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Annual Summary for NASA Interchange NCA2-543

Three technical reports were submitted this year, including this one.
They are:

1. Electromagnetic characterization of conformal antennas (Univ. of
Michigan Report #027723-4-T).

2. Scattering and radiation analysis of three dimensional cavity arrays
via a hybrid finite element method (Univ. of Michigan Report
#027723-5-T).

3. A finite element-boundary integral formulation for conformal arrays
on a circular cylinder (Univ. of Michigan Report #027723-6-T).

The first of these reports described several extensions and further
developments associated with the microstrip patch array code developed last
year. Specifically, modifications were introduced into our original finite
element formulation to permit simulations of embedded resistive cards,
lumped loads and impedance surfaces. The new implementations were
validated, and a number of new design schemes were examined for
controlling the RCS, resonance frequency and array aperture size. For
example, the RCS gain of rectangular patches was examined as a function of
lumped load values and locations; dielectric coatings were examined for
controlling the patch RCS; resistive ribbons were employed and found
suitable for broadband RCS reduction without excessive compromise in
gain; dual cavities were shown to provide resonance control and decrease in
array aperture size; and reactive resistive sheets provided an attractive
alternative for controlling the patch's resonance frequency. Needless to
mention, during the course of this year our finite element rectangular patch
array code was improved in many respects. Its geometry interface was
expanded to allow for greater adaptability, several new features were added
as noted above and a variety of reference calculations were generated
providing potential uses with possible new application of the code. Finally,
a short code manual was written.



In addition to the above improvements of our finite element planar
patch array code, one additional code was completed for infinite planar patch
arrays, and we began the development of another code suitable for
cylindrically conformal patch arrays. Specifically, a rather thorough
analysis and investigation was completed for the scattering and radiation
analysis of an infinite path array backed by rectangular cavities. The
pertinent finite element formulation was developed ab initio, and measured
data were collected for validating the code. By invoking Floquet's theorem,
the computational domain was restricted to a single element, and this was
the primary reason for considering the infinite array formulation. We have
already found that the infinite array approximation is sufficiently accurate
for modelling large arrays. Thus, instead of using our original patch array
code which is computationally intensive for large arrays, one can resort to
the more efficient infinite array code.

Much of our effort during the second half of this fiscal year was
devoted to the development of the necessary formulation for the analysis of
arrays on cylindrical surfaces. The details of this formulation are given in
the present report following this summary. As of the moment, the entire
formulation has been documented, and the finite element matrix elements
were generated using edge-based pie-shell elements conformal to the
cylindrical aperture. Most of the effort, though, was devoted to the
discretization of the boundary integral for terminating the mesh. More
specifically, various asymptotic forms for the cylinder's Green's functions
were examined, and one was proposed for its efficient evaluation without
compromising accuracy. The implementation of the proposed cylindrical
array formulation is currently in progress.
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Abstract

Conformal antenna arrays offer many cost and weight advantages
over conventional antenna systems. In the past, antenna designers
have had to resort to expensive measurements in order to develop a
conformal array design. This is due to the lack of rigorous mathemat-
ical models for conformal antenna arrays, and as a result the design
of conformal arrays is primarily based on planar antenna design con-
cepts. Recently, we have found the finite element-boundary integral
method to be very successful in modeling large planar arrays of arbi-
trary composition in a metallic plane. Herewith we shall extend this
formulation for conformal arrays on large metallic cylinders. In this we
develop the mathematical formulation. In particular we discuss the fi-
nite element equations, the shape elements, and the boundary integral
evaluation. and it is shown how this formulation can be applied with
minimal computation and memory requirements. The implementation

shall be discussed in a later report.

1 Introduction

Conformal antenna arrays are attractive for aircraft, spacecraft, and land
vehicle applications since these systems possess low weight, flexibility, and
cost advantages over conventional antennas. The majority of previous devel-
opments in conformal antennas has heen conducted experimentally due to a



lack of rigorous analysis techniques. Various approximate analysis techniques
are restricted in many respects, including accuracy and element shape, and
are based on planar antenna models.

Recently, we have found that the finite element-boundary integral (FEM-
BI) method can be successfully employed for the analysis of large planar
arrays of arbitrary composition {1]. The resulting system is sparse due to the
local nature of the finite element method whereas the boundary integral is
convolutional, thus ensuring an O(N) memory demand for the entire system.
tennas conformal to a cylindrical metallic surface. Both the radiation and
scattering problems will be developed in the context of the FEM-BI method.
In contrast to the planar aperture array, the implementation of the cylindri-
cally conformal array requires shell shape elements rather than bricks, and
the required external Green's function is that of the circular perfectly con-
ducting cylinder. In its exact form this Green’s function is an infinite series
which must be evaluated efficiently and must also be put in a convenient
convolutional form for storage minimization.

This report presents the FEM-BI formulation, appropriate cylindrical
shell elements, and the system evaluation strategy which will maintain low
memory and computational load. The cylindrical elements will be chosen di-
vergenceless while maintaining excellent geometrical fidelity. These elements
are derived using the procedure attributed to Whitney [2]. Substantial effort
is also devoted to the development of expressions for the metallic cylinder’s
dyadic Green’s function which are convenient for computation, and extremely
inexpensive asymptotic evaluations will be derived.

2 FEM-BI Formulation

Consider the configuration illustrated in Fig. 1 where a cavity is situated on
a circular metallic cylinder. The cavity is recessed in the cylindrical surface
and its walls shall be assumed to coincide with either constant ¢ or constant
= planes. Also, it shall be assumed that radiating elements may reside on
the surface of the substrate within the cavities.

In accordance with the FEM-BI formulation discussed in {1}, the radiated
or plane scattered fields can be determined by considering two systems of
equations. Particularly, the fields interior to the cavity are formulated by
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the finite element method which results in a sparse system of equations. As
usual, the determination of the finite element mesh at the aperture requires
the imposition of an externally supplied condition. For our case this condition
becomes the boundary integral equation enforced at the cavity aperture.

We begin the development of the FEM-BI system by first discretizing the
weighted vector wave equation in the interior of the cavity using cylindrical
shell elements which are most appropriate for this geometry. Assuming the
presence of possible sources J' and M* in the cavity the vector wave equation
is of the form

V x E(p.¢,2)
elp, &, 7)

v } — k¥, (p, 6, 2)E(p, 6,2) =

—ikoZ, T (p, b, 2) + V % (1)

Mi(p, ¢, z)
ur(ps ¢, 2)

In this E(p, ¢, =) denotes the total electric field in the usual polar cylindrical
coordinates, €,(p. ¢, z) and yu,(p, ¢, z) are the relative permittivity and per-
meability of the substrate or material filling the cavity, kg is the free space
wavenumber and Z; denotes the free space intrinsic impedance. To generate
a system of equations from (1) we apply the method of weighted residuals.
We obtain

V x P ¢’:) ’ I-‘Vz(pa ¢,z)pdpdq$dz
v, i (py &, 2

_j2 /‘ er(p b 2V E(p.6.2) - Wip. b 2)pdpdeds =

J\—‘i s b, = =
v |MA2002) - Wilp, 8, 2)pdpded:
v, (P, 2)
~ikoZo [, T'(p.6:2) - Wilp,6,2)pdpd d (2)

where W,(p, ¢, z) is a subdomain vector-valued weight function to be specified
and V; is the ith volume element resulting from a discretization of the cavity.
Given the sources (J', M') for each weighting function the right-hand size



of (2) is known and shall be referred to as the excitation function defined by

_ Mip. ¢.2)
£ o= /V'{Vx

pr(p, 0, 2)
Upon application of a standard vector identity and the divergence theo-
rem [3], we recognize (2) as the weak form of the wave equation

/ v x E(p,¢,2) V x Wi(p, ¢, 2)
v, pir(ps $,2)
—k? A er(p 8,2 Elp 0,2) Wilp, ¢, 2)pdpdod:
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with 7(p, ¢, z) indicating the outward pointing normal of the ith element,
S; is the surface area of that element, and ﬁ(p, #,z) is the total magnetic
field. It can be shown that the surface integral of (4) vanishes for all those
elements which do not border the cavity aperture. Furthermore, their non-
zero contribution is limited to the portion of their surface which coincides
with the aperture. Thus, S, is a subdivision of the aperture surface, and the
surface integral can then be more specifically written as

/; pla, ¢, z) x Ha, ¢,z)- L_V,-(a,qS,z)(aqudz) (5)

where S,; denotes the ith element of the aperture surface and p(a, ¢, z) is the
unit vector normal to the aperture surface.
To eliminate H from (4) we introduce the boundary integral equation

H(a,6,z) = Hi(a,¢,2)+
jkoZo | pla,d,z) x E(a,d)',z')-C:?eg(a,q&,:;a,qb',:')(adqﬁ'd:') (6)
which provides an additional relationship between E and H on the aperture.

In this H'(a,,z) is the incident magnetic field evaluated on the aperture,

Y, = ZL is the free-space admittance, and G..(a, ¢, z; 4, ¢',z) is the electric

dyadic Green’s function of the second kind for a metallic cylinder [4]. This
Green’s function satisfies the radiation condition and the boundary condition

V x C:?eg(a,é,:;a,¢',:') =0. (7)
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Upon inserting (6) into (4) along with (5), one obtains

J VX Elp602) VX Wil 8:2) 4, 46 4
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+(koa)2/ pla,é,z) x M pla,¢,2) x E(a,¢,2)
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which is an equation only in terms of the electric field in the cavity volume
and on its aperture. It is important to note that S.i denotes integration over
the ith surface element coinciding with the aperture whereas S, indicates
integration over the entire aperture.

Following the principles of Galerkin’s method for a solution of E appear-
ing in (8), we expand E in terms of the vector-valued weight functions also
used for testing, i.e., o

Ne .
E(p.o.z) = Y E,W,(p.o,z) (9)
=1

In this expansion .V, is the total number of unknowns or edge fields (interior
+ aperture edges) and W,(p, ¢,z) are the subdomain vector-valued basis
functions. By necessity the aperture field takes the form

Ela,é,2) = ZE 8.(j)W;(a, 8, z) (10)
where
§,(J) = 1 af \T"'J N aperture
= 0 else (11)

Combining (8), (9) and (10) we obtain the FEM-BI system

My V x Wi(p,¢,2)-V x Wi(p, ¢,2)
E; LS o pdpded:
J-z=:] g {/Vu /-Lr(ps ¢13)
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Below we discuss the specifics of the weight/expansion functions.

3 Vector Weight Functions

To explicitly compute the matrix elements resulting from (12), we must first
specify the vector-valued weight functions W;. Traditional node-based shape
functions associate the system unknowns (E;) with the field at a node. In
contrast, edge-elements have their degrees of freedom associated with the
field along an edge of the element. Most importantly, the first order edge-
based shape functions can be chosen to be divergenceless, thus satisfying an
inherent characteristic of the unknown field. Comparatively, the first order
node-based elements are not divergenceless, and hence a penalty function [5]
must be used to ensure a valid solution of (1). Whitney [2] developed a
formalism from differential geometry which allows the generation of edge-
based elements from traditional node-based elements. Although Whitney’s
procedure does not guarantee divergenceless elements, we will choose a basis
which is divergenceless.

Whitney developed a family of p-forms (where p indicates the order of the
form) from differential geometry which possess characteristics that are use-
ful to the finite element community. Node-based elements and edge-based
elements correspond to Whitney 0- and 1-forms, respectively. Traditional
first-order Lagrange elements (0-forms) provide field continuity which is not
physical. Namely, these elements have continuity of both tangential and nor-
mal fields at the element junction whereas physical requirements allow for
a discontinuous normal component. Edge-elements (1-forms) have only tan-
gential continuity and are therefore better suited for electromagnetics appli-
cations. It should also be mentioned that the overspecification of continuity



by the 0-forms causes spurious solutions of (12) [6]. Although first-order La-
grange elements are used as the 0-forms in the literature (6], these are mostly
applicable to elements such as bricks or tetrahedra, and the corresponding
1-forms are divergenceless by virtue of the first-order 0-forms. However, in
the case of cylindrical shell elements (see Fig. 2), the 0-form elements cannot
be of first order if their corresponding 1-forms are expected to be divergence-
less. To ensure the divergencelessness of the 1-form elements, the 0-form

cylindrical shell elements are chosen as

v, [palp—=p)(¢— &)z — =)
)‘l(pvQ“')—"}'\/: A

\a(p, 6, 2) = _\/P_T(p - pa)(as?\g*),)(z — )

by (p— pa)(d — &)z — 2)

)

oy P

Mipoo,z)=— Pa (P — ps)(¢ — d)(z — =)
p A

As(p, ¢, 2) = — &(P — po)(¢ — ¢r)(3 - zb)
p A

Ae(p.9.2) =+ _P_b(P = pa)(¢ — &:)(z — )
p A

’\7(/).0. :) = —\/E(p_ pa)(¢ - ¢l)(: - :b)
P A

Melpos) = 4 [Lelo=plle = ) — ) )
P A

with A = (pa — ps)(¢1 — ¢,)(2s — z¢) and is understood that the support of
each 0-form element is only within a single shell. The subscripts correspond
to local node numbers and the element limits (pq, ps, &1, ¢+, 26, 2¢) are shown
in figure 2. An example of a 0-form is shown in figure 3 where A;(p, ¢, z) 1s
graphed over the three faces of the element. We remark, however, that for
our application p, and p, are very large and thus for all practical purposes
the shape elements (13) are first order.

The Whitney 1-forms are generated from the 0-forms by employing the
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relation

‘T",J(P, ¢1:) = Al(paov:)V)‘J(Psész) - AJ(p* ¢s:)v’\i(p’ és :) (14)

where (i,j) refer to the node numbers which define each edge. Denoting the
normalized shape elements by

V.. — W!tJ(F’ , ) (15)
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From (14) we obtain
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These can be put in a more compact form by introducing the definitions
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where d = p, + py and (p, 0. %) are parameters which define each 1-form.
Comparing (17) with (16), we have

jvl?(pa ¢,Z) - 4Vp(/’« ¢a:; '1¢r»:t)a [\[43()03 ¢’Z) - ‘]Vp(p7 ¢w ity ¢lv:’:t)
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These 1-forms will be used as the vector-valued weight functions to form the
system (12). Figures 4-6 illustrate some 3-D plots of the weight functions for
each generic form (17) where we recognize the % roll-off in the p-component
as required by the divergenceless condition.

4 Matrix Elements

Above, we have derived a FEM-BI formulation for apertures on a circular
cylinder (12) and developed the appropriate Whitney 1-forms (17) for the
solution of the system. In this section, we will compute the matrix elements
associated with the finite element submatrix of the system. The evaluation
of the elements associated with the boundary integral will be discussed in
Section 5.

The overall matrix system resulting from (12) can be symbolically written
as

[E;] = [f] (19)
[Ci;] : [Dyj]

The submatrix [A4,,] is sparse and associated only with the interaction of
edges interior to the cavity volume and excluding those on the aperture.



We shall refer to these edges as belonging to the set Z. Whereas the
aperture edges shall be put in the set A. The sum of the edges in the sets 7
and A include all edges resulting from the discretization of the cavity and its
aperture excluding those which lie along metal. With this identification, the
submatrix [C,,] is associated with the interaction between the interior and
aperture edges, and is also sparse. The last submatrix [D;;] results from the
boundary integral equation and provides the interactions among the aperture
fields/edges. It is consequently fully populated, and in the next section we
shall put it in circulant form to reduce its storage requirement to O(N).

From (12), the matrix elements can be explicitly written as
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/:5 Gula b, z30,6,2") x pla,¢,2) - Wila, ¢, 2)dg dz }dd)d:} {i.;j € A}(20

Since W, and W are subdomain basis functions whose support is restricted
to a single element it is easily recognized that the submatrices [4,,] and [C;)]
are sparse.

We may now proceed with the evaluation of matrices [A;;] and [C;,] since
these do not require a boundary integral. If we assume that the material
properties are constant within each element, we may define two families of
integrals which will specify the submatrices.

The explicit determination of the elements A;; and C;; involves the eval-
uation of the two integrals.

1(1) = /V V x ;\7“(/), o5 o F) -V ox 1\7b(p,¢,z;/3k.c3k,Sk)pdp(lq')d: (21)

1};:) = /V Na(p, @525 proon, 20) - No(py by 23 Prs Gks 3x)pdp do d (22)

in which (a,b) € {p, .z}, (I,k) € {1,7}, and N represents one of the generic
1-forms (17). Carrying out the required vector operations and organizing
each integral in a separable form we have

vodp (o (& — ¢1)2 (b = bx)’ — Zk)
I = 42 & dz
i Pa pa P Jou (ér "(Dl ¢-/ 4
b dp [ (@ — 01)(0 — &) i 3—~z)2(~‘—5k)2 .
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. 9 . .
j g, ) (p—px)p+px) ,
” g (ﬂb—pa)2 / Pt g
@ (él (z — )=z — )2
—————d d: 24
/m (¢ — @1)? QD/Z (2 — z)* (24)
1= o, (d—=px) 7 (p— Ao+ Px) ,
a (Pb — pa)? /,, I g
¢ (6 — &) (d — )? (2 —z)
d - dz 25
L L, ey (25)
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2 . 5
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In addition, it should be noted that 1%} = ]“) Each of the double integrals
n (23)-(31) is associated with a simple second order polynomial whose closed
form evaluation is trivial and is omitted here.

5 Dyadic Green’s Function

To complete the evaluation of all matrix elements in (19) we must now look
at B;; and D;;. which involve the evaluation of a boundary integral. The
boundary integral requires numerical evaluation and central to this task is
an efficient computation of the dyadic Green’s function, G.2. This Green’s
function introduced in (6) was derived from vector wave functions using the
procedure espoused by Tai [4]. The resulting modal solution although exact
is extremely costly to compute, and a more efficient evaluation must be
presented for practical purposes. This is addressed below.
Recall from (20) that the boundary integral is of the form

181 = /3 If’;(a-cb,::ﬁ.«é.«fs)-{ﬁ(a,¢,:)></5 Gerla, é, 70,0, %)

’ —

x pla, 0.5)- W, (a. 0.3 P qf)j,ij)} de' d=' ded= (32)

where (a,b) € {¢,z} corresponding with the vector component of the test-
ing and source weights, respectively. Carrying out the vector operations we
obtain

18l = —/ / (@26, =5 piv i 20 Wa(a, 6, 23 iy 65, 35)
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Gopla, @ — o,z — :')dc)‘d:'dod: (33)
18 = / / We(a, 0, 35 fir 6 3)Wola 0,25y 6. 3)

Gysla, ¢> ¢,z —z)d¢ dz dpdz (34)
Bl = / / Wala, 6, 2 pir b0 2)Wel(a, 8,2 510 65 35)

Gocla,d— &,z — 2 )do d= dodz (35)
I®B¢[ = —/ / é’z /)H¢H"’l)“/ (a1¢11:,;f)_]ﬂé]75})

Gale.o— o, — :')(la"d:Idod: (36)

with the weight functions as given by (17). The convolutional nature of
the Green’s function is explicitly shown in (33)-(36). Formally, the Green’s
function satisfying (6) and the radiation condition for the cylinder can be
expressed as

. 1 o roo [f\%] HW
G::((lqovf) - — Z [ ] (.A_p) i—;n(QT(L)_ Jne—k: . (‘3 )

(‘ZTT)2 ne— T Hy (.r)
z/ o () }
with 6= ¢— ¢, 5= z—2"k, = /k2— k2, z = k,a, H)(-) is the n"*-order

Hankel function and H(?)(-) denotes the derivative of the Hankel function
with respect to its argument. It is apparent that the evaluation of G, G**
and G?? using the expressions in (37)-(39) is extremely expensive due to
the slow convergence of both the series and the integral especially for near
self-cell (@, 2 =~ 0) evaluation.

Bird [7] suggested a more efficient evaluation of the modal Green’s func-
tion by introducing more rapidly convergent integrals through a procedure
attributed to Duncan [8]. In doing so, he exploited the symmetry of the
infinite series, and the indefinite integral was converted into two other inte-
grals. One of these is definite and the other is a rapidly converging indefinite
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integral. His accelerated modal representations are

- 1 . e N ]
G*(a,9,2) = T r:"a? Zencos no) ./o Gl(:,n,t)dt+J](; Gz, z,—jt)dt
1 o)
G%(a, , = cos(ne) / Go(z,n, t)dt +j/ Ga(Z,z,—gt)dt
n=0 0 0 J
Y - 1 - . o0 - . ]
G**(a,¢,2) = — Zsm (nd) /0 G3(3,n,t)dt -{-]/c; G3(Z,Z,—_]t)dt-
where
kot
Gi(z.on )y = 43
B = Ao o) (+3)
— koIt 1
G )y =
zt) (ka)2(1 —iQ)[M}i(ka\/l = "
( nt )2 1 (44)
kav/1 —t2) N2(kav1 —t%)
nte ket 1
G 1y = 45
a2, 1) (ka)2(1 — 12) N2(ka /1 — £7) (43)
and
ML) = JHO)+YS ( ) (46)
Nty = S+ Y (47)
&n = 2 n>0
=1 n=0 (48)

in which J,(t) and Y, (¢) are the usual nth-order Bessel functions. Further
details regarding refinements required to manage the singularities in the def-
inite integrals are given in [7].

Although the accelerated modal solution (40)-(42) given above are more
efficient than the original modal form (37)-(39), for large cylinders with ob-
servation and source points far from each other it is instructive to revert to
some asymptotic evaluation of (37)-(39). Several research groups in the past
have developed such evaluations of (37)-(39), and the most notable of these
are attributed to Pathak [9], Boersma and Lee [10], and Bird [11]. These
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asymptotic formulas are based on similar derivations and differ only in the
level of approximations offered by each expression. Since the formulas pre-
sented by Bird are generally the most accurate, we shall concentrate on them.
However, we note that Boersma and Lee’s expressions are particularly well
suited for sell-cell evaluations and Bird uses part of their solution to improve
his formula as the source and observation points approach each other [11].
The asymptotic evaluations are only useful for large radius cylinders since
they employ Watson’s transformation [12] to convert the series in (37)-(39)
into a contour integral. After some manipulation, the contour integral is
evaluated as a residue series. Each residue contribution is associated with a
creeping wave which encircles the cylinder from the source to the observation
while traveling on the cylinder’s surface along a geodesic path. Typically, for
large radius cylinders the contributions of those creeping waves which encircle
the cylinder once or more are neglected since they are weak in comparison to
the direct creeping wave contribution. Bird [11] uses a uniform asymptotic
expansion of the Hankel functions in (37)-(39) and a steepest decent path
evaluation of the Fourier integral to achieve his formula. He found that

- &y, .
G¥(a.d.7) ~ -5 f/e"’k“[ (cos?0 + g(1 = )(2 = 3eos™0)) v(3)
E;_l."v‘z _i o [ —1—1-—1—7‘.2)"
+q[ (72.5171 ) 24) v(3) + (60 363177 6 vi(3)
(—l—sinzf) + —l—) vo(8) + lﬁvm(ﬂ)
24 10 )
1 2 '

—qzﬁ[ (—6l + gtanzﬂ - 1—684—7c0320> v (ﬂ)” (49)

_ ke, o
G"’(a,q{),f) ~ %:qe—Jkossingcosg[(l —3(](1—(]))11(,3)

-

5 31 ) 17 28 ,
+q[ (6.>cc 0 — —T§> v(3) + <_3E - Esec 9) 0 (3)

15 24

I TR
+q 3[ ( ” 75¢¢ 0) v (B)H (50)

(fpsecto - =) eal) + %asec‘wvo,(ﬁ)]

16



G%(a,¢,3) ~ —l-}c—"qc_jk°sl (si7129 +q(l —q)(2~- :33i7120)) v(.3)

2
v 4 2 3,an? 3 in?
+q! ((u(3) = v(3))sec’d + (gtan 0 - =581 9) v(3)
72
17 43
+ (:—3-(%521120 - Etanw) v (3)
+ (Tlgtan%? - ;ilzsinm) vo(8) + %ﬂtanml’m(ﬂ)]

‘ 1 ;
+4°3 [Tssec?Ou (3)+

3007, L, 18T
o —tan®d
< an“¥ + 6

-5 mﬂo) v'(g)” (51)

2
cos’6

where ¢ = Jé and 4 = ks [m] *. The geodesic path length is given by
s = /324 (a®)? and the geodesic trajectory is 0 = tan~! (;‘;) which is
shown in figure 7. Also, ® = o or & = 27 — ¢ depending on which of the
two direct paths are taken as illustrated in figure 7. In (49)-(51), u(3) and
va(3) represent the soft and hard surface Fock functions, respectively. These
functions are characteristic of the creeping waves on a circular cylinder and
are discussed in detail by Logan [13]. The steps involved in the derivation of
(49)-(51) are described in [11].

Figure 8 illustrates a comparison between the asymptotic formula (49)-
(51) and the accelerated modal solution (40)-(42). The given curves corre-
spond to the magnitude of the dyadic components along a § = 10° trajectory
on an a = 4 cylinder and the dynamic range indicated confirms our asser-
tion that geodesic paths which encircle the cylinder one or more times need
not be considered since the resulting large path length results in negligible
contribution. Figure 9 shows the phase error between the modal solution and
the asymptotic formula. As seen, the asymptotic formula has small error in
both magnitude and phase even when observation points are quite close. In-
deed, Bird has used these formula to investigate the mutual admittance of
an aperture on a cylinder with minimal difference from a more exact evalu-
ation [14]. It goes without saying that since the computation of the mutual
admittance involves integration through the singularity of the Green’s func-
tion, we may expect excellent results on using the given asymptotic formula.
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However, we may find it advantageous to use the modal solution for self-cell
contributions and the asymptotic formula for all other situations.

6 Future Tasks

We have presented a FEM-BI formulation appropriate for aperture anten-
nas on a metallic circular cylinder. The FEM-BI equation was derived from
the vector wave equation and converted into a system of equations using
Galerkin’s procedure with vector-valued weight functions. These functions
comprise the edge-based elements which are derived from node-based ele-
ments using Whitney's formalism. Since these elements have a high degree
of geometrical fidelity for cylindrical arrays and are divergenceless, they are
well suited for our purposes. We have shown that the boundary integral may
be numerically evaluated in an efficient manner using asymptotic formulas
for the dyadic Green’s function while reserving the possibility of using the
exact,accelerated modal Green’s function for the self-cell, if necessary.

Future work will entail the implementation of the proposed FEM-BI for-
mulation given in this report. We will exploit the convolutional nature of the
boundary integral (33)-(36) in the context of the Conjugate Gradient-Fast
Fourier Transform (CG-FFT) solution technique to maintain low computa-
tion and O(/N) memory requirements. The FEM portion of the matrix is of
course sparse due to the local nature of the finite element method. Upon vali-
dation of the implementation by comparison with limiting cases and possibly
measured data, we will undertake a thorough investigation of the properties
of conformal arrays on a circular cylinder including the following studies:
mutual impedance. pattern synthesis, element shadowing. and scattering re-
duction techniques.

The experience gained in developing an accurate model of conformal ar-
rays on a circular cylinder will allow us to extend the analysis to doubly
curved cylinders. This will be achieved by employing Geometrical Theory of
Diffraction (GTD) principles to the Green’s function presented in this report
so that is is accurate for convex cylinders. In addition, a major challenge will
be the reduction of memory requirements for the [D;;} submatrix (20) since
for non-circular cylinders the boundary integral will no longer be convolu-
tional and thus the matrix will not be Toeplitz. We are interested in using
wavelet transformation techniques to convert the fully populated matrix into



an equivalent sparse matrix. An efficient and accurate technique for mod-
eling conformal arrays on doubly curved surfaces would be very valuable to
the antenna design community and will allow full utilization of this versatile
antenna.
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Figure 2. Cylindrical shell element.
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Figure 7. Geodesic paths on a circular cylinder
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