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The RICIS Concept
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The University of Houston-Clear Lake established the Research Institute for

Computing and Information Systems (RICIS) in 1986 to encourage the NASA

Johnson Space Center (JSC) and local industry to actively support research

in the computing and information sciences. As part of this endeavor, UHCL

proposed a partnership with JSC to jointly define and manage anlntegrated

program ofrescarch in advanced data processing technology needed for dSC's

main missions, including administrative, engineering and science responsi-

bilities. JSC agreed and entered into a continuing cooperative agreement

with UHCL beginning in May 1986, to jointly plan and execute such research

through RICIS. Additionally, under Cooperative Agreement NCC 9-16,

computing and educational facilities are shared by the two institutions to
conduct the research.

The UHCL/RICIS mission Is to conduct, coordinate, and disseminate research

and professional level education in computing and information systems to

serve the needs of the government, industry, community and academia.

RICIS combines resources of UHCL and its gateway affiliates to research and

develop materlals, prototypes and publications on topics of mutual interest

to its sponsors and researchers. Within UHCL, the mission Is being

implemented through interdisciplinary involvement of faculty and students
from each of the four schools: Business and Public Administration, Educa-

tion, Human Sclen_s and Humanities, and Natural and Applied Sciences.

RICIS also collaborates with industry in a companion program. This program

Is focused on serving the research and advanced development needs of

industry.

Moreover, UHCL established relationships with other universities and re-

search organizations, having common research interests, to provide addi-

tional sources of expertise to conduct needed research. For example, UHCL

has entered into a special partnership with Texas A&M University to help

oversee RICIS re_h an'l education programs, while other research

organizations are involved via the "gateway" concept.

A major role of RICIS then is to find the best match of sponsors, researchers

and research objectives to advance knowledge in the computing and informa-

tion sciences. RICIS, working Jointly with its sponsors, advises on research

needs, recommends principals for conducting the research, provides tech-

nical and adminis_tive support to coordinate the research and integrates

technical resulta into the goals of UHCL, NASA/JSC and industry.
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This research was conducted by Dr. Sadegh Davari of the Department of

Computer Science at the University of Houston-Clear Lake and Dr. Lui Sha of

Carnegie Mellon University. The research was supported by the RICIS Program

Office and in part by the Software Engineering Institute of Carnegie Mellon

University.

RICIS research support funds are derived from Cooperative Agreement NCC

9-16 between the NASA Johnson Space Center and the University of Houston-Clear
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The views and conclusions contained in this report are those of the authors

and should not be interpreted as representative of the official policies, either express

or implied, of UHCL, RICIS, Texas A&M, NASA or the United States

Government.
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ABSTRACT

In the design of real-time systems, tasks are often assigned priorities. Preemptive priority

driven schedulers are used to schedule tasks to meet the timing requirements. Priority

inversion is the term used to describe the situation when a higher priority task's execution

is delayed by lower priority tasks. Priority inversion can occur when there is contention

for resources among tasks of different priorities. The duration of priority inversion could

be long enough to cause tasks to miss their deadlines. Priority inversion cannot be

completely eliminated. However, it is important to identify sources of priority inversion

and minimize the duration of priority inversion. In this paper we present a

comprehensive review of the problem of and solutions to unbounded priority inversion.

1. INTRODUCTION

The rate-monotonic scheduling (RMS) and the deadline driven scheduling (DDS)

algorithms are two well known preemptive priority scheduling algorithms for scheduling

tasks in hard real-time systems[I, 2]. In RMS, a periodic task with high rate is given

higher priority. In DDS, the earlier the deadline of an instance of a task, the higher is the

priority. The priority assignment in RaMS is static, meaning priorities are assigned to tasks

before execution starts and all the instances of a given task will have the same priority

assignment during execution. However, when there is resource conflict, a task is allowed

1This work was supported in part by the Research Institute for Computing and

Information Systems of UHCL and in part by the Software Engineering Institute of

CMU.
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to temporarily change its execution priority from the assigned priority. DDS, on the other

hand, recomputes the priority of every instance of a task dynamically during execution.

Priority inversion degrades the performance of both types of scheduling algorithms.

As is stated in [2], in the schedulability analysis of tasks, each task, within the period of

time starting with its arrival and ending with its deadline, must accommodate the worst

case of each of the following CPU times:

the time needed by all higher priority tasks (preemption time)

the time needed to do the task's own work (execution time)

the delays caused by lower priority tasks because of priority inversions

(blocking time)

Priority inversions occur, when there is contention for shared resources among tasks of

different priorities. We would expect that the duration of priority inversion is a function

of the duration of critical sections, i.e. the duration in which tasks are using the shared

resources. When the duration of priority inversion is not bounded by a function of the

duration of critical sections, unbounded priority inversion is said to occur. To improve

the performance of real-time systems, we must minimize the duration of priority

inversion. In particular, we must identify sources of unbounded priority inversions and

eliminate them.

In this paper, we present a comprehensive study of this problem. The rest of this paper is

organized as follows: In Section 2 we list common sources of priority inversions. In

Section 3 we discuss the known solutions and we conclude this paper in Section 4.
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2. COMMON SOURCES OF PRIORITY INVERSIONS

There are two major sources of unbounded priority inversion: task synchronization and

communication activities at various levels of computation, from hardware queues to

tasking constructions in Ada.

2.1. Semaphores and Critical Sections

Semaphores and the associated critical sections are commonly used synchronization

primitives to share resources such as a linked list, a table or a file. The segments of codes
in a task that access the shared resources are called critical sections. In order to ensure

the integrity of shared resources, critical sections must be executed mutualy exclusively.

Semaphores are a common OS primitive that provide indivis_le lock and unlock

operations. To realize mutual exclusion, before a task enters its critical section, it must
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first obtain the lock on the semaphore used to guard the shared resource. Tasks that fail

to obtain the lock are typically placed in a queue associated with the semaphore. In some

operating systems, the semaphore queue is ordered in FIFO and a prioritized semaphore

queue is preferred.

Nevertheless, prioritized semaphore queues alone are insufficient to prevent unbounded

priority inversion. For example, let T1 and T3 share a resource and let T1 have a higher

priority. Let T2 be an intermediate priority task that does not share any resource with
either T1 or T3. Consider the following scenario:

(1)

(2)

(3)

T3 obtains a lock on the semaphore S and enters its critical section to use
a shared resource .....

T1 becomes ready to run and preempts T3. Next, T1 tries to enter its

critical section by first trying to lock S. But S is already locked and T1 is

blocked and moved from niFming state to the semaphore queue

T2 becomes ready to run. Since only T2 and T3 are ready to run, T2

preempts T3 while T3 is in _ts_-ritical section.

When a high priority task like T1 gets blocked by a lower priority task such as T3, we say
that the priority of task T1 is inverted. We would prefer that, T1 being the highest

priority task, be blocked no longer than the time for T3 to complete its critical section.
However, the duration of blocking is, in fact, unpredictable. This is because T3 can be

preempted by the medium priority task T2. As a result, task T1 will be blocked until T2
and any other pending tasks of intermediate priority are completed. The duration of

priority inversion becomes a function of task execution times and is not bounded by the

duration of critical sections. That is, semaphores and critical sections are a potential

source of unbounded priority inversions.

2.2 Software Queues

Software queues are often used for communi_tion and data buffering. FIFO queues are
obviously a source of priority inversions because high priority tasks get queued up behind

lower priority tasks. However, prioritized queues are insufficient to prevent unbounded
priority inversion. Assume Ts is a server task that always executes with the priority of its
client task. Let T1 and T3 be two client tasks with T1 having a higher priority. Let T2 be

a non-client task with an intermediate priority. Consider the following scenario:

(1) Ts is serving T3 with the priority of T3

(2) T1 requests for service and gets blocked in the queue of Ts

--=
w
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(3) T2 preempts Ts, prolonging the blocking time of T1

Since there could be any number of intermediate priority tasks like T2 preempting the

server, while T1 is blocked, there is a potential for an unbounded priority inversion.

m

i
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2.3. Ada Tasking

Ada tasks provide language level support for managing concurrent activities. The

synchronization and communication of Ada tasks are provided by a mechanism known as

rendezvous. An Ada task performing the function of a server can have one or more

entries each of which represents a different type of service. There is a FIFO queue

associated with each entry. A client task calls an entry of the server task and gets

blocked in the entry queue. Once the server task becomes the highest priority task

among all the ready tasks, it will pick an entry that is ready to be served in an arbitrary

order. Next, the server executes the accept statement to start performing the service. The

server will execute at the highest priority level of client and server. The duration that a

server is serving a client is called rendezvous. A client task at the entry queue will be

dequeued after it is serviced.

Ada task rendezvous is a potential source of unbounded priority inversion. Assume that

T1, T2, and T3 are three client tasks whose priorities are in decreasing order with T1

having the highest priority and T3 having the lowest priority. Let Ts be a server task

whose priority is less than the priority of T2. Consider the following scenario:

(1) Ts has accepted an entry call from T3 and is executing the accept

statement with the priority of T3

(2) T1 makes an entry call to rendezvous with Ts. Since Ts is not ready to

accept the entry call, T1 is blocked on the entry queue

(3) T2 preempts Ts

T1 will be blocked until T2 and any other tasks of intermediate priority complete or

block themselves. Therefore, we can have unbounded priority_versions in Ada

rendezvous. There are two additional sources for potential priority inversion: the FIFO

entry queue and the arbitrarily ordered selective wait statement.

2.4 Hardware Queues

To support message passing over a communication media such as a backplane bus, high

speed FIFO hardware queues are commonly used for both the transmission queue and

the receiving queue. Messages will be first transferred from slower system memory to
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the hardware transmission queue in the Bus Interface Unit (BIU) before the bus

arbitration. Messages received by a BIU will be first stored in a receiving hardware

queue in the BIU before transferring to the system memory.

At the receiving end, one can use standard high speed FIFO queues, as long as the

software can always empty the entire hardware FIFO queue and re-order the messages in

priority order before processing. In contrast, on the output side, messages in

the high speed hardware buffer shou_!d be queued in priority order. However, while

software priority queues can be arbitrarily long, but high speed hardware priority queues

are typically short due to the cost.

It turns out that a short transmission priority queue can also lead to unbounded priority

inversion. Assume that we have a node A with a priority queue of size 4. Assume that

the entire queue is filled by lower priority messages first. Next the highest priority
message is ready but it cannot be transferred to the BIU since the transmission queue is

full. Being the highest priority message, we would expect that it needs not wait more than

the duration of a single message transmission.

Unfortunately, unbounded priority inversion can occur. This is because node A will

request the bus with the low priority associated Mth all the low pdorltymessages fi]_ng

node A's transmission queue. Let node B and C be filled with medium priority messages.
Node B and C will preempt node A and send out all the medium priority messages. As a

result, the high priority message at A has to wait first for all the medium priority

messages to transmit and then the transmission of a low priority message at node A.

3. SOLUTIONS APPROACHES

In the discussion of the previous section we pointed out that synchronization and
.... unboundedcommunication are major sources of : priority inversions in prioritydriven hard

reaMime systems. Although priority inversi6ns: _n never be completely prevented due to

resource sharing, there are possible ways of limiting the duration of priority inversions.

3.1. Selectively Disable Task Preemption
-:-: _: L_ _ ............

From the_ dis_cussion above, we see that unbounded priority inversion during
synchronization happens when a _gli _fion_ty task is blocked by a low priority task, and

then the low priority task is preempted by medium priority tasks. Hence, one way to

solve the problem is not to let medium priority tasks to preempt a low priority task when

the low priority task is in its critical session.

In a uni-processor, this can be achieved by disallowing preemption during the execution

of all critical sections. The drawback is that high priority tasks can be blocked by lower
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priority tasks even if they are not involved in the synchronization. However, due to its

simplicity, it is an effective procedure when the longest critical section is much shorter

than the shortest task deadline. Disallowing task preemption can be readily implemented

by turning-off interrupts before entering critical section and turning it back on after

leaving critical section. The advantage of turning interrupts off and on is that there is no

need to call the OS and hence the resulting efficiency. Furthermore, this method can be

used by static priority and dynamic priority algorithms alike. However, there is the risk

of losing interrupts when interrupts turn-off is not brief.

An improvement to disabling all preemption during the execution of critical sections is a

method known as priority ceiling protocol emulation[4, 5]. This method is best explained

in the context of static priority scheduling, although it has been generalized into mixed

static and dynamic priority scheduling[7]. The idea here is to selectively disable

preemption. That is, we make the priority of executing a low priority task's critical

section sufficiently high to effectively disable the possible preemption from medium

priority tasks.

To implement this method, the highest priority of all the tasks that will lock a semaphore

is copied into a field associated with the semaphore. This is called the priority ceiling of a

semaphore. When the OS grants a semaphore lock to a task, it also raises the priority of

the task to the priority ceiling of the semaphore. When the task makes a call to the OS

to unlock the locked semaphore, the OS returns the task to its assigned priority.

Under this protocol, tasks are free from deadlock and a task can be blocked by lower

priority tasks at most once as long as tasks do not suspend within their critical

sections[4,5]. This same result holds if preemption is disallowed completely. An intuitive

explanation of this result is as follows. Since a task is executing at the ceiling priority of

a semaphore, no other task that may lock this semaphore can start execution. As a

result, there is only one task among the group of tasks that may lock S can be in its

critical section at any given time. This makes deadlock impossible, since a necessary

condition for deadlock requires that at least two tasks sharing resources be in their

critical sections. The fact that only one task among a group of resource sharing tasks can

be in its critical section at any given time also leads to the result that a task can be

blocked by at most one lower priority task.

This argument will not hold if a task ever suspends itself within a critical section, say,

waiting for an I/O call to return. Suppose that a low priority task locks a semaphore $1

and then suspends. Another low priority task can start and lock another semaphore $2.

When the high priority t_k with the need to lock $1 and $2 becomes ready to execute, it

has to wait for both the task locking $1 and the task locking $2. Hence the blocked-at-

most-once result does not hold. Nor does the no deadlock argument hold when tasks can

suspend within their critical sections.

This approach can also be applied to synchronization problem using Ada tasking[4]:
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(1) the body of each server task should consist of a selective wait statement

within an endless loop

(2) each server task should be given a priority which is higher than the priority

of any of its client tasks

(3) the server task should not block itself within the accept statement

The block at most once and no mutual deadlock also holds here[4,5] and the reason is

similar to the argument above. When calculating the blocking time of a given task, T,

under this solution, we should only be concerned with (1) the resources that task T

shares with lower priority tasks, and (2) the resources that are shared by both tasks of

lower priority than T and tasks of higher priority than T. The worst case blocking time

for T would then be the execution time of the longest critical section among all lower

priority tasks that share such resources.

The method of priority ceiling emulation is a simple and effective procedure. It is used

by the protected record construction in the current draft of the Ada 9x requirement

mapping document[9].
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3.2 Priority Inheritance Protocol

In the previous solution, a task's priority is immediately raised when entering a critical

section (turning-of preemption is equivalent to raising the priority to the highest level).

However, the priority inheritance protocol[4,5] is invoked only when a higher priority task

is blocked by a lower priority task. When a lower priority task T blocks the execution of

higher priority tasks it inherits the priority of the highest priority task blocked by T. Task

T returns to its assigned priority when exiting its critical section.

When a low priority task inherits a high priority, medium priority tasks will have to wait

for the execution of the lower priority tasks. Nonetheless, this is worthwhile. The duration

of push-through blocking (blocking of medium priority tasks) is in terms of critical

sections. Without paying the price of push-through blocking, the high priority task may

have to wait for the entire execution time of medium priority tasks.

This solution can be adopted for the problem of unbounded priority inversion resulting

from either critical sections or message queues. To adopt this solution for message

queues we first need to prioritize the message queue. Secondly, the server will use the

message priority. However, when new messages with higher priorities entering the queue,

the server must inherit the highest priority of all the new messages. The priority

inheritance can also be applied to Ada tasking. First, the entry queues must be

prioritized. Secondly, the task must select the highest priority entry. Finally, when higher

1iw
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priority client tasks entering the entry queue, the server must inherit the highest priority

client in the queue.

Although priority inheritance protocol solves the unbounded priority inversion problem, it

suffers from the possibilities of "chained blocking" and offers no help to the "mutual

deadlock" problem. To avoid mutual deadlock under this solution, we may totally order

the sequence of locking shared resources.

The following example illustrates a situation where chained blocking can occur: Assume

that tasks T1, T2 and T3 share semaphores $1 and $2 and further T1 has higher priority

than T2, while T3 has the lowest priority. Consider the following scenario:

(1) T3 locks $2

(2) T2 locks S1

(3) T1 tries to lock $1 and $2 but now has to wait for both T2 and T3. That is,

chained blocking.

The worst case blocking time of a given task T, under this solution, is the sum of the

blocking time from each shared resource (because of the possibility of the chained

blocking). The worst blocking time from each resource is calculated the same way as it

was done for priority ceiling emulation. We should consider (1) the queues that task T

shares with lower priority tasks and (2) the queues that tasks of higher priorities share

with tasks of lower priorities. The blocking time of task T from each shared resource is

calculated to be the longest blocking time caused by any such lower priority task.

The advantage of priority inheritance is that it can be directly applied to both dynamic

and static priority scheduling algorithms. In addition, it can prevent unbounded priority

inversion for both task synchronization and communication even if tasks suspend during

their critical sections. Priority inheritance protocol is currently supported by many Ada

vendors and real-time OS vendors. It also appears as an option in the draft of OS

standard known as real-time POSIX, IEEE P1003.4a[10] and is permitted by the Draft

Ada Requirement Mapping Document[9].

3.3 Priority Ceiling Protocoi(PCP)

The priority ceiling protocol[5, 6] can be viewed as a generalization of two solutions

above. It eliminates the possibilities of chained blocking and mutual deadlocks, even if

tasks suspend within critical sections. The priority ceiling of a semaphore (or a server

task) S is simply the priority of the highest priority task that may lock the semaphore (or

may call the server) S. This solution can be adopted for the problem of unbounded

priority inversion resulting from either semaphores or queues. But, in what follows the
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focus of our discussion will be on semaphores in the context of static priority scheduling,

although PCP has been extended to dynamic schedulings[8]. PCP has the following rules:

. A task with a higher execution priority always preempts tasks with lower

execution priorities.

. A task cannot enter its critical section unless its priority is higher than the

priority ceilings of all semaphores that have been locked by other tasks.

1 A lower priority task that blocks a higher priority task T inherits the

priority of task T.

Rules 1 and 3 of PCP also apply to the priority inheritance protocol. Therefore, the only

difference between PCP and the priority inheritance protocol is rule number 2. The idea

behind PCP is to create a total ordering of executing and suspended critical sections. This

protocol, although more expensive to implement, has all the benefits of the priority

inheritance protocol plus it has the "block at most once" property, which prevents

chained blocking and mutual deadlock.

To illustrate how mutual deadlock is eliminated, consider the previous example where

tasks T1 and T2 share semaphores $1 and $2 and T1 has higher priority than T2. Note

that the ceiling priority of both $1 and $2 is the priority of task T1. Let us try to follow

the following scenario.

(1) T2 locks $2

(2) T1 tries to lock $1 but fails because its priority is not greater that the

ceiling priority of $2 which has been locked by T2

(3) T2 locks $1

(4) T2 first unlocks $1 and then $2

(5) T1 takes over and locks first $1 and then $2

As we can see PCP eliminates the possibility of deadlock. A similar scenario would show

that PCP also eliminates the possibility of chained blocking. The main drawback of this

protocol is that it is relatively complex to implement.

3.4 Hardware Priority Queue with Overwrite

We now address the problem of unbounded priority inversion problem associated with

hardware transmission queues. None of the above methods are effective for this

9
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hardware transmission queue problem[3]. A practical solution is the us e of a short
priority queue with priority overwrite to emulate an ideal priority queue[3]. When the
BIU transmission queue gets filled up and a higher priority message waits at the host, the

higher priority message overwrites the lowest priority message in the queue.

This overwrite is carried out as follows. First, each message queued for transmission is

held in system memory until the message has been successfully transmitted. In addition,

the software remembers the messages transferred to the transmission queue. When a

new message arrives at the system queue and the transmission queue is full, the software

compares its priority with the lowest priority message in the transmission queue. If the

new message has higher priority, then it replaces the lowest priority message in the

transmission queue. Finally, we want to point out that the overwrite does not affect the

performance of transmission queue since with proper hardware support the BIU can

send the high priority message in the queue while its lowest priority message in queue is

concurrently being overwritten[3].

4. CONCLUSION

Task synchronization and communication are two common sources of priority inversion.

Priority inversion degrades the performance of real-time scheduling algorithms and
should be minimized. In particular, it is important to identify the sources of unbounded

priority inversion and eliminate them.

In this paper, we have reviewed the common sources of priority inversion. We also
reviewed four different solutions to the unbound priority inversion problem, namely,

selectively disabling preemption, priority inheritance protocol, priority ceiling protocol
and hardware priority queue with overwrite. There are strength and weakness in each of

these solutions and users must choose them according to their application needs.
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