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The RICIS Concept

The University of Houston-Clear Lake established the Research lnsUtute for

Computing and information Systems (RICIS) in 1986 to encourage the NASA

Johnson Space Center {JSC) and local industry to acUvely support research

in the computing and information sciences. As part of thls ende_avor, UHCL

proposed a partnership with JSC to Jointly define and manage an integrated

program of research in advanced data processing technology needed for JSC's

main missions, including administrative, engineering and science responsl-

billties. JSC agreed and entered into a continuing cooperative agreement

with UHCL beginning in May 1986, to Jointly plan and execute such research

through RICIS. Additionally, under Cooperative Agreement NCC 9-16,

computing and educational faciliUes are shared by the two insUtutlons to

conduct the research.

The UHCL/RICIS mission IS to conduct, coordinate, and disseminate research

and professional level education in computing and information systems to

serve the needs of the government, industry, community and academia.

RICIS combines resources of UHCLand its gateway affiliates to research and

develop materials, prototypes and publications on topics of mutual interest

to its sponsors and researchers. Wi_ UHCL, the mission ls being

implemented through interdisciplinary involvement of faculty and students

from each of the four schools- Business and _b!ic AdminlsWatlon, Educa-

tion, Human Sciences and Humanities, and Natural and Applied Sciences.

R1CIS also coilaborates wt_ industry in a Companion program. This program

Is focused on serving the research and advanced development needs of

industry.

Moreover, UHCL established relationships with other universities and re-

search organizations, having common research interests, to provide addi-

tional sources ofexperilse to conduct needed research. For example, UHCL

has entered into a special partnership with Texas A&M University to help

oversee RICiS research ant education programs, while other research

organizations are involved vla the *gateway" concepL

A major role of RICIS then Is to find the best match of sponsors, researchers

and research objectives to advance knowledge in the computing and informa-

tion sciences. RICIS, working jointly with its sponsors, advises on research

needs, recommends principals for conducting the research, provides tech-

nical and admlnish-ative support to coordinate the research and integrates

technical results into the goals of UHCL, NASA/JSC and industry.
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RICIS Preface

This research was conducted under auspices of the Research Institute for

Computing and Information Systems. Dr. Bong Wie of Arizona State University

acted as Principal Investigator. Dr. Glen Houston served as RICIS research

coordinator.

Funding was initially provided by the Mission Planning and Analysis

Division, NASA/JSC through Cooperative Agreement NCC 9-16 between the NASA

Johnson Space Center and the University of Houston-Clear Lake; funding was later

provided by the Navigation Control and Aeronautics Division, Engineering

Directorate after a NASA reorganization. The initial NASA research coordinator

for this activity was David K. Geller; later John W. Sunkel of the Navigation

Control and Aeronautics Division, Engineering Directorate, NASA/JSC assumed that
role.

The views and conclusions contained in this report are those of the authors

and should not be interpreted as representative of the official policies, either express

or implied, of UHCL, RICIS, NASA or the United States Government.
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.driz.ona  State University
College of Engineering amf Applied Sciences

Department of Mechanical mat Aerospace E_igineering

Tempe, Arizona 85287-6106
602/965-3291

FAX: 602/965-I384
TLX 165878 COLl. ENG TMPE

June 7, 1991
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Lin Reece, Contracts Manager
Office of Sponsored Pro_ams
Box 44

University of Houston - Clear Lake
2700 Bay Area Blvd
Houston, TX 77058-1098

RE: Progress Report for RICIS Research Activity No. MS03
(NASA Cooperative Agreement NCC 9-16, ASU XAJ 6171)

Dear Ms. Reece:

This is to inform you that we have been making progress to accomplish all research tasks of the
above referenced subcontract by September 30, 1991. In response to the request of Dr. John
Sunkel, Technical Monitor at NASA JSC, we are going to complete this contract three months
earlier than the extended expiration date of December 31, 1991.

We are currently preparing the final report for this contract, which will be delivered to you in
September 199 I.

If you need additional information, please call me at (602) 965-8674 or 965-3291.

Sincerely,

Principal Investigator

el;: Dottie Sparks
ASU Office of Sponsored Projects
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Robust Ho_ Control Design for the Space Station

with Structured Parameter Uncertainty

Kuk-Whan Byun* and Bong Wie t

Arizona State University

Tempe, Arizona

David Geller t and John Sunkel§

NASA Johnson Space Center

Houston, Texas

Abstract

A robust Hoo control design methodology and its application to a Space Station at-

titude and momentum control problem are presented. This new approach incorporates

nonlinear multi-parameter variations in t_-e-state_space formulation of Hoo control the-

ory. An application of this robust Ho¢ control synthesis technique to the Space Station

control problem yields a remarkable result in stability robustness with respect to the

moments-of-inertia variation of about 730£ in one of the structured uncertainty direc-

tions. The performance and stability of this new robust Hoo controller for the Space

Station are compared to those of other controllers designed using a standard linear-

quadratic-regulator synthesis technique.

"Currently, Research Scientist at Dynacs Engineering Co., Inc., Clearwater, Florida.
?Associate Professor, Dept. of Mechanical and Aerospace Engineering, Associate Fellow AIAA.
_Aerospace Engineer, Mission Planning and Analysis Division, Member AIAA.
_Aerospace Engineer, Avionics Division, Member AIAA.



1. Introduction

The Space Station Freedom will employ control moment gyros (CMGs) as primary

actuating devices during normal flight mode operation, and it will utilize the gravity-

gradient torque for the CMG momentum management [1,2]. An attitude determination

system of the Space Station will employ rate gyros and star trackers to compute the states

of the vehicle for control purposes. Multivariable, periodic-disturbance accommodating

controllers have been developed and are being considered for actual implementation to

the Space Station Freedom [3-7]:

As illustrated in Fig. 1, the Space Station will be assembled and maintained using

the Mobile Remote Manipulator System (MRMS) and its Mobile Transporter (MT). The

MRMS/MT carrying a large payload will cause significant changes in the inertia property

of the Space Station; consequently, it will affect the overall performance and stability of

the control system. Study results on the effects of such MRMS/MT operations (e.g., a

"bay" translation along the pitch axis and 180-deg slew maneuver about the pitch axis)

can be found in [7]: -The study results of [7] indicate that some form of adaptive or

robust control with more than 50% inertia variation margins is necessary to account for

the large changes in the inertia property caused by the motion of the MRMS/MT and

its large payload. The study results also indicate that a high-bandwidth controller has

unacceptable transient responses during the payload maneuvers.

In this paper, a robust control synthesis technique based on Hoo control theory is

developed and applied to the robust control design problem of the Space Station dis-

cussed above. This new approach incorporates n0niinear multi-parameter variations in

the state-space formulation of Hoo control theory [8-10]. An application of this robust

H= control synthesis technique to the Space Station yields a remarkable result in sta-

bility robustness with respect to the moments-of-inertia variation of about 73% in one

of the structured uncertainty directions. Such a 73% inertia variation margin is rather

significant compared to the margin of 44% of a typical linear-quadratic-regulator (LQR)

design [3-7] with nearly the same control bandwidth as the robust Hoo controller.

This paper is Organized as follows. In Section 2 a robust full-state feedback control

synthesis technique based on the Ho_ control theory is presented, which exploits the

concept of input-0utput decomposition of the uncertain system parameters [10-13]. A

"full-state" feedback control is considered since the full states of the vehicle are available

from an attitude determination system of the Space Station. A similar approach for the
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u

dynamic compensator design can be found in [13]. The linearized equations of motion

of the Spaze Station are reviewed in Section 3. A robust Hoo controller is synthesized

in Section 4, with special emphasis on the input-output decomposition of nonlinear,

uncertain multi-parameters of the system.

2. Robust Ho. Control Synthesis

r

m

r

Background

In recent years there has been a growing interest in robust stabilization and control

based on Hoo control theory [8-10,13-15], and substantial contributions have already

been made to the state-space characterization of the Hoo control problems [8,9]. Most

standard Hoo-related control techniques are, however, concerned with the sensitivity

minimization with respect to the external disturbances, and are not directly related to

the structured parameter uncertainty. Recently, a new way of incorporating parameter

uncertainty in the robust Hoo compensator design is developed in [10,13] by converting

the parameter-insensitive control problem into a conventional Ho. problem. The state-

space solution to a standard Ho, control problem in [8,9] is then utilized by redefining

the structured parameter variations in terms of a fictitious input and output.

In this section, such a robust Ho, control synthesis technique developed in [10,13]

is reviewed with special emphasis on the new concept of "directional" parameterization

of nonlinear, uncertain parameters. Only the "full-state" feedback control case is con-

sidered here since the Space Station control problem does not need the consideration

of state estimation. A more general case with dynamic compensation can be found in

[10,13].

The Ho, space consists of functions which are bounded and stable. The Hoo-norm of

a real-rational matrix T(s) is defined as

HT]Ic¢_-sup(IIT(s)ll:iRe(s)> 0}

= sup HT(jw)ll

= sup_[T(jw)]

where _r[T(jw)] denotes the largest singular value of T(jw) for a given w.

3



[8,9]

In this paper, we consider a linear, time-invariant multivariable system described by

_,(t)= a ,_(t)+ B, w(t)+ n_ _,(t) (la)

(lb)

where z(t) is an n-dimensional state vector and is assumed to be directly measured,

w(t) an ml-dimensional disturbance vector, u(t) an mrdimensional control vector, and

z(t) a pl-dimensional controlled output vector.
Z U!--=L =

The transfer function representation of this system is given by

[w(,) ]

while the plant transfer matrix P(s) is related to the matrices in Eqs. (1) by

(2)

Internal Feedback Loop

Consider an uncertain dynamical system described as

i oo1['1z = C1 Dli D12 w (4)
u

where C1, Dll, and D12 are not subject to parameter variations. The system matrices

possessing uncertain parameters in Eq. (4) are linearly decomposed into an internal

feedback loop [11,12,13] as follows:

z = C1 Dll D12 +Ae w (s)

where the first matrix in the right-hand side is the nominal system matrix and Ae is the

perturbation matrix defined as

A a [AA AB_ AB2]= 0 0 0 (0)

Suppose that there are I independent parameters pl,...,pt and that their variations

are bounded as Pi _< Pi < _i, or IApil < 1. If A, is linearly dependent of each uncertain
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parameter, then it can be decomposed as derived in [11,13]. However, A, may contain

elements that are nonlinear combinations of Ape's. Variations in the uncertain matrix

elements, Aei, are represented in a functional form as

Aei=Ae_(Ap) for i=l,...,q

where Ap = [Apl,... , Apl] T and q is the number of the uncertain matrix elements of

A,. The perturbation matrix A, is then decomposed as

A, =- 0 E [ N_ N,,, N,, ]=-MEN (7)

where the columns of M and the rows of N span the columns and the rows of A,,

respectively; and

Ae,(Ap) 0

E = ... (8)
0 Aeq(Ap)

If Ae_'s are linear in Api's, then the above input-output decomposition can be rearranged

to become a rank-one input-output decomposition, which has been applied to a real-

parameter variation problem [13].

Define the following new variables

A

Z

_p

'W

U

(9a)

(9b)wp = - E zp,

then the perturbed system, Eq. (5), and the input-output decomposition, Eq. (7), can

._ be combined as:

zp = N_ 0 Nw N_ wp (10a)

z C1 0 Dn D12 w

w_ = -Ezp (10b)

where wp and zp are considered as the fictitious input and output, respectively, caused

by the plant perturbation; and E is considered as a fictitious, internal feedback loop

gain matrix.

5



The aboveinternal feedbackloop representationof the plant parameter uncertainty

becomesusefulfor stability/performance robustnessanalysisdiscussedlater in this sec-

tion. In fact, the parameter-insensitivecontrol synthesisproblembecomesa convensional

Hoo disturbance attenuation problem, which can be easily solved by using the state-space

formulation of the Hoo control theory.

Directional Parameter Variations

A "hypercube" in the space of the plant parameters, centered at a nominal point, is

often used as a stability robustness measure [16]. The robust control synthesis problem

is then to find a controller which yields the largest hypercube that will fit within the

existing, but unknown, region of stability in the plant's parameter space. In [16], a

computational method is developed, which exploits the mapping theorem and the "multi-

linear" property of the plant's uncertain parameters. However, as shown later in this

paper, the Space Station has the uncertain moments of inertia which appear in the

internal feedback loop gain E as nonlinear functions.

One way to overcome the presence of such uncertain parameters in the internal

feedback loop modeling is to consider el,'", eq of E as new independent parameters and

to find the worst possible bounds e_;and el for each el; that is, el < el _< £i. This approach

then reduces to the standard input-output decomposition problem with q independent

parameters. However, ei's may be functionally dependent to each other through actual

parameter variations, Api's. Whenever ei's are closely related, this approach will result

in a very conservative control design; furthermore, some valuable information on the

structured parameter variations i_ not utilized in this approach.

In order to exploite some structured or directional information on the plant parameter

variations, the internal feedback loop gain matrix E is linearized about the nominal

parameter set with respect to small Api's as follows:

E _- M1EllV1 (lla)

Ae _- - M M1E1N1N (llb)
£

where E1 contains only the actual, independent uncertain parameters: The standard
:7:2?:?--:U: :L? = : ::::_- " _: _: f :=: : _ ...... :

form of an input-output decomposition such as Eq. (7), is obtained by re-defining M,
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f_-J

N, and E as

M,-MM1

N _ NIN (12)

E _E1

In some cases, the plant parameter perturbations Ap;'s may possess a certain direc-

tional relationship with the following form:

Ap_ = gi6 for i = 1,.--,1 (13)

where gl represents the direction and magnitude of Ap_ and _ is a scalar variable which

represents the system uncertainty. Parameter variations involving a single parameter

variable are referred to as uni-directionaI parameter variations, while those involving

more than one parameter variable are referred to as multi-directional parameter varia-

tions.

The multi-directional parameter variations are characterized as:

Api=g_j_i fori=l,...,landj=l,-..,r (14)

where gij represents the direction and magnitude of Apl caused by 6_ for multi-directional

perturbations, and r is the number of independent uncertain parameters.

For such cases with multi-directional parameter variations, the internal feedback loop

gain E in Eq. (8) becomes a function of 6j's:

Ael(6)

E _ ".

0

where d_ = [_1,.--,_] r.

0

(15)

A_q(ti)

Since E is nonlinear in _j's in general, the linearized input-

output decomposition can be applied here, as in Eqs. (11) and (12), to be incorporated

in the robust control synthesis.

Stability/Performance Robustness

A robust Ho¢ full-state feedback control synthesis technique presented in this section

exploits the internal feedback loop modeling concept and the H_ control theory. This

new robust control design methodology is summarized in terms of three theorems. De-

tailed proofs of these theorems can be found in [8-10]. Development and aF,plication of

robust H_ compensator synthesis can be found in [13].



The parameter uncertainty model given by Eq. (7) and the nominal plant described

by Eq. (2) can be combined as

[olo2o13][wp]z = G21 G_2 G23 w

z G31 G32 G_ u

u,p - Ezp

u -- -Kz

(16a)

(16b)

(16c)

where wp and zp are, respectively, the fictitious input and output, E is the fictitious

internal loop gain matrix, and K" is a full-state gain matrix to be determined.

The closed-loop system, but with the fictitious internal loop open, becomes:

wp = - Ez v (17b)

where

Tax T12 ]T = T21 T22

Tll -- Gll -- Gx3K(I + Ga3K)-lG31

T12 = G12 - GIsK(I + GasK)-XG3_

T:I = G21 - G23K(I + G_K)-IGm

Tn = G22 - G:3K(I + G:_K)-aG32

(lSa)

(18b)

(18c)

(18d)

(18e)

The actual closed-loop transfer function matrix from w to z with plant perturbations

becomes

T,,,, = T22 - T2xE(I + TI1E)-ITa2 (19)

Note that, in Eqs. (16) and (17), the parameter uncertainty does not appear in the

transfer function matrices. Equations (17) can be used for the stability/performance

robustness characterization. Sufficient conditions for robust stabii]ty and performance

are provided by the following Theorems 1 and 2.

Theorem 1 (Stab_ilty Robustness)

Tz,_(s, aE) Va e [0,1] is robustly stable for ][E[[ _< e, and e > 0, if

< e-x
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= , where e is a measure of the magnitude of the plant parameter uncertainty E in Eq. (8).

=___

= =

v

w

_B,,-

W

=

It is seen that Tal determines the stability robustness with respect to parameter

uncertainty. Small ]lTal ][o0 allows large parameter variations for closed-loop stability.

For this reason T11 is often referred to as robustness function [12]. The above theorem

provides a sufficient condition for the closed-loop stability, resulting in a conservative

control design. Since the condition in Theorem 1 is concerned with a deterministic

bound, the Hoo control theory can be employed for the internal feedback loop model.

The next theorem provides a sufficient condition for guaranteed performance robustness.

Theorem 2 (Performance Robustness)

Tz,o(s, aE) Va E [0,1] is stable, and HTzw(s, aE)]loo < "_ Va E [0,1] with IIEll_ _-',

if

IITII < (20)

where T and T,,o are defined in Eqs. (17) and (19), and _t is an upper bound for the

desired performance specification.

The above two theorems provide conditions for robust stability and performance of

the perturbed closed-loop system in terms of Tla and T in Eqs. (17) and (18). The

following re-definition of z, w, and the associated matrices enables us to employ the

standard state-space representation given by Eq. (1):

[] 1Zp lWp

Z _ J'

[0N ] ]Dxa [0 Dn ' D12 lD12 '

(21)

The following theorem [8] gives a robust H_ controller which satisfies the condition in

Eq. (20).

Theorem 3 (Hoo Full-State Feedback Controller) Assume that

(i) (A, B2) is stabilizable and (Ca,A) is detectable,

(ii) D_2[C, Da2]=[0 I],

9
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(iii) the rank of P12(jw) is m2 for all w, and

(iv) Dn = 0.

Given the above assumptions (i) through (iv), there exists an internally stabilizing

controller such that, for the closed-loop transfer matrix T in Eqs. (17) and for a given

design variable 7,

IITIIoo < 7

if and only if the following Riccati equations

1 T

0 = ATx + XA - X(B2B T - ._B,B, )X + Or, C, (22)

have unique symmetric positive semi-definite solution X such that

B,Br)X andA- B2B X arestabie.

A state-feedback gain that satisfies IIT, ,II= < % where 7 is a design variable spec-

ifying an upper bound of the perturbed closed-loop performance Tz,., is then obtained

as

= X (23)

In order to achieve the desired closed-loop performance over all frequencies, Tz_ is

often formulated to include frequency-dependent weighting matrices. (A proper selec-

tion of the weighting matrices is an important step in any optimization-based design

techniques, such as the linear-quadratic-gaussian (LQG) control and Hoo-optimization.)

In this paper, constant diagonal weighting matrices are used. Inverses of the diagonal el-

ements of the weighting matrix is referred to as welgthing factors. The weighting factors

and 3' represent relative input-output levels and overall closed-loop performance level,

respectively. In the Appendix, the usage of constant weightings, scaling, and orthogonal

transformations on u, w, and z for practical implementation of Theorem 3 are briefly

summarized.

3. Space Station Model

The robust control synthesis technique developed in Section 2 is applied to the Space

Station subject to large payload operations which cause significant changes in the mo-

ments of inertia of the system. Dynamical equations of the Space Station are briefly

reviewed (for details, see [3,4]).
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The Space Station in a circular orbit is expected to maintain local-vertical and local-

horizontal (LVLH) orientation during normal mode operation. For small attitude devi-

ations from LVLH orientation, the linearized equations of motion can be written as:

Space Station Dynamics:

,11,,3]i 11I21 122 123 tb2

I31 132 /33 _3

Is1, 2132,
= n -I3_, O,

122 - Ixx, -2112,

I_ -122,
+ 3n 2 I12,

--/13'_

q" n 2 3/13 -1-

--/12

Iz 2 w 2

-I13 ¢d3

I_- IlI, 0 02

-Iz3, 0 03

-u2 + w2

--U 3 Jr- W 3

(24)

Attitude Kinematics:

CMG Momentum:

O1 -- nO3 --- Wl (25a)

02--n =w_ (25b)

03 + nOx = w3 (25c)

hi - nh3 = uz (26a)

h2 = = u2 (26b)

h3 + nhz=u3 (26c)

where (1, 2, 3) are the roll, pitch, and yaw control axes whose origin is fixed at the

mass center, with the roll axis in the flight direction, the pitch axis perpendicular to

the orbit plane, and the yaw axis toward the Earth; (0x, 02, 03) are the roll, pitch, yaw

Euler angles of the body axes with respect to LVLH axes which rotate with the orbital

angular velocity, n; (wa, w2, w3) are the body-axis components of the absolute angular

velocity of the station; (In, I22, /33) are the principal moments of inertia; Iij (i _ j)

axe the products of inertia; (hz, h2, h3) are the body-axis components of the CMG

momentum; (Ul, u2, u3) are the body-axis components of the control torque caused by

1I



CMG momentum change; (wl, w2, w3) are the body-axis components of the external

disturbance torque; and n is the orbital rate of 0.0011 r_/sec.

Note that the products of inertia cause three-axis coupling as well as a bias torque in

each axis. Fortunately, most practical situations with small products of inertia permit

further simplification in such a way that pitch motion is uncoupled from roll/yaw motion.

For the case where the control axes are nearly aligned with the principal axes (11 =_ Ill,

I2 _ 122, and Is _ I33), Eqs. (24) become

&l + nklw3 + 3n2klO1 = -blUl q- blwl

&2 + 3n2k202 = -b2u2 + b_w2

&3 - nk3wl = -b3u3 + b3w3

(27a)

(27b)

(27c)

where

kl--(I 2 - 13)/11, b1-1Ill,

k2=(I1 - I3)/I2, b2=1/I2,

k3=(I: - I1)/I3, b3=UI3.
Inertia matrices of the Phase 1 Space Station as well as the assembly flight #3 are

listed in Table 1. In this paper, only the Phase 1 configuration is considered. The

uncontrolled Space Station with such inertia properties is in an unstable equilibrium

when 0i = 0 (i = 1,2, 3). Also included are expected aerodynamic disturbances which

are modeled as bias plus cyclic terms in the body-fixed control axes:

w(t) = Bias + A. sin(nt + ¢.) + A2. sin(2nt + ¢_.) (28)

The cyclic component at orbital rate is due to the effect of Earth's diurnal bulge, while

the cyclic torque at twice the orbital rate is caused by the rotating solar panels. The

magnitudes and phases of aerodynamic torque in each axis are unknown for control

design.

4. Space Station Control

A robust Hoo control design for the Space Station is described here. The Space Sta-

tion is desired to have a control system which accommodates the periodic disturbances

andi_e ........ _=: .... _=_:: [3,4], ainertia variations. In periodic'disturbance accommodating controller

is developed for the Space Station, and the disturbance rejection filters for the control

12

u

i

I
In
RB

i
U

!

J

W
I

J

i

g

g

RI)

unRi[

W

|

l

g

__--
n6

i

i

m
i

m i

RI

I

m

g

I



V

_ =

m

L

of hi, 02, 03 are assumed to have the following forms:

&, + ( n )2aa = hi (29a)

_1+ (2n)281= hi (295)

&2+ ( n )2c_2= 02 (29c)

_2+ (2n)282= 02 (29d)

&34-( n )'c_3=/93 (29e)

f13+ (2n)2_ = 03 (29f)

The pitch control logic, involving the single control input u2 and eight states, is then

expressed as

u2 = K22z2 (30)

where K22 is a 1 ×8 gain matrix and z2 is the state vector defined as

&
_g2 -" [02 02 h2 fh2 or2 &2 82 _2] T. (31)

The CMG momentum and its integral are included to prevent CMG momentum build-

up.

Similarly the roll/yaw control logic is given by two control inputs, ul and ua, and

sixteen states:

ua = K31 K_ z3

where Kij's are 1 ×8 gain matrices and

" [01_1
A

=a = [Oawa ha fha aa &a 83 _3] r. (335)

Directional inertia variations for the Space Station are modeled as

13



where5i's represent the amounts of directional parameter variations with respect to the

nominal inertias 11, 12, and/3. The directional variation involving & is called a 5_-inertia

variation in this paper. As discussed in [4], there exist physical bounds for 5i's due to

the inherent physical properties of the gravity-gradient stabilization and the moments

of inertia itself. Table 2 summarizes such physical limitations on &-inertia variations.

As discussed in [3,4], the Phase 1 Space Station becomes unstable for as little as -7 %

variation in 13 and +8 % variation in 11, because of the inherent physical nature of the

problem.

The robust controller synthesis in this paper is primarily concerned with the 51- and

62-inertia variations. In particular, the 51-inertia variation is physically caused by the

translational motion of the payload along the pitch axis, as illustrated in Fig. 1.

Pitch Control

The pitch-axis dynamics with nominal inertias are described as:

0 1 02

0
(35)

where the external disturbance is not included since it is accommodated by the distur-

bance rejection filter.

Since the 51-inertia variation does not affect the pitch dynamics (i.e., k2 and b2 remain

constant), only the g2-inertia variation, where only b2 has uncertainty, is considered for

the pitch axis.

An input-output decomposition of the perturbed control distribution matrix AB2 in

Eq. (35) is obtained as

AB2 = [ o ]1 _ = -MEN
I20+s2) -

and

[ 0 ] E=6'_, N=-I,M = b2 '

where b2 = 1/I2 for the nominal inertia and 5_ = 1/(1 + 5_) - 1.

The fictitious input wp and the fictitious output zp for the pitch axis with the 52-

inertia variation are then expressed as

zp = N[-u2] = u2 (36a)
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% = -Ezp = -'5'2 zp (36b)

These equations replace the parameter variations in Eq. (35) as follows:

...,.

d

d"/ [ 02 0 05

0

+ [ b_ ] [wp-u2]

Zp _ 1/2

Wp --" -- 6 2 ZI_

(37a)

(37b)

(37c)

where k2 = (/3 - I1)/I2 with the nominal inertias.

The robust control problem for Eqs. (35) now becomes a disturbance attenuation

problem for Eqs. (37), to which Theorems 2 and 3 can be applied. Note that zp contains

only the control input u2. This uncertainty in the control loop introduces a necessary

tradeoff between stability robustness and performance.

Equations (37) are now augmented by the pitch CMG momentum dynamics described

by Eq. (26b) and disturbance rejection filters described by Eqs. (29c) and (29d). The

augmented state vector is z2 as defined in Eq. (31), and the controlled output z is also

formed as

z=[ z2]u2

With proper selections of the weighting factors, scaling, and orthogonal transforma-

tions, as discussed in the appendix, the augmented system equations are transformed

to satisfy the assumption (ii) in Theorem 3. The performance specification bound _, is

chosen to be 1, and a set of weighting factors used in this paper is summarized in Table

7.

By solving the Riccati equation, Eq. (22), a robust H.. full-state feedback controller

for the pitch axis is obtained with a control gain matrix listed in Table 3. The closed-

loop eigenvalues of the nominal system with this gain matrix are listed in Table 4.

Stability margins of this new robust Hoo controller with respect to the inertia variations

are compared in Table 5 to those of the previous LQR design in [3]. A significant margin

of 70% for the 62-inertia variation is achieved (compared to the 34% margin of the LQR

design). As can be seen in Table 4, however, this new pitch controller has a closed-loop

pole at -8.29n which is relatively large compared to that of the conventional LQR design

of Ref. 3. As discussed in [14], an H_ controller often achieves the desired robustness

15



by having a high bandwidth for a single input system. The pitch axis designhere is

sucha case;but the robust Hoo control design for the multi-input case to be discussed

in the next section lqa_ a remarkabie stability robustness margin with n_riy the same

bandwidth as the conventional LQR design.

Roll/Yaw Control

Consider the roll/yaw dynamics with nominal parameters described by

03
cb3

+

0

-3n_kx

--n

0

0

bl

0

0

1 n 0

0 0 -nkl

0 0 1

nk3 0 0

0

0 --U 3

Ol

(._11

03

t_3

(38)

where the external disturbances are

by perturbations in the moments of

Akl "_ -kx AI_ +
AI2

Ia Ia

not included. Variations in kl, k3, bl, and b3 caused

inertia are approximated as follows:

/xy3

Ak3 -_ AI_ AI2- k3AI3--TV+ - -?V'

Abl _ -bl _AIa Ab3 _ -b3-_3/3 ,
I1 '

where kl = (/2 -/3)/I1, k3 = (/'2 - I1)/I3, b, = 1/I1, and b3 = 1/I3, for the nominal

inertias.

In particular, for the 61-inertia variation, the above parameter variations become:

Akl ='" - (kl + 1)61, Abl _- -ba61,

la I,
,'_k3 _ - (k3 + 1)-v-,_l, /',h _ -b3-r:-,_a.
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An input-output decomposition of the perturbed system matrix Ac is then obtained

as: : : :

i6

m

!
m

m

m

m

m

m

!
m

i

J

V

g

m

It

m

=

ID

m

m
m



=

or

0 0

M= b_ 0
0 0 '

o b_

[ -3n2I_ 0= o

E

o -nlo ]0 0

where I_ _ Is -/3 + I1 and Ib a_ I2 -- I1 + la.

The fictitious input wp and output zp for the roll/yaw control design incorporating

the _rinertia variation are expressed as

z'=Nxz+N"[ -ul]-u3

wp = -Ezp = -,51 zp

A [01 _3 _13] T"where z = o._1

(39a)

(39b)

The perturbed system is then expressed by the nominal

system and the internal feedback loop as

Zp

_p

A A
where u = [ul U3] T, S "- M and

A
A=

_r= Az + B[wp - u]

= gx_r - guu

"-- -- _1 Zp

0 1 n 0

-3n2kl 0 0 -nk,

-n 0 0 1

0 nka 0 0

(40a)

(405)

(40¢)

Similarly to the pitch-axis design, the standard state-sp_e representation given by

Eq. (1) can be constructed by redefining w and z. A roll/yaw gain matrix of the robust

Hoo controller is listed in Table 3 for the particular weighting factors chosen as in Table

7. The closed-loop eigenvalues of the nominal system with this robust Hoo controller

are listed in Table 4. Stability margins of this new controller are compared to those

of other previous designs in Table 6. Similarly to the pitch control design, the robust

Hoo controller for the coupled roll/yaw axes has significant improvement in stability

17



margins over the standard LQR design (e.g., the 73°£margin over the 440£margin for

the 61-inertiavariation). Contrary to the pitch casewith asinglecontrol input, however,

the robust Ho¢ controller for the roll/yaw axes with two control inputs has a relatively

low bandwidth! In fact, the roll/yaw closed-loop poles shown in Table 4 are very

comparable to those of LQR designs in [3-5].

g

g

m

5. Discussions

Major results and contributions of this paper are summarized in this section. A

robust control synthesis technique presented in Section 2, which is primarily based on

the results in [10,13] and the state-space formulation of the Ho¢ control theory in [8,9],

further exploits the concept of linearized, directional Variations of nonlinear, structured

uncertain parameters. Applications of this approach to the full-state feedback control

design problem of the Space Station with uncertain inertia property have resulted in the

following interesting results: (1) For the pitch control with a single input, the stability

robustness improvement with respect to the overall inertia increases has been achieved

mainly by having a relatively high bandwidth controller and (2) The robust Hoo control

design for the roll/yaw axis with two control inputs has achieved significant stability

robustness over the LQR design, even with relatively low bandwidth. In other words, the

concept of linearized directional parameter variation, combined with the standard Hoo

control theory, has been shown to be a practical way for designing parameter-insensitive

controllers:

For roll/yaw control, the 61-inertia variation was considered in robust Hoo control

design to accommodate the moments-of-inertia variations caused by the translational

motion of a large payload along the pitch axis (See Fig. 1). Since the 61-inertia variation

does not affect the pitch dynamicsl the 6_-inertia variation was considered for the pitch

control design. It is also emphasized that the closed-loop system with this new robust

H_ controllerls stable for 4-73%=61-inertia variation=and for +70% 62-inertia variation,

compared to the 4-440£ 61 and 4-340£ 62 stability margins of a typical LQR design.

6. Conclusions

A robust control synthesis technique for uncertain dynamical systems subject to

nonlinear, structured parameter perturbations has been presented, which is based on
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the Hoo control theory and the internal feedback loop modeling concept. This technique

was applied to the multivariable, full-state feedback control design problem of the Space

Station, resulting in remarkable stability margins with respect to the moments-of-inertia

uncertainty over the conventional linear-quadratic-regulator designs. The linearized,

directional parameter variation concept was shown to be a proper way of accommodating

the nonlinear, structured parameter variations in the design of a parameter-insensitive

controller.

Appendix

In general, the H_ control theory considers frequency-dependent weighting matrices

for the shaping of closed-loop transfer function T,_,. Proper selection of the weighting

matrices, however, is not always obvious. One practical way is to use a constant diagonal

weighting matrix and a normalized output equation. Proper scaling and orthogonal

transformations can be employed to satisfy the assumptions in Theorem 3.

Consider a system given by

= Az + BlW + B_u

= [ zO)
IL

where D_ ) is assumed nonsingular.

Define r_o), r:o), and r,_ be the weighting factors with dimensions of Pl, rn2, and

rnt, respectively. The weighting matrices Q, R, and W are then defined as:

Q= [diag{rg,)}] -z

R= [diag{rg,)}] -x

W = [diag{r_,)] -z

Define normalized variables as

_:0) = Qz O)

y(2) = Rz(2)

= Ww

m
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A scaling factor S for u is also defined as:

_= Su

Substituting the above new variables into the system equation gives

= Ax + B1W-I£o + B28-1_

[ Q-I_O) DI '] s-'.

The controlled output equation can be rewritten as

[_(1) Zo ]

with a QR decomposition of the matrix

QDI_ )

where P is an orthogonal transformation matrix and L is lower-triangular (or generally

nonsingular).

If the control scaling matrix S can be defined as

t

U

_u

g

n

B

J

U

g

W

D

m

g

g

J

m

w

the following system equation then satisfies the assumptions (ii) and (iv) in Theorem 3:

Je = A_ + B1W-X_ + B_L_z

where pT does not affect the H_ norm property.

The system matrices are redefined, to be implemented in a computer software (e.g.,

CTRL-C), as

B1 _ Ba W -x, B2 _ B2L,

0 ' I "

Finally the actual control gain matrix K is obtained by re-scaling the normalized gain

matrix K as:

K = S-1R

2O
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The weighting factors selected for the example design of this paper are listed in Table 7.
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Table 1: Space Station Parameters

Parameters Assembly

Flight#3

Phase 1

Inertia (slug-ft 2)

111 23.22E6 50.28E6

I2_ 1.30E6 10.80E6

I_ 23.23E6 58.57E6

I12 -0.023E6 -0.39E6

/13 0.477E6 0.16E6

Iz3 -0.011E6 0.16E6

Aerodynamic torque (ft-lb) for Phase 1

wl 1 + sin(nt) + 0.5 sin(2nt)

w2 4 + 2 sin(nt) + 0.5 sin(2nt)

w3 1 + sin(nt) + 0.5 sin(2nt)

v

u

--=

w

Table 2: Physical bounds for 6i-inertia variations

Variation Type Lower Bound Upper Bound

&

&

-78.5 %t

-lOO.O %"

-2.3 %"

-64.6 %_t

-2.1%"

+7.6 %t

+16.4 %t

+7.6 %t

?due to pitch open-loop characteristic.
tdue to roll/yaw open-loop characteristic.
*due to triangle inequalities for the moments of inertia.

L

v
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Table 3: Robust Ho¢ controller gains for the Phase 1 Space Station

Pitch K_

4.531E+2

2.607E+5

1.169E-2

4.518E-6

5.673E-5

3.598E-2

-1.722E-5

6.626E-2

Roll/Yaw K T

6.885E+2 2.559E+2

4.092E+5 1.448E+5

2.648E-3 1.495E-3

-5.563E-7 4.948E-7

-1.147E-10 -4.142E-10

5.193E-7 2.263E-7

-9.374E- 10 -9.864E- 10

Units

ft-lb/rad

ft-lb-sec/rad

ft-lb/ff-lb-sec

ft-lb/ft-lb-sec_

ft-lb-rad2/ft-lb-sec 3

ft-lb-rad2/ft-lb-sec 2

ft-lb-rad2/ft-lb-sec 3

-3.783E-7 -3.204E-7

1.800E+2 4.115E+2

8.914E+4 3.719E+5

5.124E-4 2.015E-3

-3.149E-7 -1.997E-7

-1.567E-5 -8.042E-5

-6.513E-2 -2.127E-3

1.892E-4 -2.489E-4

8.709E-4 2.506E-2

ft-lb-rad2/ff-lb-sec 2

ft-lb/rad

ft-lb-sec/rad

ft-lb/ft-lb-sec

ft-lb/ft-lb-sec z

ft-lb-rad/sec 2

ft-lb-rad/sec

ft-lb-rad/sec:

ft-lb-rad/sec

g

g

mm

m
II!

Q

w

Table 4: Closed-loop eigenvalues of the Phase 1 Space Station with robust Ho¢ controller,
=

in units of orbital rate, n = 0.0011 rad/sec

Momentum/
Attitude

Pitch -0.54 4- 0.54j

-1.53, -8.29

Roll/Yaw -0.20, -0.21

-0.31 + 0.87j

-0.82 4-0.85j
-2.31 4- 0.65j

Disturbance

Filter

-0.10 + 1.050

-0.10 4- 2.03O

-0.13 4- 1.010

-0.33 4- 1.180

-0.10 -t- 1.990

-0.27 4- 2.063

24

l

|

--_=



m

w

L

Table 5: Pitch-axis stability robustness comparison

LQR Robust H_

% -6 $

6x -99 oo

62 -89 34

63 -17 7

Q -19 16

6s -30 7

_6 $

-99 c¢

-99 70

-27 7

-40 16

-31 7

"6 and $ are lower and upper bounds, respectively.

w

w

m
w

w

w

Table 6: Roll/yaw stability robustness comparison

%

61

&

LQR

_6 $

-78 44

-99 43

-61 80

-64 64

-51 68

Loc_ t

_6 $

-64 29

-67 30

-60 61

-64 35

-48 50

Robust Hoo

_6 $

-78 73

-99 71

-58 77

-64 99

-49 66

llocal feedback control (decentralized control).
"_ and $ are lower and upper bounds, respectively.
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Table 7: Weighting factors used in the example design

Weightings Pitch Roll Yaw Units

0

h

fh

d

II

zv

wv

1.5

3.8E-3

8.7E+3

3.7E+4

3,5E+4

2.1

2.5E+4

1.0

2.7E-2

2.7E-2

1.0E-2

1.7E-3

6.1E-7

1.7E+4

1.2E+5

1.6E+_

1.7E+_

3.7E+_

3.7E+_

1.0E- 1

5.0E-2

1.0E-2

2.1E-3

7.0E-7

3.0E+4

1.8E+5

9.2E+2

8.0E-1

1.5E+3

3.5E-1

1.2E-1

5.0E-2

1.0E-2

rad

rad/sec

ft-lb-sec

ft-lb-sec _

sec2/rad

sec/rad

sec2/rad

sec/rad

ft-lb

ft-lb

ft-lb

*m units of ft-lb-sec3/rad 2, ft-lb-sec2/rad _, ft-lb-

sec3/rad z, and ft-lb-sec2/rad 2, respectively.
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