = 1 if d __.D, and y(d) = 0

otherwise), the output of the mth hidden unit is given by

N

Ym = Y_=lAm, nXn)

which, in vector notation, is Ym = Y (Am" x), where x is the vector of inputs to, and

A m is the vector of input coefficients of, the mth hidden unit.

A similar description applies to the output units, with the outputs of the hidden

units serving as their inputs, so that the output of the uth output unit is given by

M

Zu = z_=lCm, uYm]

or, in vector notation, zu = z(C., u" Y). Here, C., u is the vector of input coefficients

of the uth output unit, and z is the activation function.

From the equations above it is clear that the input coefficients of the hidden units

form the address matrix A, and those of the output units form the contents matrix

C, of a sparse distributed memory. In the terminology of artificial neural nets, these

are the matrices of connection strengths (synaptic strengths) for the two layers.

'Fully connected' means that all elements of these matrices can assume nonzero

values. Later we will see sparsely connected variations of the model.

Correspondence between Figures 2-7 and 2-4 is now demonstrated by

transforming Figure 2-7 according to Figure 2-8, which shows four ways of

drawing artificial neurons. View A shows how they appear in Figure 2-7. View B is

laid out similarly, but all labels now appear in boxes and circles. In view C, the

18

diamondandthecirclethatrepresenttheinnerproductandtheoutput,respectively,
appearbelowthecolumnof inputcoefficients,sothattheseunitsareeasilystacked
sideby side.View D is essentially the same as view C, for stacking units on top of

each another. We will now redraw Figure 2-7 with units of type D in the hidden

layer and with units of type C in the output layer. An input (a circle) that is shared

by many units is drawn only once. The result is Figure 2-9. Its correspondence to

Figure 2-4 is immediate, the vectors and the matrices implied by Figure 2-7 are

explicit, and the cobwebs of Figure 2-7 are gone.

((FIGURE 2-8. Four views of an artificial neuron.))

((FIGURE 2-9. Sparse distributed memory as an artificial ...))

In describing the memory, the term 'synchronous' means that all computations

are completed in what could be called a machine cycle, after which the network is

ready to perform another cycle. The term is superfluous if the net is used as a feed-

forward net akin to a random-access memory. However, it is meaningful if the

network's output is fed back as input: the network is allowed to settle with each

input so that a completely updated output is available as the next input.

As a multilayer feed-forward net, the sparse distributed memory is akin to the

nets trained with the error back-propagation algorithm (Rumelhart and McClelland

1986). How are the two different? In a broad sense they are not: we try to find

matrices A and C, and activation functions y and z, that fit the source of our data. In

practice, many things are done differently.

In error back-propagation, the matrices A and C and the activation vector y are

usually real-valued, the components of y usually range over the interval [-1, 1] or

[0, 1], the activation function y and its inverse are differentiable, and the data are

stored using a uniform algorithm to change both A and C. In sparse distributed

memory, the address matrix A is usually binary, and various methods are used to

choose it, but once a location's address has been set, it is not changed as the data are

stored (A is constant); furthermore, the activation function y is a step function that

yields an activation vector y that is mostly 0s, with a few Is. Another major

difference is in the size of the hidden layer. In back-propagation nets, the number of

hidden units is usually smaller than the number of input units or the number of items

in the training set; in a sparse distributed memory, it is much larger.

The differences imply that, relative to back-propagation nets, the training of a

sparse distributed memory is fast (it is easy to demonstrate single-trial learning), but

applying it to a new problem is less automatic (it requires choosing an appropriate

data representation, as discussed in the section on SDM research below).

19

5. SDM as a Model of the Cerebellum

5.1 Modeling Biology with Artificial Neural Networks

Biological neurons are cells that process signals in animals and humans, allowing

them to respond rapidly to the environment. To achieve speed, neurons use electro-

chemical mechanisms to generate a signal (a voltage level or electrical pulses) and

to transmit it to nearby and distant sites.

Biological neurons come in many varieties. The peripheral neurons couple the

organism to the world. They include the sensory neurons that convert an external

stimulus into an electrical signal, the motor neurons whose electrical pulses cause

muscle fibers to contract, and other effector neurons that regulate the secretion of

glands. However, most neurons in highly evolved animals are interneurons that

connect directly to other neurons rather than to sensors or to effectors. Interneurons

also come in many varieties and they are organized into a multitude of neural

circuits.

A typical interneuron has a cell body and two kinds of arborizations: a dendrite

tree that receives signals from other neurons, and an axon tree that transmits the

neuron's signal to other neurons. Transmission-contact points between neurons are

called synapses. They are either excitatory (positive synaptic weight) or inhibitory

(negative synaptic weight) according to whether a signal received through the

synapse facilitates or hinders the activation of the receiving neuron. The axon of one

neuron can make synaptic contact with the dendrites and cell bodies of many other

neurons. Thus, a neuron receives multiple inputs, it integrates them, and it transmits

the result to other neurons.

Artificial neural networks are networks of simple, interconnected processing

units, called (artificial) neurons. The most common artificial neuron in the literature

has multiple (N) inputs and one output and is defined by a set of input coefficients--

a vector of N reals, standing for the synaptic weights--and a nonlinear scalar

activation function. The value of this function is the neuron's output, and it serves

as input to other neurons. A linear threshold function is an example of an artificial

neuron, and the simplest kind----one with binary inputs and output--is used in the

sparse distributed memory.

It may seem strange to model brain activity with binary neurons when real

neurons are very complex in comparison. However, the brain is organized in large

circuits of neurons working in parallel, and the mathematical study of neural nets is

aimed more at understanding the behavior of circuits than of individual neurons. An

important fact--perhaps the most important--is that the states of a large circuit can

be mapped onto the points of a high-dimensional space, so that although a binary

neuron is a grossly simplified model of a biological neuron, a large circuit of binary

neurons, by virtue of its high dimension, can be a useful model of a circuit of

biological neurons.

20

Thesparsedistributedmemory'sconnectionto biology is madein thestandard
way.Eachrow throughA, d, y, andC in Figure2-9---eachhiddenunit--is an
artificial neuronthatrepresentsabiologicalneuron.Vectorx representstheN

signals coming to these neurons as inputs from N other neurons (along their axons),

vector A m represents the weights of the synapses through which the input signals

enter the ruth neuron (at its dendrites), d m represents the integration of the input

signals by the mth neuron, and Ym represents the output signal, which is passed

along the neuron's axon to U other neurons through synapses with strengths C m.

We will call these (the hidden units) the address-decoder neurons because they

are like the address-decoder circuit of a random-access memory: they select

locations for reading and writing. The address that the mth address-decoder neuron

decodes is given by the input coefficients Am; location A m is activated by inputs x

that equal or are sufficiently similar to A m . How similar, depends on the radius of

activation H. It is interesting that a linear threshold function with N inputs, which is

perhaps the oldest mathematical model of a neuron, is ideal for address decoding in

the sparse distributed memory, and that a proper choice of a single parameter, the

threshold, makes it into an address decoder for a location of an ordinary random-

access memory.

Likewise, in Figure 2-9, each colunm through C, s, and z is an artificial neuron

that represents a biological neuron. Since these U neurons provide the output of the

circuit, they are called the output neurons. The synapses made by the axons of the

address-decoder neurons with the dendrites of the output neurons are represented

by matrix C, and they are modifiable; they are the sites of information storage in the

circuit.

We now look at how these synapses are modified; specifically, what neural

structures are implied by the memory's storage algorithm (cf. Figs. 2-4 and 2-9).

The word w is stored by adding it into the counters of the active locations, that is,

into the axonal synapses of active address-decoder neurons. This means that if a

location is activated for writing, its counters are adjusted upward and downward; if

it is not activated, its counters stay unchanged.

Since the output neurons are independent of each other, it suffices to look at just

one of them, say, the uth output neuron. See Figure 2-10 center. The uth output

neuron produces the uth output bit, which is affected only by the uth bits of the

words that have been stored in the memory. Let us assume that we are storing the

word w. Its uth bit is w u. To add w u into all the active synapses in the uth column of

C, it must be made physically present at the active synaptic sites of the column.

Since different sites in a column are active at different times, it must be made

present at all synaptic sites of the column. A neuron's way of presenting a signal is

by passing it along the axon. This suggests that the uth bit w u of the word-in register

should be represented by a neuron that corresponds to the uth output neuron z u, and

21

thatits outputsignalshouldbeavailableateachsynapsein columnu, although it is

"captured" only by synapses that have just been activated by address-decoder

neurons y. Such an arrangement is shown in Figure 2-10. It suggests that word-in

neurons are paired with output neurons, with the axon tree of a word-in neuron

possibly meshing with the dendrite tree of the corresponding output neuron, as that

would help carry the signal to all synaptic sites of a column. This kind of pairing,

when found in a brain circuit, can help us interpret the circuit (Fig. 2-10, on the

fight).

((FIGURE 2-10. Connections to an output neuron.))

5.2 The Cortex of the Cerebellum

Of the neural circuits in the brain, the cortex of the cerebellum resembles the sparse

distributed memory the most. The cerebellar cortex of mammals is a fairly large and

highly regular structure with an enormous number of neurons of only six major

kinds. Its morphology has been studied extensively since early 1900s, its role in fine

motor control has been established, and its physiology is still studied intensively

(Ito 1984).

The cortex of the cerebellum is sketched in Figure 2-11 after Llin_is (1975).

Figure 2-12 is Figure 2-9 redrawn in an orientation that corresponds to the sketch

of the cerebellar cortex.

((FIGURE 2-11. Sketch of the cortex of the cerebellum.))

((FIGURE 2-12. Sparse distributed memory's resemblance ...))

Within the cortex are the cell bodies of five kinds of neurons: the granule cells,

the Golgi ceils, the stellate cells, the basket cells, and the Purkinje cells. Figure 2-

11 shows the climbing fibers and the mossy fibers entering and the axons of the

Purkinje cells leaving the cortex. This agrees with the two inputs into and the one

output from a sparse distributed memory. The correspondence goes deeper: The

Purkinje cells that provide the output, are paired with the climbing fibers that

provide input. A climbing fiber, which is an axon of an olivary cell that resides in

the interior of the cerebellum, could thus have the same role in the cerebellum as

the line from a word-in cell through a column of counters has in a sparse distributed

memory (see Fig. 2-10), namely, to make a bit of a data word available at a bit-

storage site when words are stored.

The other set of inputs enters along the mossy fibers, which are axons of cells

outside the cerebellum. They would then be like an address into a sparse distributed

memory. The mossy fibers feed into the granule cells, which thus would correspond

to the hidden units of Figure 2-12 (they appear as rows across Fig. 2-9) and would

perform address decoding. The firing of a granule cell would constitute activating a

location for reading or writing. Therefore, the counters of a location would be found

22

amongthesynapsesof a granulecell's axon;theseaxonsarecalledparallel fibers.
A parallelfibermakessynapseswith Golgi cells,stellatecells,basketcells,and
Purkinjecells.SincethePurkinjecellsprovidetheoutput,it is naturalto assume
thattheir synapseswith theparallelfibersarethestoragesitesor thememory's
counters.

In addition to the "circuit diagram," other things suggest that the cortex of the

cerebellum is an associative memory reminiscent of the sparse distributed memory.

The numbers are reasonable. The numbers quoted below were compiled by Loebner

(1989) in a review of the literature and they refer to the cerebellum of the cat.

Several million mossy fibers enter the cerebellum, suggesting that the dimension of

the address space is several million. The granule cells are the most numerous---in

the billions--implying a memory with billions of hard locations, and only a small

fraction of them is active at once, which agrees with the model. Each parallel fiber

intersects the flat dendritic trees of several hundred Purkinje cells, implying that a

hard location has several hundred counters. The number of parallel fibers that pass

through the dendritic tree of a single Purkinje cell is around a hundred-thousand,

implying that a single "bit" of output is computed from about a hundred-thousand

counters (only few of which are active at once). The number of Purkinje cells is

around a million, implying that the dimension of the data words is around a million.

However, a single olivary cell sends about ten climbing fibers to that many Purkinje

cells, and if, indeed, the climbing fibers train the Purkinje cells, the output

dimension is more like a hundred-thousand than a million. All these numbers mean,

of course, that the cerebellar cortex is far from fully connected: every granule cell

does not reach every Purkinje cell (nor does every mossy fiber reach every granule

cell; more on that below).

This interpretation of the cortex of the cerebellum as an associative memory,

akin to the sparse distributed memory, is but an outline, and it contains

discrepancies that are evident even at the level of cell morphology. According to the

model, an address decoder (a hidden unit) should receive all address bits, but a

granule cell receives input from three to five mossy fibers only, and for a granule

cell to fire, most or all of its inputs must be firing (the number of active inputs

required for firing appears to be controlled by the Golgi cells that provide the other

major input to the granule cells; the Golgi cells could control the number of

locations that are active at once). The very small number of inputs to a granule cell

means that activation is not based on Hamming distance from an address but on

certain address bits being on in the address register. Activation of locations of a

sparse distributed memory under such conditions has been treated specifically by

Jaeckel, and the idea is present already in the cerebellar models of Mart and of

Albus. These will be discussed in the next two sections.

Many details of the cerebellar circuit are not addressed by this comparison to the

23

sparse distributed memory. The basket cells connect to the Purkinje cells in a special

way, the stellate cells make synapses with the Purkinje cells, and signals from the

Purkinje cells and climbing fibers go to the basket cells and Golgi cells. The nature

of synapses and signals---the neurophysiology of the cerebellum--has not been

considered. Some of these things are addressed by the mathematical models of Marr

and of Albus. The point here has been to demonstrate some of the variety in a real

neural circuit, to show how a mathematical model can be used to interpret such a

circuit, and to suggest that the cortex of the cerebellum constitutes an associative

memory. Because its mossy-fiber input comes from all over the cerebral cortex--

from many sensory areas---the cerebellum is well located for correlating action that

it regulates, with information about the environment.

6. Variations of the Model

The basic sparse distributed memory model is fully connected. This means that

every input unit (address bit) is seen by every hidden unit (hard location), and that

every hidden unit is seen by every output unit. Furthermore, all addresses and words

are binary. If-1 and 1 are used as the binary components, 'fully connected' means

that none of the elements of the address and contents matrices A and C is

(identically) zero. Partiallymand sparsely--connected models have zeros in one or

both of the matrices, as a missing connection is marked by a weight that is zero.

Jaeckel has studied designs with sparse address matrices and binary data. In the

selected-coordinate design (1989a), -1 s and is are assumed to be equally likely in

the data addresses; in the hyperplane design (1989b), the data-address bits are

assumed to be mostly (e.g., 90%) -ls. This section is based on these two papers.

The papers are written in terms of binary 0s and Is, but here we will use -Is and Is,

and will let 0 stand for a missing connection or a"don't care"-bit (for which Jaeckel

uses the value 1/2). Jaeckel uses one-million-location memories (M = 1,000,000)

with a 1,000-dimensional address space (N = 1,000) to demonstrate the designs.

6.1 Jaeckel's Selected-Coordinate Design

In the selected- coordinate design, the hard-address matrix A has a million rows

with ten -Is and Is (k = I0) in each row. The -Is and Is are chosen with probability

I/2 and they are placed randomly within the row and independently of other rows;

the remaining 990 coordinates of a row are 0s. This is equivalent to taking a uniform

random A of-ls and Is and setting a random 990 coordinates in each row to zero

(different 990 for different rows). A location is activated if the values of all ten of

its selected coordinates match the address register x: Ym = I iff A m • x = k. The

probability of activating a hard location is related to the number of nonzero

coordinates in a hard address byp = 0.5 k. Here, k = I0 and p = 0.001.

24

6.2 Jaeckel's Hyperplane Design

The hyperplane design deals with data where the addresses are skewed (e.g., 100

1s and 900 -1 s). Each row of the hard-address matrix A has three 1s (k = 3), placed

at random, and the remaining 997 places have 0s (there are no -ls). A location is

activated if the address register has 1s at those same three places: Ym = 1 iff A m • x

= k. The probability of activating a location is related to the number of ls in its

address by p = (L/N) k, where L is the number of 1 s in the data addresses x. Here, N

= 1,000, L = 100, k = 3, andp - 0.001.

Jaeckel has shown that both of these designs are better than the basic design in

recovering previously stored words, as judged by signal-to-noise ratios. They are

also easier to realize physically--in hardware--because they require far fewer

connections and much less computation in the address-decoder unit that determines

the set of active locations.

The region of the address space that activates a hard location in the three designs

can be interpreted geometrically as follows: A location of the basic sparse

distributed memory is activated by all addresses that are within H Hamming units

of the location's address, so that the exciting part of the address space is a

hypersphere around the hard address. In the selected coordinate design, a hard

location is activated by all addresses in a subspace of the address space defined by

the k selected coordinates---that is, by the vertices of an (N - k)-dimensional

hypercube. In the hyperplane design, the address space is a hyperplane defined by

the number of ls in an address, L (which is constant over all data addresses), and a

hard location is activated by the intersection of the address space with the (N - k)-

dimensional hypercube defined by the k 1s of the hard address.

The regions have a spherical interpretation also in the latter two designs, as

suggested by the activation condition A m- x = k (same formula for both designs; see

above). It tells that the exciting points of the address space lie on the surface of a

hypersphere in Euclidean N-space, with center coordinates A m (the hard address)

and with Euclidean radius (N - k) 1/2 (no points of the address space lie inside the

sphere). This gives rise to intermediate designs, as suggested by Jaeckel (1989b):

let the hard addresses be defined in -Is, 0s, and Is as above, and let the ruth hard

location be activated by all addresses x within a suitably large hypersphere centered

at the hard address. Specifically, Ym = 1 if, and only if, A m • x > G. The parameters

G and k (and L) have to be chosen so that the probability of activating a location is

reasonable.

The optimum probability of activation p for the various sparse distributed

memory designs is about the same--it is in the vicinity of (2MT)-l/3--and the

reason is that, in all these designs, the sets of locations activated by two addresses,

x and x', overlap minimally unless x and x' are very similar to each other. The sets

behave in the manner of random sets of approximatelypM hard locations each, with

25

twosuchsetsoverlappingbyp2M locations, on the average (unless x and x' are very

similar to each other). This is a consequence of the high dimension of the address

space.

In the preceding section on the cerebellum we saw that the hard-address matrix

A, as implied by the few inputs (3-5 mossy fibers) to each granule cell, is very

sparse, and that the number of active inputs required for a granule cell to fire, can

be modulated by the Golgi cells. This means that the activation of granule cells in

the cerebellum resembles the activation of locations in an intermediate design that

is close to the hyperplane design.

Not only are the mossy-fiber connections to a granule cell few (3-5 out of

several million), but also the granule-cell connections to a Purkinje cell are few

(hundred thousand out of billions), so that also the contents matrix C is very sparse.

This aspect of the cerebellum has not been modeled mathematically.

6.3 Hassoun's Pseudorantlom Associative Neural Memory

Independently of the above developments, Hassoun (1988) has proposed a model

with a random, fixed address matrix A and variable contents matrix C. This model

allows us to extend the concepts of this chapter to data with short addresses (e.g., N

= 4 bits), and it introduces ideas about storing the data (i.e., training) that can be

applied to associative memories at large.

The data addresses X and words W in Hassoun's examples are binary vectors in

0s and ls. The elements of the hard-address matrix A are small integers; they are

chosen at uniform random from the symmetric interval {-L, -L + 1, -L + 2 L },

where L is a small positive integer (e.g., L = 3). Each hard location has its own

activation threshold D m, which is chosen so that approximately half of all possible

N-bit addresses x activate the location: Ym = 1 if A m • x > D m, and Ym = 0 otherwise.

The effect of such addressing through A is to convert the matrix X of N-bit data

addresses into the matrix Y of M-bit activation vectors, where M >> N and where

each activation vector Ym is about half 0s and half 1s (probability of activation p is

around 0.5).

Geometric interpretation of addressing through A is as follows. The space of

hard addresses is an N-dimensional hypercube with sides of length 2L + 1. The unit

cubes or cells of this space are potential hard locations. The M hard addresses A m

are chosen at uniform random from within this space. The space of data addresses

is an N-cube with sides of length 2; it is at the center of the hard-address space, with

the cell 000...0 at the very center. The data addresses that activate the location Am

are the ones closest to Am and they can be visualized as follows: A straight line is

drawn from A m through 000...0. Each setting of the threshold D m then corresponds

to an N - 1-dimensional hyperplane perpendicular to this line, at some distance

from Am. The cells x of the data-address space that are on the A m side of the plane

26

will activatelocationA m. The threshold D m is chosen so that the plane cuts the data-

addresses space into two nearly equal parts.

The hard addresses A m correspond naturally to points (and subspaces) A m of the

data-address space {0, 1 }N gotten by replacing the negative components of A m by

0s, the positive components by Is, and the 0s by either (a "don't care"). The

absolute values of the components of A m then serve as weights, and the mth location

is activated by x if the weighted distance between A m and x is below a threshold

(cf. Kanerva 1988, pp. 46--48).

High probability of activation (p ---0.5) works poorly with the outer-product

leaning rule. However, it is appropriate for an analytic solution to storage by the

Ho-Kashyap recording algorithm (Hassoun and Youssef 1989). This algorithm

finds a contents matrix C that solves the linear inequalities implied by Z = W, where

W is the matrix of data words to be stored, and Z = z(S) = z(YC) is the matrix of

words retrieved by the rows of X. The inequalities follow from the definition of the

threshold function z, as Wt, u = 1 implies that St, u > 0, and Wt, u = 0 implies that

St, u < 0. Hassoun and Youssef have shown that this storage algorithm results in

large basins of attraction around the data addresses, and that if data are stored

autoassociatively, false attractors (i.e., spurious stable patterns and limit cycles) will

be relatively few.

6.4 Adaptation to Continuous Variables by Prager and Failside

All the models discussed so far have had binary vectors as inputs and outputs.

Prager and Fallside (1989) consider several ways of extending the sparse distributed

memory model into real-valued inputs. The following experiment with spoken

English illustrates their approach.

Eleven vowels were spoken several times by different people. Each spoken

instance of a vowel is represented by a 128-dimensional vector of reals that serves

as an address or cue. The corresponding data word is an 11-bit label. One of the bits

in a label is a 1, and its position corresponds to the vowel in question. This is a

standard setup for classification by artificial neural nets.

For processing on a computer, the input variables are discretized into 513

integers in the range 16,127-16,639. The memory is constructed by choosing

(2,000) hard addresses at uniform random from a 128-dimensional hypercube with

sides of length 32,768. The cells of this outer space are addressed naturally by 128-

place integers to base 32,768 (i.e., these are the vectors Am), and the data addresses

x then occupy a small hypercube at the center of the hard-address space; the data-

address space is a 128-dimensional cube with sides of length 513. Activation is

based on distance. Address x activates the mth hard location if the "city-block" (L1)

distance between x and A m is at most 16,091. About ten percent of the hard

locations will be activated. Experiments with connected speech deal similarly with

896-dimensional real vectors.

27

PragerandFallsidetrainthecontentsmatrixC iterativelybycorrectingerrorsso
asto solvetheinequalitiesimplied by Z = W (see the last paragraph of Sec. 6.3).

This design is similar to Hassoun's design discussed in Section 6.3, in that both

have a large space of hard addresses that includes, at the center, a small space of data

addresses, and that the hard locations are placed at random within the hard-address

space. The designs are in contrast with Albus' CMAC (discussed in the next

section), where the placement of the hard locations is systematic. Furthermore, the

number of input variables in CMAC is small compared to the numbers used by

Prager and Fallside.

7. Relation to the Cerebellar Models of Marr and of Albus

The first comprehensive mathematical models of the cerebellum as an associative

memory are by Mart (1969) and by Albus (1971), developed independently in their

doctoral dissertations, and they still are the most complete of any such models. They

were developed specifically as models of the cerebellar cortex, whereas the sparse

distributed memory's resemblance to the cerebellum was noticed only after the

model had been developed fully.

Mart's and Albus's models attend to many of the details of the cerebellar circuit.

The models are based mostly on connectivity but also on the nature of the synapses.

Albus (1989) has made a comparison of the two models. The models will be

described here insofar as to show their relation to the sparse distributed memory.

7.1 Marr's Model of the Cerebellum

The main circuit in Marr's model--in Marr's terminology and in our symbols--

consists of (N =) 7,000 input fibers that feed into (M--) 200,000 codon cells that feed

into a single output cell. The input fibers activate codon cells, and codon-cell

connections with the output cell store information. The correspondence to the

cerebellum is straightforward: the input fibers model mossy fibers, the codon cells

model granule cells, and the output cell models a Purkinje cell.

Marr discusses at length the activation of codon ceils by the input fibers. Since

the input fibers represent mossy fibers and the codon cells represent granule cells,

each codon cell receives input from 3-5 fibers in Marr's model. The model assumes

discrete time intervals. During an interval an input fiber is either inactive (-1) or

active (+1), and at the end of the interval a codon cell is either inactive (0) or active

(+1) according to the activity of its inputs during the interval; the codon-cell output

is a linear threshold function of its inputs, with +1 weights.

The overall pattern of activity of the N input fibers during an interval is called

the input pattern (an N-vector of-1 s and 1 s), and the resulting pattern of activity of

the M codon ceils at the end of the interval is called a codon representation of the

input pattern (an M-vector of 0s and 1s). These correspond, respectively, to the

28

addressregisterx, andto theactivationvectory, of asparsedistributedmemory.
Essentialto themodelis thatM is much larger than N, and that the number of

ls in a codon representation is small compared to M, and relatively constant;

conditions that hold also for the sparse distributed memory. Then the codon

representation amplifies differences between input patterns. To make differences in

N-bit patterns commensurate with differences in M-bit patterns, Marr uses a relative

measure defined as the number of 1s that two patterns have in common, divided by

the number of places where either pattern has a 1 (i.e., the size of the intersection of

1s relative to the size of their union).

Relation to artificial neural networks is simple. The input fibers correspond to

input units, the codon cells correspond to hidden units, and the output cell

corresponds to an output unit. Each hidden unit has only 3-5 inputs, chosen at

random from the N input units, and the input coefficients are fixed at + 1. Obviously,

the net is far from fully connected, but all hidden units are connected to the output

unit, and these connections are modifiable. The hidden units are activated by a

linear threshold function, and the threshold varies. However, it varies not as the

result of training but dynamically so as to keep the number of active hidden units

within desired limits (500-5,000). Therefore, to what first looks like a feed-forward

net must be added feedback connections that adjust dynamically the thresholds of

the hidden units. The Golgi cells are assumed to provide this feedback.

In relating Marr's model to the sparse distributed memory, the codon cells

correspond to hard locations, and the hard-address matrix A is very sparse, as each

row has km is (km = 3, 4, 5), placed at random, andN - km 0s (there are no -Is in

A). A codon cell fires if most of its 3-5 inputs are active, and the Golgi cells set the

firing threshold so that 500-5,000 codon cells (out of the 200,000) are active at any

one time, regardless of the number of active input lines. Thus, the activation

function Ym for hard location A m is a threshold function with value 1 (the codon cell

fires) when most--but not necessarily all-of the km ls of A m are matched by ls

in the address x. The exact condition of activation in the examples developed by

Marr is that A m • x _ R, where the threshold R is between 1 and 5 and depends on

x. Thus, the codon cells are activated in Mart's model in a way that resembles the

activation of hard locations in an intermediate design of sparse distributed memory

that is close to the hyperplane design (in the hyperplane design, all inputs must be

active for a cell to fire).

One of the conditions of the hyperplane design is far from being satisfied--

namely, that the number of Is in the address is about constant (hence the name

hyperplane design). In Marr's model it is allowed to vary widely (between 20 and

1,000 out of 7,000), and this creates the need for adjusting the threshold

dynamically. In the sparse distributed memory variations discussed so far, the

threshold is fixed, but later in this chapter we will refer to experiments in which the

29

thresholdsareadjustedeitherdynamicallyor by trainingwith data.
Man"estimatesthecapacityof hismodelunderthemostconservativeof

assumptions,namely,that(0sand)ls areaddedto one-bitcountersthatareinitially
0.Underthisassumption,all counterseventuallysaturateandall informationis lost,
aspointedoutby Albus (1989).

7.2 Albus' Cerebellar Model Arithmetic Computer (CMAC)

This description of CMAC is based on the one in Albus' bookBrains, Behavior, and

Robotics (1981) and uses its symbols. The purpose here is to describe it sufficiently

to allow its comparison to the sparse distributed memory.

CMAC is an associative memory with a large number of addressable storage

locations, just as the sparse distributed memory is, and the address space is

multidimensional. However, the number of dimensions, N, is relatively small (e.g.,

N = 14), while each dimension, rather than being binary, spans a discrete range of

values {0, 1, 2 R - 1 }. The dimensions are also called input variables, and an

input variable might represent a joint angle of a robot arm (0-180 degrees)

discretized in five-degree increments (resolution R = 36), and a 14-dimensional

address might represent the angular positions and velocities of the joints in a seven-

jointed robot arm. Different dimensions can have different resolutions, but we

assume here, for simplicity, that all have the same resolution R.

An N-dimensional address in this space can be represented by an N-dimensional

unit cube, or cell, and the entire address space is then represented by R N of these

cells packed into an N-dimensional cube with sides of length R. The cells are

addressed naturally by N-place integers to base R.

A storage location is activated by some addresses and not by others. In the

sparse distributed memory, these exciting addresses occupy an N-dimensional

sphere with Hamming radius H, centered at the location's address. The exciting

region of the address space in Albus' CMAC is an N-dimensional cube with sides

of length K (1 < K < R); it is a cubicle ofK N cells (near the edge of the space it is

the intersection of such a cubicle with the address space and thus contains fewer

than K N cells). The center coordinates of the cubicle can be thought of as the

location's address (the center coordinates are integers if K is odd and half-way

between two integers if K is even, and the center can lie outside the R N cube).

The hard locations of a sparse distributed memory are placed randomly in the

address space; those of CMAC--the cubicles--are arranged systematically as

follows: First, the R N cube is packed with the K N cubicles starting from the comer

cell at the origin--the cell addressed by (0, 0, 0 0). This defines a set of

JR�K] s hard locations (the ceiling of the fraction means that the space is covered

completely). The next set of (1 + [(R - 1)/K])N hard locations is defined by

moving the entire package of cubicles up by one cell along the principle diagonal

30

of theR N cube--a translation. To cover the entire address space, cubicles are added

next to the existing ones at this stage. This is repeated until K sets of hard locations

have been defined (K translations take the cubicles to the starting position),

resulting in a total of at least K[R/K] N hard locations. Since each set of hard

locations covers the entire R N address space, and since the locations in a set do not

overlap, each address activates exactly one location in each set and so it activates K

locations overall. Conversely, each location is activated by the K N addresses in its

defining cubicle (by fewer if the cubicle spills over the edge of the space). The

systematic placement of the hard locations allows addresses to be converted into

activation vectors very efficiently in a hardware realization or in a computer

simulation (Albus 1980).

Correspondence of the hard locations to the granule cells of the cerebellum is

natural in Albus' model. To make the model life-like, each input variable (i.e., each

coordinate of the address) is encoded in R + K - 1 bits. A bit in the encoding

represents a mossy fiber, so that a vector of N input variable (an address) is

presented to CMAC as binary inputs on N(R + K - 1) mossy fibers. In the model,

each granule cell receives input from N mossy fibers, and each mossy fiber provides

input to at least [R/K] N granule cells.

The 20-bit code for an input variable s n with range R = 17 and with K = 4 is given

in Table 2-1. It corresponds to the encoding of the variables s 1 and s 2 in Figure 6.8

in Albus' book (1981, p. 149). The bits are labeled with letters above the code in

Table 2-1, and the same letters appear below the code in four rows. Bit A, for

example, is on (+) when the input variable is at most 3, bit B is on when the input

variable falls between 4 and 7, and so forth.

((TABI.E 2-1. Encoding a 17-1ovol Input Variablo so...))

This encoding mimics nature. Many receptor neurons respond maximally to a

specific value of an input variable and to values near it. An address bit (a mossy

fiber) represents such a receptor, and it is (+)1 when the input variable is near this

specific value. For example, this "central" value for bit B is 5.5.

The four rows of labels below the code in Table 2-1 correspond to the four sets

of cubicles (K = 4) that define the hard locations (the granule cells) of CMAC. The

first set depends only on the input bits labeled by the first row. If the code for an

input variables s n has Q1 first-row bits (Q1 = 5 in Table 2-1), then theNQ1 first-row

bits of the N input variables define Q1N hard locations by assigning a location to

each set of N inputs that combines one first-row bit from each input variable. The

second set of Q2 N hard locations is defined similarly by the NQ2 second-row bits,

and so forth with the rest.

We are now ready to describe Albus' CMAC design as a special case of

Jaeckel's hyperplane design. The N input variables sn are encoded and concatenated

into an N(R + K- 1)-bit address x, which will have NK ls and N(R - 1) -Is. The

31

addressmatrixA will have_/c QN rows, and each row will have N 1s, arranged

according to the description in the preceding paragraph. The rest of A will be 0s (for

"don't care"; there will be no -Is in A). The activation vector y can then be

computed as in the hyperplane design: the mth location is activated by x if the ls of

the hard address A m are matched by 1s in x (i.e., iff A m • x = N).

After a set of locations has been activated, CMAC is ready to transfer data. Here,

as with the sparse distributed memory, we can look at a single coordinate of a data

words only, say, the uth coordinate. Since CMAC data are continuous or graded

rather than binary, the storage and retrieval rules cannot be identical to those of a

sparse distributed memory, but they are similar. Retrieval is simpler: we use the sum

s u as output and we omit the final thresholding. From the regularity of CMAC it

follows that the sum is over K active locations.

From this is derived a storage (learning) rule for CMAC: Before storing the

desired output value Pu at x, retrieve s u using x as the address and compute the error

s u - p,,. If the error is acceptable, do nothing. If the error is too large, correct the K

active counters (elements of the matrix C) by adding g(Pu - Su)/K to each, where g

(0 < g < 1) is a gain factor that affects the rate of learning. This storage rule implies

that the counters in C count at intervals no greater than one Kth of the maximum

allowable error (the counting interval in the basic sparse distributed memory is 1).

In summary, multidimensional input to CMAC can be encoded into a long

binary vector that serves as an address to a hyperplane-design sparse distributed

memory. The address bits and the hard-address decoders correspond very naturally

to the mossy fibers and the granule cells of the cerebellum, respectively, and the

activation of a hard location corresponds to the firing of a granule cell. The synapses

of the parallel fibers with the Purkinje cells are the storage sites suggested by the

model, and the value of an output variable is represented by the firing frequency of

a Purkinje cell. Training of CMAC is by error-correction, which presumably is the

function of the climbing fibers in the cerebellum.

8. SDM Research

So far in this chapter we have assumed that the hard addresses and the data are a

uniform random sample of their respective spaces (the distribution of the hard

locations in CMAC is uniform systematic). This has allowed us to establish a base

line: we have estimated signal, noise, fidelity, and memory capacity, and we have

suggested reasonable values for various memory parameters. However, data from

real processes tend to occur in clusters, and large regions of the address space are

empty. When such data are stored in a uniformly distributed memory, large numbers

of locations are never activated and hence are wasted, and many of the active

locations are activated repeatedly so that they, too, are mostly wasted as their

contents turn into noise.

32

Therearemanywaysto counterthis tendencyof datato cluster.Let us look at
theclusteringof dataaddressesfirst. Severalstudieshaveusedthememory
efficientlyby distributingthehardaddressesA accordingto thedistributionof the
dataaddressesX. Keeler(1988)observedthatwhenthetwo distributionsarethe
sameandtheactivationradiusH is adjusted for each storage and retrieval operation

so that nearly optimal number of locations are activated, the statistical properties of

the memory are close to those of the basic memory with uniformly random hard

addresses. In agreement with that, Joglekar (1989) experimented with NETtalk data

and got his best results by using a subset of the data addresses as hard addresses

(NETtalk transcribes English text into phonemes; Sejnowski and Rosenberg 1986).

In a series of experiments by Danforth (1990), recognition of spoken digits,

encoded in 240 bits, improved dramatically when uniformly random hard addresses

were replaced by addresses that represented spoken words, but the selected-

coordinate design with three coordinates performed the best. In yet another

experiment, Saarinen et al. (1991b) improved memory utilization by distributing

the hard addresses with Kohonen's self-organizing algorithm.

Two studies have shown that uniform random hard addresses can be used with

clustered data if the rule for activating locations is adjusted appropriately. In

Kanerva (1991), storage and retrieval require two steps: the first to determine a

vector of N positive weights for each data address X t, and the second to activate

locations according to a weighted Hamming distance between X t and the hard

addresses A. In Pohja and Kaski (1992), each hard location has its own radius of

activation H m, which is chosen based on the data addresses X so that the probability

of activating a location is nearly optimal.

It is equally important to deal with clustering in the stored words. For example,

some of their bits may be mostly on, some may be mostly off, and some may depend

on others. It is possible to analyze the data (X, Z) and the hard addresses A and to

determine optimal storage and retrieval algorithms (Danforth 1991), but we can

also use iterative training by error correction, as described above for Albus' CMAC.

This was done by Joglekar and by Danforth in their above-mentioned experiments.

When error correction is used, it compensates for the clustering of addresses as

well, but it also introduces the possibility of overfitting the model to the training set.

Two studies by Rogers (1989a, 1990a) deal specifically with the interactions of

the data with the hard addresses A. In the first of these he concludes that, in

computing the sum vector s, the active locations should be weighted according to

the words stored in them--in fact, each active counter Cm, u might be weighted

individually. This would take into account at once the number of words stored in a

hard location and the uniformity of those words, so as to give relatively little weight

to locations or counters that record mostly noise. In the second study he uses a

genetic algorithm to arrive at a set of hard addresses that would store the most

33

informationaboutavariablein weatherdata.
Otherresearchissuesincludethestorageof sequences(Manevitz,1991)andthe

hierarchicalstorageof data(ManevitzandZemach,work in progress).
Most studiesof sparsedistributedmemoryhaveusedbinarydataandhavedealt

with multivaluedvariablesby encodingthemaccordingto anappropriatebinary
code.Table2-1 is anexampleof suchacode.Importantaboutthecodeis thatthe
Hammingdistancebetweencodewordscorrespondsto thedifferencebetweenthe
valuesbeingencoded(it growswith thedifferenceuntil amaximumof 2k is
reached,afterwhich theHammingdistancestaysat themaximum).

Sparsedistributedmemoryhasbeensimulatedonmanycomputers(Rogers
1990b),includingthehighlyparallelConnectionMachine(Rogers1989b)and
special-purposeneural-networkcomputers(Nordstrtim1991).Hardware
implementationshaveusedstandardlogic circuitsandmemorychips (Flynnet al.
1987)andprogrammablegatearrays(Saarinenet al. 1991a).

9. Associative Memory as a Component of a System

In practical systems, an associative memory plays but a part. It can store and recall

large numbers of large patterns (high-dimensional vectors) based on other large

patterns that serve as memory cues, and it can store and recall long sequences of

such patterns, doing it all in the presence of noise. In addition to generating output

patterns, the memory provides an estimate of their reliability based on the data it has

stored. But that is all; the memory assigns no meaning to the data beyond the

reliability estimate. The meaning is determined by other parts of the system, which

are also responsible for processing data into forms that are appropriate for an

associative memory. Sometimes these other tasks are called preprocessing and

postprocessing, but the terms are misleading inasmuch as they imply that

preprocessing and postprocessing are minor peripheral functions. They are major

functions--at least in the nervous systems of animals they are--and feedback from

memory is integral to these "peripheral" functions.

For an example of what a sensory processor must do in producing patterns for

an associative memory, consider identifying objects by sight, and assume that the

memory is trained to respond with the name of an object, in some suitable code,

when presented with an object (i.e., when addressed by the encoding for the object).

In what features should objects be encoded? To make efficient use of the memory,

all views of an object--past, present, and furore--should get the same encoding,

and any two different objects should get different encodings. The name, as an

encoding, satisfies this condition and so it is an ideal encoding, except that it is

arbitrary. What we ask of the visual system is to produce an encoding that reflects

physical reality and that can serve as an input to an associative memory, which then

outputs the name.

34

For this final namingstepto besuccessful--evenwith viewsasyet unseen--
differentviewsof anobjectshouldproduceencodingsthataresimilarto eachother
asmeasuredby somethinglike theHammingdistance,but thataredissimilartothe
encodingsof otherobjects.A rawretinal image(apixel map)is apoor encoding,
becausetheretinalcellsexcitedby anobjectvarydrasticallywith viewingdistance
andwith gazerelativeto theobject.It is simplefor usto fix thegaze--to look
directly at theobject--but it is impracticalto bring objectsto astandardviewing
distancein orderto recognizethem.Therefore,thevisualsystemneedsto
compensatefor changesinviewingdistancebyencoding--byexpressingimagesin
featuresthatarerelativelyinsensitivetoviewingdistance.Orientationof linesin the
retinalimagesatisfythiscondition,makingthemgoodfeaturesforvision.Thismay
explaintheabundanceof orientation-sensitiveneuronsin thevisualcortex,andwhy
thehumanvisualsystemis muchmoresensitiveto rotationthanto scale(weare
pooratrecognizingobjectsin neworientations;wemustresortto mentalrotation).
Encodingshapesin longvectorsof bits for anassociativememory,whereabit
encodesorientationata location,hasbeendescribedby Kanerva(1990).

Whatabouttheclaim that"peripheral"processing,particularlysensory
processing,is amajor activity in thebrain?Largeareasof thebrainarespecificto
onesensorymodalityor another.

In robotsthatlearn,anassociativememorystoresaworld modelthatrelates
sensoryinputto action.Theflow of eventsin theworld ispresentedto thememory
asasequenceof largepatterns.Thesepatternsencodesensordata,internal-state
variables,andcommandsto theactuators.Thememory'sability to storethese
sequencesandto recallthemunderconditionsthatresemblethepast,allowsits use
for predictingandplanning.Albus (1981,1991)arguesthatintelligentbehaviorof
animalsandrobotsin complexenvironmentsrequiresnot just oneassociative
memorybuta largehierarchyof them,with thesensorsandtheactuatorsat the
bottomof thehierarchy.

I0. Summary

In this chapter we have explored a number of related designs for an associative

memory. Common to them is a feed-forward architecture through two layers of

input coefficients or weights represented by the matrices A and C. The matrix A is

constant, and the matrix C is variable. The M rows of A are interpreted as the

addresses of M hard locations, and the M rows of C are interpreted as the contents

of those locations. The rows of A are a random sample of the hard-address space in

all but the Albus' CMAC model, in which the sample is systematic. When the

sample is random, it should allow for the distribution of the data.

The matrix A and the threshold function y transform N-dimensional input

vectors into M-dimensional activation vectors of 0s and ls. Since M is much larger

35

thanN, the effect is a tremendous increase over the input dimension and a

corresponding increase in the separation of patterns and in memory capacity. This

simplifies the storage of words by matrix C. The training of C can be by the outer-

product learning rule, by error correction (delta rule), by an analytic solution of a

set of linear inequalities, or by a combination of the above. Training, by and large,

is fast. These memories require much hardware per stored pattern, but the resolution

of the components can be low.

The high fan-out and subsequent fan-in (divergence and convergence) implied

by these designs are found also in many neural circuits in the brain. The

correspondence is most striking in the cortex of the cerebellum, suggesting that the

cerebellum could function as an associative memory with billions of hard locations,

each one capable of storing several-hundred-bit words.

The properties of these associative memories imply that if such memory devices,

indeed, play an important part in the brain, the brain must also include devices that

are dedicated to the sensory systems and that transform sensory signals into forms

appropriate for an associative memory.

Pattern Computing. The nervous system offers us a new model of computing,

to be contrasted with traditional numeric computing and symbolic computing. It

deals with large patterns as computational units and therefore it might be called

pattern computing. The main units in numeric computing are numbers, say, 32-bit

integers or 64-bit floating-point numbers, and we think of them as data; in symbolic

computing they are pointers of fewer than 32 bits, and we can think of them as

names (very compact, "ideal" encodings; see discussion on sensory encoding in

Sec. 9). In contrast, the units in pattern computing have hundreds or thousands of

bits, they serve both as pointers and as data, and they need not be precise. Nature

has found a way to compute with such units, and we are barely beginning to

understand how it is done. It appears that much of the power of pattern computing

derives from the geometry of very-high-dimensional spaces and from the

parallelism in computing that it allows.

Acknowledgments

This work was supported by the National Aeronautics and Space Administration

(NASA) Cooperative Agreement NC2-387 with the Universities Space Research

Association (USRA). Computers for the work were a gift from Apple Computer

Company. Many of the ideas came from the SDM Research Group of RIACS at the

NASA-Ames Research Center. We are indebted to Dr. Michael Raugh for

organizing and directing the group.

36

References

Albus, J.S. 1971. A theory of cerebellar functions. Mathematical Biosciences 10:25--61.

Albus, J.S. 1980. Method and Apparatus for Implementation of the CMAC Mapping Algorithm.

U.S. Patent No. 4,193,115.

Albus, J.S. 1981. Brains, Behavior, and Robotics. Peterborough, N.H.: BYTE/McGraw-Hill.

Albus, J.S. 1989. The Marr and Albus theories of the cerebellum: Two early models of associative

memory. Proceedings COMPCON Spring '89 (34th IEEE Computer Society International

Conference), pp. 577-582. Washington, D.C.: IEEE Computer Society Press.

Albus, J.S. 1991. Outline for a theory of intelligence. IEEE Transactions on Systems, Men, and

Cybernetics 31 (3):473-509.

Anderson, J.A. 1968. A memory storage module utilizing spatial correlation functions. Kybernetik

5(3):113-119.

Chou, P.A. 1989. The capacity of the Kanerva associative memory. IEEE Transactions on

Information Theory 35(2):281-298.

Danforth, D. 1990. An empirical investigation of sparse distributed memory using discrete speech

recognition. Proceedings of International Neural Network Conference (Paris) 1:183-186

(Norwell, Mass.: Kluver Academic). Complete report, with the same title, in RIACS TR 90.18,

Research Institute for Advanced Computer Science, NASA Ames Research Center.

Danforth, D. 1991. Total Recall in Distributed Associative Memories. Report RIACS TR 91.3,

Research Institute for Advanced Computer Science, NASA Ames Research Center.

Flynn, M.J., P. Kanerva, B. Ahanin, N. Bhadkamkar, P. Flaherty, and P, Hinkley. 1987. Sparse

Distributed Memory Prototype: Principles of Operation. Report CSL-TR78-338, Computer

Systems Laboratory, Stanford University.

Hassoun, M.H. 1988. Two-level neural network for deterministic logic processing. In N.

Peyghambaxian (ed.) Optical Computing and Nonlinear Materials (Proceedings SPIE 881:258-

264).

Hassoun, M.H., and A.M. Youssef. 1989. High performance recording algorithm for Hopfield

model assoclarive memories. Optical Engineering 28(1):46-54.

Hopfield, JJ. 1982. Neural networks and physical systems with emergent collective computational

abilities. Proceedings of the National Academy of Sciences (Biophysics) 79(8):2554-2558.

Reprinted in J.A. Anderson and E. Rosenfeld (eds.), Neurocomputing: Foundations of Research,

pp. 460--464 (Cambridge, Mass.: MIT Press).

Ito, M. 1984. The Cerebellum and Neuronal Control. New York: Raven Press.

Jaeckel, L.A. 1988. Two Alternate Proofs of Wang's Lune Formula for Sparse Distributed Memory

and an Integral Approximation. Report RIACS TR 88.5, Research Institute for Advanced

Computer Science, NASA Ames Research Center.

Jaeckel, L.A. 1989a. An Alternative Design for a Sparse Distributed Memory. Report RIACS TR

89.28, Research Institute for Advanced Computer Science, NASA Ames Research Center.

Jaeckel, L.A. 1989b. A Class of Designs for a Sparse Distributed Memory. Report RIACS TR 89.30,

Research Institute for Advanced Computer Science, NASA Ames Research Center.

Joglekar, U.D. 1989. Learning to Read Aloud: A Neural Network Approach Using Sparse

Distributed Memory. Master's thesis, Computer Science, UC Santa Barbara. Reprinted as report

RIACS TR 89.27, Research Institute for Advanced Computer Science, NASA Ames Research

Center.

Kanerva, P. 1988. Sparse Distributed Memory. Cambridge, Mass.: Bradford/MIT Press.

37

Kanerva,P.1990.Contour-mapencodingofshapeforearlyvision.InD.S.Touretzky(ed.),Neural

Information Processing Systems 2:282-289 (Proceedings NIPS-89) (San Mateo, Calif.:
Kaufmann).

Kanerva, P. 1991. Effective packing of patterns in sparse distributed memory by selective weighting

of input bits. In T. Kohonen, K. M,-3kisara, O. Simula, and J. Kangas (eds.), Artificial Neural

Networks 1:279-284 (Proceedings ICANN-91) (Amsterdam: Elsevier/North-HoUand).

Keeler, J.D. 1988. Comparison between Kanerva's SDM and Hopfield-type neural networks.

Cognitive Science 12:299-329.

Kohonen, T. 1972. Correlation matrix memories. IEEE Transactions on Computers C 21(4):353-

359. Reprinted in J.A. Anderson and E. Rosenfeld (eds.), Neurocomputing: Foundations of

Research, pp. 174-180 (Cambridge, Mass.: MIT Press).

Kohonen, T. 1980. Content-Addressable Memories. New York: Springer-Verlag.

Kohonen, T. 1984. Self-Organization and Associative Memory, second edition. New York: Springer-

Verlag.

Kohonen, T., and Reuhkala, E. 1978. A very fast associative method for the recognition and

correction of misspelt words, based on redundant hash addressing. Proceedings of the Fourth

International Joint Conference on Pattern Recognition, Kyoto, Japan, pp. 807-809.

Llinfis, R.R. 1975. The cortex of the cerebellum. Scientific American 232(1):56--71.

Loebner, E.E. 1989. Intelligent network management and functional cerebellum synthesis.

Proceedings COMPCON Spring '89 (34th IEEE Computer Society International Conference),

pp. 583-588. Washington, D.C.: IEEE Computer Society Press. Reprinted in The Selected

Papers ofEgon Loebner (Palo Alto: Hewlett Packard Laboratories, 1991, pp. 205-209).

Manevitz, L.M. 1991. Implementing a "sense of time" via entropy in associative memories. In T.

Kohonen, K. _sara, O. Simula, andJ. Kangas (eds.),ArtificialNeuralNetworks 2:1211-1214
(Proceedings ICANN-91) (Amsterdam: Elsevier/North-Holland).

Manevitz, L.M., and Zemach, Y. Assigning Meaning to Data: Multilevel Information Processing in

Kanerva's SDM. Work in progress.

Marr, D. 1969. A theory of cerebellar cortex. Journal of Physiology (London) 202:437--470.

Nordslr6m, T. 1991. Designing and Using Massively Parallel Computers for Artificial Neural

Networks. Licentiate thesis 199 l:12L, Lul_ University of Technology, Sweden.

Pohja, S., and K. Kaski. 1992. Kanerva's Sparse Distributed Memory with Multiple Hamming

Thresholds. Report RIACS TR 92.06, Research Institute for Advanced Computer Science,
NASA Ames Research Center.

Prager, R.W., and E Fallside. 1989. The modified Kanerva model for automatic speech recognition.

Computer Speech and Language 3(1):61-81.

Rogers, D. 1989a. Statistical prediction with Kanerva's sparse distributed memory. In D.S.

Touretzky (ed.), Neural Information Processing Systems 1:586-593 (proceedings NIPS--88)
(San Mateo, Calif.: Kaufmann).

Rogers, D. 1989b. Kanerva's sparse distributed memory: An associative memory algorithm well-

suited to the Connection Machine. International Journal of High Speed Computing 1(2):349-
365.

Rogers, D. 1990a. Predicting weather using a Genetic Memory: A combination of Kanerva's sparse

distributed memory and Holland's genetic algorithms. In D.S. Touretzky (ed.), Neural

Information Processing Systems 2:455-464 (Proceedings NIPS--89) (San Mateo, Calif.:

Kaufmann).

Rogers, D. 1990b. BIRD: A General Interface for Sparse Distributed memory Simulators. Report
RIACS TR 90.3, Research Institute for Advanced Computer Science, NASA Ames Research
Center.

38

Rosenblatt, E Principles of Neurodynamics. Washington, D.C.:Spartan.

Rumelhart, D.E., and J.L. McClelland., eds. 1986. Parallel Distributed Processing, volumes 1 and

2. Cambridge, Mass.: Bradford/MIT Press.

Saarinen, J., M. Lindell, P. Kotilainen, J. Tomberg, P. Kanerva, and K. Kaski. 1991a. Highly parallel

hardware implementation of sparse distributed memory. In T. Kohonen, K. Makisara, O. Simula,

and J. Kangas (eds.), Artificial Neural Networks 1:673-678 (Proceedings ICANN-91)

(Amsterdam: Elsevier/North-Holland).

Saarinen, J., S. Pohja, and K. Kaski. 1991b. Self-organization with Kanerva's sparse distributed

memory. In T. Kohonen, K. Mgddsara, O. Simula, and J. Kangas (eds.), Artificial Neural

Networks 1:285-290 (Proceedings ICANN-91) (Amsterdam: Elsevier/North-Holland).

Sejnowski, TJ., and C.R. Rosenberg. 1986. NETtalk: A Parallel Network that Learns to Read Aloud.

Report JH /EECS-86/01, Department of Electrical Engineering and Computer Science, Johns

Hopkins University. Reprinted in J.A. Anderson and E. Rosenfeld (eds.), Neurocomputing:

Foundations of Research, pp. 663-672 (Cambridge, Mass.: MIT Press).

Willshaw, D. 1981. Holography, associative memory, and inductive generalization. In G.E. Hinton
and J.A. Anderson (eds.), Parallel Models of Associative Memory, pp. 83-104 (Hillsdale, N.J.:

Erlbaum).

16

, "-'- _..l.'m mlI iNHNi IN I
I HNI • mi • n In lilmi nuiN I
/mR NiN I inmai • • • I
a • • • • • ml I ion oo mool_

)......)..-..--.1 6 i..- • |ml ,'"'=m.. ..,m " m=,m='.INn • • mn nnl i nJ • iml
• • I mu • • • mum _p,fINN mmn nunl In nun mmmliv

innmmm • • HURl a • um I

I. ,i u.'..I '" ""'I numnm nun I
mnl ilnmmn I ummimmmmm II mmiumnm • I

I • muumuu • ml) _

u nun muumuu I
I nun • • • nl
I mmmnn • mnn I
I m im • nu I_,.

luumm • mm mmml

PUB nil

P= • "=== =Ill
imii mm • • • I
Imm • nil

/.! ,,, ," " , ,'1

• • • ===== • ,='= ====...====• ,' ,' •• ========.= •== ,'mnmnmmnE mEn ml
mE • mm mmmi ml l mm mn ill I l iil Hi mil I
mmmmm • mm ml i mum • mmmmmi i mmm mm mmm I
mmm mm mm! immm • UNto l i mmm • mmml

"'= ==" Ir'= • • =I=I• • • iN nul I • • toni
iN H • Nil aim • mmml i • • inn
mm • mmml mm • • m, m m mm mml
mmmm • mml m mm mm mm • • i
• • • • mmmi |m m • mmmm Im • mmui in iN mmmmmm iN m!
mum • mmmm) imm • immi I mmm • • mmmm m

• mmm mm • I i mmmm mmm mi I mmmm mmm m
mm mm mmmmm i ! mmmmmmmmm • i m mmmm mHN |

i mmmmmmm • i i • mmm mm • m • • • •

2O%

• mmmmmmm I • iN mm I • mmll nm l
mmmmmm mmm i mmmmmgm • mm mmmmmmmmn imiNim • • mm I nun mmmm I mmmn ainu

• mmm mmm ! I mmmm aNN m m mmmm immm
• • • in mum I /mira u in I immm mm _.,,......

mmm mmml mum mum
in in • mmmi mmlm • |;i • •
mmmmm mmm •'"'"I_m,i _4-._ lm |me

m. • "" mmi" m.miuml " ""
inn mmm nn mmm
mi • mm • in • am • mnml
mHn • m man m mmm mm I

iNN mmm m mmmm inn I! mm mmm m
m iN • • • • • m l mmmm mmmm m m muNro imun !
m mm mmmmmm • m m mmmmimmmmmmm m m mmmm mmmmmm t
IN p mm I mmm I mmmmmm m

200 60 2*/o

Figure 2-1. Nine noisy words (20% noise) are stored, and the tenth is

used as a retrieval cue.

._ _m UllmM ill
Hi it aim

mum mum nunmu nn mum
iBm NUl Hal
mmm mmn man

um mm mmnme me uwn
iuunll ill

loll lie
Illl lie
loll lie

me lie
In II!

ui" ,ir -.- -.-.-./HI IN lid
/lid lie Ill

Ill Ill /ill lie III
lull IIIll / In II lie
lUll mill / lie lie liD
lien Ilia / lid Ill Ill

lie gill / II HI III

" "" / :h:i: ""III uRn IllIllillll
InDian / fill lie
llllll l mill Ill

Illl / II III
mnnmm mm mmali

30% 20% 3% 0%

Figure 2-2. Recalling a stored sequence with a noisy (30% noise) retrieval cue.

X

m
t-
O

o_

(3
0

C)
C)
0

c;
C)
O

qp--

II

o
o,J
C_

M

ADDRESS REGISTER

20 bits

000 "-" 011

WORD-IN REGISTER

32 bits

W 010 ..- 110

N Y U

000 001 111 111

000 010 100 010

000 011 010 110

000 100 000 111

000 101 001 100

A C

ADDRESS MATRIX

M addresses

CONTENTS MATRIX

MxU bits

111 100 010 000

111 101 111 100

111 110 110 011

111 111 Mo0o 000

z I0 _ 0 -.. 1 1 oI
WORD-OUT REGISTER

32 bits

Figure 2-3. Organization of a random-access memory. The first memory location is

shown by shading.

ADDRESS REGISTER

1,000 bits

WORD-IN REGISTER

1,000 bits

M

101 001

010 01 1

0 0 0 101

1 1 1 001

0 0 0 1 1 0
A

ADDRESS MATRIX

M hard addresses

111 000

100 100

100 010

011 011

Hamming distances

444 1

550 0

447 1

493 0

531 0

.
• g,

480 0

446 1

512 iO

49,_8 0

Activations (H = 447)

Sums

S

/
Z

-1-1-1 13-1

11-3 -111

-242 020

-111 -3-1-1

204 020
C

CONTENTS MATRIX

MxU counters

13-1 3-35

-11-1 11-1

204 06-4

000 000

0 1 0 ... 1 1 0

WORD-OUT REGISTER

1,000 bits

\

Figure 2--4. Organization of a sparse distributed memory. The first memory location

is shown by shading.

hAM_2 A4

H =x

' 0 A1 n A 2

Figure 2--5. Address space, hard locations, and the set activated by x.

H is the (Hamming) radius of activation.

n

Wt at X t

r'l El

Figure 2--6. Activation overlaps as weights for stored words. When

reading at X T, the sum S T includes one copy of the word W t from

each hard location in the activation overlap (two copies in the figure).

A1,1 C1,1

Cm, u

AM, N CM, U

v

Figure 2--7.Feed-forward artificial neural network.

B

D

Figure 2--8. Four views of an artificial neuron.

Figure 2-9. Sparse dislributed memory as an artificial neural network

(Fig. 2-7 redrawn in the style of Fig. 2--4).

®

Cm,

wuI zu

U

Figure 2-10. Connections to an output neuron. Three output units are

shown. The first unit is drawn as a column through the contents

matrix C, the middle unit shows the connections explicitly, and the

last unit corresponds to Figure 2-11.

ea

Mo CI

::_iiii_i_iliii_::::... ::,,
"'::i:i::.:.."::i:i:i:i::

"'::i:ii:_::.., ..::i:i::'

../ g a :;iiiiiiiiiiiiiiiiiii,_

Figure 2-11. Sketch of the cortex of the cerebellum. Ba = basket cell, CI = climbing fiber (black),

Go = Golgi cell, Gr = granule cell, Mo = mossy fiber (black), Pa = Parallel fiber, Pu = Purkinje

cell (cross-hatched), St = stellate cell. Synapses are shown with small circles and squares of the

axon's "color." Excitatory synapses are black or white, inhibitory synapses are cross-hatched

or gray.

Q

..--_--°

<

(

L

ttl tli

-- !

i
i

.... I I....

Figure 2--12. Sparse distributed memory's resemblance to the cerebeUum (Fig. 2-9

redrawn in the style of Fig. 2-11; see also Fig. 2-10).

Table 2-.1

Encoding a 17-level Input Variable s n in 20 Bits (K = 4)

Input bit

sn
FMSAGNTBH PVC JQWDKRX E

0 + + + +

1 -++++

2 ++++

3 + + + +

4 ++++

5 + + + +

6 ++++

7 ++++

8 ++++

9 ++++

i0 ++++

ii ++++

12 ++++

13 ++++

14 ++++

15 ++++-

16 ++++

A B C D E

F G H J K

M N P Q R

S T V W X

