AUTOMATED PAYLOAD EXPERIMENT TOOL
FEASIBILITY STUDY
(5-32559)

Final Technical Report for Period
10 January 1991 through 30 September 1991

September 1991

Prepared by
Gary A. Maddux
James Clark
Harry Delugach
Charles Hammons
Julie Logan
Anna Provancha

Research Institute
The University of Alabama in Huntsville
Huntsville, Alabama 35899

Prepared for
George C. Marshall Space Flight Center
National Aeronautics and Space Administration
Marshall Space Flight Center, AL 35812
Attn: JA81 (Mr. David Jex)
Abstract

To achieve an environment less dependent on the flow of paper, automated techniques of data storage and retrieval must be utilized. The prototype under development seeks to demonstrate the ability of a knowledge-based, hypertext computer system. This prototype is concerned with the logical links between two primary NASA support documents, the Science Requirements Document (SRD) and the Engineering Requirements Document (ERD). Once developed, the final system should have the ability to guide a Principal Investigator through the documentation process in a more timely and efficient manner, while supplying more accurate information to the NASA payload developer.
PREFACE

This technical report was prepared by the staff of the Research Institute, The University of Alabama in Huntsville. The purpose of this report is to provide documentation of the work performed and results obtained under delivery order 108 of Marshall Space Flight Center (MSFC) Contract No. NAS8-36955. Mr. Gary Maddux was Principal Investigator for this nine month level of effort. Mr. David Jex of the Microgravity Experiment Projects Office provided technical coordination.

The views, opinions, and/or findings contained in this report are those of the author(s) and should not be construed as an official NASA position, policy, or decision unless so designated by other official documentation.

I have reviewed this report, dated 9-27-91 and the report contains no classified information.

[Signature]
Principal Investigator

Approval:

[Signature]
Research Institute
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0 INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>2.0 BACKGROUND AND OBJECTIVES</td>
<td>1</td>
</tr>
<tr>
<td>3.0 CURRENT ENVIRONMENT</td>
<td>1</td>
</tr>
<tr>
<td>4.0 ACTIVITIES</td>
<td>2</td>
</tr>
<tr>
<td>4.1 Form and Documentation Evaluation</td>
<td>2</td>
</tr>
<tr>
<td>4.2 Existing Hardware, Software, and Network Evaluation</td>
<td>2</td>
</tr>
<tr>
<td>4.3 Future Communications, Software, and Hardware Evaluation</td>
<td>3</td>
</tr>
<tr>
<td>4.4 Prototype Development</td>
<td>3</td>
</tr>
<tr>
<td>5.0 PROPOSED SOLUTION</td>
<td>3</td>
</tr>
<tr>
<td>6.0 CONCEPTUAL DESIGN</td>
<td>4</td>
</tr>
<tr>
<td>7.0 PROTOTYPE DEVELOPMENT</td>
<td>5</td>
</tr>
<tr>
<td>8.0 CONCLUSIONS AND RECOMMENDATIONS</td>
<td>6</td>
</tr>
</tbody>
</table>

APPENDICES

- System Flowcharts
- User Requirements Guide
- SRD / ERD Cross Reference
- Prototype Software Listing
1.0 INTRODUCTION

The Quality Improvement Techniques Laboratory at the Research Institute, the University of Alabama in Huntsville (UAH), was tasked by the Microgravity Experiment Projects (MEP) Office of the Payload Projects Office (PPO) to conduct research in the current methods of written documentation control and retrieval. The goals of this research were to determine the logical inter-relationships within selected NASA documentation, and to develop a prototype system to demonstrate the capabilities of an electronic knowledge-based system. This prototype was to be used to represent the essence of a computer software application that could provide a "paperless" interface between the prospective principal investigator (PI) and the payload element developer (PED).

2.0 BACKGROUND AND OBJECTIVES

The MEP Office of the PPO at the Marshall Space Flight Center (MSFC) is currently responsible for collecting and coordinating space vehicle/payload specifications and requirements among NASA engineers and various colleges, universities, research centers, and other public- and private-sector organizations that are selected or are requesting to fly their respective experiments on NASA flights. This coordination involves the communication of flight hardware requirements, and the preparation and review of all documentation flowing between NASA and the research groups.

In order to maximize efforts in the coordination of activities between NASA and these research groups, it is necessary to reduce the administrative difficulty encountered by these prospective customers of NASA. To achieve this end, activities must be undertaken to research, analyze, and evaluate the current procedures involved in the design, development and information gathering activities. The objective of this task was to perform a detailed investigation and analysis of the current flight hardware development process, with particular emphasis on the documentation requirements of the project. One element of the system analysis process was the design and development of a demonstrational prototype to aid in the identification and comprehension of the complexities of the data gathering and organizing processes currently involved at MSFC.

3.0 CURRENT ENVIRONMENT

The current environment of manual data gathering and information dissemination is excessively reliant on paper as the primary medium of transfer. This reliance on a static media adds
exponentially to the complexity of a process that by its nature is elaborate. Changes to a document stored on an information media that requires physical manipulation are costly and burdensome. With no method in place to ensure that changes are incorporated throughout follow-on documents, (other than manual verification), modifications to science, engineering, safety, and other documents are more susceptible to human error than necessary.

The design, development and preparation of an experiment to fly in space are time consuming tasks demanding a great deal of technical and disciplinary knowledge. Reducing the time required to prepare an experiment and its supporting documentation is of vital interest to Microgravity Science Applications Division (MSAD). Methods of developing and utilizing state of the art information technologies are of prime concern in simplifying the all-important Principal Investigator (PI)/Payload Element Developer (PED) interface.

4.0 ACTIVITIES

No system should be automated nor modified before it is well understood; therefore, the first concern of this task was the performance of a detailed system analysis. This was accomplished through the evaluation of a number of documents and system flow-charts detailing the documentation preparation processes, and through a number of interviews conducted with MSAD personnel.

The system analysis performed also included, but was not limited to, the evaluation of commercially available software packages and hardware that could be used in the area of payload development planning. These technologies include knowledge-based systems, database management systems (DBMS), fourth generation languages (4GLs), and electronic data interchange, among others. The research and analysis of these technologies, along with the current environment and procedures, was performed in several support actions.

4.1 Form and Documentation Evaluation

UAH collected, analyzed, organized, and evaluated a number of forms and documents used in the current flight hardware development process. Documents were analyzed as to their content, and also evaluated regarding their relationships both within the same document and within other documents. The findings of this research were incorporated in the preliminary design of the prototype and its accompanying knowledge base.

4.2 Existing Hardware, Software, and Network Evaluation

UAH studied and evaluated currently existing hardware, soft-
ware, and networking capabilities at NASA, along with proposed configurations of the hardware/software interfaces. Several configurations of personal computers were tested to determine the minimum requirements for any future system. These included, but were not limited to, 8088-, 80-286-, and 80-386-based machines. Software was also evaluated to determine the appropriate software platform for development and distribution. These included, but were not limited to, Knowledge Pro, Windows, MS-DOS 3.2, MS-DOS 4.0, MS-DOS 5.0, Read/Write Scanning Systems, and several word processors and support utilities.

4.3 Future Communications, Software, and Hardware Evaluation

UAH performed a detailed investigation and analysis of current commercially available communications, software, and hardware technologies, and made recommendations as to their applicability to MEP, PPO, and NASA activities. This research and evaluation included both current and future products that would effect the performance of the target system. This included operating systems and other support software, communications packages, and hardware products.

4.4 Prototype Development

UAH developed a working prototype of a software system that encompasses the processing logic requirements involved in the collection and dissemination of information between MEP and the researchers. A detailed description of this prototype is presented in Section 7.0.

5.0 PROPOSED SOLUTION

In order to meet the ever increasing demands placed on the PI and the PED, an electronic means of receiving, storing, updating, and transmitting data and information is needed. A product of this task was the conceptual design and development of a proposed solution to this problem. It was understood that this solution must meet the existing needs of MSAD and other MSFC offices, yet be expandable to accommodate future growth and modification. A scaled-down version of this proposed solution is illustrated in Appendix A.

The reliance on a paper driven system dictates that procedures are unnecessarily slow and error-prone. To provide immediate retrieval of support documentation, electronic storage is required. That storage media used must be readily available to a significant majority of the PIs and their staffs. Therefore, the decision was made that the Automated Payload Experiment Tool (APET) software should run on IBM-compatible personal computers (PCs), with minimal restrictions regarding operating systems, primary memory size, secondary storage size, etc.
The proposed solution provides an intelligent interface between the PI, the PED, and other supporting offices or organizations. To achieve this intelligence, a knowledge-based technology was selected to allow the creation of rules, along with the mass storage of voluminous documentation. The capture of documentation was and is to be achieved through scanning devices, which will permit direct storage of hardcopy booklets, documents, etc. With a minimal amount of formatting, this knowledge can then be stored in a machine readable form.

Two rules which were of overriding concern were to make the system easy to use and easy to learn. Since the proposed system will be highly domain specific, its only use will be the preparation of NASA documents. Thus, the system must be one that can be learned with a minimum of training, with the user largely self taught. This can be partially achieved by making the system intuitive to the novice user, i.e., prompts will be free of technical jargon, navigation through the system will be logical, and on-line help will be context sensitive.

Once system and support documentation has been captured and coded in the necessary format, the system should be easily transportable to the user. The primary means of transfer will be via floppy disk (3 1/2 or 5 1/4 inch). Once received and installed at the PI site, he/she will respond to a structured listing of prompts while being guided to document completion. The PI should be able to generate hardcopy reports, if desired, and submit data (completed documentation) on diskette to MSAD when finished. From these diskettes, the PED or other involved entities can ascertain inconsistencies, irregularities, or other anomalies, and can resolve these with the PI in a timely manner. The recipient of the documentation will also have the capability to generate hardcopy documents as circumstances dictate.

6.0 CONCEPTUAL DESIGN

Based on the research and system analysis performed, the conceptual design of the proposed system was formulated. Several characteristics were determined essential to its success. Among these were:

- **Modularity** -- The structure of the system, as with any well-constructed software, should be modular. By designing the software system in structured routines, the problems of internal memory constraints are greatly reduced. The system can be fully functional, giving full on-line support for definitions, acronyms, document descriptions and explanations, help messages, etc. As the software system grows to include more on-line reference material, the modularity of the software will be fundamental to
its success.

- **Expandability** -- While the original thrust of this task emphasized only two NASA documents, it is understood that the scope of this project could and should include many others. To ensure the optimal success of the system, it must be designed to accommodate the addition of other support documents without adversely effecting previously implemented components of the system.

- **Utilization of hypertext** -- To provide the quick retrieval of key words, phrases, or document subsections, the use of a hypertext technology is necessary. Thus, to ensure both ease of use and ease of development, the eventual system should employ the hypertext technology. This was a foremost consideration in the choice of the prototype development software.

- **Utilization of a simple user interface** -- Based on the research conducted, and the comments of the MSAD technical staff, the parties involved in this research activity agreed that the end user must be able to learn to use the system with little or no formal training. Therefore, the use of a point-and-click type device (a mouse) should be supported by the proposed system.

7.0 PROTOTYPE DEVELOPMENT

To fully determine the needs and requirements of future system users, a prototype was developed to demonstrate the development team's understanding of the system. This prototype, known as the APET, was used as a tool in the system analysis activity, and was used in several meetings to elicit information from MSAD personnel. To keep the prototype to a manageable size, it was jointly decided that APET would initially address two documents: the Science Requirements Document (SRD) and the Engineering Requirements Document (ERD).

The first decision in the prototype development was the selection of a supporting language. The criteria for selecting this language was two-fold. First, it had to meet the specifications of the proposed system, i.e., hypertext and knowledge-based. Second, it had to be a language that was easy to use and maintain. The best match of these two criteria was Knowledge Pro, a commercially available product of Knowledge Garden Inc., Nassau, New York.

With the software development package selected, the conceptual system was developed into a preliminary design. With each iteration of its development, the prototype more clearly defined what was needed from the final system. This information was used to create the User Requirements Guide (See Appendix B), which is a dynamic document that contains current specifications
of the system.

The initial prototype of the software was used to demonstrate the hypertext capability of the system. As these concepts of on-line support documentation and document structure were implemented, the task of designing the logical relationships (See Appendix C) between documents became the primary area of concern. There are essentially two relationships to be explored: 1) a logical relationship within the same document and 2) a logical relationship between two different documents. This was accomplished by evaluating the SRD and the ERD cross-references and choosing relationships that met one or both of the relationships.

Knowledge Pro is the recommended language for the development and implementation of the full-scale APET system. It meets or exceeds the capabilities sought in the initial specifications, and can be easily modified and maintained. The language facilitates a structured software development approach, and can be used to implement additional enhancements. The development language uses English-like commands and phrases, which also aids the design process. A listing of APET source code is included in Appendix D.

8.0 CONCLUSIONS AND RECOMMENDATIONS

To alleviate the burden of excessive manually generated documentation research and preparation, we are recommending that the Microgravity Science Applications Division pursue further development of the Automated Payload Experiment Tool into a finished, executable software system.

MSAD is concerned with the ease with which a principal investigator or potential principal investigator can complete his/her documentation requirements. To meet those requirements as they currently exist, the procedure for their preparation must be understood. The initial efforts of this task were primarily concerned with the comprehension of the complexities of the current system. This knowledge can now be used to make informed decisions concerning ways to improve the process. With a thorough understanding of the process, a system can be constructed to address the quality issues of the information generated, i.e., timeliness, completeness, integrity, etc., rather than the quantity of information.

It is the goal of APET to deliver to the PED, PI, or any party with a need to know, the information needed to effectively and efficiently prepare an experiment for space flight. To achieve this goal, state-of-the-art technology must be used to allow the system users to work smarter, to produce more with less, and to deliver to their customers a defect-free product. These products, in the form of engineering specifications, func-
tional objectives, astronaut training requirements, etc., permit the preparation and execution of experiments to be dependent on the technical rather than the clerical abilities of the PI.
EXHIBIT A

System Flowcharts
Envisioned System Operations

System & Support Documentation

Principal Investigator Interface

Completed Documentation

NASA Interface

Printed Documents

Phases:

Phase I

After completion of this phase, this section will be used for documentation control.

Scanned documents
EXHIBIT B

User Requirements Guide
REQUIREMENTS FOR
AN AUTOMATED PAYLOAD EXPERIMENT TOOL

August 1991

Prepared by
Gary A. Maddux
James Clark
Harry S. Delugach
Charles Hammons
Julie Logan
Anna Provancha

Research Institute
The University of Alabama in Huntsville
Huntsville, AL 35899

Prepared for
George C. Marshall Space Flight Center
National Aeronautics and Space Administration
Marshall Space Flight Center, AL 35812
REQUIREMENTS FOR
AN AUTOMATED PAYLOAD EXPERIMENT TOOL

August 1991

Executive Summary

This document describes the requirements for an Automated Payload Experiment Tool to assist the National Aeronautics and Space Administration (NASA) Marshall Space Flight Center (MSFC) in managing the information, planning and paperwork involved in flying experiments on the Space Transportation System.

Section 1 of this document describes its purpose and scope.

Section 2 describes the general features of the required tool. It explains the general function of the tool, who will use it, what is expected during its intended lifecycle, and any fundamental assumptions underlying its purpose.

Section 3 gives the functional requirements, providing details of its expected capabilities.

Section 4 describes the interfaces between the tool and other hardware, software and organizations.

Section 5 lists constraints on the performance of the tool, such as response time and operating limits.

Section 6 addresses the level of quality required of the software.

Section 7 includes some miscellaneous requirements and the anticipated lifecycle of the software.

Acronyms and Definitions are listed at the end of the document.
<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0 INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>1.1 Purpose</td>
<td>2</td>
</tr>
<tr>
<td>1.2 Scope</td>
<td>2</td>
</tr>
<tr>
<td>1.3 References</td>
<td>2</td>
</tr>
<tr>
<td>2.0 GENERAL DESCRIPTION</td>
<td>3</td>
</tr>
<tr>
<td>2.1 Product Perspective</td>
<td>3</td>
</tr>
<tr>
<td>2.2 Product Functions</td>
<td>3</td>
</tr>
<tr>
<td>2.3 User Characteristics</td>
<td>3</td>
</tr>
<tr>
<td>2.4 General Constraints and Assumptions</td>
<td>4</td>
</tr>
<tr>
<td>3.0 FUNCTIONAL REQUIREMENTS</td>
<td>4</td>
</tr>
<tr>
<td>4.0 EXTERNAL INTERFACE REQUIREMENTS</td>
<td>7</td>
</tr>
<tr>
<td>4.1 User Interfaces</td>
<td>7</td>
</tr>
<tr>
<td>4.2 Hardware Interfaces</td>
<td>8</td>
</tr>
<tr>
<td>4.3 Software Interfaces</td>
<td>8</td>
</tr>
<tr>
<td>4.4 Communication Interfaces</td>
<td>8</td>
</tr>
<tr>
<td>5.0 PERFORMANCE REQUIREMENTS</td>
<td>8</td>
</tr>
<tr>
<td>5.1 Response and Processing Time</td>
<td>8</td>
</tr>
<tr>
<td>5.2 Storage Limitations</td>
<td>8</td>
</tr>
<tr>
<td>6.0 ATTRIBUTES</td>
<td>9</td>
</tr>
<tr>
<td>6.1 Security</td>
<td>9</td>
</tr>
<tr>
<td>6.2 Reliability</td>
<td>9</td>
</tr>
<tr>
<td>6.3 Maintainability/Extendibility</td>
<td>9</td>
</tr>
<tr>
<td>7.0 OTHER REQUIREMENTS</td>
<td>10</td>
</tr>
<tr>
<td>7.1 Data Base</td>
<td>10</td>
</tr>
<tr>
<td>7.2 Operations/Delivery</td>
<td>10</td>
</tr>
<tr>
<td>8.0 DEFINITIONS, ACRONYMS, AND ABBREVIATIONS</td>
<td>10</td>
</tr>
</tbody>
</table>
1.0 INTRODUCTION

This document describes the requirements for an Automated Payload Experiment Tool (APET) to assist the National Aeronautics and Space Administration (NASA) Marshall Space Flight Center (MSFC) in managing the information, planning and paperwork involved in flying experiments on the Space Transportation System (STS). The tool's goals are to enhance communication between principal investigators, payload projects offices, mission managers and builders of experiment hardware, eliminate information duplication and ease modifications to experiment paperwork.

With the number of ongoing projects and the experiments planned for the future, the demand for increased coordination and dissemination of information becomes apparent. In order to maintain the volumes of documentation and written communications with which MSAD and its PIs are tasked, more timely and efficient techniques must be developed.

One method of improving the documentation management process is to combine the file storage capabilities of an electronic database and the intelligence of an expert knowledge base. By integrating these two concepts, an automated system can be provided that will store, manage, and retrieve relevant data entries, while providing the guidance needed to meet the documentation requirements completely and succinctly.

APET will provide an environment whereby a principal investigator (PI) who wishes to fly an experiment aboard the STS may interactively supply the user data needed to satisfy NASA's management and reporting responsibilities. The PI will have easy access to all NASA information that applies to the particular document section being filled out.
1.1. Purpose

This software requirements specification is intended for several groups currently involved in the APET's development. These include, but are not limited to:

- Personnel in the Microgravity Science and Applications Division (MSAD) who are responsible for managing microgravity experiments to fly on the STS.
- Personnel in the other divisions who are responsible for managing experiments to fly on the STS.
- Personnel who will design software for the payload experiment tool being developed.
- Principal investigators (PI's) proposing experiments to be flown on the STS.

1.2. Scope

This document defines the APET. It outlines the organizational, managerial and technical needs to be met by the system. It is intended to be used as a reference document that will be consulted and updated as necessary throughout the development of the software.

In this document the words shall or will mean that the software must fulfill the requirements as stated. The word should means that the requirement is desired, but not essential to the system's primary goals. The word may means that the requirement refers to contingencies or future development.

1.3. References

MSAD Management Plan

JA-003 - General Guidelines and Requirements for MSFC-developed Spacelab/STS Experiments

JA-1303 - Guidelines and Requirements for MSFC-developed Attached Payload Experiments for Space Station Freedom
2.0 GENERAL DESCRIPTION

2.1 Product Perspective

APET will operate on general purpose personal computers that are readily available to PI's and MSAD. It is not intended to involve significant purchases on the part of the PI, although some additional expense may be involved.

The APET software will be delivered to the PI who will supply general and specific user data, as appropriate, through interaction with APET. The resulting data will be forwarded to MSAD for evaluation, printing of relevant forms, and further clarification.

2.2. Product Functions

The general functions of APET include, but are not limited to:

- Provide access to SRD information and user data entry for the PI.
- Provide access to ERD information and user data entry for the PI.
- Provide cross references between the SRD and the ERD.
- Identify the documents and forms appropriate for each PI.
- Provide appropriate and consistent interface for PI's data entry.
- Produce NASA reports/forms as necessary.

2.3. User Characteristics

APET's primary users are PIs whose expertise in the use of computers or computer interfaces may vary. Since APET is intended for frequent use over a relatively short period of time, users are not expected to memorize details of its operation.
2.4. General Constraints and Assumptions

The PI will have access to a personal computer with a hard disk drive and printer.

The time involved in interaction with APET should be minimized for the PI's benefit, although supplying data for different experiments will necessarily take up varying amounts of time.

APET is intended to be self-contained, so that minimal involvement is required between the PI and MSAD personnel. The PI's use of hardcopy manuals should be minimized.

Although most PI's will use the system for only one experiment, APET must accommodate more than one experiment's data (e.g., via a user-specified project name/number). In those cases, unique experiment data must be clearly separated.

The ERD will be used by the hardware builder to fabricate whatever materials are needed to perform the experiment.

3.0 FUNCTIONAL REQUIREMENTS

In order to meet the above conceptual design, a prototype was developed to demonstrate the preliminary capabilities of the proposed system. The tentative system, known as the Automated Payload Experiment Tool (APET), was constructed to help identify the needs and requirements of the user community. Through iterative sessions with MSAD personnel, the following criteria were determined essential in the finished system:

- The APET system should utilize an expert system methodology that allows the instructions required for the completion of the documentation task to be built into the software. This feature requires an intensive examination of the current documentation process, the logical interrela-
tionships between the required documents, and the functional objectives of each document. These documents include the Science Requirements Document, the Engineering Requirements Document, technical briefs, safety reports, and others.

- To minimize the future maintenance activities required, the logical linkages between documents should be clearly illustrated. This should also be accomplished in an easily retrievable form.
- The system should utilize a "point and click" user interface to minimize user resistance and user difficulty. The primary user interface should be a standard keyboard (for entry of textual data) and a mouse (for system navigation and information retrieval).
- The system should minimize the use of paper documents, either as support documentation or as output. However, the need for report generation using paper media is recognized as a necessary output of the system. Therefore, users should be provided the opportunity to print reports as needed, either in whole or in part.
- The system should provide an on-line user tutorial to quickly guide the inexperienced user in its operation. This tutorial should provide an overview of the commands necessary for basic operation of the user system.
- The system should explain to the user what information is required and what reporting requirement necessitates its completion.
- The system, in as much as possible, should provide support (NASA supplied) documentation in electronic form on an as needed basis. This requirement can best be handled through a hypertext technology, utilizing a point and click interface. Hypertext will provide the user immediate
retrieval of support documents, definitions, and/or background information in the most timely manner.

- The system should support multiple experiments (projects). The system should ensure that these experiments are treated as distinct entities, yet provide easy access to all.

- The system should be easily maintainable and expandable. Enhancements and modifications to the software should be easily changed to accommodate different reporting and data requirements.

- The construction of the software should be modular, with minimal interdependence between software modules.

- The system should require little added monetary expense of the end user. The system should run on an IBM personal computer or compatible. The specific computer configuration requirements required for the final system should be minimized; however, due to the preliminary stage of system development, these specifications have yet to be determined.

The result of the APET finished project is not the software tool, but the improved efficiency and timeliness of the information generated by the tool. The improvements in the quality of the documentation should result in, but not be limited to:

- Improved communications' capability between and among all affected people and organizations.

- User-controlled processing. Menu choices will be used to provide the users with a versatile means of inputting data and obtaining information.
o Ability to consolidate data and standardize processing for efficient update and throughput.

o On-line features to alert the users as to invalid or erroneous data.

o A "follow-me" guide for the user that will simplify the creation of documentation preceding and accompanying scientific experiments.

o Control functions to permit adding, modifying, deleting, and displaying of data.

o Information retrieval capability to provide reports related to conducting scientific experiments in micro-gravity environments.

o Document generation, which will be addressed by identifying reports that are required and the scheduling of their execution.

o Modular design concepts for easier software maintenance and modification considerations.

o Flexibility for satisfying future needs, both planned and unplanned.

o Identification/maintenance of logical relationships between and among documents.

o Process simplification and decreased/reduced data redundancy.

o Reduced dependency on paper media as the primary communications media.

4.0 EXTERNAL INTERFACE REQUIREMENTS

4.1 User Interfaces

The user interface will be tailored to the needs and skill level of a typical PI, with training provided by hard-copy manuals or through the use of on-line help.
The user interface will provide a consistent environment to the PI. Prompts will be standardized, with operating modes such as the use of function keys, help keys and text-editing similar among different features.

The PI will be able to choose between several document sections to work on as he/she desires, while the APET guides him/her through the required documents. The PI will be able to skip a request for data and return to it in a later session.

The user will be informed as to the current status, e.g., what sections have been done and what sections remain to be done.

4.2. Hardware Interfaces

The software will operate on an IBM PC-compatible computer, with a minimum of 640K RAM (1 Megabyte is preferred) and permanent storage (e.g., a hard disk drive) of at least 20MB capacity.

4.3. Software Interfaces

APET will operate under current versions of MS-DOS (3.1, 4.0 and 5.0), with version 5.0 preferred.

4.4. Communication Interfaces

In the future APET may be required to upload PI user data over an asynchronous telephone link via a modem to a NASA host.

5.0 PERFORMANCE REQUIREMENTS

5.1. Response and Processing Time

Response time of the system will vary depending upon the particular model and configuration of the PC used.

5.2. Storage Limitations

APET software may make use of several megabytes of disk space. Since the
system is intended to be extendible and expandable, ample disk space should be
provided for storing additional information.

6.0 ATTRIBUTES

6.1. Security

All information and user data contained within the APET are publicly
available, so no special security considerations are anticipated. The APET
software itself will be write-protected; any alterations to its information
will be performed at NASA's project offices. User data will be stored sepa-
rately from the APET software, and be modifiable by the PI.

6.2. Reliability

The system must be robust enough to preserve the PI's user data during
each interactive session. Between sessions, the PI is encouraged to make a
backup copy of user data on either a floppy or hard disk. An option may be
provided for compressing data when storing on a floppy disk, and decompressing
the data when it is retrieved.

6.3. Maintainability/Extendibility

The system will be structured to permit modification to accommodate
changes to NASA or MSAD procedures and manuals. When such a change is per-
formed, a PI's existing data may have to be verified again, possibly requiring
additional user data or explicit changes from the PI.

The system can be extended to accommodate additional manuals (e.g.,
safety documents, mission manager guidelines, etc.) and additional divisions.
Formal procedures will be established to make and verify changes in a system-
atic way.
7.0 OTHER REQUIREMENTS

7.1 Data Base

It is expected that the data base required will continually increase in size as more documents are added to APET. There are several alternatives for the storage medium: hard disks, network access to a mainframe, optical disks or removable disk drives. Evaluation of these alternatives will depend on their cost, and the estimated size of the eventual full-scale product.

Data gathered from the PI may be accessible to other applications, such as word processors, spreadsheets or information services.

7.2 Operations/Delivery

The APET software will be delivered to the PI in machine-readable form.

PI’s should make frequent backups of their data, just as for any other important data. The APET software may automate some of that process.

The PI must install the APET software on his/her hard disk before interacting with the software.

8.0 DEFINITIONS, ACRONYMS AND ABBREVIATIONS

APET - the Automated Payload Experiment Tool software product.

Document - source information for describing the user data that a PI must supply and in what form(s).

ERD - Experiment Requirements Document. In some divisions called an Engineering Requirements Document. A general description of the engineering design required to build the experiment.

Experiment - a scientific investigative activity involving some materials or procedures as part of a STS mission.

Form - A prescribed collection of particular user data items, as prescribed in documents or the management plan.
Information - contents of any manuals, outlines, or guidelines explaining what forms are required, or what user data the PI needs to supply. Some information is in graphical form.

MB - Megabytes; units of 1024K 8-bit bytes of electronic data storage.

MSAD - the Microgravity Science and Applications Division of NASA's Marshall Space Flight Center

MS-DOS - an operating system developed by Microsoft for personal computers.

MS Windows 3.0 - a windowed, menu-driven mouse-operated environment developed by Microsoft that provides a standard interface to programs on personal computers.

PC - personal computer; an IBM-PC compatible computer.

PI - principal investigator running an STS experiment; the experimenter.

RAM - random access memory; also called "main storage" or "core memory".

STS - the Space Transportation System.

SRD - Science Requirements Document - a general description of the science goals of an experiment, and the procedures to be followed in carrying out the experiment.

User Data - any experiment-specific facts or text supplied by the PI.
EXHIBIT C

SRD / ERD Cross Reference
LINKS BETWEEN THE ERD and the SRD

1 Function Objectives & Equipment Identification
 1.1 Functional Objectives
 This section is referenced further in:
 ERD Sections
 11.1 PED/PI Defined Training
 11.2 PMM and PED/PI Jointly Defined Training
 SRD Sections
 4.0 Experiment Details
 5.0 Experiment Requirements

1.2 Equipment Identification
 This section is referenced further in:
 SRD Section
 6.2 Apparatus Design Assistance

1.3 Operational Function Flows

2 Structural/Mechanical
 This section is referenced further in:
 SRD Section
 6.2 Apparatus Design Assistance

3 Pointing/Stabilization and Alignment
 SRD Section
 5.6 Imaging Requirements

 3.1 Requirements Description

 3.2 Pointing/Stabilization and Field-Of-View Requirements
 3.2.1 Pointing Requirements

 3.2.2 Stability Requirements
 This section is referenced further in:
 SRD Sections
 5.4 Vibration Control and Measurement

 3.2.3 Field-of-View Requirements

 3.2.4 IPS Pointing Requirements

 3.3 Experiment Pointing and FOV Capabilities

 3.4 Experiment On-Orbit Acceleration and Vibration Limits
 This section is referenced further in:
 SRD Section
 5.4 Vibration Control and Measurements

 3.5 Experiment Alignment and Coalignment Requirements
4 Orbital Requirements and Constraints
 Desired Orbit Characteristics
 Earth and Celestial Target
 Viewing Requirements and Constraints
 Vehicle Motion and G-Level Limits

 This section is referenced further in:
 SRD Sections
 5.1 Experiment Sample Requirements
 5.5 Test Matrix
 5.6 Imaging Requirements

5 Electrical Requirements
 This section is referenced further in:
 SRD Sections
 5.1 Experiment Sample Requirements
 5.6 Imaging Requirements
 5.7 Electromagnetic Limitations

6 Thermal Control/Fluid Requirements
 6.1 Heat Transfer Characteristics
 Module Equipment On-Orbit Thermal Requirements
 Pallet/Airlock Equipment On-Orbit Thermal Requirements

 This section is referenced further in:
 SRD Section
 5.3 Temperature Control and Measurement

 6.2 Fluid Requirements
 This section is referenced further in:
 SRD Sections
 5.2 Atmospheric Requirements
 6.2 Apparatus Design Assistance

 6.3 Ascent/Decent Thermal Control Requirements
 Module Equipment On-Orbit Thermal Requirements
 Pallet/Airlock Equipment On-Orbit Thermal Requirements
 Fluid Requirements

 This section is referenced further in:
 SRD Sections
 5.2 Atmospheric Requirements
 5.3 Temperature Control and Measurement
7 Data System Requirements
7.1 Payload Element to CDMS Interfaces Tables
 Signal Interface Definition
 Display Requirements
 Event/Exception Monitor Requirements
 Direct HRM, Analog, Video and MTU Requirements
 Processed Dedicated HRM Channel Parameter Definition
 POCC Display Requirements
 POCC Limit Sensing/Exception Monitor Requirements

This section is referenced further in:
ERD Sections
 10.0 Mission Operations Support
 11.3 PMM Defined Training
 11.5 Training Participation
SRD Sections
 5.5 Test Matrix
 5.6 Imaging Requirements
 5.9 Data Requirements
 6.5 Services

7.2 Caution and Warning
 Signal Interface Definition

7.3 Error Messages Documentation
 Error Message Information Input

8 Flight Software Requirements
8.1 Summary of Experiment Computer Software Requirements
This section is referenced further in:
SRD Sections
 5.9 Data Requirements
 6.5 Services

9 Physical Integration
9.1 Ground Integration Processing Flow and Definitions
 9.1.1 Experiment/ Facility Preintegration
This section is referenced further in:
SRD Section
 4.5 Preflight Experiment Planned
 6.1 Research Equipment

9.1.2 Experiment Integration

9.1.3 Payload Integration

9.1.4 Experiment Deintegration
This section is referenced further in:
SRD Sections
 4.6 Post Flight Data Handling and Analysis
 6.1 Research Equipment
9.2 Experiment/Facility Developer Requirements Definition

9.2.1 Experiment/Facility Preintegration
This section is referenced further in:
SRD Section
4.5 Preflight Experiment Planned

9.2.2 Experiment/Facility Preparation
This section is referenced further in:
SRD Sections
4.1 Experiment Details
4.3 Test Plan Including Ground Char. of Flight Hardware
6.2 Apparatus Design Assistance

9.2.3 Experiment User Room Requirements

9.2.4 Experiment Late-Access Design Requirements
This section is referenced further in:
SRD Sections
4.6 Post Flight Data Handling and Analysis
6.1 Research Equipment

9.2.5 Postmission Requirements
This section is referenced further in:
SRD Sections
4.6 Post Flight Data Handling and Analysis
6.1 Research Equipment

9.2.6 Postmission Early-Access Requirements
This section is referenced further in:
SRD Sections
4.6 Post Flight Data Handling and Analysis
6.1 Research Equipment

Solids, Fluids, and Gases Resource Requirements

10 Mission Operations Support
This section is referenced further in:
ERD Sections
7.1 Data System Requirements
11.3 PMM Defined Training
SRD Section
5.9 Data Requirements

10.1 POCC Requirements
10.1.1 POCC Processing

10.1.2 EGSE

10.1.3 Workstation

10.1.4 Remote Interfaces
10.1.5 Other Support Requirements

10.2 Spacelab Data Processing Facility and Other Requirements

11 Training Objectives
 This section is referenced further in:
 ERD Section
 1.1 Functional Objectives
 SRD Section
 5.8 Astronaut Involvement

11.1 PED/PI Defined Training
 Science Background and Experiment Objectives
 Experiment Systems Familiarization
 Experiment Operations
 This section is referenced further in:
 SRD Sections
 2.3 Brief Historical Account of Prior Research

11.2 PMM and PED/PI Jointly Defined Training
 Experiment Proficiency Training
 Integrated Timeline/Proficiency Training
 Integrated Simulations

11.3 PMM Defined Training
 Mission-Independent Training
 POCC Facility Training
 This section is referenced further in:
 ERD Sections
 7.1 Payload Element to CDMS Interfaces Tables
 10.1 POCC Requirements

11.4 Training Simulators

11.5 Training Participation
 This section is referenced further in:
 ERD Section
 7.1 Data Systems Requirements

12 Environmental Contamination Data Requirements
 12.1 Flight Environmental Limits
 This section is referenced further in:
 SRD Section
 5.2 Atmospheric Requirements

12.2 ON-Orbit External Contamination Control Sensitivity

12.3 External Contamination Sources

13 Appendix (Abbreviations and Acronyms)
The Links between the SRD and the ERD

1 Introduction/Summary

1.1 Description of experiment
 This section is referenced further in:
 SRD Sections
 4.0 Experiment Details
 5.0 Experiment Requirements
 MSAD Management Plan
 E.2.5.1 Missions
 E.2.5.2 System(s) and Subsystems
 JA-003
 2.1 General (Flight Equipment Design and Fabrication)
 JA-1303
 2.1 General (Flight Equipment Design and Fabrication)

1.2 Scientific Knowledge to be Gained
 This section is referenced further in:
 SRD Section
 2.6 Anticipated Advance in the State of the Art

1.3 Value of Knowledge to Scientific Field
 This section is not referenced further.

1.4 Justification of the Need for Space Environment
 This section is referenced further in:
 SRD Section
 3.0 Justification for Conducting the Experiment in Space

2 Background

2.1 Description of Scientific Field to Which the Experiment Belongs
 This section is not referenced further.

2.2 Current Application for Research in the Field
 This section is not referenced further.

2.3 Brief Historical Account Prior Research
 This section is referenced further in:
 ERD Section
 11.1 PED/PI Defined Training
 (Science Background and Experiment Objectives)

2.4 Current Research
 This section is referenced further in:
 MSAD Management Plan
 E.2.4 Related Studies and Activities

2.5 Relationship of Proposed Environment to Scientific Field
 This section is not referenced further.

2.6 Anticipated Advance in the State of the Art
 This section is referenced further in:
SRD Sections
1.2 Scientific Knowledge to be Gained
4.8 Application of Results

3 Justification for Conducting the Experiment in Space
This section is referenced further in:
SRD section
1.4 Justification of the need for space environment

3.1 Limitations of Ground-Based Testing
 This section is not referenced further.

3.2 Limitations of Drop Towers
 This section is not referenced further.

3.3 Limitations of Testing in Aircraft
 This section is not referenced further.

3.4 Need for Accommodations in the Shuttle
 This section is not referenced further.

3.5 Limitations of Mathematical Modeling
 This section is not referenced further.

3.6 Limitations of Other Modeling Approaches
 This section is not referenced further.

4 Experiment Details
This section is referenced further in:
SRD Section
1.1 Description of Experiment
ERD Section
1.1 Functional Objectives

4.1 Experiment Procedures to be Used
 This section is referenced further in:
SRD Sections
5.1 Experiment Sample Requirements
5.5 Test Matrix
ERD Section
9.2.2 Experiment/Facility Preparation

4.2 Measurements Required
 This section is referenced further in:
SRD Sections
5.1 Experiment Sample Requirements
5.2 Atmospheric Requirements
5.3 Temperature Control and Measurement
5.4 Vibration Control and Measurement
4.3 Test Plan Including Ground Characterization of Flight Hardware
This section is referenced further in:
MSAD Management Plan
 E.2.5.4 Flight Hardware Classification
JA-003
 2.1 General (Flight Equipment Design and Fabrication)
JA-1303
 2.1 General (Flight Equipment Design and Fabrication)

4.4 Specific Analysis Required
This section is referenced further in:
SRD Section
 5.1 Experiment Sample Requirements

4.5 Preflight Experiment Planned
This section is referenced further in:
SRD Sections
 6.1 Research Equipment
ERD Sections
 9.1.1 Experiment/Facility Preintegration
 (Ground Intergration)
 9.2.1 Experiment/Facility Preintegration
 (Developer Requirements)
JA-003
 6.1.2.3 Payload Integrated Testing
JA-1303
 8.1 Payload Prelaunch Handling

4.6 Post Flight Data Handling and Analysis
This section is referenced further in:
SRD Section
 6.1 Research Equipment
ERD Sections
 9.2.4 Experiment Late-Access Design Requirements
 9.2.5 Postmission Requirements
 9.2.6 Postmission Early-Access Requirements
MSAD Management Plan
 E.2.5.8 Analysis of Mission Results
JA-003
 9.1 Post-Flight Data Reduction, Analysis, and Reporting
JA-1303
 9.1 Post-Flight Data Reduction, Analysis, and Reporting

4.7 Mathematical Models Used
This section is not referenced further.

4.8 Application of Results
This section is referenced further in:
SRD Sections
 1.2 Scientific Knowledge to be Gained
 2.6 Anticipated Advance in the State of the Art
5 Experiment Requirements
This section is referenced further in:
SRD Section
1.1 Description of Experiment
ERD Section
1.1 Functional Objectives

5.1 Experiment Sample Requirements
This section is referenced further in:
SRD Sections
4.1 Experiment Procedures to be Used
4.2 Measurements Required
4.4 Specific Analysis Required
ERD Sections
4.0 Orbital Requirements and Constraints
5.0 Electrical Requirements

5.2 Atmospheric Requirements
Pressure Gas Composition
Humidity Vacuum
This section is referenced further in:
SRD Section
4.2 Measurements Required
ERD Sections
6.2 Fluid Requirements
6.3 Ascent/Decent Thermal Control Requirements
12.1 Flight Environmental Limits

5.3 Temperature Control and Measurement
This section is referenced further in:
SRD Section
4.2 Measurements Required
ERD Sections
6.1 Heat Transfer Characteristics
6.3 Ascent/Decent Thermal Control Requirements

5.4 Vibration control and measurement
This section is referenced further in:
SRD Sections
4.2 Measurements Required
ERD Sections
3.2.2 Stability Requirements
3.4 Experiment On-Orbit Acceleration and Vibration Limits

5.5 Test Matrix
This section is referenced further in:
SRD Section
4.1 Experiment Procedures to be Used
ERD Sections
4.0 Orbital Requirements and Constraints
7.0 Data System Requirements
5.6 Imaging Requirements

Photography Radiography
Television Resolution
Frame rate

This section is referenced further in:

SRD Section
6.5 Services

ERD Sections
3.0 Pointing/Stabilization and Alignment
4.0 Orbital Requirements and Constraints
5.0 Electrical Requirements
7.0 Data System Requirements

5.7 Electromagnetic Limitations
This section is referenced further in:

ERD Section
5.0 Electrical Requirements

JA-003
2.3.4 Electromagnetic Interference

JA-1303
2.3.4 Electromagnetic Interference

5.8 Astronaut Involvement
Extravehicular Activity [EVA]
Activation of Experiment

This section is referenced further in:

ERD Section
11.0 Training Objectives

5.9 Data Requirements
This section is referenced further in:

SRD Section
6.5 Services

ERD Sections
7.0 Data System Requirements
8.0 Flight Software Requirements
10.0 Mission Operations Support

JA-003
2.2.2 Data and Analysis

JA-1303
2.2.3 Data and Analysis

5.10 Telepresence, Telerobotics
This section is not referenced further.
6 Principal Investigator's Requirements

6.1 Research Equipment

Preflight Postflight
This section is referenced further in:

SRD Sections
4.5 Preflight Experiment Planned
4.6 Post Flight Data Handling and Analysis

ERD Sections
9.0 Physical Integration

6.2 Apparatus design assistance
This section is referenced further in:

ERD sections
1.2 Equipment Identification
2.0 Structural/Mechanical
6.2 Fluid requirements
9.2.2 Experiment/Facility Preparation

6.3 Consultation
This section is not referenced further.

6.4 Grant, Contract
This section is not referenced further.

6.5 Services
Film Developing
Software Development
This section is referenced further in:

SRD Sections
5.6 Imaging Requirements
5.9 Data Requirements

ERD Sections
7.0 Data System Requirements
8.0 Flight Software Requirements
9.0 Physical Integration

7 Other Requirements
This section is not referenced further.

EXHIBIT D

Prototype Software Listing
This is the prototype for the design of a knowledge-based system to aid in the development of NASA documentation for pre-flight planning and control.

no_edit_key ().
(* no_debug (). *)
do_gloss = 1.
action = ' '.
nasaloop = 1.

while ?action <> 'Exit System'
 then do (mainmenu).

 topic 'mainmenu'.

 choices = ['How to use the System', 'Project Selection', 'SRD Overview and Explanation', 'ERD Overview and Explanation', 'SRD Documentation Cross-Reference', 'ERD Documentation Cross-Reference', 'Glossary/Acronyms', 'Exit System'].

 window (,white,red,yellow,5,5,75,16).

 ask ('#e Please select the activity of your choice, or choose Exit to leave the system.',action,?choices).

 close_window ().

 if ?action = 'How to use the System'
 then new_kb ('intro.hkb').

 if ?action = 'Project Selection'
 then new_kb ('project.hkb').

 if ?action = 'ERD Overview and Explanation'
 then new_kb ('erdover.hkb').

 if ?action = 'SRD Overview and Explanation'
 then new_kb ('srdover.hkb').

 if ?action = 'SRD Documentation Cross-Reference'
 then new_kb ('crossref.hkb').

 if ?action = 'ERD Documentation Cross-Reference'
 then new_kb ('erdref.hkb').

 if ?action = 'Glossary/Acronyms'
 then do (glossary).

 if ?action = 'Exit System'
 then exit ().
if ?do_gloss = 1
 then
 window (,white,red,yellow,1,16,27,4)
 and
 WRITE ('con:',
 'A slight delay will
occur while the
glossary is loaded.
Please stand by. '))
 and
 load ('nasaterm.hkb')
 and
 do_gloss = 2
 and
 glossary = QUIT
 and
 glossary_choice = ' '
 and
 glossary gets children(glossary)
 and
 glossary is remove (?glossary,[prototype,hypertext])
 and
 close_window ()
 and
 window ('Glossary of Terms',blue,white,white).

while ?glossary_choice <> QUIT
 then
 ask ('Please choose the word or term that you desire to look up.',
glossary_choice,?glossary)
 and
 if ?glossary_choice <> QUIT
 then
 do (?glossary_choice)
 and
 close_window ().
 close_window ().
end. (* glossary *)

end. (* mainmenu *)
This program is used to allow the user to enter standard project initialization information, i.e. name, address, title, etc.

curdir is read_line ('CURDIR.DAT').
curdir = string_replace(?curdir,' ',',',8).

yn is [YES,NO].
chgwant = ' '.

do (personal_info).
new_kb ('fillmenu.hkb').
topic 'personal_info'.
blankline = '.
close_window ().
eof = number_to_char (26).
text is read_line (concat (C:\GARDEN\,?CURDIR,'\AUTHOR.DAT')).
if ?text = ?eof then do (new_personal)
else
oldtext is read (concat (C:\GARDEN\,?CURDIR,'\AUTHOR.DAT'))
and
chgwant = ' '
and
while ?chgwant <> QUIT
then do (edit_personal).

(* =========== get new personal information ============

topic 'new_personal'.
WRITE ('con:','',\nIn the window below, please provide some general information about yourself and your experiment."
)
window (,white,red,yellow,5,5,75,16).
read_response ('#e
 #fyellow Please enter your first and last names, i.e. Dr. John Doe.
 #n ',name,?
blankline).
name = concat ('NAME: ',?name).
personal gets ?name.

read_response ('#e
 #fyellow Please enter the name of your organization.#d
 #n ',organization,?
 ?blankline).
organization = concat ('ORGANIZATION: ',?organization).
personal gets ?organization.)
read_response ('#e
#fyellow Please enter the mail code, P.O Box, room number, or other
address information of your organization.#d
#n',mail_code,?blankline).

mail_code = concat ('MAIL CODE: ',?mail_code).
personal gets ?mail_code.

read_response ('#e
#fyellow Please enter the street address of your organization.#d
#n',street,?blankline).

street = concat ('STREET: ',?street).
personal gets ?street.

read_response ('#e
#fyellow Please enter the city, state, and zip code of your organiz
#d
city_st_zip = concat ('CITY, STATE, ZIP: ',?city_st_zip).
personal gets city_st_zip.

read_response ('#e
#fyellow Please enter your phone number.#d
phone = concat ('PHONE: ',?phone).
personal gets ?phone.

say ('#e
Please enter the title of your experiment in the desired format,
i.e. centered, justified, etc.

Press the #fyellow RETURN KEY#d to enter the editor,
#fyellow ESC#d to leave the editor, and #fyellow RETURN#d to confirm

edit_file (concat (C:\GARDEN\,?CURDIR,'\TITLE.DAT')),yellow,black,red,5,9

author_info is [?name,#n,?organization,#n,?mail_code,#n,?street,#n,
?city_st_zip,#n,?phone,#n].
new_file (concat (C:\GARDEN\,?CURDIR,'\AUTHOR.DAT')).
write (concat (C:\GARDEN\,?CURDIR,'\AUTHOR.DAT'),?author_info,#n).
close (concat (C:\GARDEN\,?CURDIR,'\AUTHOR.DAT')).

if ?chgwant <> QUIT
then
ask
([?author_info, '#n #fyellow
The information listed above was written to the text file
AUTHOR.DAT. Do you wish to change any of these entries?#d'],change_60,16)
and
if ?change_again = YES
then
 oldtext is read (concat (C:\GARDEN, ?,CURDIR,'\AUTHOR.DAT'))
 and
 change_again = NO
 and
 chgwant = ' '
 and
while ?chgwant <> QUIT
 then do (edit_personal).
 close_window ().
 WRITE ('con:','\e ',')
 }end. (* new_personal *)

(* =========== get corrected personal information ============

 topic 'edit_personal'.

 change_info is [NAME,ORGANIZATION, 'MAIL CODE', STREET, 'CITY STATE ZIP', PHONE, TITLE, QUIT].

 ask ('Which entry in the below list do you wish to change?', chgwant, ?
 change_info).

if ?chgwant = NAME
 then
 old_name = element(?oldtext,1)
 and
 old_value = string_replace (?old_name, 'NAME: ', '', 1)
 and
 read_response (["#e #fyellow Your original entry for name was#s', ?old_value, 'Please enter the corrected name in its entirety.#n #o'], new_name, ?

if ?chgwant = NAME
 then
 new_name = concat ('NAME: ', ?new_name)
 and
 oldtext is replace(?oldtext, ?old_name, ?new_name).

if ?chgwant = ORGANIZATION
 then
 old_org = element(?oldtext,2)
 and
 old_value = string_replace (?old_org, 'ORGANIZATION: ', '', 1)
 and
 read_response (["#e #fyellow Your original entry for organization was#s', old_value, 'Please enter the corrected organization in its entirety.#n'], new_org, old_value).

if ?chgwant = ORGANIZATION
then
new_org = concat ('ORGANIZATION: ', ?new_org)
and
\text{oldtext is replace(\text{@oldtext,\text{@old_org,\text{@new_org}).}}

if ?chgwant = 'MAIL CODE'
then
\text{old_mc = element(?oldtext,3)}
and
\text{old_value = string_replace (?old_mc,'MAIL CODE: ', '',1)}
and
\text{read_response (['\#e \#fyellow Your original entry for mail code was\#s \#old_value, \'.\#d \#s \#n\nPlease enter the corrected mail code in its entirety.\#n'],new_mc,\text{@old_value}).}

if ?chgwant = 'MAIL CODE'
then
\text{new_mc = concat ('MAIL CODE: ', ?new_mc)}
and
\text{oldtext is replace(?oldtext,\text{@old_mc,\text{@new_mc}).}

if ?chgwant = STREET
then
\text{old_street = element(?oldtext,4)}
and
\text{old_value = string_replace (?old_street,'STREET: ', '',1)}
and
\text{read_response (['\#e \#fyellow Your original entry for street was\#s \#old_value, \'.\#d \#s \#n\nPlease enter the corrected street address in its entirety.\#n'],new_street,\text{@old_value}).}

if ?chgwant = STREET
then
\text{new_street = concat ('STREET: ', ?new_street)}
and
\text{oldtext is replace(?oldtext,\text{@old_street,\text{@new_street}).}

if ?chgwant = 'CITY STATE ZIP'
then
\text{old_city = element(?oldtext,5)}
and
\text{old_value = string_replace (?old_city,'CITY, STATE, ZIP: ', '',1)}
and
\text{read_response (['\#e \#fyellow Your original entry for city, state and zip was\#s \#old_value, \'.\#d \#s \#n\nPlease enter the corrected city, state, and zip address in its entirety.\#n'],new_city,\text{@old_value}).}

if ?chgwant = 'CITY STATE ZIP'
then
\text{new_city = concat ('CITY, STATE, ZIP: ', ?new_city)
and
oldtext is replace(?oldtext,?old_city,?new_city).

if ?chgwant = PHONE
then
 old_phone = element(?oldtext, 6)
 and
 old_value = string_replace (?old_phone, 'PHONE: ', '', 1)
 and
 read_response (['#e #fyellow Your original entry for phone was #s #n',
 old_value, '#d #s #n#
Please enter the corrected phone number in its entirety. #n'],
 new_phone, ?old_value).

if ?chgwant = PHONE
then
 new_phone = concat ('PHONE: ', ?new_phone)
 and
 oldtext is replace(?oldtext, ?old_phone, ?new_phone).

if ?chgwant = 'TITLE'
then
 say ('#e
Please enter the corrected title and/or format of your experiment
in the desired format, i.e. centered, justified, etc.

Press the #fyellow RETURN KEY#d to enter the editor,
#fyellow ESC#d to leave the editor, and #fyellow RETURN#d to confirm
and
 edit_file (concat (C:\GARDEN, ?CURDIR, '\TITLE.DAT'), yellow, black, red

if ?chgwant = QUIT
then
 new_file = (concat (C:\GARDEN, ?CURDIR, '\AUTHOR.DAT'))
 and
 write = (concat (C:\GARDEN, ?CURDIR, '\AUTHOR.DAT'), ?oldtext, #n)
 and
 close = (concat (C:\GARDEN, ?CURDIR, '\AUTHOR.DAT')).

if ?chgwant = QUIT
then
 say
 (['?oldtext, '#fyellow The information listed above was written to the te
file AUTHOR.DAT. Please press #flightgreen SPACE#d #fyellow to continu
']).

end. (* edit_personal *)

end. (* personal_info *)

(* =================== end personal information ===============*
This is the introductory screen for the NASA Automated Payload Element Tool. It is used to give the novice user a brief tour of the functions of the system.

yn is [YES,NO].

tried = 0.

WRITE ('con:', 'e').
window (,white,red,yellow,1,14,29,6).

WRITE ('con:', 'During execution of this application, slight delays will occur while information is loaded/unloaded. These delays will be indicated by messages similar to this.').

do (so_you_want_to_fly).

new_kb ('nasa.ckb').
topic so_you_want_to_fly.
if ?tried = 0
 then load ('nasaterm.hkb').
close_window ()..

say ('

#bmagenta So you want to fly on the Shuttle.#d

Well, before you can, we must get a little information about your experiment and its objectives.

If you have flown with us in the past, you may remember a substantial amount of paper documentation was required. This application, the Automated Payload Experiment Tool, is a prototype designed to alleviate much of the burden of experiment preparation by utilizing a hypertext, knowledge-based system. This system can be used to prepare two of our support documents, the Science Requirements Document (SRD), which defines the science objectives, and the Engineering Requirements Document (ERD), which defines the engineering design/build requirements.

Press #fyellow SPACE#d to continue.').
if ?tried = 0
 then window (' ',white,red,white) and

say ('For more information on a highlighted topic, just move the mouse to that word and click. The information
will immediately be displayed. If you are not using a mouse, please use the function keys as indicated at the bottom of the screen.

For multiple page definitions, please use the yellow Page Up and yellow Page Down keys to scroll back and forth through the pages. Multiple page displays are indicated by the yellow Page x of x message at the lower right of the screen.

To use the mouse to navigate forward through multiple pages of information, point to the yellow Page x of x message and click the left mouse-side button. To move back through multiple screens, point at the yellow Page x of x message and click the right-side mouse button.

For help at anytime throughout the application, select the yellow F1 key. This will retrieve location sensitive help information, and may be called from the system or system-called edit screens.

This will be the method by which support documentation will be retrieved throughout this application.

Press yellow SPACE to continue.

and close_window ()
and tried = 1
and do (so_you_want_to_fly).

end. (* so_you_want_to_fly *)
(*) This is the menu provided to the user to determine what he/she is to do on a project.

(*)

no_edit_key ().
(* no_debug (). *)

fdaction = ' '.

curdir is read line ('CURDIR.DAT').
curdir is string_replace (?curdir,' ','',8).

while ?fdaction <> 'Exit System'
 then do (filldoc).

topic 'filldoc'.

fdchoices = ['Enter Project Initialization Information',
 'Complete Science Requirements Document (SRD)',
 'Complete Engineering Requirements Document (ERD)',
 'Return to Previous Menu',
 'Return to Main Menu',
 'Exit System'].

window (,white,red,yellow,5,5,75,16).

ask (['#e #s
 Please select the activity you wish to perform on #n the',?curdir,'#dproject. '
],fdaction,_fdchoices).

close_window ().

if ?fdaction = 'Enter Project Initialization Information'
 then new_kb ('initial.hkb').

if ?fdaction = 'Complete Science Requirements Document (SRD)'
 then new_kb ('fillsrd.hkb').

if ?fdaction = 'Complete Engineering Requirements Document (ERD)'
 then new_kb ('fillerd.hkb').

if ?fdaction = 'Return to Main Menu'
 then new_kb ('nasa.ckb').

if ?fdaction = 'Return to Previous Menu'
 then new_kb ('project.hkb').

if ?fdaction = 'Exit System'
 then exit ().
(*PROJECT.KB
This is the project menu to allow the
user to define a new project or select
an existing project. It then calls
the appropriate submenu.
*)

no_edit_key ().
(* no_debug (). *)
do_gloss = l.
yn is [YES,NO].

do (firstpass).

if ?project want = 'RETURN TO MAIN MENU'
then new_kb ('nasa.ckb').

topic 'firstpass'.
.eof = number_to_char (26).
.projtest is read_line ('projlist.dat').
if ?projtest = ?eof
then
 do (new_project)
else
 projlist is read ('projlist.dat')
 and
 do (old_project).

topic 'new_project'.

.window (,white,red,yellow,5,5,75,16).
.read_response ('#e
 Please enter an identifier for your project. This identifier
 should be eight (8) characters or less. #n ',newproject).

 IF ?NEWPROJECT <> [] AND ?NEWPROJECT <> ' ' AND ?NEWPROJECT <> ''
 THEN
 projlist gets ?newproject
 and
 new_file ('projlist.dat')
 and
 write ('projlist.dat',?projlist)
 and
 close ('projlist.dat')
 and
 DOSCOMMAND = CONCAT('MD ',?NEWPROJECT)
 and
 dos (?DOSCOMMAND,restore).
 close_window ().
.end. (* new_project *)

topic 'old_project'.

.window (,white, red, yellow, 5,5,75,16).
choose_project = projlist.
choose_project gets 'ENTER A NEW PROJECT'.
choose_project gets 'RETURN TO MAIN MENU'.
ask ('#e
Please select the project of your choice, or enter a new project.',project_want,choose_project).

if project_want = 'RETURN TO MAIN MENU'
 then new_kb ('nasa.ckb').
if project_want = 'ENTER A NEW PROJECT'
 then do (new_project)
else
 cur_dir = string_replace(project_want,'','
 new_file ('CURDIR.DAT')
 and
 write ('CURDIR.DAT',cur_dir)
 and
 close ('CURDIR.DAT').

close_window ()
end. (* old_project *)
end. (* firstpass *)

menu_option is ['FILL OUT DOCUMENTATION','PRINT SRD','PRINT ERD (SECTION 'COPY ANSWERS TO DISK','RETURN TO MAIN MENU',QUIT].
menu_choice = ''

while menu_choice <> QUIT
 then do (nasamenu).
topic nasamenu.
 ask (['#e #s
 The project you have selected is: ',project_want,'#d
 Please enter your choice of activities from the list.'],menu_choice,menu_option).
 if menu_choice = 'FILL OUT DOCUMENTATION'
 then new_kb ('fillmenu.hkb').
 if menu_choice = 'RETURN TO MAIN MENU'
 then new_kb ('NASA.CKB').
 if menu_choice = 'PRINT SRD'
 then
 window (,white,red,yellow,1,16,27,4)
 and
 write ('con:','PRINTING IN PROGRESS...')
 and

dos ('NASA.EXE')
and
dos ('NASAPRN.EXE')
and
close_window ()

if ?menu_choice = 'PRINT ERD (SECTION 9)'
then do (prnerd9).

if ?menu_choice = 'COPY ANSWERS TO DISK'
then do (copyfiles).

if ?menu_choice = QUIT
then stop ()

topic prnerd9.
new_kb ('PRNERD9.HKB').
end. (* prnerd9 *)

topic 'copyfiles'.

ask ('Do you want to copy your answers to a different drive?',wantcopy
if ?wantcopy = YES
then drivelist is [A:,B:,C:,D:,NONE]
and
ask
 ('Please choose the drive to which you wish to copy the files: ',
 drive_destination,?drivelist).

if ?wantcopy = YES and ?drive_destination <> NONE
then
 copy_command = concat ('COPY C:\GARDEN\',?cur_dir, '* DAT ',?DRIVE
and
 say ('Please insert diskette now if you are copying to a floppy drive.

 Please press #yellow SPACE#d when ready. ')
and
 move_cursor (1,10)
and
 dos (?copy_command,restore)
and
 say ('#e

 Answers have been moved to drive #s',?drive_destination,'

 Please press #yellow SPACE#d to exit. ')

 do (nasamenu).

end. (* copyfiles *)
end. (* nasamenu *)
This program is used to allow the user to navigate and complete all pertinent sections of the Science Requirements Document.

do (nasasys).

topic nasasys.

curdir is read_line ('CURDIR.DAT').
curdir = string_replace(?curdir,' ','',8).

yn is [YES,NO].
chgwant = ' '.
tried = 0.
type_change = ' '.
change_type = ' '.

if ?tried = 0
 then load ('srdterm.hkb').

ask ('Have you already begun to fill out the SRD in a previous session?',begun,?yn)
and
 if ?begun = NO
 then new_one = ' ' and do (fillsRD)
 else
 type_change is ['CHANGE ONE ITEM','CHANGE AND CONTINUE','COMPLETE UNANSWERED TOPICS',QUIT]
 and

while ?change_type <> QUIT
 then ask ('Do you wish to change only one item, resume at a point and continue sequentially through the remainder of the SRD, or complete all topics previously unanswered?',change_type,?type_change)
 and
 if ?change_type = 'CHANGE ONE ITEM'
 then
 do (SRD_start)
 else
 if ?change_type = 'COMPLETE UNANSWERED TOPICS'
 then
 do (SRD_complete)
 else
 if ?change_type = 'CHANGE AND CONTINUE'
 then
 resume = 1 and
 choice = ' ' and
 do (SRD_continue)
 else
 new_kb ('fillmenu.hkb').

if ?change_type = QUIT
then new_kb ('fillmenu.hkb').

topic 'SRD_start'.
 resume = 1.
 choice = ' '
 while ?choice <> Quit
 then do (SRD_begin).
 close_window ()
 WRITE ('con:','#e '
 reset (SRD_begin).
 collect ()
end. (* SRD_start *)

(* ********************* BEGIN FILLING OUT SRD *************************)
topic 'fillSRD'.
 if ?new_one = ' '
 then load ('srdquest.hkb')
 and fs gets children(fillSRD)
 and fs is remove (?fs,'related answer')
 and stopSRD = 'N'
 and new_one = 'X'
 and x = -1.

 y = (element(?fs,?x)).

 if ?y <> ' ' and ?stopSRD <> 'Y'
 then do (?y).
 x = ?x + 1.
 if ?x = 8
 or ?x = 16
 or ?x = 24
 or ?x = 32
 then collect ()
 WRITE ('con:','#e ')
 if ?y = last(?fs)
 then stopSRD = 'Y'.

 if ?stopSRD <> 'Y'
 then do (fillSRD).

end. (* fillSRD *)

(* *********** BEGIN FILLING OUT SRD *************)
topic 'SRD_begin'.
 if ?resume = 1
 then load ('srdquest.hkb').

 window ('Which subtopic do you wish to change?',blue,white,white).
 if ?resume = 1
 then begin is 'Quit'
 if ?resume = 1
 then begin gets children(SRD_begin).
if ?resume = 1
 then begin gets 'Quit'
 and
 begin is remove (?begin,'related answer')
 and
 choice = ' '.

while ?choice <> Quit
 then
 ask ('Which subtopic you wish to change?',choice, ?begin)
 and
 if ?choice <> 'Quit'
 then do (?choice)
 and
 resume = 2
 and
 close_window ()..
if ?choice = 'Quit'
 then
 window ('white,red,yellow,1,16,27,4') and
 WRITE ('con:
 'A slight delay will occur while the next segment of this application is loaded. Please stand by. ') and
 stop_at = where (?begin,Quit,2) and
 kounter = 1 and
 stop_at = remove(?stop_at,1) and
 while ?kounter < ?stop_at
 then
 eraser = element (?begin,?kounter) and
 remove_topic (?eraser) and
 kounter = ?kounter + 1.

end. (* SRD_begin *)

(* ** RESUME FILLING OUT SRD ***)

topic 'SRD_continue'.
 choice = '.

if ?resume = 1
 then load ('srdquest.hkb').

window ('Where do you wish to resume?',blue,white,white).
if ?resume = 1
 then continue is children (SRD_continue).
if ?resume = 1
 then continue gets 'Quit'
 and continue is remove (?continue,'related answer').
ask ('With which subtopic you wish to resume your activity?',

3
choice, ?continue).

if ?choice <> 'Quit'
then
 cont_where = where(?continue,?choice) and
 ckount = 1 and
 while ?ckount < ?cont_where
 then
 rem_top = element(?continue,?ckount) and
 remove_topic (?rem_top) and
 ckount = ?ckount + 1.
 collect ()..

while ?choice <> 'Quit'
 then choice = element(?continue,?ckount) and
 if ?choice <> '' and ?choice <> 'Quit'
 then do (?choice) and
 ckount = ?ckount + 1
 and remove_topic (?choice)
 and if ?ckount = 8
 or ?ckount = 16
 or ?ckount = 24
 or ?ckount = 32
 then collect ().
 resume = 2.
 close_window ().

WRITE ('con:', '#e ').

eend. (* SRD_continue *)

(* **
 topic 'SRD_complete'.

close (concat (C:\GARDEN\,?curdir,'\LISTING.OUT'))).

dos (search,restore).

eof = number_to_char (26).

searchtext is read_line (concat (C:\GARDEN\,?CURDIR,'\LISTING.OUT')).
if ?searchtext = ?eof
 then
 window (,white,red,yellow,10,10,60,8)
 and
 say
 ('#e

All required sections of the SRD have been addressed.
Please use the CHANGE ONE ITEM option to choose
individual items to edit.

 Please press the SPACE key to continue.')
 and
 bypass_unload = Y
 and
close_window()
else
load('SRDQUEST.HKB')
and
searchlist is read
(concat (C:\GARDEN\,?curdir, '
LISTING.OUT'))
and
close (concat (C:\GARDEN\,?curdir, '
LISTING.OUT'))
and
searchlist gets 'Quit'
and
chgwant = '
and
while ?chgwant <> Quit
then do (complete_SR).

if ?bypassUnload <> Y
then
window (,white,red,yellow,1,16,27,4)
and
WRITE ('Con:
'A slight delay will occur
while the remainder of the
application is loaded.
Please stand by.
')
and
stop_at = where (?searchlist, Quit,2) and
kounter = 1 and
stop_at = remove(?stop_at,1) and
while ?kounter < ?stop_at
then
eraser = element (?searchlist,?kounter) and
remove_topic (?eraser) and
kounter = ?kounter + 1.
close_window().

(* ****************************

topic 'complete_SR'.

bypassUnload = N.
window('Which subtopic do you wish to complete?',blue,white,white).
complete is 'Quit'.
complete gets ?searchlist.
ask('#
These subtopics have not yet been addressed. Please
choose the one you wish to complete, or choose Quit
to exit this screen.',chgwant,?complete).
if ?chgwant <> Quit
then do (?chgwant).
close (concat (C:\GARDEN\,?curdir, '
LISTING.OUT')).
if ?chgwant <> Quit
then dos (search, restore).
close (concat (C:\GARDEN,\?curdir,'\LISTING.OUT')).
searchtext is read line (concat (C:\GARDEN,\?curdir,'\LISTING.OUT')).
if ?searchtext = ?eof
 then
 window (,white,red,yellow,10,10,60,8)
 and
 say
 ('#e
All required sections of the SRD have now been
addressed. Please use the CHANGE ONE ITEM
option to choose individual items to edit.'
 and
 close_window ()
 and
 chgwant = 'Quit'
 else
 searchlist is read
 (concat (C:\GARDEN,\?curdir,'\LISTING.OUT'))
 and
 searchlist gets 'Quit'.
 close_window ()
 end.
end. (* complete_SRD *)

end. (* SRD_complete *)

(* ** *)

end. (* nasasys *)
This program is used to allow the user to complete the various sections of Engineering Requirements Document.

no_edit_key ().
(* no_debug () . *)
curdir is read_line ('CURDIR.DAT').
curdir = string_replace(?curdir,' ','',8).

yn is [YES,NO].
load ('erdterm.hkb').

do (outline).

new_kb ('fillmenu.hkb').

topic outline.
say ('The suggested outline for the Engineering Requirements Document (#mERD#m) is as follows. Please choose the section with which you would like to begin/resume:

1 #mFunction Objectives & Equipment Identification#m
2 #mStructural/Mechanical#m
3 #mPointing/Stabilization and Alignment#m
4 #mOrbital Requirements and Constraints#m
5 #mElectrical Requirements#m
6 #mThermal Control/Fluid Requirements#m
7 #mData System Requirements#m
8 #mFlight Software Requirements#m
9 #mPhysical Integration#m
10 #mMission Operations Support#m
11 #mTraining Objectives#m
12 #mEnvironmental Contamination Data Requirements#m
 #mAppendix#m (Abbrevations and Acronyms)

Press #fyellow SPACE#d to return to Main Program Module.
(* threaded topics *)

Function Objectives & Equipment Identification

- **1.0 Functional Objectives & Equipment Identification**
 - **1.1 Functional Objectives**
 - **1.2 Experiment Functional Objectives**
 - **1.3 Operational Function Flow**

Press #fyellow SPACE#d to continue.

Structural/Mechanical

- **2.0 Structural/Mechanical**

Structural/Mechanical Section is not further subdivided.

Press #fyellow SPACE#d to continue.

Pointing/Stabilization and Alignment

- **3.0 Pointing/Stabilization and Alignment**

3.1 Pointing requirements
3.2 Stabilization requirements
3.3 Viewing requirements
3.4 IPS pointing requirements
3.5 Experiment pointing capabilities
3.6 On-Orbit acceleration and vibration limits
3.7 Alignment requirements
3.8 Coalignment requirements

Press #fyellow SPACE#d to continue.
topic 'Orbital Requirements and Constraints'.
window ('4.0 Requirements and Constraints', blue, white, white).
say('
4.1 Desired orbit characteristics
4.2 Earth and Celestial target
4.3 Viewing requirements and constraints
4.4 Vehicle motion and G-level limits
Press #fyellow SPACE#d to continue.'
).
close_window ().
end. (* Orbital Requirements *)

topic 'Electrical Requirements'.
window ('5.0 Electrical Requirements', blue, white, white).
say ('
Electrical Requirements Section is not further subdivided.
Press #fyellow SPACE#d to continue.'
).
close_window ().
end. (* Electrical Requirements *)

topic 'Thermal Control/Fluid Requirements'.
window ('6.0 Control/Fluid Requirements', blue, white, white).
say ('
6.1 Model equipment requirements
6.2 Pallet/Airlock requirements
6.3 Fluid requirements
Press #fyellow SPACE#d to continue.'
).
close_window ().
end. (* Thermal Control *)

topic 'Data System Requirements'.
window ('7.0 Data System Requirements', blue, white, white).
say ('

7.1 Signal interface definition
7.2 Signal interface definition expansion
7.3 Display requirements
7.4 Event/Eception monitor requirements
7.5 Direct HRM, Analog, Video, and MTU requirements
7.6 Processed dedicated HRM channel parameter definitions
7.7 #mPOCC#m display requirements
7.8 #mPOCC#m limit sensing/exception monitor requirements

Press #fyellow SPACE#d to continue.

end. (* Data System *)

topic 'Flight Software Requirements'.
window ('8.0 Flight Software Requirements',blue,white,white).

say ('Flight Software Requirements Section is not further subdivided.
Press #fyellow SPACE#d to continue.')

end. (* Flight Software Requirements *)

topic 'Physical Integration'.
window ('9.0 Physical Integration',blue,white,white,6,4,65,15).

ask ('The suggested outline for #mERD Section 9#m consists of the following:

9.1 Experiment/Facility requirements

9.2 Integration of experiment

Do you wish to begin/continue filling out this section.',start9,?_)

if ?start9 = YES
 then
 option9 is ['9.1 Experiment/Facility requirements','9.2 Integration of experiment',QUIT]
 and
 ask
 ('With which subheading do you wish to begin?',choice9,?option9).
if ?start9 = NO
then choice9 = ' '.

if ?choice9 = '9.1 Experiment/Facility requirements'
then do ('ERD9.1')
and reset ('ERD9.1')
and collect ().

if ?choice9 = '9.2 Integration of experiment'
then do ('ERD9.2')
and reset ('ERD9.2')
and collect ().

close_window ().

end. (* Physical Integration *)

topic 'Mission Operations Support'.
window ('10.0 Mission Operations Support',blue,white,white).

 say ('
 10.1 Narrative description
 10.2 Facilities
 10.3 Data product format
 10.4 HRM channel formats

 Press #fyellow SPACE#d to continue.').
 close_window ().
end. (*Mission Operations*)

topic 'Training Objectives'.
window ('11.0 Training Objectives',blue,white,white).

 say ('
 11.1 Training participation
 11.2 Training objectives

 Press #fyellow SPACE#d to continue.').
 close_window ().
end. (*Training Objectives*)

topic 'Environmental Contamination Data Requirements'.
window ('12.0 Environmental Contamination Data Requirements',blue white).

 say ('
 12.1 Flight environmental limits
12.2 On-Orbit external contamination control sensitivity

12.3 External contamination sources

Press #fyellow SPACE#d to continue.').

close_window ()

end. (*Environment Contamination*)

topic appendix.
appendix = QUIT.
appendix gets children(!main).
appendix is remove (?appendix,[term_choice,yn,curdir,outline]).
window ('Appendix',blue,white,white).
ask ('Please choose the word or term that you desire to look up.',
term_choice,?appendix).
if ?term_choice <> QUIT
then do (?term_choice)
and
close_window ()
and
do (appendix).
close_window ()

end. (* appendix *)

topic 'ERD Section 9'.

window ('9.0 Physical Integration',blue,white,white,6,4,65,13).
say ('The physical integration requirements are those requirements
associated with the hardware/software integration, checkout,
launch, and deintegration of experiments or flight facilities
with the Space Transportation System. It is necessary that
the developers of the hardware for the experiments or flight
facilities identify their requirements for these integration
operations. The information requested in the subsequent
paragraphs is that information required in the early phases
of development to determine compatibility/incompatibility
of the integrated requirements with the capabilities at
#mKSC#m as defined in #mKCS IV 0018.0#m, Payload Developer's
Guide for Launch Site Operations (Attached Payloads).

As the program progresses, more detailed information will be
required to implement the integrated payload requirements.
This information shall be contained in the #mO&IA#m.

Press #fyellow SPACE#d to continue.').
close_window ().
The ground processing of an integrated payload is generally accomplished in four steps:

1. Experiment/Facility Preintegration
2. Experiment Integration
3. Payload Integration
4. Experiment Deintegration

Throughout the payload development and integration cycle, it will be necessary for the PED to define his requirements associated with the activities defined in the above four steps. The following questions/responses will describe the information necessary to determine the overall compatibility of the PED planning with existing KSC capabilities and planning.

Press yellow SPACE to continue.

(* QUESTION 9 PART 1 OPTION 1 *)

ask ('Do you plan to perform any postshipment assembly, test, calibration, or servicing to prepare your equipment for integration?',answer,?yn).

if ?answer = YES then
 load ('ERDQ911.hkb')
 do (ERD_9_1_1)
 remove_topic (ERD_9_1_1)
 collect ()
else
 eof = number_to_char (26)
 q911ck = read_line (concat (C:\GARDEN,?CURDIR,'\ERDQ911.DAT'))
 close (concat (C:\GARDEN,?CURDIR,'\ERDQ911.DAT'))
 if ?q911ck <> ?eof then
 reset (q911ck)
 ask ('There are answers on file that indicate this question

* ERD Section 9 *

topic 'ERD9.1'.

window ('9.1 Experiment/Facility requirements',blue,white,white,6,4,6)

say ('The ground processing of an integrated payload is generally accomplished in four steps:

1. Experiment/Facility Preintegration
2. Experiment Integration
3. Payload Integration
4. Experiment Deintegration

Throughout the payload development and integration cycle, it will be necessary for the PED to define his requirements associated with the activities defined in the above four steps. The following questions/responses will describe the information necessary to determine the overall compatibility of the PED planning with existing KSC capabilities and planning.

Press yellow SPACE to continue.').
was previously answered YES, rather than NO. If the correct answer is NO, the system will need to erase the answers from your previous session that were directly related to the YES response, since they are no longer applicable. Do you authorize the system to discard these previous answers?

```
if ?q911kill = YES then
  delfile = (concat (C:\GARDEN\,?CURDIR, '\ERDQ911.DAT'))
  and
  dos (concat('del ','?delfile,'.'),restore)
  and
  delfile = (concat (C:\GARDEN\,?CURDIR, '\ERD911.DAT'))
  and
  dos (concat('del ','?delfile,'.'),restore)
  and
  delfile = (concat (C:\GARDEN\,?CURDIR, '\OTHERGAS.DAT'))
  and
  dos (concat('del ','?delfile,'.'),restore)
  and
  delfile = (concat (C:\GARDEN\,?CURDIR, '\LIQUIDS.DAT'))
  and
  dos (concat('del ','?delfile,'.'),restore)
  and
  delfile = (concat (C:\GARDEN\,?CURDIR, '\NSENARIO.DAT'))
  and
  dos (concat('del ','?delfile,'.'),restore)
  and
  delfile = (concat (C:\GARDEN\,?CURDIR, '\OFSDESC.DAT'))
  and
  dos (concat('del ','?delfile,'.'),restore).
```

close ('ERDQ911.hkb').

(*)

QUESTION 9 PART 1 OPTION 2

(*)

ask ('#e
Do you plan to perform any activities at #mKSC#m with your equipment that cannot be performed in the same area or in conjunction with your hardware preparation? ',answer,?yn).

if ?answer = YES then
 load ('ERDQ912.hkb')
 and
 do (ERD_9_1_2)
 and
 remove_topic (ERD_9_1_2)
 and
 collect ()
else
 eof = number_to_char (26)
 and
 q912ck = read_line (concat (C:\GARDEN\,?CURDIR, '\ERDQ912.DAT'))
and close (concat (C:\GARDEN\,?CURDIR,'\ERDQ912.DAT'))
and if ?q912ck <> ?eof
then
 reset (q912ck)
and
ask ('There are answers on file that indicate this question
was previously answered YES, rather than NO. If the
correct answer is NO, the system will need to erase the
answers from your previous session that were directly
related to the YES response, since they are no longer
applicable. Do you authorize the system to discard
these previous answers?',q912kill,?yn)
and if ?q912kill = YES
then
delfile = (concat (C:\GARDEN\,?CURDIR,'\ERDQ912.DAT'))
and
dos (concat('del ',?delfile,'.'),restore)
and
delfile = (concat (C:\GARDEN\,?CURDIR,'\ERD912.DAT'))
and
dos (concat('del ',?delfile,'.'),restore)
and
delfile = (concat (C:\GARDEN\,?CURDIR,'\OTH92GAS.DAT'))
and
dos (concat('del ',?delfile,'.'),restore)
and
delfile (concat (C:\GARDEN\,?CURDIR,'\LIQUI92.DAT'))
and
dos (concat('del ',?delfile,'.'),restore)
and
delfile (concat (C:\GARDEN\,?CURDIR,'\NSENVI92.DAT'))
and
dos (concat('del ',?delfile,'.'),restore)
and
delfile (concat (C:\GARDEN\,?CURDIR,'\OFSDE92.DAT'))
and
dos (concat('del ',?delfile,'.'),restore).
close ('ERDQ912.hkb').

(*
 QUESTION 9 PART 1 OPTION 3
 *)

ask ('#e
After landing, the nominal time for removal of experiment/
facilities will be 2 to 3 weeks. If you have any require-
ments for removal that are earlier than this time, answer
YES and describe them by responding to the follow-on questions.
Also, the planned mode of operation for experiment/facility
hardware is to remove the equipment and immediately return to
the #mPED#m for shipment. If you have any requirements for
postmission test or calibration of the experiment/facility
equipment, answer YES and respond to the follow-on questions.

if ?answer = YES
then
 load ('ERDQ913.hkb')
 and
 do (ERD_9_1_3)
 and
 remove_topic (ERD_9_1_3)
 and
 collect ()
else
 eof = number_to_char (26)
 and
 q913ck = read_line (concat (C:\GARDEN\,?CURDIR,'\ERDQ913.DAT'))
 and
 close (C:\GARDEN\,?CURDIR,'\ERDQ913.DAT')
 and
 if ?q913ck <> ?eof
then
 reset (q913ck)
 and
 ask ('There are answers on file that indicate this question was previously answered YES, rather than NO. If the correct answer is NO, the system will need to erase the answers from your previous session that were directly related to the YES response, since they are no longer applicable. Do you authorize the system to discard these previous answers?', q913kill, ?yn)
and
 if ?q913kill = YES
then
 delfile = (concat (C:\GARDEN\,?CURDIR,'\ERDQ913.DAT'))
 and
 dos (concat('del ','\delfile','.'),restore)
 and
 delfile = (concat (C:\GARDEN\,?CURDIR,'\ERD913.DAT'))
 and
 dos (concat('del ','\delfile','.'),restore)
 and
 delfile = (concat (C:\GARDEN\,?CURDIR,'\OTH93GAS.DAT'))
 and
 dos (concat('del ','\delfile','.'),restore)
 and
 delfile = (concat (C:\GARDEN\,?CURDIR,'\LIQUI93.DAT'))
 and
 dos (concat('del ','\delfile','.'),restore)
 and
 delfile = (concat (C:\GARDEN\,?CURDIR,'\NSENVI93.DAT'))
 and
 dos (concat('del ','\delfile',' '),restore)
and
delfile = (concat (C:\GARDEN\, ?CURDIR, '\OFSDE93.DAT'))
and
dos (concat('del ', !delfile, '.'), restore).

close ('ERDQ913.hkb').
end. (* ERD9.1 *)

(* QUESTION 9 PART 2 *)

topic 'ERD9.2'.

window ('9.2 Integration of Experiment', blue, white, white, 6, 4, 65, 15).

ask ('During the integration of experiments with the carrier and Orbiter, there may be special requirements associated with an effect on normal planned activities. The #mPED#m should complete the following section to describe those activities peculiar to the experiment/facility.

Do you wish to complete this section now?', ERD92now, ?yn).

if ?ERD92now = YES
then
 load ('ERDQ92.hkb')
 and
 do (ERD_9_2_1).

close ('ERDQ92.hkb').
end. (* ERD9.2 *)
end. (* outline *)
OUTLINE FOR THE ERD

(* ERDQUEST.KB is the knowledge base called from the NASAREVn.KB. *)
(* It is loaded whenever the user wishes to fill out the Engineering Document. An outline of the ERD is presented, with the user selecting the section with which he/she will begin. *)

The suggested outline for the Engineering Requirements Document (#mERD#m) is as follows. Please choose the section with which you would like to begin/resume:

1 #mFunction Objectives & Equipment Identification#m
2 #mStructural/Mechanical#m
3 #mPointing/Stabilization and Alignment#m
4 #mOrbital Requirements and Constraints#m
5 #mElectrical Requirements#m
6 #mThermal Control/Fluid Requirements#m
7 #mData System Requirements#m
8 #mFlight Software Requirements#m
9 #mPhysical Integration#m
10 #mMission Operations Support#m
11 #mTraining Objectives#m
12 #mEnvironmental Contamination Data Requirements#m

#mAppendix#m (Abbreviations and Acronyms)

Press #fyellow SPACE#d to return to Main Program Module.

(* ==============================threaded topics============================= *)

topic 'Function Objectives & Equipment Identification'.
window ('1.0 Functional Objectives & Equipment Identification',bg white).

say (',

1.1 Functional Objectives
1.2 Experiment Functional Objectives

1.3 Operational Function Flow

Press #fyellow SPACE#d to continue.

close_window ().

end. (* Functional Objectives *)

topic 'Structural/Mechanical'.
window ('2.0 Structural/Mechanical',blue,white,white).

say ('Structural/Mechanical Section is not further subdivided.

Press #fyellow SPACE#d to continue.

close_window ().

end. (* Structural/Mechanical *)

topic 'Pointing/Stabilization and Alignment'.
window ('3.0 Pointing/Stabilization and Alignment',blue,white,white).

say('3.1 Pointing requirements
3.2 Stabilization requirements
3.3 Viewing requirements
3.4 IPS pointing requirements
3.5 Experiment pointing capabilities
3.6 On-Orbit acceleration and vibration limits
3.7 Alignment requirements
3.8 Coalignment requirements

Press #fyellow SPACE#d to continue.'

close_window ().

end. (* Pointing/Stabilization *)

topic 'Orbital Requirements and Constraints'.
window ('4.0 Requirements and Constraints',blue,white,white).

say('
4.1 Desired orbit characteristics
4.2 Earth and Celestial target
4.3 Viewing requirements and constraints
4.4 Vehicle motion and G-level limits

Press #yellow SPACE#d to continue.

close_window ()

end. (* Orbital Requirements *)

topic 'Electrical Requirements'.
window ('5.0 Electrical Requirements',blue,white,white).

say ('Electrical Requirements Section is not further subdivided.

 Press #yellow SPACE#d to continue.').

close_window ()

end. (* Electrical Requirements *)

topic 'Thermal Control/Fluid Requirements'.
window ('6.0 Control/Fluid Requirements',blue,white,white).

say ('6.1 Model equipment requirements

6.2 Pallet/Airlock requirements

6.3 Fluid requirements

 Press #yellow SPACE#d to continue.').

close_window ()

end. (* Thermal Control *)

topic 'Data System Requirements'.
window ('7.0 Data System Requirements',blue,white,white).

say ('7.1 Signal interface definition

7.2 Signal interface definition expansion

7.3 Display requirements

7.4 Event/Eception monitor requirements

7.5 Direct HRM, Analog, Video, and MTU requirements
7.6 Processed dedicated HRM channel parameter definitions
7.7 #mPOCC#m display requirements
7.8 #mPOCC#m limit sensing/exception monitor requirements

Press #fyellow SPACE#d to continue.').

close_window ().
end. (* Data System *)

topic 'Flight Software Requirements'.
window ('8.0 Flight Software Requirements',blue,white,white).

say ('Flight Software Requirements Section is not further subdivided.

Press #fyellow SPACE#d to continue.').

close_window ().
end. (* Flight Software Requirements *)

topic 'Physical Integration'.
window ('9.0 Physical Integration',blue,white,white,6,4,65,15).

ask ('The suggested outline for #mERD Section 9#m consists of the following:

9.1 Experiment/Facility requirements

9.2 Integration of experiment

Do you wish to begin/continue filling out this section.',start9,?_

if ?start9 = YES
then
option9 is ['9.1 Experiment/Facility requirements',
'9.2 Integration of experiment',QUIT]
and
ask
('With which subheading do you wish to begin?',choice9,?option9).

if ?start9 = NO
then choice9 = ' '

if ?choice9 = '9.1 Experiment/Facility requirements'
then do ('ERD9.1')
and reset ('ERD9.1')
and collect ().

if ?choice9 = '9.2 Integration of experiment'
then do ('ERD9.2')
and reset ('ERD9.2')
and collect ().

close_window ()

end. (* Physical Integration *)

topic 'Mission Operations Support'.
 window ('10.0 Mission Operations Support',blue,white,white).
 say('10.1 Narrative description
10.2 Facilities
10.3 Data product format
10.4 HRM channel formats

Press #fyellow SPACE#d to continue.').
 close_window ()

end. (*Mission Operations*)

topic 'Training Objectives'.
 window ('11.0 Training Objectives',blue,white,white).
 say('11.1 Training participation
11.2 Training objectives

Press #fyellow SPACE#d to continue.').
 close_window ()

end. (*Training Objectives*)

topic 'Environmental Contamination Data Requirements'.
 window ('12.0 Environmental Contamination Data Requirements',blue,white).
 say('12.1 Flight environmental limits
12.2 On-Orbit external contamination control sensitivity
12.3 External contamination sources

Press #fyellow SPACE#d to continue.').
 close_window ()

end. (*Environmental Contamination*)
topic appendix.
 appendix = QUIT.
appendix gets children(so you want to fly).
appendix is remove (?appendix,[SRD_start,fillSRD,SRD_begin,
 choice_ERD,prototype,hypertext,SRD_continue,copyfiles,outline]).
window (' Appendix ', blue, white, white).

ask ('Please choose the word or term that you desire to look up.',
 term_choice, ?appendix).
if ?term_choice <> QUIT
 then do (?term_choice)
 and
 close_window ()
 and
 do (appendix).
 close_window ().
end. (* appendix *)

topic 'ERD Section 9'.

window ('9.0 Physical Integration', blue, white, white, 6, 4, 65, 13).
say ('The physical integration requirements are those requirements
 associated with the hardware/software integration, checkout,
 launch, and deintegration of experiments or flight facilities
 with the Space Transportation System. It is necessary that
 the developers of the hardware for the experiments or flight
 facilities identify their requirements for these integration
 operations. The information requested in the subsequent
 paragraphs is that information required in the early phases
 of development to determine compatibility/incompatibility
 of the integrated requirements with the capabilities at
 KSC as defined in KCS IV 0018.0m, Payload Developer's
 Guide for Launch Site Operations (Attached Payloads).

As the program progresses, more detailed information will be
required to implement the integrated payload requirements.
This information shall be contained in the O&IA.

Press yellow SPACE to continue.')
 close_window ()
end. (* ERD Section 9 *)

topic 'ERD9.1'.

window ('9.1 Experiment/Facility requirements', blue, white, white, 6, 4, 6
say ('The ground processing of an integrated payload is generally
accomplished in four steps:
1. Experiment/Facility Preintegration
2. Experiment Integration
3. Payload Integration
4. Experiment Deintegration

Throughout the payload development and integration cycle, it will be necessary for the PED to define his requirements associated with the activities defined in the above four steps. The following questions/responses will describe the information necessary to determine the overall compatibility of the PED planning with existing KSC capabilities and planning.

Press `yellow SPACEd to continue.`

(*

QUESTION 9 PART 1 OPTION 1 *)

ask ('
Do you plan to perform any postshipment assembly, test, calibration, or servicing to prepare your equipment for integration?',answer,?yn).

if ?answer = YES
then
 load ('ERD911.hkb')
 and
 do (ERD_9_1_1)
 and
 remove_topic (ERD_9_1_1)
 and
 collect ()
else
 eof = number_to_char (26)
 and
 q911ck = read_line (concat (C:\GARDEN,?CURDIR,'\ERDQ911.DAT'))
 and
 if ?q911ck <> ?eof
 then
 ask ('There are answers on file that indicate this question was previously answered YES, rather than NO. If the correct answer is NO, the system will need to erase the answers from your previous session that were directly related to the YES response, since they are no longer applicable. Do you authorize the system to discard these previous answers?',q911kill,?yn)
 and
 if ?q911kill = YES
 then
 dos (ERASE (concat (C:\GARDEN,?CURDIR,'\ERDQ911.DAT')))
 and
 dos (ERASE (concat (C:\GARDEN,?CURDIR,'\ERD911.DAT')))
dos (ERASE (concat (C:\GARDEN\,?CURDIR, '"OTHERGAS.DAT'')))
and
dos (ERASE (concat (C:\GARDEN\,?CURDIR, '"LIQUIDS.DAT'')))
and
dos (ERASE (concat (C:\GARDEN\,?CURDIR, '"NSENVIRO.DAT'')))
and
dos (ERASE (concat (C:\GARDEN\,?CURDIR, '"OFSDESC.DAT'')))

close ('ERDQ911.hkb').

(* QUESTION 9 PART 1 OPTION 2 *)

ask ('#e
Do you plan to perform any activities at #mKSC#m with your
equipment that cannot be performed in the same area or in
conjunction with your hardware preparation? ',answer,?yn).

if ?answer = YES
then
 load ('ERDQ912.hkb')
 and
do (ERD_9_1_2)
 and
remove_topic (ERD_9_1_2)
 and
collect ()
else
 eof = number_to_char (26)
 and
q912ck = read_line (concat (C:\GARDEN\,?CURDIR, '"ERDQ912.DAT''))
 and
if ?q912ck <> ?eof
then
 ask ('There are answers on file that indicate this question
was previously answered YES, rather than NO. If the
correct answer is NO, the system will need to erase the
answers from your previous session that were directly
related to the YES response, since they are no longer
applicable. Do you authorize the system to discard
these previous answers?',q912kill,?yn)
 and
if ?q912kill = YES
then
 dos (ERASE (concat (C:\GARDEN\,?CURDIR, '"ERDQ912.DAT'')))
 and
dos (ERASE (concat (C:\GARDEN\,?CURDIR, '"ERD912.DAT'')))
 and
dos (ERASE (concat (C:\GARDEN\,?CURDIR, '"OTH92GAS.DAT'')))
 and
dos (ERASE (concat (C:\GARDEN\,?CURDIR, '"LIQUI92.DAT'')))
 and
dos (ERASE (concat (C:\GARDEN\,?CURDIR, '"NSENVI92.DAT'')))
 and
dos (ERASE (concat (C:\GARDEN\,?CURDIR, '"OFSDE92.DAT'')))

ask ('#e
After landing, the nominal time for removal of experiment/
facilities will be 2 to 3 weeks. If you have any require-
ments for removal that are earlier than this time, answer
YES and describe them by responding to the follow-on questions.
Also, the planned mode of operation for experiment/facility
hardware is to remove the equipment and immediately return to
the #mPED#m for shipment. If you have any requirements for
postmission test or calibration of the experiment/facility
equipment, answer YES and respond to the follow-on questions.'
answer,?yn).

if ?answer = YES
then
 load ('ERDQ913.hkb')
 and
 do (ERD_9_1_3)
 and
 remove_topic (ERD_9_1_3)
 and
 collect ()
else
 eof = number_to_char (26)
 and
 q913ck = read_line (concat (C:\GARDEN,\?CURDIR,\'\ERDQ913.DAT'))
 and
 if ?q913ck <> ?eof
 then
 ask ('
There are answers on file that indicate this question
was previously answered YES, rather than NO. If the
correct answer is NO, the system will need to erase the
answers from your previous session that were directly
related to the YES response, since they are no longer
applicable. Do you authorize the system to discard
these previous answers?',q913kill,?yn)
 and
 if ?q913kill = YES
 then
 dos (ERASE (concat (C:\GARDEN,\?CURDIR,\'\ERDQ913.DAT')))
 and
 dos (ERASE (concat (C:\GARDEN,\?CURDIR,\'\ERD913.DAT')))
 and
 dos (ERASE (concat (C:\GARDEN,\?CURDIR,\'\OTH93GAS.DAT')))
 and
 dos (ERASE (concat (C:\GARDEN,\?CURDIR,\'\LIQUI93.DAT')))
 and
 dos (ERASE (concat (C:\GARDEN,\?CURDIR,\'\NSENVI93.DAT')))
dos (ERASE (concat (C:\GARDEN\, ?CURDIR, '\OFSDE93.DAT'))).

close ('ERDQ913.hkb').

dos ('ERASE (concat (C:\GARDEN\, ?CURDIR, '\OFSDE93.DAT')))).

close ('ERDQ913.hkb').

end. (* ERD9.1 *)

(* QUESTION 9 PART 2 *)

topic 'ERD9.2'.

window ('9.2 Integration of Experiment', blue, white, white, 6, 4, 65, 15).

ask ('During the integration of experiments with the carrier and Orbiter, there may be special requirements associated with an effect on normal planned activities. The #mPED#m should complete the following section to describe those activities peculiar to the experiment/facility.

Do you wish to complete this section now?', ERD92now, ?yn).

if ?ERD92now = YES then
 load ('ERDQ92.hkb')
 and
 do (ERD_9_2_1).

end. (* ERD9.2 *)

end. (* outline *)
These are the terms to be loaded in the NASA prototype system to aid in the development of NASA Engineering Requirements Documents for preflight planning and control.

topic 'ac'.
 window ('ac',blue,white,white).
 say ('Alternating Current

Press #fdarkgray SPACE#D to continue.').

close_window ()..
end. (* ac *)

topic 'ASE'.
 window ('Airborne support equipment',blue,white,white).
 say ('ASE - Airborne support equipment. The flight equipment and systems needed to support the payload such as data recording, control functions, instrumentation, and payload cradles.

Press #fdarkgray SPACE#D to continue.').

close_window ()..
end. (* ASE *)

topic 'dc'.
 window ('dc',blue,white,white).
 say ('Direct Current

Press #fdarkgray SPACE#D to continue.').

close_window ()..
end. (* dc *)

topic 'ECAS'.
 window ('ECAS',blue,white,white).
 say ('Experiment Computer Applications Software

Press #fdarkgray SPACE#D to continue.').

close_window ()..
end. (* ECAS *)
The Experiment Payload Element Developer is responsible for the design, development, and delivery of instruments or experiment facilities that will satisfy the requirements of a or group of PIs. The EPED hardware/software must also satisfy the safety and interface requirements/constraints of other mission hardware, including flight and ground systems. The EPEDs are responsible for support to the during all phases of integration and operation of his equipment.

Press SPACE to continue.

The Engineering Requirements Document is used by the payload element developer and/or the principal investigator to define requirements to be accommodated by the Space Transportation System (STS) for a given mission.

Press SPACE to continue.

That science activity which is going to be performed using a set of hardware. This activity is defined by the Principal Investigator and leads to a set of science requirements which the hardware must meet in order to perform the experiment.

Press SPACE to continue.
These are the activities by which the experiment hardware is removed and turned over to the #mPED#m or the #mPI#m.

Press #fdarkgray SPACE#D to continue.

close_window ()
end. (* Experiment Deintegration *)

topic 'Experiment Integration'.
window ('Experiment Integration',blue,white,white).

say ('EXPERIMENT INTEGRATION - Often referred to as Level IV integration and consists of installation and assembly of payload elements into Spacelab mounting elements, mating the assemblies with certain Spacelab subsystems, and performing payload element and integrated testing.

Press #fdarkgray SPACE#D to continue.

close_window ()
end. (* experiment integration *)

topic 'Experiment/Facility Preintegration'.
window ('Experiment Facility Preintegration',blue,white,white).

say ('These are activities to be performed at #mKSC#m by the Payload Element Developer (#mPED#m) or the Principal Investigator (#mPI#m) to prepare the hardware or specimen for integration with a carrier and other experiments/facilities.

Press #fdarkgray SPACE#D to continue.

close_window ()
end. (* Experiment Facility/Preintegration *)

topic 'FO'.
window ('FO',blue,white,white).

say ('Functional Objective

Press #fdarkgray SPACE#D to continue.'

close_window ()
end. (* FO *)

topic 'GSE'.

window ('GROUND SUPPORT EQUIPMENT (GSE)' , blue, white, white).

say ('

GROUND SUPPORT EQUIPMENT (GSE) - Non-flight equipment at the physical integration site required to handle/service/inspect/test/align/ adjust/repair/modify the flight hardware/software.

Press #fdarkgray SPACE#D to continue.').

close_window ().
end. (* GSE *)

topic 'hardware'.

window ('Hardware ', blue, white, white).

say ('

The total set of space flight equipment which will perform the experiment in conjunction with the associated software, ground support equipment (#mGSE#m), documentation, etc.

Press #fdarkgray SPACE#D to continue.').

close_window ().
end. (* hardware *)

topic 'KCS IV 0018.0'.

window ('KCS IV 0018.0', blue, white, white).

say ('

This document describes the relationship of a Payload Mission Manager (#mPMM#m), the Principal Investigator (#mPI#m), and Payload Element Developer (#mPED#m) to #mKSC#m supporting systems for processing payloads, using the Spacelab flight system capabilities and other horizontal or "attached" payloads. It provides you with guidelines, information on constraints, and documentation systems. This handbook is intended to give you, a potential user -- Payload Mission Manager, Principal Investigator or Payload Element Developer -- information to aid you in achieving your goals.

You should use this document for reference during early definition phases to assist you in establishing both flight and ground support equipment requirements. By this, you can assure yourself of the capability to verify your equipment during the integration process for launch. It will also allow proper planning of resources during this process and enable you to eliminate unnecessary costs.

Press #fdarkgray SPACE#d to continue.').

4
close_window ()
end. (* KCS IV 0018.0 *)

topic 'KSC'.
 window ('KSC',blue,white,white).
 say ('
 Kennedy Space Center
 Press #fdarkgray SPACE#D to continue.').

 close_window ()
 end. (* KSC *)

topic 'MPE'.
 window ('Mission-Peculiar Equipment (MPE)',blue,white,white).
 say ('
 Mission-Peculiar Equipment (MPE) is mission unique, "make work," interfacing hardware and/or software (cables, brackets, structure, etc.) between the experiment facilities and the Spacelab and/or Shuttle standard accommodations.
 Press #fdarkgray SPACE#D to continue.').

 close_window ()
 end. (* MPE *)

topic 'MPED'.
 window ('Mission-Peculiar Equipment Payload Element Developer (MPED)',blue,white,white).
 say ('
 Mission-Peculiar Equipment (MPE) is mission unique, "make work," interfacing hardware and/or software (cables, brackets, structure, etc.) between the experiment facilities and the Spacelab and/or Shuttle standard accommodations.
 The MPED is responsible for design, development, and delivery of MPE hardware/software to the requirements of the #mPMM#m to allow integration of instruments with #mSTS#m flight equipment. This equipment, like the instruments, must satisfy the safety and interface requirements/constraints of the STS flight and ground systems.
 Press #fdarkgray SPACE#D to continue.').

 close_window ()
 end. (* MPED *)
topic 'O&IA'.
 window ('O&IA', blue, white, white).

 say ('

 Operations and Integration Agreement

 Press #fdarkgray SPACE#D to continue.').

 close_window ().
end. (* O&IA *)

topic 'OPS'.
 window ('OPS', blue, white, white).

 say ('

 Oxygen Portable System

 Press #fdarkgray SPACE#D to continue.').

 close_window ().
end. (* OPS *)

topic 'payload'.
 window ('PAYLOAD', blue, white, white, 4, 4, 70, 14).

 say ('

 PAYLOAD - The total complement of instruments, equipment, support hardware/software and carried in the Space Shuttle (excluding Orbiter basic payload support) to accomplish a given objective in space. It, therefore, includes items such as free-flying automated spacecraft, individual experiments or instruments, and #mASE#m.

 Press #fdarkgray SPACE#D to continue.').

 close_window ().
end. (* payload *)

topic 'payload element'.
 window ('PAYLOAD ELEMENT', blue, white, white).

 say ('

 PAYLOAD ELEMENT - The experiment facilities and the support hardware/software which are the component parts of the #mpayload#m.

 Press #fdarkgray SPACE#D to continue.').

 close_window ().
Payload Element Developer (PED) is a collective term that applies to both #mMPED#m and #mEPED#m, since experiment instruments, experiment facilities, and #mMPE#m are all, in fact, #mpayload element#ms. The breakout of MPED and EPED under PED is made here only to illustrate characteristics of the interfaces. Throughout this document, however, the inclusive term, PED, is used and includes both EPEDs and MPEDs.

Press #fdarkgray SPACE#D to continue.'

These are the activities where the integrated payload is mated with the Orbiter, new interfaces are verified, and final payload servicing and closeout are performed. These activities may be accomplished in 2 steps: utilizing Orbiter simulations with the flight Orbiter.

Press #fdarkgray SPACE#D to continue.'

#mPayload Element Developer#m

Press #fdarkgray SPACE#D to continue.'

The Principal Investigator is in charge of the conduct of the experiment and is responsible for defining the data or
other products required/desired from the operation of an instrument or experiment facility (a payload element) and for providing scientific support during the physical integration and flight operation of the equipment. This may include defining the performance requirements on equipment to be developed or may only be the definition of the use of existing equipment. A PI may also be the Experiment Payload Element Developer (#mEPED#m).

Press #fdarkgray SPACE#D to continue.').

close_window ().
end. (* PI *)

topic 'PMM'.
window ('PAYLOAD MISSION MANAGER (PMM)',blue,white,white).

say ('PAYLOAD MISSION MANAGER (PMM) - The person responsible for integrated payload definition and payload element integration, for integrated payload flight planning and operations to ensure meeting PI requirements, for payload element compatibility with themselves and with the #mSTS#m, and for verifying that all safety requirements have been met.

Press #fdarkgray SPACE#D to continue.').

close_window ().
end. (* PMM *)

topic 'POCC'.
window ('Payload Operations Control Center (POCC)',blue,white,white).

say ('Central area, located at any of three NASA centers, from which payload operations are monitored and controlled. The user, in many instances, will have direct command of a payload from this control center.

Press #fdarkgray SPACE#D to continue.').

close_window ().
end. (* POCC *)

topic 'requirement'.
window ('REQUIREMENT',blue,white,white).

say ('REQUIREMENT - A specified mandatory condition which must be complied with unless a noncompliance report is approved by the Center Commander/ Director.
Press #fdarkgray SPACE#D to continue.

close_window ().
end. (* requirement *)

topic 'STS'.
window ('STS',blue,white,white).
say ('Space Transportation System

Press #fdarkgray SPACE#D to continue.

close_window ().
end. (* STS *)
ERD QUESTION 9

(* ERDQ911.KB is the knowledge base called from the ERDQUEST.KB. *)
(* It is loaded whenever the user wishes to fill out Question 9, *)
(* Part 1 Option 1 of the ERD. The user is guided through a series *)
(* of questions, requiring either narrative, logic, or selection *)
(* responses. *)

topic 'ERD_9_1_1'.

:q911prev = N.
:eof = number_to_char (26).
:q911old is read_(concat (C:\GARDEN?qCURDIR,'\ERDQ911.DAT')).
if ?q911old <> ?eof
 then q911prev = Y.

relatedfile = '\PREFEQIP.DAT'.
relatedtopic = 'Research Equipment (Preflight)'.
filename = '\ERD911.DAT'.

window ('Description of Planned Activities',blue,white,white,2,2,70,11
say ('#e
Please enter a narrative description of the type of activities
planned for the preparation of your equipment for integration.
In a #mrelated answer#m in the SRD, you were asked to describe the
#fyellow Research Equipment (Preflight)#d. Please be sure to discuss
equipment referenced in the SRD that must undergo postshipment
assembly, test, calibration or servicing, or click #mhere#m to
#s edit', ?relatedtopic,' #I #n
Press the #fyellow RETURN KEY#d to enter the editor,
#fyellow ESC#d to leave editor, and #fyellow RETURN#d to confirm
edit_file (concat (C:\GARDEN?qCURDIR,'\ERD911.DAT')),yellow,black,red,
close_window ()..
if ?q911prev = Y
 then
 old_fs = element(?q911old,4)
 and
 old_flr = string_replace (?old_fs,
 'Total Floor Space Required Including Space for GSE: ','',1)
 and
 old_floorspace = string_replace (?old_flr,' Square Feet','',1)
 and
 read_response ('#e
Enter the total square feet that will be necessary to
accomplish your activities. Include enough area to
accommodate the #mGSE#m that will be necessary for
these activities. If you anticipate having spare units,
include space for these also.

Your previous answer was: ',floorspace,?old_floorspace)
else
read_response ('#e
Enter the total square feet that will be necessary to
accomplish your activities. Include enough area to
accommodate the #mGSE#m that will be necessary for
these activities. If you anticipate having spare units,
include space for these also.#n',floorspace,0).

if ?floorspace = ' ' or ?floorspace = []
then floorspace = '_____'.

floorspace = concat ('Total Floor Space Required Including Space for #mGSE#m
?floorspace, ' Square Feet').

table9_1 gets '(X) Experiment/Facility Preintegration'.
table9_1 gets ' () Experiment/Facility Preparation'.
table9_1 gets ' () Postmission Requirements'.

table9_1 gets ?floorspace.
if ?q911prev = Y
then
 old_ch = element (?q911old,5)
 and
 old_ch = string_replace (?old_ch,'Ceiling Height Required: ',' ',1)
 and
 old_ceiling = string_replace (_old_ch,' ft.' ,'' ,1)
 and
 read_response ('#e
 Please enter the required ceiling height, in feet.
 Your previous answer was: ',ceiling,?old_ceiling)
else
 ceiling_list is ['10','15',OTHER]
 and
 ask ('#e
 What is the required ceiling height, in feet?',ceiling,?ceiling_list)
if ?ceiling = OTHER
then read_response ('Please enter the required ceiling height, in feet.#n',ceiling,0).

if ?ceiling = ' ' or ?ceiling = []
then ceiling = '_____'.

ceiling = concat ('Ceiling Height Required: ',?ceiling,' ft.')

table9_1 gets ?ceiling.
if ?q911prev = Y
then
 old_cran = element(?q911old,6)
 and
```plaintext
old_crane = string_replace (?old_crane,' ft.','',1)
and
old_height = string_copy (?old_crane,55,10)
and
crane_yn = string_copy (?old_crane,25,15)
and
if ?crane_yn = '(X) YES ( ) NO'
  then crane_yn = YES
else
  crane_yn = NO.

if ?q911prev = Y
  then
    ask (['#e
      Is an overhead crane required?

      Your previous answer was: ',?old_crane],crane,?yn)
  else
    ask (['#e
      Is an overhead crane required?',crane,?yn).

if ?crane = YES and ?q911prev = Y
  then read_response ('
    Please enter the required hook height, in feet.

    Your previous answer was: ',hook,?old_height)
else
  if ?crane = YES
    then read_response ('
      Please enter the required hook height, in feet.#n',hook,0).

if ?crane = YES
  then if ?hook = ' ' or ?hook = []
    then hook = '_____'.

if ?crane = YES
  then
    crane = concat ('Overhead Crane Required (X) YES ( ) NO. Hook Hei

    ?hook,' ft.)
  else
    crane = 'Overhead Crane Required ( ) YES (X) NO'.

table9_1 gets ?crane.

if ?q911prev = Y
  then
    old_pl20 = element (?q911old,7).

if ?q911prev = Y
  then ask (['#e
      What is the required facility power? 120/208 V, 60 Hz is standard. If you have a requirement for something other than the standard, specify OTHER and describe. Please
```
answer YES to all that apply.

Will you require #fgray 120 V, 1 o, 60Hz#d?

Your previous answer was: #n',?old_p120],p120,?yn)

else
 ask ('#e

What is the required facility power? 120/208 V, 60 Hz is standard. If you have a requirement for something other than the standard, specify OTHER and describe. Please answer YES to all that apply.

Will you require #fgray 120 V, 1 o, 60Hz#d?',p120,?yn).

if ?p120 = YES
 then
 power120 = 'Facility Power Required: (X) 120 V, 1 o, 60 Hz'
 else
 power120 = 'Facility Power Required: () 120 V, 1 o, 60 Hz'.

table9_1 gets ?power120.

if ?q911prev = Y
 then
 old_p240 = element (?q911old,8).

if ?q911prev = Y
 then
 ask ('#e

Will you require #fgray 208 V, 3 o, 60 Hz#d?

Your previous answer was: #n',?old_p240],p240,?yn)

else
 ask ('Will you require #fgray 208 V, 3 o, 60 Hz#d?',p240,?yn).

if ?p240 = YES
 then
 power240 = ' (X) 240 V, 3 o, 60 Hz'
 else
 power240 = ' () 240 V, 3 o, 60 Hz'.

table9_1 gets ?power240.

if ?q911prev = Y
 then
 old_othpower = element (?q911old,9)
 and
 old_spec_power = string_copy (?old_othpower,37,80)
 and
 other_yn = string_copy (?old_othpower,27,9)
 and
if ?other_yn = '(X) OTHER'
 then other_yn = YES
else
 other_yn = NO.

if ?q911prev = Y
 then
 ask ('["#e
 Will you require #fgray OTHER#d power types?

 Your previous answer was: #s ',?other_yn'],otherpower,?yn)
 else
 ask ('Will you require #fgray OTHER#d power types?',otherpower,?yn).

if ?otherpower = YES
 then if ?q911prev = Y
 then read_response ('Please specify these OTHER power needs.

 Your previous answer was: ',spec_other_power,?old_spec_power)
 else
 read_response ('Please specify these OTHER power needs.',spec_other_power).

if ?otherpower = YES
 then
 powerother = concat ('(X) OTHER ','
 ?spec_other_power)
 else
 powerother = ' () OTHER '.

 table9_1 gets ?powerother.

if ?q911prev = Y
 then
 old_gn2 = element (?q911old,10)
 and
 old_gn2 = string_copy (?old_gn2,36,3)
 and
 if ?old_gn2 = 'NO'
 then old_gn2 = NO.

if ?q911prev = Y
 then
 ask (['OTHER FACILITY SUPPORT: GN2 and GHe are generally available in the facilities at #mKSC#m; if pressure required is greater than 3000 psi, specify. Other gases or liquids can be made available (see #mSE-S-0073#m) but must be identified. The standard environment in the laboratory areas is for human comfort only; if this is not adequate, specify the requirements.

5
Will you require any facility support for GN2 gases?

Your previous answer was: #s',?old_gn2],GN2,?yn)

else
ask ('#

OTHER FACILITY SUPPORT: GN2 and GHe are generally available in the facilities at #mKSC#m; if pressure required is greater than 3000 psi, specify. Other gases or liquids can be made available (see #mSE-S-0073#m) but must be identified. The standard environment in the laboratory areas is for human comfort only; if this is not adequate, specify the requirements.

Will you require any facility support for GN2 gases?',GN2,?yn).

GN2 = concat ('Other Facility Support: Gases __',?GN2,'__ GN2').

table9_1 gets ?GN2.

if ?q911prev = Y
then
 old_ghe = element (?q911old,11)
 and
 old_ghe = string_copy (?old_ghe,36,3)
 and
 if ?old_ghe = 'NO'
 then old_ghe = NO.

if ?q911prev = Y
then
 ask ('"

Will you require any facility support for GHe gases?

Your previous answer was: #s',?old_ghe],GHe,?yn)
else
ask ('#

Will you require any facility support for GHe gases?',GHe,?yn).

GHe = concat ('__',?GHe,'__ GHe').

table9_1 gets ?GHe.

if ?q911prev = Y
then
 old_other = element (?q911old,12)
 and
 old_other = string_copy (?old_other,36,3)
 and
 if ?old_other = 'NO'
 then old_other = NO.

if ?q911prev = Y
then ask ("Will you require any facility support for other gases?
Your previous answer was: #s',?old_other],gasother,?yn)
else ask ('#e
Will you require any facility support for other gases?',gasother,?yn)
if ?q911prev = Y
then
 if ?old_other = YES and ?gasother = NO
 then
 ask ('Your previous response was YES and your current
response was NO. Please confirm that you have
entered the correct response.

Will you require any facility support for other gases?',
gasother,?yn).
if ?gasother = YES
then
 window ('Other Facility Support (Gases)',blue,white,white,2,2,70,6)
 and
 say ('#e
Please specify the type along with any nonstandard requirements
of the gas.

Press the #fyellow RETURN KEY#d to enter the editor,
#fyellow ESC#d to leave editor, and #fyellow RETURN#d to confirm
and
edit_file (concat (C:\GARDEN,\?CURDIR,\'OTHERGAS.DAT'),yellow,black,red
and
close_window ()).
if ?q911prev = Y
then
 if ?old_other = YES and ?gasother = NO
 then
 dos (ERASE (concat (C:\GARDEN,\?CURDIR,\'OTHERGAS.DAT')))..
gasother = concat (' ',?gasother,' lends ?gasother.
if ?q911prev = Y
then
 old_liquid = element (?q911old,13)
 and
 old_liquid = string_copy (?old_liquid,36,3)
 and
 if ?old_liquid = 'NO '
 then old_liquid = NO.
if ?q911prev = Y
 then
 ask ('if

Will you require any facility support for liquids?

Your previous answer was: #s',?old_liquid],liquids,?yn)
else
 ask ('#

Will you require any facility support for liquids?',liquids,?yn).

if ?q911prev = Y
 then
 if ?old_liquid = YES and ?liquids = NO
 then
 ask ('Your previous response was YES and your current response was NO. Please confirm that you have entered the correct response.

Will you require any facility support for liquids?',
liquids,?yn).

if ?liquids = YES
 then
 window ('Other Facility Support (Liquids)',blue,white,white,2,2,70,6)
 and
 say ('#

Please specify the type along with any nonstandard requirements for all liquids.

Press the #fyellow RETURN KEY#d to enter the editor,
#fyellow ESC#d to leave editor, and #fyellow RETURN#d to confirm and
edit_file (concat (C:\GARDEN\,?CURDIR,'\LIQUIDS.DAT')),yellow,black,red
and
close_window ()

if ?q911prev = Y
 then
 if ?old_liquid = YES and ?liquids = NO
 then
 dos (ERASE (concat (C:\GARDEN\,?CURDIR,'\LIQUIDS.DAT'))).

liquids = concat (' Liquids* __',?liquids,'__')

 table9 1 gets ?liquids.

 environs is [STANDARD,OTHER].

if ?q911prev = Y
 then
 old_env = element (?q911old,14)
 and
old_env = string_copy (?old_env,16,1)
and
if ?old_env = X
then old_env = STANDARD
else old_env = OTHER.

if ?q911prev = Y
then
 ask ('#e
 The standard environment in the laboratory areas is for human comfort only; if this is not adequate, specify the requirement.

 Your previous answer was: #s ',?old_env],envir,?environs)
else
 ask ('#e
 The standard environment in the laboratory areas is for human comfort only; if this is not adequate, specify the requirement.',envir,?environs).

if ?q911prev = Y
then
 if ?old_env = OTHER and ?envir = STANDARD
 then
 ask ('Your previous response was OTHER and your current response was STANDARD. Please confirm that you have entered the correct response.

 Please specify the environment required.',
 envir,?environs).

 if ?envir = OTHER
 then
 window ('Other Environment Requirements',blue,white,white,2,2,70,6)
and
 say ('#e
 Please specify the nonstandard environment requirements, in narrative form.

 Press the #fyellow RETURN KEY#d to enter the editor, #fyellow ESC#d to leave editor, and #fyellow RETURN#d to confirm and edit_file (concat (C:\GARDEN,\?CURDIR,\'\NSENVIRO.DAT'),yellow,black,red and
and
 close_window ()).

 if ?q911prev = Y
 then
 if ?old_env = OTHER and ?envir = STANDARD
 then
dos (ERASE (concat (C:\GARDEN,\?CURDIR,\'\NSENVIRO.DAT'))).
if ?envir = STANDARD
 then
 envir = 'Environment: (X) Standard () Other*'
 else
 envir = 'Environment: () Standard (X) Other*'.

table9_1 gets ?envir.

if ?q911prev = Y
 then
 old_haz = element (?q911old,15)
 and
 old_haz = string_copy (?old_haz,26,1)
 and
 if ?old_haz = X
 then old_haz = YES
 else old_haz = NO.

if ?q911prev = Y
 then ask (['#e
 Do your planned activities include hazardous operations?
 Your previous answer was: #s',?old_haz],hazop,?yn)
 else
 ask ('#e
 Do your planned activities include hazardous operations?',hazop,?yn).

if ?hazop = YES
 then hazop = 'Hazardous Operations: (X) Yes () No'
else
 hazop = 'Hazardous Operations: () Yes (X) No'.

table9_1 gets ?hazop.

if ?q911prev = Y
 then
 old_setup = element (?q911old,16)
 and
 old_setup_days = string_replace (?old_setup,
 'Total Anticipated Use Time: ', '',i)
 and
 old_setup_days = string_replace (_old_setup_days, ' Days', '',1).

if ?q911prev = Y
 then
 read_response ('#e
 Specify the time required (in days) to move in, set up your
 equipment, and perform your planned activities.
 Your previous answer was: ',setup,?old_setup_days)
 else
 read_response ('#e
Specify the time required (in days) to move in, set up your equipment, and perform your planned activities. if setup = ' ' or setup = [] then setup = '____'.

setup = concat ('Total Anticipated Use Time: ', setup, ' Days').

table9_1 gets setup.

window ('Other Facility Support Description', blue, white, white, 2, 2, 70, 6)

load ('JA713A.hkb').

say ('#e Please identify any support that you may require that would prevent your utilizing a standard-type laboratory or that would require augmentation of a standard laboratory capability. Requirements for life science facilities should be included here by referencing PI/PED provided forms as described in #mJA-713 Section 4#m, MSFC Payload Mission Manager Guidelines for use of Life Sciences Facilities.

Press the #fyellow RETURN KEY#d to enter the editor, #fyellow ESC#d to leave editor, and #fyellow RETURN#d to confirm edit_file (concat (C:\GARDEN\?,CURDIR,'\OFSDESC.DAT'), yellow, black, red)

close ('JA713A.hkb').
remove_topic ('JA-713 Section 4').
close_window ().

new_file (concat (C:\GARDEN\?,CURDIR,'\ERDQ911.DAT')).
write (concat (C:\GARDEN\?,CURDIR,'\ERDQ911.DAT'),?table9_1,#n).
close (concat (C:\GARDEN\?,CURDIR,'\ERDQ911.DAT')).
reset (table9_1).

topic 'related answer'.
related_answer is read(concat(C:\GARDEN\?,CURDIR,?RELATEDFILE)).
window ('Related Topic', blue, white, white, 2, 2, 76, 14).
say ('This is your answer for the: #fyellow #t',
?related topic,'#d #n #n',
?related_answer,'#n #n'
Press #fyellow SPACE #d to continue.').
window ('Use this answer?', yellow, blue, red, 2, 12, 74, 6).
ask ('Would you like to incorporate this answer into your current response?' incorporate,?yn).
if ?incorporate = YES then write (concat(C:\GARDEN\?,CURDIR,?FILENAME),?related_answer).
close_window ().
close_window ().
close (concat(C:\GARDEN\?,CURDIR,?FILENAME)).
end. (* related answer *)

topic 'here'.
window (?relatedtopic,blue,white,white,2,2,70,11).
say ('Please make any corrections necessary to the
#s ',?relatedtopic,'#n #l
Press the #fyellow RETURN KEY#d to enter the editor,
#fyellow ESC#d to leave editor, and #fyellow RETURN#d to confirm save.
edit_file (concat(C:\GARDEN\,?CURDIR,?RELATEDFILE),yellow,black,red,5,12).
close_window ().
close (concat(C:\GARDEN\,?CURDIR,?RELATEDFILE)).

end. (* here *)

end. (* ERD_9_1_1 *)
ERD QUESTION 9

(* ERDQ92.KB is the knowledge base called from the ERDQUEST.KB. *)
(* It is loaded whenever the user wishes to fill out Question 9, *)
(* Part 2 of the ERD. The user is guided through a series *)
(* of questions, requiring narrative responses. *)

topic 'ERD_9_2_1'.
close_window ()

window ('Description of Special Alignment, etc.',blue,white,white,2,2),
say ('
Please enter a narrative description of special alignment, calibration, servicing, or performance verification and estimated time to perform. Describe any activities that must be performed on the equipment either during or after its integration with the carrier or Orbiter and an estimate of the time that will be required to perform the activities. If it must be performed periodically, also identify the period, such as once every month.

Press the #fyellow RETURN KEY#d to enter the editor,
#fyellow ESC#d to leave editor, and #fyellow RETURN#d to confirm write ('con:', '#e

Press the #fyellow RETURN KEY#d to enter the editor,
#fyellow ESC#d to leave editor, and #fyellow RETURN#d to confirm

edit_file (concat (C:\GARDEN\,?CURDIR,'\ERD921.DAT'),yellow,black,red)
close_window ()

window ('Identification of Any Constraints',blue,white,white,2,2,70,6)
say ('#e
Please enter a narrative identification of any constraints on experiment/facility operation during test.

Press the #fyellow RETURN KEY#d to enter the editor,
#fyellow ESC#d to leave editor, and #fyellow RETURN#d to confirm

edit_file (concat (C:\GARDEN\,?CURDIR,'\ERD922.DAT'),yellow,black,red)
close_window ()

window ('Description of Time-Critical Operations',blue,white,white,2,2)
say ('#e
Please enter a narrative description of any time-critical operations, such as last specimen loading or final servicing of a cryogenic dewar. Include the time constraints relative to launch or a specific operation of the experiment/facility.

Press the #fyellow RETURN KEY#d to enter the editor, #fyellow ESC#d to leave editor, and #fyellow RETURN#d to confirm edit_file (concat (C:\GARDEN\,?CURDIR,'\ERD923.DAT'),yellow,black,red, close_window ()).
end. (* ERD_9_2_1 *)
The Science Requirements Document has sections that reference information contained in other sections of the SRD as well as other documents. This outline is used to display those references.

The Outline for the Science Requirements Document:

1. #mIntroduction/Summary#m
2. #mBackground#m
3. #mJustification for Conducting the Experiment in Space#m
4. #mExperiment Details#m

5. #mExperiment Requirements#m
6. #mPrincipal Investigator's Requirements#m
7. Other Requirements

Press #fyellow SPACE#d to continue.'

(* soutline*)

(* Threaded topics=*)

topic 'Introduction/Summary'.
 window ('Introduction/Summary',blue,white,white,,12).
 say ('Only the highlighted sections are referenced further.

 #m1.1 Description of Experiment#m
 #m1.2 Scientific Knowledge to be Gained#m
 1.3 Value of Knowledge to Scientific Field
 #m1.4 Justification of the Need for Space Environment#m
end. (*Introduction/Summary*)

topic 'Background'.
window ('Background',blue, white,white,2,5,70,17).
say ('
Only the highlighted sections are referenced further.

2.1 Description of Scientific Field to which the Experiment Belongs
2.2 Current Application for Research in the Field
#m2.3 Brief Historical Account of Prior Research#m
#m2.4 Current Research#m
2.5 Relationship of Proposed Experiment to Scientific Field
#m2.6 Anticipated Advance in State of the Art#m

Press #fyellow SPACE#d to continue.
end. (*Background*)

topic 'Justification for Conducting the Experiment in Space'.
window ('Justification for Conducting the Experiment in Space',blue,white,white,2,4,70,18).
say ('
Each one of these sections:

3.1 Limitations of Ground-Based Testing
3.2 Limitations of Drop Towers
3.3 Limitations of Testing in Aircraft
3.4 Need for Accommodations in the Shuttle
3.5 Limitations of Mathematical Modeling
3.6 Limitations of other Modeling Approaches

are referenced further in:

SRD Section:
1.4 Justification of the Need for Space Environment

Press #fyellow SPACE#d to continue.
end. (*Justification for Conducting the Experiment in Space*)

topic 'Experiment Details'.
window ('Experiment Details',blue,white,white,,74,18).
say ('
Only the highlighted sections are referenced further.

#m4.1 Experiment Procedures to be Used#m
4.7 Mathematical Models Used

4.8 Application of Results

are referenced in:
SRD Section
1.1 Description of Experiment
ERD Section
1.1 Functional Objectives

and the highlighted sections are referenced further.

Press yellow SPACE d to continue.

Only the highlight sections are referenced further.

5.1 Experiment Sample Requirements

5.2 Atmospheric Requirements

5.3 Temperature Control and Measurement

5.4 Vibration Control and Measurement

5.5 Test Matrix

5.6 Imaging Requirements

5.7 Electromagnetic Limitations

5.8 Astronaut Involvement

5.9 Data Requirements
Telepresence, Telerobotics are referenced in:
SRD Section
 1.1 Description of Experiment
ERD Section
 1.1 Functional Objectives

and the highlighted sections are referenced further.

Press #fyellow SPACE#d to continue.

end. (*Experiment Requirements*)

Principal Investigator's Requirements.

Press #fyellow SPACE#d to continue.

end. (*Principal Investigator's Requirements*)

(*-------------------------------the topics have subtopics -------------------*)

1.1 Description of experiment.

This section is referenced further in:

SRD Sections
 4.0 Experiment Details
 (breaks area down into more specific details)

5.0 Experiment Requirements
 (describes requirements in more details)

MSAD Management Plan
 E.2.5.1 Missions
 E.2.5.2 System(s) and Subsystems

JA-003
2.1 General (Flight Equipment Design and Fabrication)

JA-1303

2.1 General (Flight Equipment Design and Fabrication)

Press #fyellow SPACE#d to continue.').

close window ()

deadline (*1.1 Description of experiment*)

topic '1.2 Scientific knowledge to be gained'

window ('1.2 Scientific knowledge to be gained',blue,white,white).

say ('This section is referenced further in:

SRD Section
2.6 Anticipated Advance in State of the Art

Press #fyellow SPACE#d to continue.').

close window ()

deadline (*1.2 Scientific knowledge to be gained*)

topic '1.4 Justification of the need for space environment'

window ('1.4 Justification of the need for space environment',blue,white).

say ('This section is referenced further in:

SRD Section
3.0 Justification for Conducting the Experiment in Space

Press #fyellow SPACE#d to continue.').

close window ()

deadline (*1.4 Justification of the need for space environment*)

topic '2.3 Brief historical account of prior research'

window ('2.3 Brief historical account of prior research',blue,white).

say ('This section is referenced further in:

ERD Section
11.1 PED/PI Defined Training
(Science Background and Experiment Objectives)

Press #fyellow SPACE#d to continue. ')

close window ()

deadline (*2.3 Brief historical account of prior research*)

topic '2.4 Current research'.

5
This section is referenced further in:

MSAD Management Plan
E.2.4 Related Studies and Activities

Press #fyellow SPACE#d to continue.

close window ().

e"end. (*2.4 Current research*)

This section is referenced further in:

SRD Sections
1.2 Scientific Knowledge to be Gained
4.8 Application of Results

Press #fyellow SPACE#d to continue.'

close window ().

e"end. (*2.6 Anticipated advance in state of the art*)

This section is referenced further in:

SRD Sections
5.1 Experiment Sample Requirements (number, materials)
5.5 Test Matrix (number of durations required)

ERD Sections
9.2.2 Experiment/Facility Preparation

Press #fyellow SPACE#d to continue.'

close window ().

e"end. (*4.1 Experiment procedures to be used*)

This section is referenced further in:

SRD Sections
5.1 Experiment Sample Requirements

5.5 Test Matrix (number of durations required)
5.2 Atmospheric Requirements

5.3 Temperature Control and Measurement

5.4 Vibration Control and Measurement

Press #fyellow SPACE#d to continue.

close_window ()
end. (*4.2 Measurements required*)

topic '4.3 Test plan including ground characteristics of flight hardware'
window ('4.3 Test plan including ground character of hardware',blue,white,white,,16).
say ('This section is referenced further in:

MSAD Management Plan
E.2.5.4 Flight Hardware Classification

JA-003
2.1 General (Flight Equipment Design and Fabrication)

JA-1303
2.1 General (Flight Equipment Design and Fabrication)

Press #fyellow SPACE#d to continue.

close_window ()
end. (*4.3 Test plan including ground character of hardware*)

topic '4.4 Specific analysis required'.
window ('4.4 Specific analysis required',blue,white,white,,12).
say ('This section is referenced further in:

SRD Sections
5.1 Experiment Sample Requirements

Press #fyellow SPACE#d to continue.

close_window ()
end. (*4.4 Specific analysis required*)

topic '4.5 Preflight experiment planned'.
window ('4.5 Preflight experiment planned',blue,white,white,,,13)
say ('This section is referenced further in:

SRD Sections
6.1 Research Equipment

ERD Sections
9.1.1 Experiment/Facility Preintegration
(Ground Integration)
9.2.1 Experiment/Facility Preintegration (Developer Requirements)

JA-003

6.1.2.3 Payload Integrated Testing

JA-1303

8.1 Payload Prelaunch Handling

Press #fyellow SPACE#d to continue.

end. (*4.5 Preflight experiment planned*)

topic '4.6 Post flight data handling and analysis'.

window ('4.6 Post flight data handling and analysis',blue,white,white,white)
say ('This section is referenced further in:

SRD Sections
6.1 Research Equipment

ERD Sections
9.2.4 Experiment Late-Access Design Requirements

9.2.5 Postmission Requirements

9.2.6 Postmission Early-Access Requirements

MSAD Management Plan
E.2.5.8 Analysis of Mission Results

JA-003

9.1 Post-Flight Data Reduction, Analysis, and Reporting

JA-1303

9.1 Post-Flight Data Reduction, Analysis, and Reporting

Press #fyellow SPACE#d to continue.

end. (*4.6 Post flight data handling and analysis*)

topic '4.8 Application of results'.

window ('4.8 Application of results',blue,white,white,white,white,white)
say ('This section is referenced further in:

SRD Sections
1.2 Scientific Knowledge to be Gained

2.6 Anticipated Advance in the State of the Art
topic '5.1 Experiment sample requirements'.
window ('5.1 Experiment sample requirements',blue,white,white,,,16).
say ('This section is referenced further in:

SRD Sections
4.1 Experiment Procedures to be Used
4.2 Measurements Required
4.4 Specific Analysis Required

ERD Sections
4.0 Orbital Requirements and Constraints
5.0 Electrical Requirements

Press #fyellow SPACE#d to continue'.
end. (*5.1 Experiment sample requirements*)

topic '5.2 Atmospheric requirements'.
window ('5.2 Atmospheric requirements',blue,white,white,,,16).
say ('This section is referenced further in:

SRD Sections
4.2 Measurements Required

ERD Sections
6.2 Fluid Requirements
6.3 Ascent/Decent Thermal Control Requirements
12.1 Flight Enviromental Limits

Press #fyellow SPACE#d to continue. ')
end. (*5.2 Atmospheric requirements*)

topic '5.3 Temperature control and measurement'.
window ('5.3 Temperature control and measurement',blue,white,white,,,16).
say ('This section is referenced further in:

SRD Sections
4.2 Measurements Required

ERD Sections
6.1 Heat Transfer Characteristics
6.3 Ascent/Decent Thermal Control Requirements

Press #yellow SPACE#d to continue.

end. (*5.3 Temperature control and measurement*)

topic '5.4 Vibration control and measurement'.

window ('5.4 Vibration control and measurement',blue,white,white,,)

say ('This section is referenced further in:

SRD Sections
4.2 Measurements Required

ERD Sections
3.2.2 Stability Requirements

3.4 Experiment On-Orbit Acceleration and Vibration Limits

Press #yellow SPACE#d to continue.

end. (*5.4 Vibration control and measurement*)

topic '5.5 Test matrix'.

window ('5.5 Test matrix',blue,white,white,,14).

say ('This section is referenced further in:

SRD Sections
4.1 Experiment Procedures to be Used

ERD Sections
4.0 Orbital Requirements and Constraints

7.0 Data Systems Requirements

Press #yellow SPACE#d to continue.

end. (*5.5 Test matrix*)

topic '5.6 Imaging requirements'.

window ('5.6 Imaging requirements',blue,white,white,2,5,70,16).

say ('This section is referenced further in:

SRD Section
6.5 Services

ERD Sections
3.0 Pointing/Stabilization and Alignment

4.0 Orbital Requirements and Constraints

5.0 Electrical Requirements
7.0 Data Systems Requirements

Press #fyellow SPACE#d to continue.

close window ()

end. (*5.6 Imaging requirements*)

topic '5.7 Electromagnetic limitations'.
window ('5.7 Electromagnetic limit',blue,white,white,2,5,70,14).
say ('This section is referenced further in:

ERD Section
5.0 Electrical Requirements

JA-003
2.3.4 Electromagnetic Interference (EMI)

JA-1303
2.3.4 Electromagnetic Interference (EMI)

Press #fyellow SPACE#d to continue.

close window ()

end. (*5.7 Electromagnetic limit*)

topic '5.8 Astronaut involvement'.
window ('5.8 Astronaut involvement',blue,white,white,2,5,70,12).
say ('This section is referenced further in:

ERD Sections
11.0 Training Objectives

Press #fyellow SPACE#d to continue.

close window ()

end. (*5.8 Astronaut involvement*)

topic '5.9 Data requirements'.
window ('5.9 Data requirements',blue,white,white).
say ('This section is referenced further in:

SRD Sections
6.5 Services (film developing, software)

ERD Sections
7.0 Data Systems Requirements

8.0 Flight Software Requirements

10.0 Mission Operations Support

JA-003
2.2.2 Data and Analysis

JA-1303
2.2.3 Data and Analysis

Press #yellow SPACE#d to continue.

close window ()
end. (*5.9 Data requirements*)

topic '6.1 Research equipment'.
window ('6.1 Research equipment',blue,white,white,2,5,70,13).
say ('This section is referenced further in:

SRD Sections
4.5 Preflight Experiment Planned
4.6 Post Flight Data Handling and Analysis

ERD Sections
9.1.1 Experiment/Facility Preintegration
9.2.4 Experiment Late-Access Design Requirements
9.2.5 Postmission Requirements
9.2.6 Postmission Early-Access Requirements

Press #yellow SPACE#d to continue.

close window ()
end. (*6.1 Research equipment*)

topic '6.2 Apparatus design assistance'.
window ('6.2 Apparatus design assistance',blue,white,white).
say ('This section is referenced further in:

ERD Sections
1.2 Equipment Identification
2.0 Structural/Mechanical
6.2 Fluid Requirements
9.2.2 Experiment/Facility Preparation

Press #yellow SPACE#d to continue.

close window ()
end. (*6.2 Apparatus design assistance*)

topic '6.5 Services'.
window ('6.5 Services',blue,white,white).
say ('This section is referenced further in:

SRD Sections
5.6 Imaging Requirements
5.9 Data Requirements

ERD Sections
7.0 Data Systems Requirements
8.0 Flight Software Requirements

Press #f yellow SPACE #d to continue.'

close window ().
end. (*6.5 Services*)

(*== end subtopics==*)

topic '5.9 Data requirements'.
window ('5.9 Data requirements',blue,white,white,,,12).
say ('This section is referenced further in:

SRD Sections
1.1 Description of Experiment
6.5 Services (film developing, software)

ERD Sections
1.1 Functional Objectives (Data)
7.0 Data Systems Requirements
8.0 Flight Software Requirements
10.0 Mission Operations Support

JA-003
2.2.2 Data and Analysis

JA-1303
2.2.3 Data and Analysis

Press #f yellow SPACE #d to continue.'

close window ()
end. (*5.9 Data requirements*)

topic '5.10 Telepresence, telerobotics'.
window ('5.10 Telepresence, telerobotics',blue,white,white).
say ('This section is referenced further in:

SRD Section
1.1 Description of Experiment

ERD Section
1.1 Functional Objectives

Press #f yellow SPACE #d to continue.'

13
This section is referenced further in:

SRD Sections
4.5 Preflight Experiment Planned
4.6 Post Flight Data Handling and Analysis

ERD Sections
9.1.1 Experiment/Facility Preintegration
9.2.4 Experiment Late-Access Design Requirements
9.2.5 Postmission Requirements
9.2.6 Postmission Early-Access Requirements

Press #yellow SPACE#d to continue.'

This section is referenced further in:

ERD Sections
1.2 Equipment Identification
2.0 Structural/Mechanical
6.2 Fluid Requirements
9.2.2 Experiment/Facility Preparation

Press #yellow SPACE#d to continue.'

This section is referenced further in:

SRD Sections
5.6 Imaging Requirements
5.9 Data Requirements

ERD Sections
7.0 Data Systems Requirements

8.0 Flight Software Requirements

Press #yellow SPACE#d to continue.'

end. (*6.5 Services*)

(*--------------------------- end subtopics---------------------------*)
do (outline).
new_kb ('nasa.ckb').

(topic outline.
say ('The Experiment Requirements Document has sections that reference information contained in other sections of the ERD as well as other documents. This outline is used to display those references.

The Outline for the Experiment Requirements Document:

1 "Functional Objectives & Equipment Identification"
2 "Structural/Mechanical"
3 "Pointing/Stabilization and Alignment"
4 "Orbital Requirements and Constraints"
5 "Electrical Requirements"
6 "Thermal Control/Fluid Requirements"
7 "Data System Requirements"
8 "Flight Software Requirements"
9 "Physical Integration"
10 "Mission Operations Support"
11 "Training Objectives"
12 "Environmental Contamination Data Requirements"
13 Appendix (Abbreviations and Acronyms)

Press #f yellow SPACE #d to Return to Main Menu').

(*==========================threadedtopics==========================*)

(topic 'Functional Objectives & Equipment Identification'.
window ('Functional Objectives & Equipment Identification',blue,white).
say ('Only the highlighted sections are referenced further.

1
#1.1 Functional Objectives

#1.2 Equipment Identification

#1.3 Operational Function Flows

Press #yellow SPACE#d to continue.

close_window ().

end. (*Functional Objectives*)

topic 'Structural/Mechanical'.

window ('Structural/Mechanical',blue,white,white).

say('
This section is referenced further in:

SRD Section
6.2 Apparatus Design Assistance

MSAD Management Plan
E2.5.2 System(s) and Subsystems
E2.5.4 Flight Hardware Classification

JA-003
2.2 Mechanical, Structural, and Thermal

JA-1303
2.2 Mechanical, Structural, and Thermal

Press #yellow SPACE#d to continue.

close_window ().

end. (*Structural/Mechanical*)

topic 'Pointing/Stabilization and Alignment'.

window ('Pointing/Stabilization and Alignment',blue,white,white).

say('
Each of these sections

3.1 Requirements Description
#3.2 Pointing/Stabilization and Field-Of-View Requirements#m
#3.3 Experiment Pointing and FOV Capabilities#m
#3.4 Experiment On-Orbit Acceleration and Vibration Limits#m
#3.5 Experiment Alignment and Coalignment Requirements#m

are referenced in:

SRD Section
5.6 Imaging Requirements

and the highlighted sections are referenced further.

2
topic 'Orbital Requirements and Constraints'.
window ("Requirements and Constraints",blue,white,white,white,white,14).
say ('This section is referenced further in:

SRD Sections
 5.1 Experiment Sample Requirements
 5.5 Test Matrix
 5.6 Imaging Requirements

further references are:

#mViewing Requirements and Constraints#m
#mVehicle Motion and g-Level Limits#m

Press #fyellow SPACE#d to continue.')
close window ()..
end. (*Orbital Requirements*)

topic 'Electrical Requirements'.
window ("Electrical Requirements",blue,white,white).
say ('This section is referenced further in:

SRD Sections
 5.1 Experiment Sample Requirements
 5.6 Imaging Requirements
 5.7 Electromagnetic Limitations

MSAD Management Plan
 E2.5.6 Logistics

JA-003
 2.3 Electrical, Data, and Communications

JA-1303
 2.3 Electrical, Data, and Communications

Press #fyellow SPACE#d to continue').
close window ()..
end. (*Electrical Requirement*)

topic 'Thermal Control/Fluid Requirements'.
window ("Thermal Control/Fluid Requirements",blue,white,white).
say ('The highlighted sections are referenced further.

#m6.1 Heat Transfer Characteristics#m

#m6.2 Fluid Requirements#m

#m6.3 Ascent/Decent Thermal Control Requirements#m

Press #fyellow SPACE#d to continue.

close_window ().
end. (*Thermal Control*)

topic 'Data System Requirements'.
window ('Data System Requirements',blue,white,white).
say(
 Each of these sections
 #m7.1 Payload Element to CDMS Interfaces#m
 #m7.2 Caution and Warning#m
 #m7.3 Error Messages Documentation#m

 are referenced in:

 ERD Sections
 9.2.3 Experiment User Room Requirements
 10.0 Mission Operations Support
 11.5 Training Participation

 SRD Sections
 5.5 Test Matrix
 5.6 Imaging Requirements
 5.9 Data Requirements
 6.5 Services

 JA-003
 2.5 Failure Analysis
 8.4 Mission Data Processing

 JA-1303
 2.5 Failure Analysis
 8.4 Mission Data Processing

 and the highlighted sections are referenced further.

 Press #fyellow SPACE#d to continue.').

close_window ().
end. (*Data System*)

topic 'Flight Software Requirements'.
window ('Flight Software Requirements',blue,white,white,,12).
say(
 This section is referenced further in:

 ERD Section
 1.3 Operational Function Flows

 SRD Sections

4
Press #yellow SPACE#d to continue.

Each of these sections

#m9.1 Ground Integration Processing Flow and Definitions#m
#m9.2 Experiment/Facility Developer Requirements Definition#m
#mSolids, Fluids, and Gases, Resource Requirements#m

are referenced in:

SRD Sections
6.1 Research Equipment
6.5 Services

KCS IV 0018.0

MSAD Management Plan
E2.5.5 Facilities
E2.5.6 Logistics

JA-003
2.1 General (Flight Equipment Design and Fabrication)
3.0 Ground Support Equipment
5.0 Safety, Reliability, and Quality Assurance
6.0 Verification
7.0 Preparation and Delivery

JA-1303
2.1 General (Flight Equipment Design and Fabrication)
3.0 Ground Support Equipment
5.0 Safety, Reliability, and Quality Assurance
6.0 Verification
7.0 Preparation and Delivery
JA-713
Section 4.0

the highlighted sections are referenced further.

Press #fyellow SPACE#d to continue.

close window ().
end. (*Physical Integration*)

topic 'Mission Operations Support'.
window ('Mission Operations Support',blue,white,white).
say('Each of these sections

#m10.1 POCC Requirements#m
#m10.2 Spaclab Data Processing Facility and Other Requirements#m

are referenced in:

ERD Sections
7.0 Data System Requirements
11.3 PMM Defined Training

SRD Section
5.9 Data Requirements

SL-PA-210

MSAD Management Plan
E2.5.6 Logistics

JA-346

JA-1303
8.0 Operations Support

the highlighted section is referenced further.

Press #fyellow SPACE#d to continue.

close window ().
end. (*Mission Operations*)

topic 'Training Objectives'.
window ('Training Objectives',blue,white,white).
say('Each of these sections

#m11.1 PED/PI Defined Training#m
#m11.2 PMM and PED/PI Jointly Defined Training#m
#m11.3 PMM Defined Training#M
11.4 Training Simulators
#m11.5 Training Participation#m

are referenced in:

6
ERD Section
1.1 Functional Objectives

SRD Section
5.8 Astronaut Involvement

JA-003
8.2 Flight Operations/Training

JA-1303
8.2 Flight Operations/Training

and the highlighted sections are referenced further.

Press #fyellow SPACE#d to continue.').
close_window ()..
end. (*Training Objectives*)

topic 'Environmental Contamination Data Requirements'.
window ('Environmental Contamination Data Requirements',blue,white,white).
say ('Each of these sections

#m12.1 Flight Environment Limits#m
12.2 On-Orbit External Contamination Control Sensitivity
12.3 External Contamination Sources

are referenced in:

MSAD Management Plan
E2.5.9 Analysis of Safety Issues

JA-003
2.1.5 Contamination and Cleanliness

JA-1303
2.1.5 Contamination and Cleanliness

and the highlighted sections are referenced further.

Press #fyellow SPACE#d to continue.').
close_window ()..
end. (*Environment Contamination*)

(*=the topics have threaded subtopics=*)

topic '1.1 Functional Objectives'.
window ('1.1 Functional Objectives', blue, white, white,,15).
say ('This section is referenced further in:

ERD Sections
11.1 PED/PI Defined Training
11.2 PMM and PED/PI Jointly Defined Training

SRD Sections
4.0 Experiment Details
5.0 Experiment Requirements

MSAD Management Plan
E2.3 Project and Mission Objectives

Press #fyellow SPACE#d to continue.

end. (*I.1 Functional Objectives*)

topic '1.2 Equipment Identification'.
window('1.2 Equipment Identification', blue, white, white).
say('This section is referenced further in:

SRD Section
6.2 Apparatus Design Assistance

MSAD Management Plan
E2.5.2 System(s) and Subsystems

Press #fyellow SPACE#d to continue.

end. (*I.2 Equipment Identification*)

topic '1.3 Operational Function Flows'.
window('1.3 Operational Function Flows', blue, white, white, , , , , 13).
say('This section is referenced further in:

ERD Section
8.0 Flight Software Requirements

JA-003
2.4 Interface Drawings and Functional Schematics

JA-1303
2.4 Interface Drawings and Functional Schematics

Press #fyellow SPACE#d to continue.

end. (*I.3 Operational Function Flows*)

topic '3.2 Pointing/Stabilization and field-of-view requirements'.
window ('3.2 Pointing/Stabilization and field-of-view requirements', blue).
say ('Only the highlighted sections are referenced further.

3.2.1 Pointing Requirements
#m3.2.2 Stability Requirements#m
#m3.2.3 Field-of-View Requirements#m
3.2.4 IPS Pointing Requirements

8
Press #fyellow SPACE#d to continue.').
close window ().
end. (*3.2 Pointing/Stabilization and field-of-view requirements*)

topic '3.3 Experiment Pointing and FOV Capabilities'.
window ('3.3 Experiment Pointing FOV Capabilities',blue,white,white).
say ('
This section is referenced further in:

ERD Section
Viewing Requirements and Constraints (4.0)
(Celestial Viewing)

Press #fyellow SPACE#d to continue.').
close window ().
end. (*3.3 Experiment Pointing and FOV Capabilities*)

topic '3.4 Experiment On-Orbit acceleration and vibration limits'.
window ('3.4 Experiment On-Orbit acceleration and vibration limits',blue,white).
say ('
This section is referenced further in:

ERD Section
Vehicle Motion and g-Level Limits (4.0)

SRD Sections
5.4 Vibration Control and Measurements

Press #fyellow SPACE#d to continue').
close window ().
end. (*3.4 Experiment On-Orbit acceleration and vibration limits*)

topic '3.5 Experiment Alignment and Coalignment Requirements'.
window ('3.5 Experiment Alignment and Coalignment Requirements',blue,white,white).
say ('
This section is referenced further in:

ERD Section
9.1 Ground Integration Processing Flow and Definitions

Press #fyellow SPACE#d to continue').
close window ().
end. (*3.5 Experiment Alignment and Coalignment Requirements*)

(*--------- topic from section 4.0 -------------------------------*)

topic 'Viewing Requirements and Constraints'.
window ('Viewing Requirements and Constraints',blue,white,white).
say ('
This section is referenced further in:
ERD Section
3.2.3 Field of View Requirements
3.3 Experiment Pointing & FOV Capabilities

Press #fyellow SPACE#d to continue.').
close window ().
end. (*Viewing Requirements and Constraints*)

topic 'Vehicle Motion and g-Level Limits'.
window ('Vehicle Motion and g-Level Limits',blue,white,white).
say ('This section is referenced further in:

ERD Section
3.4 Experiment On-Orbit Acceleration and Vibration Limits

Press #fyellow SPACE#d to continue.').
close window ().
end. (*Vehicle Motion and g-Level Limits *)

(*------------------------ end of topic from section 4.0 ----------------*)

topic '6.1 Heat transfer characteristics'.
window ('6.1 Heat transfer characteristics',blue,white,white).
say ('This section is referenced further in:

SRD Section
5.3 Temperature Control and Measurement

Press #fyellow SPACE#d to continue.').
close window ().
end. (*6.1 Heat transfer characteristics*)

topic '6.2 Fluid requirements'.
window ('6.2 Fluid requirements',blue,white,white).
say ('This section is referenced further in:

SRD Sections
5.2 Atmospheric Requirements
6.2 Apparatus Design Assistance

Press #fyellow SPACE#d to continue.').
close window ().
end. (*6.2 Fluid requirements*)

topic '6.3 Ascent/Decent thermal control requirements'.
window ('6.3 Ascent/Decent thermal control requirements',blue,white,white).
say ('This section is referenced further in:

SRD Sections
5.2 Atmospheric Requirements
5.3 Temperature Control and Measurement

Press #f yellow SPACE#d to continue.'

close window ()
end. (*6.3 Ascent/Decent thermal control requirements*)

7.1 Payload Element to CDMS interfaces'.

Each of these sections

#m Signal Interface Definition#m
#m Signal Interface Definition Expansion#m
#m Display Requirements#m
#m Event/Exception Monitor Requirements#m
#m Direct HRM, Analog, Video and MTU Requirements#m
#m Processed Dedicated HRM Channel Parameter Definition#m
#m POCC Display Requirements#m
#m POCC Limit Sensing/Exception Monitor Requirements#m

are referenced in:

ERD Section
11.3 PMM Defined Training

and the highlighted sections are referenced further.

Press #f yellow SPACE#d to continue.'

Close window ()
end. (*7.1 Payload Element to CDMS interfaces*)

7.2 Caution and Warning'.

This section is referenced further in:

#m Signal Interface Definition#m

Press #f yellow SPACE#d to continue.'

Close window ()
end. (*7.2 Caution and Warning*)

7.3 Error Messages Documentation'.

This section is referenced further in:

ERD Sections
11.1 PED/PI Defined Training
11.2 PMM and PED/PI Jointly Defined Training
topic '9.1 Ground Integration processing flow and definitions'.
window ('9.1 Ground Integration processing flow and definitions',blue,white).
say ('Each of these sections

|m9.1.1 Experiment/Facility Preintegration|m
9.1.2 Experiment Integration
|m9.1.3 Payload Integration|m
|m9.1.4 Experiment Deintegration|m

are referenced in:

ERD Section
3.5 Experiment Alignment and Coalignment Requirements

and the highlighted sections are referenced further.

Press #fyellow SPACE#d to continue.').
close_window ()
end. (*9.1 Ground Integration processing flow and definitions*)

topic '9.2 Experiment/Facility developer requirements definition'.
window ('9.2 Experiment/Facility developer requirements definition',blue,white,white).
say ('The highlighted sections are referenced further.

|m9.2.1 Experiment/Facility Preintegration|m
|m9.2.2 Experiment/Facility Preparation|m
|m9.2.3 Experiment User Room Requirements|m
|m9.2.4 Experiment Late-Access Design Requirements|m
|m9.2.5 Postmission Requirements|m
|m9.2.6 Postmission Early-Access Requirements|m

Press #fyellow SPACE#d to continue.').
close_window ()
end. (*9.2 Experiment/Facility developer requirements definition*)

topic 'Solids, Fluids, and Gases, Resource Requirements'.
window ('Solids, Fluids, and Gases, Resource Requirements',blue,white,white).
say ('This section is referenced further in:

JSC Specifications SE-S-0073

Press #fyellow SPACE#d to continue.').
close_window ()
end. (*Solids, Fluids, and Gases, Resource Requirements*)

topic '10.1 POCC Requirements'.
window ('10.1 POCC Requirements',blue,white,white).
say ('This section is referenced further in:

JA-003
8.3 POCC Requirements and Procedures

Press #fyellow SPACE#d to continue.').
close_window ()..
end. (*10.1 POCC Requirements*)

topic '10.2 Spacelab Data Processing Facility and Other Requirements'.
window ('10.2 Spacelab Data Processing Facility and Other Requirements', blue, white, white).
say ('This section is referenced further in:

MSFC-STD-630
JA-003
8.4 Mission Data Processing
JA-346

Press #fyellow SPACE#d to continue.').
close_window ()..
end. (*10.2 Spacelab Data Processing Facility and Other Requirements*)

topic '11.1 PED/PI Defined training'.
window ('11.1 PED/PI Defined training', blue, white, white).
say ('This section is referenced further in:

ERD Section
7.3 Error Messages Documentation

SRD Section
2.3 Brief Historical Account of Prior Research

Press #fyellow SPACE#d to continue.').
close_window ()..
end. (*11.1 PED/PI Defined training*)

topic '11.2 PMM and PED/PI jointly defined training'.
window ('11.2 PMM and PED/PI jointly defined training', blue, white, white).
say ('This section is referenced further in:

ERD Section
7.3 Error Messages Documentation

Press #fyellow SPACE#d to continue.').
close_window ()..
end. (*11.2 PMM and PED/PI jointly defined training*)

topic '11.3 PMM Defined training'.

13
window ('11.3 PMM Defined training', blue, white, white).
say ('This section is referenced further in:

ERD Sections
7.1 Payload Element to CDMS Interfaces Tables
10.1 POCC Requirements

Press #fyellow SPACE#d to continue.').
close_window ()..
end. (*11.3 PMM Defined training*)

topic '11.5 Training Participation'.
window ('11.5 Training Participation', blue, white, white).
say ('This section is referenced further in:

ERD Section
7.0 Data Systems Requirements

Press #fyellow SPACE#d to continue.').
close_window ()..
end. (*11.5 Training Participation*)

(*------------------- topic from section 12.0 -------------------*)

topic '12.1 Flight Environment Limits'.
window ('12.1 Flight Environment Limits', blue, white, white).
say ('This section is referenced further in:

SRD Section
5.2 Atmospheric Requirements

Press #fyellow SPACE#d to continue.').
close_window ()..
end. (*12.1 Flight Environment Limits*)

(*================= third level subtopics ==============*)

topic '3.2.2 Stability Requirements'.
window ('3.2.2 Stability Requirements', blue, white, white).
say ('This section is referenced further in:

SRD Section
5.4 Vibration Control and Measurement

Press #fyellow SPACE#d to continue.').
close_window ()..
end. (*3.2.2 Stability Requirements*)

topic '3.2.3 Field-of-View requirements'.
window ('3.2.3 Field-of-View requirements', blue, white, white).

14
This section is referenced further in:

ERD Section
Viewing Requirements and Constraints (4.0)
(Celestial Viewing)

Press #fyellow SPACE#d to continue.

close_window ()
end. (*3.2.3 Field-of-View requirements*)

(* topics for section 7.1 *)
topic 'Signal Interface Definition'.
 window ('Signal Interface Definition',blue,white,white).
 say ('This section is referenced further in:

MDC G6854
Press #fyellow SPACE#d to continue.

close_window ()
end. (*Signal Interface Definition*)

topic 'Signal Interface Definition Expansion'.
 window ('Signal Interface Definition Expansion',blue,white,white).
 say ('This section is referenced further in:

MDC G6854
Press #fyellow SPACE#d to continue.

close_window ()
end. (*Signal Interface Definition Expansion*)

topic 'Display Requirements'.
 window ('Display Requirements',blue,white,white).
 say ('This section is referenced further in:

MDC G6854
Press #fyellow SPACE#d to continue.

close_window ()
end. (*Display Requirements*)

topic 'Event/Exception Monitor Requirements'.
 window ('Event/Exception Monitor Requirements',blue,white,white).
 say ('This section is referenced further in:

MDC G6854
Press #fyellow SPACE#d to continue.

close_window ()
end. (*Event/Exception Monitor Requirements*)
topic 'Direct HRM, Analog, Video and MTU Requirements'.
window ('Direct HRM, Analog, Video and MTU Requirements',blue,white,white).
say ('This section is referenced further in:
MDC G6854

Press #fyellow SPACE#d to continue. ')
close window ().
end. (*Direct HRM, Analog, Video and MTU Requirements*)

topic 'Processed Dedicated HRM Channel Parameter Definition'.
window ('Processed Dedicated HRM Channel Parameter Definition',blue,white,white).
say ('This section is referenced further in:
MDC G6854

Press #fyellow SPACE#d to continue. ')
close window ().
end. (*Processed Dedicated HRM Channel Parameter Definition*)

topic 'POCC Display Requirements'.
window ('POCC Display Requirements',blue,white,white).
say ('This section is referenced further in:
JA-449
Appendix A
Appendix B

Press #fyellow SPACE#d to continue. ')
close window ().
end. (*POCC Display Requirements*)

topic 'POCC Limit Sensing/Exception Monitor Requirements'.
window ('POCC Limit Sensing/Exception Monitor Requirements',blue,white,white).
say ('This section is referenced further in:
JA-449
Appendix A
Appendix B

Press #fyellow SPACE#d to continue. ')
close window ().
end. (*POCC Limit Sensing/Exception Monitor Requirements*)

topic '9.1.1 Experiment/Facility Preintegration'.
window ('9.1.1 Experiment/Facility Preintegration',blue,white,white).
say ('This section is referenced further in:

16
SRD Section
4.5 Preflight Experiment Planned

Press #fyellow SPACE#d to continue.

close_window().
end. (*9.1.1 Experiment/Facility Preintegration*)

topic '9.1.3 Payload Integration'.
window ('9.1.3 Payload Integration',blue,white,white).
say ('This section is referenced further in:

JA-003
6.1.2.3 Payload Integrated Testing
8.1 Payload Integration

JA-1303
6.1.2.3 Payload Integrated Testing

Press #fyellow SPACE#d to continue.

close_window().
end. (*9.1.3 Payload Integration*)

topic '9.1.4 Experiment Deintegration'.
window ('9.1.4 Experiment Deintegration',blue,white,white).
say ('This section is referenced further in:

SRD Section
4.6 Post Flight Data Handling and Analysis

Press #fyellow SPACE#d to continue.

close_window().
end. (*9.1.4 Experiment Deintegration*)

topic '9.2.1 Experiment/Facility Preintegration'.
window ('9.2.1 Experiment/Facility Preintegration',blue,white,white).
say ('This section is referenced further in:

SRD Section
4.5 Prelight Experiment Planned

MSAD Management Plan
E2.5.3 Technology Plan

Press #fyellow SPACE#d to continue.

close_window().
end. (*9.2.1 Experiment/Facility Preintegration*)

topic '9.2.2 Experiment/Facility Preparation'.
window ('9.2.2 Experiment/Facility Preparation',blue,white,white).
say ('This section is referenced further in:
SRD Sections
4.1 Experiment Details
4.3 Test Plan Including Ground Char. of Flight Hardware
6.2 Apparatus Design Assistance

MSAD Management Plan
E2.5.3 Technology Plan

Press #Fyellow SPACE#d to continue.'

close window ()
end. (*9.2.2 Experiment/Facility Preparation*)

topic '9.2.3 Experiment User Room Requirements'.
window ('9.2.3 Experiment User Room Requirements',blue,white,white).
say ('This section is referenced further in:

ERD Section
7.0 Data System Requirements

MSAD Management Plan
E2.5.3 Technology Plan

Press #fyellow SPACE#d to continue.'

close window ()
end. (*9.2.3 Experiment User Room Requirements*)

topic '9.2.4 Experiment Late-Access Design Requirements'.
window ('9.2.4 Experiment Late-Access Design Requirements',blue,white,whi
JA-1303

9.0 Post-Mission

Press #fyellow SPACE#d to continue.').

close window ().
end. (*9.2.5 Postmission Requirements*)

topic '9.2.6 Postmission Early-Access Requirements'.

window ('
 This section is referenced further in:

SRD Section
4.6 Post Flight Data Handling and Analysis

Press #fyellow SPACE#d to continue.').

close window ().

end. (*9.2.6 Postmission Early-Access Requirements*)

(*Last modifications: August 22, 1991*)
The primary purposes of the Science Requirements Document are:

1. to provide adequate justification for conducting the experiment in space,

2. to delineate and justify the science requirements that the experiment places on the hardware.

The Outline for the Science Requirements Document:

1. #mIntroduction/Summary#m
2. #mBackground#m
3. #mJustification for Conducting the Experiment in Space#m
4. #mExperiment Details#m
5. #mExperiment Requirements#m
6. #mPrincipal Investigator's Requirements#m
7. #mOther Requirements#m

The appropriate NASA official, for example the #mMSAD#m Chief Scientist, will have approval authority for the document and will be required to approve the original submission and all subsequent changes.'

(* soutline*)

(*........................ Threaded topics.....................*)

topic 'Introduction/Summary'.
window ('Introduction/Summary',blue,white,white,,,,13).
say ('Provide a brief discussion describing the following areas:

#m1.1 Description of Experiment#m
1.2 Scientific Knowledge to be Gained
1.3 Value of Knowledge to Scientific Field
1.4 Justification of the Need for Space Environment
Press #fyellow SPACE#d to continue.
end. (*Introduction/Summary*)

topic 'Background'.
window ('Background',blue, white,white,2,2,70,18).
say ('Provide a brief discussion, between 300 and 900 words, describing the following areas:

2.1 Description of Scientific Field to which the Experiment Belongs
2.2 Current Application for Research in the Field

#m2.3 Brief Historical Account of Prior Research#m
#m2.4 Current Research#m

2.5 Relationship of Proposed Experiment to Scientific Field
2.6 Anticipated Advance in State of the Art

Press #fyellow SPACE#d to continue.
end. (*Background*)

topic 'Justification for Conducting the Experiment in Space'.
window ('Justification for Conducting the Experiment in Space',blue,white,white,3,4,70,16).
say ('Provide a brief discussion describing the following areas:

3.1 Limitations of Ground-Based Testing
3.2 Limitations of Drop Towers
3.3 Limitations of Testing in Aircraft
3.4 Need for Accommodations in the Shuttle
3.5 Limitations of Mathematical Modeling
3.6 Limitations of Other Modeling Approaches

Press #fyellow SPACE#d to continue.
end. (*Justification for Conducting the Experiment in Space*)

topic 'Experiment Details'.
window ('Experiment Details',blue,white,white,2,5,70,16).
say ('Provide a detailed description of observational, measurement, environmental, and data requirements from which engineering specifications can be derived covering:

2
#m4.1 Experiment Procedures to be Used

4.2 Measurements Required

#m4.3 Test Plan Including Ground Characteristics of Flight Hardware

4.4 Specific Analysis Required

#m4.5 Preflight Experiment Planned

#m4.6 Post Flight Data Handling and Analysis

4.7 Mathematical Models Used

4.8 Application of Results

Press #fyellow SPACE#d to continue.').
close_window ()..
end. (*Experiment Details*)

Provide a brief discussion describing the following areas:

#m5.1 Experiment Sample Requirements

#m5.2 Atmospheric Requirements

#m5.3 Temperature Control and Measurement

#m5.4 Vibration Control and Measurement

#m5.5 Test Matrix

#m5.6 Imaging Requirements

#m5.7 Electromagnetic Limitations

#m5.8 Astronaut Involvement

#m5.9 Data Requirements

#m5.10 Telepresence, Telerobotics

Press #fyellow SPACE#d to continue.').
close_window ()..
end. (*Experiment Requirements*)
Provide a brief discussion describing the following areas:

#m6.1 Research Equipment#m
6.2 Apparatus Design Assistance
6.3 Consultation
6.4 Grant, Contract

#m6.5 Services#m

Press #fyellow SPACE#d to continue.
end. (*Principal Investigator's Requirements*)

Describe other applicable material not addressed in the previous sections.

Press #fyellow SPACE#d to continue.
end. (* Other Requirements *)

(*==================================the topics have subtopics =========*)

topic '1.1 Description of experiment'.
window ('1.1 Description of experiment',blue,white,white,,,13).
say ('Indicate the number of flights involved and provide a brief description of each, including interdependent relationships and contingency plans. Include summary descriptions and quantities of each major hardware system and subsystems.

Summarize the essential guidelines for:

Physical and functional compatibility between the experiment equipment and the Space Station Freedom environment.

Physical and functional compatibility between the experiment equipment and interfacing flight systems and facilities.

Physical and functional compatibility among experiments.

Equipment and personnel safety.
This section summarizes previously conducted studies not including current research and results.

This section summarizes the most recently conducted studies or related activities and their results.

Provide a incremental description of the steps that are to be preformed and include the resource requirements and time schedules for each step.

Include a discussion of the classification of the #mhardware#m (flight hardware reliability).

The design of the flight hardware should strive to simplify/minimize the interfaces to and dependence on #mSTS#m/Spacelab systems.
The experiment will be sent to a Payload Integration Center for preflight integration. All interfaces with the Spacelab, Orbiter, or Mission Peculiar Equipment (mMPE) will be functionally verified. Provide #mGSE#m and operators required to verify that the payload is functioning correctly prior to integration. The experimenter must also provide any required operation procedures for verifying payload operability/compatibility.

Define any of these activities that you will need.

Press #fyellow SPACE#d to continue."

Describe procedures and associated efforts, including primary locations, for post-mission analysis of data and other mission results. Each developer is responsible for data reduction, data analysis, publication of results and preparation of necessary documentation for delivery to the National Space Science Data Center at #mGSFC#m.

Press #fyellow SPACE#d to continue."

Be sure to include the number of samples and the materials used to conduct the experiment. Then make sure each one is justified and/or substantiated in the documentation.

Press #fyellow SPACE#d to continue."

Be sure to include any information related to:

Pressure
Gas Composition
Humidity
Vacuum

Then make sure each one is justified and/or substantiated in the documentation.

Press #fyellow SPACE#d to continue. ')
close_window ()
ed. (*5.2 Atmospheric requirements*)

topic '5.3 Temperature control and measurement'.
window ('5.3 Temperature control and measurement',blue,white,white)
say ('

As much accuracy as possible is required when describing this section and each part must be justified and/or substantiated in the documentation.

Press #fyellow SPACE#d to continue. ')
close_window ()
ed. (*5.3 Temperature control and measurement*)

topic '5.4 Vibration control and measurement'.
window ('5.4 Vibration control and measurement',blue,white,white).
say ('
As much accuracy as possible is required, along with the frequency of measurement when describing this section.
Each part must be justified and/or substantiated in the documentation.

Press #fyellow SPACE#d to continue. ')
close_window ()
ed. (*5.4 Vibration control and measurement*)

topic '5.5 Test matrix'.
window ('5.5 Test matrix',blue,white,white).
say ('
Include the number of tests and the required duration of each test when describing this section. Each requirement must be justified and/or substantiated in the documentation.

Press #fyellow SPACE#d to continue. ')
close_window ()
ed. (*5.5 Test matrix*)

topic '5.6 Imaging requirements'.
window ('5.6 Imaging requirements',blue,white,white,2,5,70,14).
say ('
Be sure to include any information related to:
Each requirement must be justified and/or substantiated in the documentation.

Press #fyellow SPACE#d to continue.

close window ()

end. (*5.6 Imaging requirements*)

topic '5.7 Electromagnetic limitations'.
window ('5.7 Electromagnetic limit',blue,white,white,,15).
say ('Experiment equipment shall be designed and constructed to meet the requirements of ICD 43004 section 3.4.2.8 and MSFC-SPEC-521 to assure electromagnetic compatibility with all Space Station Freedom equipment, #mSTS#m equipment, other equipment and associated ground support equipment (#mGSE#m).

(e.g., electric connections, power sources, safety critical emissions, and magnetic fields.)

Each limitation must be justified and/or substantiated in the documentation.

Press #fyellow SPACE#d to continue.'

end. (*5.7 Electromagnetic limit*)

end. (*5.7 Electromagnetic limit*)

topic '5.8 Astronaut involvement'.
window ('5.8 Astronaut involvement',blue,white,white).
say ('Be sure to include any information related to:

Extravehicular activity (EVA)

Activation of experiment

Each of the requirements must be justified and/or substantiated in the documentation.

Press #fyellow SPACE#d to continue.'

close window ()

end. (*5.8 Astronaut involvement*)

topic '5.9 Data requirements'.
window ('5.9 Data requirements',blue,white,white,,13).
say ('Define the requirements and activities for completing the scientific data analysis and post flight reporting.

8
The developer shall submit stress and fracture control data on critical structures and bracketry in accordance with JA-418.

Each of the requirements must be justified and/or substantiated in the documentation.

Press #fyellow SPACE#d to continue.

close_window ().
end. (*5.9 Data requirements*)

topic '5.10 Telepresence, telerobotics'.
window ('5.10 Telepresence, telerobotics',blue,white,white).
say ('Each requirement must be justified and/or substantiated in the documentation.

Press #fyellow SPACE#d to continue.

close_window ().
end. (*5.10 Telepresence, telerobotics*)

topic '6.1 Research equipment'.
window ('6.1 Research equipment',blue,white,white).
say ('Be sure to include any information related to:

 o Preflight

 o Postflight

Press #fyellow SPACE#d to continue.

close_window ().
end. (*6.1 Research equipment*)

topic '6.5 Services'.
window ('6.5 Services',blue,white,white).
say ('Be sure to include any information related to:

 o Film developing

 o Software development

Press #fyellow SPACE#d to continue.

close_window ().
end. (*6.5 Services*)

(*================================ end subtopics================================*)
NASA prototype system to aid in the development of NASA Science Requirements Documents for preflight planning and control.

topic 'experiment'.
 window ("Experiment ", blue, white, white).
 say ('That science activity which is going to be performed using a set of hardware. This activity is defined by the Principal Investigator and leads to a set of science requirements which the #mhardware#m must meet in order to perform the experiment.

Press #fdarkgray SPACE#D to continue.').
 close window ().
end. (* experiment *)

topic 'PI'.
 window ('Principal Investigator (PI)' ,blue,white,white,4,4,70,16).
 say ('The Principal Investigator is in charge of the conduct of the experiment and is responsible for defining the data or other products required/desired from the operation of an instrument or experiment facility (a payload element) and for providing scientific support during the physical integration and flight operation of the equipment. This may include defining the performance requirements on equipment to be developed or may only be the definition of the use of existing equipment. A PI may also be the Experiment Payload Element Developer (#mEPED#m).

Press #fdarkgray SPACE#D to continue.').
 close window ().
end. (* PI *)

topic 'GSFC'.
 window ('GSFC',blue,white,white).
 say ('Goddard Space Flight Center

Press #fdarkgray SPACE#D to continue.').
 close window ().
end. (* PI *)

topic 'MSAD'.
 window ('MSAD',blue,white,white).
Materials Summary Acceptance Document

Press #darkgray SPACE#D to continue.

close_window ().
end. (* MSAD *)

(topic 'MPE'.
window ('MPE',blue,white,white).

say ('

Mission Peculiar Equipment

Press #darkgray SPACE#D to continue.').

close_window ().
end. (* MPE *)

(topic 'GSE'.
window ('GSE',blue,white,white).

say ('

Ground Support Equipment

Press #darkgray SPACE#D to continue.').

close_window ().
end. (* GSE *)

(topic 'EPED'.
window ('EPED',blue,white,white).

say ('

Experiment Payload Element Developer

Press #darkgray SPACE#D to continue.').

close_window ().
end. (* EPED *)

(topic 'STS'.
window ('STS',blue,white,white).

say ('

Space Transporation System

Press #darkgray SPACE#D to continue.').

close_window ().

2
end. (* STS *)