
/ - / 

NASA Contractor Report 189662 

ICASE INTERIM REPORT 22 

PART! PRIMITIVES FOR UNSTRUCTURED AND BLOCK 
STRUCTURED PROBLEMS 

fn	 M	 fn

.Tnh1LL11r':I.rrnT TTTiTT T 	 TlrurnrT 
'.4

Alan Sussman
Joel Saltz 

	

of	 Raja Das 
Q 0. *q 

U

U.	 JU1JIU 

Dimitri Mavriplis 4.?
Ravi Ponnusamy 

Kay Crowley 

V fu 

U. 
40 
o.Z

'U

NASA Contract No. NASI-18605 
June 

L) 
cc Iw --

cc 

I Z—U 4UII 
'm 

zc--'	 U.. (ñ

INSTITUTE FOR COMPUTER APPLICATIONS IN SCIENCE AND ENGINEERING 
NASA Langley Research Center, Hampton, Virginia 23665

Operated by the Universities Space Research Association 

NASA 
National Aeronautics and 
Space Administration 

Langley Research Center 
Hampton, Virginia 23665-5225 



ICASE INTERIM REPORTS 

ICASE has introduced a new report series to be called ICASE Interim Reports. 
The series will complement the more familiar blue ICASE reports that have been 
distributed for many years. The blue reports are intended as preprints of 
research that has been submitted for publication in either refereed journals or 
conference proceedings. In general, the green Interim Report will not be submit-
ted for publication, at least not in its printed form. It will be used for research 
that has reached a certain level of maturity but needs additional refinement, for 
technical reviews or position statements, for bibliographies, and for computer 
software. The Interim Reports will receive the same distribution as the ICASE 
Reports. They will be available upon request in the future, and they may be 
referenced in other publications.

M. Y. Hussaini 
Director



ORIGINAL 

COL !iJ	 S 

PARTI PRIMITIVES FOR UNSTRUCTURED AND BLOCK 
STRUCTURED PROBLEMS' 

Alan Sussman', Joel Saltz a , Raja Dasa, S Gupta, Dimitri Mavriplis a Ravi 
Ponnusamyb and Kay Crowley a,c 

a ICASE , MS 132C, NASA Langley Research Center, Hampton VA 23666 

b Depart ii ei t of Computer Science, Syracuse University, Syracuse, NY 13244-4100 

6 Departrnent of Computer Science, Yale University, New Haven, CT 06520 

ABSTRACT 

This paper describes a set of primitives (PART!) developed to efficiently execute unstruc-

tured and block structured problems on distributed memory parallel machines. We present 

experimental data from a 3-D unstructured Euler solver run on the Intel Touchstone Delta 

to demonstrate the usefulness of our methods. 

'Research was supported by the National Aeronautics and Space Administration under NASA Contract 
No. NAS1-18605 while the authors were in residence at the Institute for Computer Applications in Science 
and Engineering (ICASE), NASA Langley Research Center, Hampton, VA 23665-5225. In addition, support 
for authors Saltz and Crowley were provided by NSF from NSF grant ASC-8819374. The authors assume 
all responsibility for the contents of the paper.

111 

I j JNW$flONAUI WX	 PRECEDING PAGE BLANK NOT FILMED



1 Introduction 

We consider tools that can be used to port irregular problems to distributed memory archi-

tectures. We specifically consider irregular problems that can be divided into a sequence of 

concurrent computational phases. In irregular problems, such as solving PDEs on unstruc-

tured or multiblock meshes (grids), the communication pattern depends on the input data. 

This typically arises due to some level of indirection in the code. We address cases in which 

data access patterns within each computationally intensive loop can be determined before 

the program enters the loop. In some problems, data access patterns are specified by integer 

indirection arrays. Examples of problems with these characteristics include unstructured 

mesh explicit and mnultigrid solvers, along with many sparse iterative linear s ystems solvers. 

We call this class of problems static single-phase or multi-phase computations (SSMPs). In 

other cases, programs can exhibit highly uniform local computational structure. For such 

problems, non-uniformities in computational patterns occur in the interfaces between regu-

lar subdomains. Examples include multiblock Navier Stokes solvers and structured adaptive 

multigrid problems. We will call this class of problems irregularly coupled regular mesh 

computations (ICRMs). In a different paper in this volume, a more detailed taxonomy of 

irregular problems is presented [11]. 

In the kinds of algorithms we consider here, data produced or input during a program's 

initialization phase play a large role in determining the nature of the subsequent computation. 

When the data structures that define a computation have been initialized, a preprocessing 

phase follows. Vital elements of the strategy used by the rest of the algorithm are determined 

by this preprocessing phase. 

To effectively exploit many multiprocessor architectures, we may have to carry out run-

time preprocessing. This preprocessing is referred to as runtime compilation [36]. The 

purpose of runtime compilation is not to determine which computations are to be performed 

but instead to determine how a multiprocessor machine will schedule the algorithm's work, 

how to map the data structures and how data movement within the multiprocessor is to be 

scheduled. 

In distributed memory MIMD architectures, there is typically a non-trivial communica-

tions startup cost. For efficiency reasons, information to be transmitted should be collected 

into relatively large messages. The cost of fetching array elements can be reduced by pre-

computing what data each processor needs to send and to receive. 

Only recently have methods been developed to integrate the kinds of runtime optimiza-

tions mentioned above into compilers and programming environments [36]. The lack of 

compile-time information is dealt with by transforming the original parallel loop into two



constructs called an inspector and executor [32]. During program execution, the inspector 

examines the data references made by a processor, and calculates what off-processor data 

needs to be fetched and where that data will be stored once it is received. The executor loop 

then uses the information from the inspector to implement the actual computation. 

We have developed closely related suites of primitives that can be used directly by pro-

grammers to generate inspector/executor pairs for SSMP and ICRM problems. These primi-

tives carry out preprocessing that makes it straightforward to produce parallelized loops that 

are virtually identical in form to the original sequential loops. The importance of this is that 

it will be possible to generate the same quality object code on the nodes of the distributed 

memory machine as could be produced by the sequential program running on a single node. 

Our primitives for SSMP computations make use of hash tables [20] to allow us to recog-

nize and exploit a number of situations in which a single off-processor datum is used several 

times. In such situations, the primitives only fetch a single copy of each unique off-processor 

distributed array reference. 
In many ICRM problems there are at most a few dozen meshes (blocks) of varying sizes. 

If that is the case, it may be necessary to assign at least some of the meshes to multiple 

processors to use all of the processors available in the distributed memory parallel machine. 

We must consequently be prepared to deal with multiple levels of parallelism in ICRM codes. 

Typically ICRM applications have two levels of parallelism available. Coarse-grained par-

allelism is available for processing the meshes concurrently. Each mesh is a self-contained 

computation region that can, except for boundary conditions, be operated upon indepen-, 

dently of the other meshes. In addition, the computation for individual blocks has fine-grain 

parallelism available. Applying coarse-grained parallelism will help to keep communication 

overhead to a manageable fraction of the computation time. However, since the number 

of meshes is relatively small, particularly when compared to the number of processing el-

ements in current distributed-memory multicomputers, the coarse-grained parallelism be-

tween meshes will not provide sufficient parallel activity to keep all processors busy. The 

fine-grained parallelism within each block must be used to fill this gap. 

Primitives for ICRM problems make it possible for programmers to embed each mesh 

into a subset of the processors in the distributed memory parallel machine. The primitives 

schedule and carry out required patterns of data movement within and between meshes. 

The suite of primitives used for SSMP problems is called PART! (Parallel Automated 

Runtime Toolkit at ICASE), while the suite of primitives used for ICRM problems is called 

multiblock PART!. 
Section 2 gives an overview of the PART! routines for SSMP problems, and Section 3 

provides a more detailed description of how the routines work. Section 4 discusses the 

2



multiblock PAR'11 1 routines, including a (lescriptioll of how to apply them to a multiblock 

computational fluid dynamics application. Some experimental results for using the PART! 

primitives are given in Section 5. Section 6 describes other research related to supporting. 

irregular computations, and Section 7 concludes. 

2 PARTI 

In this section, we give an overview of the principles and functionality of the PART! prim-

itives. In Section 3 we give a more detailed description of some of the more sophisticated 

PART! procedures. 

2.1 Parti Overview 

The PART! primitives (Parallel Automated Runtinie rr ik i t at ICASE) are designed to 

ease the implementation of computational problems on parallel architecture machines by 

relieving the user of low-level machine specific issues. The PART! primitives enable the 

distribution and retrieval of globally indexed but irregularly distributed data sets over the 

numerous local processor memories. In distributed memory machines, large data arrays need 

to be partitioned among the local memories of processors. These partitioned data arrays 

are called distributed arrays. Long term storage of distributed array data is assigned to 

specific memory locations in the distributed machine. A processor that needs to read an 

array element must fetch a copy of that element from the memory of the processor in which 

that array element is stored. Alternately, a processor may need to store a value into an off-

processor distributed array element. Thus, each element in a distributed array is assigned 

to a particular processor, and in order to access a given element of the array we must know 

the processor on which it resides, and its local address in that processor's memory. To 

store this information, we build a translation table which, for each array element, lists the 

host processor address. For a one-dimensional array of N elements, the translation table also 

contains N elements, and therefore also must be distributed among the local memories of the 

processors. For a P processor machine, this is accomplished by putting the first N/P elements 

on the first processor, the second N/P elements on the second processor, etc. Thus, if we 

are required to access the m element of the array, we look up its address in the distributed 

translation table, which we know can be found in processor nz/P+ 1. Alternatively, we could 

renumber all the vertices of the unstructured grid to obtain a regular partitioning of arrays 

over the processors. However, our approach can easily deal with arbitrary partitions, and 

should enable a straightforward implementation of dynamically varying partitions, which 

may be encountered in the context of adaptive meshes. One primitive handles initialization 

3



of distributed translation tables, and another primitive is used to access the distributed 

translation tables. 
In distributed memory MIMD architectures, there is typically a non-trivial communica-

tions latency or startup cost. For efficiency reasons, information to be transmitted should be 

collecte(l into relatively large messages. The cost of fetching array elements can be reduced 

by precomputing the locations of the data each processor needs to send and receive. In irreg-

ular problems, such as solving PDEs on unstructured meshes and sparse matrix algorithms, 

the communications pattern depends on the input data. In this case, it is not possible to 

predict at compile time what data must be prefetched. This lack of information is dealt 

with by transforming the original parallel loot) into two constructs called an inspector and 

executor. During program execution, the inspector examines the data references made by a 

processor, and calculates what off-processor data needs to be fetched and where that data 

will be stored once it is received. The executor loop then uses the information from the 

inspector to implement the actual computation. The PART, I primitives can be used directly, 

by programmers to generate inspector/executor pairs. Each inspector produces a communi-

cations schedule, which is essentially a pattern of communication for gathering or scattering 

data. In order to avoid duplicate data accesses, a list of off-processor data references is 

stored locally (for each processor) in a hash table. For each new off-processor data reference 

required, a search through the hash table is performed in order to determine if this reference 

has already been accessed. If the reference has not previously been accessed, it is stored in 

the hash table, otherwise it is discarded. The primitives thus only fetch a single copy of each 

unique off-processor distributed array reference. 

The executor contains embedded PARTI primitives to gather or scatter data. The primi-

tives are designed to minimize the effect on the source code, such that the final parallel code 

remains as close in form as possible to the original sequential code. The primitives issue 

instructions to gather, scatter or accumulate (i.e. scatter followed by add) data according to 

a specified schedule. Latency or start-up cost is reduced by packing various small messages 

with the same destination into one large message. 

Significant work has gone into optimizing the gather, scatter and accumulation commu-

nication routines for the Intel Touchstone Delta machine. During the course of developing 

the PART! primitives (originally for the Intel iPSC/860 hypercube), we experimented with 

many of ways of writing the kernels of our communication routines. It is not the purpose 

of this paper to describe these low level optimizations or their effects in detail; we will just 

summarize the best communication mechanism we have found. In the experimental study 

reported in this paper we use the optimized version of the communication routine kernels. 

The communication is done using Intel forced message types. We use non-blocking re-

4



ceive calls (Intel irecv), and each processor posts all receive calls before it sends any data. 

Synchronization messages are employed to make sure that an appropriate receive has been 

posted before the relevant message is sent. 

Communications contention is also reduced. We use a heuristic developed by Venkata-

krishnan [42] to determine the order in which each processor sends out its messages. The 

motivation for this heuristic is to reduce contention by dividing the communication into 

groups of messages such that, within each group, each processor sends and receives at most 

one message. As Venkatakrishnan notes, this heuristic makes the tacit assumption that all 

messages are of equal length and in any event does not attempt to eliminate link contention. 

3 A Detailed View of PARTI 

3.1 Primitives for Communications Scheduling 

This section describes in some some detail the primitives that schedule and perform movement of 

data between processors. To explain how the primitives work, we will use an example which 

is similar to loops found in unstructured computational fluid dynamics (CFD) codes. In most 

unstructured CFD codes, a mesh is constructed which describes an object and the physical 

region in which a fluid interacts with the object. Loops in fluid flow solvers sweep over this 

mesh structure. The two loops shown in Figure 1 represent a sweep over the edges of an 

unstructured mesh followed by a sweep over faces that define the boundary of the object. 

Since the mesh is unstructured, an indirection array has to be used to access the vertices 

(luring a loop over the edges or the boundary faces. In loop Ll, a sweep is carried out over the 

edges of the mesh and the reference pattern is specified by integer array edge.Jist. Loop L2 

represents a sweep over boundary faces, and the reference pattern is specified by faceiist. 

The array x only appears in the right hand side of expressions in Figure 1 (statements Sl 

through S4), so the values of x are not modified by these loops. In Figure 1, array y is both 

read and written. These references all involve accumulations in which computed quantities 

are added to specified elements of y (statements Sl through S4). 

3.2 PART! Executor 

Figure 2 depicts the executor code with embedded calls to Fortran PARTI procedures dim-

gather, dfscatter_add and dfscatter_addnc. Before this code is executed, we must carry out 

a preprocessing phase, which is described in Section 3.3. This executor code changes sig-

nificantly when non-incremental schedules are employed. An example of the executor code 

when the preprocessing is done without using incremental schedules is given in [38]. 

5	 -



real*8 x(N),y(N) 

C Loop over edges involving x, y 

Li doi=l,n_edge 

ni = edge-list(i) 

n2 = edgeiist(n_e(Ige+i) 

SI y(nl) = y(nl) + ...x(nl) ... x(n2) 

S2 y(n2) = y(n2) + ...x(nl) ... x(n2) 

end do 

C Loop over Boundary faces involving x, y 

L2 do i=1,nlace 

ml = face-list(i) 

m2 = faceJist(niace+i) 

m3 = faceiist(2*niacc + I ) 

S3 y(mi) = y(ml) + ...x(ml) ... x(m2) 	 x(m3) 

S4 y(m2) = y(m2) + ...x(ml)	 x(m2)	 x(m3) 

end do

Figure 1: Sequential Code 

6



The arrays x and y are partitioned between processors; each processor is responsible 

1fqi-he long term storage of specified elements of each of these arrays. The way in which 

x and y are to be partitioned between processors is determined by the inspector. In this 

example, elements of X äIl(I y are Partitioned 1)('tWeClI processors iii exactly the same way. 

Each processor is responsible for n..on_proc elements of x and y. 

It should be noted that except for the procedure calls, the structure of the loops in 

Figure 2 is identical to that of the loops in Figure 1. In Figure 2, we again use arrays 

named x and y; in Figure 2, x and y now represent arrays defined on a single processor of 

a distributed memory multiprocessor. On each processor, arrays x and y are declared to be. 

larger than would be needed to store the number of array elements for which that processor 

is responsible. Copies of the off-processor data are placed in a buffer area beginning with 

x(n_on_proc+1). 

The PARTI subroutine calls depicted in Figure 2 move data between processors using 

• precomputed communication pattern. The communication pattern is specified by either 

• single schedule or by an array of schedules. dfmgather uses communication schedules to 

fetch off-processor data that will be needed either by loop Li or by loop L2. The schedules 

specify the locations in distributed memory from which data is to be obtained. In Figure 2, 

off-processor data is obtained from array x defined on each processor. 

The PARTI procedures dfscatter_add and dfscatter_addnc, in statements S2 and S3 Fig-

ure 2, accumulate data to off-processor memory locations. Both dfscatter_add and dfscat-

ter...addnc obtain data to be accumulated to off processor locations from a buffer area that 

begins with y(n_on_proc+1). Off-processor data is accumulated to locations of y between 

indexes 1 and n_on_proc. The distinctions between dfscatter_add and dfscatter_addnc will be 

described in Section 3.4. 
In Figure 2, several data items may be accumulated to a given off-processor location in 

loop LI or in loop L2. 

3.3 PART! Inspector 

In this section, we outline how to perform the preprocessing needed to generate the arguments 

required by the code in Figure 2. This preprocessing is depicted in Figure 3. 

The way in which the nodes of an irregular mesh are numbered frequently does not 

have a useful correspondence to the connectivity pattern of the mesh. When we partition 

such a mesh in a way that minimizes interprocessor communication, we may need to assign 

arbitrary mesh points to each processor. The PARTI procedure ifbuild_translation_table (Si 

in Figure 3) allows us to map a globally indexed distributed array onto processors in an 

arbitrary fashion. Each processor passes the procedure ifbuild_translation_table a list of the 

7



real *8 x(n _on_proc+n_off_proc) 

real*8 y(n..on_proc+n_off_proc) 

SI dfmgather(sched_array,2 1 X(fl_0fl_Pr0C+ I ),x) 

C Loop over edges involving x, y 

Li do i=1,locaLn-edge 

ni = local _edge_list(i) 

n2 = local_edge_list(Iocal_n_edge+i) 

Si y(nl) = y(ni) + ...x(nl) ... x(n2) 

S2 y(n2) = y(n2) + ...x(nl) 	 x(n2) 

end do 

S2 dfscatter..add(edgesched,y(fl_0n_Pr0C+ 1) ,y) 

C Loop over Boundary faces involving x, y 

L2 do i=1,localji-face 

ml = local faceiist(i) 

m2 = local faceiist (local _n_face+i) 

m3 = local iaceiist(2*Iocal_n-face + i ) 

S3 y(rnl) = Y(nil) + ...x(ml) ... x(m2) ... x(m3) 

S4 y(m2) = y(rn2) + ...x(ml)	 x(m2) ... x(m3) 

end do 

S3 dfscatteraddnc(facesched,y(flDfl_Pt0C+t), 

buffer...rnapping,y) 

Figure 2: Parallelized Code for Each Processor 

8



Si translation_table = ifbuild_translation _tahle( 1 ,myvals,n..on_proc) 

S2 call flocalize(t ran slat ion _table,edgeschcd ,part_edgeJist, 

local _edge_list ,2* ii _edge,n_off_proc) 

S3 sched_array(i) = edge_sched 

S4 call fmlocalize(translation_table,facesched, 

incrementallace_sched, part _face_list,local_face_list, 

4* i _face , n_off_proc_face, 

n_new_off_proc_face, buffer-mapping, 1 ,sched_array) 

S5 sched_array(2) = incrementaLface_sched 

Figure 3: Inspector Code for Each Processor 

array elements for which it will be responsible (myvals in Si, Figure 3). If a given processor 

needs to obtain a data item that corresponds to a particular global index i for a specific 

distributed array, the processor can consult the distributed translation table to find the 

location of that item in distributed memory. 

The PART! procedures focalize and fmlocalize carry out the bulk of the preprocessing 

needed to produce the executor code depicted in Figure 2. We will first describe focalize 

(S2 in Figure 3). On each processor P, focalize is passed: 

(i) a pointer to a distributed translation table (translation -table in S2), 

(ii) a list of globally indexed distributed array references for which processor P will be 

responsible, (part-edge-list in S2), and 

(iii) the number of globally indexed distributed array references (2*n_edge in S2). 

Flocalize returns: 

(i) a schedule that can be used in PARTI gather and scatter procedures (edge_sched in 

S2), 

(ii) an integer array (local_edge_list) that is used to specify the access pattern of arrays x 

and y in Si and S2 of Figure 2,

9



partitioned global
	

local storage associated 

reference list
	

with each reference 

Flocalize 
off
	

buffer 

processor
	 references 

references 

gather into bottom of data array 

local data 

buffer	
off processor data. 

Figure 4: Flocalize Mechanism 

(iii) and the number of distinct off-processor references found in edge-list (n-off-processor 

in S2). 

A sketch of how the procedure flocalizc works is shown in Figure 4. The array edge_list 

shown in Figure 1 is partitioned between processors. The part_edge_list passed to focalize 

on each processor in Figure 3 is a subset of edge_list depicted in Figure 1. We cannot 

use part_edge_list to index an array on a processor since part_edge_list refers to globally 

indexed elements of arrays x and y. Plocalize modifies this part_edge_list so that valid 

references are generated when the edge loop is executed. The buffer for each data array is 

placed immediately following the on-processor data for that array. For example, the buffer 

for data array x starts at x(n_on_proc+1). When focalize produced local_edge_list from 

10



OFF PROCESSOR FETCHES

IN SWEEP OVER EDGES

OFF PROCESSOR FETCHES

IN SWEEP OVER FACES 

INCREMENTAL 

SCHEDULE 

DUPLICATES 

EDGE SCHEDULE 

Figure 5: Incremental schedule 

part_edgeJist, the off-processor references were changed to point to the buffer addresses. 

When the off processor data is collected into the buffer using the schedule returned by focal-

ize, the data is stored in a way such that execution of the edge loop using the local_edgeiist 

accesses the correct data. 

There are a variety of situations in which the same data need to be accessed by multi-

pie loops (Figure 1). In Figure 1, no assignments to x are carried out. At the beginning 

of the program in Figure. 2, each processor can gather a single copy of every distinct off-

processor value of x referenced by loops Li or 1,2. The PARTI procedure fmlocalize (S4 in 

Figure 3) removes these duplicate references. fmlocalize makes it possible to obtain only those 

off-processor data not requested by a given set of pre-existing schedules. The procedure dIm-

gather in the executor in Figure 2 obtains off-processor data using two schedules; edge..sched 

produced by focalize (S2 Figure 3) and incremental_face_sched produced by fmlocalize (S4 

Figure 3). 

The pictorial representation of the incremental schedule is given in Figure 5. The schedule 

to bring in the off-processor data for the edgeioop is given by the edge schedule and is formed 

first. During the formation of the schedule to bring in the off-processor data for the face_loop 

ii



we remove the duplicates shown by the shaded region in Figure 5. Removal of duplicates is 

achieved by using a hash table. The off-processor data to be accessed by the edge schedule 

is first hashed using a simple function. Next all the data to be accessed during the face-loop 

is hashed. At this point the information that exists in the hash table allows us to remove 

all the duplicates and form the incremental schedule. In Section 5 we will present results 

showing the usefulness of an incremental schedule. 
To review the work carried out by fmlocalizc, we will summarize the significance of all 

but one of the arguments of this PART! procedure. On each processor, fmlocalize is passed: 

(i) a pointer to a distributed translation table (translation -table in S4), 

(ii) a list of globally indexed distributed array references (part_face_list in S4), 

(iii) the number of globally indexed distributed array references (4*n_face in S4), 

(iv) the number of pre-existing schedules that need to be examined when removing dupli-

cates (1 in S4), and 

(v) an array of pointers to pre-existing schedules (sched_array in S4). 

Frnlocalize returns:	 - 

(i) a schedule that can be used in PART! gather and scatter procedures. This schedule 

does not take any pre-existing schedules into account (facesched in S4), 

(ii) an incremental schedule that includes only off-processor data accesses not included in 

the pre-existing schedules (increniental_facesched in S4), 

(iii) an integer array (local-face-list in S4) that is used to specify the access pattern of 

arrays x and y in statements S3 and S4 of the executor code (Figure 2), 

(iv) the number of distinct off-processor references in face-list (n_off_proc_face in S4), 

(v) the number of distinct off-processor references not encountered in any other schedule 

(n_new_off_proc_face in S4), 

(vi) and a buffer...mapping - to be discussed in Section 3.4. 

12



3.4 A Return to the Executor 

We have already discussed dfmgather in Section 3.2 but we have not said anything so far 

al)OUt the distinction l)CLWVCU dfscaitrr_add and dfscatler_addnc. When WC make USC of 

incremental schedules, we assign a single buffer location to each off-processor distributed 

array element. In our example, we carry out separate off-processor accumulations after 

loops Li and L2. In this situation,the off-processor accumulation procedures may no longer 

reference consecutive elements of a buffer. 

We assign copies of distinct off-processor elements of y to buffer locations, to handle 

off-processor accesses in loot) Ll (Figure 2). We can then use a schedule (edge_sched) to 

specify where in distributed memory each consecutive value in the buffer is to be accu-

mulated. PARTI procedure dfscatter_add can be employed; this procedure uses schedule 

edge_sched to accumulate to off-processor locations consecutive buffer locations beginning 

with y(n_on_proc + 1). When we assign off-processor elements of y to buffer locations in 

L2, some of the off-processor copies may already be associated with buffer locations. Conse 

quently in S3, Figure 2, our schedule (face...sched) must access buffer locations in an irregular 

manner. The pattern of buffer locations accessed is specified by integer array buffer-mapping 

passed to dfscatter_addnc in statement S3 from Figure 2 (dfscatter_addnc stands for dfscat-

1cr_add non-contiguous). 

3.5 Automatic Inspector/Executor Generation 

Inspectors and executors niiist be generated for loops in which distributed arrays are accessed 

via indirection. Inspectors and executors are also needed in most loops that access irregu-

larly distributed arrays. Joint work with groups at Rice and Syracuse is underway to employ 

PART! as the runtime support for a compiler that automatically generates distributed mem-

ory programs that make effective use of incremental and non-incremental schedules. This 

compiler is based oti the Parascope parallel programming environment [22] and compiles 

Fortran D [21]. Another group, at the University of Vienna, has already employed PARTI 

for the runtime support in their distributed memory compiler [7]. 

4 Multiblock Parti 
We are developing methods for parallelizing programs with irregularly coupled regular meshes 

(ICRMs), commonly known as multiblock applications, to distributed memory parallel com-

puters. In order to ensure that our techniques are applicable to real-world problems, we have 

begun our research with a specific multiblock problem from the domain of computational 

fluid dynamics.

13



ORtGlL iAC.
COLOR POTOGRI\PH 

Figure 6: Multiblock grid intersecting the surface of an F-18 

In many problems there are at most a few dozen blocks of varying sizes. We can assume 

that we will have to assign at least some of the blocks to multiple processors, we must 

consequently be prepared to deal with multiple levels of parallelism in ICRM codes. Typically 

ICRM applications have two levels of parallelism available. Coarse-grained parallelism is 

available for processing the blocks concurrently. Each block is a self-contained computation 

region that can, except for boundary conditions, be operated upon independently of the 

other blocks. In addition, the computation for individual blocks has fine-grain parallelism 

available. Applying coarse-grained parallelism will help to keep communication overhead to 

a manageable fraction of the computation time. 

4.1 Problem Overview 

The application we are investigating is a problem from the domain of computational fluid 

dynamics. The serial code was developed by V. \'asta. M. Sanetrik and E. Parlette at the 

NASA Langley Research Center [41], and solves the thin-layer Navier-Stokes equations for a 

fluid flow over a three-dimensional surface with complex geometr y. The problem geometry is 

decomposed into between one and a few dozen distinct blocks, each of which is modeled with 

a regular, three-dimensional, rectangular grid. An example of the niultiblock grid structure 

surrounding an airplane (an F-18) is shown in Figure 6. The meshes are shown intersecting 

the solid surface of the airplane, and the various colors correspond to different blocks. 

14



The boundary conditions of each block are enforced by simulating any of several situ-

ations, such as viscous and inviscid walls, symmetry planes, extrapolation conditions, and 

interaction with an adjacent block. The size of each block, its boundary conditions and 

adjacency information are loaded into the program at run-time. For this application, the 

same program is run on all blocks. However, different subroutines will be executed when 

applying the boundary conditions on different blocks. In general, the code used to process 

each block of an ICRM application may be different. 

The sequence of activity for this program is as follows: 

Read block sizes, boundary conditions and simulation parameters, 

Repeat (typically large number of times): 

A Apply boundary conditions to all blocks, 

B Carry out computations on each block. 

The main body of the program consists of an outer sequential loop, and two inner paral-

lel loops. Each of the inner loops iterates over the blocks of the problem, the first applying 

boundary conditions (Step A), which may involve interaction with other blocks, and the 

second loop advancing the physical simulation one time step in each block (Step B). Parti-

tioning of the parallel loops is the source of the coarse-grained parallelism for the application. 

Furthermore, within each iteration of the loop that implements Step B there is fine-grained 

parallelism available in the form of (large) parallel loops. 

4.2 The Multiblock PARTI Library 

Several forms of run-time support are required for ICRM applications. First, there must 

be a means for expressing data layout and organization on the processors of the distributed 

memory parallel machine. Second, there must be methods for specifying the movement of 

data required both because of partitioning of individual meshes (intra-block parallelism) 

and because of interactions between different meshes (inter-block parallelism). Third, there 

must be some way of transforming distributed array indexes specified in global coordinates 

(as in the sequential code) into local indexes on a given processor in the distributed memory 

parallel machine. 

Integration of the required functionality into the Fortran D language [16] is currently 

underway. As a preliminary step, we have defined a. library of subroutines for expressing 

this functionality in Fortran programs, and are using them to test our support for ICRMs. 

The data layout support provided by the library corresponds to Fortran D style declarations 

of distributed arrays. The run-time activities that directly handle data communication are 

15



generated from the data usage patterns in the user program (either by the user or eventually 

by a compiler), and consist of subroutine calls to: 

(I) build schedules (communication patterns, as described in Section 2) for either intra-

block or inter-block communication, 

(ii) perform data movement using a previously built schedule, 

(iii) and transform a global distributed array index into a local array index. 

One major difference between PARTI and multiblock PARTI is that building schedules 

for ICRM codes does not require interprocessor communication, since each processor knows 

the layout of all the distributed arrays. Therefore no distributed translation table is re-

quired. Similarly, in multiblock PARTI, transforming a global distributed array index into 

a local index does not require a lookup into a (distributed) translation table, but only re-

quires computing the proper local index using the (local) data structure associated with each 

distributed array. We now discuss the run-time support routines in more detail. 

4.2.1 Data Layout 

The binding of blocks to processors has important performance implications. Load balance 

plays a crucial role in determining computational efficiency. Since the amount of computation 

associated with each block is directly proportional to the number of elements in the block, 

good load balancing is achieved by binding processors to blocks in a ratio proportional to 

their sizes. In our implementation, this mapping is under user control. 

The principal abstraction for dealing with data placement is the decomposition. However, 

unlike Fortran D, where decompositions are bound to the entire processor set, we map 

decompositions to subsets of the processors. The mechanism for specifying this arrangement 

is a subroutine called embed. Embed binds a decomposition to a rectangular subregion of 

another decomposition. Any number of decompositions may be embedded into a single 

root decomposition. The root decomposition is mapped onto the entire set of physical 

processors. Embedded decompositions are mapped onto subsets of these processors based 

on the relative size and location of the subregion in the root decomposition to which they 

are bound. This methodology can easily be extended recursively to support an arbitrary 

sequence of embeddings, although for most ICRM applications we are aware of a two level 

decomposition hierarchy appears to be sufficient. 

For the Navier-Stokes application, we use a one-dimensional decomposition for the root 

level, and embed 3-dimensional blocks into it. For example, if two blocks, one of size 10 x 

10 x 10 and the other 5 x 5 x 10 were to be mapped onto the physical processing resource, 

16



a root-level decomposition of size 1250 would he used. The first block would be embedded 

into locations I through 1000 of this decomposition, and the second block into locations 

1001 through 1250. This implies that 4/5 of the processors are used to compute for the first 

block, and 1/5 of the processors are used for the second block. 

The distribute subroutine defines the type of distribution for each dimension of a decom-

position. Distribute supports three types of distributions for the N elements of one dimension 

of a decomposition, to be partitioned onto P processors (assuming that both decomposition 

elements and processors are numbered starting at 1): 

(i) block, in which the first NIP elements are assigned to the first processor, the second 

NIP to the second processor, etc., 

(ii) cyclic, in which processor i is assigned all elements with index j such that 

i=j mod P, 

(iii) and undistributed. 

While a decomposition is an abstract specification of a problem domain, another subrou-

tine is required to map a particular distributed array with respect to a decomposition. The 

align subroutine conforms a distributed array with a decomposition, in addition allowing the 

specification of rotation (so that any array dimension can be aligned with any decomposition 

dimension) and of ghost cells for each dimension. These ghost cells will contain copies of 

distributed array elements residing on other processors that are required to perform local 

computation (caused by partitioning a single block to obtain fine-grained parallelism). The 

use of decompositions as an abstraction of a problem domain allows multiple distributed ar-

rays to be mapped in exactly the same way, even if two arrays are not exactly the same size 

(e.g. the size of one is some multiple of the size of the other, as in a multigrid application), 

or have dimensions that are rotated with respect to each other (e.g. matrices aligned so 

that the rows of one matrix are mapped in the same way as the columns of another matrix). 

Another possibility is to align only some of the dimensions of a distributed array to an en-

tire decomposition (e.g. align a 4-D array with a 3-D decomposition). In that case, all the 

-.	 elements in the unaligned dimensions of the distributed array are allocated on all processors 

that contain decomposition elements. 

4.2.2 Interprocessor Communication 

Two types of communication are required in ICRM applications: intra-block communication 

because a single block may be partitioned across the processors of the distributed memory 

parallel machine, and inter-block communication because of boundary conditions between 

17



blocks, caused by the assignment of blocks to different processors to obtain coarse-grained 

parallelism. As for the PARTI primitives for unstructured mesh computations, communi-

cation is performed in two phases. First, a subroutine is called to build a communication 

schedule that describes the required data motion, and then another subroutine is called to 

perform the data motion (sends and receives on a distributed memory parallel machine) us-

ing a previously built schedule. Such an arrangement allows a schedule to be used multiple 

times in an iterative algorithm (such as the Navier-Stokes multiblock algorithm), so long 

as the data layout does not change. This amortizes the cost of building schedules, so that 

the preprocessing time should not be a significant part of the execution time of this type of 

program. 

The communication primitives include a procedure exch_sched, which computes a sched-

ule that is used to direct the filling of overlap cells along a given dimension of a distributed 

array. Exch_sched executes on each processor that contains a part of the distributed array, 

and, for a given processor i, determines both which other processors require data that is 

stored on processor i, and which other processors store data that processor i requires. 

The primitive subarray_sched carries out the preprocessing required to copy the contents 

of a regular section [19], source, in one block into a regular section, destination, in another 

(or the same) block. The interactions between blocks for ICRM applications are limited to 

the exchange of regular sections. The subarray_sched primitive supports data moves between 

arbitrary rectangular portions of two blocks, and can transpose the data along any dimension. 

Subarray_sched produces a schedule which specifies a pattern of intra-processor data transfers 

(for the parts of the source and destination subsections that reside on the same processor), 

along with a set of send and receive calls for interprocessor communication. On a given 

processor, i, subarray_sched determines whether it owns any portion of source. If i does own 

some portion, source_i, of source, subarray_sched computes the processors to which various 

parts of souree_z must be sent. Similarly, subarray.sched also computes whether processor i 
owns any portion of destination and, if so, determines which other processors send messages 

to processor i. 
The schedules produced by exch_sched and subarray_sched are employed by a primitive 

called data-move that carries out both interprocessor communication and intra-processor 

data copying. 

4.2.3 Distributed Array Index Transformation 

The final form of support provided by the library for ICRMs is to transform all indexes into 

distributed arrays from the global value (an index into the whole distributed array) to a 

local index on the processor executing a distributed array reference. For a loop that only 

18



uses the loop index to reference into one distributed array (or multiple distributed arrays 

mapped identically), the index transformation can be performed in the loop header, only 

modifying the loop bounds to iterate over the indexes of the local distributed array elements. 

Two primitives, locaLlower_bound and local_upper_bound, are provided for transforming loop 

bounds (returning, respectively, the lower and upper local indexes of a given dimension of 

the referenced distributed array). In general, however, each distributed array reference (read 

or write) must have the array index transformed from a global to a local reference for correct 

parallel execution. Techniques for collecting all the references to multiple distributed arrays 

in a single loop and properly transforming indexes are complex, and have been investigated 

by other researchers [21]. 

4.3 An Example 

An example of the structure of a parallelized explicit multiblock code should help clarify 

the use of the library routines. We will display both the parts of the code that declare the 

distributed arrays and the parts that build and use schedules for intra-block and inter-block 

communication. Multigrid code would have the same general structure, with loops over the 

grid levels surrounding the code for the explicit time step. Multigrid code also requires trans-

ferring data between multigrid levels, which can be done using the subarray_exch primitive. 

The pseudo-code is shown in Figure 7. For simplicity, assume that we already know the 

global sizes of all the blocks in the data array x. 

The declarations of the distributed arrays are fairly straightforward. The various blocks 

will all be stored in one array x, and a separate pointer array will contain the starting 

positions of each block. The decomposition Dl is mapped onto the entire set of physical 

processors that the program runs on, while each decomposition in D3 is embedded into a 

part of the physical processor set (physical processors are assigned based on the relative sizes 

of the various blocks). Each block in x is then aligned with its corresponding decomposition 

(in this example each decomposition is used for only one distributed array). 

In this example, the distribution of the distributed array x does not change, so schedules 

for data movement may be computed once, and saved for multiple later uses. Therefor, 

in the main loop body only calls to the data-move subroutine are required, both for inter-

block and intra-block communication. Global to local index translation is performed on the 

innermost loops that iterate over the local elements of the distributed data array z, using 

the loop bound adjustment subroutines. This assumes that the innermost loop indexes are 

only used to index into distributed array x, and not for other purposes. 

101



(i) Allocate a 3-D data array x, large enough for all the block portions to be stored locally 
(including ghost cells). 

(ii) Create a l-D decomposition, Dl, with size equal to the total number of elements in 
(the sum of the sizes of all the blocks, without ghost cells). 

(iii) Create an array of 3-D decompositions, D3[nurn_blocks]. Each element of D3 cor-
responds to one block, and each decomposition is the same size in every dimension as 
its corresponding block. 

(iv) Embed decomposition D3[l] into Dl at position 1, and all other decompositions D3[1] 

into Dl after D3[i - l] (i.e. D3[i] starts right after D3[i - 1] ends). 

(v) Distribute each decomposition in D3 (e.g. block-wise in each of its dimensions). 

(vi) Align each block in x with its corresponding decomposition in D3 (i.e. align block i 

with D3[i]). Also specify the number of ghost cells required in each dimension. 

(vii) Fill in pointer array blocks-x, so that blocics...x contains the indexes for the start of each 
individual block in x. This can be done now that the local sizes of all the blocks can 
be determined from the declarations for the distributed array (including ghost cells). 

(viii) Build and save schedules for all interfaces between blocks, using subarray_exch. 

(ix) Build and save schedules for filling in ghost cells of each block, using exch..sched. 

(x) For each time step do: 

(a) Update boundary conditions - for each block interface, call data-move with the 
corresponding previously built schedule (from subarray_exch). 

(b) For each block in x do: 

i. Fill in ghost cells, with a call to data-move, using a previously built schedule 
for the block (from exch...sched). 

ii. For each locally owned element of the block, perform the local computation 
- the loop bounds for this iteration are obtained from locaUower...bnd and 
local_upper...bnd applied to the current block. 

Figure 7: Parallel multiblock code for each processor, using multiblock PART! 

20



5 Experimental Results for an Unstructured Mesh 

We summarize the results of some of the experiments we have carried out to evaluate the 

performance impact of our optimizations. These experiments were carried out on the Intel 

Touchstone Delta machine. For purposes of comparison, we cite performance numbers ob-

tamed from an optimized Cray YMP version of this code [31]. A more detailed account of 

this experimental work may be found in [13]. 

The test case we report here involves the computation of a highly resolved flow over a 

three-dimensional aircraft configuration. We employed both an explicit algorithm and a V 

cycle multigrid algorithm. The mesh employed for the explicit algorithm, which corresponds 

to the finest mesh employed in the multigrid calculation, contains 804,056 points and ap-

proximately 4.5 million tetrahedra. We believe this is the largest unstructured grid Euler 

solution attempted to date. In Figure 8, we depict the second mesh used in the multigrid 

sequence (we do not show the 804K mesh due to printing and resolution limitations). The 

mesh shown has 106,064 points and 575,986 tetrahedra. For this case, the freestream Mach 

number is 0.768 and the incidence is 1.16 degrees. The computed Mach contours are also 

shown in Figure 8, where good resolution of the shock on the wing is observed. 

We employed the recursive spectral partitioning algorithm to carry out partitioning [33, 

39]. Williams [43] compared this algorithm with binary dissection [5] and simulated anneal-

ing methods for partitioning two-dimensional unstructured mesh calculations. He found that 

recursive spectral partitioning produced better partitions than binary dissection. Simulated 

annealing in some cases produced better partitions but the overhead for simulated annealing 

proved to be prohibitive even for the relatively small meshes employed (the largest had 5772 

elements). Venkatakrishnan [42] and Simon [39] also reported favorable results with the 

spectral partitioner. We carried out preliminary performance comparisons between binary 

dissection and the recursive spectral partitioning and found that recursive spectral partition-

ing gave superior results on an iPSC/860 hypercube on our three dimensional meshes. The 

results wereport all have been obtained using recursive spectral partitioning to partition all 

meshes. Partitioning was performed on a sequential machine as a preprocessing operation. 

We use the optimized version of the communications kernels which employ forced message 

types, non-blocking receives (irecv), and employ Vcnkatakrishnan's heuristic to determine 

the order in which messages are sent. 

The single mesh algorithm achieved a rate of 778 Mflops on 256 processors of the Delta 

machine, and 1496 Mflops on the full 512 processor configuration of the Delta. The V cycle 

multigrid algorithm achieved a rate of 1200 Mflops on 512 processors. We implemented the 

explicit Euler solver with and without incremental scheduling optimization. In Table 1, we 

21



L



Method Time/ Mflops Preprocessing 
Iteration Time 
(seconds)  seconds 

No Incremental 4.18 947 2.73 
Scheduling 

Incremental 2.65 1496 2.99 
Scheduling

Table 1: Explicit Unstructured Euler Solver on 804K Mesh on 512 Delta Processors- Incre-
mental v.s. Non- Incremental Scheduling 

depict: 

computational rate in Mflops, 

the time required per iteration, and 

the preprocessing time needed to generate all communication schedules. 

We note that incremental scheduling leads to a roughly 35% reduction in total time per,  

iteration in this problem. The preprocessing time increases only modestly when we use 

incremental scheduling and is roughly equal to the cost of a single parallelized iteration. 

The same problem was run on the CRAY YMP-8 machine, using all eight processors in 

dedicated mode. The CRAY autotasking software was used to parallelize the code for this 

architecture. Both the single grid and multigrid codes achieved a computational rate of 750 

Milops on all eight processors, which corresponds to a speedup of roughly 7.5 over the single, 

processor performance. 

6 Related Research 

Programs designed to carry out a range of irregular computations, including sparse direct 

and iterative methods require many of the optimizations described in this paper. Some 

examples of such programs are described in [2, 4, 15, 28, 44]. 

Several researchers have developed programming environments that are targeted towards 

particular classes of irregular or adaptive problems. Williams [44] describes a programming 

environment (DIME) for calculations with unstructured triangular meshes using distributed 

memory machines. Baden [3] has developed a programming environment targeted towards 

23 



particle computations. This programming environment provides facilities that support dy-

namic load balancing. DecTool [12] is an interactive environment designed to provide facili-

ties for either automatic or manual decompositions of 2-D or 3-D discrete domains. 

There are a variety of compiler projects targeted at distributed memory multiprocessors 

[1, 9, 10, 14, 17, 18, 23, 25, 26, 27, 34, 35, 36, 40, 451. Runtime compilation methods are 

employed in four of these projects; the Fortran D project [21], the Kali project [23], Marina 

Chen's work at Yale [:30] and our PARTI project [32, 36, 37]. The Kali compiler was the 

first compiler to implement inspector/executor type runtime preprocessing [23] and the ARF 

compiler was the first compiler to support irregularly distributed arrays [36]. In related work, 

Lu and Chen have reported some encouraging results on the potential for effective runtime 

parallelization of loops in distributed memory architectures [30]. 

Initial efforts toward runtime and compiler support for block structured problems within 

the PART! project are described in [6, 8]. Work has also been done at GMD in Germany 

to parallelize block structured grid algorithms [29], and to provide software support for such 

efforts [24]. 

7 Conclusions 

We have discussed tools that can be used to port irregular problems to distributed memory 

parallel machines. We have described PART! primitives to support irregular problems on 

both unstructured and multiblock structured meshes. As the experimental results of using 

the PARTI primitives to parallelize an unstructured grid Euler solution in Section 5 show, our 

methods can be used to efficiently execute irregular problems on highly parallel distributed 

memory machines. In the future, we should obtain similar, or better, efficiency using the 

multiblock PART! primitives for the multiblock CFD application described in Section 4.1. 

Multiblock codes should obtain better performance from each processor in the distributed 

memory parallel machine than unstructured codes, because of more regular access to local 

memory. Also, the multiblock primitives (10 not require interprocessor communication to 

build schedules (as do the PART! primitives for unstructured problems). Further work 

is continuing to expand the class of irregular problems that are supported by the PARTI 

primitives, and at the same time we are continuing to improve the performance of the existing 

implementations. 

Acknowledgments 

We would like to thank Horst Simon for providing us with his recursive spectral partitioner 

and Rob Vermeland and CRAY Research Inc. for providing dedicated time on the CRAY 

24



YMP-8 machine. This research was performed in part using the Intel Touchstone Delta 

System operated by Caltech on behalf of the Concurrent Supercomputing Consortium. We 

gratefully acknowledge NASA Langley Research Center for providing access to this facility. 

References 

[1] F. André, J.-L. Pazat, and H. Thomas. PANDORE: A system to manage data distri-

bution. In International Conference on Supercomputing, pages 380-388, June 1990. 

[2] C. Ashcraft, S. C. Eisenstat, and J. W. H. Liu. A fan-in algorithm for distributed sparse 

numerical factorization. SISSG, 11(3) :593-599, 1990. 

[3] S. Baden. Programming abstractions for dynamically partitioning and coordinating 

localized scientific calculations running on multiprocessors. SIAM J. Sci. and Stat. 

Computation., 12(1), January 1991. 

[4] D. Baxter, J. Saltz, M. Schultz, S. Eisentstat, and K. Crowley. An experimental study 

of methods for parallel preconditioned Krylov methods. In Proceedings of the. 1988 

Hypercube Multiprocessor Conference, Pasadena CA, pages 1698-1711, January 1988. 

[5] M.J. Berger and S. H. Bokhari. A partitioning strategy for nonuniform problems on 

multiprocessors. IEEE Trans. on Computers, C-36(5):570-580, May 1987. 

[6] Harry Berryman, Joel Saltz, and .Jeffrey Scroggs. Execution time support for adap-

tive scientific algorithms on distributed memory maclimes. L'oncurrency: Practice and 

Experience, 3(:3):159--178, June 1991. 

[7] P. Brezany, M. Gerndt, V. Sipkova, and H.P. Zima. SUPERB support for irregular 

scientific computations. In Proceedings of the Scalable High Performance Computing 

Conference (SHPCC-92), pages 314-321. IEEE Computer Society Press, April 1992. 

[8] Craig Chase, Kay Crowley, Joel Saltz, and Anthony Reeves. Parallelization of irregu-

larly coupled regular meshes. Technical Report 92-1, ICASE, NASA Langley Research 

Center, January 1992. 

[9] M. C. Chen. A parallel language and its compilation to multiprocessor architectures 

or VLSI. In 2nd ACM Symposium on Principles of Programming Languages, January - 

1986.

25



[10] A. Cheung and A. P. Reeves. The Paragon multicomputer environment: A first imple-

mentation. Technical Report EE-CEG-89-9, Cornell University Computer Engineering 

Group, Cornell University School of Electrical Engineering, July 1989. 

[111 Alok Choudhary, Geoffrey Fox, Sanjay Ranka, Seema Hiranandani, Ken Kennedy, 

Charles Koelbel, and Joel Saltz. Software support for irregular and loosely synchronous 

problems. In Proceedings of the Symposiunz on High-Performance Computing for Flight 

Vehicles, December 1992. 

[12] N.P. Chrisochoides, C. E. Houstis, E.N. Houstis, P.N. Papachiou, S.K. Kortesis, and 

J.R. Rice. Domain decomposer: A software tool for mapping PDE computations to 

parallel architectures. Report CSD-TR-1025, Purdue University, Computer Science 

Department, September 1990. 

[13] R. Das, D. J. Mavriplis, J. Saltz, S. Gupta, and R. Ponnusamy. The design and imple-

mentation of a parallel unstructured Euler solver using software primitives, AIAA-92-

0562. In Proceedings of the 30th Aerospace Sciences Meeting, .January 1992. 

[14] 1. Foster and S. Taylor. Strand: New Concepts in Parallel Programming. Prentice-Hall, 

Englewood Cliffs, NJ, 1990. 

[15] G. Fox, M. Johnson, G. Lyzenga, S. Otto, J. Salmon, and D. Walker. Solving Problems 

on Concurrent Computers. Prentice-Hall, Englewood Cliffs, New Jersey, 1988. 

[16] Geoffrey Fox, Seema Hiranandani, Ken Kennedy, Charles Koelbel, Uli Kremer, Chau-

Wen Tseng, and Mm-You Wu. Fortran D language specification. Technical Report 

CRPC-TR90079, Center for Research on Parallel Computation, Rice University, De-

cember 1990. 

[17] H. M. Gerndt. Automatic parallelization for distributed memory multiprocessing sys-

tems. Report ACPC/ TR 90-1, Austrian Center for Parallel Computation, 1990. 

[18] P. Hatcher, A. Lapadula, R. Jones, M. Quinn, and J. Anderson. A production quality 

C compiler for hypercube machines. In 3rd ACM SIGPLAN Symposium on Principles 

and Practice of Parallel Programming, pages 73-82, April 1991. 

[19] P. Havlak and K. Kennedy. An implementation of interprocedural bounded regular 

section analysis. IEEE Transactions on Parallel and Distributed Systems, 2(3):350-360, 

July 1991.

26



[20] S. Hiranandani, J. Saltz, P. Mehrotra, and II. Rerryman. Performance of hashed cache 

data migration schemes on multicomptiters. Journal of Parallel and Distributed com-

puting, 12:415-422, August 1991. 

[21] Seema Hiranandani, Ken Kennedy, and Chau-Wen Tseng. Compiler support for 

machine-independent parallel programming in Fortran D. In J. Saltz and P. Mehrotra, 

editors, Languages, compilers and Run-Time Environments for Distributed Memory 

Machines, pages 139-176. Elsevier Science Publishers B.V., 1992. 

[22] K. Kennedy, K.S. McKinley, and C.-W. rrsetg. Interactive parallel programming using 

the Parascope editor. IEEE Transactions on Parallel and Distributed Systems, 2(3):329-

341, July 1991. 

[23] C. Koelbel, P. Mehrotra, and J. Van Rosendale. Supporting shared data structures on 

distributed memory architectures. In 2nd A CM SIGPLAN Symposium on Principles 

and Practice of Parallel Programming, pages 177-186. ACM, March 1990. 

[24] Max Lemke and Daniel Quinlan. P++, a C++ virtual shared grids based programming 

environment for architecture-independent development of structured grid applications. 

Technical Report 611, GMD, February 1992. 

[25] J. Li and M. Chen. Generating explicit communication from shared-memory program 

references. In Proceedings Supercomputing '90, November 1990. 

[26] J. Li and M. Chen. Index domain alignment: Minimizing cost of cross-references between 

distributed arrays. In Proceedings of the 3rd Symposium on the Frontiers of Massively 

Parallel computation, October 1990. 

[27] J. Li and M. Chen. Automating the coordination of interprocessor communication. In 

Programming Languages and Compilers for Parallel Computing, Cambridge Mass, 1991. 

MIT Press. 

[28] J. W. Liu. Computational models and task scheduling for parallel sparse Cholesky 

factorization. Parallel Computing, :3:327-342, 1986. 

[29] Guy Lonsdale and Anton Schuller. Parallel and vector aspects of a multigrid Navier-

Stokes solver. Technical Report 550, GMD, June 1991. 

[30] L. C. Lu and M.C. Chen. Parallelizing loops with indirect array references or point-

ers. In Proceedings of the Fourth Workshop on Languages and Compilers for Parallel 

Computing, Santa Clara, CA, August 1991. 

27



[31] D. J. Mavriplis. Three dimensional multigrid for the Euler equations. AIAA paper 

91-1549CP, pages 824-831, June 1991. 

[32] R. Mirchandaney, J. H. Saltz, R. M. Smith, D. M. Nicol, and Kay Crowley. Principles of 

runtime support for parallel processors. In Proceedings of the 1988 ACM International 

Conference on Supercornputing, pages 140-152, .July 1988. 

[33] A. Pothen, H. D. Simon, and K. P. Liou. Partitioning sparse matrices with eigenvectors 

of graphs. SIAM J. Mat. Anal. Appl., 11:430-452, 1990. 

[34] Anne Rogers and Keshav Pingali. Process decomposition through locality of reference. 

In Proceedings of the SIGPLAN 189 Conference on Programming Language Design and 

Implementation, pages 69-80. ACM Press, June 1989. 

[35] M. Rosing, R.W. Schnabel, and R.P. Weaver. Expressing complex parallel algorithms 

in Dino. In Proceedings of the 4th Conference on Hypercubes, Concurrent Computers 

and Applications, pages 553-560, 1989. 

[36] J. Saltz, H. Berryman, and J. Wu. Multiprocessors and run-time compilation. Concur-

rency: Practice and Experience, 3(6):573-592, 1991. 

[37] J. Saltz, K. Crowley, R. Mirchandaney, and Harry Berryman. Run-time scheduling and 

execution of loops on message passing machines. Journal of Parallel and Distributed 

Computing, 8:303-312, 1990. 

[38] J. Saltz, R. Das, R. Ponnusamy, D. Mavriplis, H Berryman, and J. Wu. Parti procedures 

for realistic loops. In Proceedings of the 6th Distributed Memory Computing Conference, 

Portland, Oregon, April-May 1991. 

[39] H. Simon. Partitioning of unstructured mesh problems for parallel processing. In Pro-

ceedings of the Conference on Parallel Methods on Large Scale Structural Analysis and 

Physics Applications. Pergamon Press, 1991. 

[401 Ping-Sheng Tseng. A Parallelizing Compiler For Distributed Memory Parallel Comput-

ers. PhD thesis, Carnegie Mellon University, May 1989. Also available as Technical 

Report CMU-CS-89- 148. 

[41] Veer N. Vatsa, Mark D. Sanetrik, and Edward B. Parlette. Development of a flexible and 

efficient multigrid based multiblock flow solver. Submitted to the 31st AIAA Aerospace 

Sciences Meeting, .January 1993.

28



[42] V. Venkatakrishnan, H. D. Simon, and T. J. Barth. A MIMD implementation of a 

parallel Euler solver for unstructured grids, submitted to Journal of Supercomputing. 

Report RNR.-91-024, NAS Systems Division, NASA Ames Research Center, Sept 1991. 

[43] R. Williams. Performance of dynamic load balancing algorithms for unstructured mesh 

calculations. Goncurrency, Practice and Experience, 3(5):457-482, February 1991. 

[44] R. D. Williams and R. Glowinski. Distributed irregular finite elements. Technical Report 

C3P 715, Caltech Concurrent Computation Program, February 1989. 

[45] H. Zima, H. Bast, and M. Gerndt. Superb: A tool for semi-automatic MIMD/SIMD 

parallelization. Parallel Gomputing, 6:1-18, 1988. 

29



Form Approved 
REPORT DOCUMENTATION PAGE 	 1 OMB No. 0704-0188 

Public reporting burden for this collection of information is estimated to acerage 1 hour per response. including the time for reviewing instructions, searching existing data sources 
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this 

information. including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson collection of Davis Highway. Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704 .01118), Washington,DC 20503. 

1. AGENCY USE ONLY (Leave blank) REPORT DATE 3. REPORT TYPE AND DATES COVERED  T June 1992 Contractor Report 

4. TITLE AND SUBTITLE S. FUNDING NUMBERS 

PARTI PRIMITIVES FOR UNSTRUCTURED AND BLOCK STRUCTURED 
PROBL4S C NAS1-18605 

WU 505-90-52-01 6. AUTHOR(S) 

Alan Sussman, Joel Saltz, Raja Das, S. Gupta, 
Dimitri Navriplis, Ravi Pomiusamy, Kay Crowley 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION 

Institute for Computer Applications in Science
REPORT NUMBER 

and Engineering IASE Interir. Report  
Mail Stop 132C, NASA Langley Research Center No. 
Hampton, VA	 23665-5225 

9. SPONSORING/ MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING /MONITORING 
AGENCY REPORT NUMBER 

National Aeronautics and Space Administration NASA CR-189662 
Langley Research Center ICASE Interim Report 
Hampton, VA	 23665-5225 No. 22 

11. SUPPLEMENTARY NOTES 
Langley Technical Monitor: 	 Michael F. Card	 Symposium on High Performance 

Final Report	 Computing for Flight Vehicles, 
Dec. 7-9, 1992 

12a. DISTRIBUTION /AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE 

Unclassified — Unlimited 
Subject Category 61, 59 

13. ABSTRACT (Maximum 200 words) 

This paper describes a set of primitives (PARTI) developed to efficiently execute 
unstructured and block structured problems on distributed memory parilel machines. 
We present experimental data from a 3-D unstructured Euler solver run on the Intel 
Touchstone Delta to demonstrate the usefulness of our methods. 

14. SUBJECT TERMS 15. NUMBER OF PAGES 

PARTI, tools, block structured, unstructured, sparse, 33 
16. PRICE CODE adaptive, computational fluid dynamics	

•
A03 

17.	 SECURITY CLASSIFICATION 18.	 SECURITY CLASSIFICATION 19.	 SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT 

OF REPORT OF -THISPAGE OF ABSTRACT 

13nc1assfted ljnclass'if led

NSN 7540-01-280-5500	 )dtIOd!U roirri 470 r'cw 
Prescribed by ANSI Std 139-18 
298-102 


	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34

