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FOREWORD

This report documents an engine parametric study expected to generate useful

planning and design information for the vehicle prime contractors developing concepts

for manned missions to the moon, Phobos, and Mars. The baseline engine uses some

form of a hydrogen expander cycle within the thrust range of 7.5K lbf to 50K lbf. The

data base for starting the study was the 7.5K lbf OTV engine preliminary design, an

expander cycle engine was mandated. There was no comparison or tradeoffs with other

engine cycles. These constraints on the study served to focus it within a limited design

range highly dependent on the technology developed over the past decade by the

Orbital Transfer Vehicle (OTV) engine technology program sponsored by NASA Lewis

Research Center.

Tile terms Chemical Transfer Propulsion (CTP) engine and OTV engine are used

interchangeably in this report although the OTV engine may be just one of several

engines developed under the CTP program. The specific application of a CTP engine

for |he I,unar return mission is designated as a LTV/LEV engine. The Lunar Transfer

Vehicle (LTV) and Lunar Excursion Vehicles (LEV) are expected to use the same basic

engine.

Interaction with and feedback from the vehicle prime contractors was very limited.

Interface requirements were gleaned primarily from the NASA-MSFC sponsored Phase

A Vehicle Studies plus direction from NASA-LeRC.

This study was initially directed by Jerry Pieper. The work was continued through

the Design and Parametric Subtask under the direction of Judy Schneider. Completion

of the study and preparation of the final report was done by Warren ttayden who

served as senior Project Engineer throughout the period of performance.

The period of performance for this study was October 1988 to May 1990.
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1.0 SUMMARY

The objective of the study was to develop advanced engine system descriptions

and parametric data for use by space transfer vehicle prime contractors and the NASA.

Parametric design data was obtained for a LOX/LH2 advanced expander cycle engine

at five engine thrusts ranging from 7.5K lbf to 50K lbf. In addition, the study included

an evaluation of engine throttling over a 20:1 range (2000 psia to 100 psia chamber pres-

sure) and operation at mixture ratios from a nominal 6+ 1 to 12 + 1. The two variation

studies were done at the 20,000 lbf thrust level.

The study was expanded to assist in preparation of the NASA response to

President Bush's space initiative. The Aerojet input included some parametric per-

formance data plus DDT&E and first unit production costs. One limitation of the study

was the lack of contact with vehicle primes to assess various vehicle/engine interface

issues. This is recommended as a follow-on task.

Aerojet and NASA LeRC have an eight year history in the development of the dual

propellant expander cycle engine. This cycle uses heated (400°F) oxygen to drive the

oxygen turbopump. This allows a design free of the need for a helium purge gas system

and reduces pressure demands on the hydrogen circuit for higher chamber pressure

operation. During this study a cycle variant, splitting the hydrogen flow between the

chamber and the baffled injector assembly, was examined and accepted as the design

baseline. This cycle can maintain a 2000 psia chamber pressure over the 7.5K lbf to 50K

lbf thrust range, can throttle over a 20:1 range, and can operate at the high mixture

ratios needed for efficient use of lunar oxygen as a supplement to earth origin

propellants. Based on an analysis with the Aerojet Modified Liquid Engine Transient

Simulation (MLETS) code, this cycle is predicted to be stable at thermal equilibrium,

and the basic engine control valve operation is expected to be nearly linear over the

throttling range. A throttle rate of 4 to 5 seconds from 10% to 100% of thrust was

predicted using the TUTSIM dynamics code.

Performance as measured by delivered specific impulse at MR = 6 and an area

ratio of 1200 is 483.1 seconds at 7.5K lbf, 484.3 seconds at 20K lbf, and 485.2 seconds at

50K lbf. Predicted engine dry weight excluding gimbal and thrust takeout structure is

291.8 Ibm at 7.5K lbf, 486.3 lbm at 20K lbf, and 1362 lbm at 50K lbf using available

RlYl./iX_417.SSa I



1.0, Summary, (cont)

technology. Engine envelopes for a 1200:1 area ratio nozzle using one extendible/

retractable section varies from 120 inches length/58 inch exit diameter at 7.5K lbf thrust

to 304.8 inches length/137 inches diameter at the 50K lbf thrust with the nozzle

extended. These are large engines in terms of envelope. Packaging will be an important

consideration.

The DDT&E cost data was generated using a costing methodology found to be

well accepted on the Advanced Launch System (ALS) program. The program as costed

used assumptions typical of engine fabrication numbers and tests in a NASA MSFC

program. The total DDT&E cost was about $950M with a program start in FY91 and

first flight in 1999. First unit production costs are based on production numbers,

learning curve, engine thrust, and a complexity factor based on an RL-10 engine as the

reference. For the lunar return mission, Nth unit engine cost is expected to be in the

$6M to $12M range. As references, the current RL-10 cost is $3M to $4M and an OMS

engine is about $6M. Generation of life cycle costs was not feasible as they are

dependent on the mission life and maintenance scenarios which are still incompletely

defined.

The latest version of the dual expander cycle holds promise as a long-life engine

capable of meeting all mission performance requirements including 20:1 throttling and

MR = 12 operation. All major technical questions such as the 400°F oxygen turbine

drive are being evaluated under NASA LeRC sponsored programs. The platelet heat

exchanger technology is in qualification for space shuttle flight operations as this is

written, and a vigorous program start has been made to develop the integrated control

and health monitoring system (ICHM) capability under the OTV engine technology

program. A continuation of this work is recommended, but the scope should be

broadened to include more vehicle prime/engine contractor joint assessment of the

interface issues.

RPTI DO417-_Sa 2



2.0 INTRODUCTION AND BACKGROUND

2.1 BACKGROUND

2.1.1 Orbit Transfer Vehicle (OTV) Engine Technology

The NASA has had some concept for a vehicle to move payloads and

people beyond low earth orbit (LEO) since the inception of the United States space pro-

gram. Over the years, the vehicle has had a number of names and many configurations,

but the basic concept of a general purpose vehicle for a variety of tasks beyond LEO has

persisted. Since 1982, this concept has been developed as part of the Orbit or Orbital

Transfer Vehicle (OTV) technology program. NASA-Marshall Space Flight Center has

been responsible for the vehicle studies while NASA Lewis Research Center has di-

rected main engine development. The work reported herein was completed under a

contract with NASA LeRC.

Over the seven years of this contract there has been an evolution in

the mission model from an emphasis on LEO-to-GEO payload delivery missions to the

current interest in the Lunar Return mission and a manned Mars mission. The effect on

the engine development has been to emphasize the reliability and redundancy require-

ments for a man-rated propulsion system. Also, space basing and multimission

capability place a premium on performance as measured by specific impulse and engine

throttling. The very long service life goal (500 starts, 20 hours) mandates a sophisticated

integrated health monitoring and control system. The engine resulting from these strin-

gent requirements will be the most technically advanced and highest performing liquid

oxygen/liquid hydrogen propellant engine developed in this century. It could serve as

the basic upper stage main engine for both manned and unmanned missions until the

middle of the next century.

The first phase of the NASA-LeRC sponsored program consisted of

study efforts to generate and evaluate innovative technology concepts at the subcom-

ponent, component, and engine system levels for an advanced O2/H2 propulsion sys-

tem. Pratt & Whitney, Rocketdyne, and Aerojet TechSystems were each awarded con-

tracts in 1982 for this phase of the work. Aerojet initiated several new concepts during

this work of which the most notable was the dual propellant expander cycle. This cycle

RItI'/1XI417._5a 3



2.1.1, Orbit Transfer Vehicle (OTV) Engine Technology, (cont)

improves the conventional hydrogen expander cycle by heating both hydrogen and

oxygen for use as working fluids with consequent improvement in operating flexibility

and higher chamber pressure.

The Phase II program, which is the current contract, builds on the

Phase I work by evaluating through analysis, fabrication, and testing the concepts criti-

cal to the success of the proposed engine. The Aerojet technology focus has been on the

oxygen turbopump (successfully tested), the thrust chamber, oxygen/materials compat-

ibility, an engine preliminary design, and an Integrated Control Health Monitor System

(ICHM). Design and development work has been in accordance with NASA-LeRC

established technology goals. Table 2.1-1 summarizes the technology goals and gives

the existing RL-10 engine technology as a comparison. The 1988 requirements will

undergo some changes as the Lunar return mission is better defined.

The change in emphasis from an OTV for the LEO-to-GEO mission to

a vehicle capable of landing on the moon or other bodies in the inner solar system will

impact several of the engine requirements. The one most likely to change is engine

thrust. This study was planned to generate parametric data for engines ranging in

thrust from 7.5K lbf to 50K lbf as the actual mission thrust is very likely to fall within

that range. An important design selection factor affecting baseline engine thrust is the

number of engines per vehicle. For a man-rated vehicle at least two engines will be

required, but three or four engines may be optimum when such factors as length con-

straints are considered. As will be discussed later in this report, the current baseline

vehicles for the Lunar mission use a set of four engines each. An unmanned vehicle for

LEO-to-GEO missions may very well use only one or two of these engines. The lunar

mission requirements set the engine thrust once the number of engines in the

propulsion set is established.

Work on the Advanced Engine Study began in November 1988 and

concluded in the Spring of 1990 with this final report.

RIrf/DOi17.55a 4





2.1, Background, (cont)

2.1.2 Aerojet Dual Propellant Expander Cycle Engine

In a conventional expander cycle engine, hydrogen is routed through

passages in the combustion chamber wall where it both cools the wall and acquires suf-

ficient thermal energy to power the turbine drives of pumps for both the hydrogen and

oxygen flow circuits. It is then routed to the injector for combustion. This cycle is fairly

simple, plumbing is straight forward, it offers good performance potential, and, as all

propellant is burned in the combustion chamber, it does not have the losses associated

with open cycles. Its limitations are related to dependence on only one propellant as a

turbine drive fluid which, in turn, requires interpropellant seals and a purge gas in the

oxygen turbopump. To obtain the needed power, the hydrogen must be heated to a

temperature very near to the design limit for the copper based alloys employed for the

chamber liner. With the added limits imposed by high cycle life, long operating times

without maintenance, and 10:1 or greater throttling requirement, the basic hydrogen

expander cycle is capable of only a modest improvement over the current production

expander cycle engine, the RL-10.

The Aerojet dual propellant expander cycle alleviates these limitations

by using oxygen as a working fluid as well as hydrogen. This reduces the demands on

the hydrogen circuit as the oxygen turbopump is driven by heated oxygen. It also

eliminates the need for an interpropellant seal and the associated helium purge

requirement. The gasified oxygen is also needed for the I-triplet gas-gas injector

element which provides high (-100%) energy release efficiency and excellent

combustion stability over a wide throttling range. The oxygen is heated to a maximum

of 400°F by flowing through a LOX/GH2 heat exchanger and then through the

regeneratively cooled nozzle extension. The flow schematic is shown in Figure 2.1-1.

This is the schematic used for the advanced engine study. The hydrogen used to heat

the cold oxygen in the heat exchanger is the effluent from the hydrogen TPA turbine

and provides the thermal energy to the oxygen at an efficiency cost of some pressure

drop across the heat exchanger.

This cycle has proven more efficient than originally expected consid-

ering results of the 7.5K lbf thrust engine preliminary design. That design had cold

hydrogen routed from the pump outlet to the regenerator, to the regeneratively cooled

RP'r/D04,I 7.55a 6
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2.1.2, Aerojet Dual Propellant Expander Cycle Engine, (cont)

chamber and then through the baffle circuit before powering the hydrogen turbine

drive. This series flow generated high hydrogen temperatures, but was temperature

limited by the copper walls of the chamber and baffles. Pressure drops were also high.

The combination of wall temperature and pressure drops limited the power and

flexibility of the cycle. A very effective remedy was to split the flow between the baffled

injector circuit and the regeneratively cooled chamber as shown in Figure 2.1-1. This

split or parallel flow version is capable of a 21:1 throttle range at the 20,000 lbf thrust

design point (1000 lbf thrust to 21,000 lbf thrust). Chamber and baffle wall

temperatures are well within design limits over the range of thrust.

Two key components in the engine are the hydrogen regenerator and

the LOX/GH2 heat exchanger (HEX). Both are NASA-Z copper structures fabricated

from copper platelets using the same technology recently demonstrated on the Space

Shuttle Main Engine (SSME) heat exchanger program, and expected to be operational in

1990. They are very compact and thermally efficient heat exchangers. The regenerator

functions as a pre-heater for the hydrogen in the baffle circuit. It will be used to trim

the engine output by the setting of its bypass valve. The HEX provides approximately

65% of the enthalpy gain in the oxygen circuit with the balance acquired in the oxygen

cooled nozzle extension. The HEX bypass valve modulates to keep the oxygen entering

the turbine at or below 400°F.

An integral part of the engine thermal design are the hydrogen cooled

baffles. Baffles on an injector face are commonly used to enhance combustion stability.

Generally they are transpiration cooled with fuel passing through the baffle directly into

the chamber. In this engine the baffle is still designed to enhance stability but, more

importantly, it provides surface area for heat input to the hydrogen. From 40 to 60% of

the total hydrogen enthalpy change comes from the baffle flow circuits where hydrogen

is passed down one side and back up the opposite side of the baffle to be collected and

mixed with the regen chamber hydrogen prior to powering the hydrogen turbopump.

The baffles allow the thrust chamber to be relatively short compared to a non-baffled

hydrogen cooled thrust chamber of equivalent hydrogen heating capability. They

require, however, a significant percent of the chamber barrel section volume. The



2.1.2, Aerojet Dual Propellant Expander Cycle Engine, (cont)

chamber diameter is increased to compensate giving an unusually high contraction ratio

(chamber injector area divided by throat area). Where storable propellant engines

commonly have contraction ratios of 2 to 4 this engine has a ratio of 15.3.

2.2 SCOPE

2.2.1 Objective

The objective of the study is to develop advanced engine system

descriptions and parametric data for use by space transfer vehicle primes and NASA

planners.

2.2.2 Requirements

The advanced engine continues the liquid oxygen/liquid hydrogen

propellant engine technology developed under the OTV engine technology program.

Specific engine system requirements and goals are given in Table 2.2-1. The baseline

engine start cycle and autogenous tank pressurization requirements are given in

Figure 2.2-1

2.2.3 Program Description

The Advanced Engine Study is a 15-month activity with five subtasks.

The subtasks and their interrelationships are presented in Figure 2.2-2.

2.2.3.1 Subtask 2 - Design and Parametric Analysis

The subtask objective is to develop the specific design and para-

metric data on advanced engines over a thrust range of 7.5K lbf to 50K lbf. The baseline

for the design is the 7.5K lbf thrust OTV engine design developed under NASA LeRC

Contract NAS 3-23772. This task generates at a minimum, the following:

• Needed engine cycle changes over the thrust range.

• Identification and assessment of advanced technologies needed

for the advanced engine cycle.

RI'I/I Xk117 .SSa 9



TABLE 2.2-1.

Engine System Requirements and Goals

Propellants:

Vacuum Thrust:

Vacuum Thrust Throttling Ratio:

Vacuum Specific Impulse:

Engine Mixture Ratio:

Chamber Pressure:

Drlve Cycle:

Dlmenslonal Envelope:
Length (Stowed/Extended)
Dlameter (Maximum)

Mass:

Nozzle Type:

Nozzle Expansion Ratio:

Propellant Inlet Temperatures:
Hydrogen
Oxygen

Inlet Net Posltlve Suction Head:
Hydrogen
Oxygen

Deslgn Crlterla:

Servlce Life Between Overhauls:

Service Free Life:

Maximum Single Run Duration

Maximum Tlme Between Flrlngs:

Mlnlmum Time Between Firings:

Maxlmum Storage Time In Space:

Glmbal Requirement:
Yaw Angle
Acceleration (Maximum)
Velocity (Maxlmum)

Start Cycle

* Englne Parametric Study Result

**Vehlcle/Mlsslon Study Result

Liquid Hydrogen
Liquid Oxygen

7,500 Ibf to 50,000 Ibf (Study Range)

10:1

#

6.0 (Design Point at Full Thrust)
5.0 - 7.0 (Operating Range at Full Thrust)
*

Expander

Bell With Not More Than One Extendible/
Retractable Section

End of Regen Section to 1200 (Study
Range)

37.8 R
162.7 R

15 ft-lbf/Ibm at Full Thrust
2 ft-lbf/Ibm at Full Thrust

Human Rated
Aeroassist Compatible
Space Based

500 Starts/20 Hours Operation (Goal)

100 Starts/4 Hours Operation (Goal)
##

_#

#*

_tt

It

t#

(Figure 2.2-1)
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