A Method for Designing Blended Wing-Body Configurations for Low Wave Drag

Raymond L. Barger
A Method for Designing Blended Wing-Body Configurations for Low Wave Drag

Raymond L. Barger
Langley Research Center
Hampton, Virginia
Abstract
A procedure for tailoring a blended wing-body configuration to reduce its computed wave drag is described. The method utilizes an iterative algorithm within the framework of first-order linear theory. Four computed examples are included. In each case, the zero-lift wave drag was reduced without an increase in drag due to lift.

Introduction
In the initial rough-cut state of supersonic configuration design, the requirement for low wave drag is a prime consideration. Often, at this stage in the design process, linear codes are used to compute the lift and the drag due to lift (ref. 1) as well as the zero-lift drag (ref. 2).

Reference 2 includes a design option for tailoring the fuselage of a configuration to obtain low zero-lift wave drag. However, this procedure has several weaknesses. It is applicable only if the configuration has a fuselage that is defined by circular cross sections. The procedure is based on the zero-order-accuracy Eminton-Lord theory (ref. 3), by which the computed drag is independent of Mach number. This independence is inconsistent with the first-order theory (ref. 4) that is used in the analysis phase of the program to compute drag from the equivalent area distributions obtained from Mach plane slices. Finally, the procedure does not account for the volume that is required to fill the gap that occurs between the fuselage and the wing when these two components are input separately in the wave-drag geometry format.

This paper describes a method for tailoring a blended wing-body configuration for low wave drag. The method utilizes Mach plane slice area distributions and so is consistent with the wave-drag analysis. Furthermore, since for a blended wing-body the fuselage geometry is not input as a separate component to the wave-drag program, there is no requirement to account for the fuselage-wing gap. The method designs for low drag at zero lift in accordance with the first-order analysis procedures of reference 2, and then the methods of reference 1 are used to ensure that this tailoring does not increase the drag at the design lift coefficient.

Symbols

- B: base area of body of revolution
- B_b: equivalent base area corresponding to displacement effect of jet exhaust
- $C_{D,w}$: drag coefficient due to lift at design lift coefficient
- C_L: lift coefficient
- C_{D,w_0}: zero-lift drag coefficient
- D_w: zero-lift wave drag
- $E(x)$: error distribution
- L: length of equivalent body
- M: Mach number
- $MSAD$: Mach slice area distribution
- q: dynamic pressure
- S: synthesized distribution obtained by averaging individual equivalent area distributions
- S_r: cross-sectional area of body of revolution
- S_θ: equivalent area—area of Mach plane slice at polar angle θ through configuration, projected onto YZ-plane
- T: thickness along centerline section
- V: volume; volume parameter
- $X = x/L$:
- x, y, z: Cartesian coordinates
- $\Delta D_{w,i}$: wave-drag component corresponding to θ_i set of Mach plane slices
- η, ξ: dummy integration variables
- θ: angle between Y-axis and projection of Mach plane slice normal vector onto YZ-plane

Analysis

Linear Wave-Drag Equations

Reference 4 shows that the linear theory approximation to the wave drag of a general, slender, nonlifting configuration is

$$D_w = \int_0^{2\pi} \frac{dD_w}{d\theta} d\theta$$

(1)

where $\frac{dD_w}{d\theta}$ is the wave drag associated with the θ set of Mach plane slices. These are the Mach planes whose surface normal vectors project onto the YZ-plane at angle θ to the Y-axis. (See fig. 1.)
Equation (1) is approximated by the sum of a finite number of Mach slice drag components:

\[D_w = \frac{1}{n} \sum_{i=1}^{n} \Delta D_{w,i} \]

The increments \(\Delta D_{w,i} \) are defined by the formula

\[\Delta D_{w,i} = -\frac{q}{2\pi} \int_{0}^{L} \int_{0}^{L} [S_{\theta j}^n(\xi) S_{\theta j}^n(\eta) \ln|\xi - \eta| d\xi \, d\eta] \]

where \(S_{\theta j} \) is the equivalent area associated with the Mach plane slices at angle \(\theta_j \). The primes indicate differentiation with respect to \(x \). The equivalent area is the area of the projection of the Mach plane slice through the body onto the \(YZ \)-plane (fig. 1).

The Design Problem

The design problem for low wave drag is to find a feasible configuration geometry for which the second derivative distributions in equation (3) yield a low value of \(D_w \) in equation (2). It may be instructive to compare this problem with the design problem for low sonic boom (ref. 5), which specifies a target equivalent area distribution for only one set of Mach slices (that at \(\theta = -90^\circ \)). With the planform and the camber distribution considered to be fixed, a straightforward iterative procedure can be used to tailor the thickness distribution to obtain the required equivalent area distribution (ref. 6). In contrast, the wave-drag design problem involves multiple equivalent area distributions. Tailoring the thickness distributions for any one of these could have a negative impact on the other distributions. This effect was demonstrated in an initial abortive attempt at synthesizing a design procedure. For this attempt, 16 Mach plane sliced area distributions were used. Because of symmetry only nine distributions needed to be calculated. Each distribution was written out, together with the wave drag associated with that distribution. The distribution associated with the largest value of wave drag was then subjected to a smoothing procedure to generate a highly smoothed version of the original distribution. The smoothed distribution was then used as the target distribution for tailoring the thicknesses of the wing-fuselage sections to reduce the wave drag for this particular Mach slice distribution. This procedure always reduced the wave drag for that distribution and, to a lesser extent, it usually reduced the wave drag associated with the adjacent distributions. For the remaining distributions the drag increments varied between positive and negative so that the total drag increment was sometimes a net increase. This method succeeded in reducing the drag only for poor initial designs (those having very high drag); consequently, it was rejected.

Detailed Procedure

The method that was adopted utilizes a more global approach. The procedure is described here, and a flow diagram is given in figure 2.

First, the individual equivalent area distributions are computed and averaged. The result is a single synthesized distribution having a value of zero at the nose \((x = 0)\) and terminating in a value \(B_b \), which is the equivalent area associated with the displacement effect associated with the jet plume and the wake.

Next, this synthesized distribution is compared with the minimum drag area distribution for a body of revolution having a positive base area \(B = B_b \) (ref. 7):

\[S_r(x) = \frac{8}{3} \frac{V - B}{\pi} \left(\frac{1 - x^2}{2} \right)^{3/2} + B \frac{x}{\pi} \sqrt{1 - x^2} + \frac{B}{\pi} \cos^{-1} x \]

where \(V \) is the volume of the body of revolution; but when equation (4) is used as a target distribution for an aircraft geometry, \(V \) is treated as a design parameter that controls the configuration volume, which is generally slightly less than \(V \). An option in the computer code described in reference 2 permits one to compute the actual overall volume of a configuration. The value of \(V \) to be used in equation (4) to obtain the required configuration volume is ultimately determined by iteration.

The third step in the procedure is to alter the thickness distribution of the wing-body along Mach cone slices. Thus, for each value of \(x \) for which the synthesized distribution is computed, a double Mach cone is constructed with its axis aligned with the flight direction axis and its vertex at the given value of \(x \). For this \(x \), the synthesized distribution is compared with the target distribution. If the synthesized distribution is larger, the thicknesses are reduced proportionately where the Mach cone intersects the wing-body. Similarly they are increased where the synthesized distribution underestimates the target distribution. These thickness variations can be applied along the forward part of the Mach cone, the rearward part, or both.

This process is iterated until an approximation to the target distribution is obtained. The target distribution will not be obtained precisely because the thickness changes are applied vertically (in the \(z \)-direction) and not in the Mach slice direction. Consequently, attempts to refine a design beyond
a reasonable point tend to cause "wiggles" in the
distribution area. These wiggles result in large values
in the second derivatives in equation (4) and thereby
increase the drag. Only three or four iterations
are required to obtain a smooth approximation to
the target distribution (fig. 3). One determines the
actual number of iterations required by examining
the drag computed by equation (2) in each analysis
iteration, stopping the iteration when it begins to
increase, and backing up one iteration.

The final step in the procedure is to satisfy the
volume constraint. The volume of the redesigned
configuration is compared with the required volume,
and the value of \(V\) in equation (4) is altered proportionately. Then the entire procedure is repeated to
obtain the required volume within a specified error
bound.

We evaluate the design by comparing the zero-lift
wave drag of the configuration with that of the original configuration using 64 Mach slice distributions
in the analysis. Also, the induced drag due to lift at
the required lift coefficient is compared with that of
the original configuration.

There is little mathematical basis for the above
procedure. If the drag increment computed by equa-
tion (3) were a linear functional of the correspond-
ing area distributions, then the synthesized average
area distribution could be used to compute an aver-
age drag. As it is, this average area distribution cannot
be used to compute any meaningful drag value except for a body of revolution.

Intuitively, however, the procedure does provide a
means of obtaining a kind of global improvement in
the volume distribution so that the sum of the indi-
vidual drag increments is decreased. The procedure
has succeeded in reducing the computed wave drag for all cases attempted thus far, even when consider-
able effort has been expended to generate a low-drag
initial configuration. Several of these sample cases
are described in the following section.

Sample Cases

The following examples were generated strictly
for the purpose of illustrating the effectiveness of the
procedure for reducing the wave drag. No attempt
was made to satisfy the many constraints associated
with factors such as engine sizing or distribution of
weight and volume that would be required for a prac-
tical configuration designed for a specific mission. On
the other hand, some effort was made to generate
initial configurations with relatively low wave drag,
so that a further reduction of the drag would be a
significant accomplishment. Although the thickness
was tailored to reduce the drag, the planform was
not changed, and the overall volume, the lift, and the
base area associated with the jet exhaust were held
essentially constant. All the configurations included
a vertical fin and four generic engine nacelles but
no horizontal tail or canard (fig. 4(a)). For the sec-
ond example, the fuselage cross-section shapes were
nearly circular, but for the other cases, the fuselage
cross sections were more nearly elliptical (fig. 4(b)).

Figure 5 shows the planform for the first example:
a configuration designed for flight at \(M = 1.6\).
The overall planform area is 11686 ft\(^2\), the fuselage
length is 295 ft, and the wing span is 155 ft. The
wing leading edge is continuously curved, with a tip
sweep angle of approximately 60°. The thickness
distribution along the centerline is shown in figure 6,
along with the revised thickness distribution. The
results of the thickness tailoring are as follows:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Initial</th>
<th>Revised</th>
</tr>
</thead>
<tbody>
<tr>
<td>(C_{D,w0})</td>
<td>0.00286</td>
<td>0.00132</td>
</tr>
<tr>
<td>(C_{D,wl})</td>
<td>0.00583</td>
<td>0.00580</td>
</tr>
<tr>
<td>(C_L)</td>
<td>0.10033</td>
<td>0.10001</td>
</tr>
<tr>
<td>(V, ft^3)</td>
<td>40467</td>
<td>40395</td>
</tr>
</tbody>
</table>

The zero-lift wave drag is considerably reduced
without significant variation in the other parameters.

Figure 7 shows the planform for the second ex-
ample: a Mach 2.0 configuration. The planform area
is 12160 ft\(^2\), the fuselage length is 295 ft, and the
wing span is 156 ft. The leading edge has a straight
segment having a sweep angle of 66°. The centerline
thickness distributions are shown in figure 8, and the
design results are as follows:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Initial</th>
<th>Revised</th>
</tr>
</thead>
<tbody>
<tr>
<td>(C_{D,w0})</td>
<td>0.00269</td>
<td>0.00245</td>
</tr>
<tr>
<td>(C_{D,wl})</td>
<td>0.00733</td>
<td>0.00712</td>
</tr>
<tr>
<td>(C_L)</td>
<td>0.98831</td>
<td>0.9816</td>
</tr>
<tr>
<td>(V, ft^3)</td>
<td>41826</td>
<td>41814</td>
</tr>
</tbody>
</table>

In this case, the reduction in \(C_{D,w0}\) is only about
10 percent. This is augmented by a slight reduction
in \(C_{D,wl}\).

Figure 9 shows the planform for example 3, an-
other Mach 2.0 configuration. The planform area
is 11975 ft\(^2\), the fuselage length is 295 ft, and the wing
span is 155 ft. The primary leading-edge sweep angle is 67°. The centerline thickness distributions are shown in figure 10, and the design results are as follows:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Initial</th>
<th>Revised</th>
</tr>
</thead>
<tbody>
<tr>
<td>$C_{D,w0}$</td>
<td>0.00236</td>
<td>0.00175</td>
</tr>
<tr>
<td>$C_{D,ul}$</td>
<td>0.00667</td>
<td>0.00644</td>
</tr>
<tr>
<td>C_L</td>
<td>0.09945</td>
<td>0.10005</td>
</tr>
<tr>
<td>V, ft3</td>
<td>40 127</td>
<td>40 176</td>
</tr>
</tbody>
</table>

In this case a significant decrease in $C_{D,w0}$ is obtained, together with a slight decrease in $C_{D,ul}$.

The fourth example is a Mach 2.4 configuration whose planform is shown in figure 11. The planform area is 12 278 ft2, the fuselage length is 295 ft, and the span is 151 ft. The primary leading-edge sweep angle is 69.1°. The centerline thickness distributions are shown in figure 12, and the design results are as follows:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Initial</th>
<th>Revised</th>
</tr>
</thead>
<tbody>
<tr>
<td>$C_{D,w0}$</td>
<td>0.00182</td>
<td>0.00154</td>
</tr>
<tr>
<td>$C_{D,ul}$</td>
<td>0.00610</td>
<td>0.00603</td>
</tr>
<tr>
<td>C_L</td>
<td>0.08620</td>
<td>0.08577</td>
</tr>
<tr>
<td>V, ft3</td>
<td>40 212</td>
<td>40 235</td>
</tr>
</tbody>
</table>

Even though the $C_{D,w0}$ value for the original configuration is already quite low, it is further reduced in the design process.

For the sonic-boom-type designs (first, third, and fourth examples), a thinning occurs toward the aft portion of the section, but a compensating thickening occurs forward of this region, so that a nearly constant volume is maintained. This type of thickness redistribution occurs because of the far-aft maximum span position of the wing. This revised thickness distribution may pose additional structural and space-allocation problems. In the second example, however, which has the wing in a more forward location, the revision results in a more equitable thickness revision.

Concluding Remarks

A procedure for tailoring a blended wing-body configuration to reduce its wave drag has been described. The procedure utilizes an iterative loop within an analysis code that computes the zero-lift wave drag from multiple Mach plane slice area distributions. In the design process the geometry is constrained by holding essentially constant the planform shape, the overall volume, the lift, and the base area associated with the jet exhaust. Four sample cases were described. In each case the zero-lift wave drag was reduced without an increase in drag due to lift.

NASA Langley Research Center
Hampton, VA 23681-0001
August 3, 1992

References

Figure 1. Geometric quantities for computing equivalent area.
Compute MSAD's for equally spaced \(\theta \)'s on initial configuration, average, and compute drag

Compute error \(E(x) \) as difference between average MSAD and minimum drag distribution

Alter thicknesses along Mach cones with vertices on X-axis by amount proportional to \(E(x) \)

Compute drag for revised configuration. Less than drag of previous iteration?

Yes

Revise volume parameter in target distribution

No

Select geometry of previous iteration. Compute difference \(\Delta V \) between configuration volume and required volume. \(\frac{|\Delta V|}{V} < 0.002 \) ?

Yes

Print geometry

No

Figure 2. Flowchart of design procedure.
Figure 3. Sample calculation illustrating convergence capability of iterative procedure.
(a) General type of configuration considered.

(b) Typical cross-section shape.

Figure 4. Basic configuration geometry.
Figure 5. Planform of Mach 1.6 configuration.
(a) Initial.

(b) Revised.

(c) Comparison of centerline thickness distributions.

Figure 6. Thickness distributions along centerline for Mach 1.6 configuration.
Figure 7. Planform of Mach 2.0 low-drag configuration.
(a) Initial.

(b) Revised.

(c) Comparison of centerline thickness distributions.

Figure 8. Thickness distributions along centerline for Mach 2.0 low-drag configuration.
Figure 9. Planform of Mach 2.0 sonic-boom configuration.
(a) Initial.

(b) Revised.

(c) Comparison of centerline thickness distributions.

Figure 10. Thickness distributions along centerline for Mach 2.0 sonic-boom configuration.
Figure 11. Planform of Mach 2.4 configuration.
(a) Initial.

(b) Revised.

(c) Comparison of centerline thickness distributions.

Figure 12. Thickness distributions along centerline for Mach 2.4 configuration.
A Method for Designing Blended Wing-Body Configurations for Low Wave Drag

Raymond L. Barger

NASA Langley Research Center
Hampton, VA 23681-0001

National Aeronautics and Space Administration
Washington, DC 20546-0001

L-17095

NASA TP-3261

A procedure for tailoring a blended wing-body configuration to reduce its computed wave drag is described. The method utilizes an iterative algorithm within the framework of first-order linear theory. Four computed examples are included. In each case, the zero-lift wave drag was reduced without an increase in drag due to lift.