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LSYS-89-216

STUDY OUTLINE

This study addresses the operational risks of manned space transportation during the era of space
station deployment along with alternative launch vehicle architectures to reduce the risks. Vehicle
architectures considered include Shuttle only, an additional unmanned launch vehicle, and a second
manned/unmanned launch vehicle.

Projections are made for the operational parameters and flight event probabilities. Using these

projections and Space Station era mission models, the operability of alternative vehicle architectures
are examined, and implications to future manned space program plans are summarized.
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STUDY OBJECTIVES

The risks associated with the U.S. Manned Space program during the deployment of the space station
can be quantified in terms of three major objectives during that period, i.e., to provide 1) a high
probability of successful deployment of one-of-a-kind Space Station modules and other major space
systems, 2) safe, economically viable manned space operations and 3) operational capabilities
adequate to support the mission model.

To quantify the success of any vehicle architecture in achieving these objectives, five parameters are
highlighted: 1) the probability of mission success, 2) the probability of payload loss, 3) the probability
of Orbiter or other manned vehicle loss, 4) the expected successful launch rate for a given planned
launch rate, and 5) the launch vehicle availability, i.e., the fraction of time that a launch vehicle is
available for launch of time-critical payloads.
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CANDIDATE TRANSPORTATION SYSTEMS

Several launch fleets were analyzed in this study: Shuttle only, Shuttle supported by one of two
Shuttle-C (SHC) vehicles, and Shuttle supported by an independent Launch Vehicle (ILV), i.e., with
subsystems totally independent of those of Shuttle. Initially, the supporting launch vehicles were
assumed to be unmanned only. Subsequently, analyses were performed assuming that either the
SHC3 or the ILV would launch cargo and a manned vehicle with the capability of providing emergency
escape and rotation for the Space Station crew. The manned vehicle could be either a capsule or a
lifting body within the range of concepts being explored for the Assured Crew Rescue Capability
(ACRC) and the Personnel Launch System (PLS). For manned SHC and ILV launches, it is assumed
that major cargo elements would be carried external to the manned vehicle and therefore not recovered
in an abort situation.
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HISTORICAL DATA BASE

The subsystem failure probabilities used in this study are projections based upon the most up-to-date
U.S. Launch vehicle failure histories for Saturn, Titan, Atlas, Delta and Shuttle.

The data base used was initially compiled by Marshall Space Flight Center and is currently being
expanded by Sparta and L Systems under an Air Force contract.
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FAILURE RATIO HISTORY
TITAN lil, 34D - EXCLUDING TRANSTAGE NON-GUIDANCE FAILURES

Because of the statistically small sample sizes available, launch vehicle failure probability (one minus
the vehicle reliability) is best described in terms of the failure ratio: the number of failures divided by
the number of launches. The plot presents two cumulative failure ratio curves for the Titan launch
vehicle family, one showing total failures and one, with the design failures deleted, showing processing
failures only. Both demonstrate learning (a decreasing failure ratio with time) and both have leveled
off. The design failures, which occurred early, can be removed to show that processing failures limit
the failure ratio which ranges between 0.02 and 0.04. (The 50 point moving average indicates a
possible trend to a higher failure ratio as a result of recent failures. This trend is probably due to the
going-out-of-business environment in which the expendable launch vehicle fleet operated through most
of this decade.)

Similar maturing trends are evident in the Atlas and Delta launch vehicle family histories, indicating that
similar factors constrain all three systems. These systems include single-string, non-redundant
subsystems, ballistic missile design-margin heritage, and complex labor-intensive processing. The
leveling out of launch vehicle failure probability indicates a multiplicity of failure modes, that is, for each
process corrected after a failure, many other processing failure modes remain. Unless failure-tolerant
designs and tighter processing controls are incorporated, the failure ratio probably will remain in its
present range.

Tracking failure ratio histories by subsystem and projecting future improvements provides a basis for
estimating the failure probabilities of new or highly modified launch systems.

6A L SYSTEMS, INC.




"ONI 'SIW3LSAS 1

SIHONNV] 40 Y3GANNN

0oc 081 091 ovi 0cl 001! 08 09 Ov 0c

S G S SRS S Sl D

(Q) 9NIONT1OX3

IALYINAND 7 g o T I -
| d d 9 ‘w 1

JyNTIV4 NOIS3a - (a) ;

F4NTVY WILSASENS ¥3IHI0 - O
34NV IONVAIND — 9
! J¥NTVS NOISTNGO¥d - d

L ‘S33Nv4
byl ‘STvIdL

S3YNTVA JONVCINO-NON JOVISNVYL ONIGNTIOX3 — dvrg “tI NV1IL

AHdO1SIH OIlVvY JdN71IvVs

S

912-68-SAST

1070
00
£0°0
y0'0
SuU0
90°0
L0°0
800
60°0
170
L
i’
¢ b
vl

Sl

=)

gl
Ll
81l
bl
20

S O O O o o o o

IVE JENTV A4

O




LSYS-89-216

LIQUID PROPULSION FAILURE HISTORY
FOR U.S. SPACE LAUNCH VEHICLES

Because propulsion system failures have been the largest contributors to launch vehicle failures, the
flight failure history was analyzed to determine where in the system failures occurred. Specifically,
engineering judgments were made for each failure as to whether the failure was in the engine or in
“other' propulsion subsystems outside of the engine. A listing and description of the failures is
presented in this chart.
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LIQUID PROPULSION FLIGHT HISTORY
FAILURE RATIOS

The results of the liquid propuilsion flight failure history analysis are presented on this chart. Utilizing
mean values for both cryogenic and non-cryogenic engines, it was found that two thirds of all
propulsion system failures occurred in subsystems other than the engine. Thus, failure analyses based
upon engine data only will lead to erroneous results. Accordingly, failure probabilities utilized in this
study will be for the entire propulsion subsystem, not engine only.

Additionally, it was found that the failure ratio for cryogenic engines is about double that for non-
cryogenic engines. Investigations directed toward understanding the reasons for this difference could
be rewarding with respect to reducing the probabilities of engine failures. However, an immediate
question which occurs is whether failure probabilities should be calculated on a per engine or per stage
basis. This is addressed on the next chart.

8A L SYSTEMS, INC.



"ONI ‘SW3LSAS 1 8

3UIbUS 8] ueyl Jayjo SWaSASqNs Ul palindd0

8000 09
8200 06-09
Aigeqoid swajsAsqng
ainjie4 [ejo] 1BYIO

sainjie} uoisindold pinbi| J0 g/¢

ov

Oov-01

saulbug

samey o

SOILvd JuNiv4
AHOLSIH 1H9IT74d NOISTNdOYHd ainoli

91¢-68-SAST

OLE} -
saulbug Jayi0

se - (COFH)
sauibug ouabohin

sybil4 auibu3



LSYS-89-216

PROPULSION SUBSYSTEM DEFINITIONS
FOR
ENGINE OUT CAPABILITIES

Analysis of propulsion subsystem reliability with engine out capability requires segregating the
propulsion subsystem into two major segments. The first is an engine segment, which includes all
ancillary components which support a single engine and which can be isolated (shutdown) from the
rest of the subsystem in the event of an non-catastrophic anomaly associated with that engine. The
second is the stage level segment which includes components of the propulsion subsystem supporting
a cluster of engine segments and for which failure will lead to total loss of propulsion capability.

9A L SYSTEMS, INC.
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CRITICAL PROPULSION SYSTEM FAILURE PROBABILITIES
FOR
SYSTEMS WITH ENGINE SEGMENT-OUT CAPABILITIES

To perform a failure probability analysis of a propulsion system comprised of a cluster of engines with
an engine segment-out capability, a minimum of three failure probabilities must be identified and
quantified. They are engine segment non-catastrophic failure probability, engine segment catastrophic
failure probability, and stage failure probability. Their definitions are presented on this chart. With
these critical parameters defined, the flight failure histories were revisited to categorize each of the
failures into one of the three types of failures.

The next chart presents a listing of the failures and their categorization.
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LIQUID PROPULSION FAILURE HISTORY
APPLICATION TO ENGINE SEGMENT-OUT CAPABILITIES

The U.S. engine flight history was analyzed with engineering judgments made for each failure as to the
category, engine segment (ES) or stage level (SL), and whether in an engine segment-out system the
failure would have been non-catastrophic or catastrophic. The results are shown on the accompanying
chart. Note that two second burn failures for the RL-10 are applicable to upper stages only.

Examples of the engineering judgments applied to categorize a particular failure follow: 1) The RL10
LO, tank leak was categorized as a stage level failure which would have been catastrophic to the
mission, even with an engine-out capability. This judgment was based upon the fact that propellant
was lost due to the leak which prevented both RL-10 engines from igniting at the time a restart of the
engine was required to complete the mission. 2) During a Saturn launch, an engine shutdown was
followed by a second engine shutdown which was judged to be correlated with the first. This was,
therefore, considered to be a failure at the stage level which could be catastrophic if the engine-out
system were not capable of providing mission success with two engines shutdown. 3) Another
example of the problem of correlated failures occurred on Shuttle flight 51F. Following the shutdown
of one SSME, a second engine shutdown was prevented by manual override from the ground, thus
avoiding a failure of the orbiter to abort to orbit.

The historical and postulated failure probabilities resulting from this analysis are presented on the next
chart.

1A L SYSTEMS, INC.
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HISTORICAL FAILURE RATIOS
AND
POSTULATED PROPULSION FAILURE PROBABILITIES

This chart summarizes the historical failure ratios for both cryogenic and non-cryogenic propulsion
systems and postulated failure ratios for cryogenic propulsion systems. The 0.008-0.016 failure ratio
for cryogenic systems at the stage level is associated with the tank leak on a Centaur flight discussed
previously plus the possibility that an electrical signal problem on Saturn V occured at the stage level.
The engine segment historical catastrophic failure ratio of 0-0.003 for cryogenic system is associated
with: 1) the lower bound of zero - no cryogenic engine segment was found to have failed
catastrophically in flight - and 2) the upper limit of 0.003 - correlated shutdown of two engines on a
Saturn flight as discussed previously.

The postulated failure ratios are based on incorporating improved technology, design and testing,
including redundancy and reduced correlated failures at the propulsion stage level. Additionally, it
should be possible to reduce non-catastrophic engine segment failures by implementing launch vehicle
hold down on the pad during engine start-up before liftoff.
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LAUNCH VEHICLE SUBSYSTEM FAILURE DEFINITIONS

With the introduction of redundancy, performance margins and abort capability, non-catastrophic
subsystem failure modes exist for which survival and even mission success are possible. From the
launch vehicle standpoint, the term non-catastrophic subsystem failure is used within this report to
distinguish potentially vehicle survivable failures from catastrophic failures for which vehicle loss is
certain.

Non-catastrophic failure is most evident with premature engine segment shutdown. With sufficient
performance margins and an adaptive system, shutdown effects can be largely mitigated.

13A L SYSTEMS, INC.
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LAUNCH VEHICLE SUBSYSTEM FAILURE RATIO
HISTORICAL AND POSTULATED

The two historical solid rocket motor failures of Shuttle and Titan can best be characterized as design
and process failures, respectively. The .007 failure ratio shown reflects the Titan failure. Considering
the recovery efforts on both programs, it is reasonable to expect an improvement constrained by the
state-of-the-art in non-destructive testing.

There is no evidence of a catastrophic cryogenic engine failure in U.S. flight history. However, their
was a case of two correlated engine failures in a Saturn flight, yielding a failure ratio of .003 and a
postulated mean value of 0.0015. This is about a factor of two lower than the estimated criticality one
failure probability for the SSME derived recently from ground test data.

Projections for stage level failure ratios for cryogenic systems were tempered by the lower historical rate
achieved with non-cryogenic systems. Additionally, a substantial reduction in stage level failure rates
was postulated for Shuttle and any new system with high redundancy.

The other (non-propulsion) subsystem failure history involves single string guidance, power, RCS and
other subsystems typical of expendable launch vehicles. Redundancy and multiple string voting should
provide a substantial improvement.

With respect to non-catastrophic failures, vehicle hold-down did not apply to all of the data base. Since
it does apply to all vehicles considered here, a modest improvement is postulated.

The data base for other subsystem non-catastrophic failure ratios generally applies to non-redundant
systems. A factor of two reduction should be achievable with redundancy.
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LSYS-89-216

MAIN PROPULSION FAILURE PROBABILITY
3 ENGINE CRYOGENIC STAGE

Current unmanned launch vehicles are subject to mission failure due to any failure, catastrophic or non-
catastrophic. Because propulsion systems are the largest contributors to vehicle failures, considerable
attention is being given to engine segment-out capabilities in future launch vehicles.

This chart presents failure probabilities for the main (liquid) propulsion system for a vehicle stage with
three cryogenic engines, with and without engine segment-out capability plotted against engine failure
probability (NFP + CFP). The mean values for the failure probabilities, CFP, and SFP discussed
earlier were used in the analysis. The total engine failure probability, NFP + CFP, was allowed to vary
by varying NFP. The value of the total for which NFP is 0.01, as discussed earlier, is highlighted.

The results indicate that, for NFP = 0.01, the propulsion failure probability for the stage would be
expected to be reduced by a factor of 6 with engine segment-out from liftoff as compared to no engine
segment-out capability. (The term "engine-out' capability is generally used for engine segment-out
capability.) With engine-out capability, the total propulsion system failure probability is driven almost
entirely by the catastrophic engine segment failure probability. To a good approximation, the total
catastrophic failure probability is equal to the sum of the SFP and the product of the CFP and the
number of engines.

15A L SYSTEMS, INC.
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UNMANNED LAUNCH VEHICLE
ASCENT MISSION PROBABILITIES

For very low subsystem failure probabilities, it can be shown that a good approximation of the system
failure probability is simply the sum of the subsystem failure probabilities. Thus, the postulated
subsystem mean value probabilities from a previous chart can be used to project the mission failure
probabilities for the unmanned vehicles as shown on this chart. The differences for the vehicles are
due to differences in engine segment-out capabilities. Specifically, the non-catastrophic engine system
failure probability for SHC2 (0.01 per engine) equals 0.02. For the SHC3/ILV with capability to achieve
mission orbit with one engine segment-out, the failure probability for that case, by definition, is zero.
The probability for two or more non-catastrophic engine segment failures is near zero for all of the
vehicles.

The probabilities of payload loss and mission success are approximately 0.04 and .96, respectively for
the SHC2. The corresponding probabilities for SHC3/ILV are 0.02 and 0.98.

16A L SYSTEMS, INC.
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MANNED LAUNCH VEHICLE OPERATIONS EVENT TREE

While a traditional, single string rocket can be evaluated on a simple payload loss/mission success
basis using vehicle failure probability, introduction of partial to full engine-out capability, abort capability
and on-orbit and reentry/landing sequences requires a more complex analysis of flight event
probabilities and alternative consequences. Accordingly, it is useful to organize the flight phases for
Shuttle, manned SHC and manned ILV into a tree where the particular branch followed on any given
flight depends on the events (success or the specific type of failure) occurring in the prior flight phase.

Probabilities within the tree are determined as follows:

The total probability of a particular event
equals

The probability of entering the flight phase due to prior events
times

The probability of the event assuming entry into that flight phase

In the following charts, flight event probabilities are developed by flight phase and accumulated to
determine total probabilities of successful mission, payload loss and manned vehicle loss on a per
launch basis. (The event/consequence tree is duplicated in Monte Carlo simulation models using input
values to analyze availability and additional issues. In the Monte Carlo analyses, probability ranges with
triangular distributions were used rather than mean values.)

A more detailed discussion of the tree and its branches will be given as the probabilities of the events
are developed.
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ASSUMED ABORT CAPABILITIES FOR MANNED LAUNCH VEHICLES

In the event of a non-catastrophic shutdown of an SSME, the Shuttle enters an abort mode. The
specific abort mode selected depends on the time after launch. For a future manned launch vehicle,
either the SHC3 or an ILV, it is assumed that the vehicle will have the capability to place the manned

vehicle in its mission orbit with one non-catastrophic engine shutdown having occurred at any time after
liftoff.

Other non-catastrophic vehicle failures, being varied in nature and time of occurrence, are assumed
to cause any of the vehicles to enter the abort mode.
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MANNED LAUNCH VEHICLE ASCENT PHASE MISSION PROBABILITIES

Considering the subsystem failure probabilities of the vehicles analyzed, the essential differences in their
operational capabilities lies in the differences in their engine segment-out capabilities. Specifically,
for those vehicles having an engine-out capability, from liftoff, to perform the mission, the consequence
of a non-catastrophic failure would not be an "abort' mode, i.e., the event would become an in-flight
anomoly because the performance margin of the vehicle would assure a "normal" trajectory.
Accordingly, the assumed probability of achieving mission success without entering the abort mode is
significantly different for Shuttle and the postulated future manned launch vehicles.
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SHUTTLE/SHC3/ILV MANNED VEHICLE ABORT FREQUENCIES

The probabilities of entering the abort mode during ascent are about a factor of seven lower for
SHC3/ILV as compared to the Shuttle. This is due to the assumption that future U.S. manned launch
vehicles will have a full engine segment-out capability, from liftoff, to perform the mission.
Correspondingly, the expected numbers of launches and time intervals between aborts are projected
to be a factor of seven greater.
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ONE ENGINE-OUT ABORT OPTIONS/CAPABILITIES

The upper portion of this chart shows the windows for the various Shuttle abort modes during ascent.
Several observations about aborts can be made. Trans-Atlantic Landing (TAL) abort windows begin
to open at about 160 seconds. Thus, before that time only the Return To Launch Site (RTLS) mode
is available (about 31% of the ascent time). Abort to orbit is achievable for the last 40% of the mission
ascent time, and an abort to the mission orbit is achievable for only the last 5% of the ascent time.

By design definition, the manned launch vehicles with the capability to achieve mission orbit with one
engine segment-out from liftoff would not enter abort modes under those circumstances.

Review of SSME test history reveals a cluster of engine non-catastrophic shutdowns in the first few
seconds of engine burn. However, because of the 6.6 sec SSME start up on the pad, failures for this
analysis are assumed equally probable at any time during flight. Thus, the fraction of time an abort
option is available represents the probability of that abort mode occurring if an engine shutdown
occurs.

Accordingly, the probabilities of Shuttle entering the abort to earth, to abort orbit and to mission orbit
are assumed to be 0.6, 0.35 and 0.05, respectively. Given a lack of time-of-failure data, these
probabilities are assumed to apply to "other" subsystem non-catastrophic failures also. For SHC3 and
ILV, the time of one-engine shutdown is not applicable because performance margin assures achieving
mission orbit.
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SHUTTLE ABORT/ORBIT/REENTRY FAILURE PROBABILITY ASSUMPTIONS
ONE ENGINE-OUT

Shuttle abort capabilities for Return To Launch Site (RTLS) and Trans-Atlantic Landing (TAL) and Abort
To Orbit (ATO) have been certified by analysis in the event of one engine shutdown. As shown earlier,
the probability of two engines-out is very small provided the probability of correlated engine shutdowns
is low. Thus, the probability of abort tailure following the two engine-out failure modes is not significant
to the analysis. For the single engine-out case, RTLS and TAL are assumed to have a combined
vehicle loss probability of 0.05, a factor of 10 greater than normal flight.

In the case of ATO, it is assumed that there is a probability of success of 1.0 when a non-catastrophic
failure occurs after the abort to orbit windows have opened. Overall, it is expected that the probability
assumptions for abort events lead to optimistic predictions for success.

For the orbit/reentry phase of the mission, the probability of Orbiter or manned vehicle loss is assumed

to be 0.005. Lacking a design concept for a manned vehicle to be launched on SHC3/ILV, it is not
possible to make assumptions different from those for Shuttle.
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POSTULATED EVENT PROBABILITIES FOR ASCENT TO ORBIT PHASE
SHUTTLE/SHC3 OR ILV

Shown on this chart are the critical probabilities for ascent to orbit and the associated abort modes.

The contributions of the abort mode to achieving mission orbit are very small for the Shuttle, 0.002, and
essentially zero for the SHC3 or ILV. Thus, the projected probabilities of mission success are 0.95 and
0.979 for the Shuttle and the SHC3 or ILV respectively, the essential differences being due to the
differences in the assumed engine segment-out capabilities.

The abort-to-abort orbit and return-to-Earth modes will be presented on the next chart along with the
orbit/reentry phase.
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POSTULATE PROBABILITIES FOR ABORT MODES AND ORBIT/REENTRY PHASE
SHUTTLE/SHC3 OR ILV

The differences in operation probabilities shown on this chart also result from the assumed differences
in one engine segment-out capabilities of the vehicles. The significant difference is the projected
probabilities of the vehicles entering the abort mode, 0.036 for Shuttle and 0.005 for SHC3 or ILV.
Lacking data on the design of the new manned vehicles, it was assumed that the probabilities of 1)
entering the Abort-To-Orbit and Return-To-Earth modes, and 2) for abort success would be the same
for all of the vehicles.

The probabilities of payload loss in the abort modes are different for Shuttle and SHC 3 or ILV in that
the Shuttle has the capability to recover the payload in a successful abort, whereas for the latter
systems only the manned vehicle is recovered.

A summary of mission success, payload loss and Orbiter/manned vehicle loss is presented on the next
chart.
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LSYS-89-216

SUMMARY OF MANNED VEHICLE OPERATION PARAMETERS
PROBABILITY/EXPECTED NUMER OF LAUNCHES BETWEEN FAILURES

The probabilities of mission success for Shuttle and SHC 3 or ILV are 0.950 and 0.979, respectively,
with corresponding expected numbers of launches between failures of 20 and 48. The higher values
for the new vehicles are a result of their assumed capabilities to achieve mission orbit with an engine
segment-out discussed on previous charts.

The lower value for probability of payload loss for Shuttle are due to the capabilities of Shuttle to
return a payload to Earth, not assumed for the new vehicles.

The Orbiter/manned vehicle loss probabilties are virtually the same for all vehicles in spite of the higher
probability of the Shuttle entering the abort mode. This is due to the high success probability projected
for the Shuttle in the abort mode which leads to Orbiter recovery. The cost of loss differs dramatically -
approximately $2.5 billion for an Orbiter vis-a-vis a much lower cost for a manned vehicle.
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ADDITIONAL FACTORS AFFECTING EVENT PROBABILITIES

There are at least two factors which may affect the projected success and loss probabilities presented
herein.

The analysis assumed uniform probability of ascent non-catastrophic failures, i.e., that failure would be
equally probable at any time during flight. Analysis of SSME ground tests and flight history suggest
that failures may occur non-uniformly with high probability that failures will occur within the first 10
seconds. While solid motor ignition is not initiated until 6.6 seconds after SSME start, there may be
a residual bias toward early failures which would increase the probabilities of RTLS and TAL vis-a-vis
those for ATO or achieving the mission orbit. Because RTLS and TAL are likely riskier abort modes,
such a bias would increase the probability of orbiter loss.

Catastrophic failure implies catastrophic vehicle loss. With a small manned capsule or similar vehicle
using an Apollo-like rocket escape system, it is conceivable that the vehicle could be ejected from the
launch vehicle upon detection of a critical failure, increasing the probability of surviving a launch vehicle
catastrophic failure. Indeed, the Soviets were able to recover a Soyuz capsule from a vehicle explosion
and fire with a rocket escape system.
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20/13 ASSEMBLY SEQUENCE
8/88 ALLOCATED ASSEMBLY WEIGHTS
SCHEDULED LOGISTICS AND PDRD PAYLOAD ALLOCATION

The NASA plan for deployment of the space station by the Shuttle, shown on this chart, was used to
define the Shuttle Only mission model shown on a subsequent chart. The sequence includes three
logistics flights.
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LSYS-89-216

SPACE STATION ASSEMBLY
EARLY MAN-TENDED CAPABILITY
STS & SHUTTLE-C
OMV GROUND BASED

A representative NASA plan for deployment of the Space Station with Shuttle and SHC is shown on
this chart. On the basis of this plan, the total number of flights required, including initial logistic flights,
would be reduced from twenty (for Shuttle Only) to thirteen. Shuttle and the SHC launch requirements
would be nine and four, respectively, including two logistics flights.
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LSYS-89-216

SPACE STATION ERA MISSION MODEL
SHUTTLE ONLY

The mission model for Shuttle only is based upon an assumption of fourteen planned Shuttle launches
per year throughout the period of interest. Over and above the Space Station deployment and support
launch requirements, about two per year were assigned to DoD launches. The remainder of the shuttle
flight rate capabilities were assumed dedicated to pallet/manned and upper stage free flyer missions.
The key assumptions for the mission model are the fourteen per year capability of the Shuttle and the
launch rate requirements for deployment of the Station. The results of this study are not sensitive to
the distribution of the "other" launches among other users.

The maijor risk of particular concern to the Space Station deployment is loss of a module. The risks

to all space programs supported by the Shuttle are its launch availability and the possible loss of one
or more Orbiters.

30A L SYSTEMS, INC.
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LSYS-89-216

MISSION FLIGHT ASSIGNMENTS
WITH AN UNMANNED SHC/ILV

Introduction of an unmanned SHC or ILV would permit shuttle off-loading of certain Space Station
modules and other unmanned cargo (such as free flyer observatories and upper stages). The off-
loading was limited to constrain the SHC launch rate to 3 launches per year, determined by the
availability of SSMEs. Although an ILV could potentially carry more of the Shuttle traffic, SHC rates
were assumed for comparison purposes.
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LSYS-89-216

MISSION FLIGHT ASSIGNMENTS
WITH MANNED AND UNMANNED SHC/ILV LAUNCHES

Introduction of a SHC3/ILV with both manned and unmanned capabilities could be phased to achieve
the Space Station deployment with the Shuttle and unmanned launches of the SHC3/ILV. Thereafter,
the manned SHC3/ILV would provide crew rotation and emergency escape for the Space Station. This
would serve to reduce Shuttle launches to those requiring the unique on-orbit capabilities of the Orbiter.
Shuttle flight rates in the out years were reduced to 3 per year to envelope the effects of this scenario.
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U.S. LAUNCH VEHICLE HISTORY AND PROJECTIONS OF DOWNTIMES

Launch fleet operations analyses require postulated downtimes when a vehicle fails. Accordingly, in
addition to failure ratios, the history of launch vehicle downtimes after a failure, was analyzed. As in
the case of failure ratios, downtimes can be associated with particular subsystem failures. A summary
of historical downtimes is shown here for the available data base which is largely for expendabile,
unmanned launch vehicles. The projected values are for future, high value space cargos such as
manned vehicles and Space Station modules. They represent engineering judgments of the mean
downtimes that will result from compromises between operational requirements and risks associated
with the next launch after a launch failure has occurred.
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LSYS-89-216

RISK OF MANNED VEHICLE LOSS
FIVE YEAR MODEL

Using the event probabilities outlined earlier in the briefing and the five-year mission models, Monte
Carlo simulations were performed for the various vehicle fleets to examine overall fleet operational risk.

This chart summarizes the expected number of Orbiter or manned vehicle losses during the five-year
mission model period. For the Shuttle Only case, expected losses are slightly more than one Orbiter,
i.e., the program should be planned on the basis of loss of at least one Orbiter in the course of
operations during the five years, recognizing that there is a significant probability of greater or lower
losses. Because the overall flight rates are relatively similar and the proportion of traffic assigned to
the SHC or ILV is low, the overall risk of vehicle loss does not vary significantly among the cases. For
the cases with an alternate manned vehicle, Orbiter losses remain relatively high as compared to the
new manned vehicle because operations for the new manned vehicle do not begin until completion of
Space Station deployment. If the mission model post-deployment flight rates were continued, one
would expect the losses per flight for the two vehicles to be approximately equal (as shown earlier).
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LSYS-89-216

SPACE STATION DEPLOYMENT RISK
(SPACE STATION DEPLOYMENT LAUNCHES ONLY)

This chart focuses on impacts to the space station deployment activities. It is highly likely that Space
Station deployment would be stretched out (or other programs would be delayed if Space Station had
higher priority) due to aborts or other failures as is evidenced by comparing successful launches to
manifested launches. The degree of stretch-out could be expected to be reduced with the availability
of an unmanned SHC or ILV.

The results in the fourth column show that the chances of losing one or more Space Station modules
vary from about 1 in 2 for the Shuttle Only to about 1 in 3 for the Shuttle plus SHC3 or ILV fleets.

The lower value for the SHC ILV cases should be tempered by the fact that they would carry the

equivalent of two Shuttle flights worth of modules on any single flight, thus increasing the impact of loss
should one occur.
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LSYS-89-216

LAUNCH VEHICLE RISKS PER LAUNCH

The critical operational parameters per launch are peculiar to the individual launch vehicles,
independent of their operations in a mixed fleet. Although they are discussed earlier in the briefing,
they are summarized here for all of the vehicles analyzed.

With respect to the probability of mission failure, the Shuttle is highest because when an engine
segment fails non-catastrophically, it aborts. The SHC2 is next highest, event though it has no abort
capability. This is because it has a lower total (non-catastrophic + catastrophic) failure probability than
Shuttle due to having one less SSME. Vehicles which can achieve mission orbit with an engine
segment out have the lowest mission failure probability.

The Shuttle has the lowest probability of payload loss because in a successful abort, the payload is
saved in addition to the Orbiter.

Unlike the significant differences in the probabilities of unsuccessful mission, the Shuttle and SHC3/ILV
probabilities of manned vehicle loss are about the same due to the high probabilities of successful
Shuttle abort. The cost of loss differs, though - approximately $2.5 billion for an Orbiter versus a much
lower cost for a smaller, less complex manned vehicle.
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LSYS-89-216

FLEET OPERATIONAL RISKS

Two measures of the viability of a launch fleet to meet a specified mission model are the relative values
of planned launch rate versus the expected successful launch rate and the launch availabilities. The
first effect of introducing a second vehicle to support the Shuttle is to reduce the planned launch rate
due to manifesting of payloads on the higher performance second vehicle. This also reduces the
differences between planned and successful launch rates, thus decreasing the risks of not meeting the
mission model requirements. Also, the lower planned launch rates could probably be increased without
exceeding the launch rate limitations of the facilities, further reducing the risks.

Projected fleet launch vehicle availabilities range from about 80% to 90%. The improvement in vehicle
availability for cargo launch (unless dual compatible) with an ILV probably would not justify the
additional development cost over that for SHC. For unmanned cargos which were dual compatible on
Shuttle and an ILV, and for a manned vehicle launched on the ILV, the launch availability would be
98%. Thus, an independent manned capability complementing Shuttle, provides the greatest assured
manned access capability. This would be particularly important in reducing the risks to manned safety
and support of the Space Station.
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LSYS-89-216

ORBITER PRODUCTION INTERVAL

In the longer term, the implication of Orbiter fleet attrition impels a review of replacement production
planning. Ideally, production plans should anticipate losses for the planned life of the program.

Assuming a six year production lead time, 2 Orbiters should be in production at all times and 14
Shuttle launches per year, it is evident that the 14 per year case is already at risk. Some degree of
production overlap is desirable even at 5 launches per year, but the lower fleet size requirement
provides inherant spares in the interim.
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LSYS-89-216

SAMPLE SENSITIVITY ANALYSIS
EXPECTED SUCCESSES AND FAILURES

The event probabilities outlined in the prior charts focus on mean values. As noted in the subsystem
failure rate derivations, a range of values is appropriate to address uncertainties in interpreting historical
data and projected probabilities for future systems, and, indeed, ranges were used in Monte Carlo
simulations treated earlier in the report. It is estimated that, based on these ranges, the probability
of Orbiter loss could vary by plus or minus 0.01 around the 0.022 nominal value for a Shuttle flight.

The expected number of successful missions and total Orbiter losses during the five year model varies
considerably with variation in per launch loss probability. However, the most significant observation
is that even with the lowest assumed loss probability (highest reliability), expected Orbiter losses are
sufficiently high to require continued Orbiter production to maintain the fleet. Expected successful
launches would be slightly higher for the Shuttle plus ILV fleet compared to the Shuttle plus SHC3 fleet
due to the differences in vehicle interdependence. However, the expected Orbiter losses would be
approximately the same. Therefore, the need for continuing Orbiter production is general so long as
the Shuttle remains the primary launch vehicle for deployment and support of the Space Station.
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SUMMARY
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MAJOR MANNED PROGRAM RISKS/REDUCTIONS

From the standpoint of the manned space program, the critical operational risks are 1) Orbiter losses,
2) Space Station module losses, and 3) manned launch vehicle(s) availability (assured manned
access). The results of this study lead to the following general conclusions:

Although the introduction of another launch vehicle to supplement the launch capabilities of
Shuttle could reduce Orbiter attrition, it would not remove the requirement for a plan to continue
Orbiter production to maintain the fleet.

None of the fleets analyzed would provide a substantial reduction in the probabilities of Space
Station module losses during deployment. Accordingly, a contingency plan for module losses
is essential to the viability of the program.

Any single launch vehicle may experience a launch failure which would cause it to be non-
operational for a time that would jeopardize the safety of the crew and the operation of the
Station. A second manned launch vehicle, independent of the Shuttle, has the most capability
to reduce this risk. It also could serve to reduce Orbiter attrition by reducing its launch rate
requirements. The introduction of such a vehicle, therefore, has the most potential for reducing
the risk of the manned space program.
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FLEET RISKS WITH HIGH LAUNCH RATES

Study of fleet risks during the Space Station era naturally raises the question as to similar risks with
traffic increase due to a large scale manned initiative. To examine the effect of increased launch rate,
a 60 percent addition to the mixed fleet mission model by the turn of the century was projected. Two
fleets are compared - a Shuttle/SHC3 mix and a Shuttle/manned ILV fleet. The SHC3 is unmanned.

A cursory analysis using the lower end of the nominal loss probabilities discussed earlier shows that
the frequency of unsuccessful missions, payload losses and total manned vehicle losses (either Orbiter
or the supplementary manned vehicle) would be approximately the same for all the Shuttle technology,
highly interdependent fleet and the Shuttle/ILV fleet. However availabilities, Orbiter losses and facility
requirements are drastically different. The Shuttle/SHC fleet faces frequent Orbiter losses and
unacceptable availability. Vehicle independence within the latter fleet would permit very high assured
manned access, while the frequency of Orbiter losses would be dramatically reduced with the assumed
launch rates. Additionally, facilitation requirements would not be nearly as great. (A fleet with a
manned SHC would reduce Orbiter losses but would not provide the other benefits. Availability for
manned flight would remain low.)

Interdependent capability, with a balance of launch rates which considers potential cost of loss, clearly
becomes a program imperative as launch rates increase.

48A L SYSTEMS, INC.
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