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SECTION 1
INTRODUCT ION

Time domain reflectometry measurements in plasmas are
of great interest. This is particularly true in studying the
high density plasma layer which forms around a spacecraft as
it reenters the Earth’s atmosphere. It is well established
that heat transfer rates for spacecraft in reentry can be
greatly influenced by flowfield ionization levels.

Knowledge of the ionization level is, therefore, important
during reentry as a function of body station, especially in
the forebody region. Current,analytical models are
unverified and incumbered with unproven simplifying
assumptions and, as a result, fall short of providing
dependable electron density pfedictions.

The Microwave Reflectometer Ionization Sensor (MRIS)
Experiment1 will make use of the microwave reflection
properties of ionized gases to determine levels of electron
density in the forebody shock layer of a reentry vehicle and
to measure the distance from the vehicle at which these
electron densities occur. Specifically, the experiment will
locate the onset and presence of critical electron densities
corresponding to selected carrier frequencies by measuring
the amplitude and phase of the reflected signal. The
critical electron density is the density at which a rapid
increase in reflection coefficient occurs. The distance to
the critical density point will be obtained through time
domain reflectometry using 64 equally spaced transmitted
frequencies, occupying a total bandwidth of 2 GHz. At the

receiver, 64 frequency responses are collected and an inverse

1 NASA experiment originally proposed for 1996



fast Fourier transform then provides a time domain impulse
response for the plasma. The propagation delays of the
signals reflected from the ionized flow field will be
measured to determine the stand-off distances to the
location of the critical electron densities detected. The
stand-off distance information for the vehicle will be
compared to the data predicted from the computational fluid
dynamics models for the spacecraft’s trajectory. Such a
procedure should work well so long as the properties of the
plasma layer are constant over the time required for the 64
measurements. Since the positions of the critical electron
densities will fluctuate during measurement periods, it is
desirable to study the effects of any such fluctuations on
the time domain reflectometry response. The purpose of this
paper is to study the effects of time dependent-fluctuations
on time domain reflectometry for a one-dimensional plasma
sheath.

The study of plane waves incident on stable plasma
layers has been investigated by many authors [1-5]. Their
work has been focused on solving the differential equations
which describe the electromagnetic behavior of fields within
these fixed layers. This paper delves into the
electromagnetic behavior of fields within a time-variant
plasma layer. Solutions for continuous inhomogeneous layers
require, in general, numerical techniques. In this paper
the plasma is represented by a one-dimensional dielectric
constant which is allowed to vary in the direction of
propagation. Practical solutions have been obtained using
numerical methods for solving the Helmholtz wave eguation
describing propagation through the plasma layer. Sequences
of density profiles have been generaﬁeaﬁggvéhulate the
time-dependent behavior of moving density fluctuations. The
plasma has been studied for a range of constituent
transmitted frequencies (64 stepped frequencies), consistent



with the MRIS experiment, and the resulting responses have
been used to synthesize effective time domain responses.

Broadly speaking, this paper is divided into four
parts. Section 2 deals witﬁ!ﬁﬁé models used for a given
plasma layer which can be represented by a dielectric medium
with a dielectric constant which can have a negative
imaginary part representing losses as explained in reference
6. Section 3 concentrates on reflection coefficients for
different plasma models. To simulate the time domain
reflectometry response of a fixed one-dimensional cold
plasma sheath, solutions for the electric field of a
normally incident plane wave in a specified electron density
are used. Illustrative cases with simplified profiles with
exact solutions are presented for the reader in this
section. Section 4 looks at simulating the time domain
response of the plasma by mathematically transforming
reflection coefficient measurements made in the frequency
domain. From the responses, propagation delays of the
signals reflected were measured to determine the distances
to the location of the critical electron densities. Section
5 investigates electron density fluctuations and their
effect on time domain responses. For the sake of clarity,
many of the problems treated are greatly simplified. For
instance in Section 3, a homogeneous layer and a linear
layer are examined as illustrative aids for understanding
the solutions for a inhomogeneous plasma layer. The appendix
reviews the time domain theory used in this paper. A
computer program was developed to solve inhomogeneous plasma
layer problems. For propagation studies, a time harmonic
wave traveling in the positive z-direction with an e 1% time
convention is assumed throﬁ;;;ut the paper. Normal
jncidence was chosen to simplify problems and to help focus
on the intent of the paper. Issues and considerations

regarding the MRIS distance-measuring scheme are discussed



in the conclusion.




SECTION 2
ELECTRON PLASMA MODEL

2.1 Wave Propagation

In the solution of any electromagnetic problem,
Maxwell ‘s equations must be satisfied. As shown in
reference 7, these equations can be used to obtain a
differential equation describing wave propagation through an
arbitrary medium. This differential equation known as the

one-dimensional Helmholtz wave equation is written as

ffﬁigl + wPpe(z)E(z) = 0 (2.1)
P

where E is the electric field intensity, w is the radian
frequency, ¢ is the permeability of the medium, and € is the
dielectric constant of the medium which is shown as a
function of z, the axis along which the electromagnetic
fields propagate. For the case where £ does not depend on z

(purely homogeneous dielectric), a time-harmonic wave moving

in the positive z-direction, with an e_iut time convention,
results in a solution written as
E(z) = Elelkz + Eyo 1K , (2.2)

where E1 and E2 are undetermined constants independent of 2z
and k, the wavenumber, is
k = w HE € , (2.3)

sr is the relative dielectric constant of the medium and so



is the dielectric constant of free space. In the solution
of the wave egquation for E as given by equation (2.2), the
first term represents a wave with magnitude E1 traveling in
the positive z direction, and the second term represents a
wave with magnitude E2 traveling in the negative z
direction.

Now consider a inhomogeneous dielectric, where k varies

with distance such that

k = /ueoer(z) (2.4)

and equation (2.2) is no longer valid. The solution cannot
be conveniently expressed as a forward and backward
traveling wave as for the homogeneous dielectric. As shown
later in Section 3, except for certain special cases such as
a linear dependence of £ with z (see section 3.2), to find a
solution for the electric field in an inhomogeneocus

dielectric, equation (2.1) must be solved numerically.
2.2 Properties of Plasma

Let us consider the particular properties of a
partially ionized, but electrically neutral, gas insofar as
they affect the propagation of electromagnetic waves.
Electrons have a natural frequency of oscillation called
the plasma electron frequency or more commonly, the plasma
frequency. It is represented by “y and is defined as
follows [8]:

w2 - _EE___ (2.5)
£ m ’ :

where so is the permittivity of a vacuum, m, is the mass of
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an electron, Ne is the electron density, and e is the charge

of an electron. ,
If temperature effects are not important, a plasma can
in reference 6, where

: N
el —’ (2.6)

w is the transmitted freqaghcy. In the general case wy can
be a function of position, thereby, representing a
inhomogeneous plasma. The refractive index of the ionized

medium is given by [5]

1 L2 1
n=(€r)2=[1——-g-—]2 ' (2.7)

Two cases are possible:

> 0 n is real

In this case, wave propagation takes place.

w < w, 1= 7~ <0 n is imaginary

In this case, the fields are evanescent and no wave
propagation occurs. For”gwgignal to be transmitted through a
plasma it is, therefore;“ﬁécessgry that the frequency of the
microwave signal » be higher than the plasma frequency wy-



A wave, therefore, may propagate into a medium having
increasing w,, but as “yg approaches w, srapproaches zero and
a criterion for reflection is met. The point at which the
electron density level causes the plasma frequency “n to
equal w is termed the turning point in this paper. To
further illustrate the definition of turning point, in
figure 1 the number Ne of free alectrons per unit volume
increases slowly in magnitude, reaches a maximum, and then
falls abruptly with further increase in distance. A wave of
a given frequency w would enter the plasma without
reflection because of the slow change in Ne' When the
density Ne is large enough, however, wN(hl) = w. Then the
dielectric constants in equation (2.6) vanish and the wave
is reflected. 1In figure 1, h, is the location of the

1
turning point.

2.3 Reflections

In the previous section, the properties of plasma were
studied, and it was stated that a plasma can be modeled as a
inhomogeneous dielectric. To understand reflections in a
plasma, a formula for the reflection coefficient must be
developed. Before we investigate reflections in the
inhomogeneous dielectric model for the plasma we should
examine a homogeneous dielectric. Consider a homogeneous
dielectric with relative permittivity €., a plane uniform
wave progressing in the z-direction and having its electric
vector in the y-direction is completely specified by

equation (2.2) as

- ikz -1ikz
Ey(z) = Ele + Eze (2.8)



where k is the wavenumber defined by equation (2.3) as

k = HE € . (2.9)
The reflection coefficient at a location z can be defined
as a complex number [9]
-i1kz

Eze o
F(zo) z —— . (2.10)

With equation (2.10), equation (2.8) can be written about

the point z, as

B, (2) = B, [eik(z-zo) + r(zo)e‘ik‘z’zo)] , (2.11)

where Ei: Eleikzo is the incident field for the traveling

wave at 2, Taking the derivative wifh respect to z,

equation (2.11) becomes

GEy(z)
—— = E, [1keik‘a‘zo) -ikl (2 )e'ik(z'zo)] L (2.12)
oz 0

We define a quantity p at the point z, as



I (z )
Yy o

p = 9z . (2.13)

Ey(zo)

This factor p is proportional to the admittance of the wave
given by Hx/Ey’ where Hx is the magnetic field in the x
direction. The resultant equation for the reflection
coefficient at the location z, can be written, in terms of

P, as

ik-p
I"(zo) = . (2.14)
ik+p

For values of p where the magnitude of I' is zero in equation
(2.11), the wave simply propagates in the +z direction with
magnitude Ei' For values of p where the magnitude of I is
unity, the wave is reflected and travels in the -z direction
with magnitude Ei'

Having considered a homogeneous dielectric, we can
investigate the inhomogeneous dielectric model for the
plasma. As mentioned in section 2.1, equation (2.8) is not
valid for inhomogeneous media and reference is made to the
original Helmholtz wave equation. The Helmholtz wave
equation is written here as

oZE (z)

— WCue(z)E(z) = 0 . (2.15)

oz

As noted earlier for arbitrary variation of £ with z, it is
not possible to find unique forward and backward waves in

10



equation (2.15). However, the kinds of variation of ¢ with
z are such that there is a region of constant permittivity
(free space) near the transmitting source. It is only in
such a region of Coﬂétah;ﬁ;—zgéi équation (2.14) is actually
evaluated after having found Ey(z) everywhere using equation
(2.15). Note that this wave equation has many solutions and
equation (2.8) is a solution for a homogeneous medium only.
To apply this equation for an arbitrarily varying
dielectric, a solution must be found numerically for the
ratio of the field expressions in equation (2.13) and
subsequently for the reflection coefficient in equation
(2.14) (see section 3.3). When the reflection coefficient
for the modeled plasma is calculated at several frequencies,
the frequency response for the plasma is known for that
frequency range and the frequency response data can then be
transformed to produce the time domain response for the

plasma.

11



SECTION 3
REFLECTION COEFFICIENTS FOR UNIFORM, LINEAR,
AND ARBITRARY INHOMOGENEOUS LAYERS

3.1 Uniform Dielectric Layer

Consider a plane wave incident on a plane uniform
dielectric layer as shown in figure 3. The incident
elactric field which is polarized in the y-direction
propagates in the z-direction through free space (Region I)
and is normally incident on the layer (Region II) backed by
free space (Region III). Normal incidence was chosen to
simplify the problem. The electron density profile for the
three regions is shown in figure 4. In free space (Regions
1 and III) the electron density is assumed to be zero, and
for the dielectric layer (Region II), extending from z=z, to
z2=2,, it is assumed to be No' The relative permittivity of
the layer €4 can be expressed by equations (2.5) and (2.6)

as

£, =1 - —{%———— . (3.1)

No is chosen so that wy > w and therefore £q < 0. The
relative permittivity for this geometry is shown in figure
5. The field in Region III can be written with unity

magnitude as

E(z) = el¥o? (222, ) (3.2)

2 Electron density profile consistent with experimental

predictions (see figure 2).

12



and

9E(z) . ikoeikoz (z 2 Z, )

At z=24, the field can be written as

ik 2
o

E(zz) = e 2
and
IE(z,)
— 2 = ikoeikOZZ
adz

In Region II,

k = k° Y e

d

and the index of refraction, n can be written as [9]

n=ve =7ec,

r d

where cr is the relative permittivity.

Y e = n_ + in

r r i

13
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where n. and n, are the real and imaginary part of the index
of refraction, respectively. Since n is purely imaginary

for the relative permittivity here,

k = ik _n, . (3.9)

The field in Region II can be written as

E(z) = Ce™*% + g o™ ik2 (2,32 Sz2,) . (3.10)

Using equation (3.9), equation (3.10) can be written as

E(z) = Cle—koniz + Czekoniz z,<z <z, (3.11)
and
9E(z) . -k n.C e_koniz + k n,C,efomi? (3.12)
0o i’1l o172

Using the boundary conditions, the tangential electric and
magnetic fields are continuous at the interface z=2z,, We can
equate the field expressions in equations (3.2) and (3.11),
and equations (3.3) and (3.12), respectively, to solve for C1

and C2 (see reference 2). Note that

14



1
CZ b ini -2n,k 2z
ol = T e i“o0%2
1 1 + -i—-
ny

will be very small if n,z, is several free space
wavelengths. Choosing Zg such that koni(zz—zl) » 1 renders
I, | « |Clle_2nikozl. Similiarly, in Region I we can equate
field expressions at 2=z, and the reflection coefficient at

z=0 can be written as (see reference 2)

C

F(z20) = —— (3.13)
Cs
where
. = —i ¢ [1— 1 ]eko“iz1(1+I%')
3 ° 71 [%2Un; i
Tt o_ ¢ [1+—l—]e—konizl(1_fé_) (3. 14)
1 ini i )
and
c. = =t |-c [1+—l—]eko“121(1'I%"
4 - 21 2 ini i
1Y -k n,z, (1+=0)
+ 01[1-7——]e oPiZ (M) . (3.15)
1ni i

Since |C,| « |C, e 2Pi%o?1,

15



r(z=0) = — = o21k,Zy , (3. 186)

n, = /eyl (3.17)

3.2 Linear Layer

In the previous section we calculated the complex
reflection coefficient for a uniform dielectric layer. Now
consider a linear layer as shown in figure 6. A plane wave,
polarized in the y-direction and traveling in the z-direction
through free space (Region I, Ne:O), is incident on the
layer at z2=2z,. As the wave progresses fhrough the layer
(Region II), it encounters greater electron densities. At
the outer edge of the layer, 224, the electron density Ne
is at its maximum, No' As the wave leaves the layer, it
returns to free space (Region III, Ne:O). The electron

density profile can be expressed as

No Noz1 }
N = . z - ——— ( 2,5z %z, ) (3.18)
e 32 z1 Z5-24 , 1 2

N =0 ( z$z1 and zZzz ). (3.19)

16



When the electron density Ne is large enough, the relative
dielectric constant <. in equation (3.1) vanishes and the
wave is reflected. Let us call this critical electron
density value NC. For the dielectric constant to vanish

N = —2° . (3.20)

By using equation (3.18) we find this to happen at the
turning point

wzcomeAz
z =z, + . 5 (3.21)
e
o
where
A‘-_v,:zz—z1 (3.22)

The field in Region III can be written with unity magnitude

as
E(z) = etKo? ( 22z, ) (3.23)
and
OR(2) _ i) olk,2 (222, ) . (3.24)
oz (o]

In Region II the Helmholtz wave equation derived in

reference 9 becomes the Airy differential equation as shown
in reference 2. The field expressions can then be written in
terms of Airy functions (see reference 2) as

17



E(u) = ClAi(u) + CzBi(u) (3.25)

and

E(u) _ ~ 9 9 n.
3y = Cl auAi(“) + C2 GuBl(u) (3.26)

where the variable u(z) is defined as

3 2 |
ko Az )3 K1 z-% 4
u(z) = - : 1 - 3 (3.27)
K1 k Az
o]
and
Noe2
K1 =z — . (3.28)
c &
e

Using the boundary conditions at 2=z, and z=2,, We can
equate field expressions and solve for the reflection
coefficient at z=0 (see reference 2). At z=0 we are in free
space, a region of constant permittivity, the reflection

coefficient at z=0 can be written as

[CL + C.L

2ik z
181 22]e 0”1

r(z=0) (3.29)

it

c,L, + C,L

173 274

where

18



%u—Ai(u(zl))
3z

lko u

(3.30)

= Ai(u(zy)) -

[y
|

gEBi(u(zl))
= Bi(u(zl)) - = (3.31)
ik ==
o &

N
|

%EAiSu(zl))
ik
o

+

(3.32)

-
1l

Ai(u(z,))

2|

3-Bi(u(z,))

+

(3.33)

[ o
"

Bi(u(zl))

Iz
iko 3%

To illustrate this exact solution for the reflection
cbefficient, a particular linear profile was chosen and is
shown in figure 7. The electron density Ne begins at the
front interface, z=0, at a value of zero and rises to a

20 electrons per cubic meter at z=14

value of 1x10
centimeters (the exit point). The real and imaginary parts
of the reflection coefficient at the front interface are

shown in the right column in table I for 74 to 75 GHaz.
3.3 Plasma Layer

In the two previous sections the complex reflection
coefficients for a constant dielectric slab and a linear
layer were derived exactly. The solution for an arbitrary
inhomogeneous plasma layer requires, in general,
numerical techniques. The plasma is represented by a

19



scalar, isotropic, and inhomogeneous dielectric constant.
Consider a plasma layer with a electron density profile as
shown in figure 2. An incident electric field, which is
polarized in the y-direction, propagates in free space
(Region I), in the z-direction, and is normally incident on
the plasma layer (Region II) and backed by free space (Region
III) as shown in figure 8. Again, normal incidence was
chosen to simplify the problem of studying the effects of
electron density fluctuations on the time-domain
reflectometer response for a one-dimensional plasma sheath.
The Helmholtz wave equation for the electric field in

a inhomogeneous plasma layer is written as

&E (z)
D A

2

+ K% (2)E_(z) = 0 (3.34)
oz y

where k, the wavenumber, is

k(z) = 031/ He (2) . (3.35)

The wave propagates through the plasma (Region II) and is
transmitted to free space (Region III). Since the relative
dielectric constant in free space equals one, the solution
of equation (3.34) in Region III is readily found.

To begin the solution, the electric field in Region III
may again be written with unity magnitude as

E,(2) = olkoz (3.386)

The derivative needed to define p in equation (2.13) is

again given by

20



%y (2)_ ik z

. 1koe (e} . (3.37)

The field at z=d is assumed to be unity and, therefore, can be

written as

B, (z=d) = elk,d (3.38)
and
% (2=d)
) ik d
P L : (3.39)

Equations (3.38) and (3.39) serve as boundary conditions
for solving equation (3.34). Dropping the polarization

notation and making the substitution

9K (z)

S(z) = (3.40)

a9z

equation (3.34) becomes

Blz) 4 k¥ (2)E() = 0 . (3.41)

Using a fourth-order Runge-Kutta method [10], equations
(3.40) and (3.41) can be integrated to find the electric
field and its derivative. Once these are found at z=0, p at

21



z=0 becomes

%8 (2-0)
p = 9z (3.42)

E(z=0) I

as defined by equation (2.13) and the reflection coefficient at

z=0, in terms of p, is

ik-p
rez=0) = —— . (3.43)
ik+p

One can note that only the ratio of S(z) to E(z) is actually
needed to compute the reflection coefficient. Thus, the
magnitude of E(z) can be kept near unity by normalizing the
solution at the end of each Runge-Kutta step.

3.4 Verification of Runge-Kutta Method

In section 3.2, a linear profile was chosen to
demonstrate an exact method (Airy-equation) of determining
the reflection coefficient. A comparison of the numerical
Runge-Kutta solution and this exact solution is made. The
particular linear profile chosen is shown in figure 7. The
real and imaginary parts of the reflection coefficient at
the front interface for the Runge-Kutta method and the exact
method are shown in table I for 74 to 75 GHz. The
Runge—Kuttg mephod compares favorably with the exact
solution as can be readily seen in téble I. In all cases,
the number of Runge-Kutta steps used was tested so that

significant changes in computed values were not observed for

22



larger numbers of steps.
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SECTION 4
TIME DOMAIN MEASUREMENTS

4.1 Uniform Dielectric Layer

As stated, the complex reflection coefficient, for a
range of constituent transmitted microwave frequencies, can
be used to synthesize the effective time domain response of
a plasma layer (see Appendix for a review of time domain
theory). ©Sixty four frequencies, for a bandwidth of 2 GHz,
were chosen to be consistent with the MRIS experiment.
Reflection coefficient data in the frequency domain are
shifted and transformed to give a baseband time domain
response using a decimation-in-time fast inverse Fourier
transform [11]. The resulting time domain response emulates
a baseband continuous wave signal, where the peak magnitude
marks the location of the turning point. The frequency
domain data are windowed by a Kaiser-Bessel window to reduce
unwanted interference, and it should be noted that the peak
response of the data is normalized to the reponse of the
window. To illustrate the technique of using the time
domain response to locate the turning point, the results of
section 3.1 are used for a uniform dielectric layer.

Consider a plane wave incident on a uniform dielectric
slab, with €= -0.5, located 10 cm from the source, as shown
in figure 5. A negative permittivity was chosen to simulate
a purely reactive dielectric reflector. The wave propagates
through free space (Region I) at the speed of light c and is
normally incident on the slab at z1=10 centimeters. The
slab is 14-cm thick (Region II) and is backed by free space
(Region III). As stated by equation (2.10), the ratio of
the amplitude of the field reflected by the dielectric slab

24



to the amplitude of the field incident at 2=z, is called the
reflection coefficient I' of the uniform dielectric slab. We
should note by equation (3.16) that ' is the reflection
coefficient pertaining to z=0 and takes into account the
effect of the propagation path from 0 to z,- The effects of
the back of the slab are attenuated and not seen. The wave
is incident and reflected at the z=z, interface, which is
the turning point for the dielectric layer. The magnitude
and phase of the reflection coefficient for the uniform
dielectric layer are shown in figures 9 and 10,
respectively, for 74 to 76 GHz. The phase plot is relative
to the phase at 74 GHz. These reflection coefficient data
were transformed and windowed with the resulting time domain
response of the layer as shown in figure 11. The response is
shifted to the left of time t=0 and the shift is the
propagation delay of the wave. Note that this delay is
measured on the negative side of the time axis and has
negative values. Due to the truncated frequency domain,
ringing is associated with the time domain response. A
Kaiser-Bessel window [10] was chosen and the frequency data
were multiplied by the real Kaiser-Bessel weights to emulate
a pulse train with very low sidelobes or "ringing" between
pulses. Sidelobes can limit the dynamic range of the time
domain measurement by hiding low-level responses within the
sidelobes of the higher level responses.

To estimate the location of the turning point, the time
for the wave to travel to the turning point had to be
determined. The time domain response was used to calculate
this propagation time. In figure 12, we see the transformed
reflection coefficient for -2 to 2 nanoseconds plotted with
the effective transmitted pulse (i.e., the transformed
Kaiser-Bessel window) as a reference centered at t=0. The
time shift between the two plots corresponds to the
round-trip propagation delay for the wave and is labeled

25



2t ,,
thg negative side of the time axis. Since the wave
traveled at the speed of light ¢ in Region I and td was
measured to be .3352 nanoseconds, the wave traveled 10 cm
before it was reflected. This is in agreement with the
geometry of the problem, where the turning point is located

where td is the one-way propagation delay measured on

at z2=2, (zlzlo cm).
4.2 Plasma Layer

For the plasma layer the turning point is located
within the layer. To estimate the turning point distance,
the velocity through the plasma must be obtained. This
suggests a problem since the plasma is modeled as a
inhomogeneous dielectric and the velocity of the propagating
wave is dependent on the permittivity of the medium. Some
means must be found to approximate the velocity profile. A
possible solution is to assume that regions of the plasma
profile are piecewise linear to find average velocities for
each such region. To approach this problem, let us look at
the linear layer discussed in section 3.2. The electron
density profile of the layer bounded on both sides by free
space is shown in figure 6. The phase velocity through the

layer is

c
- ' .35
vp(2) = —— (4.35)
1€r(Z)
The group velocity which describes the transport of energy

is related to the phase velocity and is

26



2
v (z) = c . (4.36)
g v, (2)

At the front interface of the layer (z=z1) the relative
permittivity is that of free space and is equal to one. The
group velocity there is simply the speed of light c. As the
wave travels through the layer, it encounters greater
electron density Ne values and its group velocity decreases.
When the electron density is large enough, the relative
dielectric constant ‘. vanishes in equation (2.6) and the
phase velocity becomes infinite forcing the group velocity

in equation (4.36) to become zero. Note that this occurs at
the turning point. It is, therefore, possible to assume that
the average group velocity, as the wave propagates from the
front interface to the turning point, is c¢/2. For
investigations of wave propagation in a linear layer plasma,
such an assumption is, therefore, quite permissible. However,
as the plasma becomes nonlinear, the c/2 assumption becomes
less accurate.

To illustrate this point, shown in figure 2 is an
electron density profile which is consistent with the MRIS
experiment that is being simulated. As an example, let us
assume the profile to be linear for electron densities less
than 1.00x1014/cm3. We will assume this to be true only for
this region in order to derive an average group velocity for
the region. Note that for electron densities less than
1.00x1014/cm3 the critical frequency is less than 90 GHz by
equation (2.5). For this region, as before, the average
group velocity is approximated as c/2. For 74 to 76 GHz, the
time domain response was obtained. With this result, the
turning point was estimated at .77 cm. This is in
reasonable agreement with the exact location of .87 cm . It
should be emphasized that this approach was given here as an
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example and that a better approximation could be made by
further segmenting the same region to find more accurate
velocity values. Such further segmenting would require

additional measurements at frequencies below 74 GHz.
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SECTION 5
PLASMA FLUCTUATIONS

5.1 Background

In the previous chapter we synthesized the effective
time domain reflectometry response of a plasma using a range
of transmitted microwave frequencies. These results as a
whole gave us an estimate for the location of the critical
electron densities in static plasma models. However,
macroscopic effects of electron density fluctuations, which
are not included in standard aerothermodynamic simulations,
may have a noticeable effect on hypersonic reentry flow
fields [12]). In order to monitor these effects, we will
extend the foregoing discussion on the propagation of waves
through static plasma models. Thus, we consider the
important effects of time-dependent electron density
fluctuations on the time domain response of a plasma.

Fluctuation of the profile results in motion of the
turning point and is emulated between frequency step
measurements. Motion occurs between frequency step
measurements, assuming that each individual measurement is
accurate at each step. Two Doppler effects resulting in
motion are studied; the first type of motion involves
reducing the electron density profile while preserving the
shape of the profile and the second type of motion involves
modulating the density profile. The first effect is
demonstrated in figure 13 where a sample electron density
profile is reduced, moving the turning point from h1 to h2
and then h3. The second effect can be seen in figure 14
after the same electron density profile is modulated. Two
different rippled profiles are shown moving the turning

point from d1 to d2. Both effects are applied

29



incrementally between frequency steps and consequently
results in erratic motion of the turning point. The
nonuniform motion of the turning point is estimated by
calculating the location of the turning point at specific
times during the measurement period. These discrete
calculations give an indication of the overall motion of the
turning point caused by the two effects. Turning point
velocities achieved are significantly less than predicted

flow field Mach velocities of hypersonic reentry vehicles
[13]. '

5.2 Reduction of Electron Density Profile

The first type of motion resulted by reducing the given
electron density profile values of figure 2 by percentages
without changing the shape of the profile. ©Shown in figure
15 are the time domain responses for three electron density
profiles for 74 to 76 GHz. Time t=0 corresponds to the
location of the time domain response of the window used.

The first profile has 100 percent density values,'the second
has 95 percent values and the third has 90 percent values.
It is evident that the responses shift toward the left,
moving the turning point left of time t=0, with decreasing
percentages. To understand the displacement of the turning
point, the location of the turning point was calculated for
the 100 percent case and the 90 percent case at 756 GHz. By
using equations (2.5) and (2.6), the turning point moved
.13 cm for the 10 percent variation in the profile. Using
the dwell time of 2.5 milliseconds for the proposed MRIS
instrumenta, a turning point velocity of .52 meters per

second was computed.

3MRIS Experiment Requirements Document (ERD)
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To emulate a moving profile response, where the turning

point moves as the frequency is stepped from 74 to 76 GHz,

the profile ﬁas reduced from IOdrﬁércent to 90 percent. The

profile is shown in figure 16, left of a static 95 perceht

time domain response for this emulated var@ation in the

profile response. The 95 percent profile response is
considered to be the response at which the turning point is
at its average position for the 10 percent variation in the
profile. A shift between this average and emulated response
of .17 nanoseconds was computed. By using an average
velocity of c¢/2, the turning point was found to have shifted
1.28 cm in comparison to the variation in the static profile
turning point of .13 cm. This significant increase in
profile shift due to the media motion is a major potential

error.

5.3 Modulation of Electron Density Profile

For the second type of motion investigated, modulation
was introduced into the profile. An expression is written

in the form
1 + A cos(Kz + w) (5.1)
where A is the amplitude, ¥ is the phase of the modulating

wave, and K is the spatial wavenumber defined'as

K = 20 (5.2)

where x is the spatial wavelength. This function was used
to modulate the profile. By varying the phase v of this
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function, the disturbance described by equation (5.1) was
set into motion and traveled across the profile.

A modulating wave with an amplitude of .05 and a
wavelength of 2 cm was chosen. To mimic a modulation
velocity of 2 meters per second, the phase ¥ of equation
(56.1) was varied from 0° to 90° as the frequency was stepped
from 74 to 76 GHz. The time domain response is shown in
figure 17. By squaring the tran;form reflection coefficient
inrfiéﬁfé i?, the power digffibﬁtion in the time domain can
be viewed. The power distribution for the response in
figure 17 is shown in figure 18. Greater modulation
velocities up to 8 meters per second were investigated and
results for the reflection coefficient and the power
distribution are shown in figures 19 and 20, respectively.
Further work was done for 140 to 142 GHz with the same
modulating wave to illustrate greater effects at higher
frequencies, the transform reflection coefficients were
determined, and the associated power distributions are
shown in figures 21 and 22. In addition, for 74 to 76 GHz
the amplitude of the modulation was raised to .25 and
results are shown in figures 23 through 25.

Smearing and shifting of the time domain reconstruction
is quite evident for the cases studied. For example, at 140
to 142 GHz the response maximum moved from -1 nanoseconds to
-2.4 nanoseconds as the modulation velocity was increased
from .22 meters per second to 3.33 meters per second (see
figures 21 and 22), and as the velocity was increased further
to 8 meters per second, the response became more smeared and
shifted with multiple echoes (see figure 22d). Various
methods for finding the turning point from these responses
can beremployed. Two épproaches are pfeséntly realizable;
one approach involves finding the peak power level and
designating it as the location of the turning point and
another approach involves finding the centroid of the
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area under the power distribution plot, where the centroid
would mark the location of the turning point. There are

a few problems with these approaches. Smearing of the time
domain response results in several peaks which may be used
to define the turning point, limiting the accuracy of the
first approach. ©Shifting of the response centroid would
also limit the success of the centroid approach. Using the
previous example for 140 to 142 GHz, the centroid of the
distribution moves from -1 nanosecond to -2.6 nanoseconds as
the modulation velocity is increased from .22 to 3.33 meters
per second. .

From the results presented, a limitation of 2.67 meters
per second on the turning point velocity is estimated for
the accuracy of the instrument at 140 to 142 GHz with
modulation amplitude A=.05. For 74 to 76 GHz with
modulation amplitude A=.25, it is estimated that there
is potential error with turning point velocities greater

than 4.67 meters per second. .

The following conclusions should be kept in mind when

assessing the location of the turning point:

1. Amplitude fluctuations in the electron density profile
cause a shift or delay in the effective time domain
response.

2. Smearing of the time domain response, creating multiple
peaks, becomes significant for rapid fluctuations in the
electron density profile. ,

3. Strategies for locating the turning point can be chosen
to poséibly minimize adverse effects resulting in shifting
and smearing of the time domain response.
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CONCLUDING REMARKS ~— - — —

The results of studying the effects of moving electron

density fluctuations on frequency generated time~domain

reflectometry in a one-dimensional plasma layer have been
presented. On the basis of the studies made and the data

obtained, the following remarks and conclusions may be made:

(a)

(b)

(c)

(d)

(e)

Different models for a plasma layer have been developed
and discussed in length.

Equations describing wave propagation through different
plasma models have been formulated.

The computer program synthesizes, using 64 frequencies,
the time domain response of a given plasma electron
density profile. A linear profile with an exact
solution (Airy solution) compared accurately with

the program’s numerical Runge-Kutta solution. A
uniform dielectric slab with a known turning point was
also used successfully to verify the code.

The average velocity of an electromagnetic wave
propagating through plasma must be accurately estimated
to determine the location of critical electron
densities.

Varying electron density levels corrupt time domain
and distance measurements. In this work it has been
shown that lowering or reducing the electron density
levels of a given electron density profile, while
maintaining the shape of the profile as in figure 13,
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results in motion of the turning point, and the
effective motion has a significant effect on measuring

critical electron density locations.

(f) Modulating an electron density profile with a waveform
creates a disturbance or ripple adversely affecting the
time domain response of a plasma. Waveforms with phase
variations emulating motion across the profile were
used and greatly influenced simulated measurements,

especially for rapid phase variations.

(g8) A technique such as the centroid method for locating
the turning point may be used to reduce the effects of
electron density fluctuations on turning point

estimates.

All of these issues, and perhaps more which now remain
unidentified, must be addressed and quantified in order to
arrive at an estimate of the usefulness of time domain
reflectometry for locating critical electron densities in
plasma.

A 10 percent reduction of the electron density profile
as described in section 5.2 shifts the turning point
significantly and may contribute to error. By modulating
the electron density profile as in section 5.3, there is a
potential for error when turning point velocities greater
than 2.87 meters per second are achieved at 140 to 142 GHz
with modulation amplitude A=.05. For 74 to 76 GHz with
modulation ampli{Ude A=.25, turning point velocities greater
than 4.67 meters per second may also induce errors. It must
be concluded that a distance-measuring scheme using time
domain reflectometry (i.e., MRIS) could become inaccurate if
some of the plasma fluctuations investigated in this paper
are encountered. It has been the intent of this paper to
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help identify and possibly solve similar induced errors
should they occur.
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Appendix

Time Domain Theory

Time domain theory plays an important role in the MRIS
distance-measuring technique. The response of plasma to a
time domain signal is used to estimate distances to critical
electron densities. Plasama reflection information in the
frequency domain is taken and transformed to the time domain
Wwhere propagation delays are measured to calculate these
distances. In this process, a frequency down conversion
takes place 3o that the resulting time domain response
emulates a baseband continuous wave signal. Further, an I,Q
(In-phase, Quadrature) detector is used to construct the
time domain signal. Processing of this signal is done in
the form of windowing to reduce unwanted interference.

To understand exactly how an I,Q detector can obtain a
time domain response by only using discrete samples of
amplitude and phase in the frequency domain, consider first
the problem in reverse. Let a transmitted periodic pulse
train in the time domain be represented by the signal

M+k  _ (M+k)
£(t) = L ae inot | ¢ a e inw,t (A. 1)
n=M n=-M
with
W, = 21!/’1'o (A.2)

where a, is complex and To is the period. The signal is
real and periodic with 2k spesctral components, where k is

the number of spectral lines in the positive or negative
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fraquency domains. The amplitude spectrum starts with ay in
the positive frequency domain and a_y in the negative
frequency domain. M is chosen here as an arbitrary
constant. Let n:—n'in the second summation and drop the

primes. The signal becomes one summation
M+k
£(t) = [ [a “inwt _nelnwot] . (A.3)
n=M

Let a_.= ai so that f(t) is real, then

M+k - X
£f(t) = ELM[(an+an)cos nw t - 1(an-an)sin nwot] . (A.4)

Further, let
A = a_ + a (A.5)

and : C e

B = i[an . a*] . (A.6)

To make a frequency down coversion of the signal we
start by introducing the sinusoidal tone cos pwot. For any

p where
M <p=<Mk and k < M

multiply both sides by cos pwot. thus
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M+k

E:M[An(cos nmot'cos pwot)

f(t)cos pwot

- Bn(31n nwot'cos pwot)]

M+k
= [fg [éos(n—p)wot + cos(n+p)wot]
n=M 2

. B
——g [sin(n+p)wot + sin(n—p)wot]] i

(A.T)
Low pass filtering this response for frequencies less than

2Mwo)we obtain a filtered version of f(t)cos pw_ t as

Mik cp B
LPF [f(t)cos pw t] = ¥ [ n cos(n-p)w_t - “n sin(n-p)w t].
°© n=M V2 °© 2 °

(A.8)

where LPF denotes the low-pass filtering. The frequencies

present range from 0 to kwo.
Now let f(t)cos pwot be placed in a narrow band low

pass filter such that frequencies of @, and above are
completely cut off. Then all of the terms in the summation

except for n-p are suppressed and

A
BPF [f(t)cos pwot] -2 (A.9)

where BPF denotes the bandpass filter. This signal would be

detected in the I (In-phase) channel of an I,Q synchronous
detector with the heterodyne frequency being pPw_ s or
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equivalently in a homodyne synchronous detector if the
signal f(t) represented a single frequency signal of
frequency pw, rather than a Pg}se t?ain signal. ,

To find the output of the Q@ (Quadrature) channel
multiply £(t) by sin pwot. Similarly we find

M+k

f(t)sin pwot =L [Ancos nwot'sin pwot
n=M
- anin nwot°sin pwot]
M+k
= z An b
n=M —El}in(n+p)wot + sin(p-n)wbt
B
- n[cos(p—n)w t - cos(ntplw t]
—'2' (o] (o] J
(A. 10)
After filtering out frequencies less than 2Mwo
M+k B
LPF [f(t)sin pw t] = 5 ‘n sin(p-n)w_ t - - cos(p-n)w_ t
o a o 2 (e}
n=M 2
(A.11)
and after cutting off at @ and above
B
BPF [f(t)sin pwot]: - -2 . (A. 12)

The quantity —BP/Z is then the output of the Q channel. If
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the medium (plasma) being probed is not dependent on time,
then the sequence of, essentially d.c. measurements, AP and
Bp would be completely sufficient for the construction of
f(t).

With the construction of f(t) by the I,Q detector,
further processing is done to eliminate interference. To
show how this is done, consider a real function, later to be
called a "window"” function

M+k

w(t) = L Wn cos nwot (A. 13)
n=M

and form another function

T0/2
gt) = [ f(r)w(t-7) dr (A. 14)
-T0/2
where
-T T
_ an 0 0o
To- - for all -5 £t = -

Q

Let g(t) be periodic with period T0 so that

To/2 M+k
g(t) = [ [ L A cos no 7 - B sin nw 7 ]
-r_s2 =M
o —
M+k
. [ ELH Wmcos mwo(t—r)] dr
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Mek Mtk /% -

= B L [ A W cos nw T°cos mw_(t-1)
n=M m=M {T /2 [n n ° ° ]
o

—[annsin nwbr°cos mwo(t—r)]]dr )

(A. 15)

The first term can be expanded where

cos nw T°cos mmo(t—f) =

os(n—m)mof + %cos(n+m)mor ]

NAo—-

cos m» t[
o)

N(Lr—-a

+ sin mwot[ in(m+n)wor + %sin(m—n)wor ]

(A.16)

Note that integration over a complete period T causes all
terms to vanish except those where m=n. Expansion of the
second term in equation (A. 15) gives a similar result.

Thus,

T, M+k
g(t) = - Ei Wn {Ancos nw t - B sin nwot}. (A. 17)

M

multiplication term-by-term of the Fourier series
representing f(t) by Wn, produces the Fourier series of g(t)

given by équation (A.14). Thus, any pulse train described by

a set of An’s and Bn’s and, hence, f(t) can be transformed
into another pulse train with a differently shaped pulse by
multiplying each term in the Fourier series by wp.

As an example of how a signal f(t) is windowed, let a
set of An’s and Bn's be chosen arbitrarily and let
An=1/k for all M=<n=M+k and Bn=0 for all such n. Thus, using
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equations (A.5) and (A.6) in equation (A.4) gives

M+k(1]
f(t) = ¢ =lcos nw_t ; (A. 18)
n=M k °

Note that f(t) is clearly periodic with period 2n/wb and has
equally weighted spectral components. Consider the function
f(t) for —ﬂ/wOStSn/wo. In order to illustrate the windowed
function f(t), consider a limiting form for this function
obtained by letting wo+0, M-+, k+o in a certain way so that
the number of components in the spectrum becomes infinite.
We first write ’ '

M+k 1 M+k ono
£(t) = £ [§] cos nut = L 4% cos noyt (. 19)
n=M n=M o o
S0 T, Mtk on
f(t) = 5K EL (cos nmot)wo , T0 = = . (A.20)
n=M o
Then let wb*o, M+, k-+o such that
nmozw . (A.21)
wozAw (A.22)
Mwbzol (A.23)
(M+k)wo:02 (A.24)
T
2=T-= 2n (A.25)
Q. -0
2 1

We can write fl(t) for this limiting case
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Q
T 2
fl(t) o I cos wt dw

%

N3
Al

(511'1 0yt - sin Qlt]

1
t
© (A.26)

Now

Q_+Q
sin Q,t - sin Q. t = 2[%in[ 9,-9y ]t ] cos 21 ¢ ,

2 1 5 9
(A.27)
so the limiting form of f£f(t) is
Q_-0
2 1
T sin t Q_+Q
Q_-Q
£,(t) = —2[ 2 1] B cos <Lt , (a.28)
2 2 1
5 t

a carrier at (01+02)/2 modulated by a sinc function whose
first zero is at t= 2n/(ﬁz—01). The limiting form of the
pulse in equation (A.28) may be repeated such that

f(t+nTo) > f(t) for all integer n. In reality this limiting
form of the pulse shape is not achieved. We must really
deal with the finite sum and finite @ of equation (A.18).
Thus, the "sinc" modulation is only suggestive of what the
géid;i”bdisérshape usiﬁg”fiﬁiﬁe wé will be. -

The use of no window implies that we are using a pulse
train exactly given by equation (A.18), which in the
limiting case looks like a "sinc"-modulated carrier pulse
train given by equation (A.28). Other shaped pulse trains
can be produced by windowing f(t), to give
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g(t) = E Nn' %cos nwot . (A.29)

The Kaiser-Bessel set of frequency weights Wn gives a well
defined pulse shape that is nearly zero over most of the To
period except for the desired pulse itself. Equation (A. 18)
or (A.29) may be considered as the transmitted signal at
some reference point (reference plane, antenna terminals,
etc.). This transmitted signal will propagate into the
plasma medium and result in a scattered electromagnetic
field which will then appear at the same reference point.
One should expect for a frequency dependent medium such as
a plasma, that the scattered signal will be distorted as
well as delayed with respect to the transmitted pulse train.
The effect of the medium will appear in the measured
reflection coefficient at the reference point for each
constituent frequency in the signal. This set of reflection
coefficients can be determined in principle by homodyne
synchronous (I,Q) detection of the received signal at each
of the stepped radio frequencies and normalization by the
magnitude of the transmitted signal. The preceding
discussion, thus, shows that the response of a time
independent, but frequency dispersive plasma medium to a
time domain pulse train signal, can be rigorously emulated by
a sequence of frequency domain measurements taken one
frequency at a time.

If Rn is the complex reflection coefficient at
frequency nw_, then the effective received time domain
signal fR(t) due to equation (A.18) is
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1 -inw t | 1 - -inw t
f.(t) = 5 E Re o+ T R fe)
R 2 =M D 2 n=-M D
M+k
= E;MIRnI cos(nw t + @ )
where
_ Im (R )
¢ = tan 1[——-L-] : (A.30)
Re (Rn

Note that R is complex and that we take R_ =R *. Thus,
fR(t) is real. As written, equation (A.30) is the response
of the medium to a pulse train that resembles the "sinc”
modulated pulse train form of equation (A.28). A "window"
sequence Wn can be applied at this point to give the
recelived windowed signal wa, which may bg written as

M+k - (M+k)

- 1 -inw t 1 -inw_t
wa(t) = ZZL Rnwne o’ + 5L Rnwne o
n=M n=-M
M+k
= E: W, IR | cos(nw t + @) (A.31)

where ¢ is the same as in equation (A.30) and W,=W_ . Note
again that each Rn is measured essentially as a (complex)
d.c. quantity even though the value of Rn is that
appropriate for the response of the medium at frequency nw,.
Since we are interested primarily in the time delays
associated with the received signals in order to measure
distances to the turning point, we are not really interested
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in the radio frequency behavior of wa(t) of equation
(A.31). Without any loss of desired information, we can set
M=0 in equation (A.31) and emulate a baseband pulse train
which represents the envelope of the received signal. The
final version of the emulated received signal is a received,

windowed, baseband signal fRWB’ written as

frwp (Y
k -k
=tp R INGE L Ly w R eTINOY
2% "nn 2~_."n n
n=0 n=0
k
= EL Nn |Rn| cos(nwot + in) (A.32)
with
_ Im(R )
Qn = tan 1[—————2———}
Re(mn)
where
n=RM+n (A.33)
and
mn=wu+n } (A.34)

The baseband transmitted pulse train may be represented by

equation (A.13) as

=

gté&&s = ELONncos nwbt ; (A. 35)
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Equation (A.32) will be a distorted and delayed version of
equation (A.35). The comparison of the delay between the
two equations represents the distance measurement. The left
side of equation (A.32) can either be obtained by the
indicated summation for any t or by using the inverse
discrete Fourier transform on the'coﬁﬁfék'amplitudes‘Whmn.
The direct evaluation of equations (A.32) and (A.35) can
produce the values of fRWB(t) for any value of t, so that a
smooth curve can be obtained. The discrete Fourier
transform also tends toward a smooth curve if the number

of points is increased in the transform by adding zeroces for
higher frequencies. The zero padded transform does an
interpolation between points that is just what the Fourier
series of equation (A.32)Vproduces directly.'
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TABLE I

REFLECTION COEFFICIENTS AT FRONT INTERFACE OF
INHOMOGENEOUS LAYER-LINEAR PROFILE

Runge-Kutta Exact-Airy
Frequency (GHz) Real Imag Real Imag
74.0000 1.0000 0.0000 1.0000 0.0000
74.0317 0.9682 0.2503 0.9682 0.2503
74.0635 0.8746 0.4848 0.87486 0.4848
74.0952 0.7252 0.6885 0.7252 0.6885
74.1270 0.5294 0.8484 0.5294 0.8484
74.1587 0.2996 0.9541 0.2996 0.9541
74.1905 0.0504 0.9987 0.0504 0.9987
74.2222 -0.2023 0.9793 -0.2023 0.9793
74.2540 -0.4422 0.8969 -0.4422 0.8969
74.2857 -0.6538 0.7566 -0.6539 0.7568
74.3175 -0.8235 0.5673 -0.8236 0.5672
74.3492 -0.9401 0.3410 -0.9401 0.3408
74.3810 -0.9957 0.9222 -0.9958 0.9207
T4.4127 -0.9867 -0.1628 -0.9866 -0.1630
T4.4444 -0.9132 -0.4076 -0.9131 -0.4078
74.4762 -0.7799 -0.6259 -0.779T7 -0.6261
74.5079 -0.5953 -0.8035 -0.5951 -0.8036
74.5397 -0.3715 -0.9285 -0.3712 -0.9286
74.5714 -0.1229 -0.9924 -0.1227 -0.9924
74.6032 0.1339 -0.9910 0.1341 -0.9910
74.6349 0.3820 -0.9242 0.3822 -0.9241
74.6687 0.6050 -0.7962 0.6052 -0.7960
74.6984 0.7881 -0.6155 0.7883 -0.6153
74.7302 0.9191 -0.3939 0.9192 -0.3937
74.7619 0.9893 -0.1462 0.9893 -0.1460
74.7937 0.9938 0.1114 © 0.9938 0.1116
74.8254 0.9323 0.3617 0.9322 0.3619
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. TABLE I (continued)

Frequency (GHz)

74.
74.
74.
.9524
74.
.0159

74

75

8571

8889
9206

96841

Runge-Kutta

Real Imag

0.8088 0.5881
0.6314 0.7754
0.4119 0.9112
0.1647 0.9864
-0.9377 0.9956
-0.3462 _ 0.9382

Exact-Airy
Real Imag
0.8087 0.5882
0.6313 0.7755
0.4118 0.9113
0.1645 0.9864

-0.9390 0.9956
-0.3463 0.9381
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Figure'S Plane wave incldent on a plane
uniform dielectric (Reglon II).. Reglions
I and 111 are free space.
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Flgure 6 Electron density profile for a
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Fiéure 7 Sample linear electron density
profile.
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 Region I Reglon 111

'Flgure 8 Plane wave incident on a plasma
‘layer (Reglon II) surrounded by free space
(Regions I and III). : .
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Figure 9 Magnitude of the reflection
coefficient for a 14 cm. thick uniform

dielectric slab (sr#—O.S) located 10 cm.

from measurement plane.
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Figure 13 Reduction of sample electron
density profile where the critical electron
denslty level is Ngch . The turning point
moves from h, to ht and then h3 as the
profile 1s reduced.
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