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1.0 Introduction 

Because of high rejection rates for large structural castings (e.g. the Space 
Shuttle Main Engine Alternate Turbopump Design Program), a reliable casting 
simulation computer code is very desirable. This code would reduce both the 
development time and life cycle costs by allowing accurate modeling of the entire 
casting process. While this code could be used for other types of castings, the most 
significant reductions of time and cost would probably be realized in complex 
investment castings, where any reduction in the number of development castings would 
be of significant benefit. 

The casting process is conveniently divided into three distinct phases: 

1) mold filling, where the melt is poured or forced into the mold cavity, 

2) solidification, where the melt undergoes a phase change to the solid state, and 

3) cool down, where the solidified part continues to cool to ambient conditions. 

While these phases may appear to be separate and distinct, temporal overlaps do exist 
between phases (e.g. local solidification occurring during mold filling) and some 
phenomenological events are affected by others (e.g. residual stresses depend on 
solidification and cooling rates). Therefore, a reliable code must accurately model all 
three phases and the interactions between each. While many codes have been 
developed (to various stages of complexity) to model the solidification and cool down 
phases, only a few codes have been developed to model mold filling. 

The current task involves developing a computational fluid dynamics (CFD) code 
to accurately model the mold filling phase. This task is being accomplished using a 
systematic approach, which includes a technology search, an evaluation of existing 
codes and a code development effort. The technology search includes a literature 
search, a code search and participation with casting industry personnel and officials 
involved in casting consortium start-ups. The literature search, while not exhaustive, is 
comprehensive and includes both technical and informative material covering all 
phases of casting processes and modeling. While much of the literature described 
available casting simulation codes, additional literature and material was obtained from 
the code developers and code users as a part of the code search. From this material 
and inputs from industry personnel, an evaluation of these codes was made to 
determine their suitability for continued development into a reliable, accurate and 
comprehensive casting simulation code. As a result of this evaluation, a decision was 
made that development of a new CFD code was not cost effective or necessary. The 
approach selected, and supported by the casting industry, was to support further 
development of existing codes. Also with industry concurrence, ProCAST (developed 
and marketed by UES) was selected for further development by means of providing an 
independent evaluation of the code's casting simulation capabilities. The first step of



this process was to evaluate the mold filling analysis capabilities. This should be 
extended in subsequent efforts to include evaluations of the solidification and cool 
down analysis capabilities. 

The ProCAST code was used to model two different steady-state fluid flow cases 
which have previously been used to benchmark other CFD codes. The first case was 
air flowing through a channel with a backward-facing step. The second case was water 
flowing through a square duct turning a 900 bend. The results of the ProCAST analysis 
of each case are compared to both test data and previous analytical results. While 
some of the results agree well with test data and predictions, other results do not. Most 
of the discrepancies are easily attributable to limitations in the models chosen. While 
much more complex models could be used, requiring much more set-up time, CPU 
time, computer storage requirements and post-processing time, the models are 
probably already more complex than would normally be used for most casting 
simulation analyses. Moreover, the intent of the evaluation process is not to rigorously 
exercise the code using supercomputer capabilities, but to determine the code's 
capabilities on smaller computer systems (such as the SGI Personal Iris system used 
here) using reasonably sized models normally used in casting simulations, where the 
flowfield is only a portion of the overall simulation. Furthermore, most casting 
companies that will be using this code do not have access to a supercomputer, and 
even if they did, it may not be cost effective. 

As a demonstration of the code's mold filling (free surface tracking) capabilities, 
a simple, two-dimensional model was configured to qualitatively test the code's ability 
to predict several fluid flow phenomena. 

• Recommendations are included to identify future efforts to be accomplished 
before the ProCAST code can be used as a reliable casting simulation code to support 
casting and quality issues.



2.0 Technology Search 
While the technology search includes primarily the literature search, the code 

search and the consortium activities, other meetings and discussions with casting 
industry personnel contributed to the overall information gathering process. The 
literature search, code search and consortium activities are discussed in the following 
subsections. A brief description of a few of the other meetings and discussions is 

included here. A casting simulation meeting was attended at MSFC. Personnel from Howmet 

Corporation and 

Pratt & Whitney made presentations to MSFC and ERCI attendees. 

• Mr. Jan Lane, Technical Manager, Howmet, Hampton, VA, gave an 
informative briefing on the investment casting process, identifying many of 
the problems encountered and how they relate to lack of understanding the 
mold filling and solidification processes. Ninety (90) percent of today's 
investment casting problems are related to hot spots in the mold (shell) 
created during mold filling. Fluid flow simulation of this process could identify 
and alleviate many of the problems. 

.Dr. John. S. Tu, Staff Engineer, Howmet, Whitehall, Ml, presented examples 
of solidification simulation recently performed using TOPAZ. He discussed 
many of the problems encountered during solidification and the need for 
better modeling/simulation capabilities. 

• Mr. Rick Montero, Pratt & Whitney, presented a Structural Casting Process 
ModelingTechnology Development Program, identifying a very 
comprehensive effort to improve the ability to model castings. 

Contact was made via telephone with Tom Glascow, Chief, Processing Science 
and Technology Branch, NASA/Lewis Research Center (LeRC). Discussions revealed 
that they are/have: 

• formed a multi-disciplinary Computational Materials Laboratory

analysis/performance of solidification processes, CVD, etc. 

I
. evaluated several codes - FIDAP, FLUENT, NEKTON..... 

funding FIDAP improvements through an SBIR 
funding creare.x to improve phase change chemistry in FLUENT I Subsequent to this discussion, MSFC personnel (Dr. Paul K. McConnaughey/ED32 and 

Dr. Biliyar BhatJEH23) visited LeRC to ensure that the current effort is synergistic with I	 their efforts and is not redundant or represent excessive overlap of technical 
assignments. 

Most of the literature and code search efforts were accomplished near the I beginning of the effort with only limited updates afterward. Therefore, these efforts are 
not as current or complete as they could be. Any extended effort should include an 

I
update as soon as possible. 
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2.1 Literature Search 

The literature search was a multi-purpose effort to identify what has been and is 
being done in the area of casting simulation, especially investment castings. Of the 
three casting phases (mold filling, solidification and cooldown), emphasis is placed on 
the first two, especially where the melt is still liquidus and fluid flow simulation is 
applicable. Additionally, references are located which have general interest to the fluid 
flow (mold filling) simulation process and the solidification process, even for some time 
after the melt has solidified. 

In the process of acquiring references both directly and indirectly related to the 
simulation process, much general information on casting processes and casting 
technology was also found. The references obtained are divided into three categories 
in the attached Bibliography: 

	

•	 Mold Filling (53 references, No. I through 53) 

	

U
.	 Solidification (31 references, No. 54 through 84) 

	

•	 General Casting Technology (64 references, No. 85 through 148) 

I
While many references are of a technical nature, many are semi-technical and 

some are non-technical, which were included in the search since the intent was to learn 
as much as possible about casting processes, terminology, materials, innovations, I industry perceptions, etc. that could prove useful during the code development process. 
Most of these references were used as a tool for establishing the current state-of-the-
art of casting simulation; therefore, a large portion of a synopsis of the references I would read like a tutorial of casting processes and problems, and is not included here. 
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2.2 Code Search 

The intent of the code search was to identify all available CFD codes with mold 
filling capabilities, as well as the best solidification codes available. The mold filling I	 codes will be evaluated to determine the need for a new code or further development of 
one of the existing codes. Knowledge of the solidification codes will provide a basis for 
future development in this area, especially if it were determined that a new CFD mold I	 filling code needed to be developed, which would need to interface with one of the 
solidification codes. 

I
The search for casting codes was aided by the literature search, the consortium 

activities and other communications. The casting codes identified are very briefly 
described in Table I. While many of the codes are solidification only, with no mold I filling capabilities, they are included here for previously described interests. Emphasis 
is placed on the mold filling codes, which span a broad range of complexity, from very 
simple (and, consequently, of very limited use) to very complex. The details of the I more complex codes (user techniques, mathematics, physics, etc.) are usually 
proprietary, with only limited marketing information available. However, general 
descriptions of the codes' methodologies are not proprietary and much additional I

	

	 information has been gained through telephone conversations, marketing and other 
literature and personal visits, as described below. The following is a brief synopsis of 

I

information obtained on the mold filling codes: 

1. Pr0CAST, developed and marketed by UES, Inc. (reference 3), is touted by

many people in the casting industry as the only finite element code that 

Isimulates mold filling. Actually, there are other FE codes, such as NEKTON, but 
Pr0CAST is the only one to have been developed specifically for mold filling, 
and solves the full, unsteady Navier Stokes equations, and includes a k-c 

Iturbulence model. 
Dr. Mark Samonds, who directs the ProCAST development group at LIES, visited I

	

	 MSFC on December 5, 1991 and discussed the technical details of the code. 
While most of the details of the code are presented in reference 2 (previously 
provided by Dr. Samonds), the presentation and discussions/questions were 

I very informative. Also discussed were other codes (He says Magmasoft is his 
biggest competition) and pre-processors (Pr0CAST uses PreCAST which 
interfaces with PATRAN, IDEAS or ANVIL). Dr. Samonds also provided a list of 

Icurrent users of the latest version of Pr0CAST, containing the mold filling 
simulation capability. I have contacted a few of these but they have so far used I

	

	 the fluid dynamics version of Pr0CAST on very limited applications. Several 
plan to use the code more extensively and a follow-up survey should be 
conducted at a later date. I	 2. Magmasoft, developed and marketed by Magma (in Germany), is a finite 
difference code for which little is known. Since this code is said to be the 

5



strongest competition for Pr0CAST, more information about the code and its 
users should be obtained. 

3. Simulor, developed and marketed by Aluminium Pechiney of Voreppe, France, is 
a finite difference mold filling code which solves the full, unsteady Navier Stokes 
equations. References 4, 5 and 39 provide some limited information about the 
code along with some examples of applications of both mold filling and 
solidification. The code contains a few numerical options (numerical 
simplifications/approximations) such as "free surface smoothing" and the "false 
transient approach" to decrease execution times. No American user's of the 
code have yet been located. 

4. RaPiDcast, developed by Metalworking Technology, Inc. (MTI), under a U. S. 
Navy contract is to be marketed by a third party. The code is finite difference, 
based on SOLA-VOF, and is an extension/variation of the Ph.D. dissertation 
work that Dr. C. Wang performed at the University of Pittsburgh under the 
direction of Prof. Robert Stoehr. The solution technique is time-accurate explicit, 
although an implicit version is currently being written. The R, P and 0 in 
RaPiDcast represent an acronym for "Rational Process Design," which is the 
philosophy of MTI, a non-profit subsidiary of the University of Pittsburgh. MTI 
continues to improve both the CFD and the solidification segments of the code. 
(Information obtained from Mike Tims and Dr. Anand Paul of MTI). See 
Reference 38. 

5. FLOW3D, marketed by Flow Science, Inc., is (according to the users I have 
talked to) a very versatile finite difference code which gives good numerical 
results, but is not user friendly and requires long execution times. A copy of a 
marketing brochure was obtained from Dr. John Tu of Howmet. See References 
8 and 9. 

I	 6. FLOCAST - Developed at the University of Pittsburgh under the direction of Prof. 
Robert Stoehr, uses the finite difference SOLA-VOF method, as does 
RaPiDcast. Not much is known about FLOCAST at this time. Additional 

I
information is needed. 

7. NEKTON - Developed by Nektonics, Inc., marketed by creare.x, uses the FE I	 spectral element method. The marketing brochure (reference 40) indicates that 
the code will handle Boussinesq natural convection, creeping flows, and other 
phenomena, varying boundary conditions and special applications. Casting I	 simulation is only one of the many applications advertised. Therefore, it could 
suffer from too much generality (as FLOW3D), resulting in less user friendliness 
and long run times. 

I
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2.3 Consortium Activities 

Discussion with industry personnel identified a number of consortium activities, 
some well established and some in the initial (startup) phase. It was decided that 
participation in these activities would be of benefit in establishing industry direction in 
casting simulation efforts. Of primary interest were the Sandia FASTCAST and the 
NIST/NCAT consortiums, for which large portions of the consortiums activities are 
directed toward modeling/simulation efforts. These activities are described below. 

Sandia FASTCAST Consortium 

The Sandia National Laboratories Investment Casting Workshop, held 
November 5 - 6, 1991, was filled with informative presentations, discussions and tours. 
The purpose of the workshop was to inform the casting industry of the work that Sandia 
has been doing, their future plans and their idea of organizing a consortium to 
compliment and transfer this technology. The workshop was well organized, well 
planned and well attended (I estimate approximately 50 industry attendees and 
approximately 30 Sandia participants). Other than two presentations on investment 
casting perspectives by industry officials, the remainder of the workshop was 
conducted by Sandia personnel, with Mr. Frank Zanner as the organizer and 
moderator. All the Sandia presentations highlighted the organized effort to develop the 
FASTCAST Process which includes the following technology areas: 

	

•	 Rapid prototyping 

	

•	 Solid modeling 

	

•	 Rules for casting 

	

•	 Systems integration 

	

•	 Numerical simulation 

[While our primary interest is in the area of numerical simulation, we must also be 
familiar with and interface with the other disciplines.] 

Rapid prototyping involves techniques for quickly manufacturing an investment 
pattern without the need for a mold. Several methods and equipment are available for 
this process, the most promising being: 

I.	 •	 Stereolithography, which is a three-dimensional process which solidifies 
liquid photo-curable polymer into a programmed shape. 

	

I
.	 Selective Laser Sintering, where a thin layer of wax/refractory powder is 

laser-sintered into a programmed shape. 

	

.	 Fused Deposition Modeling, where a thermoplastic material is extruded 
onto the model in thin layers which are then bonded by thermal heating. 

7



All three processes can access CAD data files. Other methods are also being 
considered by Sandia for further study. 

Solid modeling of the part (to be cast) on a CAD system is necessary to enable 
automated mesh/grid generation for numerical simulation and for rapid prototyping. 
Most users of these systems are not satisfied with their current capabilities and ease of 
use (user friendliness). 

The "rules for casting" is a part of the Casting Toolkit, which also includes 
experimental data, design rules and design history. Sandia has run a series of casting 
experiments to determine the fluidity of the melt when filling thin wall sections. While 
the results of these experiments are to date incomplete, they should eventually lead to 
useful design/casting rules for the Casting Toolbox. The consortium would identify and 
fund more technology efforts such as this. 

The system integration technology "simply" ties all the various modeling, design, 

I	 analysis, Casting Toolkit, rapid prototyping, etc. together in an orderly process. This is 
not a simple task. 

I
The numerical simulation is the technology of most interest since this includes 

the thermal, structural, and most especially, the fluid flow modeling of the mold filling 
process. Sandia is now in the process of developing a system of codes and 

I

	

	 methodology to accomplish complete modeling of the mold filling, solidification and 
cooldown of the part and the mold. 

I
The currently proposed fluid flow code is NACHOS II unless a better code is 

found. No details of the code's methodology or capabilities were given in the 
presentation. However, it was stated that the least amount of time was spent on this 

I
portion (fluid flow) part of the analyses. The fluid flow modeling is to be started this 
year. It was also stated that they had never previously considered free surfaces. 
Therefore, the NACHOS Il code must not have this capability. It was also stated that 

I
they are looking at ProCAST and possibly other codes. 

The proposed investment casting consortium would be organized similarly to the I Specialty Materials Processing Consortium (SMPC) consortium, where Sandia directs 
the technical program and participates in the technical activities. What research efforts 

I are to be funded and where they are to be performed is decided by the consortium. 
The results of the research efforts are available only to members of the consortium. 
The cost for each member will be $50,000/year with DOE providing matching amounts. 

I Several general comments from the attendees are synopsized as follows: 

I
. It seems like a worthwhile effort, well worth the investment. 

Modeling efforts to date are fragmented, have fallen short of expectations 
and need to be coordinated. 

1	 8



. Solid modeling capabilities need enhancement. 
• Rapid prototyping, when functional, can significantly reduce costs. 
• Industry needs to work together cooperatively to be competitive with 

Europe and the Pacific Rim. 
• A great need exists for user support after the code is developed and in 

production. 
• The analysis process must be robust, must work every time, with little to 

no problems. 

It would seem reasonable, if the consortium is formed, to coordinate any MSFC 
CFD code development with the FASTCAST Process being developed at Sandia for a 
number of reasons: 

	

•	 Sandia has had little to no effort in the fluid flow modeling task. 

	

•	 The only Sandia code mentioned for consideration is NACHOS II, which 
is an old research code (not a production code) which will require 
significant modification, especially since it will not model free surfaces. 

	

•	 The other code mentioned for consideration (Pr0CAST) is being 
evaluated/developed currently, but there is the question of proprietary 
rights and how the code could be used if chosen for FASTCAST. 

-	 •	 MSFC apparently has much more CFD expertise than Sandia. 

	

I
.	 Developing a CFD code as a part of FASTCAST would possibly provide 

for instant acceptance of the code by the members of the consortium. 
Outside the consortium?... Maybe the consortium will sell or lease I	 rights? 
A large negative might be in being forced to adapt Sandia interfaces for 

I
the code's input and output. 

However, as a follow-up to the Sandia consortium meeting of November 5 - 6, I 1991, a call was made to see what progress was being made. They had not yet re-
contacted the participants to establish a firm interest for the consortium. Apparently the 
effort continues mostly as an in-house activity at this time. I NIST Consortium 

U
Another consortium is being organized by the National Institute for Standards 

and Technology (NIST) and the National Center for Advanced Technologies (NCAT). 
A meeting was held January 16, 1992 at the Aerospace Industries Association (AlA) to 
determine if there is sufficient interest to form the Casting of Aerospace Alloys 
Consortium to improve the modeling process and perhaps develop a data base for 
selected alloys. Dr. Thomas Tom, Director, Advanced Technology, Howmet, sent me a 

9



copy of his invitation including an invitation list. The list of 19 people included 
academia, engine builders, casting houses, a NIST representative, and a NSF 
representative. Note the obvious absence of NASA, government laboratories and 
military organizations. However, according to the agenda, DARPA will be represented. 
An invitation to the meeting was acquired through a call to NCAT. The actual 
attendance list is reproduced in Table II. 

The purpose of the consortium is to execute joint research efforts to develop 
process modeling tools and improve existing casting processes. NIST is to administer 
the consortium with Dr. Thomas (Tom) Yolken acting as Consortium Manager and Dr. 
William (Bill) Boettinger as Principal Scientist. Membership fees of $10 - 15,000 will be 
used for administration of the consortium. At present, funding for industrial efforts will 
be provided solely by participants. DOD and other fundings will be sought. University 
fundings have also not been identified, but NSF and industry will try to help. It has 
been proposed that this consortium coordinate efforts with the DARPA consortium, 
however, the DARPA consortium membership is much more limited, and the exact 
mechanism of cooperation is not yet understood. 

All the participants of the meeting were enthusiastic about the prospects of the 
consortium. Some of the industry representatives are already suggesting related joint 
efforts with competitors to pursue DOD and other funds. A group of volunteers were 
assigned the duty of contacting other industry representatives and establishing further 
interest and a consolidated consortium plan (better definition of research efforts). The 
results will be reviewed by the meeting participants and then sent out to all AlA member 
companies . Even if only a small percentage sign up, this could become a relatively 
large consortium. 

A short time after the meeting, Dr. Thomas Yolken sent me a draft of the 

I
proposal for the consortium. After reviewing it, I called him with several comments and 
questions. We discussed some mechanisms by which NASA (particularly MSFC) can 
become a participating member of the consortium. Looking beyond the current I evaluation/benchmarking of the ProCAST code, MSFC efforts of the Metallurgy 
Research Branch/EH23 in the areas of metallurgical thermophysical properties I research and evaluation (and possibly others) can be used as "in-kind" research 
toward participation in the consortium. This and other topics in the consortium 
proposal have been discussed with Dr. Biliyar BhatIEH23, who has shown interest in I participating in the consortium and attended the second planning meeting April 28, 
1992 in Gaithersburg, Maryland. Sign-up of members and initiation of the consortium 
research programs were planned for July 1, 1992, which has now slipped. 

Other Consortiums: 

I
Conversely, the DARPA Consortium to Develop Software for Solidification 

Modeling (called the Precision Investment Castings Consortium) currently will have 
only seven (7) members. These seven were chosen from an original group of 121, I 
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which were reduced to 50, then to seven. The seven include HOWMET, Pratt & 
Whitney, PCC, UES, Allison, GE, and TiLine. Six million dollars will be funded by 
DARPA over a two year period. The members will provide matching funds. This 
consortium is also considered as an experiment in procurement and is expected to 
receive high level Congressional review. The consortium will be looking at generic 
technologies for casting: electronic data transfer, automatic mesh generation, 
automatic shell generation, material properties, etc. The goal is to develop 
technologies to achieve model preparation within 8 hours - currently it takes I - 4 
weeks.

11



3.0. Evaluation of Codes 

During the literature search, code search, consortium activities and discussions 
with industry personnel, much specific and general information was acquired 
concerning the available casting simulation codes. Based upon this information, which 
is certainly not exhaustive, the codes were evaluated for suitability of further 
development based on the following general criteria: 

1. Does it contain a rigorous CFD mold filling model? 

2. Does it contain a good solidification model? 

3. Does it contain a good cooldown model? 

4. Is the simulation relatively fast and accurate? 

5. Is it relatively user friendly and inexpensive to use? 

6. Is it supported by the developers? 

7. Is it continually being improved? 

While most of the codes in Table I either do not contain mold filling capabilities or are 

I
not generally used in the casting industry (for reasons described earlier), only a few 
codes reasonable satisfy all the above criteria: 

I 0 ProCAST 

RaPiDcast I	 .
Simulor 

-	 Any one of these four would be a good candidate for further development. However, 

I	 P0CAST was chosen as the best candidate for the following reasons. While both 
RaPiDcast and Pr0CAST are essentially equivalently ranked on criteria 2 though 7, 
ProCAST has the advantage in terms of a rigorous CFD mold filling model primarily 

I	 because the solution algorithms are formulated using finite element methods rather 
than finite volume (finite difference). Finite element formulations are generally more 
accurate than finite difference methods and represent the preferable approach for 

I
accurate simulations of complex investment castings. 

Magmasoft is reportedly the strongest competition to ProCAST, and it also uses 

I	 a finite difference formulation. But since very little information has been located in the 
open literature, probably due in part to its development and marketing by a German 
firm (Magma), the code was not selected for further development in the current effort. 

I
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The Simulor code, developed and marketed by a French firm (Aluminium 

I
Pechiney), uses a finite difference approach, but does include some useful options to 
reduce execution times (at the expense of accuracy). Simulor suffers from the same 
lack of exposure in the open literature, and was also eliminated from further I development in the current effort. 

Since the evaluation of codes was not strictly objective (i.e., reduced to a 
numerical comparison), it should again be stated that the selection of ProCAST as the 
best candidate for further development was not simply derived by the above 
comparisons or earlier stated comparisons, but was additionally influenced by 
communications with industry personnel. 

I
At this point, a decision must be made as to whether the ProCAST code will be 

further  developed or a new code will be developed. The development of a new code, 
including documentation, benchmarking, etc. would be very costly and then there are I the questions of user support and continued development. Whereas the ProCAST 
code represents a very good basis with well chosen mathematical models, on-going 
development and continuous user support. A duplication of any of this development I	 effort seems unwarranted and self serving. Therefore, a decision was made to help 
develop the ProCAST code via benchmarking the code's capabilities. 
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4.0. Benchmarking of ProCAST Code 

Further development of the ProCAST code via benchmark analyses on the 
MSFC ED32 Silicon Graphics system was agreed upon with UES, whereby MSFC 
would be allowed free use of the code on a monthly basis for an undetermined length of 
time. UES sent to MSFC an executable copy of the latest version of the code with mold 
filling capabilities (version 2.0), and later updated this with version 2.0.2. They also 
sent a User's Manual for version 2.0, but it was not updated for version 2.0.2. Review 
of the manual revealed much about the use and structure of the code. The code is 
modularized with the file structure arranged for easy communication between modules. 
There are actually five separate modules that may be executed for a complete analysis. 
A brief description of the modules and their functions and capabilities follows: 

PreCAST is used to completely define the analysis. The finite element model can 
be imported from PATRAN, IDEAS or ANVIL. Or if the geometry is only 
2-D, it can be generated with a CAD-type module (called CREATE-2D). 
Boundary conditions, material properties, heat transfer data and run-time 
parameters are also specified in PreCAST. 

DataCAST reviews the total model and performs extensive error checking. All units 
are converted to cgs and a summary file is created for the complete 
analysis model. This file should be manually inspected before going on to 
ProCAST. 

ProCAST performs the simulation analysis. It contains all the mathematical 
modeling and solution algorithms and techniques. 

P0stCAST is used to generate postprocessing files that can be viewed using 
PATRAN, IDEAS or V1ewCAST. 

ViewCAST generates a wide variety of graphical representations of the simulation 
solution. 

During the course of the benchmark analyses, several communications were made to 
LIES, the developers of the ProCAST code. They were of much assistance in resolving 
difficulties in understanding the code usage. In some cases, it was a misinterpretation, 
in others, there were differences between the code and the manual, and others were 
simply minor errors in the functions of the interactive operations (inherent in a 
developing code). In addition to resolving these problems, they have been very 
receptive to suggestions on possible improvements in specific operations of the code. 
Some of these suggestions and many other code improvements have been 
incorporated in an updated version (2.0.2) of the code, which was received and 
installed in time for use on the second (duct flow) benchmark case. This version 
included several features to improve the user friendliness (increased efficiency). Some 
modeling options were modified and several others added. However, the uses of some 
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of these were unclear since an updated user's manual was not available. Also, minor 
problems and questions about the code continue to be directed to UES personnel in an 
effort to better understand the code's functions and to help them improve subsequent 
versions of the code. 

I Two benchmark cases and a mold filling demonstration were accomplished in 
the current effort. The two benchmark cases are simulations of experimental 

I configurations where much test data is available for direct comparisons with predicted 
results. While the two cases do not involve, actual mold filling transients, they both 
represent steady state conditions which can exist behind the free surface during mold 
filling. And the use of liquid metal as the fluid media is not necessary since the code 
has the flexibility to model any common fluid, liquid or gas. 

I
The backward-facing step case (Section 4.1) involves air flowing through a duct 

with a sudden increase in flow area. The flow inherently separates from the wall at the 
discontinuous (step) surface and re-attaches to the wall further downstream. I Additionally, a series of adverse pressure gradients are formed downstream of the re-
attachment, on the opposite wall and possibly within the primary separation region. 
These gradients, if strong enough, produôe additional separation (recirculation) I

	

	 regions. The ProCAST code's ability to predict the existence and locations of these 
regions was tested in this case. The results are compared to both test data and 

U	 predictions from Reference 149. 

The duct flow case (Section 4.2) involves water flowing through a square duct 
turning a 900 bend. Higher pressures are generated on the outside of the turn than on 

! the inside, creating a crossflow pressure gradient. This affects a secondary flow with 
radial and spanwise components which significantly affect the streamwise velocity 
profiles. The ability of the Pr0CAST code to predict the complete three-dimensional 
velocity profile was tested, and the results are compared with both test data and 
predicted results from Reference 150. 

The mold filling demonstration (Section 4.3) was performed simply for qualitative 
evaluation of the code's ability to track a free surface undergoing extreme distortions. 
No test data or prior predictions are available for comparisons. 
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4.1 Backward-Facing Step 

I
The two-dimensional backward-facing step geometrical characteristics are 

depicted in Figure 1. Fully-developed laminar flow enters from the left side and I encounters an instantaneous (step) increase in flow area. The flow detaches at the 
corner and reattaches to the lower wall at location X1. Two other experimentally 
determined separation (recirculation) regions can occur as located by X2 & X3 and X4 I & X5. Figure 2 (extracted from Reference 149) depicts the locations of these regions 
for air at various Reynolds numbers in terms of multiples of the step height, S. The 
predictions performed in Reference 149 (Figure 3) indicate an additional separation I

	

	 region, located by X6 and X7, within the primary separation region (upstream of X1) for 

Re> 1000. 

The model for this case was chosen to be two dimensional along the centerline 
of the apparatus, ignoring spanwise variations and effects. Although the experimental 
apparatus was (necessarily) three dimensional, the composite data of Reference 149 
shows that 3-D effects are minimal below Re = 400. A 2-D model was chosen primarily 
for two reasons: 1) Simplicity, since this was the first modeling attempt with the code, 
and 2) To use the code's mesh generation capability, which utilizes only 2-D triangular 
elements. 

Three different fluid mesh sizes (Figure 4) were used to model the step flow. 
The coarse grid has only five freestream nodes across the height of the downstream 
channel, whereas, the medium mesh has eleven and the fine mesh has twenty. The 
meshes in Figure 4 depict only a small portion of the entire model, whereas the step 
height, S, is 0.49 cm. and the model extends upstream for 20 cm and downstream for 20 
cm. Comparing the total number of elements and nodes shows the vast differences in 
sizes of the three models.

No. of elements 	 No. of nodes 
Coarse mesh
	

2,733
	

1,836 
Medium mesh
	

9,575
	

5,261 
Fine mesh
	

26,997
	

14,291 

The Dirichlet boundary conditions applied to these models include: 

No slip at the walls, uv=0, standard conditions for a viscous solution. 
2. Inlet velocity: horizontal component only, vertical component is zero. The 

average magnitude of the inlet velocity varies with desired Reynolds 
number as described below. 

3. Exit pressure: one atmosphere applied across the exit plane. 
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Reynolds numbers for each case were determined using a technique compatible 
with that of Reference 149: 

Re = pVD/j.t, 
where, for air at I atm and 20 °C, 
p = 0.001 204 gm/cm3 

= 1.824 E-5 N sec/m2 

The characteristic dimension D is computed as the hydraulic diameter of the inlet 
channel and is equal to twice its height, D = 2h. The velocity, V, used in Reference 149 
was defined as two-thirds of the measured maximum inlet velocity, which corresponds 
in the fully-developed laminar case to the average inlet velocity. The actual value of 
the input inlet velocity used in each model is dependent on the mesh configuration 
since a linear interpolation of the Dirichlet velocity boundary condition is used between 
the wall and the adjacent node. For a uniform velocity applied to all freestream nodes 
across the inlet plane, this results in different average velocities as depicted in Figure 
5. When a uniform velocity was used across the inlet freestream nodes, the following 
table defines the velocities (in cm/sec) required for each Reynolds number used in the 
parametric analyses. 

Required	 Velocity	 Velocity	 Velocity 
Re	 Average Velocity (Coarse Mesh) (Medium Mesh) (Fine Mesh) 
100 14.67 22.0 18.3	 16.5 

1000 146.7 220.0 -	 - 
1200 174.8 - 220.0	 196.7 
2000 293.4 440.0 -	 - 
2400 349.6 - 440.0	 - 
5000 733.5 1100.0 -	 - 
6000 880.0 - 1100.0	 -

While the above input velocity profiles do not accurately represent developed flow, they 
are simpler to input and represent an insignificant source of error for the current 
models. The length-to-height ratio (lid) of the entrance duct is 38.5 (20 cm/.52 cm), 
more than sufficient for the velocity, profile to fully develop before reaching the step. In 
fact, some of the medium and fine mesh models were re-run with a better 
representation of fully developed laminar input velocity profiles. This resulted in no 
discernible differences in the flow field solutions at and downstream of the step. 

Converged solutions for all cases were obtained through a series of analyses 
utilizing the code's restart capabilities. Since these analyses required steady state 
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U

	

	 solutions to a relatively complex flow field filled with flow detachments and 
reattachments (regions of separated flow), the solution parameters were changed I before each restart to ensure that a progressively more accurate solution was obtained. 
This is different from a normal casting simulation, which is transient, with the dominant 
concern being the location of the liquid metal free surface. The prediction of the flow 
field behind the free surface is also important for prediction of mold heating and metal 
cooling and solidification. So, while the current analyses represent a solution 
technique somewhat different from a normal casting, it is important that the results be 
reasonably accurate. And these more accurate solutions require additional iterations 
and CPU time, beyond what would be used for a typical mold filling simulation. The I iteration and time requirements are given below for comparison purposes only, and 
even so, are not directly comparable because of the lack of an objective numerical 
criteria for convergence of steady state solutions. As is always the case, the finer 

I
. meshes require more setup time, data storage requirements, CPU time, and data 

reduction time; and they are more difficult to achieve convergence. Convergence was 
subjectively determined from observations of on-screen graphics, usually sequential x-I velocity contours at every twentieth iteration. When the changes became very small or, 
in some cases, exhibited small oscillations about a stationary norm, the case was 
re-run with an additional 100 to 200 iterations to ensure that no additional change in 

I
the solution occurred.

Coarse Mesh	 Medium Mesh	 Fine Mesh 

I	 Re	 (iter/CPU-hr)	 (iter/CPU-hr)	 (iter/CPU-hr) 
100	 400/0.3	 1600/5.9	 3100/43.9 

	

1000	 600/0.4	 -	 - I	 1200	 -	 600/3.5	 2100/35.5 

	

2000	 1000/0.6	 -	 - 

	

2400	 -	 800/3.3	 - I	 5000	 400/0.3	 -	 - 

	

6000	 -	 400/1.8	 - 

Post-processing of the solutions was initiated with the examination of the entire I	 mesh network to ensure that the elements and nodes were located properly and that 
boundary and initial conditions were applied correctly. Also, the initial determination of 
detachment and reattachment points was made by examining the velocity components I	 of the fluid nodes immediately adjacent to the walls. It became immediately obvious 
that the location of flow reversal (in the longitudinal, x-direction) was not the proper 
location of the separation/reattachment since the slope of the zero-velocity line was I	 very shallow and the mesh definition was not very good, particularly for the coarse 
mesh. Interpolation methods would be needed to accurately project the zero-velocity 
line to the wall. These methods are already available in ViewCAST (the post-processor I	 in Pr0CAST), where velocity vector and velocity contour plots can be used to better 
examine the entire flow field. 
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An example of a velocity vector plot is shown in Figure 6, which represents a 
portion of the backward-facing step flow field solution for the medium mesh with a 
Reynolds number of 100. This type of plot portrays a global picture of the flow field. 
While some features are readily discernible, such as the primary separation aft of the 
step and changes in velocity vectors indicated by changes in direction/size/color of 
arrows, quantitative results are not readily obtained directly from the figure. The 
recirculation of gases in the primary separation zone is apparent, but locating the exact 
boundary of the primary zone would be difficult. For this type of information, a velocity 
contour plot would be much more meaningful. 

Figure 7 is a representative velocity contour plot of the x-component of velocity 
for the fine mesh with Reynolds number of 1,200. The typical color spectrum has been 
modified to provide a better contrast between color (x-velocity magnitude) changes. 
Note that the zero velocity value occurs at the interface between blue and yellow. This 
interface (or zero-velocity line) is rather well-behaved and essentially linear down to the 
last set of freestream nodes adjacent to the wall. The contour plotting interpolation 
routine breaks down at this point and cannot correctly project the line onto the wall. 
This is a result of a change in sign of the x-component of velocity (flow reversal) 
between two freestream nodes adjacent to the no-slip wall nodes. The contour code 
cannot project the zero-velocity line beyond this location. 

The projection of the zero-velocity line to the wall is the same technique used in I the experimental data of Reference 149 to locate attachment and detachment locations. 
However, the non-intrusive laser-Doppler anemometer used in Reference 149 allowed 
measurements very close to the wall so that the projection inaccuracies were I

	

	 minimized. Measurements within 0.1 mm of the wall were routinely made, providing 
accurate locations of the long, shallow separated flow regions. 

Table Ill shows the separation regions that have been reduced from the current 
analyses. All of the primary separation regions (terminated at X1/S) have been 
predicted. Note that only the re-attachment of the primary separation region (Xj/S) is 
identifiable with the coarse mesh solution. Sufficient mesh density is not available 
adjacent to the walls (nodes approximately 0.20 cm from the walls) to detect the 
shallow separation zones that are present above a Reynolds number of 400. The 
medium mesh, with about four times as many elements, has a better definition at the 
walls (nodes approximately 0.09 cm from the walls), and is able to compute some 
separation regions and provide strong indications of others. Data from the fine mesh 
solutions with its higher density mesh (nodes approximately 0.055 cm from the walls) 
better defines all separation regions for the two Reynolds numbers (100 and 1200). 
Some of the top wall regions, defined by X4/S and X5/S, have been located and 
projected to the wall. Some of the top wall data indicate sharp drops in the x-
component of velocity but no flow reversal. This indicates the presence of an adverse 
pressure gradient and the possibility of a separation region that is shallower than can 
be computed by the mesh size. A better definition (denser mesh) at the walls is 
normally provided with fewer nodes by packing the nodes near the walls, but this 
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capability is not available with the CAD-type CREATE-213 option used for this model. 
Furthermore, while the coarse and medium meshes do not provide extreme accuracy, 
they are probably adequate for most casting simulations. 

Figure 8 shows the only valid comparison that can be made with test data 
(Reference 149) since the Re = 100 case is the only one below the 3-0 effects, which 
start at Re = 400. Reference 149 states that: ".....with the occurrence of more than one 
separated flow region, the flow in the experiments becomes three-dimensional in the 
region downstream of the step, and this prevents direct comparison between the 
experimental and theoretical results." Note in Table Ill that as the mesh gets finer, the 
prediction of primary re-attachment, X1 IS, for the Re = 100 case increases from 1.9 to 
3.0, with the 3.0 being the only one represented in Figure 8. In agreement with test 
data, only the primary re-attachment is predicted, and the accuracy is very good. The 
fine mesh solution did show indications of a near separation region on the top wall in 
the form of a significant increase in boundary layer thickness. At higher Reynolds 
numbers a separation should occur downstream of this vicinity. And, if the X4/S and 
X5/Stest data is closely examined, the curve fit of the data could easily be extended to 
lower Reynolds numbers at further upstream locations. 

I
Figure 9 compares the fine mesh solutions with the predictions of Reference 

149, which are steady state 2-13 solutions, making them more directly comparable to 
the current predictions above Re = 400. Since the Reference 149 predictions are I laminar, they are not valid beyond the experimentally determined turbulent transitional 
region at Re = 1250. While the Re = 100 case matches almost identically, the Re = 
1,200 case does not. The current fine mesh solution predicts a smaller primary I	 recirculation region and a larger top wall separation region that does the prediction of 
Reference 149. However, which is more accurate is not determinable. 

An anomaly occurred in the exit region of the Re = 100 cases, but it is 
improbable that this had any significant effects on the flowfield solutions near the step 
region. The anomaly was very localized at the exit and appeared to be caused by a 
boundary layer separation from the wall. Since only a pressure boundary condition is 
applied at the exit plane, the reverse flow in the separated region can be supplied by 
flow entering through the exit plane as long as the specified pressure (one atmosphere 
in this case) is satisfied. This phenomenon could probably be eliminated by shortening 
the downstream channel. It is not possible with the current code to either reduce the 
downstream viscosity or specify non-negative velocities at the exit. A re-formulation of 
all boundary conditions might also have eliminated the separation; but, again, it did not 
appear to affect the upstream solution. Also, this phenomenon did not occur at higher 
Reynolds numbers.



4.2 Duct Flow 

IThis benchmark case consists of water flowing through a constant area duct of 
square cross section (40 mm x 40 mm) turning a 900 bend with a 2.3 radius ratio and a 
Reynolds number* of 790, corresponding to a Dean numbert of 368. The 3-D finite 
element mesh shown in Figure 10 was generated using PATRAN. The mesh is 7x7x67, 
consisting of 7x7 equal spaced nodes at each of 67 cross sections, resulting in 2,376 I brick elements with 3,283 nodes. This represents a much coarser mesh than the 
21x21x51 mesh used in Reference 150, as depicted in Figure 11. The solutions in the 
reference were obtained using a CRAY XMP, which obviously has much more I	 computing power than the SGI Personal Iris workstation used in this effort. Also, no 
packing of the mesh was done at the walls as was done in the reference. 

I
Boundary conditions consisted of a pressure of one atmosphere across the exit 

plane, no slip (u=v=w=0) at the walls and an inlet velocity profile derived from test data. 
Figure 12a depicts the test data velocity contours and the smoothed contours I (normalized to 1.98 cm/sec) established in Reference 150, with a 7x7 grid 
superimposed. Since it was not possible to achieve a reasonable representation of the 
boundary layer because of the very coarse mesh with no nodes near the walls, a I simplistic approach was taken for the velocity profile. The velocity for each freestream 
inlet nodal location was taken directly from the mesh overlay. The actual input velocity 
map (in cm/sec) is shown in Figure 12b, where, for the inlet plane only, the velocities 
are interpolated linearly between all nodes. 

The computational steady state solution to this case was obtained with 1000 
iterations requiring 20.0 hours of CPU time on the SGI system. The interpolation of the 
results was accomplished through a series of velocity contour maps (generated using 
ViewCAST) at various planes within the flowfield. Figure 13 shows two color velocity 
contour maps depicting velocity magnitudes around the bend and at a downstream 
cross-section. The contour map around the bend (water flow from right to left) depicts 
the velocity profiles along the symmetry plane (the center of the duct in the spanwise 
direction, z). While the contrasting color spectrum makes it more difficult to peruse the 

* Reynolds number is defined as: 
Re a pvd/ 

where	 p is water density 
vis average inlet velocity (1.98 cm/sec) 
d is hydraulic diameter (40 mm) 
j,t is water absolute viscosity 

t Dean number is defined as: 
DeReJd / (ç + r0)] 

where Re is Reynolds number 
d is hydraulic diameter (40 mm) 
r is inside radius of bend (72 mm) 
r0 is outside radius of bend (112 mm) 
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global environment, it is very advantageous when determining velocity profiles at a 
given location, especially since velocity profiles are not directly obtainable from 
ViewCAST. The inset contour in Figure 13 is a cross-section as indicated from a 
location 0.25d downstream of the end of the bend, where d is the hydraulic diameter, 
40 mm. Note that both sides (mirror images) of the symmetry plane are shown here. 

When a fluid is turned by a duct, the induced centrifugal forces and the frictional 
effects at the walls combine to create a secondary flow in and downstream of the bend. 
The centrifugal forces decelerate the flow on the outside (pressure) surface, resulting 
in increased pressure and a crossflow pressure gradient toward the inner (suction) 
surface. The frictional effects (creating the boundary layer) provide a path for the 
pressure gradient to produce a secondary flow consisting of two counter-rotating 
vortices. Figure 14 shows this at the +0.25d plane in the form of y-velocity contours. 
The flow along the side walls is produced by the cross-flow pressure gradient in the 
boundary layer, while the flow in the central region is in the opposite direction. 

The velocity profiles deduced from the color velocity contour plots are compared 
in Figures 15 and 16 to test data and predicted results from Reference 150. The plots 
for each location contain five sets of data: the test data is represented by symbols, the 
predictions from Reference 150 are represented by a dotted line for the 21x21 mesh, a 
short dashed line for the 31x31 mesh and a solid line for the 41x41 mesh, and the 
current predictions are represented by a long dashed line. Figure 15 represents 
streamwise velocity profiles radially along the plane of symmetry at four different 
locations around and downstream of the bend as indicated, where 0=0 represents the 
start of the bend. While the three predictions of Reference 150 match test data fairly 
well, with the coarsest mesh beginning to deviate from the other two, the current 
prediction does not match well. The same trend is true for the profiles of Figure 16, 
where spanwise (z-direction) profiles of streamwise and radial velocity components are 
depicted at the normalized radius R*=0 . 2, which corresponds to 12 mm from the inside 
(suction) surface. 

Two factors, both relating to the coarse mesh, are believed to be responsible for 
the inaccuracies. First the inlet velocity profile (Figure 12b) does not accurately 
represent the boundary layer. Note that a linear interpolation from the wall to the first 
freestream node (6.67 mm from the wall) provides velocities well below test data values 
for the entire 6.67 mm, thus effectively providing a much thicker boundary layer. 
Secondly, since there are no nodes within the boundary layer, which with this geometry 
represents more than half the cross-sectional area, the strong secondary flow that 
originates here cannot be predicted accurately. Further, this lack of definition denies 
an accurate prediction of an adverse streamwise pressure gradient along the suction 
surface and a faborable gradient along the pressure surface, which significantly affect 
the development of the streamwise velocities. Moreover, the basic problem is the 
oversized boundary layer produces too much core flow so that the effects of the 
secondary flow and streamwise pressure gradients are subdued. The thicker than 
desired boundary layers are easily seen in all profiles of Figures 15 (wall at R*=0.5) 
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and 16 (wall at z*=0.5). The nodal locations for the 7x7 mesh are superimposed on 
the right side of each of the figures for reference. It is obvious that additional nodes in 
the boundary layer are needed if a better accuracy is to be achieved. This is normally 
accomplished by using a finer mesh and packing the nodes near the wall, as done in 
Reference 150 (Figure 11 a). 

An anomaly very similar to that described in Section 4.1 again occurred in the 
exit duct. The exit duct is very long with an l/d of 50, and flow separation occurred at 
an l/d of approximately 30. Reverse flow in the separated region resulted in reverse 
flow through a portion of the exit plane, just as was the case for the backward-facing 
step. Also, just as before, it should not cause any inaccuracies of the flow solution in 
the vicinity of the bend since it occurred so far downstream. Shortening the exit duct 
should eliminate this phenomenon.
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4.3 Mold Filling Demonstration 

A simple 2-D mold filling model was formulated to qualitatively evaluate the 
ProCAST codes ability to track the liquid metal free surface during the mold filling 
transient. This model involves no heat transfer (i.e., all surfaces are adiabatic) but 
does demonstrate many fluid flow phenomenon. A finite element mesh of 5,103 
triangular elements and 3,016 nodes with molten iron flowing in at a rate of 20 cm/sec 
used 300 time steps to predict the 6-second filling transient, requiring approximately 
one hour of CPU time. Eight sequenced snapshots showing the iron filling the mold 
cavity (mold not shown) are depicted in Figure 17. The color contours represent 
velocity magnitudes, independent of direction. Several intuitive observations can be 
made: 

• In Figure 17a, the horizontal arm is being filled by horizontal convection driven 
by potential energy (differences in free surface heights). 

• In Figure 17b, the horizontal arm and column are filled and the flow down the 
ramp is again the result of gravity, converting potential energy into kinetic 
energy. Note that because of the fluid viscosity, the highest velocities are 
achieved on the liquid surface. 

• The momentum of the fluid in Figure 17c causes it to follow the circular surface 
of the mold creating a crest which, afterward, does free fall back to the higher 
velocity surface. Note also that velocities exceeding 100 cm/sec are achieved at 
the surface of the fluid near the bottom of the ramp. 

• After the wave falls in Figure 17d, a side-to-side sloshing motion is established 
and persists throughout the filling transient. Depending on the position and 
motion of the sloshing fluid, the high velocity fluid flowing down the ramp either 
penetrates the sloshing fluid (Figure 17f), flows along the top of the sloshing 
fluid (Figure 17g), or is in a transition between these two conditions (Figures 17e 
and 17h). Examination of the entire recorded solution (every 10 steps) much 
better reveals the transition between these events. 

While no experimental data are available for verification and no quantitative 
assessment has been accomplished, the motion of the fluid appears as expected. 
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5.0 Conclusions 

I Several casting simulation codes contain mold filling capabilities, but only a few 
contain the fluid dynamics sophistication desired. Of these codes, ProCAST was I chosen as the best candidate for further development via benchmark analyses. The 
decision was made that this approach would be better than developing an entirely new 
code since an enormous effort has already been expended on ProCAST and the I modeling approach would be very similar. Furthermore, the level of continued 
development and user support provided by UES, Inc. (developer and marketer of the 
ProCAST code) cannot easily be matched - and should not be. Therefore, the most 
cost effective approach was to help the casting industry evaluate the ProCAST code. 

The results of the two benchmark cases show that the code can accurately I predict certain steady state 2-0 and 3-D laminar flow fields if the finite element mesh 
size is small enough. When the mesh size is increased, the accuracy of the flow 
details is reduced, but the global aspects of the flowfield solutions are still retained. I Knowing how the solution will be affected by a larger grid size is an important feature 
when typical casting simulations are performed with a minimal number of fluid 
elements. I
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6.0 Recommendations 

In order to more thoroughly benchmark the ProCAST code so that it can be used 
as an analysis tool to support casting and quality issues, it is desirable to extend the 
current one year effort for one additional year. During this extension, several tasks 
would be accomplished as follows: 

I
. Continued development of the ProCAST code via additional benchmark cases to 

include: 

I
- an improved model of the duct flow case with better boundary layer 

definition. Figure 18 depicts the model currently being considered. Using 
the code's symmetry capability and shortening the inlet and exit duct I lengths allows a much higher cross-section nodal density (effectively 
13x13/packed at the walls vs. 7x7/uniform) while increasing the total 
number of nodes by only 69 percent. I - a 2-0 pressure wave/reflection case to examine the time accuracy of the 
code 

I
- a turbulent case since turbulence is the source of many defects, 

particularly inclusions of oxides sheared from the mold surfaces 
- a 2-D Howmet mold filling case to model liquid metal free surface I movement and the creation of hot spots on the surface and subsurface of 

the mold 

I
- a 3-D solidification model of an SSME part to evaluate all aspects of the 

code, including macro and micro modeling capabilities 
Update the literature and code reviews, placing more emphasis on solidification I	 modeling 

I
When the fluid flow benchmarks are completed and the solidification modeling 

begins, the management of the effort should transition from ED32 (CFD expertise) to 
EH23 (Metallurgical expertise). During the course of the current effort, EH23 has I participated and provided support, and this will again be welcome during the proposed 
extended effort. Likewise, continued support from E032 will be needed after the 
transition to EH23. I
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Table Ill.	 Predicted Detachment and Re-Attachment Locations From 

Backward Facing Step Solutions 

Coarse Mesh 

Re	 X1IS X2/S X3/S X4/S X5/S X6/S X7IS 

100	 1.9 X X x X X X 
1,000	 5.0 X X X X X X 
2,000	 5.4 X X X X X X 
5,000	 7.1 X X X X X X 

Medium Mesh 

Re	 X1IS X215 X3/S X4/S X5/S X6/S X7IS 

100	 2.6 X X X X X X 
1,200	 6.3 X X (3.5) (10.0) X X 
2,400	 7.3 X X 6.3 10.1 [0] [2.7] 
6,000	 6.1 X X 6.1 11.6 X X

Fine Mesh 

Re	 X1/S	 X2IS	 X3/S	 X4/S	 X5/S	 Xe/S	 X7IS 

100	 3.0	 X	 X	 (3.8)	 (4.7)	 X	 X 

1,200	 4.9	 X	 X	 3.1	 11.5	 X	 X 

X No event detected. 
() No separation, but significant increase in boundary layer thickness. 
[1 Indications are present, but flow not well established. 
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•	 Figure 4. Finite Element Meshes for Backward-Facing Step 
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