A CFD Validation Roadmap For Hypersonic Flows

Joseph G. Marvin

April 1992

Presentation Paper - This report was presented at the 70th Fluid Dynamics Panel Meeting and Symposium on Theoretical and Experimental Methods in Hypersonic Flows, Torino, Italy, May 4-8, 1992.
A CFD Validation Roadmap For Hypersonic Flows

Joseph G. Marvin, Ames Research Center, Moffett Field, California

April 1992
A CFD Validation Roadmap For Hypersonic Flows

Joseph G. Marvin
NASA Ames Research Center
MS 229-1
Moffett Field, CA 94035-1000
U. S. A.

1. SUMMARY
A roadmap for CFD code validation is developed. The elements of the roadmap are consistent with air-breathing vehicle design requirements and related to the important flow path components: forebody, inlet, combustor, and nozzle. Building block and benchmark validation experiments are identified along with their test conditions and measurements. Based on an evaluation criteria, recommendations for an initial CFD validation data base are given and gaps identified where future experiments would provide the needed validation data.

2. INTRODUCTION
Computational Fluid Dynamics (CFD) must play a major role in the development of aerospace vehicles because ground test facilities are not able to fully simulate flight conditions. A CFD code's accuracy must be determined by a validation process, however, because of possible sources of error in the solutions. The process of validation involves two aspects: numerical and experimental. Numerical validation is necessary because CFD codes provide approximate solutions to the governing equations; they use discrete grids; they employ algorithms that contain numerical dissipation; and they may have nonconvergence errors. Validation of a code's physical modeling and its application to complex flows requires experiment to determine accuracy limits and range of applicability. Consequently, the pace of CFD's introduction and the extent of its reliability depends on validation.

The second aspect of validation depends on comparisons with well-posed experiments. Since code applications are becoming more complex, it no longer suffices to use data from surface or integral quantities such as lift and drag to provide the validation. Two types of experiments are essential to the determination of CFD accuracy. Building block experiments are necessary to validate physical and chemical modeling. Special attention must be given to measurements necessary to guide and validate the modeling. Benchmark experiments are necessary to validate CFD code prediction capabilities. Measurements illuminating the ability to predict engineering quantities are required.

Shortcomings in CFD validation exist at all flight regimes, but especially at hypersonic speeds. Gaps exist in the validation database of true flight enthalpy due to facility and instrumentation limits. Nevertheless, there is a need to review the current database to determine whether or not it can provide a basis for initiating a CFD validation process. Furthermore, much can be gained by assembling the database and making CFD comparisons so that the inevitable pitfalls can be avoided in planning new validation activities.

The purpose of this paper is to propose a validation roadmap consisting of a series of steps that can establish a code's capabilities and associated accuracy. A series of appropriate experiments will be identified and cataloged. Selected validation experiments will be identified and cataloged according to the flow path for an air-breathing vehicle, e.g., forebody, inlet, combustor, and nozzle. Some examples taken from the data base will be used to clarify and demonstrate their utility and applicability.

3. VALIDATION ROADMAP
For the purposes of this paper, validation will be used to imply an established correspondence between actual flows and those produced by computation. The author, together with colleagues from various NASA Research Centers, developed the following five-step validation roadmap: (1) Define what critical performance information is needed and establish the corresponding code requirements; (2) Establish the appropriate governing equations and the corresponding physical and/or chemistry modeling requirements; (3) Identify or develop the appropriate validation data (building block data to guide and validate modeling and benchmark data to validate complex flow computations); (4) Perform computations for exact experimental conditions and test their sensitivity to the numerical and modeling assumptions; and (5) Document the code including its validation to the extent necessary to provide users with knowledge of the code's sensitivity to internal numerical parameters, grid refinement effects, the code's accuracy, and range of capabilities.

4. REQUIREMENTS
CFD performance estimates to support the design of an air-breathing vehicle can be accomplished with "nose to tail" computations using a series of codes identified with the air flow path, i.e., forebody, inlet, combustor, and nozzle codes. Following the first two steps in the roadmap, vehicle component performance, code, and modeling requirements are introduced.

4.1 Forebody
The design performance requirements are lift, drag, and heat load. To predict these, a code is required to compute surface pressures, skin friction, heat transfer rates, and provide inlet flow profile conditions required to initiate the inlet component code. Modeling requirements are subdivided into numerical and physical categories. Numerically, it is essential to preserve mass, momentum, and energy, to capture discontinuities such as shock waves, and to compute or admit flows developed by blunt noses or leading edges to capture any entropy layer development. Code sensitivity to grid refinement, numerical dissipation, lack of convergence, and any internal code parameters must be determined and specified. Physical and chemistry modeling is required for transition, turbulence, shock interactions, entropy layer swallowing, equilibrium, nonequilibrium air chemistry, wall cattolicity, and low density flow at high altitudes. Mach number, Reynolds number, and forebody structural material will determine the modeling needs for air chemistry.
4.2 Inlet
The design performance requirements are mass capture, kinetic energy efficiency, pressure recovery, heat load, and spillage drag. To predict these, the code is required to compute wall pressures, skin friction, heat transfer, mass flow, and provide exit profiles for the initial conditions of the combustor component code. Numerical, physical, and chemical modeling requirements are similar to those described previously for the forebody, but the code must additionally model cowl shock interactions and separation resulting from shock/boundary-layer interaction.

4.3 Combustor
Thrust, heat load, efficiency, pressure losses, and structural loads are the performance requirements of concern in the design. Codes are required to compute overall thrust, wall pressures, skin friction, heat transfer, and provide the flow exit profiles needed to initiate the nozzle component codes. Complex situations involving vortex and injector interactions with the main flow must be modeled in these codes. Numerical and mathematical modeling requirements are essentially the same as those listed previously, but it is essential that these codes handle finite rate chemistry, including air-fuel reactions, and that they model turbulence chemistry interactions.

4.4 Nozzle
Thrust, moments, and heat loads are the performance parameters required for design. The codes are required to predict net thrust, wall pressures, heat transfer, and skin friction. Physical and chemical modeling requirements include turbulence, shock interactions, shear layers, relaminarization, secondary flows, and finite rate chemistry for the air-fuel products of combustion.

5. VALIDATION DATA BASE
The next roadmap step is to identify or develop an appropriate data base. Candidate experiments for CFD validation were identified through literature searches and knowledge of recent validation activities within the U.S.A. They were divided into the building block and benchmark categories referred to previously and integrated into a matrix table. The tables were then used to show the range and completeness of the data, to identify gaps, and to select an initial validation data base.

A portion of the results are shown in tables 1–7 for each component category. The experiments, listed across the top of the table in numerical sequence according to reference number, were checked against the physical and chemical modeling requirements and performance requirements for the building block and benchmark experiments, respectively. (There is no significance attached to the numbering order.) Brief notations of test conditions and geometry are given. Measurements from the experiments were then checked to determine their match with the requirements.

Several important conclusions can be drawn from a study of the tabular results. The number of benchmark experiments is substantially fewer than the number of building block experiments, partly because component testing is often proprietary and not generally accessible. While the range of Mach numbers extends into the hypersonic regime, the enthalpy at which the experiments were conducted is mostly not commensurate with flight enthalpy and hence few “real gas” sets of data are available. The number of combustor and nozzle experiments lags considerably compared to the other categories and no combustor benchmark data are available to the general user. The types and variety of measurements for any single experiment and from experiment to experiment varies considerably, reflecting the fact that experiments performed in former decades were not planned to satisfy the needs of validation and that instrumentation and facilities, even today, limit our ability to perform complete validation experiments. Nevertheless, selected experiments from this data base provide the basis for initiating a focused validation effort.

5.1 Selection Criteria
The criteria for selecting the building block experiments were as follows: The data were required to be performed at conditions matching hypersonic flight Mach numbers (M > 3) for single flows associated with components of an air-breathing vehicle; they had to provide enough useful data to test specific physical or chemical modeling problems; they had to have boundary conditions defined sufficiently to initiate CFD solutions; and they had to have experimental errors identified and their specificity was desired. To the extent possible with today’s status of instrumentation and facility development, measurements of flow field quantities and at least some measurement redundancy was desirable.

The selection of the benchmark experiments was made using a similar basis. Measurement details on flow modeling and chemistry, desirable for the building block data base, were not considered essential so long as the data reflected a measure of the actual physics and chemistry. However, test cases were sought that could test a code’s ability to predict performance over a range of flow conditions. To the extent possible, measurements of flow field quantities in critical regions of the flow were desirable.

6. RECOMMENDED EXPERIMENTS
These are sketched in figs. 1–7 and listed by reference number. Although the experimental data base has shortcomings and gaps, it is assumed that code developers can use it collectively to provide a much needed validation baseline. Adhering to it can establish the physical and chemical modeling attributes of the codes, establish credibility regarding performance prediction, and establish important code-to-code comparisons for added confidence. Furthermore, code developers and experimentalists can use the information as a guide to improving and enhancing current experiments or for proposing additional ones.

6.1 Forebody
Transition, turbulence, and air chemistry are the most critical modeling issues. Selected building block experiments are given in fig. 1.

Transition onset and extent, influence of pressure gradient and flatness, and influence of three-dimensional flow all must be modeled. At present, transition modeling is ad hoc and based on experimental evidence influenced by uncertainties associated with free stream flight or wind tunnel conditions. Nevertheless, some experiments were selected in order to assess and compare current transition modeling. Experiment 1 is a flight experiment useful in assessing transition onset criteria for high Mach number real gas conditions. The remaining group of wind tunnel experiments are recommended for assessing the ability to model trends with flatness and the influence of 3-D effects with the
understanding that wind tunnel disturbances influence the actual locations of transition, if not the trends. NASA Langley Research Center's development of disturbance-free, quiet wind tunnels will provide much better validation data in the future. Experiment 3 was one of the first quiet wind tunnel demonstration experiments.

The validation experiments for attached flows selected for assessing turbulence modeling cover a range of Mach numbers, are limited in wall cooling range to 0.2, and the majority do not simulate flight enthalpies. (The latter may not present a major impediment as the influence of turbulence-chemistry interaction is not believed to be a first-order effect, except in combustor and nozzle flows.) Validation studies to date show turbulence modeling for attached hypersonic flows is reasonably in hand (see, e.g., ref. 60). Uncertainties remain in modeling the influence of pressure gradients, however, and a data base is only available at lower Mach numbers. One experiment on a conical configuration is available for assessing modeling at angles of attack.

Air chemistry modeling is essential to numerical computations of hypersonic flows. Implementation of equilibrium air chemistry in CFD codes is straightforward and has a sound basis. Nonequilibrium air chemistry implementation in CFD codes is less advanced, e.g., decisions regarding strong or weak coupling of the species equations with the fluid dynamics equations and the choice of rate constants. Therefore, the recommended experiments involve conditions where nonequilibrium chemistry modeling is needed. The sharp and blunt cone data from a ballistic range test for laminar flow conditions in air provides a unique set of experiments conducted for this purpose. Other experiments in heated oxygen and nitrogen are also available. The paucity of detailed experimental profile data apropos to validation at flight enthalpies for both equilibrium and nonequilibrium flows suggests that code-to-code comparisons become an integral part of the validation process. With this objective in mind it is also recommended that code-to-code comparisons be made for the altitude and velocity conditions specified in cases 1 and 2 of ref. 61 for testing nonequilibrium modeling and case 2-b from ref. 62 for testing equilibrium modeling.

The recommended benchmark experiments are given in fig. 2. Only two experiments are recommended and they provide data on generic geometries at hypersonic Mach number and Reynolds number conditions leading to both laminar and turbulent flow. (The data from experiment no. 46 are currently restricted to U.S. citizens with access to NASP information.) The test conditions do not match flight enthalpies and corresponding air chemistry reactions. These experiments, however, will serve to validate 3-D algorithms, incorporation of turbulence modeling, and provide some data to evaluate predictions of performance parameters.

In addition to those previously selected and discussed for transition, turbulence, and chemistry modeling for the forebody, the remainder deal with the shock-wave/boundary-layer interaction problem for laminar and turbulent flows. A comprehensive search for turbulent shock interaction validation experiments was conducted for NASA by Settles.82 Most of those experiments were listed in the candidate data base shown previously and a few are recommended herein. Additionally, recent turbulent validation experiments performed at NASA Ames Research Center have been selected. They provide data on flows with compression ramps, impinging shocks, and swept and intersecting shocks. All of the selected experiments were performed in wind tunnels at enthalpies that do not match flight.

Inlet benchmark experiments selected for the validation data base are shown in fig. 4. The Mach number range is limited and flight enthalpy is not matched. Although more experiments have been performed recently, they could not be recommended because they were performed on proprietary geometries. Nevertheless, the experiments selected will serve to validate 3-D algorithms, incorporation of turbulence modeling, and provide some data to evaluate predictions of performance parameters.

6.3 Combustor
The critical modeling issues for supersonic combustors involve various mixing processes of chemically reacting constituents. The combustor building block experiments shown in fig. 5 can be useful in assessing modeling of various mixing processes with and without chemical reactions, although they are limited in many instances by the variety and accuracy of their data.

Experiment 34 provides supersonic data for 3 nonreacting ejector flows: jet-off, jet-on, and two streamwise-aligned jets-on. Experiment 37 provides subsonic data for a reacting flow case. Experiment 36 and the data correlation from ref. 39 provide data to assess turbulence modeling of single and two-stream shear layers, and experiments 35, 38, and 40 provide shear layer mixing data for hydrogen-air reacting flows.

No combustor component experiments were selected because of their proprietary nature. There is still, nevertheless, a serious gap in both the combustor building block and benchmark experimental data base adequate for CFD validation.

6.4 Nozzle
The nozzle building block experiments selected for assessing modeling issues are shown in fig. 6. Of the critical modeling issues, turbulent boundary layer development and the expansion of reacting hydrogen-air mixtures are addressed.

Some of the flat plate flows from the forebody recommendations can be used to test implementation of turbulence models into nozzle codes. In addition, experiment 41 provides data on a turbulent boundary layer developing on a nozzle wall to a very high Mach number in helium. The data can be used to assess turbulence modeling for highly expanding nozzle flows. Experiments in nozzles with reacting air chemistry are lacking. Therefore a numerical test case developed recently and described in ref. 45 is recommended for code-to-code comparisons.
Only one nozzle benchmark experiment is recommended (see fig. 7). This particular experiment was designed with CFD Navier-Stokes codes under development at NASA Ames Research Center and was recently completed. Although it is a cold-air nozzle experiment, it can provide a basis for validation of 3-D algorithms, turbulence modeling, and the ability of the codes to predict some of the required performance parameters. Experiments with reacting air chemistry are needed.

7. RECENT VALIDATION ACTIVITIES

Some of the selected validation experiments were designed and carried out recently at the NASA Ames Research Center. Building block experiments at hypersonic Mach numbers were performed to guide and validate turbulence and real gas air chemistry modeling. Benchmark experiments were performed to validate 3-D forebody and nozzle codes. Each of the experiments was designed with validation as their primary purpose and some of the results are described next.

7.1 Physical and Chemical Modeling Experiments

Experiments designed to provide guidance and validation for the development of compressible turbulence models for various shock-wave/boundary-layer interactions have been accomplished in the Ames 3.5-Foot Hypersonic Wind Tunnel (3.5 HWT). Four experiments\(^1\) were completed, providing surface measurements and mean-flow boundary layer profiles. Turbulence measurements will be obtained in the future with a laser anemometer and a laser-induced-fluorescence instrument developed for the facility.

One of these experiments consisted of a series of axisymmetric flares preceded by a cone-ogive-cylinder. The test geometry and conditions are shown in fig. 8. Beginning and end of transition occurred on the cone ahead of the cylinder. The measurements in the interaction zones included surface pressure, heat transfer, and surface oil streaks. A few mean flow velocity and density profiles were also obtained ahead of the interaction zone and on the 20° flare. The data are summarized and tabulated in ref. 21.

Experimental surface pressure and heat transfer distributions are shown in fig. 9 for the 35° flare. The separation locations determined from surface oil streaks are shown along with typical data error bars. The data are being used to validate turbulence model corrections for compressibility. They are compared with computations by Horstman\(^5\) using a standard k-\(\varepsilon\) eddy viscosity model and one corrected for compressibility. These solutions were obtained by solving the Reynolds-averaged Navier-Stokes equations. ITW refers to “integration to the wall” using low Reynolds number damping terms. For the modified model, which accounts for compressibility effects and limits the length scale in the vicinity of reattachment, significant improvements were obtained in predicting the measured pressure distribution, the predicted separation location, and the heat transfer.

Other tests were performed to guide turbulence modeling for impinging, swept, and intersecting swept shocks interacting with a turbulent boundary layer. A model sketch is shown in fig. 10. A sharp flat plate was used for these experiments. The plate was pitched at \(-2°\) angle of attack to increase the test Reynolds number and provide a uniform 2-D flow field on the plate. The plate was of a hollow frame construction, having interchangeable panels with several 20-cm-diameter holes in the center that accommodated surface pressure, heat transfer, pitot-static, yaw, and total temperature instrumentation ports. Tests were made with a wedge mounted above the test bed to generate a shock wave which impinged on the test bed. Pressure and heat transfer were measured throughout the interactions. In addition, to surface pressures and heat transfer, flow field surveys and skin friction were measured. Wedges with angles of 5°, 10°, and 15° were tested. In another configuration, fins were placed on the flat plate to generate a glancing shock-wave interaction. Fin angles of 5° to 15° were investigated. More recently a crossing shock interaction experiment was completed. In addition to surface pressure and heat transfer, flow field surveys and skin friction were obtained. Documented data are provided for each of these experiments.\(^3\)

Typical data from the swept shock experiment are shown in fig. 11. Measured pressure and heat transfer, normalized by the upstream flat plate values, are plotted as a function of spanwise distances. Error bars are shown at two locations to indicate the variations in accuracy of the measurements. As the fin angle is increased, the corresponding increase in its shock strength causes the flow to separate, as observed from converging surface streamline patterns. Corresponding increases in heating and pressure were observed between 5 and 10 cm. As the fin wall is approached the pressures and heating continue to increase. On the fin the flow is laminar above the interaction and near the plate surface. Fin pressures (not shown) decrease rapidly at the intersection with the plate indicating the presence of a corner vortex.

Comparisons of the data on the plate with the 10° fin are compared with computations by Horstman\(^6\) in fig. 12. Pressure, heat transfer, and skin friction data predicted with the Navier-Stokes code computations using a k-\(\varepsilon\) model are in good agreement with the data. Although not shown here, comparisons of predictions with flow field profile data were also in good agreement. Evidently, for these flows, compressibility corrections needed for the strong 2-D interactions where large streamwise separations occur are not required. Modeling studies on this flow are continuing, however.

Another building block experiment\(^7\) has been carried out to obtain aerodynamic data at true flight enthalpy on sharp and blunt slender cones to assist in validating air chemistry modeling. It was carried out in the Ames Hypervelocity Ballistic Range at speeds in excess of 5 km/s. Reynolds numbers were between 10\(^5\) and 10\(^6\) and the flow was laminar. The resulting set of data is suitable for testing air chemistry modeling. Aerodynamic data for a 30% blunt 5° cone with conical ring shock generators were obtained and a summary of the important results taken from ref. 11 are shown in fig. 13. Aerodynamic data and a typical shadowgraph are shown and compared with computations by Molvik using a Navier-Stokes code with a strongly coupled 7-species air chemistry model and an ideal gas model. A histogram is shown for the number of data points used to deduce the aerodynamic coefficients. Confidence in the reported coefficients is greatest at moderate angles, where the number of data points is greatest. The top data figure shows the experimental and computed drag coefficient. The computed values of \(C_D\) using both perfect gas and real-gas chemistry models lie within the experimental error bars as one would expect, since the drag is mostly associated with the blunt nose. On the other hand, the
pitching moment is quite sensitive to the gas modeling because the cone surface pressures resulting from the gas expansion are affected by gas composition. The reacting gas model calculations provide a good prediction of the results. The shadowgraph is compared with pressure contours, and the shocks from the ring generators, which are also sensitive to gas composition, compare nicely.

A finite fringe interferogram was obtained during one range firing of a smooth blunted cone to provide validation information on flow field density. However, obtaining density was more difficult than first anticipated because of pitch and yaw orientations of the model, the test density level, and because of the index of refraction's implicit dependence on density. Rather, it is now proposed that optical path be computed from the computations using real gas modeling and subsequently compared with the measured optical path. In fig. 14 the infinite fringe interferogram and interpreted optical path through the model wake are shown. As can be seen, the optical path data may provide an alternative, more sensitive means of validating the computations.

7.2 Generic All-Body Hypersonic Benchmark Experiment
A model of a generic hypersonic vehicle was tested in the NASA Ames 3.5-Foot Hypersonic Wind Tunnel to establish a benchmark experimental data base for validation of forebody computer codes. Experimental data on flow visualization, surface pressures, surface convective heat transfer, and pitot-pressure flow-field surveys were obtained. A sketch of the model showing the basic model geometry and dimensions is given in fig. 15. The model has a delta planform with leading-edge sweepback of 75° and total axial length, L, of 0.9144 m (3 ft). The forebody is an elliptic cone with a major-to-minor axis ratio of 4, and the afterbody has elliptical cross sections with a sharp straight-line trailing edge. The juncture between the forebody and afterbody occurs at 2/3 of the body length. The model nose was sharp.

Examples of the data showing windward centerline surface-pressure and heating distributions are given in figs. 16 and 17. Also shown are predictions of the windward pressures and heating from the Ames UPS code (an upwind parabolized Navier-Stokes solver) with the Baldwin-Lomax turbulence model. There is generally good agreement between the windward pressure and heating data and the predictions, with greater differences at the higher angles of attack where the forebody pressures and heating are underpredicted.

Experimental pitot-pressure profiles of the shock layer for the afterbody centerline at x/L = 0.8 are compared with computations in fig. 18 for various angles of attack. The predictions are considered in good agreement overall with experiment except near the bow wave because of grid resolution. On the windward side, the merging of the viscous and expansion regions of the flow are also captured by the code.

7.3 Generic Single Expansion Ramp Nozzle Experiment
This experiment was conducted in the Ames 3.5" HWT at Mach 7.3 and a Reynolds number of 150 million/ft. A photograph of the model is shown in fig. 19. CFD was applied to design the model. Pressures, 5-hole pitot probe surveys, and ramp boundary layer profiles are available along with flow visualization. Navier-Stokes solutions are now being performed. An example of the results showing a comparison of the measured and computed shock system taken from ref. 67 is given in fig. 20. Very good agreement is observed.

8. CONCLUDING REMARKS
A comprehensive data base for CFD code validation was reviewed and experiments selected that provide a focused basis for evaluating code development. Two types of experiments were selected for each major flow component: building block experiments for simple flows that can verify physics and geometry modeling and benchmark experiments that can validate forebody, inlet, combustor, and nozzle codes. Major gaps in the data base exist for the real gas conditions associated with flight, for reacting combustor flows, and for reacting nozzle flows.

In spite of these gaps, data to assess physical modeling for turbulent boundary layers, shock interactions with laminar and turbulent boundary layers, and combustor injector interactions are available. Similarly, some data on chemistry modeling for simple external aerodynamic flows and internal flows involving mixing of hydrogen and air were identified that can provide partial validation of the real gas aspects of the codes. Benchmark experimental data, mostly at enthalpy conditions below those associated with hypersonic flight, are also available for assessing predictions of various 3-D algorithms and their associated physical modeling assumptions.

While most of the recommended experiments provide the essential information for initiating computations, it would be prudent to establish unified input conditions, data presentation format, and error analysis for each of them. Precedents for such undertakings have already been established (see, e.g., refs. 68-70). A team of experts, knowledgeable in CFD and EFD, could undertake the steps necessary to see that this is accomplished in a timely fashion.

9. REFERENCES

Table 1 Forebody building block data base.

<table>
<thead>
<tr>
<th>Experiment (ref. no.)</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
<th>17</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mach No.</td>
<td>20</td>
<td>10</td>
<td>10</td>
<td>3</td>
<td>5.5</td>
<td>7</td>
<td>0.6</td>
<td>15</td>
<td>9.9-95</td>
<td>6</td>
<td>4</td>
<td>7</td>
<td>3</td>
<td>3</td>
<td>8</td>
</tr>
<tr>
<td>Re No.x(E-06)</td>
<td>2/1/1</td>
<td>2/1/1</td>
<td>12</td>
<td>2/8</td>
<td>25</td>
<td>3.5-1</td>
<td>05-06</td>
<td>0600</td>
<td>01</td>
<td>5</td>
<td>63/r</td>
<td>63/m</td>
<td>63/r</td>
<td>3.7</td>
<td></td>
</tr>
<tr>
<td>2-d Geometry or Axisymmetric</td>
<td>✓</td>
</tr>
<tr>
<td>3-d Geometry</td>
<td></td>
</tr>
<tr>
<td>Angle Of Attack(deg.)</td>
<td>0</td>
<td>0</td>
<td>0.4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>20</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>10</td>
</tr>
</tbody>
</table>

Physical And Chemical Modeling Reqs:

- Transition
- Turbulence
- Shock Boundary Layer Interactions
- Entropy Layer Swallowing
- Equilibrium Chemistry
- Non equilibrium Chemistry
- Wall catalysis
- Low Density Flow
- Adverse Press. Gradient

Measurements:

- Boundary Conditions
- Transition Location
- Wall Pressures
- Heating Rates
- Profile Profiles
- Temperature Profiles
- Static Pressure Profiles
- Density Profiles
- Velocity Profiles
- Species Profiles
- Flow Visualization
- Other (Specify)

** Other

Table 2 Inlet building block data base.

<table>
<thead>
<tr>
<th>Experiment (ref. no.)</th>
<th>18</th>
<th>19</th>
<th>20</th>
<th>21</th>
<th>22</th>
<th>23</th>
<th>24</th>
<th>25</th>
<th>26</th>
<th>27</th>
<th>28</th>
<th>29</th>
<th>30</th>
<th>31</th>
<th>32</th>
<th>33</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mach No.</td>
<td>6</td>
<td>9</td>
<td>11, 13</td>
<td>7</td>
<td>69</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>8.2</td>
<td>8</td>
<td>14</td>
<td>23</td>
<td></td>
</tr>
<tr>
<td>Re No.x(E-06)</td>
<td>10, 30, 71</td>
<td>25</td>
<td>3.7/11</td>
<td>5.8/m</td>
<td>35.8</td>
<td>8.7-76</td>
<td>32/m</td>
<td>700/m</td>
<td>6.1/m</td>
<td>18/m</td>
<td>18/m</td>
<td>63/m</td>
<td>6.1/m</td>
<td>0.57</td>
<td>4.9/m</td>
<td></td>
</tr>
<tr>
<td>2-d Geometry or Axisymmetric</td>
<td>✓</td>
</tr>
<tr>
<td>3-d Geometry</td>
<td></td>
</tr>
</tbody>
</table>

Physical And Chemical Modeling Reqs:

- Transition
- Turbulence
- Shock Boundary Layer Interactions
- Separation
- Secondary/Corner Flows
- Mass Injection
- Bleed
- Equilibrium Chemistry
- Unsteady Flow

Measurements:

- Boundary Conditions
- Transition Location
- Wall Pressures
- Heating Rates
- Profile Profiles
- Temperature Profiles
- Static Pressure Profiles
- Velocity Profiles
- Turbulence Quantities
- Flow Visualization
- Other (Specify)

** Other

<table>
<thead>
<tr>
<th>S</th>
<th>Shadograph, OF=Oil Flow, SP= Structure Plot</th>
</tr>
</thead>
<tbody>
<tr>
<td>cf</td>
<td>cf</td>
</tr>
</tbody>
</table>

17-9
Table 3 Combustor building block data base.

<table>
<thead>
<tr>
<th>Experimant (ref. no.)</th>
<th>34</th>
<th>35</th>
<th>36</th>
<th>37</th>
<th>38</th>
<th>39</th>
<th>40</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mach No. for Experiment</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td><1</td>
<td>1</td>
<td>0-6</td>
<td>2.4</td>
</tr>
<tr>
<td>Flight MachNo. Simulated**</td>
<td>6c</td>
<td>5c</td>
<td>6c</td>
<td>7h</td>
<td>N/A</td>
<td>6h</td>
<td></td>
</tr>
<tr>
<td>2-d Geometry or Asymmetric</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>3-d Geometry</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Scare (in)</td>
<td>6x1Duct Ht.</td>
<td>6xFlow Length</td>
<td>0.75d</td>
<td>0.75d</td>
<td>0.75d</td>
<td>4x8d</td>
<td>30</td>
</tr>
</tbody>
</table>

Physical And Chemical Modeling Regime
- Turbulence
- Shock Interactions
- Shear Layers
- Vortex/Shock Interaction
- Injector Interactions
- Finite Rate Chemistry

Measurements
- Boundary Conditions
- Wall Pressures
- Heating Rates
- Skin Friction
- Jet Profiles
- Temperature Profiles
- Static Pressure Profiles
- Velocity Profiles
- Species Profiles
- Flow Visualization
- Other (Specify)

Table 4 Nozzle building block data base.

<table>
<thead>
<tr>
<th>Experimant (ref. no.)</th>
<th>41</th>
<th>42</th>
<th>43</th>
<th>44</th>
<th>45</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mach No. (Equivalent Flight Or Test)</td>
<td>20-47</td>
<td>5-8</td>
<td>2.2</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>Mj</td>
<td>1-2.6</td>
<td>1.7-3</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>JL/Prex.stream</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>2-d Geometry or Asymmetric</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

Physical And Chemical Modeling Regime
- Turbulence
- Shock Interactions
- Shear Layers
- Secondary flows
- Separation
- Reattachment
- Finite Rate Chemistry

Measurements
- Boundary Conditions
- Transition/Reattachment Location
- Thrust
- Moments
- Wall Pressures
- Heating Rates
- Skin Friction
- Jet Profiles
- Temperature Profiles
- Static Pressure Profiles
- Velocity Profiles
- Species Profiles
- Turbulence Quantities
- Flow Visualization
- Other (Specify)

Table 5 Forebody benchmark data base.

<table>
<thead>
<tr>
<th>Experimant (ref. no.)</th>
<th>17</th>
<th>46</th>
<th>47</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mach No.</td>
<td>8</td>
<td>11-20</td>
<td>7.4</td>
</tr>
<tr>
<td>Re No. (E-06)</td>
<td>3.7</td>
<td>3-32</td>
<td>5-25</td>
</tr>
<tr>
<td>2-d Geometry or Asymmetric</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>3-d Geometry</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

Performance Requirements
- LIF
- Drag
- Heat Load
- Inlet Profiles

Flow Phenomena
- Transition
- Turbulence
- Shock Boundary Layer Interactions
- Entropy Layer Swallowing
- Equilibrium Chemistry
- Non equilibrium Chemistry
- Wall Catalysis
- Low Density Flow

Measurements
- Boundary Conditions
- Transition Location
- LIF
- Drag
- Wall Pressures
- Heating Rates
- Jet Profiles
- Temperature Profiles
- Static Pressure Profiles
- Velocity Profiles
- Species Profiles
- Flow Visualization
- Other (Specify)

* See Inlet Unit Experiments
** S-Shadowgraph, OF=Oil Flow
Table 6 Inlet benchmark data base.

<table>
<thead>
<tr>
<th>Experiment(1) no)</th>
<th>48</th>
<th>49</th>
<th>50</th>
<th>51</th>
<th>52</th>
<th>53</th>
<th>54</th>
<th>55</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mach No.</td>
<td>3.1-4</td>
<td>3.2-4</td>
<td>4.6</td>
<td>6.6</td>
<td>6.6</td>
<td>7.1-8</td>
<td>7</td>
<td>1-15</td>
</tr>
<tr>
<td>Re No.</td>
<td>Oel</td>
<td>Oel</td>
<td>Oel</td>
<td>Oel</td>
<td>Oel</td>
<td>Oel</td>
<td>Oel</td>
<td>Oel</td>
</tr>
<tr>
<td>2-D Geometry</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>3-D Geometry</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

Performance Requirements

- Mass Capture
- Kinetic Energy Efficiency
- Pressure Recovery
- Heat Load
- Spillage Drag

<table>
<thead>
<tr>
<th>Experiment(ret. no)</th>
<th>56</th>
<th>57</th>
<th>58</th>
<th>59</th>
</tr>
</thead>
<tbody>
<tr>
<td>Estimated Date</td>
<td>Now</td>
<td>Now</td>
<td>92</td>
<td>Now</td>
</tr>
<tr>
<td>Mach No. (Flight Eqw Or Free Stream)</td>
<td>1.5-2</td>
<td>1.5-3.4</td>
<td>2.5</td>
<td>3.5</td>
</tr>
<tr>
<td>Pitp free stream</td>
<td>20-40</td>
<td>20-100</td>
<td>6-100</td>
<td>1-4</td>
</tr>
<tr>
<td>2-D Geometry or Asymmetric</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>3-D Geometry</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

Flow Phenomena

- Transition
- Turbulence
- Shock Boundary Layer Interactions
- Separation
- Secondary/Corner Flows
- Mass Injection
- Bled
- Equilibrium Chemistry
- Unsteady Flow

Measurements

- Boundary Conditions
- Transition Location
- Wall Pressures
- Heating Rates
- Pitp Profiles
- Temperature Profiles
- Static Pressure Profiles
- Velocity Profiles
- Flow Visualization
- Other(Specify): Shaddgraph/Schem, OelxOil Flow

Table 7 Nozzle benchmark data base.

<table>
<thead>
<tr>
<th>Experiment(1) no)</th>
<th>56</th>
<th>57</th>
<th>58</th>
<th>59</th>
</tr>
</thead>
<tbody>
<tr>
<td>Estimated Date</td>
<td>Now</td>
<td>Now</td>
<td>92</td>
<td>Now</td>
</tr>
<tr>
<td>Mach No. (Flight Eqw Or Free Stream)</td>
<td>10</td>
<td>1-16</td>
<td>74</td>
<td>6</td>
</tr>
<tr>
<td>Pitp free stream</td>
<td>26-4</td>
<td>26-4</td>
<td>26-4</td>
<td>26-4</td>
</tr>
<tr>
<td>2-D Geometry or Asymmetric</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>3-D Geometry</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

Performance Requirements

- Thrust
- Moments
- Heat Loads

Flow Phenomena

- Turbulence
- Shock Interactions
- Shear Layers
- Secondary Flows
- Separation
- Reannealization
- Flame Rate Chemistry
- Multiple Jets

Measurements

- Boundary Conditions-inflow
- Mass Fl: Prior
- Mass Fl: Prior
- Species
- Gamma jet
- Transition/Reannealization Location
- Thrust
- Moments
- Wall Pressures
- Heating Rates or Wall Temperature
- Skin Friction
- Pitp Profiles
- Temperature Profiles
- Static Pressure Profiles
- Velocity Profiles
- Species Profiles
- Flow Visualization
- Other(Specify)
Fig. 1 Recommended forebody building block validation experiments.

Fig. 2 Recommended forebody benchmark validation experiments.

Fig. 3 Recommended inlet building block validation experiments.

Fig. 4 Recommended inlet benchmark validation experiments.

Fig. 5 Recommended combustor building block validation experiments.

Fig. 6 Recommended nozzle building block validation experiments.
Fig. 7 Recommended nozzle benchmark validation experiments.

Fig. 8 Geometry and test conditions for an axisymmetric flare experiment.

Fig. 9 Surface pressures and heating rates on an axisymmetric cylinder-flare.

Fig. 10 Model geometries for impinging and swept shock interaction experiments.
$M_\infty = 8.2$, $Re_\infty/m = 5 \times 10^6$

Fig. 11 Surface pressures and heating rates for a swept shock interaction.

Fig. 12 Comparisons of measurements and computations.
Re = 10^6, $V_\infty = 5$ km/sec, $M_n = 14.5$

(a) Drag coefficient

(b) Pitching moment

(c) Statistical data sample

Fig. 13 Comparisons of force and moment coefficients and shadowgraph from a ballistic range experiment with computations.

(c) Statistical data sample

Elliptical Cross Sections

Forebody – Elliptic Cone ($a/b = 4$) with Sharp or Blunt Nose Tip
Afterbody – Elliptical Cross Sections with Sharp Trailing Edge

Fig. 14 Finite fringe interferogram and interpreted optical path from a ballistic range experiment.

Fig. 15 Hypersonic All-Body model geometry and dimensions.
Fig. 16 Surface pressures on a hypersonic All-Body model.

\[M_n = 7.4; \text{Re}_{n,L} = 15 \times 10^6 \]

Fig. 17 Surface heat transfer on a hypersonic All-body model.

Centerline; \(x/L = 0.8; \ M_n = 7.4; \text{Re}_{n,L} = 15 \times 10^6 \)

Fig. 18 Flow field pitot pressure profiles on a hypersonic All-Body model.

Fig. 19 Photograph of the SERN experiment.

Fig. 20 Comparisons of nozzle shock patterns from experiment and a Navier-Stokes computation: (a) shadowgraph; (b) computation.
Title and Subtitle: A CFD Validation Roadmap For Hypersonic Flows

Author(s): Joseph G. Marvin

Performing Organization Name(s) and Address(es):
Ames Research Center
Moffett Field, CA 94035-1000

Sponsoring/Monitoring Agency Name(s) and Address(es):
National Aeronautics and Space Administration
Washington, DC 20546-0001

Abstract:
A roadmap for CFD code validation is developed. The elements of the roadmap are consistent with air-breathing vehicle design requirements and related to the important flow path components: forebody, inlet, combustor, and nozzle. Building block and benchmark validation experiments are identified along with their test conditions and measurements. Based on an evaluation criteria, recommendations for an initial CFD validation database are given and gaps identified where future experiments would provide the needed validation data.