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Abstract

An algorithm for the optimum design of an internal flow component to
obtain the maximum pressure rise is presented. Maximum pressure rise in a
duct with simultaneous turning and diffusion is shown to be related the
control of flow separation on the passage walls. Such a flow is wusually
associated with downstream conditions that are desirable in turbomachinery
and propulsion applications to ensure low loss and stable perfcrmance. The
algorithm requires the solution of an "adjoint"™ problem in addition to the
"direct"” equations governing the flow in a body, which 1in the present
analysis are assumed to be the laminar Navier-Stokes equations. Earlier
studies have usually addressed such problems for the case of inviscid
and/or irrotational flow. These assumptions may mnot be valid in flows that
undergo sharp turning resulting in strong secondary flcws and possibly
separating and recirculating regions. The theoretical framework and
computational algorithms presented in this study are for the steady Navier-
Stokes equations.

A novel procedure is developed for the numerical solution of the
adjoint equations. This procedure is coupled with a direct solver in a
design iteration loop, that provides a new shape with a higher pressure
rise. This procedure is first validated for the design of optimum plane
diffusers in two-dimensional flow. The direct Navier-Stokes and the
"adjoint" equations are solved using a finite volume formulation for
spatial discretization in an artificial compressibility framework. The
discretized equations are integrated using explicit Runge-Rutta time steps
to obtain steady-state solutions. It is found that the computational work
required to solve the "adjoint" problem is of the same order as that
required to solve the direct problem. It is also found that the procedure
converges within about ten iterations, and in addition, the number of
design iterations are not sensitive to the grid used for the calculations.
This is a significant computational advantage over heuristic design
precedures bzsed on point by point sensitivity analysis where the work
increases with the refinement of the grid.

A simplified version of the above approach is then utilired to design
ninety degree diffusing bends. The bend 1inlet is sguare with intermediate
and exit cross-sections constrained to be rectangular. The locaticu of hend
walls 1is then determined in order to obtain the maximum pressure rise
through the hend. Calculations were carried out for a mean radius ratio at
inlet of 2.5 and Revnolds numbers varving from 100 to 500, Wwhile at this
stage laminar flow is assumed it is shown that a similar approach <¢an be
conceived for turbulent flows.
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MOTIVATION

# How to shape internal flow passages
# Combined turning and diffusing flow
# Maximize pressure rise

# Can not assume inviscid or 2-D flow

OBJECTIVES

# Develop theoretical framework — laminar 3-D
# Develop Navier-Stokes and Adjoint solvers
# Validate Navier-Stokes solver

(Laminar 90 degree bend, Taylor et al. 1982)

7# Validate Optimization Approach on
2-D straight diffusers

# Apply to the design of ninety degree bends
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[ug,p®] = Solution to NS in (),
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# Our “Adjoint” equation:

vziji +ui(2i + 2:) =7, =0 in {)
1
w; = g (z; — u;)
1 ‘
=73 (r—p* + (1/2)uf - 2u;w;)

# Pironneau’s “Adjoint” equation:

Wi = in {1
VWi ji + UjWi j + Wily — G = —UjUi; 10 ()
w; =0 on I
ou; ou ow
5J — 1 1 1 d
”/PM”(S)(an)(an 6n) °
dw
— = w(const) + - --




NAVIER-STOKES SOLVER

pt = —f%u; ;

Uit T UjUij = —P,i T Vii,jj

a) Artificial Compressibility

b) Runge-Kutta Time Integration
c) Finite Volume Discretization
d) Artificial Dissipation

e) Local Time Stepping

e) Implicit Residual Smoothing
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Figure 4: Geometry of a circular bend with square cross section.
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Figure 5: Streamwise velocities in a bend: a) © = 30 degrees, b) © = 60 degrees, ¢) © = 77.5 degrees.
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ADJOINT EQUATION SOLVER
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Boundary Conditions

# No-slip bc on the walls
# Zero normal derivatives at exit

4 Streamwise velocity component is specified at

entrance

# Zero normal derivatives for remaining velocities

at entrance
# Typical bc’s at symettry planes

# Zero second derivatives for pressure (a compu-

tational bc)
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Diffuser Profile History

Re=200, 61 by 31 grid

O: N=1
M : N=2
A : N=5

* : N=10

1409



Skin Friction History
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Re=200, 61 by 31 grid
O : N=1
N : N=2
A : N=5
* + N=10
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Pressure Rise History

0.16

0.12 -+

Pressure Rise

0.08 T
2

Iteration Number

Re=200, 61 by 31 grid

(O : Area-averaged pressure rise

A : Flow-averaged pressure rise
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Pressure Coefficient

Actual Pressure Rise
Ideal Pressure Rise
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Separating Initial Profile

Re=100, 31 by 11 grid

O : N=1
O : N=2
A : N=3
o : N=4
x + N=11
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Grid Study

Re=200

O : 31 by 16
M : 61 by 31
¥ : 121 by 61
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The error in the location of the optimal diffuser
profile corresponding to a 2 percent error in the
total pressure rise. The optimum shape lies between
the high and low y-values shown in the graph
(Re=500, grid size is 61 by 21, and L/W,=3).
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Sketch of the inlet header

Io

f a three-dimensional diffuser. Flow enters at upstream boundary I'y

Figure 3: A representative section o
haped are I'as-

and exits at downstream boundary I'o. The walls to be s
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ISSUES

# Geometry Constraints
In general: Move walls by ep(s) along the
normal direction, everywhere

New shape may not satisfy

— specified mean passage location
— specified cross-sectional shape

— overall system geometry

# Present Work

— No correction on side walls (z =0, z = zpax)
— Apply mid-plane (z = z,,x/2) correction
to all z locations

— Hence all cross-sections are rectangular

# Laminar flow results (Re < 500)
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Governing Equations:

Us; =0

)

ujuiaj — _pai + V'U,i’jj

Design Objective:

Maximize Static Pressure Rise

J=/ pds—l—/ p ds
I To

- Cabuk and Modi, 1990
s,

(ﬁ) =0
on wall
ou)  _
on wall —°
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AN~

DESIGN ALGORITHM

Choose an initial shape.

Generate the computational grid.
Solve the N-S equations.

Compute shear stress on the walls.

Compare wall shear stress to target dis-
tribution and determine the amount of

boundary movement p(s).

: Update the shape.
: Go to step (2)

p(s) = w(s) [(%) o (g%)targej
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Iteration History (Re=200)

Dashed Curve : N=1
O : N=8
A+ N=2
o :+ N=5
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Arclength along the bend

Wall shear stress along the outer wall,

Re=100
O : Optimum diffusing bend
A : Elliptic diffusing bend
Dashed Curve : Target distribution
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Normalized wall

shear stress
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Arclength along the bend

Wall shear stress along the inner wall,
Re=100
O : Optimum diffusing bend
A : Elliptic diffusing bend
Dashed Curve : Target distribution
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Pressure rise along the header (Re=100)

0.6 ' ' S

Arclength along the bend

O : Optimum header
A : Elliptic header
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Optimum Shapes
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#. Performance = f(shape)

# Possible Applications:

— 90 Degree Bend

— Turn Around Ducts

- Traﬁsition Ducts

— S-shaped Ducts

— Straight or Curved Diffusers
— Turbine Blades

— Engine Inlets

— Turning Vanes
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CONCLUSIONS

Theory

# Theoretical Framework for Design

with Navier-Stokes equations
# Determine p(s) from Direct+Adjoint

or from Direct alone

Computational

# Direct and Adjoint Solvers Validated

for Plane Diffusers
# Design of 90 degree Bend with Specified

- Cross-section, Max. Ap
# Number of Design Cycles < 10
# “Flow” Interpretation of Adjoint Problem

Future Plan

# Apply to 3-D turbulent flow
# Specify mean line, vary cross-section

# Other objectives : Min. Distortion
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