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THE MECHANICAL BEHAVIOR OF CROSS-ROLLED BERYLLIUM SHEET
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* Lockheed Engineering & Sciences Co., MC B-22, Houston, Texas 77058
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ABSTRACT

In response to the failure of a conical section of the Insat C satellite during
certification testing, the use of beryllium for payload structures, particu-
larly in the sheet product form, is being reevaluated. A test program
was initiated to study the tensile, shear, and out-of-plane failure modes of
beryllium cross-rolled sheet and to apply the data to the development of
an appropriate failure criterion. Tensile test results indicated that sanding
the surface of beryllium sheet has no significant effect on yield strength,
but can produce a profound reduction in ultimate strength and ductility.
Biaxial and shear test results were found to be in good agreement with
results obtained by finite element analysis. Critical examination of these
test results may contribute to the modification of a JSC policy for the use
of beryllium in orbiter and payload structures.

INTRODUCTION

Beryllium has been a material of considerable interest to aerospace structural designers, due
to its high strength, high stiffness, and low density. Hot-pressed beryllium block has been success-
fully applied to 23 space shuttle parts, including the navigation base [1]. In addition, beryllium
is manufactured in the sheet product form {2-10], which is a useful material for satellite primary
structure. The most recently developed commercial grade of cross-rolled beryllium sheet is des-
ignated as SR-200E [9-10]. References [1, 11-12] provide an overview of some of the applications
of beryllium in spacecraft structures. Although the aerospace industry has experienced success
in using beryllium, extra care must be taken in both the design and manufacturing of beryllium
structures. For example, determining a design criterion which provides an acceptable margin of
safety is essential to the reliable application of beryllium [13]. However, identifying such a design
criterion that adequately describes the behavior of beryllium is difficult because this material is
anisotropic and exhibits both ductile and brittle characteristics. Another obstacle to the increased
use of beryllium structure has been its low fracture toughness and susceptibility to brittle fracture
[14-15]. Even though recently developed grades of beryllium sheet have exhibited an improved
ductility in the longitudinal and transverse directions, ductility in the thickness direction is still
severely limited. Also, beryllium is characterized by tensile properties which are very sensitive to
surface finish [16-19]. Machining procedures induce twinning at the surface, which can lead to brit-
tle fracture. Annealing or etching after machining can eliminate twinning, and orbiter beryllium
parts are etched to a minimum depth of 0.006 in. [1].

In the early 1980s, a conical section of the Insat C spacecraft (built by Ford Aerospace
Co., Palo Alto, California) failed during certification testing for flight as a Space Transportation
System (STS) payload. From the resulting investigation, Ford Aerospace personnel concluded that
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the failure was due to excessive out-of-plane stresses, which developed during the torquing sequence
required to mate the beryllium structure to the vibration test cruciform. Because of this experience,
materials engineers at Johnson Space Center (JSC) became interested in the subject of the design
of beryllium structures, and in particular in identifying a failure criterion that could be applied
to the use of beryllium sheet in orbiter structures and payloads. This provided the initiative to
begin a test program at JSC directed toward developing a better understanding of the mechanical
behavior of beryllium. Emphasis was placed on studying the effects of surface finish and out-of-
plane displacements on beryllium sheet. In conjunction with this study, an extensive literature
search was conducted to locate papers regarding such topics as the physical/mechanical behavior
of beryllium, failure criteria which can be used for anisotropic materials, and the manufacturing
and processing of beryllium. A bibliography listing of these references has been included in the
appendix of this report.

The objective of this paper is to present the results from the tensile, shear, and biaxial tests
which were conducted using 0.10 in. thick beryllium SR-200E cross-rolled sheet. Shear and biaxial
test results are compared with numerical (finite element) solutions, and the constants for the
Tsai-Wu failure criterion are derived.

EXPERIMENTAL PROCEDURE

Materials

Cross-rolled beryllium sheet (SR-200E) was the primary material used for this study and
specimens for mechanical testing were obtained in the machined and etched condition from two
sources. Disc specimens for biaxial testing and tensile specimens were obtained from Electrofusion
Corp., and tensile and shear specimens were purchased from Brush Wellman, Inc. In addition to
the cross-rolled beryllium, aluminum 2024-T81 sheet and aluminum 7075-T6 sheet were used as
reference materials.

Tensile Tests

Tensile tests of the beryllium material were performed according to the procedures established
by ASTM test specification E-8 [20], using the flat tensile specimen geometry shown in figure 1.
Three longitudinal (L) and three longitudinal transverse (LT) tensile specimens (Electrofusion),
each with a test section of 2.25 x 0.50 x 0.10 in., were tested in laboratory air at room temperature.
For each of three specimens (EF-T1, EF-T2, and EF-L3), a ladder gage, which employed a stack of
10 single strain gages, was attached to the front face along the gage length, and very small strain
gages were attached to the two edges. In addition, EF-T2 and EF-L3 were instrumented with
biaxial strain gages. The other three specimens (EF-T3, EF-L1, and EF-L2) were instrumented
with front and back face single strain gages only. The strain gages enabled close observation of the
stress-strain behavior of the material, and the ladder gages were especially helpful in the detection
of Liiders bands. In addition, six longitudinal tensile specimens (Brush Wellman), each having a
test section of 1.25 x 0.25 x 0.10 in., were tested in laboratory air at room temperature. Ladder
strain gages were used to examine the tensile behavior of specimens BW-L1 and BW-L2, and front
and back single strain gages were used for the remaining specimens. The surface finish of the Brush
Wellman specimens was varied by sanding the gage lengths with 280 or 400 grit paper. The yield
strength for each of the Electrofusion and Brush Wellman tensile specimens was determined as the
stress corresponding to the onset of the yielding phenomenon, rather than the 0.2% offset yield
strength.



Biaxial Tests

An approximation of in-plane biaxial testing was accomplished using the loading configuration
shown in figure 2. Two 2024-T81 and two beryllium disc specimens (6.50 in. dia. x 0.10 in. thick),
were loaded in this manner (figure 2), using a support ring (6-in. dia.) and a load ring (1- or 2-in.
dia.). Three linear variable displacement transducers (LVDTs) were attached to the support ring
for verification of the planarity and even distribution of the loading. In order to observe the stress
distribution, each disc was instrumented with 16 biaxial strain gages, as shown in figure 3, which
measured strain in both the radial (R) and circumferencial (C) directions. Each beryllium specimen
was loaded and unloaded to 50%, 75%, and 100% of the average uniaxial yield strength, and then
loaded to failure. The two aluminum specimens were loaded to 75% of the yield strength, unloaded,
and then loaded to failure. Load-strain data from all 16 strain gages were recorded continuously.
Stresses were calculated using the average elastic modulus for the appropriate material and strain
gage data according to the following equation: 0 = Ee. For each of the load levels, both the
maximum stress and the stress at the center of the specimen were calculated.

Shear Tests

Several shear specimen designs were considered, and a sketch of the specimen design that was
chosen is shown in figure 4a. One aluminum 7075-T6 specimen was used to verify the validity of
the specimen design and test procedures before the five 0.10 in. thick beryllium shear specimens
were tested. Each specimen was adhesively bonded to a test fixture, using 3M adhesive AF3109-2
and primer EC3960. The setup was then loaded, as shown in figure 4b, at a crosshead rate of
0.02 in/min until the shear specimen failed. The specimens were also instrumented with shear and
rosette strain gages, and load-strain data were continuously recorded for determination of yield

and ultimate shear strengths.

FINITE ELEMENT MODELS

Finite element models of the shear and biaxial specimens were developed, and the analyt-
ical results were compared with experimental data. The biaxial tests were modeled using the
MSC/NASTRAN finite element analysis program, and the shear specimen model was formulated
using the MSC/PROBE finite element code.

The biaxial plate specimen was modeled using a 3-dimensional finite element mesh, which
consisted of 10 layers. Each layer was axisymmetric, and modeled a quarter of the plate, using 81
QUAD4 elements and 33 TRIA elements (see figure 5). Both linear and nonlinear finite element
results were generated for the aluminum and beryllium specimens by applying the appropriate
load level to the model using boundary conditions corresponding to both the 1- and 2-in. load
rings. The nonlinear analysis incorporated geometric nonlinearities into the model, but did not
consider the effect of material nonlinearities. Both linear and nonlinear results were obtained for
the 2024-T81 specimens using an input load which would produce a stress corresponding to 75%
of the average uniaxial yield strength. For the SR-200E beryllium, linear results were generated
for 50%, 75%, and 100% of the average uniaxial yield strength, as well as for the failure stress.
Nonlinear beryllium results were obtained at 100% of the average yield, and at failure.

The shear specimen model (see figure 6) was a 2-dimensional membrane model, consisting of
36 triangular and 12 quadrilateral elements. This linear model was constrained along edge A, and
a constant displacement was applied to the specimen along edge B, in the negative Y direction.
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The magnitude of the displacement was determined from the experimental failure strain. Figure 7
shows both the deformed (solid lines) and undeformed (dashed lines) shapes of the shear finite
element model. The resultant stress field was compared with the ultimate shear stress results

obtained from testing.

EXPERIMENTAL RESULTS

Tensile Results

Table 1 summarizes the tensile results obtained from the six Electrofusion and six Brush
Wellman test specimens. The two Electrofusion specimens tested in the longitudinal direction,
which were not sanded for the application of ladder strain gages (EF-L1 and EF-L2), produced
an average yield strength of 60.0 ksi, an average ultimate strength of 77.0 ksi, and an average
elongation of 16%. The unsanded Brush Wellman specimen (BW-L1) produced a yield strength
of 50.3 ksi, an ultimate strength of 71.0 ksi, and an elongation of 20%. Although the data are
few, this demonstrates a fair amount of variability in tensile properties between lots of cross-rolled
beryllium sheet. The only unsanded specimen which was tested in the transverse direction (EF-T3)
produced a yield strength of 60.2 ksi and an ultimate strength of 72.1 ksi, with an elongation of
25%. Figure 8 presents the load-time curve for specimen EF-T3, demonstrating the presence of
a distinct yield point. This yield point phenomenon was the typical transition mode {rom elastic
to plastic deformation for both the L and LT specimens. Table 2 compares the average unsanded
tensile properties obtained from this program with various other tensile data available for cross-
rolled beryllium sheet. Limited data were available for SR-200E [9,10], while more extensive tensile
data were found in older reports for previous grades of cross-rolled sheet [5,7,21].

Table 1 also presents the tensile results from the Electrofusion specimens (EF-T1, EF-T2,
and EF-L3) that were mistakenly sanded at 45° angles to the direction of loading (in a cross-
hatched pattern) prior to the ladder strain gage application. This sanding procedure produced
the undesirable effect of reducing the elongation from an average of 17.3% to less than 1% in the
longitudinal direction, and from 25.2% to less than 1% in the transverse direction. This decrease
in ductility was accompanied by a reduction of the ultimate strength from an average of 75.0 ksi to
60.1 ksi in the longitudinal direction, and from 72.1 ksi to an average of 60.1 ksi in the transverse
direction. The yield strength, however, was not significantly affected by sanding procedures.

In addition, Table 1 presents the tensile results indicating the effects of sanding the Brush
Wellman specimens with various grades of sand paper. Sanding one side of specimen BW-L2 lightly
in a cross-hatched pattern with 400 grit paper did not affect the tensile properties significantly.
Sanding the specimens using 280 grit paper, however, produced a variable reduction in ductility.
Specimen BW-L3, which was sanded lightly on one side, showed a decrease in ductility to about
5%, while specimen BW-L4, which was sanded vigorously on both sides, showed no decrease in
tensile properties. Specimens BW-L6 and BW-L7, which were sanded in the transverse direction
on all four sides of the gage length with 280 grit paper, showed a consistent decrease in elongation
to less than 1%.

Biaxial Results

The results from the biaxial tests of the beryllium discs which were tested with the 1-in.
load ring (specimen B-1) and with the 2-in. load ring (specimen ‘B-2) are listed in table 3. Each
specimen was loaded and unloaded to 50%, 75%, and 100% of the average uniaxial yield strength,
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and then loaded to failure. In table 3, the strain gage which registered the maximum strain at
each load level is indicated. The maximum strain for specimen B-1 was measured by strain gage
SG-2-R, which was located at the center of the specimen, for every load level. For specimen B-2,
the maximum strain was found to occur at strain gage SG-4-C, which was located adjacent to the
load ring, for the first three load levels. However, when the specimen was loaded to failure, the
maximum strain level was registered by strain gage SG-12-R. Table 3 also lists both the maximum
and center stresses that were calculated for each load level. The maximum and center stresses for
the 1-in. load ring specimen coincided, since the maximum stress was located at the center of the
specimen. In contrast, the maximum stress for the 2-inch load ring test was observed by the strain
gages adjacent to the load ring. The fact that the maximum stress for specimen B-2 was adjacent
to the load ring indicates the influence of the larger bending moment present in this specimen as
compared with specimen B-1. Therefore, the results from specimen B-1 should provide a better
approximation of an in-plane biaxial stress state.

Figures 9 and 10 show the load-strain data from specimens B-1 and B-2 during the runs in
which they were loaded to failure. Since a distinct yield point is not demonstrated in either figure,
and the load—strain curves are not linear at any point, values for a biaxial yield strength have not
been reported. The failure load for specimen B-1 was measured to be 1346 Ib., and the failure load
for specimen B-2 was found to be 2117 Ib. These loads were used as the input loading conditions to
the finite element models for the failure cases. Failure stresses were calculated for each specimen,
using the maximum strain measurements at failure. Specimen B-1 failed at 121.0 ksi, and specimen
B-2 failed at 135.0 ksi. It is evident from these failure data that the load-carrying capability of
beryllium cross-rolled sheet is not reduced by the application of out-of-plane displacements, if it is
not in combination with other stresses. In fact, the average failure stress from these two specimens
is 128 ksi, which is almost double the average uniaxial tensile strength.

A photograph of the failed 1-in. load ring specimen is shown in figure 11, indicating a shattered
appearance and fairly uniform, pie-shaped fracture pieces. Examination of the pieces indicated
that the fracture initiated at the center of the disc, corresponding to the region of maximum stress.
Likewise, figure 12 is a photograph of the broken pieces of the beryllium disc which was shattered
using the 2-in. load ring. For this loading condition, the fracture was determined to have initiated
adjacent to the load ring. This area corresponds to the region of maximum strain, which was
detected by strain gage SG-4-C.

Shear Results

The load-strain data that were obtained from the 7075-T6 shear specimen and the beryllium
shear specimen S-5 are presented in figures 13 and 14, respectively. The 7075-T6 specimen failed
in a shear mode along a straight line between the notches, as expected. This test established
confidence in the specimen design and testing procedures. Table 4 summarizes the results from
the beryllium shear tests. All of the specimens demonstrated a distinct change in load-strain
behavior at a stress of approximately 30 ksi. This may correspond to the change in fracture
path of the specimen or possibly to the onset of cracking. Final fracture stresses (shear ultimate
strength values), based on the net section of material between the notches, ranged from 38 to 45
ksi. In contrast to the 7075 results, the beryllium specimens failed in a tensile mode, such that the
fracture initiated at the notch and propagated parallel to the slope of the notch (see photograph in
figure 15). The beryllium shear specimens were tested in both the pristine and sanded conditions.
Unlike the tensile results, however, sanding the shear specimens did not significantly reduce the
ultimate strength, and a substantial amount of strain occurred after the shear yield.
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DISCUSSION OF RESULTS

Yield Point Phenomenon

As seen from the load—-time curve for specimen EF-T3 (figure 8), the onset of yielding was fol-
lowed by a region of discontinuous yielding and a distinct yield point. Researchers have associated
such behavior with the formation of Liiders bands on the surface of beryllium [23-24]. This plateau
of discontinuous yielding was investigated with the use of ladder strain gages. The results from
the ladder gages demonstrated the presence of Liiders bands by indicating that adjacent segments
of material yielded sequentially, thus producing a “zipping” effect. Even the tensile specimens
that exhibited less than 1% elongation showed indications of the presence of Liiders bands. Since
Liiders bands were observed in both pristine and sanded tensile specimens, this phenomenon does
not appear to control the amount of elongation observed at final fracture. Thus, while the forma-
tion of Liiders bands seems to be a typical part of the deformation process in cross-rolled beryllium
sheet, Liiders bands do not seem to play a significant role in ductility.

Surface Damage

The tensile results from the beryllium specimens that were sanded imply that the loss in
ductility is primarily due to the introduction of surface damage from the sanding procedure. This
agrees with results from Hanafee [16], which demonstrated that induced surface roughness directly
lowers the ultimate strength and ductility of beryllium, but does not affect the yield strength.
However, the Flectrofusion tensile results may be in conflict with another report by Hanafee [22],
which concluded that sanding isostatically pressed beryllium block with 320 grit sand paper, prior
to application of strain gages, does not produce damage (in the form of scratches and/or twinning)
that is significant enough to affect its tensile behavior. Such a difference might indicate that
beryllium cross-rolled sheet is more susceptible to surface damage than isostatically pressed block.
Also, it is unclear at this time what relationship, if any, exists between sanding direction and
reduction in ductility. In order to resolve these issues and fully define the effects of different
sanding techniques on beryllium, an extensive study, which should include careful microscopy
work to document scratches and twins, would be required.

Biaxial Finite Element Analyses

Both linear and nonlinear finite element analyses of the aluminum and beryllium biaxial tests
were performed to substantiate the experimental results. For the aluminum biaxial tests, the load
corresponding to 75% of the average uniaxial yield stress was used as the load input to the finite
element model. For the beryllium tests, the loads corresponding to 50%, 75%, and 100% of the
average yield stress and the measured failure loads were used as the input loading conditions for
the finite element analyses.

Table 5 shows a comparison of the biaxial disc test results at each load level with the results
from the linear finite element analyses. The stresses and deflections which are compared in this
table represent values calculated at the center of each disc. The validity of the finite element
model was supported by a comparison between finite element and experimental results for the two
aluminum discs. The agreement between the beryllium analytical and experimental results were
also fairly good, except at the failure stress. Since geometric and material nonlinear effects were not
considered, the difference between predicted and experimental results increased over the material’s
linear range, and was an important contributing factor to the particularly poor agreement obtained
at failure.

Table 6 presents a comparison of the biaxial disc results with the results from the nonlinear
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finite element analyses. Again, the stresses and deflections listed in this table were determined at
the center of each disc. This model incorporated the geometric nonlinearities associated with the
load application. The calculated deflections from these nonlinear cases were closer to experimental
values than the linear results for almost every load level. Also, the calculated center stresses were
closer to the stresses determined from strain gage measurements than the results from the linear
analyses. The greatest improvements to the analytical values were realized in the prediction of the
center stress and deflection at failure. However, it is anticipated that a model which includes the
effects of both geometric and material nonlinearities would produce even better results.

Shear Finite Element Analysis

The shear stress contours obtained from the shear finite element analysis are graphically
depicted in figure 16. The central region of the specimen indicated shear stresses which ranged
from 46.2 ksi to 49.8 ksi. This agrees roughly with the experimentally determined shear stress
of 43.6 ksi. The limitation of this finite element analysis is that it cannot adequately predict the
tensile failure mode that was observed in the shear test specimens.

In general, while finite element analyses are capable of identifying regions of maximum strain
in a specific part or specimen, they are limited because they do not provide enough information
to enable predictions regarding the failure mode of a particular test. For this reason, mechanisms
for failure should be proposed, verified through experiment, and used for the development of an
appropriate failure model.

Failure Criterion

In addition to applying reliable finite element codes, effective methods for design must utilize a
failure criterion that is applicable for a particular material. Several research efforts have been aimed
at defining failure criteria that can be applied to brittle materials, such as beryllium [25-30]. One
criterion for failure that may be applicable to beryllium, and is often used for anisotropic materials,
such as composites, is the Tsai-Wu failure criterion [31], which has the following contracted tensor
formulation:

f(O'k) = Fio; + FijO'iO'j =1 (1)
which reduces to
F101 4 F203 4+ F1101% 4 F2202% + F120103 4 Fegos® = 1 (2)

for an orthotropic material under plane stress conditions. The F; and Fj; coefficients may be
determined empirically according to the following equations:

1 1

F, = 5‘; + oL (3)
F, = '0—_}; + U’lrc (4)
= UL:;Lc )
Fg; = 5}-—;—% (6)
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Fi; = [l — 0p(F1 + F2) — 0*(F11 + F22)]/208? (M)

Fes = [4 — 045(F1 + F2) — 045*(F11 + +2F12 + F23)]/045? (8)

where o, and o1, are uniaxial tensile data in the longitudinal and transverse directions, respec-
tively, and oL and o1, are uniaxial compressive data in the longitudinal and transverse directions,
respectively, and op is the biaxial failure stress, and o045 is the failure stress from a 45° off-axis
tensile test, and 0g is the shear stress.

Tsai-Wu failure coefficients were calculated on the basis of both the yield and ultimate me-
chanical properties that are listed in table 7. Since neither the biaxial tests nor the 45° off-axis
tensile tests demonstrated distinct yield points, the failure stresses were also used as yield strength
values. The Tsai-Wu coefficients that were calculated using equations (3) through (8) are presented
in table 8. Figure 17 presents the seven sets of data points plotted together with the boundary of
the failure criterion derived for zero in-plane shear stress (0 = 0). It is encouraging to note that
the shear data are in good agreement with this failure criterion, which uses coefficients that were
generated using the other experimental data. Figure 18 compares the yield criterion for zero shear
stress with the cases in which the shear stress is 15 ksi (corresponding to half of the shear yield)
and 30 ksi (shear yield). As expected, this figure demonstrates that the addition of in-plane shear
stress reduces the failure envelope.

The Tsai-Wu failure criterion is only a two-dimensional model, however, and therefore cannot
predict the failure of materials which are subject to triaxial stresses. Qut-of-plane stresses, such
as those which produced the Insat satellite failure that prompted this investigation, can produce
such triaxial stresses in cross-rolled beryllium sheet. It is expected that the failure envelope is
reduced by such an addition, but the critical stresses can not be predicted without the use of a
three-dimensional failure criterion. Therefore, NASA/JSC is sponsoring ongoing research in this
area at Texas A&M University [32-33].

CONCLUSIONS

1. The average tensile properties of the beryllium cross-rolled sheet in the etched and pristine
condition were determined to be 0,,=59.8 ksi, 0,;,=75.3 ksi, in the absence of sanding.

2. Sanding the tensile specimens adversely affected the ductility and ultimate strength of the
beryllium, but was not observed to affect the yield strength. Sanding the shear specimens did
not significantly affect the shear strength.

3. Liiders bands were observed in both the sanded and unsanded beryllium tensile specimens,
regardless of the measured elongation-to-failure. This implies that the Liiders phenomenon
does not control the fracture mode or significantly contribute to the ductility of cross-rolled
beryllium sheet.

4. The beryllium disc which was tested with the 1-in. load ring produced a biaxial failure stress
of 121.0 ksi. Because the bending moment was lower than that present in the specimen tested
with the 2-in. load ring, this configuration provided a better approximation of an in-plane
biaxial stress state.



The beryllium shear specimens failed in a tensile mode and exhibited unconventional fracture
paths. Failure stresses for the beryllium shear specimens ranged from 38 to 45 ksi, based on
the net section of material between the notches. These values oversimplify the failure process,
since the specimens did not fail in “true shear”, but do agree with shear stresses predicted by
the Tsai-Wu failure criterion.

Results from the linear finite element analyses of the biaxial and shear tests agreed roughly
with experimental results. A nonlinear model of the biaxial disc generated failure stresses
which agreed better with experimental values. These finite element analyses have a limited
application in terms of predicting the failure modes and mechanisms of beryllium, so they
should be used in conjunction with an appropriate failure criterion.

The Tsai-Wu failure criterion provides an adequate two-dimensional model for predicting
failure in cross-rolled beryllium sheet. However, a three-dimensional failure criterion would
be needed to predict the effect of out-of-plane stresses, such as the assembly stresses that
contributed to the Insat failure.
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Table 1.— Beryllium SR-200E Tensile Test Results

Specimen Oys Tult Elong. Crosshead
ID * (ksi) (ksi) | (percent) | Rate (in/min)
EF-L1 60.0 | 76.7 19.3 0.02
EF-L2 600 | 77.3 | 126 0.01
EF-L3 { 593 | 608 | 1.2 0.005
EF-T1 t 587 | 60.2 1.2 0.005
EF-T2 { 587 | 59.9 <1 0.01
EF-T3 602 | 72.1 95.2 0.01
BW-L1 503 | 71.0 20.0 0.02
BW-L2** | 546 | 726 21.6 0.02
BW-L3tt | 526 | 60.6 5.0 0.02
BW-L4 #** | 526 | 715 20.0 0.02
BW-L6 Hit | — | 494 <1 0.02
BW-L7 {1 | — 49.8 <1 0.02

EF = Electrofusion, BW = Brush Wellman, L. = longitudinal, T = long transverse
Specimen sanded at 45° angles to loading direction prior to strain gaging

One side sanded lightly with 400 grit paper at 45° angles to loading direction

One side sanded lightly in longitudinal direction with 280 grit paper

Both sides sanded vigorously in longitudinal direction with 280 grit paper

All four sides sanded vigorously in transverse direction with 280 grit paper
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Table 2.- Comparison of Beryllium Cross-Rolled Sheet Tensile Results

Source Orient. | Oy, (ksi) | out (ksi) | Elong. (%)

NASA/JSC (1991) Lt 56.8 75.0 17.3
SR-200E (0.10 in. thk.) IT{ | 60.2 72.1 25.2
Kovarik (1984) [9] L* 57 n/a n/a
SR-200E (0.020 — 0.047 in. thk.) | LT * 58 n/a n/a
Marder (1986) [10] L tt 50 70 10
SR-200E (0.021 — 0.250 in. thk.) LT tt 50 70 10
MIL-HDBK-5E (1987) [21] | L tt 43 65 5
SR-200D (0.07 - 0.25 in. thk.) | LT 1 | 43 65 5
Fenn, et.al. (1967) [7] L 54 78 16
$-200 (0.077 in. thk.) LT 56 80 16

Ingels (1966) [5] L 51.63 | 78-85 10-24

(0.02 - 0.12 in. thk.) LT 50-61 70-86 7-25

Notes:
t Average of unsanded data in Table 1
*  Average 0.2% offset yield strength from 12 specimens

1 Minimum design properties
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Table 3.— Biaxial Data for B-1 and B-2 Specimens

Percent Load Center Maximum Location of
of YS (Ib.) Stress (ksi) Stress (ksi) Max. Stress
SR-200E Beryllium, 1-in. Load Ring
50 % 209 27.8 27.8 5G-2-R
75 % 312 42.0 42.0 SG-2-R
100 % 421 55.1 55.1 SG-2-R
failure 1346 121.0 121.0 SG-2-R
~ SR-200E Beryllium, 2-in. Load Ring
50 % 335 27.3 30.1 5G-4-C
—75% 499 41.1 43.0 SG-4-C
100 % 665 53.8 55.1 S5G-4-C
failure 2117 120.0 135.0 SG-12-R
Table 4.— Beryllium SR-200E Shear Test Results
Specimen Shear Yield Shear Ultimate Remarks
ID Stress (ksi) Stress (ksi)
S-1 29.7 — ¢ unsanded
S-2 29.7 43.6 unsanded
S-3 30.0 45.1 sanded *
S-4 29.5 44.6 sanded tf
S-5 29.5 38.5 sanded **
Notes:

t Fixture-to-specimen bond failed during loading

Both sides sanded longitudinally with 400 grit paper

t1 Both sides sanded longitudinally with 280 grit paper

** Both sides sanded at 45° to loading direction (parallel to notch)
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Table 5.— Comparison of Biaxial Test and Linear Finite Element Results

=

Percent Load Predicted Experimental Predicted Experimental
of YS (1b.) Stress (ksi) Stress (ksi) 6 (in.) 6 (in.)
2024-T81 Aluminum, 1-in. Load Ring
75 % 291 37.2 35.5 0.122 0.099
2024-T81 Aluminum, 2-in. Load Ring
75 % 458 37.5 33.3 0.162 0.115
SR-200E Beryllium, 1-in. Load Ring
50 % 209 24.7 27.8 0.027 0.027
75 % 312 36.8 42.0 0.040 0.039
100 % 421 46.8 55.1 0.053 0.050
failure 1346 * | 150.9 121.0 0.170 0.116
SR-200E Beryllium, 2-in. Load Ring
50 % 335 26.4 27.3 0.037 0.040
5% 499 39.2 41.1 0.054 0.056
100 % 665 49.3 53.8 0.072 0.069
failure 2117 * 156.8 120.0 ** 0.229 0.144

* TFailure load

** Maximum failure stress = 135 ksi (adjacent to load ring)

Notes:

Both predicted and experimental stresses were determined at the center of each disc specimen.
This coincides with the maximum stress for the 1-in. load ring condition, but the maximum stress
for the 2-in. load ring condition occurred adjacent to the ring.
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Table 6.~ Comparison of Biaxial Test and Nonlinear Finite Element Results

Percent Load Predicted Experimental Predicted Experimental

of YS (Ib.) Stress (ksi) Stress (ksi) 6 (in.) 6 (in.)
2024-T81 Aluminum, 1-in. Load Ring

5 % 201 32.8 35.5 0.094 0.099
2024-T81 Aiuminum, 2-in. Load Ring

75 % 458 28.7 33.3 0.112 0.115
SR-200E Beryllium, 1-in. Load Ring

100 % 421 47.3 55.1 0.049 0.050

failure | 1346 * 123.2 121.0 0.112 0.116
SR-200E Beryllium, 2-in. Load Ring

100 % 665 47.2 53.8 0.062 0.069

failure | 2117* |  106.0 120.0 ** 0.130 0.144

* TFailure load

** Maximum failure stress = 135 ksi (adjacent to load ring)

Notes:

Both predicted and experimental stresses were determined at the center of each disc specimen.
This coincides with the maximum stress for the 1-in. load ring condition, but the maximum stress
for the 2-inch load ring condition occurred adjacent to the ring.
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Table 7.- Mechanical Properties Used for Tsai-Wu Analysis

Test Type Yield Strength (ksi) Ultimate Strength (ksi)

oLt 56.8 75.0
OTt 60.2 72.1
OLe -50.0 * -95.6 [32]
O 57.5 * -100.3 [32]
op t 121.0 121.0
Oas 77.3 * 77.3 [32]

Os ** 29.7 43.6

Notes:

*  Unpublished data, P.N. Roschke, et. al, Texas A&M University, 1990

1 Failure stress of 1-in. load ring specimen

**  Used for comparison; not used to determine failure coefficients

Table 8.~ Tsai-Wu Failure Coefficients for Beryllium SR-200E Based on English Units

Basis Fl Fz Fu Fgg Fn F66
yield |—2.394x10-3|—7.800x10~*[3.521x10~*{2.889x10~* | —2.726x10~*|6.557x10*
ultimate| 2.873x10~3 | 3.900x10~3 |1.395x10~4{1.383x10~*|-1.324x10*|4.812x10~*
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Dimension As-machined As-etched *nominal dimensions in inches

A

A 0.627 +.008 0.625 *.010
+.008 .

B 6.0052689 6.000*-31Q

C +.002

0.254 7:99F 0.250 *.002

Figure 1.- Full scale schematic diagram showing the geometry and dimensions of the Brush
Wellman tensile specimens.
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6.5-INCH PLATE INSTRUMENTATION

MM BAGE TYPE CEA-00-)125WT-350 6F = 2.11 NOM.
KT = +0.5X
S815 S813 56 1,8,17 S85 sa7
TSGIO s8l4 SGI12 S84 S68 S&! _J
$62,10,18 . 100

S8 l7/lﬂ\‘-

I S6 172
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STRAIN BABE 1.D.'Ss

S8 -1 -R
R = RADIAL DIRECTION STRAIN
C = CIRCUMFERENTIAL STRAIN
GABE PATTERN NO.: 0DO NO. - TOP SIDE eS8 3 AND S8 11 OMITTED

Figure 3.- Sketch of a biaxial disc specimen, showing the placement of the 16 back-to-back biaxial
strain gages.
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Figure 4a.- Full scale schematic diagram showing the geometry and dimensions of the shear

specimens.

Figure 4b.- Schematic diagram showing the loading configuration for shear testing.
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Figure 6.-
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Two-dimensional finite element model used for MSC/PROBE analysis of the shear
test condition.
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Figure 11.- Photograph of the failed beryllium disc B-1, which was tested biaxially
with the l-in. load ring.
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Figure 15.- Photograph of failed beryllium shear specimen, indicating unconventional
fracture propagation path.
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APPENDIX

The bibliography that follows contains references to conference papers, journal articles,
books, and technical reports that provide information regarding many aspects of the processing,
physical/mechanical behavior, design, and use of beryllium as a structural material. References
to relevant product information and property data are also included. The bibliography is ordered
according to increasing access number by which the material is filed.

(001) Fenn, R. W., Crooks, D. D., Kinder, W. C., and Lempriere, B. M., “Test Methods for
Mechanical Properties of Anisotropic Materials (Beryllium Sheet),” Lockheed Missiles and
Space Co., Sunnyvale, California, AFML-TR-67-212, October 1967.

(002) Fenn, R. W., Crooks, D. D., and Kinder, W. C., “Test Methods for Evaluating Mechanical
Properties of Anisotropic Materials,” Lockheed Missiles and Space Co., Sunnyvale, California,
AFML-TR-68-373, February 1969.
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