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Asymptotic Modal Analysis (AMA) is a method which has been used successfully
to model and understand linear dynamical systems with many participating modes. The
AMA method was originally developed by Dowell [1] to show the relationship between
statistical energy analysis (SEA) and classical modal analysis (CMA). In the limit of a large
number of modes of a vibrating system, the classical modal analysis result can be shown to
be equivalent to the statistical energy analysis result. As the CMA result evolves into the
SEA result, a number of systematic assumptions are made. Most of these assumptions are
based upon the supposition that the number of modes approaches infinity. It is for this
reason that the term "asymptotic” is used. Aﬁilsthe asymptotic result of taking the limit
of CMA as the number of modes approaché:é mﬁmty AMA refers to any of the
intermediate results between CMA and SEA, as well as the SEA result which is derived
from CMA.

The main advantage of the AMA method is that individual modal characteristics are
not required in the model or computations. By contrast, CMA requires that each modal
parameter be evaluated at each frequency. In the latter, contributions from each mode are
computed and the final answer is obtained by summing over all the modes in the particular
band of interest. AMA evaluates modal parameters only at their center frequency, and does
not sum the individual contributions from each mode in order to obtain a final result. The
method is similar to SEA in this respect. However, SEA is only capable of obtaining
spatial averages or means, as it is a statistical method. Since AMA is systematically derived

from CMA, it can obtain local spatial information as well.



mary of R h Con nder the Gran

AMA is considered in this work within the framework of those linear dynamical
systems called structural-acoustics. Some general analytical results were obtained for the
case where part of an otherwise rigid enclosure is vibrating with a large number of
structural modes, which excite either a finite or an infinite number of acoustic modes in the
interior. In Reference 2, it wés shown that Statistical Energy Analysis is an asymptotic
limit of classical modal analysis. The basic asymptotic theory for structural wall-acoustic
cavity interaction was described, and several numerical examples were presented for the
acoustic cavity response.

In Reference 3, the AMA results for an infinite number of structural modes were
applied to the specific case of a rectangular acoustic cavity. The rectangular acoustic cavity
had rigid walls except for a flexible portion on one of its walls. The flexible portion
vibrated with an infinite number of structural modes which were temporally uncorrelated
("white noise™). The interior sound field was studied using asymptotic modal analysis.
Both local mean-square pressures and spatially averaged mean-square pressures in a
bandwidth were computed. The AMA results were compared to CMA results. In addition,
the effect of varying the size and the location of the flexible vibrating portion was studied.

It was found that the interior sound pressure levels are nearly uniform, with
exceptions occurring at the boundaries. The boundaries exhibited elevated levels which
were 8, 4, and 2 times greater than the interior level, for corners, edges and walls
respectively. These areas of elevated sound pressure level were termed "intensification
zones."

In the numerical study, the size and location of the flexible portion of the wall was
varied, and the resulting effects on the interior sound field were studied. An interesting
phenomenon was discovered. When a small source (smaller than an acoustic wavelength)
was placed on a point of symmetry of the cavity, elevated sound pressure levels occurred

along the planes of symmetry, creating new effective boundaries of the sub-divided cavity.



These effective boundaries retained the same ratios of 8, 4, and 2 for differences between
comer, edge, and wall intensification, relative to the interior (of each sub-cavity). Another
result of the numerical study was that sound sources placed in the corner, rather than
elsewhere on the wall away from a boundary, raise the sound pressure levels by a factor of
four. It was further deduced that sound sources placed on an edge would raise sound
pressure levels by a factor of two.

In Reference 4, the intensification zones were studied using AMA and other
traditional methods. The system parameters which define the structure of an intensification
zone were determined. Using AMA and non-dimensionalizing the spatial variable by the
center frequency wavenumber, the intensification zone description was found to be
independent of the cavity dimensions. In fact, the non-dimensional spatial variation of
sound pressure level was only dependent upon the ratio of bandwidth to center frequency
(f/fc). Upon further study, it was shown that the bandwidth effect is second order in
f/fe.

The independence of cavity dimensions suggested that intensification could be
modelled as a local system. This led to modelling using oblique incidence sound waves.
This alternative method gave identical results. Reflections from an absorptive surface were
also studied and an analytical expression for the sound pressure levels near an absorptive
wall was developed. This result can be expressed as the sum of a rigid wall term plus a
term containing the impedance information for the absorptive surface.

Experiments were performed in order to validate the AMA method for the
structural-acoustic application. The results of the experiments are presented in Reference 5.
The experiments tested for uniformity of the interior, intensification near corners, edges
and walls of the cavity, and accuracy of the method for predicting sound pressure levels in
the interior. In all cases, the agreement between experiment and analysis was very good.

Qualitatively, it was shown from the experimental results that AMA works best for

moderate bandwidths. If the bandwidth is too narrow, there may not be enough modes for



the AMA assumptions to apply. However, if the bandwidth is too wide, there will be
enough modes, but there may be too much variation in the modal variables which are
assumed constant throughout the band in the AMA methodology.

The AMA method was used to predict the spatially averaged sound pressure levels
in the cavity interior from the measured acceleration of the vibrating wall, The predicted
levels were compared to the experimentally measured levels and good agreement was
obtained.

Further theoretical work was done to develop an AMA result which is valid for the
case where the number of structural modes is finite and the number of acoustic modes is
infinite. These results are reported in Reference 6. The previous AMA work considered
the case where the number of structural modes was very large or, formally, infinite. Tt
was found that different AMA results are obtained if the limits of an infinite number of
structural modes or an infinite number of acoustic modes are taken in a different order.
Therefore, when there are both a large number of acoustic modes and a large number of
structural modes, it is important to use the appropriate limiting sequence. This decision
should be based on which set of modes is approaching infinity most rapidly.

References 2 through 6 are presented in Appendices A through E of this document.

Recommendations for Future Work

One outstanding issue is worthy of mention. In the usual linear dynamical systems
theory, be it CMA, SEA or AMA, the assumption of small damping is often made. From
the experimental work done under the present grant, there is clear evidence that all of these
theoretical models need to be extended to describe accurately the physical phenomena for
large damping. The high damping case, it may be noted, is of considerable practical

importance.
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One of the outstanding theoretical questions in interior noise is the connection be-

E. H. Dowell tween modal analysis and statistical energy analysis. Recently substantial progress

Dean. has been made in understanding this connection for structural vibrations including

. both fundamenial theoretical work and experimental verification. It has been shown

nt of Mechanical Engineering that many of the results of Statistical Energy Analysis can be derived as an asymp-

ang Materials Science, totic limit of classical modal analysis and thus this approach is called Asymptotic

School of Engineering, Modal Analysis. The basic asymptotic theory for structural wall-acoustic cavity in-

Duke University, teraction is described in this paper. Several numerical examples are presented for

Durham, North Carolina 27706 acoustic cavity response with a prescribed wall motion to illustrate the key results of
the theory.
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11 [1] showed that the results commonly referred to as  frequency bandwidths in which the maximum one corresponds
lical Energy Analysis (SEA) [2] as developed by Lyon to 47.1 modes of plate vibration, for several band center fre-
@pthers can be obtained by studying the asymptotic quencies, and for two locations of the point force which were
Wor of classical modal analysis (CMA) for a general, the center of the plate and near the plate edge, respectively. All
f structural system; those asymptotic results are called experimental results verified the asymptotic behavior of the
gptotic Modal Analysis (AMA). In [1], moreover, specific  plate response which is predicted by AMA and were in good
mlizations were made for structural-acoustic systems and  quantitative agreement with the theory as the number of
ing subsystems. Since AMA results can be derived modes became sufficiently large.

atically from CMA, AMA allows an assessment of the The important work of Crandall and his colleagues should
Bptions and consequent simplifications which are made also be cited [5-8]. Their work has been directed primarily
jain such results and a combination of CMA and AMA  toward those aspects of structural response under wide-band
=A) may prove useful in applications. random excitation where SEA-type results of the usual sort do
1P, a2 comparison of AMA (or SEA) and CMA was made  not hold. Both analytical and experimental work has been car-
e response of a single general linear structure and the ried out.

_ Wpotic characteristics of AMA were discussed. It was Modal sum and image sum analytical methods have been

. ' that the asymptotic behavior of AMA (or SEA) used by Crandall. The modal sum methods are similar to those
- @ds upon the number of modes in a frequency interval of  employed here. Image sum methods involve repeatedly using
- T8t and the location of the point forces. Moreover, traveling waves on an infinite structure to form an appropriate
’ otically, all points on the structure except for some cancellation of image sources to model finite plate response.
B @l ones have the same response; the exceptional points are  Both methods have led to the identification of “‘intensification

" the points of excitation and near the structural system zones’ where the local response is higher than the nearly

Some numerical examples for a beam were uniform response of the rest of the structure. Special attention

© #Bted in [31. has been given to square and circular plates where such zones
1l4] the response of a rectangular plate under a point ran-  are most pronounced.
- Vorce was investigated experimentally and theoretically. Here the emphasis is on extending the earlier work in the

e were two objectives in this study. The first one was to  area of structural-acoustic systems. A theoretical discussion of

WOnstrate experimentally the manner in which the asymp-  this subject is given next, followed by a section with numerical

7 * bmit is approached. The second one was to show ex- examples. A complementary discussion of this subject for
Rentally that the response of almost all points of the plate  acoustic sources internal to the acoustic cavity is contained in

- Mmes the same in the asymptotic limit. [9}. .

- Werimental measurements were carried out for several

\ " 3 3 I3 1 L]
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MG+ 2 mOmGm + W Gm] = Qn 1)
where the modal expansion for the wall deflection is

W= 3 G (D (X9) )
and the structural generalized mass is

M,= SS my,2dxdy
Ap

and the generalized force due to a given external pressure is

= ([ pEv,anay %)
AF
The acoustic cavity modal equation is
B+ 20w B+ i P = QF @

where the modal expansion for the acoustic cavity pressure is
P, (1)F,(x,9,2)

peoct L= ()
and the acoustic generalized mass is
, 1 Sy
mpm— (| Fraxayaz ®)
vilde

and the generalized acceleration due to the structural wall is
1 55 .
Wea o — w F,dxd
== ar ly
Define /, a nondimensional cavity pressure,
p
Jtx.3,2) - ——
PoCo
From (5) the auto-power spectrum of f may be determined as
F,(x,y,2) Fi(x.).2)

where the cross-spectra are defined as

®pp, ™

1 (= .
<1>,,r,,s:=_7r_§_°= Rpp (7)e“'dr

and the cross-correlations of the modal generalized pressure

coordinates are

. 17
RPrPS-ITxEL —ﬁg T.P,(t)P,(H—-r)dt

Similarly from (6) the cross-power spectra of Oy and Q7 are
1
;W e s ‘, .’ *® “
QQ;'QS (w) W SSAF ESAF F,(X’yZ)FS(x y z )¢

(wix,y,x*,y*")dxdydx*dy* (8)
From (4) and standard random response theory, the rela-
tionship between ¢p p_and ® . w is
r's Qr Qs
$p,p, (@) =H (0)H (=)@ jwiow () 9
rxs
where the modal transfer function is defined as
1
[—w? + 0t 42w e]
From (7), (8), and (9)

é,(w;x,y,z)=% E E

HA (w)=

(10

F, (x»,2) F(x,9,2)
M4 M?

YO Y ST | B | S AR EN AR
Ap JdAagp
(wix,y,x*,y*Ydxdydx*dy* (1D
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This is the basic expression for the power spectra of the cay4
pressure in terms of the power spectra of the wall acceleray;
I. When the number of excited structural modes is |
AM — oo, it can be shown that &,
1y

<I>,(w;x,y,x‘,y‘)s/1f<bw(w)é(x—x')b(y—y')

This means that the power spectra of the wall response
uncorrelated in space. This assumption is reasonable for large
AM, because

1

0 (x#x*, y=y*)

+AM b (wix,y,x*,y*)—

(13

constant
as AM— oo

(x=x* y=y*)

Recall [1, 3]

by (Wit y Xy )

m

2= .

Y V)W (X )P H, (0)

W’ H,{—w)* E E \!/m(Xi»)’i)\{’n(x./'y.f)q)Fu(w)
i j

(13) is readily derived from the above relationship and invok.
ing the basic methods of AMA. & is the cross spectra for
point forces, F,, F;, on the struttural wall. Also for a
smoothly varying power spectrum, it is assumed that

$,(w)=d,(w) (18

This is just the usual white noise assumption. Thus, equatios
(11) becomes
A F,(x,0,2)
&y (wixy2) ==y (@) y Yy —=
r 5

Mf

F Wy
o_"(_b%z_)..[-[f (w)on (—w)

F

The mean square response of the nondimensional cavity
pressure is )

-
pi(xy.2) ® '
‘W=So & (wix,y,2)dw
=_ZI'- Ar ¢, (w )Emsg Pz )dﬁ";
=74 V2 wliWe - M;szfsg",‘ Ap r »2o r@[,

09

Note that (16) is the result for a large number of st s
modes, AM — o, and a moderate number of acoustic CEv&
modes, AN . 2
Taking a spatial average of (16), and noting that MY,
4, < F?> do not vary rapidly with respect to modal n
r, for large AN, equation (16) becomes

<p’> _ 7 Af <F>
(poct) =4 ¢ (wc) M?Zw,fg.( Z,:SSAF
F}(x.y,25)dxdy

where < > denotes spatial average.
Now consider a cavity acoustic modal function
Fix 30 =X, ()Y, (»Z,(2) g

Take the plane at 2 = z; as the boundary of the af:oustlc o
where the structural wall is vibrating. Z,(Zo) 1s US X9}
dependent of mode number ror it can be so normalized. 1778

for large ANA,
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Frry.zodxdy= L Ap<Xi>, < V>, Z3(z)
,' 4 <F:>
& — A AN <z 19)
A ‘
E , <F!>
e~ <Zl>=m——2"
<F?‘>AF
Mi=<F!>

<w>, =Aw ®,(w)

7 .) denotes a spatial average. <F.2> is a volume
2¢ of F.? and <Fc2>,,r is an area average over the
structural wall. Hence, equation (17) becomes as

A 2 Wl
AN (Af:) <w >Aw (20)

T 3
V7 wfra<zz>

5.

<>, Eel<Wi>,, @1
from the AMA results for structural wall motion,
<W’>ME—;— -%Ai —__ifi-‘“’
9 w pwcg'c

y then, equation (20) becomes
> > (1)2 AM  ANA (AF)ZAw‘

)5'4_ sw Aw* \V/ aw

22)

w0 <F>A8w
, o At M< 22>
w the result for AM — o and AN, — . (16) is the result

JAM — o and finite AN, .
e above derivation is not the only one which leads to (23).

o instructive to consider an alternative derivation which
ucn below.

When equation (12) can not be assumed, then

(23)

E F,(x.,2) . F,(x,y.2)

A M «Hf (w)

3 1
-; LY.2) =7 ;

F-orf(, I, rovesnocoamn.

(wix,y,x*,y*)dxdydx*dy* an

: T
sy yz Y Y U Y, (e H , (@)

Ho=0)e B B v rdvn (500,00, ()
i j

Kitute equation (24) into equation (11), then

&, ... ! F(xy,2) F,(x.2)
oo B T T p AL b

n

HY (@) HP (- w)ew?H, (0)w?H, (—w)
) E E l;m (xiay,hl’n (X,',.V,')°4’f~u (w)
' J
¢
“[ ESAI F’ (x'y’ZO)Fs(x.‘y‘vZ'o)\Lm (X.}’W"

(x*,y")dxdydx*dy* (25)

Equatidriri(ZS) will be dominated by the terms for which r = s,
m = n, i = j. Thus, equation (25) becomes

tonrdzo L L g%mmw
rt (@) 208, (@) OF Poc")ALQTGE IS

Vh (X y) 12, (26)
where

Irm = SSAJ F, (x.ya20)¢m (x,y)dx dy

The mean square response for the nondimensional cavity
acoustic pressure is
o2
P (x3,2) *
- $, (wix,y,2)dw
(pgc3) ¢

Using (26),

. T 1 %rm wnF2(X,9,2)
vl L Lg MMl £

r

'éFii (Um)\pfn (»\‘..)’.)'ffm @27

where

3
U = gy + S 0 + 88 w0 wf (Epwm + S wft)
2
Bm= (0 —w0f ) + 40,07 (§nwpm + Gl ) (Enwf + )
This result assumes that the acoustic and structural resonances

are well separated,
See Crandall and Mark [10], p. 72, for the evaluation of

S: IHA (w) 1P H,, (w) 1 2dw

When ¢, 7 are small, then
Gy = s + Hrf (28)
When Aw/w,, Aw /o << 1, then
Bom = (W, — " P+ 4wk (4, + £1)? (29)
All (29) really assumes is that w,, — w? is small. Hence in sum-

ming, w,, and v/, one need not distinguish between them.
Taking a spatial average, and noting that

2 3
a,,,,,wf,,,<F',2 > ,M?,,,Mf :w?ns“’f ’rmvrf’d)ri, (wn)

do not vary rapidly with modal number for large AM and AN
and letting

w. =l Aw=401,
then eguation (27) becomes
<p> x| o, <F2>
e

<JorE— ——
T P a7 MMA 28 eh S

w) Y Y ﬁ' ¥2, (x, 0, (30)

r m
where

a = (f+ 1)

For large AM, AN, we can write

Yy ¥ ﬁiwzm(x..y,)lfms% Y Y vixonf, G

where 1/8, is the average of Z E (1/8,,)

r m

1/8.. can be approximated by an integral expression
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Thus, equation (30) becomes

<p2>~<1r>31 1
(pocd)? ~ \ 4

<F> E"’
B0 Vg <)

L L dh ol o3

Now, the summation E E Y2 I, can be written as
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i Mustrative Numerical Examples

Consider a rectangular cavity of dimensions 2° x 3’ x 7 ..
e Fig. 1. The 2’ x 3’ wall is taken to vibrate in a large
umber of structural modes, AM — o, We wish to compare
we results of Asymptotic Modal Analysis for the acoustic
$vity response, equation (20), to that of Classical Modal
\nalysis, equation (16). For simplicity and to focus the discus-
g#on on acoustic response, the wall motion is assumed to be
gven,

- The ratio of the spatial average of equation (16), CMA, to
®quation (20), AMA, is shown in Fig. 2. This ratio is shown
20 three different frequency bandwidths and as a function of
e center frequency. The bandwidth, Aw, is defined as

Aw=yw

3
-
3

- max ~ @min
1#0d the center frequency, w,, as

ch(w )I/Z

max“min
b€ Wruyy Wy @re the maximum and minimum frequencies
O the frequency interval. All acoustic modes are assumed to

& *2V¢ the same modal critical damping ratio, {7, for simplicity.
<an be seen from Fig. 2, all results approach unity as the
{X0ter frequency becomes large. The approach is modestly
Or¢ rapid for the smaller bandwidths. To better understand

“¥ results of Fig. 2, consider Fig. 3. Here is shown the number

e odes, AM, in a given bandwidth as a function of center
L auency. It is expected that CMA/AMA — | as AM — o,
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Fig. 7 CMA/AMA ratio versus center frequency

This clearly explains why CMA/AMA — I as the center fre-
quency becomes large. However considering Fig. 3 it is
perhaps initially surprising that in Fig. 2 the asymptotic ap-
proach is modestly more rapid for the smalier bandwidths.
This is explained by recalling that in AMA we neglect the
variation of natural frequencies from one mode to another
within a given bandwidth. Thus while increasing the band-
width increases the number of modes (which improves the ac-
curacy of AMA), it also increases the variation among the
natural frequencies (thus decreasing the accuracy of AMA).
The net effect of these two competing factors is to decrease
modestly the accuracy of AMA as the bandwidth is increased.
The above results are all for the spatially averaged pressure
inside the cavity. Now consider the ratio, CMA/AMA, for
local response at various positions within the acoustic cavity.
In Figs. 4, 5, 6 the ratio is shown versus position in three dif-
ferent diagonal planes in the cavity. A single frequency inter-
val, 1400-1800 Hz, is considered. As can be seen the ratio is
everywhere nearly constant and close 1o unity, except along a
cavity side, edge and, especially, at a cavity corner. On
theoretical grounds the ratio is expected to be, asymptotically,

side: 2
edge: 4
corner: 8

To see how these expected asympiotes are approached, con-
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sider Fig. 7. One corner point, A, and three edge points, B, C,
D, arc considered. The ratio, CMA/AMA, is shown as a func-
tion of center frequency for a fixed bandwidth. As expected
the ratio approaches 8 for the corner point and 4 for the edge
points.

Conclusions

Several points were broughtnout in the text that bear em-
phasis. When spatially averaged, the Classical Modal Analysis
(CMA) response approaches the Asymptotic Modal Analysis

(AMA) response more rapidly as the number of modes in-

creases, AN, — oo. However, information about local
response intensification is lost in the averaging process. Ex-
amination of local response as AN, — oo revealed an almost
uniform response throughout the interior cavity field with the
exception of peaks at the boundaries, i.e., sides, edges, and
corners.

Although a larger bandwidth at a given center frequency
contains more excited modes than a smaller bandwidth, AMA
is often modestly more accurate in the smaller bandwidth.
This is because the increased variation of natural frequencies

from one mode to the next in the larger bandwidth decreases

the accuracy of the AMA result. Finally it is noted that all

AMA asymptotes were approached from below by CMA with

fixed bandwidth and increasing center frequency.

Future Work

* Basic Theory for Asymptotic Modal Analysis

AM = number of structural modes
AN, =number of cavity acoustic modes

The theory for
AM— o, AN, finite
and AM — o, AN, — @
has been worked out as has been discussed in the text. The
case AM finite and AN, — oo has yet to be considered. Of
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course the case, AM finite and AN, finite,
classical modal analysis.

e Numerical Studies. Further work might include spyg;
the reduction of the moving portion of the wall tg 5
source. In this paper an entire wall is taken as the .
area. It would also be interesting to consider mo;\m‘

plex cavity geometries. The rectangular cavity Shapgq‘
chosen for this study because its modal characterig(jq
well known and therefore comparison of CMA wy
AMA was a readily feasible task. b

¢ Experimental Studies. An experimental study shoyy -
undertaken to assess the predictions of the numerias
studies. A rectangular box with a portion of gpe -
vibrating might be considered.
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& Asymptotic Modal Analysis of a Rectangular Acoustic Cavity
¥ Excited by Wall Vibration

Linda F. Peretti* and Earl H. Dowellt
Duke University, Durham, North Carolina 27706

Asymptotic modal analysis, 8 method that has recently been developed for structural dynamical systems, has
been applied to 2 rectangular acoustic cavity. The cavity had a fNexible vibrating portion on one wall, and the
other five walls were rigid. Banded white noise was transmitted through the flexible portion (plate) only. Both
the location along the wall and the size of the plate wereé varied. The mean square pressure Jevels of the cavity
interior were computed as a ratio of the result obtained from classical modal analysis to that obtained from
asymptotic modal analysis for the various plate configurations. In general, this ratio converged to 1.0 as the
pumber of responding modes increased. Intensification effects were found due to both the excitation location
and the respouse location. The asymptotic modal analysis method was both efficient and accurate in solving the ‘
given problem. The method has advantages OVer the traditional methods that are used for solving dynamics i\
problems with a large number of responding modes. ;

Nomenclature ods that are commonly used to solve such coupled systems are
classical modal analysis (CMA) and statistical energy analysis

= area
= speed of sound (SEA). Recently, Dowell! and others?™* have developed an
cavity acoustic modal function additional method, asymptotic modal analysis (AMA), which

cavity dimension can also be applied to structural-acoustic systems.
AMA incorporates the advantages of the other two meth-
ods. Providing there are @ large number of modes, the CMA

fl

Mmoo
Wt

generalized mass

: = pressure
f = fnodal index result and the AMA result are nearly identical. Since it does
Vv = volume not need to take the individual modal contributions into ac-
: = displacement count, the computation cost of AMA is significantly less. An
x,Y,Z= acoustic modal function component dependent added advantage of AMA is that the degree of generality in the
on x,y.2 final resuit can be controlled by adjusting the types of assump-

spatial position coordinates tions and/or simplifications made in the derivation. This fea-
number of acoustic modes ture allows the use of AMA to obtain results identical to SEA
damping ratio or, for example, to relax the averaging simplifications and
obtain local response results of which SEA is not capable.

B
zZ
oW

p density esul
3 power spectrum To explore the capabilities of AMA, the interior sound field
frequency of a rectangular acoustic cavity was analyzed mathematically.

The ratio of response predicted by CMA 1o that predicted by
AMA was calculated either as a spatial average or at particular
Jocations inside the cavity. Five of the cavity walls were rigid.
A random white noise sound field passed through a portion of
the sixth wall into the interior of the cavity. The flexible vibrat-
ing portion was varied in size and location, and the resulting
sound pressure levels (mean square pressures) in the interior
were calculated using AMA and CMA and then compared.
Local response peaks, or intensification zones, were ob-
served at boundary points, while the response in the interior
region was nearly uniform. Sound pressure Jevels were af-
fected by the location and size of the flexible vibrating portion

spatially averaged quantity
time derivative )
rms

~€
~
oW

Subscripts

center frequency

flexible

reference value

acoustic modal index

= pertaining to the flexible wall

¢
f
0
r
w

Superscripts . of the wall (sound source). In general, sound pressure levels
A = acoustic increased by a factor of 4 when a point was placed in the
corner. Also, for small sound sources (smaller than an acoustic
Introduction wavelength) that are placed in the center of the wall, lines of
C OUPLED structural-acoustic systems are encountered symmetry become regions of increased sound pressure level.
often in aeronautical applications. Accurate, efficient

means of analysis are central to the design of structures with
the desired sound transmittal properties. Two analytical meth- Background
SEA has been used to study the high-frequency interaction
between large, complex, multimodal structures and acoustic
spaces. The basic assumption underlying SEA is that the dy-
namic parameters in the system behave stochastically. SEA

—_——
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publication June 26, 1591. Csog;lright ©® 1991 by the American Insti- relates the power of the applied forcgs to the epergyhof the
tute of Aeronautics and Astronautics, Inc. All rights reserved. coupled systems and produces a st of linear equations that can
*Research Assistant Professor, Department of Mechanical Engi- be solved for the enefgy In each system. The energy in the
neering and Materials Science, Schoot of Engineering. system is the variable of primary interest, and other variables
tProfessor and Dean, Department of Mechanical Engineering and such as displacement, pressure, ete., are found from the energy

Materials Science, School of Engineering. Fellow AIAA. of vibration. SEA has its advantages, as well as its limitations.
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The main advantage of SEA is its ability to describe the sound
field without having to consider the individual modes. Statisti-
cal energy analysis also allows for a much simpler description
of the system, requiring only parameters such as modal den-
sity, average modal damping, and certain averages of modal
impedance to sound sources. The most significant disadvan-
tage of using a statistical approach is that it is only valid for
systems whose order is sufficiently high that the stochastic
assumptions apply. Certain frequency bandwidths may not
contain enough modes to allow the underlying assumptions to
hold, rendering the SEA result unreliable. In addition, the
local response information is lost in the SEA treatment. The
text by Lyon? is the standard reference on SEA.

Dowell! has shown that results identical to those calculated
using SEA can be obtained by studying the asymptotic behav-
ior of CMA for a general, linear (structural) system; this
asymptotic approach is AMA. AMA is basically a modal sum
method. It possesses all of the computational advantages of
SEA, in that the individual modal characteristics do not play
a role in the asymptotic analysis. Additionally, AMA has ad-
vantages that SEA does not. Since AMA results can be derived
systematically from CMA, AMA allows an assessment of the
assumptions and consequent simplifications that are made to
obtain such results. Also, by using a combination of CMA and
AMA, results can be obtained for all frequency bandwidths of
interest, not just those with a sufficiently high number of
modes. And finally, AMA has predicted local response peaks,
or intensification zones, results unobtainable using SEA 34

Previous work for structural systems has shown that the
asymptotic behavior of AMA depends on the number of
modes in a frequency interval of interest and the location of
point forces. In the limit of an infinite number of modes, all
points on the structure have the same response except for some
special areas. The exceptional areas (intensification zones) are
near the points of excitation and near the structural system
boundary.34 Numerical examples were presented for.a beam in
Ref. 2. Crandall,® Itao and Crandall,” and Crandall and Kul-
vets® experimentally found intensification zones in their work
with structures. The response of a rectangular plate under a
point random force was investigated by Kubota and Dowell,?
and AMA calculations were found to agree closely with exper-
imental measurements.

Work has also been done using AMA for structural-acoustic
systems. Kubota et al.* examined a rectangular acoustic cavity
with one vibrating wall (the other five rigid). They assumed
that the vibrating wall had an infinite number of structural
modes responding and that the entire wall was oscillating. The
results obtained from the numerical study indicated that the
spatially averaged CMA response approaches the AMA re-
sponse as the number of modes increases. The local asymptotic
response revealed an almost uniform distribution in the cavity
interior, with peaks at the boundaries (sides, edges, and cor-
ners) of the cavity. Here, an AMA method is presented and
new results obtained for structural-acoustic systems where
only a portion of the wall vibrates rather than the entire wall,
and both the size and location of the oscillating portion are
varied.

Theory

Most coupled structural acoustic problems are modeled us-
ing either CMA, summing for the response of each mode, or
SEA, which combines the predicted energies of the subsystems
and coupling loss factors to obtain a final result. In this work,
a comparison is made between the CMA result and the AMA
result as the number of acoustic modes and the number of
structural modes approaches infinity. Note that the spatially
averaged AMA result is identical to the SEA result.

In order to calculate the response of the interior acoustic
cavity to the transmission of noise through a structural wall on
its boundary, both the structural modes of the wall and the

acoustic modes of the interior must be considered. As derived
in Ref. 4, the CMA result for the mean square pressure at a
point (x,y,z) in a structural-acoustic enclosure is

Pt wA F2(x,y,2)
.ol =3 7 Bl A
X ﬂ F2(x,y,2,) dx dy ¢))
A

s

Implicit in this result are the following assumptions: the num-
ber of structural modes within the frequency band of interest
is large (i.e., approaches infinity), and the power spectrum of
the wall response is slowly varying with respect to frequency
relative to the rapidly varying acoustic modal transfer func-
tion. As a result of these assumptions, the modal dynamics of
the structure are effectively removed from the problem. In
other words, the structural system is described in the AMA
limit, whereas the acoustic system is taken in the CMA limit.
Further, it is assumed that the modal damping ratio is small
(<), which removes the coupling between acoustic modes
(see Ref. 9 for justification).

To obtain the AMA result for the acoustic cavity, further
assume that the acoustic generalized mass squared (M/*)?, the
frequency of the acoustic mode cubed («)?, and the acoustic
damping () do not vary rapidly with respect to modal num-
ber r and can therefore be replaced by their values at the center
frequency, (M2)?, (w?)?, and (§'). Moreover, the expression

L Fi(x,5.2) H F}(x,y,2,) dx dy

As

is approximately equal to the average of F*(x,y,z) times

EESFrz(xly’zo)dXdy as r—o

r

(i.e., a large number of acoustic modes). The previous expres-
sion can be further simplified by

£| Pty = D a0 e Z Gy
r A/ r
where the right-hand side reduces to

(FH

AANA —=
75Tz

where (Z2) = (F2)/(F?)4,. Here, {F2) is a volume average,
and {(F2)4 , is an average over the vibrating structural wall
area. Then,

p-Z

(POCg)Z -

7r¢fv’(wr)Aj2 <FL'2>EF72(X’}"Z)
WM 12(ZY)

@

This result is the AMA representation for the acoustic cavity,
which assumes that there are both a large number of acoustic
modes and a large number of structural modes. It is valid at
any point x,y,z inside the acoustic cavity and is not a spatial
average. The spatial average of Eq. (2) is

(py ~1<1f>2 AN (&,
(boch)2 ™ 4\V/ Bu” (0F)$4(Z2)

3)

This expression is referred to as the spatially averaged AMA
result ((AMA)) and is used as the denominator throughout the
analysis.

The effect of the source position is included in the term
{Z2), which is a ratio of the spatially averaged modal func-
tions over the volume to that over the flexible wall area. Except
for this term, the expression in Eq. (3) is independent of the

3.
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cavity geometry. The (Z2) ratio will always be of order 1.
Specifically, for a rectangular geometry when the flexible por-
tion is well removed from a corner or an edge, or for a cylin-
drical cavity with a vibrating portion on one of the ends (but
away from the edge), (Z2)=14. The usual AMA result as-
sumes this value of (Z2?}; however, the cases where the flexible
portion is placed at a corner or an edge are easily accounted for
in the (Z?) term and result in an additional multiplicative
factor of ¥ or ', respectively.

In order to separate the effects of the response position
in.ide the cavity from the position of the flexible portion 4,

of the wall (source position), two ratios were used, (CMA}/

(AMA) and CMA .,/ (AMA). Several combinations of CMA
and AMA, spatially averaged and local results, were possible.
The motivation for the choice of these particular ratios is
presented in the Discussion section of this paper. The first
ratio, comparing the spatial averages computed by the two
methods, is used to demonstrate the convergence of the CMA
results toward AMA as a function of frequency. The spatially
averaged results are also used to demonstrate the overall effect
of excitation position on sound pressure level. The second
ratio is used to study local behavior at particular points inside
1+ ~acoustic cavity. This ratio is therefore used to demonstrate
thic effect of response position independent of source position,
as well as the combined effects of source position and local
response position,

The ratio of the spatial average of CMA to the spatial aver-
age of AMA is

2 Ay3g 72
CMA = E <Fr2(xyy,7.)> jjAJFr (x'y’z")dXdy(wc) (Z,;>

(AMA) 7 (MY w!)?

ANAA, )
@

T"-:5 expression is derived in Ref. 4 and can be obtained from
E . (1) and (3). Equation (4) was used to assess the effect of
excitation size and location due to area change and position of
the vibrating portion of the wall,

The separate effect of response position was studied by tak-
ing the ratio of the local mean square pressure predicted with
CMA to the spatially averaged mean square pressure predicted
by AMA:

F,Z(X,y.z)j‘L F}(x,y,2,) dx dy
J
(M2 )Hwf)?

CMA) @z T
(AMA)Y ~ AN44, f

(5
YA
Y
Arw
N = -
FLEXIBLE
RIGID
L
y b,
on “ees + X,
b
. 2 : > X

Fig. 1 Flexible vibrating portion of one wall of the cavity.

Rigid
Flexible
Vibrating
Portion

2

Fig. 2 Rectangular acoustic cavily with a portion of one wall flexible
and vibrating.

Equations (1-5) hold for any cavity geometry.

Rectangular Cavity
Dowell et al.!” have shown that the acoustic pressure for a
rectangular cavity with a flexible wall (all others rigid) can be
described by the well-known rigid wall expansion or hard box
modes for the structure:

Fx,y,2)= cos(r;:x> cos(—r-f:z) cos<%:~z>

In this analysis, the flexible portion of the structural wall is

allowed to vary both in size and position. Therefore, the inte-
gral

H F}x,y,2,) dx dy
Ar

“in Egs. (4) and (5) becomes

w {*bw
X"} cosz[rM(xw"H‘") cos?| 27wy *7w)
0 JoO Lx Ly

X coszczzi’) dx,, dy.

<

where r,, r,, and r, are modal indices, and Xwgs Ywys Xws Vs
L,, and L, are defined in Fig. 1. This integral can then be
evaluated analytically in terms of the parameters x,, , y,, and
2., b,,. In the previous work by Kubota et al.,* which assumed
that the entire wall was flexible, this integral over the flexible
area A divided by A, evaluated simply to %, which, in gen-
eral, is not true here since in most cases only a portion of the
wall is flexible.

Numerical Study
Description

For the numerical study, a rectangular cavity was considered
(Fig. 2). One of its walls, or a portion thereof, was assumed to
vibrate in an infinite number of structural modes. The wall was
driven with banded white noise. The effects of varying both
the size and position of the vibrating portion of the wall were
studied. The size of the wall varied from full wall (100% wall
area) down to a point (0.004% wall area).

The quantities used in the study were ratios of mean square
pressure predicted by CMA to that predicted by AMA. Ini-
tially, spatial averages using both CMA and AMA were taken
in order to avoid introducing the response location within the
cavity as an additional parameter. Later, the local acoustic
pressure responses at corner points, edge points, points on the
face, and points in the interior were considered for these cases.
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PLATE CONVERGES TO A CENTER POINT - 200 BANOWOTH

CMA/AMA
1.0

0.5
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]
v

0.0 L1 [ l t l 1 l 1
200 1360 2520 3580 4840 6000

center frequency
Fig.3 (CMA)/(AMA) vs center frequency, 200-Hz fixed band-
width, flexible area shrinks to center.

PLATE CONVERGES TO A CENTER POINT - 400 BANOWDTH

CMA/AMA
1.0

Q0.5 4

l_; 1 [ { l { 1

o A :
200 1360 2520 3580 4840 5000
center frequency

Fig.4 (CMA)/(AMA) vs center frequency, 400-Hz fixed band-
width, flexible area shrinks (o center.

Results
Spatially Averaged Case

The ratio of the spatial average of CMA to the spatial aver-
age of AMA [Eq. (4)] for the case where the oscillating portion
of the wall converges to a center point is shown in Figs. 3-5.
Each figure shows the spatially averaged CMA to spatially
averaged AMA ratio for a different frequency bandwidth
(200, 400, and 600 Hz) as a function of center frequency. The
bandwidth Aw is defined as Aw= Wnax — Wmin» and the center
frequency wc as w? = (Wmax* Wmin)s WHETe Wmqy and wmiq are the
maximum and minimum frequencies of the frequency interval.
All acoustic modes are assumed to have the same modal criti-
cal damping ratio ¢ ({<1).

As can be seen from Figs. 3-5, all results approach unity as
the center frequency becomes large. The larger bandwidths
yield smoother curves, and the smaller bandwidths approach
the asymptote slightly more rapidly. Kubota et al. found sim-
ilar trends regarding bandwidth effects in the related work.
However, what was not expected was that departure from the
entire wall oscillating caused litle change in the spatially aver-
aged CMA/AMA ratio for the cavity. This was most likely due
to the fact that the oscillating plate was centered about the
midpoint on the wall and that all modes are symmetric or
antisymmetric about that point.

In Fig. 6, the result of the spatially averaged CMA/AMA
ratio [Eq. (4)] for the oscillating plate of variable area and
convergence to a point in the corner are shown. Again, plots
that correspond to different frequency bandwidths yield sim-
ilar results, and so only the 400-Hz fixed bandwidth plot is
shown. In this case, there is a family of curves that approaches
unity as center frequency (and therefore, number of modes)
increases, as expected. However, the asymptote is approached
from above rather than below for all plates smaller than the
quarter wall. The quarter-wall case is equivalent, in terms of
the CMA/AMA ratio, to the full wall due to symmetry. The
cases where the plate is larger than a quarter panel approach
from below as did the center point cases. For those cases in
which the vibrating wall is smaller than a quarter panel, not
only does the curve approach the asymptote from above, but
as the oscillating portion of the wall better approximates a
point, the peak of the curve approaches 4 and is slower to drop
off to the asymptotic limit of 1. This region of elevated sound
pressure level is similar to the intensification zones for struc-
tural systems discussed in Crandall,® Itao and Crandall,” and
Crandall and Kulvets? and for structural-acoustic systems in
Kubota et al.* However, the intensification is due to excitation
location rather than response location.

It may first apear as if the AMA result does not account for
this intensification. However, it was assumed that the excita-
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Fig.5 (CMA)/(AMA) vs center frequency, 600-Hz fixed band-
width, flexible area shrinks to center.
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Four Particular Points of Interest - denoted by A, B, C,D
Flexibie
Vibradng
Portion

Fig.7 Points at which the local response was predicted.

CORNER PT (0,0, 0) AS PLATE CONVERGES TO CENTER

CMA/AMA
8.0

=

7.0 1
6.0 1
5.0
4.0 1

3.0 H

2.0 1

1.0 1

0.0 ! l c | L | .|
200 4133 8066 12000
CENTER FREGUENCY

Fi; 2a Local CMA to (AMA) ratio vs center frequency for point A,
flcxible area shrinks to center.

COANER PT (0,0,0) AS PLATE CONVERGES TO CORNER

CMA/AMA
32.0 -

28.0 1

+

200 ' 4133 8066 ' 12000
CENTER FREGUENCY
Fig. 8b Local CMA to (AMA) ratio vs center frequency for point A,
flexible area shrinks to corner.

tiorn. occurs away from a corner or an edge of the wall in
computing the integral over the flexible area in the AMA ex-
pression. The effect of excitation intensification can be in-
cluded in the AMA expression and, for corner excitation,
would provide a factor of 4 increase. In addition to studying
l!le effects of varying size and position of the oscillating por-
tion of the wall in a spatially averaged sense, the local response
was also calculated.

Local Response

) Th.e effect of position in the cavity was determined by con-
sidering the local response. This was again done for both con-

vergence of the vibrating plate from a full vibrating wall down
to a vibrating point in the center and convergence to a point in
a corner of the wall, The results are presented as a ratio of the
mean square pressure evaluated at particular points in the
cavity using CMA to the spatially averaged mean square pres-
sure predicted by AMA. This ratio was computed for many
center frequencies at a constant bandwidth of 400 Hz. There
was no need to vary the bandwidth since Figs. 3-5 show little
variation with bandwidth. The result was computed for vari-
ous center frequencies in 200-Hz bandwidth increments up to
a center frequency of 6000 Hz. Beyond 6000 Hz, 1000-Hz
bandwidth increments were taken up to 11,000 Hz. This pro-
duces a smoother looking curve beyond 6000 Hz due to the
larger frequency bandwidth increments.

Initially, four special response points were considered (see
Fig. 7): the corner point (0,0,0), the midpoint of the flexible
wall, the midpoint of the entire cavity, and a point on the wall
along the centerline (1.8,1.5,0). For these four points, the ratio
of CMA to spatially averaged AMA was plotted as a function
of center frequency in Figs. 8-11.

Taking the corner point first (point A in Fig. 7), Fig. 8a
shows that, as the plate converges to the center of the wall, the
response of the corner approaches a pseudoasymptote of 8,
whereas for convergence of the plate to the corner (Fig. 8b),
this same point has a pseudoasymptote of 32, a factor of 4
greater. The idea of a pseudoasymptote will be discussed in the
following section. The factor of 4 comes from the excitation
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Fig. 92 Local CMA to (AMA) ratio vs center frequency for point B,
flexible area shrinks to center.
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Fig. 9b Local CMA to (AMA) ratio vs center frequency for point B,
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Fig. 10 Local CMA to (AMA) ratio vs center frequency for point C,
flexible area shrinks to center.
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Fig. 11 Local CMA to (AMA) ratio vs center frequency for point D,
flexible area shrinks to center.

location (i.e., the location of the point source rather than the
point of evaluation being in the corner), as was seen in the
spatially averaged cases. Recall that when a point source was
in the corner the spatial average was 4 times greater than when
the point source was in the center of the wall.

Figures 9a and 9b show that, at the midpoint of the flexible
wall (point B in Fig. 7), both types of convergence yield a
pseudoasymptote of 8. Since this point is on the wall, its ex-
pected pseudoasymptote is 2. However, when the excitation is
in the corner (Fig. 9b), this is increased by a factor of 4, hence
the value 8. Five curves are actually plotted; only the curves
representing the smallest plate areas (0.01 and 0.004%) deviate
significantly from the others. On the other hand, when the
excitation location and the response location are at the center
of the wall (Fig. 9a), the response there is also increased by a
factor of 4. This phenomenon is similar to the intensification
observed by Kubota and Dowell? in experiments where point
loads are applied to a rectangular plate. They found that, in
the limit of a large number of responding modes on the plate,
the response of the plate as measured by the plate acceleration
at various places on the plate surface was nearly uniform. The
accelerations were significantly higher near the Vapplication
points of the point loads. Because of symmetry, the effect of

a point sound source acting at the center of the wall is to divide
the rectangular cavity into quadrants (defined by cutting per-
pendicular planes through the point source). In the newly de-
fined subcavities, this point where the source is located is now
a corner point. The response at a corner point is eight times
greater than the interior region, and so the pseudoasymptote
of 8 is appropriate for this case.

Kubota and Dowell? also found hot lines running perpen-
dicularly through the point force. To test for these in this
acoustic cavity analysis, a point along one of the anticipated
hot plates was studied (point C in Fig. 7). Since this point is on
the face, it is expected to have a pseudoasymptote of 2.0,
which is indeed the case if the full wall is moving (dotted line
in Fig. 10). However, in the case of center convergence (i.e.,
analogous to a point load acting at the center of the structural
wall), this point lies on a hot plane, and Fig. 10 shows a
pseudoasymptote of 4. Assuming that the hot planes divide the
cavity into subcavities, this point is on an edge of a subcavity.
Therefore, the value of 4 is appropriate since the response at
an edge is four times greater than the interior. When the oscil-
lating portion of the wall converges to the corner, the pseudo-
asymptote is 8. This is consistent with previous findings for
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Fig. 12 Local CMA to (AMA) ratio vs distance along an edge of
the cavity away from a corner, with a point sound source in the center
of the wall.
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corner convergence since it represents a factor of 4 increase
over the expected value for a point on a wall.

Response at the midpoint of the entire cavity (point D in
Fig. 7) was also considered. At an interior point such as this,
the expected asymptote is 1.0. However, when the plate con-
verges to the center of the wall (Fig. 11), this point lies on a
plane of symmetry resulting in a factor of 4 increase, Similar
to the previous case, this point now lies on an edge of a newly
defined subcavity. The edge point response is four times
greater than the interior, and so the center convergence case is
consistent. When the plate converges to a corner of the wall,
zzain a fourfold increase is expected, due to the previous re-
sults for the spatially averaged cases, and the result is a pseu-
doasymptote of 4 (see curve E in Fig. 11).

Points A-D were studied as the plate size was allowed to
vary, for the two cases (sound source shrinking from a full
wall to a point sound source in a corner of the wall, and to a
point in the center of the wall) as a function of center fre-
quency (for a fixed bandwidth). Next, the plate size was fixed
at 0.004% of the wall area, corresponding to a vibrating point.
The center frequency was fixed at a value at which the pseu-
doasymptotes had previously been reached (8000 Hz), and the
+andwidth was fixed at 400 Hz. The distance into the cavity
...»m the vibrating wall was varied. Sample plots of local CMA
to spatially averaged AMA vs distance into the cavity are

- shown in Figs. 12 and 13.

In Fig. 12, the sound source (vibrating point) is located in
the center of the wall, and the response is plotted along an
edge. The peak response in the corner is 8. Moving away from
the corner, the response then oscillates before approaching the
asymptote for an edge, which is 4.0. The data are symmetric in
the z direction, as can be shown analytically. Therefore, only
half of the edge length is plotted (3.5 out of 7.0 ft). The
purpose of this plot is to show that there is a region where the
transition is made from the increased (intensification) value to
v nearly uniform value farther away. Further studies are
ne ded to examine this transition zone and the parameters that
determine its thickness.

Figure 13 is a plot of the response in a radial direction away
from the corner of the cavity for the sound source in the cen-
ter of the wall. The radial direction is defined by the line
x =y =z, and the radial distance is equal to the square root of
(x2+ 2+ z7). Since the point source is in the center of the wall,
hot lines exist that run down the center of the cavity. Because
of these hot lines, which redefine new effective boundary
points, the cavity interior is no longer uniform, as is shown in
Fig. 13. After the radial distance of 1.0, the response begins to
in>-2ase, and approaches a value of 2.0, as if there were a wall
0i .ce there. This is not a physical boundary created by the
cavity geometry, but rather an artificial boundary created by
the point source. If the same radial trajectory is taken with the
point source located in the corner, the response of the interior
is uniform. The peak value in the corner is 32; the response
then oscillates and eventually approaches a uniform interior
value of 4.0. This plot shows the theoretical existence of hot
planes or surfaces inside the cavity that are created by a point
source acting at the center of the wall. ,

In summary, for a vibrating point at the center of the wall,
the asymptotic limit for points that do not lie on hot planes is
1.0 for interior points, 2.0 for points on a face, 4.0 for points
on zn edge, and 8.0 for corner points. Also, the corner conver-
gence cases yield the same relationships between locations but
the magnitudes are increased by a factor of 4. Hot planes can
be thought of as dividing the cavity into subcavities or quad-
rants along lines of symmetry. Each subcavity then produces
its own corner, edge, and face points, with the respective
sound pressure levels relative to each other, thereby redefining
effective boundary points. The intensification results that were
obtained here were through the use of CMA; however, AMA
Is capable of predicting intensification as well, as is pointed out
in the next section. In subsequent work,! intensification zones
are studied using an extension of the AMA method.
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Discussion

The term in the CMA/AMA equation [Eq. (4) or (5)] that is
affected by changing the flexible area size and location of the
flexible portion is

“ F2(x,y,2,) dx dy/A;
As

This can be thought of as a spatial average of the acoustic
modal function in two dimensions (x and y). The expected
result would be Y, unless the argument of one or both cosine
functions (in F,) is always zero or a multiple of x. When the
plate converges to a point in the corner, the x and y values are

_essentially zero; therefore, the value for the cosine is equal

to I and the spatial average would then be 1.0 rather than %.
Mathematically, the effect of shrinking the area down to a
point in the corner yields a fourfold increase in the relative
mean square pressure locally or spatially averaged.

However, one can imagine driving the frequency up so high
that the approximated corner point no longer behaves like a
point compared to an acoustic wavelength. This occurs when
the acoustic wavelength becomes so small that the fixed phys-
jcal size of the sound source is much larger than the wavelength
of sound at that frequency. It is for this reason that the term
pseudoasymptote has been used rather than asymptote. As the
center frequency becomes sufficiently large (i.e., wavelength
sufficiently small), the true asymptote will always be 1.0 for
the spatially averaged CMA/AMA ratio.

Throughout this study, the numerical results have been
presented either as the ratio of spatially averaged CMA to
spatially averaged AMA, (CMA)/(AMA), or for the ratio of
local CMA response to spatially averaged AMA response.
Other possible ratios could have been used. An alternative
choice could have been the ratio of local CMA to local AMA.
However, this ratio would not show any variation between
points on a boundary and points in the interior. It would
approach 1.0 at high center frequencies for all points if the
excitation were in the center, or 4.0 if the excitation were in the
corner, as is shown in the following analysis.

The local AMA result is [Eq. (2)]

P _rA A/ANAFL) F2(x,7,2)
(poc‘g)z = 4 V2 q’w(wc) (M‘:‘)z(wf)lff <Zc2> ; ANA

whereas the spatially averaged AMA result (derived in Ref. 4)
is

@ _

EANA Ay 2 Awdy(w,) ©
({:0.,(.‘3)2 4 Au*

V) W) s2(zi)

Therefore, the ratio of local AMA to spatially averaged AMA
is :

(AMA)local/<AMA>spnial average = [EFrz(st’-z)/ANA] /(Fcz)
The numerator

[):F} (x, y,z)/AN"‘]

is equal to ¥ when x, y, and z are not zeroor L,, L,, L,.

~ It is equal to % when one of the values of x, y, or z is equal

to 0 or the length of the cavity in the appropriate direction,
which is true on any face. Similarly, the numerator becomes V2

_for an edge point and 1 for a corner point.

The spatially averaged acoustic modal function evaluated
at the center frequency {F?), which comprises the denomina-
tor of the (AMA)igcar/ (AMAY paciat average atio, is always equal
to . Therefore, the (AMA)igcal/ {AMA) satial average 15 SUMMA-
rized in Table 1.

o
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Table1 Local to spatial
average-AMA ratios

Location AMA ocai 7/ (AMA)
Corner (1)/(1/8) =8
Edge (1/2)/(1/8)y = 4
Face (1/4)/(1/8) =2
Interior (1/8)/(1/78) =1

Recall that the local CMA to spatially averaged AMA ratio
for the center convergence case yields pseudoasymptotes of
8 in the corner, 4 on an edge, 2 on a face, and 1 in the interior.
These ratios are four times greater if the excitation is in a
corner.

This indicates that, for a large number of modes, the AMA
results agree locally with the exact (CMA) results predicted
when the oscillating wall is a full wall or converging toward the
center. For corner convergence, the difference is a factor of 4.
In deriving the AMA result used in this study, it was assumed
that the excitation occurs at a location other than in a corner
or on an edge, which accounts for the factor of 4 difference
between center excitation and corner excitation, as explained
previously. It is possible to incorporate the excitation location
“effect into the AMA result, if desired.

Conclusions

An AMA approach has been developed and applied to a
coupled structural-acoustic problem. It is broadly applicable
to any linear dynamic system at high frequency regardless of
geometry, assuming that the damping is small. Further work is
needed to develop an AMA result that is applicable for cases
involving large damping.

It is an extremely flexible approach and can be developed in
accord with the nature of the system under study through
inclusion of a series of simplifying assumptions. This tech-
nique can thereby bridge the gap between CMA and SEA in
terms of computational requirements and predictive capabil-
ity. In that AMA is developed from CMA, it retains the capa-
bility to predict spatial variations (intensification) in sound
pressure levels or other relevant responses, something of which
SEA is not capable. On the other hand, simplifications arising
from the nature of the forces and the number of structural and
acoustic modes involved result in a process that does not re-
quire individual modal characteristics. This greatly reduces the
number of calculations required relative to CMA.

A rectangular acoustic cavity, with five rigid walls, was
chosen to investigate the capabilities of AMA. Spatial averages
and local behavior for sound pressure levels were calculated
for a number of cases involving the location and size of the
sound source on the wall. For the spatially averaged cases,
intensification due to source location was observed. In partic-
ular, when a point sound source was located in the corner as
opposed to the center of a wall, the spatially averaged sound
pressure ratio was increased by a factor of 4.

In addition to the spatial average, the local response was
also calculated. The local response of the cavity interior is
nearly uniform, with the exception of points on the structural
boundary (walls, edges, and corners), when one entire wall of
the rectangular cavity is vibrating. However, when only a por-
tion of one wall vibrates, and particularly when this portion
approaches a vibrating point, there are further exceptions.
Perpendicular planes (hot planes) that run through the vibrat-
ing point were found to divide the cavity into subcavities,
which have new corners, edges, and walls. New subcavity cor-
ners, edges, and walls exhibit the same relative increase as the
original corners, edges and walls, which is eight, four, and two
times greater than the interior, respectively.
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The interior acoustic field of a rectangular acoustic cavity, which is excited by the structural vibration of one
of its walls, or a portion of the wall, has been studied. Particularly, the spatial variations of sound pressure levels
from the peak levels at the boundaries (intensification zones) to the uniform interior are considered. Analytical

oty el

expressions, which describe the intensification zones, are obtained using the methodology of asymptotic modal
analysis. These results agree well with results computed by a discrete summation over all of the modes. The

e e e

intensification zones were also modeled as a set of oblique waves incident upon a surface. The result for a rigid
surface agrees with the asymptotic modal analysis result. In the presence of an absorptive surface, the character
of the intensification zone is dramatically changed. The behavior of the acoustic field near an absorptive wall
is described by an expression containing the rigid wall result plus additional terms containing impedance S
information. The important parameter in the intensification zone analysis is the bandwidth to center frequency b
ratio. The effect of bandwidth is separated from that of center frequency by expanding the expression about the p B
center frequency wave number. The contribution from the bandwidth is second order in bandwidth to center i
frequency ratio. P
'
Nomenclature Introduction
A = area N structural-acoustic coupled systems, such as the interior
¢ = speed of sound . I of an automobile or an aircraft fuselage, an acoustic field
F = cavity acoustic modal function is created by the structural vibration of a wall or walls of the
f = frequency enclosure. This problem has been studied previously using
= wave number asymptotic modal analysis (AMA) on a rectangular acoustic
& = cavity dimension cavity.!? The cavity was assumed to be entirely rigid except for
R = generalized mass a vibrating portion of one of its walls. The vibrating portion
n = modal index contained a large number of structural modes, which in turn
P = pressure generated a large number of acoustic modes in the interior
s = real part of impedance space. Acoustic theory predicts, and the previous numerical
4 = volume work has shown, that there are intensification zones in the
w = displacement acoustic field near the cavity boundary and an otherwise uni-
x,y,z = spatial position coordinates form response in the interior region. This is due to the lack of
Xy = imaginary part of impedance spatial correlation in the interior and the imposition of spatial
2 = impedance at the boundary correlation at the boundaries. For a rectangular acoustic cav-
eN = numbf:r of a'coustlc modes ity, it is well known that the mean square pressures are eight, .
5 = damping ratio four, and two times the uniform interior pressure levels at the
£ = density corners, edges, and faces, respectively.’ H
L4 = power spectrum In designing acoustic spaces, allowances must be made for :
w = freqyency . these intensification zones. Therefore, it is important to deter-
) = spatially averaged quantity mine the characteristic distance over which the response Jevels ;
Subscripts f:han_ge from their pea]f values at the boundary to the ungform ; {
. interior level. If the distance from a boundary is nondimen- |
b = bandwidth sionalized by the center frequency wave number &, then the i
¢ = center frequency intensification zone can be described by the nondimensional- s
s = flexible ized spatial variable kx and the bandwidth to center fre-
0 = reference value quency ratio f,/f.. Significantly, the parametric dependence is
r = acoustic modal index independent of cavity dimensions. The spatial variation of
.. . mean-square pressure is also independent of cavity dimen-
S:perscripts . . L. .
P . sions. The spatial variation of mean-square pressure is also
“ =acoustic independent of the size of vibrating or absorptive surfaces on
e = time derivative the cavity wall, provided that the surfaces are very large com-
- = (overbar on pressure) rms . pared to an acoustic wavelength (high-frequency limit) and
= (overbar on impedance quantities) provided that the damping is small. :
nondimensionalized by pc The dependence on bandwidth can be separated mathemati- E
cally from the dependence on center frequency through 2 ‘
Received March 11, 1991; revision received July 8, 1991; accepted Taylor series expansion in fo/f taken about the'cemer fre- :
for publication July 9, 1991. Copyright © 1991 by the American quency wave‘numbcr. It is found that the t?andwndth depen-
Instioute of Aeronautics and Astronautics, Inc. Al rights reserved. dence is a higher order effect. The resulting mathematical
sResearch Assistant Professor, Department of Mechanical Engi- expression for mean-square pressure consists of a term that is
neering and Materials Science, School of Engineering. dependent only on the center frequency, plus terms that con-
+Dean and Professor, Department of Mechanical Engineering and tain the bandwidth to center frequency ratio; but these terms
Maserials Science, School of Engineering. 1199 2re of order O[(f,/f.)}] and higher.
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Using AMA, the spatial variation of mean-square pressure
was found to be independent of cavity dimensions. This sug-
gests that the problem can also be analyzed as a local problem
consisting of an infinite number of oblique acoustic waves
incident upon a rigid surface from all possible angles. The
solution to that problem is equivalent to that derived from
AMA.

In the same manner, an expression can be obtained for the
spatial variation of mean-square pressure, which describes the
intensification zone near a boundary for a case where the
incident wall is nonrigid (i.e., finite impedance cases). This
result can be written in terms of a hard wall component plus
an absorption correction term, which contains the impedance
information.

The purpose of this research is to determine the structure of
these intensification zones and their relation to the entire
acoustic field. It is hoped that this work will lead to better
design and analysis of acoustic spaces by providing a more
thorough understanding of intensification zones for both rigid
and absorptive walls.

Background

Intensification zones for structures have been studied exten-
sively by Crandall® and others for random vibrations of plates
(see, e.g., Refs. 6-8). They have found that the response of the
plate at high frequency is relatively uniform, with exceptions
occurring at the point of application of a force and/or at the
boundaries, depending on loading conditions and boundary
conditions. Kubota and Dowell® found similar intensification
phenomena for a rectangular plate excited by random vibra-
tion of a point force. They used AMA to predict the response
of the plate, and they verified their results with experlmemal
data.

The study of intensification zones in acoustic spaces was
first begun by Waterhouse!? in the 1950s. His pioneering work
on interference patterns in reverberant sound fields was fol-
lowed by further research by Chu,!!"!2 Tohyama and Suzuki,!?
and others '4!5 who were specifically interested in the place-
ment of microphones in reverberation chambers. The results
presented here for rigid wall boundaries agree with the earlier
work, although the derivations are different. References 10-15
were restricted to rigid walls only. Later work by Waterhouse
and Cook!® included the treatment of pressure release (p = 0)
boundary conditions.

Parameterization of Intensification Zone
Asymptotic Modal Analysis Approach

A rectangular acoustic cavity with five rigid walls and one
vibrating wall has been studied previously using AMA. A
diagram of this problem is shown in Fig. 1. The vibrating wall
was driven by white noise such that a large number of struc-
tural modes was excited in a particular bandwidth. It was
assumed that a large number (approaching infinity) of acous-
tic modes was present in the interior acoustic cavity, and that
these modes were temporally uncorrelated. Although it is not
assumed in the AMA derivation, a consequence of the previ-
ous assumptions is that the acoustic modes are spatially uncor-
related as well. From Refs. | and 2, the expression for the
mean-square pressure for a finite number of acoustic modes
and an infinite number of structural modes is

Fi(x,5,2)

P _TA
M) (] Yt

(Goc2P 4 V2

4>(C)E

X XE F? (x,y,2,) dx dy (1
Ay

As in AMA, M/ and {7 can be treated as constant in a band
and can therefore be evaluated at the center frequency. Thus,
for example, M? becomes M/, etc. Normalizing p? by the
spatially averaged p? yields the following expression for the

nondimensionalized mean-square pressure in the rigid cavity
with one entire wall flexible and vibrating:

LRy )
®) - L FE oy )/ @

where the quantities in () are spatially averaged values. This is
the expression that describes the intensification zone near a
boundary; it is a ratio of the local mean-square pressure to the
spatially averaged (or uniform interior value) mean-square
pressure. At interior points, this ratio will asymptotically (for
r—oo) approach 1.0, whereas at the boundaries, the ratio will
be 2.0, 4.0, or 8.0 for walls, edges, or corners, respectively.
There are several possible transitions to study: from a corner
to an edge, a wall, or the interior; from an edge to a wall or the
interior; and from a wall to the interior. For each case, there
are one-, two-, and three-dimensional modes to consider.

For the rectangular acoustic cavity, Dowell et al.!” have
shown that hard-box modes can be used to describe the inte-
rior acoustic field, even when all six walls are not rigid. There-
fore,

n,mx n, Ty n,rz
FX(x,3,2) = cosz( X >cosz< - )cosz< < )
L, L, L
- n,('rrc)2 <n,1rc>2 <n;wc>2
+ +
(wr'y = (1_, L, L.

One-Dimensional

Considering one-dimensional modes only, F, = cos (nxx/
L) and o} = nnc/L,. Assuming there are a large number of
acoustic modes, which is consistent with the AMA approach,
the discrete variable n can be treated as a continuous variable.
Equation (2) becomes,

nwx
_ cosz< >/nJ dn
2 j L,

5 Vi, 1/ dn

@

3

This integration can be done analytically, and the result is,

S 2 41rxfc
l ——
fz f, {/ cos 0, f2c050 +—
G‘ sin 8, ~ sm 0,> (‘” fc) [Ci(8)—-Ci(8, )]}
)]
y
L x
At
Ly
X
Lz
p 4

Fig. 1 Rectangular acoustic cavity that was studied.
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’ 1-D Intensification
) Summation Vs. Integration

Integration

ﬁ ---------- Sum 15 modes
wasnsensss  Sum 547 modes

Non-Dimensionalized Mean .q. Pressure

0 v T T v T v T r
[+] i0o 20 30 40 50
kex
Fig. 2 Nondimensionalized mean-square pressure vs k.x computed
three ways: as an integration in wave-number space, as a summation

over 15 modes, and as 2 summation over 567 modes.

where f. is the center frequency, 7, the frequency bandwidth,
and f; and f, are defined as the lower and upper frequencies,
respectively, of the frequency interval as follows: fu=tr=Tos
and f. = v, - /. The arguments of the cosines and the cosine
integral function Ci are defined by 8, = 2*kx*f/fe, O =
2*k.x"f./f., where the nondimensional distance k.x is equal
i 2 fo)x/C.

“4e ratios fi/f. and f,/f; can be obtained from f,/f. using
these definitions. In fact, the entire expression (8) can be
written in terms of f,/f. and k.x, where kx is the product of
the wave number associated with the center frequency and the
distance from the endpoint. Knowing the ratio of frequency
bandwidth to center frequency (f,/f) allows the pressure
function in the transition zone to be plotted as a function of
nondimensionalized distance k.x away from the endpoint.
Note that the dimensions of the cavity do not appear in this
result.

If we assume that the frequency is approximately constant
over the interval, and allow w to equal w, the result would be

p? - 1 1

% 2 (kex)(fo/fe)
This is a decaying function that beats with some predictable
frequency, as is shown in Fig. 2. In Fig. 2, both the previous
approximation (5) and the discrete sum are plotted. The sum-
mation is performed for two different center frequencies, one
in which 15 modes are present and the other in which 567
modes are present. The summation expression requires an
additional parameter that is dependent on cavity dimension.
Although the AMA (integration) approximation is theoreti-
call valid when there are a large number of modes, here the
ap~oximation works well for relatively few modes. However,
the =greement is not as good in the two- and three-dimensional
cases.

{sin (8,) — sin (89} &)

Two-Dimensional Case

The transition zone for the two-dimensional case is slightly
more complicated. In this case, F, = cos (n ax/Ly) cos (mwy/

) SX ES [cos¥(kx sin & cos §) - cos(ky sin 8 sin ¢) - cos3(kz cos 6)/k] sin 6 d6 d¢ dk
Y

L)) and (wf)? = ¢2[(nmx/Lye)* + (mwy/L,)]. Assuming there
are a sufficiently large number of modes, m and n can be
treated as continuous variables and the summation can be
replaced by integration. Converting to wave-number space
(nwx/L, =k, etc.) and transferring &, and k, into polar
coordinates by the relations k, = k cos « and k, = k sin «, Eq.
(2) can be written for the two-dimensional case as,

/2
) SS [cos? (kx cos a)[cos? (ky sin a)l/k? da dk
p 0

® LS|
Ve 7 derdk

0

©

To show that this integral is dependent only on k.x and f,/fe,
let £ = kx. Then ky = £ y/x and d¢ = x dk. The nondimen-
sionalized pressure ratio becomes

P
—@T>=

(ku 7k Yeex
XS [cos¥ (& cos a)}[cos? (£y/x sin a))/E2 dE da

kI x
(ku 7keYke
11
S § - = df da
e & %)

In Eq. (7), the only independent parameters are kx and the
ratios k,/k. and k¢/k., which can be derived from f,/f.. The
ratio y/x is known from the desired location within the cavity.
The geometry of the cavity jtself (i.e., the cavity dimensions)
is not an important parameter in determining the nondimen-
sionalized pressure ratio of the cavity interior.

If we assume that k is a constant (i.e., Ak/k < 1), this
expression can be integrated explicity with the result that

2
(%5—_“: 1 + JoRk.x) + Jo(2ky) + Jo(2kcx) - Jo(2k.y)

8 ® L)
o El 2}‘ (= 1) Jon (2keX)2m (2Kcy)
sin (m—n)x/2 sin (m + n)7/2) m
x 2(m—nm) 2(m + n)
(r/4) m=n

n

Notice in the limit as k. and k. y asymptotically approach
infinity, the Bessel functions decay and the nondimensional-
ized pressure ratio asymptotically approaches 1, whereas the
k. and k.y approach zero (i.e., near the corner), the higher-
order Bessel functions decay, but Jo(0) = 1 and so the nondi-
mensionalized pressure ratio asymptotically approaches 4.

Three-Dimensional Case

For the three-dimensional case, F, = cos(nwx/Ly)cos
(may/L,) cos (fxz/L;) and «} = c[(nx/L.)* + (m /L) +
(¢x/L.)?]. Substituting these expressions into Eq. (2), making
the appropriate assumptions to allow the summation to be
replaced by integration (large number of modes, etc.), and
transforming from modal index space to wave-number space
yields the following expression in spherical wave-number co-
ordinates:

P
®?

=

ng (1/k) sin ¢ d6 d¢ dk
ko8

®

i
18
1k
;i o
1
i
8
ﬁ).
|
§

i

T e
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1-D Intensiification Curves

——— FBFC = .005
— FBFC« . 2329
J weessrsess  FRFC = .500

Mean-aquare pressure ratio

v v v T v
0 2 4 [} 8 10
' KCX

Fig. 3 Nondimensionalized mean-square pressure vs k.x, one-dimen-
sional case, three fp/f. ratios plotted: fp/fc = 0.005, 0.23, and 0.50.

2-D Intensification Curves

4
FBFC = .005
FBFC = 2328

sevessnssy  FBFC = 500

2 3-

o

T«

4

]

]

£ e

.

« L

g

,O
g 1 ] '.‘
s
] T r 71
° 2 4 8 8 10

KCX

Fig. 4 Nondimensionalized mean-square pressure vs kcx, two-dimen-
sional case, three f3/f; ratios plotted: f»/fc = 0.005, 0.23, and 0.50.

Again, it can be shown that the nondimensional pressure
ratio is independent of cavity geometry and is, in fact, only
dependent on the parameters k.x, y/x, z/x, and f,/f. by per-
forming a change of variables, as in the two-dimensional case.
When the spatial variables are nondimensionalized by wave
number, the transition zone can be plotted as a function of
mean-square pressure vs position if the bandwidth to center
frequency ratio is specified.

As the number of dimensions increases, the ratio f,/f. plays
a less significant role in the shape of the transition zone, as can

be seen upon comparison of Figs. 3-5. In each of the three

figures, curves corresponding to three different f,/f; ratios are
overlayed. The three f,/f. ratios are f,/f. = 0.005 (which cor-
responds to a narrow bandwidth at a high center frequency),
Jo/f. = 0.23 (corresponding to a 3 octave band), and ff. =
0.500 (which corresponds to an octave band). For the one-di-
mensional case, Fig. 3 shows three distinct curves for the three
different ratios. In the two-dimensional case, the three sepa-

 rate curves are beginning to converge (Fig. 4), whereas in the

three-dimensional case (Fig. 5), convergence occurs more
rapidly. This trend is due to the large number of two- and
three-dimensional modes for a given center frequency at fixed
bandwidth.

Oblique-Wave Approach

Alternatively, the problem of intensification near
boundaries can be analyzed as a local problem. At the walls,
for example, the problem can be modeled as an infinite num-
ber of sound waves incident upon a rigid surface from in-
finitely many directions. The expression for the pressure at a
point in the x,y plane due to a single sound wave, as shown in
Fig. 6, is p(x,y,¢t) = P e«'~%) where P =2 A cos k, x, and
A is the amplitude of the incident pressure wave. Assuming
equal amplitude incident waves with random phase and ran-
dom incidence angles (all equally probable), the summation of
the mean-square pressures is

Y p= A};az A? cos? (kx cos )

Aw,f

where k, has been replaced by &k cos 6.

Assuming there are a large number of frequencies in a
particular bandwidth, as in AMA, the mean-square pressure
in the band is

/2 k upper
pi= X 2432 j cos? (kx cosf) dk do

-%/2 k lower

3-D Intenslification Curves

————  FBFC = .005
FBFC = 2329
esswvsvise  FBFC = .500

Mean-square Pressure Ratlo
F
'l

KCX

Fig. 5 Nondimensionalized mean-square pressure vs k.x, three-di-
mensional case, three f3/f: ratios plotted: fp/f. = 0.005, 0.23, and
0.50.

o

(reflected) Ip = (reflected)
B ¢ )
transmitted |3
or
absorbed g
A i@ A
(incident) ] {incident)
] _‘«: ?

~
Y

Fig. 6 Reflection from s rigid surface (left) or from an absorptive
surface (right).
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In order to compare this resuit to the AMA result, it must be
nondimensionalized by its asymptotic far-field value (.e.,
large k.x), which is 2742 (k,—k,). The corresponding result
derived from AMA is Eq. (6). However, Eq. (6) contains
variation in both the y and x directions. The nondimensional-
ized mean-square pressure ratio is equivalent to Eq. (6) for the
two-dimensional AMA intensification from a wall providing
that the y variable is held constant and the wave number is
assumed large, such that the product ky approaches infinity.
> ote that the 1/k? terms in Eq. (6) are contained in the
piessure amplitude P for the oblique waves. These results also
agree with the earlier result of Waterhouse!® which was
derived using methods similar to the oblique-wave formula-
tion.

Similar relations can be derived for the two- and three-di-
mensional incident sound fields with reflections from one,
two, or three rigid surfaces. The methodology is similar to that
presented here, and the results are in agreement with the AMA
results.

Absorptive Wall Intensification

Using the oblique-wave approach outlined earlier, the effect
..[ an absorptive wall can also be analyzed. Assume that an
infinite number of oblique waves are incident upon an absorp-
tive surface (of finite impedance, z,) from infinitely many
directions. Figure 6 shows one such pressure wave. The ex-
pression for the pressure from one wave is

—ikxx
e }e‘(u:—k,y)

= Peftet=ky)) = 24 ) cos kx——
p { X z, cos 0 + 1

and

3 = Zb/PaC

Kewriting, p = 1P letw=ky+%0) where P = |Ple** . Then
Drea = | P cos (wf—k,y + ¢,). The mean-square pressure is
equal to

No. of wav 12
ooEaes 1P; 1

pr=
i1 2
As in the previous analysis, assume that there are a large
number of modes and replace the summation with integration.
For equal amplitude waves, the expression for the mean-
square pressure is

T

Absorption Results: 2000 Hz Center Freq.

analysis
——e—— @xperiment

Non-Dimenslonalized Mean-Sq. Pressure dB
R
1

v T v
0 10 20
kex
Fig. 7 Comparison of theoretically computed and experimentally

measured nondimensionalized mean-square pressure in dB vs kcx:
2000-Hz center frequency, ¥ octave band.

easy to implement. This involves changing k. from a constant,
evaluated at the center frequency, to a k, a variable, and
integrating the expression over the band Ak.

Comparisons between theoretically calculated results and
experimentally measured data are shown in Figs. 7-9 for three
different center frequencies: 2000, 3250, and 4000 Hz, respec-
tively. The impedance of the foam is different at each center
frequency. At 2000 Hz, the normalized resistence (7,) is 1.17
and the normalized reactance (X,) is — 0.84. These imped-
ance characteristics correspond to an equivalent random inci-
dence absorption coefficient « of 0.85. At 3250 Hz, T, = 1.44,
E =0.15, and the corresponding o = 0.95. At 4000 Hz,
7, = 1.47, X, = 0.64, and the equivalent value for o is 0.91.

The theoretical results are for the three-dimensional case
with bandwidth included. These three examples are plotted for
a V4 octave bandwidth. The experimental data were taken as
an extension of an experiment that was used to validate the
asymptotic modal analysis method for a rectangular acoustic

(7, cos 8 + 1) cos (k.x cos 6) — X, cos 6 sin (k.x cos 0

br=2lA4 l’jz {cos2 (kx cos 8) — 2 cos (kcx cos 0)|:

[ E Y

+ 1 } de
(7, cos 8 + 12 + (X, cos 6)°

Consistent with the assumptions of AMA, the wave number
has been replaced by its value at the center frequency, assum-
iz a narrow band with many modes. The first term in the
ex;.-sssion is the same as in the rigid wall case. The far-field
value (i.e., the limit for large k.x) is

L4

1 ,12 _ 7, cos 8 ]de
4 ZIAI,‘ :[1 (7, cos 8 + 1) + (%, cos 6)°

After dividing by the expression for the far-field mean-square
pressure, the end result is an expression that is equivalent to
the rigid wall mean-square pressure result, but with a set of
terms added to include the effects of absorption.

. These expressions can be extended to three dimensions by
Integrating in spherical coordinates around both angular di-
rections. If desired, inclusion of the bandwidth effect is also

(7, cos 8 + 1)? + (X, cos §)? j|

cavity with rigid walls. The apparatus and details of the exper-
iment are described in Ref. 18. However, the original appara-
tus was modified by placing an open-cell acoustic foam on one
wall of the cavity. The experimental data were taken by mov-
ing a microphone into the cavity from the foam-covered wall
and recording the measured sound pressure levels.

The theoretical curves show clear asymptotic behavior,
whereas the experimental curves settle down less rapidly. The
physical system in the experiment was a three-dimensional
enclosure with rigid walls. Provided that the rigid walls were in
the far field of the microphone, so that their intensification
zones were not penetrated by the microphone, the experiment
should be analogous to the theoretical model. Although this
condition was satisfied, it appears from the experimental data
that the interior of the cavity was not uniform. Previous work,
both analytical’? and experimental'® have shown that, when
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Absorption Results: 3250 Hz Center Freq.

analysis
——e—— axpariment
-8 % g T -
9 10 20
kex

Non-Dimensionalized Mean-Sq. Pressure dB

Fig. 8 Comparison of theoretically computed and experimentally
measured nondimensionalized mean-square pressure in dB vs kcx:
3250-Hz center frequency, Y3 octave band.

Absorption Results: 4000 Hz Center Freq.
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Fig.9 Comparison of theoretically computed and experimentally
mesasured nondimensionalized mean-square pressure in dB vs kcx:
4000-Hz center frequency, %5 octave band.

the damping in the cavity is small, the cavity interior is uni-
form except in the intensification regions. Covering one wall
with the absorptive foam apparently added enough damping
to prevent the interior sound pressure levels from becoming
uniform.

The wall impedance dramatically changes the character of
the intensification region. In fact, as Figs. 7-9 show, the
sound pressure levels at the wall can be reduced well below the
interior levels if the wall is sufficiently absorptive. Despite the
discrepancies away from the wall, the curves show reasonable
qualitative agreement between the analytical and experimental
results near the wall, as is consistent with the local nature of
the intensification process.

Bandwidth Effect

The key parameter in all of the previous studies was the
bandwidth to center frequency ratio f,/f. In order to isolate

the contribution of the bandwidth from that of the center
frequency, a Taylor series expansion was performed. For ex-
ample, Eq. (6) for the two-dimensional waves in the intensifi-
cation zone is a double integral in k and «. It can be written as
a Taylor series expansion about the center frequency wave
number k. as follows:

3 ku ; ku
j 5 F(k, ) dk da = j S F(k., a) dk da
0 4]

ke ky

LA
+ .‘2 S FE*D | k_k.) dk da
0

kK Ok ke

dkda+ - - ®

. j’z" j"" IFk ) | (k—ko)?
0 di, 2 . 2!

Using the arithmetic definition of center frequency, i.e.,
k. = (k, + k)/2, the integrals of odd powers of (k—k.) will
equal zero, leaving only the integrals of even powers of band-
width. Nondimensionalizing introduces a factor of bandwidth
in the denominator. Therefore, the resulting function will
consist of a term that is dependent only on center frequency
plus higher-order terms that contain bandwidth squared and
the higher even powers of bandwidth.

An illustrative example, which can be solved in closed form,
is the intensification in a corner approaching along an edge,
where the motion of the wall is such that the displacement is
relatively constant (white noise) in the bandwidth. For this
case, the nondimensional mean-square pressure expression is

555 cos(kz cos 6) k sin 6 df d¢ dk
2 - ko0
3 = ¢y

‘/ujjj k sin 6 d6 d¢ dk
k,¢,8

This equation differs from Eq. (8) by a factor of k2 in the
integrals, since Eq. (8) is for the case where the white noise
assumption is applied to the acceleration of the moving wall,
rather than its displacement. The z axis is taken as the edge
along which the intensification is studied. This expression has
the closed-form solution:

b~

1]

_1_)_1_ _ 4 +2sin (2k2) sin [(ky/kHk-2))
(pZ) (kcz )z(kb/kc)
All center frequency subscripts here refer to the arithmetic

center frequency. Alternatively, the Taylor series expansion
procedure outlined in Eq. (9) and performed on Eq. 10 yields

an

2 MJ(&)Z i
- 4+4 oz 3\, (k.z) sin (2k.2)
+ higher order terms (12)

Expanding the sine (k,/k. k.z) term in Eq. (11) in a Taylor
series about the center frequency wave number produces an
identical result. This approximate solution is only valid in the
region where the sine function is closely approximated by a
two-term Taylor series. For greater accuracy, the solution
would have to include higher-order bandwidth to center fre-
quency ratio terms. The two-term Taylor series for sine is only
valid up to arguments approximately equal to 1.25. Therefore,
in this example, the combination (k,/k.)(k.z) must be <1.25,
or conservatively < 1.0, which means that k.z < 1/(k,/k.)
for the approximate solution to be accurate. Typlcally, inten-
sification occurs close to the wall, edge, or corner where the
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1ig. 10 CF curve that is dependent upon k.z only: nondimensional-
ized mean-square pressure ratio vs k.z for the example problem.
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Fig. 11 Correction curve that is to be multiplied by f»/f. ratio
squared: this curve by itself is also independent of bandwidth.

values of k.x, k.y, or k.z are small. In fact, usually, k.x, k.,
and/or k.z < 2x/3. Therefore, in most cases, the two-term
solution should be sufficient. For a V5 octave band, for exam-
ple k,/k. is 0.23, which satisfies the requirement that k.z <1/
(kp/k.).

Since the bandwidth correction is second order in band-
width, the mean-square pressure can be approximated by a
siz.ple curve that is dependent on center frequency (CF) only
for small bandwidths. This curve (the CF curve) for the cur-
rent example problem is plotted in Fig. 10. It is a function of
k.x alone, and is independent of bandwidth. The effects of
increasing bandwidth can be taken into account by adding
another function of center frequency that has been multiplied
by the ratio (f,/f.). This function, called the correction curve,
is shown in Fig. 11 [before multiplication by (f»//.)?] for this
example,

In Fig. 12, the correction curve has been multiplied by
{0.23)? and then added to the CF curve. The results are ex-
pected to be accurate up to k.z around 4.0, as explained
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Exact Vs. Approximate - fb/fc = .23
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Meoan-square Pressure Ratlo
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Fig. 12 Comparison of exact solution vs the approximate solution
consisting of CF curve + (f3/f;)? correction curve, for fo/f: = 0.23 (V5
octave band).
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Fig. 13 Comparison of exact solution vs the approximate solution
consisting of CF curve + (f//:)? correction curve, for fp/f. = 0.500.

earlier. However, the exact solution and the approximate solu-
tion agree with each other well beyond 4.0. In Fig. 13, a
similar comparison between the approximate solution and the
exact solution is made for f,/f, =0.5. Here, good agreement is
expected up to 2.0. Once again, the agreement actually extends
beyond that predicted. From the plot, it is also easy to see that
the approximate solution fails for large k.z.

Conclusions

In previous work, asymptotic modal analysis was used to
predict interior sound pressure levels in a rectangular acoustic
cavity. Local response peaks in sound pressure level were
found at the boundaries; otherwise, the interior levels were
nearly constant. In the present work, the spatial variation of
sound pressure level between the boundary and the uniform
interior was studied, i.e., the intensification zone.

It was found that using such AMA techniques as treating
the discrete summation as an integration, and evaluating cer-
tain parameters at the center frequency, etc., provides accu-
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rate results even when the number of modes is relatively few.
In addition, the AMA formulation allows estimation of the
mean-square pressure ratio as a function of nondimensional-
ized distance into the cavity, without knowing the cavity
dimensions. The family parameter for the curves of nondi-
mensionalized mean-square pressure vs nondimensionalized
distance (distance multiplied by the center frequency wave
number) is the bandwidth to center frequency ratio f,/f..
Plots of one-, two-, and three-dimensional intensification
zones have shown that the dependence on f,f, is less important
as the number of modal dimensions increases, i.e., the effect
is least important in the three-dimensional case.

The bandwidth dependence was separated from the center
frequency dependence through a Taylor series expansion
about the center frequency wave number, which was per-
formed on the expression for mean-square pressure. As a
result, the mean-square pressure can be expressed as a func-
tion of center frequency plus terms that are of order band-
width to center frequency ratio squared, and higher (even
powers). Therefore, if the bandwidth to center frequency ratio
is sufficiently small, the expression can be simplified. If sev-
eral bandwidth to center frequency ratios are to be considered,
their.effects can be added on as corrections that are of order
o/ f P .

The intensification zones were also analyzed as local prob-
lems consisting of an infinite number of oblique incidence
sound waves impinging upon a rigid or an absorptive surface.
The result for the spatial average of the sound pressure levels
in the rigid wall case was identical to that obtained from the
AMA methods. The result for the absorptive wall was found
to contain the rigid wall result as well as additional terms that
contain the impedance information. The shape of the intensi-
fication zone is strongly affected by the choice of wall

impedance and can be remarkably different from that near a -

rigid wall. In particular, minimum rather than maximum lev-
els may occur in this zone. The absorptive wall analytical
result was compared with experimental results and found to
agree qualitatively near the wall.

The results of this work provide physical insight into the
intensification zone behavior in acoustic cavities by providing

analytical expressions that describe the sound field in terms of

universal components that show the importance of various
parameters. The analytical techniques that were used here
provide efficient and accurate methods for predicting sound
pressure levels in rooms with intensification zones.
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Experimental Verification of the
Asymptotic Modal Analysis
Method as Applied to a
Rectangular Acoustic Cavity
Excited by Structural Vibration

An experiment was performed on a rigid wall rectangular acoustic cavity driven by
a flexible plate mounted in a quarter of one end wall and excited by white noise.
The experiment was designed so that the assumptions of Asymptotic Modal Analysis
(AMA) were satisfied for certain bandwidths and center frequencies. Measurements
of sound pressure levels at points along the boundaries and incrementally into the
interior were taken. These were compared with the theoretical results predicted with
AMA, and found to be in good agreement, particularly for moderate (1/3 octave)
bandwidths and sufficiently high center frequencies. Sound pressure level measure-
ments were also taken well intot he cavily interior ai various points along the 5
torally rigid walls. The AMA theory, including boundary intensification effects,
waw shown to be accurate provided the assumption of lurge number of acoustic
modes is satisfied, and variables such as power specira of the wall acceleration,

Sfrequency, and damping are slowly varying in the frequency bandwidih.

Introduction

Enclosed spaces such as the interiors of airplanes or auto-
mobiles, in which the enclosure itself or portions of a wall
vibrate, are most often subject to interior noise problems. This
structural vibration induces an acoustic field in the interior
space, and the wall flexibility allows external sound fields 1o
be transmitted to the interior. Two methods which are tradi-
tionally used to predict the interior noise levels are Classical
Modal Analysis (CMA) and Statistical Energy Analysis (SEA).
Another method, Asymptotic Modal Analysis (AMA) which
contains aspects of both CMA and SEA, has recently been
developed for structural-acoustic applications.

Classical Modal Analysis involves consideration of each in-
dividual mode of the system: the structural modes of the en-
closure, the acoustic modes of the cavity, as well as the coupled
structural-acoustic modes. Recent work by Pan and Bies (1990),
studying the effect of fluid-structural coupling on sound waves
in an ericlosure is an example of a CMA-type approach. Other
CMA-based methods include finite element analysis (for ex-
ample, Sung and Nefske, 1984), and boundary element meth-
ods (for example, Seybert and Cheng, 1987). Because individual
modal contributions are considered, these methods are cum-
bersome for systems with large numbers of modes.
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The SEA method is often a good alternative method when
there is a large number of modes involved, since only statistical
quantities regarding the system need to be known. The SEA
method gives accurate results, when the underlying stochastic

~assufiptions are met in the frequency range considered. How-

ever, because the results are given in terms of statistical quan-
tities only (e.g., spatially-averaged mean-square pressures),
detailed information cannot be obtained using SEA. The stand-
ard reference on SEA is the textbook by Lyon (197%).

A new method, Asymptotic Modal Analysis (AMA), which
was developed by Dowell (1983), is a hybrid of the previous
methods. It is systematically derived from Classical Modal
Analysis, and therefore contains several levels of approxi-
mation and generality. The accuracy and simplicity of the
results obtained from AMA are adjusted by determining the
level of approximation in the derivation. In this work, the
accuracy and limitations of the AMA method for a structural-
acoustic system are explored experimentally.

Peretti and Dowell (1992a) analyzed the acoustic field inside
a rectangular cavity where five walls were rigid and the sixth
wall, or a portion of that wall, was vibrating. In their work,
the interior noise levels were studied through a comparison of
the results obtained by Asymptotic Modal Analvsis (AMA)
and those obtained by Classical Modal Analysis (CMA). [t
was found that AMA, which in theory is valid in the limit
when there is an infinitc number ol modes responding; gave



. suprisingly good results when the number of modes was infinite
and only moderately large. Peretti and Dowell (1992a) studied
the case where the vibrating wall was excited with a white noise
time history and assumed to respond with an infinite number
of structural modes. Their theoretical study found that the
sound pressure levels in the interior of the rectangular acoustic
cavity were nearly constant, with the exceptions occurring at
the boundaries. In particular, these boundary areas or ‘‘in-
tensification zones’’ exhibited levels which were 8, 4, and 2
times higher than the interior level for the corners, edges and
walls, respectively. The intensification effect is caused by the
existence of spatially correlated modes at the boundaries due
1o enforcement of the wall boundary conditions, while the
modes in the interior are uncorrelated.

Peretti and Dowell (1992b) also analyzed the transition be-
tween the intensification at the boundaries and the uniform
interior region. They found that the pressure field can be de-
scribed in terms of a nondimensional parameter, which sca-
lesthe distance into the cavity with the wavenumber
corresponding to the center frequency, for different values of
the bandwidth to center frequency ratio. This result is inde-
pendent of the cavity dimensions for frequencies sufficiently
high to achieve the AMA limit, and suggests that itis effectively
a local solution near the boundary. In fact, similar intensifi-
cation results were obtained for a uniform distribution of
oblique waves incident on an infinite wall, which is the equiv-

_alent problem in the nearfield. '

The purpose of this work is to compare these previous an--

alytical results with experimental data and to test the practical
limitations of the theory. To this end, an experiment was per-
formed in which a portion of one wall of an otherwise rigid
rectangular cavity was excited structurally with a white noise
time history. The experimented design was chosen to best match
the assumptions which were made in the theoretical study of
Peretti and Dowell (1992a). The principal findings of the earlier
theoretical study which were further investigated by the present
experimental study are: that the response in the interior of the
cavity is uniform, that at the corners, edges and walls the sound
pressure levels are 8, 4, and 2 times greater than the levels in
the interior; and that the thickness of the intensification zone
is independent of the cavity dimensions.

Previous Theoretical Results and Experimental Goals

This section summarizes the previous theoreticals results in
relation to the goals of current experimental work.

When both the number of structural modes and the number
of acoustic modes are large then, from Peretti and Dowell
(1992a) the nondimensionalized mean square pressure locally
(i.e., as a function of position in the cavity (can be expressed

ALFE) 2oy
MY N2 Z F;(x, ¥, 2).
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From, (1), the quantities which are needed to predict the local
mean-squére pressure are: the flexible wall area (), the vol-
ume of the cavity (¥), the acoustic modal function, (£, (x,).2),
cosines for the rectangular cavity), as well as quantities which
are evaluated at the center frequency of the band. The acoustic
generalized mass (M), the center [requency (w,), the acoustic
modal damping (&), and the power spectra of the wall ac-
celeration (&, are all evaluated at the center frequency only
and are not determined for each individual mode. F. stands
for the modal average of the acoustic modal function. (ZDis
the ratio of the volume average of FZ2 to the average of F,
over the flexible wall area. The following assumptions are
implicit in this equation: the power spectra of the wall response
is uncorrelated in space, which is a consequence of having a
large number of structural modes; and the power spectrum of
the wall response is slowly varying with respect (o frequency
relative 1o the rapidly varying acoustic cavity transfer function.
Also, it is assumed that the generalized mass, the frequency
in the band of interest, and the damping ratio vary slowly,
and can be approximately by their values at the at the center
frequency of the band. A complete derivation of Eq. (1) is
given in the Appendix.

Increasing the bandwidth, and therefore increasing the num-
ber of modes at a given center frequency, should improve the
agreement between the experimental results and the asymptotic
modal analysis results. However, beyond a certain bandwidth

_ size, the assumptions that {requency, damping, etc. are con-

stant are violated, and this tends to negate the positive effect
on analytical/experimental correlation which is due to the in-
creased number of modes. One goal of the experiment was to
investigate the bandwidth effect.

When there is a large number of acoustic modes in the cavity,
i.e., when the index r in Eq. (1) goes to infinity, the mean
square pressure levels in the interior approach a uniform value.
The only term in the AMA expression for mean square pressure
which contains spatial variation is inside the summation over
acoustic modes. However, for very large r, the summation of
F.}! equals a constant, which is the same for all x, ¥, and z,
unless x, v, or 7 are close (within an acoustic wavelength) to
the cavity boundaries. The condition, x, and/or y, and/or I
equal to 0, L,, L,, or L., corresponds to a wall, an edge or a
corner location.

For a rectangular enclosure, substituting F? = cosine’(remx/
L,)" cosine’(r,xy/L,) " cosine’(r.xz/L,) into Eq. (1), and setting
either x, y, or z equal to O or L,, L,, or L, for a wall, the
term LFY/AN? for large r becomes 1/4. In the interior region,
where neither x, y, nor z are equal to 0 or the cavity dimensions
in their respective directions, this ratio is 1/8. Therefore, the
ratio of wall mean square pressure to the uniform interior
pressure is 2 to 1. Similarly, the ratio of mean square pressure
in a corner to the uniform level is 8 to I, and for an edge it
is 4 to 1. These intensification zones at the boundaries are due
to the spatial correlation of the modes there (enforced by the
rigid wall boundary conditions) as opposed to the random

(1) distribution (spatially and temporally) in the interior. Vali-
Nomenclature

A = area X, Y, Z = acoustic modal function « = time derivative
¢ = speed of sound component dependent ~(overbar) = RMS
F = cavity acoustic modal onx,y, 2 .

function AN = number of acoustic Subscripts
L = cavity dimension modes ¢ = center frequency
M = generalized mass w = frequency J = flexible
p = presure ¢ = power spectrum r = acoustic modal index
V = volume p = density w = pertaining to the flexi-
w = displacement ¢ = damping ratio ble wall

x, ¥, 2 = spatjal position coordi- () = spatially averaged quan- 0 = reference value
nate . tity A = acoustic _




dation of the uniformity of the interior sound Jevel as well as

the intensification levels at the walls, edges and corners was’

another goal of the experiment.

The intensification zones exhibit boundary layer behavior,
and are relatively flat in the interior region. Peretti and Dowell
(1992b) studied the transition from the peak boundary levels
to the uniform interior level for the rectangular acoustic cavity
previously considered. They define the nondimensional pa-
rameter, kd, as the center frequency wavenumber multiplied
by the distance into the cavity. The mean square pressure as
a function of k.d is independent of cavity dimensions and is
only dependent on the bandwidth to center frequency ratio
and direction from the cavity boundary. The thickness of the
intensification zone scales with the center frequency wave-
number and is such that for different bandwidth to center
frequency ratios the intensification thickness is relatively con-
stant. A further goal of the experiment was to measure the
sound pressure levels as they transition from the peak levels
at the boundaries to the nearly uniform levels inside the cavity.

) Experimental Design and Description of Apparatus

The experiment was designed to match as closely as possible
the theoretical assumptions. These assumptions include: a rigid
rectangular cavity with only a flexible portion of of one wall

vibrating, a large (infinite) number of structural modes re-

sponding on the vibrating wall portion, and a large number
of acoustic modes containing all frequencies in the band (*‘white
noise’’). In the theoretical work, the width, height, and length
dimensions were in the proportions 2 to 3 to 7. These dimen-
sions were chosen so that they would not be integer multiples
of each other.

A rectangular box was constructed almost entirely of 1 in.
thick Plexiglass. The interior dimensions of the box were 408
mm X 610 mm X 1520 mm. One of the 408 mm by 610 mm
walls was constructed of Bakelite and was removable. This
feature allows the flexible plate location and dimensions to be
varied in subsequent experiments. The portion of the Bakelite
wall that was rigid was 25.4 mm (1 in.) thick, and the thickness
of the portion which was flexible varied according to its other
dimensions. The requirement of having a large number of
structural modes responding on the flexible Bakelite plate dic-
tated the thickness to area ratio of the plate; the smaller the
plate area, the thinner the plate needed to be. For the exper-
imental data reported here, the flexible area was positioned in
the lower left corner of the wall, its area was 622.2 square c¢m,
which corresponds to 1/4 of the entire wall area for that face,
and its thickness was 1.5875 mm (1/16 in.).

The flexible portion was driven by white noise which was
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supplied by a B&K Noise Generator connected to an amplifier
and then to a 2 [b. shaker. The sting of the shaker was attached
1o the flexible portion of the wall by wax at a position which
was of[-center, so as to excite both symmetric and antisym-

" metric modes. Previous work by Kubota and Dowell (1986)

has shown that when a plate is driven in this manner, a large
number of (structural) modes respond, and the response char-
acteristics are nearly spatially uniform; exceptions occur at the
structural boundaries and at the point of excitation. For this
type of behavior, at least fifteen structural modes must be
present in the bandwidth. Figure 1 shows a plot of the number
of structural modes for the flexible plate used in this study as
well as the number of acoustic modes in the cavity versus
frequency for various frequency bandwidths divided by center
frequency, i.e, .005, .2329, .500.

An accelerometer was used to measure the acceleration of
the vibrating plate. The accelerometer was carefully positioned
50 as not to be near a boundary or the force application point.

Microphone probe tubes were used to take sound pressure
level measurements inside the cavity and they were approxi-
mately 20 ¢m (8 in.) long. Holes of approximately 4 mm in
diameter were drilled at various locations on the 5 rigid walls
to accommodate the microphone probe tubes. In order to keep
thé cavity “'rigid,” the holes where plugged when not in use.
The end of each plug was aligned with the interior of the cavity.
A schematic drawing of the cavity is shown in Fig. 2.

The microphone probe tubespossessed standing waves which
were damped out using open cell foam strips, which were
inserted into each tube. Figure 3 shows a diagram of a micro-
phone probe tube. The effect of the damping was accounted
for in the final pressure measurements by calibrating accord-
ingly. The calibration was done by comparing the outputs of
two microphones: a hall-inch microphone without a probe
tube, and a half-inch microphone with a probe tube. The two
microphones were placed in front of a loudspeaker which was
driven with white noise, such at that the mouth of the probe
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Fig. 2 Schematic of the rectangular cavily
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Fig. 4 Transler function of the response ol microphone probe tube
withoul damping lo a bare microphone, and iransfer {unction of the
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tube was flush with the face of the bare microphone. The
transfer function between the two microphone outputs was
taken on a spectrum analyzer and stored on a computer for
future use in calibrating the data, Figure 4 shows transfer
functions, with and without damping. The added damping has
the effect of removing the standing wave peaks without a large
reduction in signal to noise ratio.

The ratio of the output (in volts) from the two microphones
(without probe tubes) subject to a fixed pressure input was
also needed for the calibration. This ratio was assumed to be
independent of frequency in the frequency range of interest,
and therefore, could be obtained from two pistonphone meas-
urements. Since the system is linear, the raw data could be
corrected for the damping effect in the probe tube by using
the ratio of the two microphones without probe tubes, and the
transfer function (which varied with frequency) for a micro-
phone with a probe tube to one without.

During the experiment, two microphone/probe setups (both
calibrated as described earlier) were used to measure sound
pressure levels at two interior points simultaneously while the
accelerometer measured the motion of the wall. These three
data samples were input to a spectrum analyzer (4-channel
Scientific Atlanta SD-380), from which power spectra could
be plotted on a compatible Hewlett-Packard plotter directly,
or the raw data could be stored on the VAX computer via an
{EEE connection, and later post-processed. The plotter option
was convenient for checking measurements in the carly stages
of the experiment. However, the bulk of the experimental data
was stored on a computer as raw data (i.e., volts) and later
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Fig. 5 Experimental set-up schematic

post-processed, since the goal was to compare with the earlier
analytical study in which nondimensional groupings were used. .

Results and Discussion .

Experimental Procedure and Data Process-
ing. . Microphones with probe tubes were used to measure
sound pressure levels at different Jocations inside the rectan-
gular acoustic cavity while an accelerometer measured the
shaker input to the wall. For each fixed microphone probe
tube location, three independent readings were taken for both
the microphones and the accelerometer. The microphone and
accelerometer data were read into a spectrum analyzer and
converted to power spectra densities. The power spectra ranged
from 0 to 5000 Hz and consisted of 400 data points. Therefore,
the narrow bandwidths for the raw data were 12.5 Hz. The
power spectra data in volts were stored on a computer for later
post-processing.

The first step in the post-processing was to read in the three
independent measurements for a fixed spatial coordinate inside
the cavity and average them. The measurements were checked
by plotting the three samples and their average. These data
were then converted from volts into mean square pressures in
Newtons per meter squared by using the earlier microphone
calibration data and the conversion factors from the piston-
phone measurements . The second post-processing step was to
take the average of the three narrow band power spectral
densities (12.5 Hz spacing), and create new spectra with dif-
ferent bandwidth to center frequency ratios. For this, a com-
puter program was written which stepped through center
frequency, computed the bandwidth for a desired bandwidth
to center {requency ratio, and summed the squares of the data
in that desired band. The outputs of this computer program
were power spectral densities (in dB) in continous bands, typ-
jcally from 200 Hz to 4000 Hz with spacing every 20 Hz, for
a particular bandwidth to center frequency ratio (fp/ /). Typical
plots for a microphone and an accelerometer are shown in Fig.
6.

The third and final step in post-processing introduced the
probe location into the data. Here, a series of power spectral
densities for a given f,/f, ratic were read into a computer
program, along with their associated position (x, ¥, and 2
coordinates) in the cavity. The output of this program was
mean square pressure level versus k.4, where k. d is the wave-
number (k.) for a particular center frequency times the distance
{(d) into the cavity with respect to a reference point. Upon
completion of the final step, the data have been transformed
rom power spectral densities in volts 10 mean-square pressures
as a function of a nondimensional parameter & .d for a given
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Uniform Interior. When there is a large number of spatially
uncorrelated acoustic modes in the cavity, the theory predicts
that the interior sound pressure levels in a band will be uni-
formly spatially distributed. To test this hypothesis, micro-
phone probe tubes were inserted into the cavity to their
maximum extension (approx. 20 cm) at various locations on
the five rigid walls. The power spectral densities (in dB re. 2
X 107 N/M?) were plotted versus frequency (Hz) fora 1/3
octave band. The scatter of this data is shown in Fig. 7, where
the deviation from the mean is plotted versus frequency. Note
that above 2000 Hz, the data contain little scatter, while below
2000 Hz the scatter in the data is as much as =10 dB. This
suggests that the region above 2000 Hz will be in the AMA
limit, that is, the theoretical conditions are met regarding the
large number of acoustic modes. For this geometrical config-
uration, a frequency of 2000 Hz corresponds to 26 plate (struc-
tural) modes and 266 cavily (acoustic modes in a 1/3 octave
band. This compares to 16 plate modes and 64 cavity modes
at 1000 Hz. (Figure 1 shows the growth in the number of modes
versus frequency for various bandwidth 10 center Irequency
ratios.) -

Theory VS. Experiment: Corner 1o Interior

1/3 Octave Band Data

12

- T w———— 1000 ralio
_— 20001alio'

10 ——w— 3000 ratio
—e— 3500 ratio

81 ——a—— 4000 ralio
s— theory

mesn aqusre pressurs railla

ked (distance [rom corner)

Fig. 8 Intensification curves for the corner to interior case

Intensification Zones Near The Cavity Bounda-
ries. Theoretically, response peaks occur at the boundaries
of the cavity, due to the imposition of the boundary conditions.
These peaks are 8, 4, and 2 times higher than the spatially
uniform values that exist further into the cavity; the level of
intensification depends upon whether the boundary point is
on a corner, edge or a wall, respectively. Analytically, these
intensification zones have been studied by Peretti and Dowell
(1992b) by plotting the mean-square pressure as a function of
nondimensional distance into the cavity (k). The two main
points for comparison between theory and experiment for the
intensification zone study were the ratio of the levels at the
boundaries to those in the uniform region and the thickness
of the intensification zone (as determined by the distance to
the first minimum).

Figures 8, 9, and 10 show intensification curves coming from
a corner, an edge, and a wall into the interior. In the cases of
the corner and the edge, the trajectory was at an oblique angle,
whereas for the wall, the trajectory was perpendicular to the
wall. The three cases shown here are for a 1/3 octave band-

‘width. Several center frequencies are plotted for the experi-

mental data; the theoretical data is only dependent upon the
ratio of bandwidth to center frequency which is .2329 for a
173 octave band. The ordinate is the ratio of mean-square
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pressure at the x, v, 2 point to mean-square pressure of the
interior region. The abscissa is the nondimensional distance
into the cavity.

The theoretical curve in Fig. 8, for the case where k.4 staris
in the corner (0, 0, 0) and proceeds into the cavity at an angle
which is approximately 33 deg in one direction and 56" in the
other, starts with a ratio of 8 in the corner, and then becomes
flat with a level of 1 for large values of kd. Also, the first
minimum occurs around k4 = x, which corresponds to d =
/2, where X is the center frequency wavelength. The exper-
imental curves which best fit the theoretical curve are for fre-
quencies above 2000 Hz. This was expected since 20000 Hz
seemed to be the lower bound on the AMA regime [rom the
earlier results evaluating the uniformity of the interior sound
levels. Therefore, at 2000 Hz, there are not enough modes for
the theory to hold, although the agreement is still fairly good.
The experimental data show better agreement with theory as
the center frequency and, therefore, the number of modcs
increases, up to a point, and then it is slightly worse. At 4000
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Fig. 11 Eﬂect of bandwidth lor a fixed center frequency

Hz, the ratio of mean-square pressure in a corner to that in

the interior is almost J0 to I. The deterioration of the theory
at higher center frequency is due to the fact that the bandwidth
is proportional to the center frequency. Therefore the band-
width gets wider as the center frequency. Therefore the band-
width gets wider as the center frequency increases. In large
bandwidths, the assumptions that the frequency, power spectra
of the wall acceleration, damping, etc. are essentially constant
may break down.

Similar results are shown in Figs. 9 and 10. In Fig. 9, the
theoretical curve has a value of 4 at k4 equal O(at the edge),
reaches its first minimum around 3 oscillates slightly and
asymptotes to 1 for large values of k. d. Here, k4 is the non-
dimensional distance from the edge along a line which makes
an angle of 33 deg. with the wall. Experimental results agree
well for center frequencies above 3000 Hz. At 3000 Hz, the
value of mean-square pressure at the edge is more than § times
higher than the interior.

The mean-square pressure ratio in the intensification zone
near a wall (away from its corners or edges) is shown in Fig.
10, Theoretically, the ratio is 2 to 1 at the wall. Again, agree-
ment is good, although the experimental levels are higher than
the predicted levels at the wall, for the highest center frequency
values.

In all three cases, the experimental data show asymptotic
behavior, that is, the mean-square pressure levels approach a
constant for large kd. In almost all instances, the theory pre-
dicts the thickness of the intensification zone well.

Effect Of Bandwidth. The previous data suggest that the
theory holds when the center {requency is large such that there
is a large number of acoustic modes in the cavity. However,
it also suggests that when the bandwidth is too large the theory
breaks down. In Fig. 11, the center frequency is held constant
at 3000 Hz, and the bandwidth to center frequency ratio is
varied from 5 percent to 50 percent. The experimental data
which are used here are for the wall intensification zone. Six
experimental curves are shown. A corresponding theoretical
curve for each experimetnal curve is not shown in order not
to crowd the plot. Although there are six different theoretical
curves to compare to, all the theoretical curves have a value
of two at the wall, and asvmptote 1o one away from the wall.
Therefore, qualitatively this data can be judged on how well
it agrees at the wall and asymptotically. The worst cases are
the data corresponding Io the § percent and the 50 percent f, " -
J.ratios, but for different reasons. For small bandwidths, there
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may not be enough modes to satisly the condition that the
number of acoustic modes be very large. However, for large
bandwidths, the condition that certain variables be considered
constant in the band is violated.

Prediction of Interior Levels using AMA vs. Experimental

Results. The spatially-averaged mean-square pressure of the
interior is described by AMA theory (see the Appendix) as:
- 2
(B _x (A" _aN's,
— == — )
(poCo) 4 (V WYrzdy

The quantities A (the flexible wall area) and V' (the volume
of the interior) are known from the geometry of the rectangular
acoustic cavity. The number of modes AN in the desired
bandwidth can be estimated using the standard formula from
architectural acoustics (in any of the textbooks referenced).
The term (Z2) is a ratio of the acoustic modal functions
evaluated at the center frequency spatially averaged over the
entire volume to that spatially averaged over the flexible wall
area. For this example, the acoustic modal functions are prod-
ucts of cosines. The damping ratio evaluated at the center
frequency, ;‘c" can be estimated {rom independent measure-
ments of the reverberation time in the acoustic cavity, which
were performed as part of the overall experimental effort.
The reverberation time was measured using a B&K sound
level meter with a reverbation module attached, (B&K Sound
Level Meter Type 2231 Plus Reverberation Processor Module

BZ 7104) which sends 1/3 octave band bursts and then meas-

ures decay as a function of time. [t calculates and displays the
reverberation time in each 1/3 octave band. The damping ratio
was predicted from reverberation time measurements through
the relationship described by Dowell (1978) and are plotted in
Fig. 12. The remaining unknown parameter in Eq. (2) is the
power spectra of the wall acceleration, $,. This information
can be obtained from the accelerometer measurements shown,
for example, in Fig. 6, which were taken concurrently with the
microphone readings for sound pressure levels. The acceler-
ometer was moved around on the fexible portion of the wall,
and the response was found to be nearly spatially uniform
above 2000 Hz, i.e., the flexible plate, itself, was in the AMA
limit for structural vibration above 2000 Hz (approximately
26 modes in=a 1/3 octave band). : -

A comparison between experimentally obtained results and
theoretically predicted values for spatially averaged mean

Theory VS. Experiment: Mean-Sq. Pressure
100 —
)
3 g 901
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Fig. 13~ Compatison of experimental and lhéore!ically predicted values
for spatially-averaged mean-square pressure ) -

square pressures are shown in Fig. 13. The solid line corre-
sponds to data which were measured experimentally with mi-
crophones and then averaged. The spatially-averaged sound
pressure levels which are predicted using AMA, with the input
to the AMA formula being the accclerometer measurement
from the flexible wall and the predicted damping ratio from
reverberation time measurements, arc represented by discrete
points. An additional curve is also shown in the figure, it
corresponds to the AMA predicted values for the mean-square
pressure assuming a constant damping ratio of 3 percent. The
agreement shown is quite good, particularly above 2000 Hz,
where the flexible plate is in the AMA limit. Below this value,
one accelerometer reading is not sufficient to represent the
power spectra of the wall acceleration. It is believed that better
agreement could be obtained by using a spatial average of the
output from several accelerometers on the flexible wall for
&... However, below a certain value of center frequency, the
assumptions for AMA, both in the acoustics as well as the
structural dynamics, break down and good agreement can never
be reached.

Conclusions

When there is a large number of structure modes responding
on the vibrating portion of the wall and when there is a large
number of acoustic modes in the cavity, the AMA theory
predicts that the sound pressure levels in the interior are uni-
form. This was verified by the experiment performed here,
which showed that for this cavity configuration, an AMA
regime exists above 2000 Hz for power spectral densities taken
in 1/3 octave bands. The AMA theory also predicts that in-
tensification occurs at the cavity boundaries, and that the re-
spective ratios relative to the interior level are 8, 4, and 3 for
corner, edge, and wall intensification. The theory and exper-
iment showed reasonable agreement with respect to the levels
of intensification at the boundaries as well as the thickness of
the intensification zone. The combination of bandwidth and
center frequency must be carefully chosen to give optimal
results from the AMA theory. If the bandwidth is too narrow.
or the center {requency too low there mnay not be enough modes
for the assumption of infinite number of acoustic modes to
be valid. Whereas, if the bandwidth is too wide, other AMA
assumptions break down, such as that the modal properties
are slowly varving over the bandwidth.
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APPENDIX

The following is a derivation of Eq. (1) in the text. Equation
(2) is a spatial average of Eq. (1). A Similar derivation can be
found in Kubota, Dionne and Dowell (1988).

The structural wall modal equation of motion is

MplGm+2tmomgn + Om Gm) = QOm® )
where the modal expansion for the wall deflection is
W= qm(0¥m(x.5) @
m
and the structural generalized mass is
M,= S S m,¥ o (x,y)dxdy 3
A
J

and the generalized force due to a given external pressure is
pE‘P,,,(.\',_v)d\'d_v (4)

of=]],

The acoustic cavity modal equation is
l| -
_ pr —Sr“-' pr+wr pr (5)
where the modal expansion for the acoustic cavity pressure is

1975, Slausncal Energ y A na{vsu' of Dynamical Systems: Theory

_ o pAF(x,2)
P = poto Z': ————hl;' (6)

and the acoustic generalized mass is
1

M;“T, E j SU F(x,y,2)dxdydz )

and the generalized acceleration due to the structural wall is

=10

J
Define f, a nondimensional cavity pressure,

wF(x,y,2)dxdy. 8)

p
S xy,2)s——
PoCo

From (6) and the defintion of auto-power spectrum, the auto-
power spectrum of [ is:

FAx,y,2) Fy(x,»,3)

d{,{w;.\'.}’»:) = Z,: Z M;l M;' d’p,,pI %
where the cross-spectra are defined as:
o . lA -4 -
_ &0, = - 5 Prd’:(T)e’wdT (10)

and the cross-correlations of the modal generalized pressure
coordinates are:

r
Rp,p,- hm L S P(0)P(t + 7)dT. (1)

« 2T

Similarly from (8) the cross-power spectra Q," and Q," are:

!
bo oMW =T S g 5 S Flx.y,0F(x" .y 2 )u(wixyx" ")

dxdydx'dv®. (12)
The transfer function for the acoustic modal Eq. (5) is:
i

- w? + 2i o+ W

H(w)= (13)

From standard random response theory and Eq. (5), the re-
lationship between &, and & wo w is:

By, (W) = HA(W)H, (~ w)dg, o #(w).
From (9), (12), and (14):

ZZ

(14)

r(x.y.z) Fix.y.2)

v H} (w)H; (- w)

PAwix,y,2) =
(15)

) S 3 S SF'(X')J’:)F“(X. ’y. < ’ )¢I(“’ ;X’}’v\’. '}’. )dxdyd.\'.d_" *

This is the basic expression for the power spectra of the
cavity pressure in terms of the power spectra of the wall ac-
celeration. The double summation over r and s can be reduced
1o a single summation by ignoring the off-diagonal coupling.
This is called **joint acceptance’’ theory, and it entails omitting
all terms in the double sum except those for which r=s, This
theory is applicable because Hw)eH,(-w)<< |H{(w)!*and H,
W)+ H (- w) << | Hw)|* for typical small damping values.

Equation (15) is then simplified to:

- P 1 vl 1
Plwixy.0) = Z ey )lH?'(w)l‘

(M)
(157)

. 3 5 5 SF,(.\‘..\'}:)F,(.\" J )b lwniv Xy ddvdvdy T dyt

Since,



S (Wi, X )= D VoWV A(x" Y Ho(w) Holw)w o~ @)

m,n

Z ‘I’,,,(X,.,V,(\P,,(Xj‘ ,)':j.)(r’ru(w)
iy

then, for a large number of excited structural modes (AM — =),

.. 0 ifxzx® y=y
dulwixyx .y )= . . .
constant if(x=x ,y=y

Therefore, $u(wix,y,x’ ¥ )= A2 (w)dx—x*)(y—y").
Assuming the power spectra is smoothly varying with respect
to the transfer function (‘‘white noise assumption’’), then

¥, (w)=$.(w,). Equation (15°) then becomes:

Fl(x..2)

Y IH w)1?

A
éf("";xv.y»z) = ’;{ b(we) Z

S 5 Fi(x.y,2)dxdy (16)
s
Integrating over {requency to obtain mean-square pressure
gives: )
' Fl(x.».2)
MU -

4 () Z

- L j 5 _Ff(x,y,z,,)dxdy_ (17
- .4/

This is the equalion for mean-square pressure in the cavity
when there is a large number of structural modes and a mod-
erate number of acoustic modes. Assuming M, w7, and §
do not vary rapidly in the bandwidth, and can be replaced by
their values at the center frequency of the band (subscripted
by ‘‘¢’"), Eq. (17) becomes:

P T A P, (w) s
Fix.y,z
o1V B 2 )

3 Fi(x.p,20)dxdy (18)
A
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The integral over the flexible area can be expressed as a
spatial average over the flexible area times the area, F. The
acoustic modal function, F,, can be written in terms of spatially
independent functions, X (x)« Y,(y)+Z,(z). Assuming that the

flexible wall area is in the z=2z, plane,
Fix.y.2.) = Xx)Y. (") Z,(z,). Mathematically,
‘H FYx,y,20)dxdy
T ORI (P voume (19)
Ay 7 R

When there is a large number of acoustic modes, (r— o)
and when the acoustic wavelengths are small compared to the
size of the flexible area, then (F?) and (Z?) are independent
of modal number, r, and can be taken outside the summation.
If these conditions do not apply, then (F') and (Z>) should
be modally averaged over the frequency band. Subscripting F
and Z by *‘c”’ to denote that they are independent of r, and
taking them outside the summation, Eq. (19) becomes:

e :
P _xAl_ duwd  (FO
RV D (2 2 e

0)

Equaiion (20) is identical to Eq. (1) in the féxt. Equation (2)
in the main text is simply a spatial average of this equation.
Using the following relations,

(M) = (FO and 3 (Fixp,2) = AN (FD

in the above equation leads to the spatially averaged result:

B _7 (gg T aANS,
(ot 4\ V] Wz

which is the same as Eq. (2) in the text.
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CHAPTER 4

Asymptotic Modal Analysis for Structural-Acoustic Systems with Finite

Structural and Infinite Acoustic Modes

Introduction

When part of an enclosure vibrates, it often excites a large number of acoustic
modes in its interior. Such is the case when part of an automobile vibrates, creating
unpleasant acoustic responses in the interior, or when the sidewall of an airplane fuselage
vibrates, transmitting annoying sound pressure levels to the interior. The results presented
here are directly applicable to these vehicular noise and other interior noise problems.

Previously, Asymptotic Modal Analysis has been used to study a similar class of
problems in structural-acoustics [Ref. 4, 11, 22, 23]. In the previous works, it was
always assumed that the number of structural modes was large, and the number of acoustic
modes was either large or small. Here, it is assumed that the number of acoustic modes is
large (approaches infinity), and the result will be derived for the case where the number of
structural modes is finite.

This result, in the limit where the number of structural modes approaches infinity,
will be compared to the result derived previously for an infinite number of both structural
and acoustic modes. In the previous result, it was initially assumed that the number of
structural modes was infinite, and then the number of acoustic modes was allowed to go to
infinity.

Asymptotic Modal Analysis (AMA) is a recent method, which is systematically
derived from classical modal analysis. AMA was originally developed by Dowell [1] as a
way to demonstrate the relationship between statistical energy analysis and classical modal

analysis. The book by Richard Lyon [5] is the classic reference on statistical energy
88
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analysis. The AMA method has many advantages. Since it is systematically derived from
CMA, the generality of the final result can be modified by changing assumptions which are
made in the derivation. For instance, AMA can predict spatially averaged sound pressure
levels in the interior of an acoustic cavity, and it also has the capability to predict local
sound pressure levels. The AMA method requires less information about the system than a
traditional CMA approach. Parameters, such as modal damping ratio, frequency,
generalized mass, etc. for each individual mode are needed for CMA, whereas in AMA,
only the values at the center frequency are required.

The AMA method is useful for solving linear dynamical systems where there are a
large number of modes and has been provén accurate for both structural dynamics and
acoustics problems. The method has been verified experimentally by Kubota [3] for a
rectangular plate excited by point forces as well as a vibrating plate with a concentrated
mass or masses [24, 25]. Experimental verification of the AMA method applied to a
rectangular acoustic cavity in which part of one wall vibrated was reported by Peretti &
Dowell [22]. In all of the previous AMA analyses it was assumed that the number of
structural modes was large. Conversely, for the structural-acoustic system studied here, a
small number of structural modes will be assumed initially. The underlying assumption in

this analysis is that the number of acoustic modes approaches infinity.
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Theoretical Development

Derivation of the Result for a Finite Number of Structural Modes, and an Infinjte Number
of Acoustic Modes

The expression for mean-square pressure as a function of wall acceleration fora

rigid wall acoustic cavity with a flexible vibrating portion is derived below. This

derivation is similar to the derivation found in Ref. 4. However, in Ref. 4 the initial

assumption is that the pumber of structural modes is infinite. Here, the underlying
assumption is that the pumber of acoustic modes is infinite. The derivations are identical

up to Equation (4.14), but all of the steps are included here for completeness.

The structural wall modal equation of motion is
Myt 20mOmd o+ 0y Xim] = Que 4.1)

where the modal expansion for the wall deflection is

W= 4.0 ¥ xy) (4.2)

and the structural generalized mass is

2
M, = f L m ¥ (x,y) dxdy (4.3)
' f

and the generalized force due to a given external pressure is

QmE = ”IA‘ pE\Pm(X,y) dXdy ) (44)

The acoustic cavity modal equation is
A A, A

. W 4.5
pr+2CrmrpI+mr perf ( )
where the modal expansion for the acoustic cavity pressure is
2 PADF(x,y,2)
P=Pofo Z__MA (4.6)
T

T
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and the acoustic generalized mass is
Mf‘s %/—[ffFrz(x,y,z) dxdydz 4.7
v

and the generalized acceleration due to the structural wall is
w_ 1 .-
= rasa .

Define f, a non-dimensional cavity pressure,

1%

2
poCo

f(t,x,y,z) =

From (4.6) and the definition of auto-power spectrum, the auto-power spectrum of f is:

F;(x,y,z) Fs(x,y,2)
O¢(w;x,y,2) = L o 4.9
oy = LU L O

where the cross-spectra are defined as:

=1 3
Do =7 f Rpg, (1) et (4.10)
and the cross-correlations of the modal generalized pressure coordinates are:
T
Ry, = lim -L| P.(Pa+1)dT .
pps = o0 ZT[T ¢ (D)Ps (t+7) “4.11)

Similarly from (4.8) the cross-power spectra of QrW and QsW are:

Dgrgi(w) = #_”JJE (x,¥,2)Fs (x*,y*,2%) @ (0;x,y,x*,y*) dxdydx*dy*, (4.12)
The transfer function for the acoustic modal equation (4.5) is:
1

2 A A’ (4.13)
-0 +2if 0 o+,

Hf(w) =

From standard random response theory and equation (4.5), the relationship between ®p p,
On Vo Wis:
and Qr QS 1S
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in

@, p () = HA()HE(-w) Ogrgr () - (4.14)

From (4.9), (4.12), and (4.14):

F;(x,y,2z) Fs(X,¥,2) 17A
Or(ixy.z) =120 HA@)H2 (-0)
f ¥ Y SRV (4.15)

* JJ_UF, (X,5,2)Fs (x*,y*,z%)Du(0;x,y,x*,y*) dxdydx*dy*

This is the basic expression for the power spectra of the cavity pressure in terms of
the power spectra of the wall acceleration. The double summation over r and s can be
reduced o a single summation by ignoring the off-diagonal coupling. This is called "joint
acceptance” theory, and it entails omitting all terms in the double sum except those for
which r=s, This theory is applicable because Hr(w)Hs(-w)<< Hr(w)i? and Hg(@)Hr(-
w)<< [Hg(w)? for typical damping values. Equation (4.15) is then simplified to:

Of (03x,y,2) = ;/1525‘23—1—2)- |HAW)]?
r

(v (4.15%)
. J‘_[J.JF,(x,y,z)F,(x*,y*,z*)(Dw(co;x,y,x*,y*) dxdydx*dy*

Further, W = XAV (X.y), from (2)
m
1 T
Ry = lim ﬁ,ﬂ W (X, y,D)W(x*,y*,t+1) dt
T30 -T

300

= 1lim -l,ff D (O m(x,) 2 a0 Pr(x*,y¥)dt

or, Rytxyx¥y*)= Z Z ¥ (x ¥ x*y* )Ry 0(D) .
m n
Taking a Fourier transform (t > ® , R— D)

D @,%,y,x*y*) = 2, > ¥ (XY (x*yHP; - (0) (4.16)

m n
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Again, ignoring the off-diagonal coupling by "joint acceptance” arguments, and noting that
the point pairs x, y and x*, y* correspond to the same points and are therefore,

superfluous:

: =1 F2(x.y.2) 2, dxdy [Fe @ () 4.17
D(0;X,¥,2) vg‘ P [J.J‘AfF,(x,y,zo)‘Pm(x,y) dyjl2 i ) )

Equation (4.17) is for one structural mode (m). The total mean-square pressure can be
computed by summing the individual contribution from each mode. The mean square

pressure response is found by:

(po2f '

Integrating equation (4.17) with respect to @, and recalling that the white noise assumption

implies that d)c'; i is relatively constant in the bandwidth, yields:

Y y i {57 R x,3,20) ¥ m(x,y) dxdy [+ Pez{w@) (4.18)
(POC%)Z vz 4 T (MfA mf‘ )SCr [-UA ]2

If the flexible area is small compared to an acoustic wavelength, Fy(x,y,zo) can be
replaced by its value at the centroid, F(Xo,Yo.Zo). The implication and justification for this
assumption will be discussed later. The integral over ¥m(x,y) is equivalent to the spatial

average of Wn(x,y) times the area of the flexible wall (Af). Equation (4.18) can then be

rewritten:
B 2 - (Af) F;-Z(X,y,Z) Flz'(xo:}'o::o) . (‘Pm(X,Y) &f’ (D%(mrA) (4.19)
(p 0c2)2 1% L (V) @

Since, there are an infinite number of acoustic modes (r—o<) the summation over r

can be approximated by:

~ "R (f FR oS
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This assumes that the generalized mass (MA), damping ({A), frequency (e A), and power
spectra (P(wyA)) are slowly varying with respect to the rapidly varying transfer function
(HA) and can therefore be replaced by their values at the center frequency. The summation
over the product of the acoustic modal functions is then replaced by the product of their
spatial averages times the number of acoustic modes in the band.

Using these approximations in equation (4.19), the result for the mean-square
pressure when there are a large number of acoustic modes, but a finite number of structural
modes, is represented by equation (4.21).

Lk =1‘-(%§)2 (¥ mlx.y) foe "<F

(Poco?')2 4

This is the result for the mean square pressure when one structural mode excites a large

2), AN?

2
. @p 5 (@0) (4.21)
dofe

number of acoustic modes in the bandwidth. The total mean-square pressure in the band is
the summation of the contributions from each structural mode in the band.

This expression can also be written as a function of the power spectra of the
individual point forces rather than the power spectra of the wall acceleration in generalized
coordinates. That result and its derivation are presented in the appendix.

Result for an Infinite Number of Structural Modes and an_Infinite Number of Acoustic
Modes

Equation (4.21) is the result for the mean-square pressure when there are an infinite
number of acoustic modes excited by one structural mode. It is instructive to take the limit
of this expression summed over all structural modes, m, as m goes to infinity. This will
produce a result which is valid for a case where there are both a large number of acoustic
and a large number of structural modes in the band and can be compared to the previously

derived result [Ref. 4] where the limits were taken in the opposite order.
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In the AMA structural mode limit, {#,)% — (#4%, and {#2) - (#2) and

- :W 2}

Pq 4 = 5 , which follows from (4.16). Using the above relations and
(w2) aM 2w

summing (4.21) over m, yields:

P’ _zn(Afa )2 w?)
(poco)2_4( ) Aw (mcl)Bcc (‘P )> z2), (4.22)

where <Z:2>, is the ratio of the spatial average of Fc2 over the volume to F.2 at the centroid
of A¢. This is the result for the mean-square pressure when it is first assumed that an
infinite number of acoustic modes responds, and then that an infinite number of structural
modes also responds.

Previously, Kubota, Dionne and Dowell [Ref 4] derived a similar result for an
infinite number of both structural and acoustic modes. Their derivation first assumed that
an infinite number of structural modes was responding and then took the limit as the
number of acoustic modes approached infinity. From Ref.4, that result is:

6 .=z (Af) AN __(M 4.23)
(% A U () a2

The two results are seen to be very similar. From dimensional considerations this
is hardly surprising. What is significant are the differences. A discussion of the

differences between these two asymptotic results follows.
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Equations (4.22) and (4.23) show that the result for an infinite number of acoustic
modes and an infinite number of structural modes is not independent of the order in which
the limits are taken. This is often true in asymptotic methods.

The Aw in the first equation (4.22) refers to the bandwidth associated with the
individual structural modes. This was implicitly true in (4.23) also, but in (4.23) a very
large number of structural modes had been already assumed in the frequency interval of

interest. Perhaps more significant and surprising is that in (4.22), compared to (4.23) there

(¥ .

(#2(xy))

Moreover, this ratio asymptotically approaches zero as & approaches infinity. This is true

is an additional multplicative factor,

because, <¥¢2> equals 1/2 for high center frequencies or high mode number, while <¥>2
becomes smaller and smaller for higher center frequencies. This implies that for large
modal number <¥>2 approaches zero. Therefore, it is only the lower order structural
modes that significantly contribute to the acoustic response.

The above ratio appears as a consequence of assuming that the flexible wall area is
small compared to an acoustic wavelength, such that, F(x,y,zo) on the flexible wall area
can be approximated by Fr at the centroid (xo,¥o0,%0). From (4.18), the integral over the

flexible areais: Iym = JJ AfF x,¥,2o)¥m(x,y) dxdy . This assumption, removes

Fr(x,y,Zo) from inside this integral leaving only ¥¢. The entire integral is squared, hence
the term <W¥(x,y)>2, (Ag? also appears).

Consider now two limiting cases for As. First, if the entire wall is flexible (i.e., Af
= the entire wall area, LxLy), then the integral, I r ;m is made up of a summation of terms

which look like:
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L

cos (1x F mym) oS (ryT — myn) — 1 + cos (rx £ mym) cos (ryr + myn) — 1
(ret F myn) (ryT — myn) (rgm £ myn) (rym + myT)

Ly Ly Ly Ly

Assuming r >> m, since there are an infinite number of acoustic modes, r, for each

structural mode, m, the above expression is approximately:

4. cos (rxm) cos (ryn) — 1
(rym ) (1yT0) '

L, L,

Obviously, primarily the lower acoustical modes contribute. Therefore, the case where the
entire wall area is flexible is not of interest here, since in this analysis a large number of
acoustical modes are being studied. The case of the entire wall vibrating is effectively the
case where the scale of the wall is large compared to an acoustic wavelength. For small r
and small m, CMA should be used, of course.

Now consider the other limiting case where the length scale of Af is much smaller
than an acoustic wavelength. The acoustic modal function, Fr (x,y,2o) can be
approximated by Fr (Xo,¥0,20), yielding:

Iim 2 FlX0Yo2Zo) JJAf\Pm(X,Y) dxdy. For ¥ = sin(mxmx/Lx) sin(mymy/Ly),

the integral over ¥, equals:

L, Ly

(mym ) (myx )

m,T
Lx

myrt)

L,

for say, x ranging from Xo — € t0 Xo + €, and y ranging from yo — € to yo + €. Thus

Cos ( ) COS

primarily, the lower structural modes will contribute in this case. The acoustic modes will
contribute, however, for all 1. Therefore, only this case need be considered for a large
number of acoustical modes, but a finite number of structural modes, i.e. the case where
the length scale of Afis smaller than an acoustic wavelength.

The comparison of equations (4.22) and (4.23) shows clearly that the double limit,
AM — o and ANA 5 oo, is not unique, that is, the result depends on the order in which

AM and ANA approach infinity. In equation (22), ANA — oo and then AM — c=. On the
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other hand, in equation (4.23), AM—eo and then ANA — oo, This suggests incidentally,

that the phrase Asymptotic Modal Analysis is particularly appropriate. All of these results
using AMA are asymptotic and do break down if the assumptions under which they are

derived are violated. It is clear, of course, that the real value of equation (4.22) is to
demonstrate that the acoustic response of higher frequencies decreases rapidly for a large

but finite number of structural modes, that is less in number than the acoustic modes.
In practice this means that one must first estimate AM and ANA, The larger of the

two is then allowed to approach infinity first and then the second. This determines whether
equation (4.22) or (4.23) is applicable. Presumably there is yet another limit where AM =

ANA and both go to infinity. Properly sbeaking, this is probably a matter of length scales,
i.e. the dimension of the plate, the dimension of the cavity and the wavelengths of each.

The time or frequency scales are clearly also important.

onclusion
An asymptotic modal analysis result for the mean-square pressure in a bandwidth
has been derived for the case where there are a large number of acoustic modes responding

for each structural mode. The limit is then taken as the number of structural modes

approaches infinity. Upon comparison of this result to previous work, where the limits
were taken in the opposite order, it is shown that the order in which the number of modes

goes to infinity is important. The significant difference in the two results is a ratio made up
of spatially averaged structural modal functions, which only appears in the newly derived

result. This ratio approaches zero as the center frequency approaches infinity.
Since the two approaches yield different results, it is important to determine which

modes in the coupled system are approaching infinity faster. This information will result in
the proper choice of an asymptotic modal analysis result for the mean-square pressure.
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Appendix

In this appendix an alternative AMA expression for mean-square pressure is
derived. Here, the variable describing the input excitation is the power spectra of point
forces applied to the vibrating wall, rather than the power spectra of the wall acceleration in
generalized coordinates.

From equation (4.4) in the text and power-spectra relations:
DEE (W) = IJ fj W n(x,y)Prlx*,y* )P (@;x,y,x*,y*)dxdydx*dy*
Af Af

We can relate the generalized coordinates (q's) to the generalized forces (Q's) by:
®_ (@) = H(@H,-0)®q o (@)

where the transfer function Hm is given by:

H (@)= — :

M

2 2
o -@ +21§mcomm+wm}

It follows that:

2 2
CDEM-ln(w) =0 H (o) o Hn(—(n)CDQan(w)
Using the above relations in equation (4.16) in the main text:

Dy (Y X%y = 2, 2, Pn(x,y)Pa(x*y*)0H (@) H(-0)
(A1)
. ¥, )Wa(x*,y*) « OF(w;x,y,x*,y*) dxdydx*dy*
Af Af

Equation (A1) relates the external pressure on the wall to the wall acceleration.

The above expression can be simplified by ignoring off-diagonal coupling (“joint
acceptance”). This means omitting all terms in the double sum except those for which
m=n. This step is justified because Hm(w)Hn(-0)<< [Hm(®)2 and Hn(w)Hm(-m)<<

[Hp(w)l2. Additionally, CDPC is slowly varying with respect to the rapidly varying transfer
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functions (Hm()) and therefore can be treated as a constant independent of ®. Thisis a

consequence of assuming that the forcing is white noise. Equation (A1) then becomes:

2
Dy (@xyx* YY) = 3 Ta®y)¥nty ol Haw)|
m

: f f f f P67 Fm(x* %) Byp(mix,yxiy) dxdyderdy* A2
ac 4 Jar
The load, p€, can be described by many point forces, Fj. This is helpful in
obtaining and understandjng the results. It does not lead to any lack of generality in that
any continuous spatial distribution may be represented by many point loads (I is the

number of point loads).

1
Py, = Y, 8(x-x)d(y-yDFi(t)

i=1
The associated power spectrum is
Dyp (x,y,%%,y%) = 2, 2 B(x-x)B(y-yIB(x*-x)B(y*-y ) Py )
i
where O, is the cross-power spectrum of the point loads.
3
Therefore, equation (A2) becomes:
o (D * ykYy = 2 d gk 4l |2
(DW (m’x’Y’x ’y ) - ‘Ilm(x’Y)\Pm(x ,)’ )(1) Hm(m)
m
PIPIR MERDE ML RIST LAY
i

Using this expression for @;; in equation (4.15%) of the text, yields:

7H,<w)|2f f f f Fy (%,y,2)Fr (x*,y%,2)

S W )Py Hu(@) 2, X Pl y)¥mx*,yi*) O, (@m)dxdydx*dy*

F.(x,y,2)
D (0;%,y,X*,¥%) =13 (———‘
& MA
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This relates the power spectra of the forcing to the power spectra of the pressure. In order
to obtain the mean-square pressure, this expression must be integrated with respect to
frequency, by definition:
2_ P )
f* =———=R(t=0;x,y,2) = | Pw;x,y,z) dw
(pactf °

Therefore, the mean-square pressure expression is:

7 _|[ H()[ o Ha()[ do| L- (F———-—'(x’y’z))z

2
( f f Fix,9,20 2, Tmxy)2, 2 Py ¥m(x;y) <I>Fi,.(com)dxdy) (Ad)

L

Here, the * superscript has been dropped since the point pairs x;,y; and xi*,yi*
obey xi= xi* and yj= yi* , i.e. they range over the same points on the structure.
Therefore, the * superscript is superfluous. Note also that the previous equation retains a
fully modal character of the classical typc.' We have not yet passed from the domain of

modal analysis to AMA.

Figure A1, shows the smoothness of the functions le(cn)I2 and O . (w) relative
F1J

to lI-Ir(co)l2 , for the case where there are a large number of acoustic modes for each

structural mode. The figure shows the response at one structural mode whose resonance

frequency is Wm. Implicit in this drawing is the assumption that the acoustic damping is
less than the structural damping. In this case, IHm((o)I2 and CDFij (w) can be treated as

constants relative to the rapidly varying Hr(w)I2.
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Figure Al. Qualitative sketch of transfer functions, IHm(cn)I2 , IHr((n)l2 and power
spectra, CDF,, ().
1

The frequency integral then becomes:

2 % 2 4
| Ha(o) | @, (0,) f |H()| o do

0

where
2
|Hm(0)"‘)l2= : 0| 12 4

. 2
Mm(21C mu)m) ML o

The frequency integral is equal to [ IH,(m) [20.)4dm = ¢ {wA)* for small damping ratio {.
L]

The higher order damping terms are not retained here. Substituting this into (A4) yields:

N o ol o oyl (F,(x,y,z>z
(p°cg)2 T 4Mm2_Cm20~)m4 ’ V2 MrA

2
( j f Fx,y.2) ¥m(ty)2 2 Um(x:yd¥m(;) dxdy)

)
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This is the mean square pressure as a function of the external forcing F;; for one

structural mode. This expression is still of the CMA type, since there have been no
restrictions on the summation overr.

Assuming the flexible area is small compared to the cavity dimensions, Fr(x,y,Zo)
can be approximated by its value at the centroid of the flexible area (Xo,yo.Zo)- In the AMA
limit, the parameters, {2, oA and M# can be replaced by their values at the center

frequency. The summation overr, as r — e can be approximated by:

> (Fdx.y,2))2= Fdx.y,2))2ANA

Therefore, the expression for the mean-square pressure in terms of the power spectra of the

external forcing is:

P2 _ 1 (wt) IFij(mc)ANA { 1 )

_pP
2 2
(poct)’ MoK Vi \Zdxy2k

2
(” Fnxy) 2 2 Fn(%y)¥n(X;y) dxdy) (A3)
) ~ 4

L

where <Z2>, is the ratio of <F¢2> over the volume to <F¢2> over Af.

Equation (A5) represents the contribution from one structural mode. Implicit in this
result is the assumption that infinitely many acoustic modes are present in the bandwidth of
a single structural mode. The total mean-square pressure is found by summing over the

finite number of structural modes (m) in the bandwidth of interest.
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