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INTRODUCTION

Future spacecraft must be designed to operate for v ry long time periods in

space. For example, a target goal for the Space Station is 30 years of operation.

Although the actual life may be significantly less than this optimistic goal, the life will

certainly be a critical issue in design. The bearings on primary components such as the

alpha and beta joints must obviously be designed and lubricated with the objective of

optimum performance life. In addition to these joints, there will be numerous other

tribological (rubbing or rolling) interfaces that will be required to function for the life

of the spacecraft.

ORIGINAL PAOE IS

OF POOR QUALITY
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2

A major key to adequate performance of tribological interface is proper

lubrication. Lubricants can be divided into two basic classes: solid films and liquids.

Both types have been used extensively in space applications. Both have advantages and

disadvantages that must be carefully considered in their selection.

The purpose of this document is to summarize selection criteria for liquid and

solid lubricants applied to long-life spacecraft.

SOLID FILM LUBRICATION

Basic Consideratons {lj

There is no single ideal lubricant for all applications. Every lubricant has

advantages and disadvantages which must be carefully considered so that the next

important requirements of a given application are satisfied. The following lists provide

sonic of the important advantages and disadvantages to consider in selecting a solid

lubricant in preference to a liquid or grease lubricant.

Advantages of Solid Lubricants

1. Do not collect grit.

2. Can be used under extremely high load conditions.

3. Excellent storage stability.

4. LOX and oxygen compatible (inorganically bonded films).

5. Suitable for use over wide temperature range.

6. Resistant to the effects of nuclear and gamma radiation.

7. No disposal problem.

8. Friction coefficient decreases with increasing load.

9. In some applications solid films will provide lubrica'Aon for the life of the

parts.
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Disadvantages of Solid Lubricants

1.

2.

3.

4.

.

6.

°

3

Limited amount of lubricant available.

Friction coefficient higher than with hydrodynamic lubrication.

Provisions for the effective removal of wear debris must be provided.

Considerations must be given to removing heat from contact zone of

bearings and gears.

More expensive (costly relubrication).

Contamination must be avoided during coating processes and assembly of

parts.

Elevated temperature cure cycle of some solid films will damage the

mechanical properties of some materials.

Selection of Solid Lubricants

Solid lubricants provide capabilities unavailable with liquid lubricants, but they

are not a universal lubricant. The requirements of some applications prevent their use

entirely. Also, there is no single solid lubricant that will meet all of the requirements.

Therefore, the selection of the basic class of lubricant (solid or liquid) and the specific

lubricant must consider the needs of the particular application and the requirements of

the system of which the application is a part.

The obvious advantages of solid films are that they add virtually no weight to

the system and create virtually no problems due to outgassing. The primary

disadvantages of solid films are that they have limited life and are very difficult to

replenish.

Several types of solid lubricants are discussed by Martin f2-). Solid film

lubricants are described in Table 1 and solid film compacts are described iv Table 2.

The four basic solid film lubricants that have traditionally been given the most attention

and used most extensively are:

• Graphite,

• Polytetrafl uoroethylene (PTFE),
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TABLE 1. SOLID LUBRICANTS

Lubricant

Molybdenum

Disulfide, MoS 2

|

Tesnp. Range (OF)

-400 to 1500 (3,4)

1

Comments

Most commonly used solid film. (3)
Low and steady torque. (5)

Wear life and friction improved by many

additives such as Sb-zO3 or graphite.
(6)(7)(8)

Tungsten Disulfide, WS2 -400 to 1500 (3) Similar to MoS 2, but higher friction. (3)

Polytetrafluoroe_hylene,
FIFE

Graphite

Silver Film

-!00 to 550 (3)

unstable in a vacuum (3)

-200 to 900 (10)

temperature independent

torque (10)

-55 to 230 (10)

Lead Film

Low friction. Has a moderate load

carrying cal_acity which decreases at

higher temperature. (3)
Good chemical resistance. (10)

High frictionand wear ina vacuum. (3)

Effective only in the presence of

moisture unless impregnated with ductile

me_alor polymer. (I0)

Structure, purity and particle size
strongly effect its lubricity. (I !)

Exhibits high temperature resistance, but

not as effective at cryogenic

temperatures.
Excellent chemical and radiation

resistance. (10)

Ion-plating .showsbe_er adhesion than
vacuum evaporation or electroplating.
(12)(13)(14)
Debris is generated from the cage matrix

when used in rolling dement bearing.
(13)

If the raceway is lead plated torque is

steady over the long terra. (14)
Lead film found to be a combination of

lead and lead oxide, PbO. Longer life of

the film. attributed to the lubricating
properties of PbO. (12)

Friction at very low temperatures high

for pure sliding. (10)
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TABLE 1. SOLID LUBRICANTS (CONTINUED)

i|11 i| i

Lubricant

Lead Sulfide, PbS, and
Lead Oxide, PbO
films

TUFRAM coating

NEDOX coating

Cesium oxythiomolyb-

date silicate, Cs2MoOS 3
(17)

Cesium oxythiotung-
stenate, C_WOS 3 (17)

II

Temp. Range f'F)

-450to6o0 (15)

-350 to 500 06)

Wide temp. range,
(tested -65 to !200)

Wide temp. range,
(tested -65 to • 200)

i ii i

CommenlS

High load capacity.
Used primarily as an additive. PbO has

higher temperature compatibility than
_S. (3)

Porous anodic film with a solid lubricant.

Coating on AI and aluminum alloys with
hardness comparable to case hardened
steel. Thickness of O.O! to 0.13 ram.

(16)
Friction coefficient of 0.05 (static <

dynamic). Excellent corrosionand

chemical resistance. (15)

Nickel alloy with an infusion of PTFE
used on ferrous materials and copper

alloys. Coating thickness of 0.005 to
0.08 ram. (16)
Better wear and abrasion resistance than

case h"xdened steel or hard chrome plate.
Friction coefficient of 0.05 (static <
dynamic).
Excellent resistance to most chemicals

and corrosion. (15)

Used on ceramic bearings with super

alloy separator. Proved worthy of

further testing.

Used on ceramic bearings with super

alloy separator. Performance depends
upon interaction between lubricant and
the substrate. A viable and novel

lubricant.
I II I
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TABLE 2. SOLID LUBRICANT COMPACTS

I Ill I

Material

Molylxlenum disulfide and antimony-
trioxide,

MoS /Sb203

Molybdenum disulfide and molybdenum-

tdoxide, MoS:./MoO 3

Molybdenum disulfide with andmony-

thioantimonate, MoS2/Sb(SbS ,)
or

Mo._/Sb(SbS,)Igraphite.

Polymtra_uoroethylene (PTFE) reinforced

with #ass fiber and MoS:.

II II

II Ill I II

Comments

Similar to MoS21Sb-,O 3 compact. (7)(9)

Sb(SbS4) exhibits no lubricating

properties alone. Lubricating properties

of MoS 2 and graphite improved by

combination with Sb(SbS4). (6)

Near the softening temp of the oxide
friction increases and wear decreases. At

lower temperatures the oxide acts

abrasively. At higher temperatures (oxide

near liquid) there is greater loss of MoS. z
and therefore an increased wear rate.

(18)

An effective "all around" cage material

for ball bearings. (19)
Excellent for low to moderate

temperature use. Good smearing of

PTFE at higher temperatures reducing

weal'.

The glass fiber reinforcement enables the

polymer to withstand arduous conditions.

Relatively large glass fibers (10/_m) wear

flatten and reinforce the worn surface.

Thin and brittle fibers (I/_m) fragment

and tx_come mobile abrasive particles.

(20)
I II I I

A synergistic relationship exits between

MoS 2 and Sb_O 3. Lower wear and
friction result from the combh_.ation.

Softening of the oxide occurs at the

aspedty flash temperaturesallowing the

molybdenum disulfideto o_ ain a

tribologicallypreferentialorientation.

(7)(8)
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TABLE 2. SOLID LUBRICANT COMPACTS (COLWI'INUED)

Material
ii

Bronze filled 1 i'FE compacts

Sintered Cages, solid lubricants in a
columbium-tantalum

(Nb-Ta) matrix. (3)

Silicate and glass binders.

Carbon/graphite fibers with high

temperature additives. (20)

Comments

For use in cage in ball bearings. Has
lower wear rate than FTFE but not as

abrasive as glass-filled PTFE. (21)

MoS 2 and silver are used as lubricants.

Long wear life at high temperatures and

loads. Compositions containing MoS. z can

withstand 1500°F. Can have compressive

strength of 150,000 psi.

Are brittle and require care when

machining.

Are not reactive with atomic oxygen, the

major constituent in low Earth orbit

environment. (22)

A 3-D carbon fiber weave reinforced,

acetylene-terminated polymide self-

lubricating composite, fortified with

powdered Gaqn/WSeq and dibasic

ammonium phosphate, (NI-I_zHIK) + as a

solid lubricant. Formed a tough transfer

film and protected metallic surfaces from

wear. A high temperature analog to glass

reinforced composite containing MoS.,.
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TABLE 3. SOLID LUBRICANT DEPOSITION AND COATING TECHNIQUES

Solid _
Films

Trims for Films

Technique

rf diode sputtc_ng

Commes_s
., , L . ......

Temperature range of 70-200°C, growth rate of

25-35 rim/rain. (25)

de triode sputtering Temperature range of 130-175"C, gtwmh rate of

60 am/nile. (25)

rf magnetron spu_ Temperature range of 24-7&C, grmvth rate of 40-

am/rain, f25)

tmmtshed films

TUFRAM INoce_

NEDOX Process

Hard Face Coatings

Soft Metal Fdms

Transfer of lubricating

film (usually from
retainer material) m

mating material.

Tumbling in • ball mill, rubbing with chamois,

leather or wire brush are appfied _ of

burnishing.

Difficult to achieve consistent results.

for simple single operation devices. (24)

Thickness of tranMerrcd film can be depcmle_ on

_a speed. Creates large amounts of wear
debris. (24)

Process convett_ Ai surface to aluminum-oxide ceramic and rhea

_ly infuses porous surface with an interlocked layer of
fluorocarbon for self-lubricating and corrosion resistant _. (15)(16)

Surfaces _ated with hard, porous cobalt-nickel or other alloy and then
with a low friction fluorocarbon and/or dry lubricants and beat treated

to assure lubricant bonding. (15)(16)

k,.l_th_g

_ng

vacuum evaporation

Gaseous carrie_ bring coating material to the

substrate surface. The substrate must usually be
heated to high temperatures (50ff_. Some

materials deposited by this technique include

refractory mc_ carbides, borklcs and nitrides.
O3)

Coating is brought to the surface in • flux of

argon ions that penetrate the surface of the

negatively charged substrate. A graded or diffuse

interface between coating and substrate provides

good adhesion. (25)

Ion-plating shows better adhesion and less wear

debris (steadier torque) than _ or

vacuum evaporated films. (12)(13) Optimum film

thickness of 0.5 t_m. (14)

I
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Q Molybdenum disulfide (Mo,_), and

Lead films.

I promise for long time applications. Table 3 lists typical metlg_ for applying solid

Lead films although not used as extensively,,as other lubricants appear to offer

films. Solid film lubrication schemes can be characteriz_ as:

Depositedcoating 0ubrkated for life).

Transfer film coatings (usually used in ball bearings where coating

is transferred from ball retainer to ball to race).

Powder feed system. Powder feed systems are currently being

explored for use in high temperature applications.

I
l
l
l
l
l
I
l
l
l
I
l

Application of Sofid Lubricants

Slknng Comact

Solid film lubricants have been used extensively in various space programs, as

described in Table 4. It must be emphasized that non-replenishible solid films have a

limited wear life which for long term applications (such as Space Station) can become a

major favor.

Bartz, Holinski, ar,d Xu _6) indicate that mere exists optimum concentrations for

MoS 2 doped with materials such as graphite and antimony com_unds tO yield longer

wear life than attainable with single components. A comparison of wear lives as

obtained in rub block experiments is given in Table 5, and the friction coefficients are

presented in Table 6. Table 7 shows the test conditions. Wear lives of 100,000 cycles

are possible with this approach, which should be adequate for many components of

Space Station.
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TABLE 4.

!._ F'dm

SPACE APPLICATIONS OF SOLID LUBRICANTS
li, i I

Solar Army Drives og ECS, EXOS&T _ _T.

_-spin mechanism on GIOTrO (26).

_-ul _e oa ball bushes in _9 Sin" _
e_dmeat oa ESRO TD-! Satellite (10).

MoS2 (,odium saUc_ bo_ F_ul_e doct joiJ U_,_ be,ri_ o, mi= m_i_s of Sm_
launchvehicles(_re rangeof-19(PC to540°C).

I_,_)

Mo$z, I_i_it¢ and Am (u_dium
_lic_ bh_le_r)

Sputtered MoS 2

NI_DOX

TRIAD

Teethollgearbox gears and w_m gc_rs.
APOLLO 17

Wavelengthcam on U.V. Spectrome_.
SAS-C

Temh on worm and spurgears. ('27)

TRIAD

Teeth oa worm and miter gears.
Inapt race, oucar race m_l _in_" o_ b,ll bemia_.

APOLLO 17

Drive motor R6 beings Imd foilo_ R.8 beaeinlCsoa U.V.

SAS-C

lnnar rime, omar rime md _nar o_ I_U _.
Teeth on spur gears. (2"/)

Ball _ys ou thrust bearings on Spl:ecr_ _ Bearing
TRIAD _ (O.0015mm film). (27)

Seal _a for an advanced aitcr_ _ system.
(No¢ much space application- effective only in the preseooe of
moisture). (10)

Wear parts on extrusion pumps, impellers, regulamcs, pueumtic
ted hydraelic valves and h_n and soiveat
equit,e_.
Used in high performance automobile eagine and ,raasmissm
Wuls. (16)

Wear coatingson steel"pump parts, impellers, pkle tricks,

co_n equipme_, tool components;usedm mokl release
coatings in plastic molding ai_iicatiom. (16)
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TABLE 5. _ LIFE OF SOLID FILMS (REFERENCE

Mat_l
i i i i ,i i| i | i

Mo_

, l i

k Cr_
980 N CR)0 main"l)

i

980 N (1000 rain"1)
i i i

< 10

511

< 10 <5

M.,oS2+ S_SbS,_ l_ 4O ....

Graphite+ Sb(SbS4) 2O to

2O0 75

100

5O
li I

MoS 2 ÷ Graphite

Mo_ + Graphite+ s_s_4) 5oo

Bonded Solid Lubricant 200
li

TABLE 6. STABLE FRICTION COEFFICIENT (REFERENCE 6)

Load
N

245

980

1470
I

i

Speed

i i mR

5OO

Graphite

i

Lubricant

CSb-B MoS2

0.14-0.15

fl_oe
I

0.03-0.05

MSb-B

0.02-0.04

0.01-0.03
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TABLE 7. EXP_NTAL CONDITIONS FOR DATA

IN TABLES 5 AND 6 (REFERF_CE 6)

III

mama:
hardness:

roughness of surface aemr
sandblasting:

I L I li II

0.47 mm
100 CrMn6 steel
HRC 60

12/_m CLA

Block

di_:
,mmial:
hardness:

roughness of surface:

i li

24x 15x6
90 MnCrV8 steel
HRC 54

1.6 pm CLA

I I IIIII I

TABLE 8. WEAR TEST RESULTS FOR MoS2 FILMS
(500 - 1000 nm THICK) FROM DIFFERENT
LABORATORIES (REFERENCE 25)

U

Wear Life, Thousands of Revolutions

201

m

156

"Tested/n air;,

45

Dual-Rub-Shoe

19"

55c

60b

Thrust-Washer

60O-70O

8OO

3430

35 K"

hair or vacuum; "Vacuum

90O
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is doing extensive work in evaluation of solid films, especially

MoS 2 formulations. Table 8 summarizes the wear lives obtained with three different

contact conditions. The pin-on-disk tests were nm at a load of 700 MPa. The results

have shown that the wear fife can be increased significantly if the MoS 2 is doped with

antimony. Again, a wear life of 105 cycles is shown to be possible.

R ahtg Cemm

A critical aspect pertaining to bearing perfornmrs_ is the frict/on at the ball race

interface whe_ the ball rolls and spins against the races. Several traction experiments

were conducted at Battelle by Tevaarwerk using a twin disk apparatus to evaluate the

friction (Wacfim) at this interface. The experiments involved loading a 52-rnm sphere

into contact with a n)tating lO(Omm cylinder. The sphere is skewed relative to the

cylinder and the side-sLip force is measured. This force can be related to traction.

F'qp_re I shows a compila6o_ of the data obtained for four loadings ('20, 40, 60, and 80

ks) and two lubrication conditions (dry and MoS2-c_tm'). The coa6ng was about 0.5

thick. The maximum traction coefficient OLT) for the dry contact was

about 0.5. Whereas for tests with coated spheres the maximum coefficient ranged from

0.1 to _ximately 0.2. The slope of the traction curve near zero slip was about the

same for all tests.

Under some conditions friction in rolling contact can be lower with solid films

than with grease lub,ication. Todd and Bellta]l (i4) present data (Figure 2) that illustrate

this effect. Table 9 summarizes data for solid lubricated ball bearings. In some ball

bearings, it is possible to extend the coating life by using transfer film technology 092j).

In this technology the solid film is transferred from the bearing cage to the ball arid

_. The cage in essence is then the lubricant supply. Transfer film technology

represents a good approach for extending the life of space bearingsbeyond thatattained

with solid lubricant coatings.
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TId_E 9.

lVbdhod d

i_ ,L , i ,

gLassriser c:a_c,
_ n,ccs
and balls

Phax)lic

IP le_ on

r_eways, lead
bronze cage

TORQUEBEHAVIOROFSOLID LUBRICATED BALL BEARINGS
_CE 14)

4O

100

100

!

Osmulati,_
timed

100
(ado)

I

0
3O
6O

0
5
15

3O
6O
74

0

5

15
35

60

240

Torque _ x 10"4)
to mciihttioa

Average
(+)

i

21
25
57

Peak-Peak

76
98

147

148
156

246
282

168

failed by excess

torque

34.5
31.5

42
45
39

50 32O

45 132
45 120

45 135
45 180

I I I

l_snarks

I In I

}tr'a_

}devek,p_g
}spikes

Spikes during
,"un-in

} very smooth
}stable
}toqeetraces

III I

failed by excess

torq_

Smooth start

Progressive _ae
increase
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LIQUID/GREASE LUBRICATION

Advantages and Disadvantages

The primary advantage obtained with liquid lubricants is that bearing

by hydrodymmic films of liquid lubricant_ have virtually no wear and thereby

have the potential for indefinite lives. Liquid lubricants provide the viscosity needed

for forming the hyd_tynamic films, low shear strengths for low friction, cooling

_ty in reci_dafi_ _, and the ability to minimize wear in k_,-speed (non-

hyc_ody_n_) situath3ns. Since no single lubricant can meet the often

_ts of varkx_ applications for liquids, hundreds of specialty lubricants have

been _ for _ appl_ I). The primary disaclvantages of liquid

lubricants are the need for containment, the _ty to creep, large changes in

viscosity with letup, and loss by evaporation under vacuum conditions. The use

of_t_ form _ l_OVidesa means of retaining the liqukh in the negxkd

region, thereby addressing one of the primary disadvantages. G_ are widely used

for _ lubricant3. The loss by evaporation greatly restricts the available liquids

for vacuum applicatio_ to the few chemical species having low vapor pressures. The

following scc6ons _ the evaporation rates arid the lubricating performance of

liquids (and greases based on these liquids) in bearing applications.

Thermo-Vacuum Evapo_tiou

The evaptxadon rate of lubricants in a vacuum is a function of their nmleculm

weight, their vapor pressure, and the temperature. The Langmiur ex_ (2_ relates

these facto_ and permits predicting the loss rate when the vapor pressure and

tempen_re are known-
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P = vapor procure (mm of Hg),

M = molocular weight, and

T = tem_ of lubricant (°K).
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The vapo¢ pressure is strongly depem_t on temperature, as shown for a pedluoro

ethe:r in Figu_ 3_). Perfluoro ethe_rs are among the fluids having the lowest vapor

pressures and are leading candidates for satellite applications exposed to vacuum. At

the top of Figure 3 is the time predicted to evaporate a film 2.5 x 104 cm (100

microinches) thick in accordance with the Langmiur expression. With this strong

tempnmm_ dependence, two conclusions are drawn:

1. The tem_ of lubricant films exposed to vacuum must be controlled to

retain the lubricanL

2. Provisions must be made for the reapplication of lubricant if temperature

cannot be controlled to acceptable levels.

The chemical composition of a lubricant and its molecular weight a_ the

dominating factors in determining the resulting vapor pressures and loss rates. For

vacuum applications, silicones and perfluom ethers have lower loss rates by 4 to 5

orders of magnitude compared with mineral oils (hydrocarbons) or diesters 62_. On the

basis of loss rates by evaporation, the selection of lubricants is limited to the pcrfluo_

ethers of silicones - both from the standpoint of retaining the lubricant on the bearing

surfaces where they are needed and of _ting contamination of optical systems by

condensation of the evaporatml lubricant. Table 10 presents properties of typical

lubricants for space applications and Table 11 presents properties of typical greases O°_.

As discussed in the next section, the wear performance of the various lubricants

combined with the creep behavior of silicones further limits the practical choice to the

perfluoro ether fluids.
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FIGURE 3. DEPENDENCE OF VAPOR PRESSURE ON TEMPERATURE

FOR A PERFLUORO ETHER LUBRICANT (REFERENCE 22)
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Friction and We_r Perfcwuuu_

Among the many properties provided by liquid lubricants for bearing

_s, the ability to genente hydrodynamic films to separate the surfaces in

relative motion and the ability to maintain low wear rates if the operating conditions

prevent film fofmati(m are two of the most important woperties. Film formation

capabilities are largely de.mined by the viscosity, which is generally high in fluids

selected to have low evapm-ation rates. The_ore, the ability to lubricate under very

thin film (boundary) conditions is the performance propc_ of intcrc_.

Table 12 presents a summary of comparison data obtained from LFW-I ring-on

block t_sts with various lubricants and Type 440C rings and blocks Or). Of particular

interest is the performance of the perfluoro ether (gg)_x 143AB oil and Krytox

240AB ip_a_) rdmive to the silicones, mineral oil, and diesters. No instances of

piling w_e observed with the perfluom emers, but m, enl insmmes of galling _

encountered with the silicoocs, _, and _ oils. Although the lowest wear

was measured with the FS1265 silicones, its viscosity was also the highest, which may

have influenced the results. The wear with the perfluoro ether was less than that

with the mineral oils and was considcrcd acceptable s/rice no instances of

galling occurred. Asshown in Table 13, similar results were obtained in slow-spe_

sliding tests using a ball-mr-flat geometry(_). The perfluoro ether (Fomblin Z25) had a

friction coefficient tying the lowest o{ the five and a specific wear rate only dightly

higher than the lowest recorded (a mineral oil with boundary lubricant additives).

Based on frictkm and wear results such as these, a much lower _sity to creep, and

salisfactc_ flight ex_, the perfluom ethers have displaced the silicones in
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I Besides the Krytox and Fomblin fluids, the Bray Oil Co. has produced a series
of lubricants by further distilling and refining the Fomblin fluid base stock to produce

I Bray 815Z oil and 3L38RP grease, which have had flight experience in sgmcecr_
_s. The products are now available through the Bray Products Division of

I Bm'mah-Castrol, Inc. BraycOte 601 is the new designation for the 3L38RP grease.

ATOMIC OXYGEN

I
I
I

I
I
I

Published data have shown that at altitudes between 200 and 650 kin, the

atmosphe_ is primarily atomic oxygen, see Figure 4. According to Ledger and

Visenfine, "Interactions between spacecraft surfaces and high-velocity (-- 8 kin/s)

oxygen atoms within the low earth orbit environment produce significant changes in

surface properties of many materials'. Ledger O2'36) presents reaction efficiency for

composite polymers and organic films (Table 14). The data were taken from

experimonts performed on Space Shuttle flights STS-S (100 km altitude) and STS-8

(225 km altitude). Effects of atomic oxygen and material r_:_ssion have also been

evaluated by others O4"35).

For unfilled organic materials surface recession was on the order of 1.8 x 104

cm for STS-5 specimens and 1.2 x 10-3 cm for STS-8 specimens. The total fluence

(over 40 hours) was about 1 x 10-'° (STS-5) and 3.5 x 1020 (STS-8). The general

comments by Ledger and Visentine are:

I
I
I
I

°

2.

3.

Materials containing only carbon (C), hydrogen (H), oxygen (0), or

nitrogen (N) have high reaction rates in the range of 2.5 x 10-24 to

3.0 x 10-_ cm3/atom.

Perfl_ and silicone polymers are more stable than the organics by

at least a fact_ of 50.

The reaction rates for filled organic materials are dependeat on the

oxidative stability of the fillers. For example, materials filled with metal
oxides have lower reaction rates than those filled with carbcm.
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FIGURE 4. ATMOSPHERIC COMPONENTS (REFERENCE 22)
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TABLE 14.

Mylar

Tedlar

REACTION EFFICIENCIF_ OF SELECTED MATERIAJ_

ATOMIC OXYGEN IN LOW EARTH ORBIT (REFERF_CE 22)

i

_ysuJrone

_'._-y, lea cnr_latom

< 0.05

C_mbm (various forms) 0.9 to 1.7

Silver (various forms)
I

*Units of mg/cm 2 for STS-8 mission.

exposure; therefore, no assessment of efficiency can be made.

< 0.05

Heavily attacked

Loss is assumed to occur in early part of

Teflon, TFE

Teflon, FEP

Graphite/epoxy

1034C 2.1

5208/T300 2.6

Epoxy 1.7

Silicones < 0.02"

White paint A276 0.3 to 0.4"

Black paint Z302 2.3"

Perfl_ polymers

Polyethylene

Polyimide 3.3

Polynm_ylmethacrylate 3.1

2.4

sam, ,, ' , , i,, ,

3

3.4

3.2

3.7
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From a macroscopic standpoint, metals, except for osmium and silver,

are stable. Metals such as copper do form oxides, but at lower rates than
for osmium and silver.

Because of the reactions with organic: materials, liquid lubricants and dry film lubricants

having organic binders must be _ from exposure or selected with • knowledge

that continual degradation will occur. In the case of thin solid films using an epoxy-

based binder, exposure to atomic oxygen may degrade the binder in a mat_ of

days _. For practical systems requiring exposure, therefore, inorganic binders, such

as silicates, may be required to avoid the problem.

If a _ is to operate for 30 years and typical lubricatedsurfacesare on

the order of I micrometer thick, the sputtering effect of atomic oxygen must be

negated. Fortunately, while surface erosion due to sputtering may degrade the ram

facing exterim" sn'ucture it does net appear that this is • viable mechanism for degrading

solid lubricants in bearing assemblies. For surface erosion to occur as a result of

sputtering by atomic oxygen in a Low Earth Orbit (LEO), a direct (geometrically

linear) path from the space environment to the solid lubricant must be available.

Because the atomic oxygen has energies on the order of only a few eV, surface

recession or eroskm is the result of a low energy sputtering process. Low energy

sputtering should cely affect materials with very low atomic or molecular bonding

and in any case would produce material loss by primary (i.e., surface)

collisions only. To produce secondary atomic collisions or an atomic collision cascade

that could affect more than just the exposed surface, energies in excess of 20 keV for

most solids are required.

However oxidation of the solid lubricant as a result of exposure to atomic

oxygen in an LEO may provide a viable mechanism for degradation. The collection of

atomic oxygen due to orbital motion may channel an adequate oxygen atmosphere to the

unsealed bearing and thereby preclude the assumption of a vacuum environment.

Furthernmfe, the ambient temperatures at LEO altitudes range between 627 to 927 C

and the surface temperatures of the _ range between -73 to 127 C _3s"PS. 59e_ so

that thermally activated oxidation becomes a possibility.
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