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SUMMARY

High-efficiency,lightweight,radiation-resistantsolarcellsare essentialto meet the large

power requirementsof futurespace missions.Single-junctioncellsare limitedin efficiency.

Higher cellefficienciescould be realizedby developingmultijunction,multibandgap solarcells.

Monolithicand mechanicallystackedtandem solarcellssurpassingsingle-junctioncellefficiencies

have been fabricated.This articlesurveys the currentstatusof monolithicand mechanically

stacked multibandgap space solarcells,and outlinesproblems yet to be resolved.The mono-

lithicand mechanicallystackedcellseach have theirown problems relatedto size,processing,

currentand voltagematching,weight,and other factors.More informationisneeded on the

effectof temperature and radiationon the cellperformance. Proper referencecellsand full-

spectrum range simulatorsare alsoneeded to measure efficienciescorrectly.Cost issuesare not

addressed,sincethe two approaches are stillin the developmental stage.

INTRODUCTION

High-efficiency, lightweight, radiation-resistant solar cells are essential to meet the large

power requirements of future space missions. Such solar cells are being developed, and present-

day laboratory results are quite promising. However, single-junction cells are limited in effi-

ciency. Large-area silicon cells (8 by 8 cm) to be used in the solar arrays for the Space Station

Freedom are on the average 14.5 percent AM0 efficient and have achieved efficiencies as high as

15.4 percent AM0 (Khemtong et al., 1989). Currently, gallium arsenide (GaAs) single-junction

solar ceils have the highest energy conversion efficiency, and some test cells have flown success-

fully on various space flights.

GaAs cells (4 cm 2) have achieved 1-sun efficiencies exceeding 21 percent AM0

(Bertness et al., 1989) and 25.1 percent AM0 at 333 suns, respectively, for 0.126 cm 2 Casse-

grainian cells (Hamaker et al., 1988). Their better radiation resistance would make them a
strong candidate for future space satellite applications, if the cost could be brought down.
Efforts in this direction have led to the development of GaAs cells on silicon (Si) and germanium

(Ge) substrates. Fan and Palm (1983) performed a computer analysis to find the maximum
achievable AM0 efficiencies in single-junction crystalline cells as a function of the material

energy bandgap, as shown in Fig. 1 for various sun concentrations at 80 ° C. According to this

figure, the optimally designed efficiencies at 1 sun are slightly more than 20 percent and for
concentrations more than 500 suns are slightly above 25 percent. Efficiencies at 25 °C would be

correspondingly higher. Therefore, it becomes quite clear that one could not achieve efficiencies
in the 30 to 40 percent AM0 range with single-junction devices alone.

Higher cell efficiencies could be achieved by more effectively utilizing more of the sunlight

energy spectrum. This could be accomplished through the use of more than one active junction
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of differentbandgapsin a solarcelldevice. In fact, asearly as1955, Jackson (1955) suggested
that the cell efficiency could be increased through the use of different bandgap materials, but

because of the complexity and economic reasons_ the approach was not pursued. Moon et al.

(1978) were the first to demonstrate this concept experimentally by using a spectral-splitting

filter and a two-cell Si and aluminum gallium arsenide (A1GaAs) arrangement. Although this
approach required complex optical elements, it clearly illustrated the viability of the multiband-

gap concept by achieving 28.5 percent efficiency (AM1.23, 165 suns). This approach could be

implemented practically by fabricating either monolithic or mechanically stacked (MS) tandem

multijunetion solar cells. Theoretically, any number of active junctions of different bandgap

materials could be considered. In such cells, light not absorbed in the high-bandgap top junction

is transmitted down to the bottom junction, and the process continues. Figures 2 and 3 show

the AM0 isoefficieney plots of the two-cell, monolithic (two-terminal) and mechanically stacked

(four-terminM) tandem structures at 27 °C and 1 sun, respectively (Fan et al., 1982). Figures 4
and 5 describe the AM0 isoefficiency plots of the two-cell, monolithic and the MS tandem

structures at 80 °C and 100 suns (Fan and Palm, 1983). These results are from a computer

analysis to determine the maximum achievable efficiencies of tandem cells by optimal bandgap
combinations of cell materials. From figures 2 to 5 it is clear that tandem cell efficiencies in

excess of 30 percent AM0 could be achieved. Efficiencies around 40 percent AM0 are expected

for three-cell tandem cell structures according to a computer optimal design study (Fan and
Palm, 1983).

In this article, attempts are made to survey the present status of monolithic and MS

multibandgap space solar cells. The goal has been to achieve 30 percent plus AM0 with two-

junction cells and 40 percent plus AM0 efficiencies with three-junction tandem cells. Theoretical
calculations and cell modeling have also predicted efficiencies in these ranges. The results are

very encouraging and promise a great potential for using these cells in future space power sys-

tems. Although tandem cells for terrestrial applications (AM1.5) have not been considered in

this work, significant progress has been reported recently (Gee and Virshup, 1988, and Fraas

et al., 1990), and both technologies are complementing the overall development.

The next two sections review the recent developments in monolithic and MS stacked multi-

bandgap, multijunction tandem solar cells, respectively, for space applications. The status of

concentrator cell technology also is discussed. Prismatic cover slides are being used to effectively

eliminate grid-shading losses, leading to improved efficiencies. Tandem cells in thin-film form

are being developed to achieve high specific power. The discussion section opens up several

questions about what efficiencies could be practically a_chieved, which structure:-monolithic or
mechanically sl_acked--is better, and other concerns. Both the monolithic and MS cells have

their own problems, and efforts are made to outline problems yet to be resolved. Recommenda-
tions for further work also are highlighted. Cost issues have not been resolved since the two

approaches are still in the developmental stage.

MONOLITHIC TANDEM CELLS

__ - = : ......

Conceptually, the process of growing differing bandgap material junctions (one on top of
the other) on asingle substrate looks like a very elegant approach to fabricating monolithic

tandem cells: An=intermediate, transparent shortlng layer interconnects the junctions, so that a

two-terminal device is produced with the current of each junction matched to that of the other.

In this approaeh_onecould encounter interfering growth conditions (such as lattice and thermal
expansion mismatch, auto doping, and out diffusion) while growing different bandgap materials.



Theshortinglayermusthave low electrical and optical losses. Efforts have been made to

produce two- and three-junction monolithic tandem cells for space applications; so far, the

results have been encouraging.

Lillington et al., (1989) reported a typical AM0 efficiency of 19.1 percent (28 °C) on 2- by

2-cm 2 GaAs/Ge dual-junction cells. Figure 6 shows the cross section of a GaAs/Ge cell. It is

possible to improve efficiencies up to 24 percent AM0 by using proper antireflection coatings,

improving the quality of the GaAs growth/Ge wafers, and using back surface field/back surface

reflector (BSF/BSR) in the Ge cell. Recently, Wojtczuk et al. (1991) reported a record effi-
ciency of 23.4 percent AM0 at 9 suns and 25 °C for a monolithic, two-terminal GaAs/Ge

tandem space concentrator cell. Graded bandgap A1GaAs/Ge cells offering improved minority-
carrier collection have also been fabricated (Timmons et al., 1989), and the initial results are

encouraging. Timmons et aI. (1989) observed that A1GaAs cells are more radiation-resistant
than GaAs cells. Germanium offers a good lattice and thermal match, allowing growth of high-

quality GaAs and AlGaAs layers. Ge wafers also offer lower cost and mechanically strong,

lighter (thin) cells. Recently, Wanlass et al. (1990) reported the development of a lattice-
matched indium phosphide/gallium 0.47 indium 0.53 arsenide (InP/Ga0.47In0.53As) two-junction,

three-terminal, monolithic tandem cell with AM0 efficiencies of 23.9 percent (25 *C). The

performance parameters of the best cell are described in Table I. The top InP cell offers the best

radiation resistance, and the three-terminal structure provides independent control of each
subcell in the monolithic stack. The cell efficiency improves to 28.8 percent AM0 at 40.3 suns.

Partain et al. (1990) described the three-junction, two-terminal A1GaAs/GaAs/InGaAs mono-
lithic concentrator solar cell for space applications. They achieved an efficiency of 15.3 percent

for a 1.9-eV A1GaAs top cell, 9.9 percent for a 1.4-eV GaAs middle cell, and 2.4 percent for a
1.0-eV InGaAs bottom cell at 80 °C and 100 suns. The total tandem AM0 efficiency for this

0.2-cm 2 monolithic three-junction cell adds to 27.6 percent. Further developments are in

progress to achieve 30 percent AM0 efficiency cells.

MECHANICALLY STACKED TANDEM CELLS

The approach of mechanically stacking one cell over the other greatly expands the range of
materials useful for tandem cell configurations. Therefore, well-developed individual cell tech-

nologies could be combined to construct high-efficiency MS multibandgap tandem cells without

worrying about interfering growth conditions, shorting layers, or matching the current of
subcells.

DiNetta et al. (1989) reported the development of a self-supporting, transparent A1GaAs

top solar cell, which could be stacked on any well-developed bottom solar cell, and they pre-

dicted that efficiencies in the range of 30 to 40 percent AM0 could be feasible with a concentra-

tor system. Avery, J.E. et al., 1989, achieved a remarkable 30.8 percent AM0 (25 °C) efficiency
at a 100-sun concentration by using mechanically stacked_ transparent GaAs and gallium anti-

monide (GaSb) solar cells. Table II shows the stacked GaAs/GaSb test article performance data
measured at the NASA Lewis Research Center. GaSb was preferred as a bottom cell over Ge

because it is a binary compound, direct-gap material with a high absorption coefficient and has

an appropriate bandgap energy of 0.72 eV.

The top cell is made by growing epitaxial layers over a GaAs wafer. This transparent cell
does not have back grid lines and has antireflection coatings on the top and bottom surfaces to

improve the transmission of the long-wavelength spectrum. Lower bulk doping (1 × 1017 cm -3)



has been used to reduce the free-carrier absorption. The bottom cell is made by a conventional
diffusion process using single-crystal GaSb wafers. From Table II, it is observed that the cell fill

factor (FF) is limited because of series resistance, and with further developments in processing,
improvements in efficiency are expected. These cells are the same size and have an active area

of 0.049 cm 2 on a 0.3- by 0.5-cm chip. The cells are assembled together in a test article to form

the mechanically stacked tandem configuration. Each cell has an Entech cover, which avoids

grid-line shading, as illustrated in Fig. 7. The GaAs and GaSb cells have different voltages and
currents at the maximum power points, so they cannot be connected in series. Cells have to be

interconnected in voltage-matched circuit configurations as discussed in the next section.

The other significant development is reported by Kim et al. (1989) on the fabrication of

thin-film MS gallium arsenide/copper indium selenide (GaAs/CuInSe2) (tandem-junction) solar

cells. The top cell is made of GaAs Cleaved Lateral Epitaxial Films for Transfer (CLEFT) thin
film, and the bottom cell is a polycrystalline CuInSe 2 thin film deposited on a glass substrate.

More details about cell materials and processing are available in Kim et al. (1989). GaAs has

good radiation resistance, but CuInSe 2 has shown superb radiation tolerance (Burgess et al.,

1988), which makes it one of the 2possible space-qualified materials for solar cells. The best
efficiency achieved on these 4-cm tandem cells is 23.1 percent AM0 at 1 sun and is the highest

efficiency ever reported for a thin-film cell. Figure 8 shows the I-V characteristics for the top

GaAs and the bottom CuInSe 2 cell measured at NASA Lewis. Improvements in efficiency up to
26 percent are projected by using A1GaAs as the absorber in the top cell. A comparison of the

thin-film cell technology used in this tandem structure with a number of other technologies

clearly demonstrated a significant array-level weight and area savings. GaAs/CuInSe 2 tandem
cells with 25-#m- (1-mil-) thick cover glass could provide a spec_c power of 442 W/kg, which

could be further improved to 750 W/kg by using an A1GaAs top cell. For any space mission,

solar array weight has a very deciding role, therefore thin-film solar cell technology offers a great
potential.

DISCUSSION

Monolithic and mechanically stacked tandem cells have been developed with encouraging
efficiencies, and further developments would boost the practical efficiencies to theoretical limits.

However_rnost of the efforts are in'the early_stages, therefore many _questions are Unsolved and

still need to be understood, discussed, and answered. Some of the points that require attention
follow.

Monolithic Versus Mechanically Stacked Cells

If the growth of different bandgapmateriais were a simple process, the monolithic approach

would be elegant__The ]VI]gconcepi_o_ers_the follo_w_Tngadvantages: (1) it avoids the direct'

contact growth of different materials with interfering growth conditions; (2) it eliminates the

transparent shorting layer; (3) it removes the requirement of subcell current matching; and (4) it

makes possible the use of a greatly expanded range of we]Udeveloped materials. Computer
calculations _have pre_cted better effiC_encles:for the MS ceiis]n :comparison _t0 monolithic cells:

Whereas MS cells require complicated antireflection coatings to achieve better optical couplingi
mono][thlc cells require welI-contro]led epitaxiaI growth. Bot_ approaches have resulted in cells

Wlth AM_0 eff]ciencies around 30 pe-rcent, and performance-_ expected to increase further with

the proposed cell material and process developments. Therefore, it looks to be too early to

decide which approach is best for space. However, it is clear that to improve efficiencies the

concentrator approach would be desirable and should be pursued rigorously. Prismatlc Covers to
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improvegrid-coveragelossesshouldbeincorporated.Present-day cells are mostly small in area,
and efforts will be required to increase the size while maintaining the same efficiency. In the

case of MS cells, the back-surface contact grid lines of the top cell could be aligned with the

front-surface grid lines of the top and bottom cell, respectively_ to minimize the losses. High

specific weight is one of the most important criteria for any space satellite application. Thin-
filra cells in an MS structure have shown great potential to meet the goal; therefore, cells should

be developed using advanced CLEFT_ peeled, or other new thin-film technologies.

Temperature and Radiation Effects

Solar cells for space missions are required to operate at high temperatures and in a harsh
radiation environment. Therefore, it is necessary to study the behavior of tandem cells at

temperatures to 100 °C and with radiation damage equivalent to 1 MeV electron up to 1×1016

cm -2 and 10 MeV protons up to 1 × 1013 cm -2. Cell degradation due to temperature and

radiation is very important to meet the space power requirement because the cell array is

designed according to end-of-life (EOL) efficiencies. InP (Yamaguchi et al., 1984; Weinberg

et al., 1985) and CuInSe 2 (Burgess et al., 1988) have shown excellent radiation resistance, and
cells based on these materials should be further pursued. InP, GaAs and AIGaAs have also
shown better radiation resistance in comparison to Si. Use of concentrated light would increase

the cell operating temperature and should be considered while designing the solar array.

Presently limited information (I-V characteristics, spectral response, etc.) is available on the

temperature and radiation effects, and more work is required to determine the performance of
tandem cells under these conditions.

Tandem Cell Testing

An accurate determination of tandem multijunction solar cell efficiency is very important to

calculating the space array size. Methods to measure the I-V characteristics of single-junction
solar cells under any reference spectrum are well established. In case of tandem-junction cells,

especially for monolithic, two-terminal devices in which subcells are connected in series_ the
current mismatch between the individual cells would be different under the source and reference

spectrum. This problem poses an uncertainty in evaluating monolithic cells correctly. Testing
of tandem cells also requires calibrated reference cells. NASA Lewis Research Center has been

providing single-junction and multijunction reference cells (AM0) by using its high-altitude

airplane calibration technique. As newer tandem cells are developed, cells of each material must
be calibrated. There is a need for a centralized facility for uniform standardized reliable testing

of space-quality cells. Full-spectrum range simulators also must be developed. An improved
method for determining tandem-cell efficiency by obtaining spectral mismatch between the

individual subcells and the effect of solar simulators on the solar cell performance has been

de.scribed in detail in Glatfelter and Burdick (1987) and Emery et al. (1988), respectively.

Tandem Cell Integration In Arrays

The space solar array design would require a number of cells/strings connected in series and

parallel connections, along with power-conditioning equipment, to meet the load requirement. In
the case of monolithic tandem cells, each subcell would degrade in a different way with the space

radiation and temperature as a function of time. Therefore, the two-terminal, monolithic cell



performancewouldbecontrolledprimarily by the mismatchin individualcell currents.

Mechanically stacked tandem cells could be controlled separately, but because the operating

voltages and currents of the individual component cells are different, cells have to be connected

in a voltage-matched (m x n) configuration to form a two-terminal device. Two-terminal,

voltage-matched (3 by 3) configuration circuit cards utilizing Gahs/GaSb (Avery et al., 1989)

and GaAs/CuInSe 2 (Kim et al., 1989) MS tandem cells, respectively, have been fabricated. Gee
and Curtis (1988) calculated the effect of radiation on the various multijunction solar cell mod-

ule configurations. A number of different concentrator cells were considered under the 1-MeV
electron irradiation up to a fluenee of 3x1015 cm -2. It was found that the module configuration

can have a significant effect on the radiation tolerance of tandem cells because of the different

rate of degradation for the voltage and current. A voltage-matched configuration was found to

be superior to the series configuration, although it was difficult to simulate on-orbit conditions

to study the circuit performance, especially for tandem cells.

Cost

Several types of monolithic and mechanically stacked tandem-junction solar cells have been

developed with encouraging results. The present-day efforts are mostly at the laboratory level;

therefore, it is too soon to estimate the projected costs per watt for tandem cells and to predict

which approach--monolithic or MS--would be cost effective. Reliable cost estimates for space
power cells Could only be obtained after knowing the beginning-of-life (BOL) as well as EOL

efficiencies, which will require more experiments on the effects of a space mission environment on
the cells. The cell weight would also have a significant effect on the overall Space array cost.

High-efficiency, thin-film MS tandem multijunction cells offer a good promise toward higher

power/weight and higher power/area solar arrays, leading to lower costs.

CONCLUSIONS

Monolithic and mechanically stacked tandem solar cells have been fabricated with encourag-

ing AM0 effic_encies, which are summarized in Table III.

(1) Significani improvements in tandem cell efficiencies nearing theoretleal predictions are
projected with improvements in cell material quality and processing. Thin-film tandem cells

offer improved specific power.

(2) More information is required to determine the effects of temperature and radiation on

the performance of tandem cells.

(3) It is too early to decide which configurations would be preferable: monolithic (two or

three terminals), mechanical stack (four terminals), planar, or concentrator.

(4) Calibrated tandem reference cells and advanced solar simulators are necessary for
accurate determinations of cell efficiencies.

(5) It is too soon to estimate projected costs per watt for tandem cells.

i
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TABLE I.--MEASURED PERFORMANCE PARAMETERS FOR THE MOST EFFICIENT

InP/Gao.4_Ino.ss AS THREE-TERMINAL

TANDEM CELL AT AMO AND 25 °C.

Cell

InP

Gao.47Ino.saAs

Open-circuit

voltage,

Voo (v)

0.880

0.344

Short-circuit

current density,

Jsc (reAl cm2)

34.4

31.3

Fill factor,

FF (%)

82.9

71.0

Efficiency

(%)

18.3

>
5.6

Tandem

efficiency

(%)

23.9

TABLE II.--MEASURED MECHANICALLY STACKED GaAs/GaSb TEST

ARTICLE PERFORMANCE DATA AT AMO, 25 °C, and 100 SUNS.

Cell

GaAs

GaSb

Short-circuit

current,

Ijc (mA)

183

125

Open-circuit

voltage,

Voc(v)

1.120

0.469

Fillfactor,

FF (%)

0.84

0.71

Efficiency

(%)

23.9

>
6.9

Tandem

efficiency

(%)

30.8

TABLE III.--SUMM RY OF TANDEM SOLAR CELL EFFICIENCIES.

Type of

cell

Monolithic

Monolithic

Monolithic

MS

MS

Material

GaAs/Ge

InP/Gao.47Ino.saAs

AlGaAs/GaAs/InGaAs

GaAs/GaSb

GaAs/CulnSe 2

Efficiency

(%)

19.1

23.9

27.6 (100 suns)

30.8 (I00 suns)
23.1

Temperature

(-c)

28

25

80

25

25

Cell area

(cm2)

4.0

0.296

0.2

0.049

4.0

9
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Figure 1 .---Calculated AM0 conversion efficiencies at 1 -sun, 100-

sun, 500-sun, and 1000-sun concentrations of single-junction

solar cells made of materials having various bandgap energies.
Operating temperature, 80 °C.
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Figure 2.--Calculated AM0 isoefficiency plots for two-cell, two-
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