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1.0

This is the final report for work on this contract and covers the results
of the Tasks V and VII. ‘The original effort was structured with four
tasks. Task I, was entitled Design Goals and Requirements and consisted
of the aerodynamic and structural design of an air-cooled vane and rotor.
Work on this task was reported in NASA CR-179606, reference 1. Task IT
comprised a total test rig design. This partially completed task was
subsequently canceled. Task III, also cancelled, was to have accompl ished
fabrication of equipment designed to Task II. Task IV was directed at
preparation of technical, financial, and schedular reporting.

Tasks V, VI, and VII were added to the original program to accomplish the
redirected program goals. Task V, entitled Turbine Design, consisted of
the aerodynamic design of an uncooled vane and the aerodynamic, heat
transfer, and structural design of an air cooled rotor. Results of this
task were summarized in an ATAA paper, reference 2, and are reported in
detail herein. Effort on Task VI comprised test rig interface work
required to ensure compatibility of the cooled radial turbine rotor
designed in Task V with the LeRC designed test rig, and was accomplished
through close coordination with NASA LeRC test equipment personnel. Based
on detailed turbine test rig drawings, the compatibility of the NASA test
rig with the research rotor was established. Included was a critical
speed analysis, squeeze film damper analysis, fragment contairment casing
study, and rotor cooling air supply assessment. The results of these
engineering studies are documented in separate analysis reports and are
not part of this final report. Task VII accomplished the rotor
fabrication. Following NASA approvals, detailed drawings were make and
parts were released for fabrication. A bladeless rotor, a solid-bladed
rotor, and an air-cooled rotor were fabricated. The bladeless rotor was
machined from solid stock. The solid and hollow rotor were cast at the
Howmet Turbine Components Corporation, IaPort Division. The bladed rotors
were balanced and spin tested before delivery to NASA IeRC.



2.0 Introduction

Requirements for advanced turbine engines call for increased specific
power and improved specific fuel consumption (SFC). Results of basic gas
turbine cycle studies have in general shown these requirements can be met
through the use of increased turbine inlet temperatures and increased
cycle pressure ratios. The result is a significant reduction in core
equivalent mass flow rates and hence a commensurate reduction in core flow
passage dimensions. For axial turbines, small passage dimensions are
usually associated with low aspect ratio airfoils giving rise to secondary
flow losses and increased tip clearances, both of which reduce stage
efficiencies. Past studies have shown that radial turbines offer lower
sensitivity to the efficiency penalties of reduced passage dimensions and,
hence, result in designs having higher turbine efficiencies at low
equivalent flow values. In addition, radial turbines offer the potential
of high loading per stage. This gives rise to the possible reduction in
mmber of stages which can result in cost benefits. The use of a radial
turbine in the gasifier section thus becomes attractive in the design of
small turbine engines.

The development of high temperature capabilities in radial turbines has
recently been pursued via ceramic blading. However prior to the
development of a mature ceramic radial turbine technology, the use of the
air cooled metallic radial turbine has been proposed for advanced engines
with high power-to-weight and improved SFC requirements.

The addition of cooling to the blades of a metal radial turbine has
provided a significant challenge. The investment cast and HIP-bonded
approach developed as part of a previous Army contract (reference 3) has
demonstrated the greatest promise in meeting coolant passage constraints
vhile yielding rotors demonstrating adequate life. The rotor developed
for that program is shown 3just prior to the HIP bond process in Figure
2.0-1. The design reported here builds upon that work. This study adds
to the design approach by developing a second generation investment cast
and HIP-bonded cooled metal rotor design capable of cammercial fabrication
and promising acceptable efficiency and rotor life. The current program
seeks to enhance rotor aerodynamics, further improve cooling performance,
and furnish the test rotors necessary to provide definitive experimental
aerodynamic and heat transfer information on cooling of a high temperature
radial turbine rotor.

This report presents the results of work performed on the Cooled
High-Temperature Radial Turbine Program conducted by the Allison Gas
Turbine Division of General Motors and funded by the NASA lewis Research
Center under NASA contract NAS3-24230. The abjective of this program was
to design and fabricate two radial turbine rotors for the experimental
investigation of the cooled, high-temperature radial turbine (HTRT)
concept. This vane/rotor system was designed to operate at a rotor inlet
temperature (RIT) of 2300°F and a cycle pressure ratio of 14:1 with
rotor flow of 4.6 lbm/sec. An addendum to the design task was to also

evaluate the cooling design effectiveness and rotor life operating at
2500°F RIT.



Design goals were high aerodynamic performance (7ZTI>86%) , a rotor life
of 5000 hours, a low-cycle fatigue (ICF) life of 6000 cycles, and the
utilization of fabrication capabilities and material properties available
within the next 10 vyears. The rotor design features improved cooling
effectiveness and blade angle distribution campared to prior Allison
advanced radial turbine design efforts. The stator was designed assuming
ceramic technology eliminating the need for stator cooling. Effort
included the fabrication of two bladed rotors intended for instrumentation
and test at the NASA Lewis Research Center warm turbine test facility.



e T R
INVESTMENT CAST BLADE SHELL POWERED METAL HUB

FIGURE 2.0-1 DUAL ALLOY HIP BONDED RADIAL TURBINE ROTOR



3.0 RESULTS AND DISCUSSION

3.1 Turbine Design
3.1.1 Engine Configuration Cycle

The radial-inflow turbine design is based on a hypothetical engine
configuration incorporating the design requirements of Table 3.1-1. The
cycle is selected to satisfy these criteria at intermediate rated power
(IRP) as presented in Table 3.1-2. The gas generator incorporates a
campressor of 14.4:1 pressure ratio with 4.75 lbm/sec airflow. Shaft
power is 920 hp with an SFC of 0.44 lb.hp.hr. Part power (75% IRP)
conditions are presented in Table 3.1-3. Engine cycle data at idle is
shown in Table 3.1-4.

Table 3.1-1. HIRT Design Point Conditions.

Rotor Inlet Total Temperature (°F) 2300
Vane Inlet Total Pressure (psia) 200
Total-to-total Expansion Ratio 3.66
Actual Flow (lbm/sec) 4.56
Equivalent Flow (lbm/sec) 0.80
Power Output (hp) 1191
Corrected Work AH/8.) 34.2
Mechanical Speed (rpm) 61,900
Direction of rotation as viewed fram

the rear of the turbine oW
Rotor Diameter (inches) 8.02
Rotor Tip Speed (ft/seg) 2166
Specific Speed (xpm/sf:g/ 4secl/2) 62.2
Blade—jet Speed Ratio 0.66
Adiabatic Efficiency (T-to-T, %) 87.0

Cooling flows for the gasifier turbine section are set at 5.7%. The vane
is uncooled assuming ceramic construction, the rotor cooling is divided
between internal passage (4.3%), hub film (0.5%) and hub bore (1.0%) .

The engine general arrangement shown in Figure 3.1-1 is a carry over from
the Task I effort. The gas generator turbine rotor bore diameter has been
sized to allow passage of the power turbine extension drive shaft, which
is capable of transmitting in excess of 1000 shp.

3.1.2 Meanline Velocity Diagram and Aerodynamic Design.

Design studies conducted as part of the Task I work have served as a basis
for the turbine design reported here. Table 3.1-5 presents design point
values for the radial turbine. The design reflects selection of the
operating point within the optimal range in terms of specific speed and
blade-jet speed ratio. Average exit swirl values were set to zero for
design point operation. The design does not attempt to be fully optimal
and does reflect limitations imposed by rig hardware design constraints.
This limitation set the vane inner and outer radii and width, the rotor
tip diameter and width, the outer shroud contour, and the exit tip and hub
diameters.

-5-
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4.74 lbm/sec Core Air Flow

14.4 Compressor Pressure Ratio
61900 Rotor Speed

Ceramic Vane

2300°F Rotor Inlet Temperature
920 hp Power Output

0.44 SFC

FIGURE 3.1-1 TYPICAL SMALL ENGINE INCORPORATING THE COOLED HTRT



TABLE 3.1-5 TURBINE PERFORMANCE AT INTERMEDIATE RATED POWER

ACTUAL CORRECTED
W= 5;5522 EFF-TT(ADIABATIC)=0.8700 WRTHCE/D= 0.7
DELH(ADI BATIC) =186.846 EFF-TS(ADIABATIC)=0.8396 DELH/THC(ADIABATIC)- 36.243
SPEED= 6190 EFF-TT(NET)= N/RTHC= 27262. 32
HP(NET)= 1190 7ao EFF-TS(NET)=0.829 HP/DRTHC= 38 5355
-TORQUE= 102.273 RTOT= TE/D= 7.
U/CT=0. 6606 U/CS=0.64690 RTOS= 3.87 SPEED- FLOW PAR‘ 360.72
== CYCLE PARAMETERS
ST%EIUN T TOTAL P TOTAL T STATIC P STATIC GAMMA cP T RELATIVE
0 . 00.000 2754.596 198.298
1 2760.000 191.892 2666.611 117.140 - 1.298 0.2992
2 2760.000 191.206 26420.523 107.887 1.298 0.2992 2647.062
3 2133.769 56.576 2106.326 51.643 1.306 0.2926 2209.744
VELOCITY DIAGRAM
STATION u v vu W Wy VR ALPHA BETA
) 284.518 0.0 286.518 0.0
1 2103.679 2029.168 556.168
2 2166.385 2254.997 2165.123 630.307 -1.26 630.306 . ~0.115
3 1066.914 636.135 11.762 1231.007 -1055.17 6364.026 _1.061 -58.999
STATION V/VCR MV W/HCR MW
() 0.1230 0.1148
1 0.9090 0.8974 .
2 0.9765 0.9708 0.2893 0.2713
3 0.3112 0.2917 0.5937 0.5662
GEOMETRY
STATION DIAMETER BLADE HEIGH T AREA
(] 11.0019 0.3639 11.8864
3 B.0210 0.3d32 2. ton8
3 3.9502 {f%%%% 15.6789
LOSS ANALYSIS
DELH DEL ETA PRESS RECO V OMEGA E BAR
NOZZLE 6.976 0.0325 0.9591 0.1096 0.0732
VANELESS SPACE 0.651 0.0030 0.9964
INCIDENCE 0.084 0.0006
AXIAL CLEARANCE 3.269 0.0152
RADIAL CLEARANCE 2.966 0.0138
ROTOR 13.537 0.0630 0.8696 0.813 0.3968
WINDAGE 2.260 0.0105
EXIT 8.031 0.90374
GEOMETRIC PARAMETERS
NOZZLE ROTOR
N 0. OF BLADES=15.0 NO. OF BLADES=13.0, THETA TOTAL/L=0.0100
SOLIDITY= 1.399 SOLIDITY= 3.386 AXIAL CLEARANCE=0.0300
CHORD 2.50 SPACING(EXIT-M)= 0.962 RADIAL CLEARANCE=0.0100
SPACING( EXIT)— 1.792 SPACING(EXIT~H) 0.649 BLADE INLET ANGLE= 0.0
TR EDGE THICK=0,0200 TR EDGE THICK=0.0650
GENERAL PARAMETERS .2
SPECIFIC sgsﬁg;sgz 222266 33M96235=2§§§53 VANE THROAT AREA 2.3148 in.
SPECIFIC DIA = =0. :
AN SQRD= 0.61719E+09 H1/D2=0, 0629 VANE THROAT WIDTH 0.4487 in.
UNTAPERED HUB srnsss- 77555.87 D1/D2= 1.0670
BORE STRESS= 98557.69 Do/D1= 1.2855
THROAT CHOKED W= 4.5616 STATION 1 CHOKED W= 6.5616

PS REACTION= 0.3791 VEL REACTION= 0.4996 REY NO= 0.31795E+06



Development of a radial turbine taking full advantage of increased design
capabilities awaits its application in a suitable engine program.

The meanline performance analysis at 100% IRP shown in Table 3.1-5
presents the relevant geametric, and aerocdynamic performance data.
Information is broken down into cycle parameter, velocity diagram, flow
path/blade geometry, 1loss analysis, and general parameters. Station
definition is as follows: O00-inlet, O-vane inlet outer diameter, 1-vane
exit diameter, 2-rotor inlet diameter, 3-rotor exit plane.

The Allison radial turbine aerodynamic analysis program was used to
predict performance at two additional point, 75% power and idle. These
results are presented in Tables 3.1-6 and 3.1-7.

Detailed aerodynamic design of the rotor was accomplished using 2-D and
3-D inviscid codes in conjunction with a 1-D boundary layer analyses. For
the purpose of this study, the shroud contour and inducer width were
predetermined for conformance to NASA rig hardware constraints. The
meridional flow path is shown in Figure 3.1-2. The blade angle
distribution and hub contour were design parameters subject to selection
in providing the desired blade loading distributions.

The Ilogarithmic blade thickness distributions used were based strongly on
previous HIRT optimization studies. A region of constant wall thickness
as shown in Figure 3.1-3 was employed which reflects casting technology
constraint on the design. Blade metal normal thickness (total for the two
side walls) distributions are shown in Figure 3.1-4.

Blade angle distribution was selected to achieve near constant aerodynamic
loading on the blade for the mean and shroud contours, with minimal
turning downstream of the rotor throat. Distributions of this type load
the blade uniformly over its length and avoid diffusion on the blade
suction surfaces. The selected blade angle distribution is shown in
Figure 3.1-5 along with the AGT 100 power turbine design. The AGT 100
power turbine has demonstrated superior performance and was used as a
guide in this design. Blade sections of the resulting design are shown
and presented in Figures 3.1-6 and 7. The rotor was designed to produce a
near 2zero exit swirl at design conditions. Figure 3.1-8 shows the exducer
section exit swirl angle as a function of exducer span.

The resulting surface velocity distributions for the rotor are shown in
Figure 3.1~9 through 3.1-11 as predicted by two methods, a meridional
solution (2-D) and a blade to blade solution (quasi 3-D). Comparable
results for the AGT 100 power turbine are shown in Figures 3.1-12 to 14.
The three dimensional results were subsequently smoothed and a 1-D
boundary layer solution was performed. Results are sumarized in Figures

3.1-15 to 17. Figure 3.1-18 presents a summary of the results for the
hub, mean, and tip streamlines.

Note that for the hub streamline, an excessive amount of diffusion was
present over a significant portion of the blade. This was partly the
result of specification of radial filament blading for the rotor as is
common in radial turbine design practice.

-11-~
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TURBINE PERFORMANCE ESTIMATE AT IDLE POWER

TABLE 3.1-7

= 29.281
30.9522
7.643
= 302.56
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RADIUS (INCHES)

7
4.0 ,//// REGION OF CONSTANT WALL
/////’/ NORMAL THICKNESS
COOLANT SLOT PRESSURE
SIDE DISCHARGE
3.0
2.0
1.0 ‘ ’ ' ’
Y 0.0 1.0 , 2.0

AXIAL LENGTH (INCHES)

FIGURE 3.1-3 FLOWPATH WITH BLADE THICKNESS REGIONS
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ROTOR STREAMLINE PREDICTIONS AND

BLADE SECTION LOCATIONS

FIGURE 3.1-6
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FIGURE 3.1-8 ROTOR EXIT SWIRL AT IRP



VELOCITY (W)/CRITICAL VELOCITY (WCR)

INITIAL FLOWPATH, STREAMLINE 1.
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Radial filament blading eliminates bending stresses in the blade caused by
rotational forces and thus reduces the overall blade stresses.

The one dimensional boundary layer analysis indicated the likelihood of
boundary layer separation near the intersection of the hub and blade
suction surfaces. This separated region was significantly larger than a
similar region noted on the Task I rotor design as shown in Figure 3.1-19

In order to avoid this 1loss producing mechanism, the alternate hub
contours of Figure 3.1-20 were examined for their potential in reducing
the degree of diffusion. Results also shown on Figure 3.2-20 indicated
that separation can be delayed or eliminated. Alterations to the mean and
shroud streamline loadings with this hub contouring were found to be
insignificant. However it was realized that the impact to the rotor and
blade stress caused by this modification can be significant. Although
blade stresses generally decrease with shortened blades, the potential
exists for rotor disk stresses to rise. Thus, the addition of significant
material to the disk, as in contour B, call for a comprehensive
re-evaluation of the blade/disk stress picture tradeoffs. This analysis
was beyond the scope of the study. For the purpose of this study, the
improvements in hub diffusion offered by contour A were sufficiently
improved over those of the baseline to warrant incorporation into the
final rotor design.

3.1.3 Vane Aerodynamic Design

Design point performance of the vane was specified in Table 3.1-5. Table
3.1-8 presents the results of the design process along with a comparison
with both the vane design results for the Task I turbine and the original
NASA design for which the turbine research rig was designed.

Design of the blading was accomplished through the use of the Allison vane
section generator. The resulting blade profile is presented in Figure
3.1-21. Vane velocity profiles are shown in Figure 3.1-22. Results of
the 1-D boundary 1layer analysis shown in Figure 3.1-23 and 24 indicate a
flow free of separation.

3.2 Rotor Coolant Passage Design

As part of the previously funded cooled radial turbine effort, a highly
instrumented engine scale rotor was tested under warm turbine test
conditions to evaluate it's cooling performance. Based on this work, the
need for improvements in internal airfoil coolant passage design was
identified as a next step in a cooled high temperature radial turbine
fully meeting the requirements of advanced technology engines. A thorough
consideration of the coolant flow path design constraints was found to be
most important in achieving a successful design.
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TABLE 3.1-8

COMPARISON OF VANE DESIGNS

NASA . CURRENT TASK I
BASELINE DESIGN DESIGN
TRAILING EDGE DIAMETER (IN) 0.043 : 0.020 0.040
' (CERAMIC)
: 0.307 '
LEADING EDGE DIAMETER (IN) 0.300 0.300
(MINOR MODIFICATION)
THROAT DIMENSION (IN) 0.500 ' 0.446 0.3927
(ROTOR MATCH)
DESIGN FLOW EXIT ANGLE (DEGREES) 73;9 74.7 : 74.9
(ROTOR MATCH)
OUTER RADIUS (IN) 5.501 : 5.501 | 5.629
(UNCHANGED)
INNER RADIUS (IN) 4.225 ' 4.279 4.605
(DESIGN SOLIDITY)
NUMBER OF VANES 15 15 18
( UNCHANGED)
PASSAGE WIDTH (IN) 0;3439 0.3439 0.4375
(UNCHANGED)
ROTOR DIAMETER (IN) 8.021 8.021 8.710

(UNCHANGED)



_SE_

RADIAL INFLOW | l.
A

PASSAGE WIDTH 0;344 in.

NUMBER VANES 15

3
fl

LE 0.15 in.
TE 0.01 in. .

=
il

R1 = 4,279 in.

(matched to
design solidity
of 1.40)

FIGURE 3.1-21 VANE DESIGN

THROAT WIDTH

0.4487 in.



_98_

VELOCITYCWI/CRITICAL VELOCITYCWCR) -

......

-
N 4

o

™

o))

|
&

¢ SUCTION SURFACE
B PRESSURE SURFACE
+ FREESTREAM

?.v ‘ .?i"»—:‘ . ;..A>;-€A_._.L‘f-.l.! ......,.5
e g
S g @ o CM
{
}

SRS SV SUDNERN I

' b R pL

FRACTION OF MERIDIONAIL DISTANCE

o LOW SUCTION
SIDE
DIFFUSION

720 o ATTACHED FLOW

PREDICTED



Q_

JOLOVd WIOJd
ITIISSHIAWOONI HOVJAYNS FTINSSHId INVA €C-T°¢€ HENDIA

“ | 3INVISIG IVIINOD-

$
i
i

: m.. i

d0.1Jvd W04 3718ISSIAdWOINI

-37-



JOLOVd W04
JTEISSHIJWOONI HOVAINS NOILOAS ANVA HZ-1°€ HINOIJ

. ..”_h._ uO..ﬂ.._ m.T. € ; rA . $°

|
L2
!

+
o
i
; i
il _
| o !
+
i . _
.
[ A |
oo ﬂ
i ;
i . ]

d012V3 WY0d 379ISSIUdWOINI

-38-



3.2.1 Coolant Passage Design Constraints

Design of the coolant passages within the the blade is constrained by
three considerations:

0 blade internal heat transfer

© coolant flow pressure losses

o compatibility with fabrication methods.
Fabrication constraints are by far the most restrictive of the three
constraints such that the design process, to a high degree, revolves
around the 1limits placed upon coolant passage gecmetry. Fabrication is
accomplished by the lost wax investment casting process which imposes
several constraints on the cooling passage design.

Figure 3.2-1 illustrates the successfully fabricated coolant flow
passageway of the previous program and compares it to the cooling path
ultimately designed for the rotor considered here. A major feature of the
previous design was the flow split between the inducer directed coolant
flow and the flow directed to the hub section of the blade. The presence
of this split resulted in an inherent uncertainty as to the actual
distribution of coolant flow within the blade. This uncertainty is due in
part to the lack of appropriate means to adequately inspect the internal
structure of the final cast shell. Additional uncertainty arises in
modeling the complexities of the coolant flowpath pressure loss
characteristics in the presence of rotatiocnal forces setup within the
blade. Uncertainties in the magnitude of coolant flow within the blade
inducer region gave rise to difficulties in interpreting heat transfer
data received fram testing this rotor.

Fabrication of the rotor in this previous effort was, however, highly
successful . Features of this design which contributed to it's success
were: the position of the flow inlet on the rotor back-face, the pressure
side discharge arrangement, and the internal tie between coolant passages
at the flow split position. Also important to this program was the
capability of securing the core during the fabrication process via
protrusions through the shell at the inducer tip and the hub sections.
Both openings are later closed by a braze process on the usable rotor
casting.

Fabrication constraints which limit the allowable core passage geametries
are in general based upon previous casting experience. These are
summarized below:
© minimum core cross sectional area (0.040
square inches)
0 maximm length of unsupported core section
(dependent upon thickness of section)
© minimum core and wall metal thicknesses
(0.020inch)
0 minimm pin fin diameter (0.040 inch).
These criteria apply specifically to a nominal 8 inch diameter rotor.
Heat transfer considerations in general call for complete coverage of the
blade surface with adequate internal convective coefficients obtained via

appropriate combinations of flow velocity, passage width, and wall surface
roughness treatment.
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Coolant flow pressure loss is limited by available coolant pressures from
compressor bleed and the position at which the coolant air is discharged.
It is the mutual satisfaction of these considerations which results in a
successful design.

3.2.2 Selection of Coolant Passageway Configuration

The design process consisted of selecting cooling concepts, ranking of
concepts according to compatibility with the established constraints,
examining the ability of each to perform the required cooling, selecting
the final conceptual scheme, and finally determining the detailed coolant
flow path design. Figure 3.2-2 presents concepts initially examined along
with perceived benefits and deficiencies. Due to the goal of the program
to produce a rotor capable of heat transfer test under well defined
corditions, the benefit of producing a design with well defined internal
flow characteristics was emphasized.

Figure 3.2-1 presents the resulting concept used for the detailed design
effort. Of key importance to this concept was eliminating the branching
coolant flow within the important inducer section. It was, however,
determined that branching was required within the exducer section in order
to achijeve an even distribution of coolant air discharge, thus providing
cooling to the trailing edge region. Constraints on minimm wall and core
thickness preclude the use of trailing edge injection without excessively
thickened blade trailing edges. Thick trailing edges result in excessive
turbine efficiency penalties due to high flow blockage.

3.2.3 Detailed Coolant Flow Path Design

Design of the detailed area distribution and branching coolant flow
circuitry was accomplished using a detailed intermal coolant flow model as
indicated in Figure 3.2-3. The method utilizes 1 dimensional flow
modeling within the blade passages via discreet elements which include
frictional and bend losses, branching 1losses, and "pumping effects®
(changes in pressure due to fluid movement within the rotating passage) .
Loss coefficients for each of the flow elements were determined from
correlations available in the open 1literature. Wall and coolant
temperature changes due to both heat transfer and rotational effects and
coolant flow preswirling (tangential onboard injection) were also
similarly modeled.

The flow solution summarized in Figure 3.2-4 demonstrated that pumping
effects are extremely influential within the flow path. These forces
cause significant compressions and expansions of the coolant flow with
change in radius. Thus in order to achieve a uniform distribution of
coolant air at the discharge, the circuitry employing pin fins and
segmented exit passages was devised. The placement of pin fins within the
coolant passage is designed to provide a well defined flow resistance in
the radially outward direction to counter the puping effect. The pumping
force tends to drive the flow radially outward to the outer most coolant
slot. The series nature of the resistance is designed to provide a
cumlative resistance with increasing radius to counter the cumilative
effects of rotation.
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The rotational effects are sufficient to result in predicted temperature
decreases in the bulk coolant flow for radially inward legs even though
the fluid continues to pickup heat. Final design of the coolant flow path
and determination of required coolant air flow rates was determined by an
iterative process involving heat transfer analyses described in section
3.3 below.

An additional benefit is derived by selecting a design in which the entire
coolant flow is routed through the rotor tip region. The design results
in coolant passage tip region flow velocities giving high convective heat
transfer coefficients. This eliminates the need for the geometric
complexity of heat transfer enhancement through the use of discreet wall

roughness.

Results of the design work resulted in the baffle and passage thickness
pattern of Figure 3.2-5. Representation of slices of the blade showing
final coolant passage width distributions are shown in Figure 3.2-6. The
trailing edge discharge configuration selected closely follows cooled vane
design technology and minimizes blade tralll.ng edge thickness. The use of
choked flow at the discharge point is, in this case, not feasible due to
the minimum core size constraint. Blade angle distributions shown are the
result of the comprehensive rotor aerodynamic design described above.

In addition, a preswirler was designed as a modification to the NASA test
rig. The function of the preswirler is to efficiently bring the coolant
air up to wheel speed and hence provide coolant air to the blade at the
lowest possible temperatures, a benefit to either an engine or a rig
design. The basic rig without preswirler is shown in Figure 3.2-7. The
details of the preswirler design are presented in Figure 3.2-8 and 9.

3.3 Heat Transfer and Stress Analysis Results

As part of the detailed design process, 2-D and quasi 3-D finite element
heat transfer and stress analyses were made of the engine rotor. Coolant
flow values and coolant passage geametry were selected to give acceptable
temperatures and material strengths within the dual property rotor in
meeting rotor life requirements. Analysis techniques parallel those of the
Task I effort previously reported.

3.3.1 Heat Transfer Results

A comprehensive analysis of the rotor design at 2300 ©F (program
requirements) was completed. Figure 3.3-1 presents metal temperatures at
design conditions for the 2-D analysis. The results indicated that
cooling was adequate in terms of peak blade (50 degrees below Task 1
values) and hub temperature (below 1200°F) requirements. Figure 3.3-2
gives similar results for the analysis of the transient analysis used for
ICF determination. In addition heat transfer calculations evaluating
design feasibility at 2500°F were also completed. Results of the 2-D heat
transfer analysis are shown in Figure 3.3-3. Rotor internal blade cooling
was set at 4.3% of rotor inlet flow. In addition, a 1% hub film cooling
and a 0.5% bore cooling was included.
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Significant features of these heat transfer results are the uniformity of
blade temperatures, with a peak value of 1642 °F, adequate for the Mar
M247 material in the +tip region. Peak temperatures within the PA101
material are in the 1260 °F range ensuring retaiment of suitable
material properties within the hub. Thermal gradients within the hub are
relatively low giving rise to low steady state thermal stresses in the
hub.

3.3.2 Stress Analysis Results

Determination of low cycle fatigue (ICF) life is of prime concern for a
radial turbine rotor particularly with a center bore hole. ICF life
assessment was made by modeling transient heat transfer performance of the
rotor during the period of acceleration from idle to design point
corditions. Results for the time interval giving rise to maximum thermal
gradients within the rotor serve as input to the stress analysis. Stress
modeling based upon results for the 2500 F case are shown in Figure
3.3-4. As expected, maximum stresses existed at the hub bore. A summary
of the results of the complete stress analysis is shown in Table 3.3-1.
The results show that the rotor exceeds all life requirements based on
anticipated 10 year advances in metal technology.

3.4 Test Rig Rotor Scaling

Analysis of heat transfer test results from the previous Army sponsored
effort demonstrated the need for a test rotor capable of measuring the hot
gas heat transfer conditions imposed on a radial turbine rotor. A key
component to this work is the comprehensive testing of the final rotor
design. This testing is designed to demonstrate turbine aerodynamic
performance and coolant flow path performance. At the same time it will
provide fundamental data on heat transfer requirements of the radial
turbine blading.

Warm turbine testing will be accomplished utilizing a 1.4 X scaled up
rotor operated with turbine inlet temperatures near 600 °F. Scaling on
key turbine parameters; isentropic spouting velocity ratio and Reynolds
number, results in a test conditions as shown in Table 3.4-1 for the 14.4
inch diameter rotor.

A limited analysis was made of test conditions for which the radial
turbine may be operated in a warm air facilities to simulate engine
operating conditions. Figures 3.4-1 through 4 present convection
coefficients and adiabatic wall temperatures for the test conditions.
Calculated metal temperatures are shown in Figure 3.4-5. Coolant air
temperatures are shown in Figure 3.4-6.
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TABLE 3.3-1 SUMMARY OF ROTOR LIFE CRITERIA
AT TWO ROTOR INLET TEMPERATURES

ROTOR LIFE CRITERIA ARE SATISFIED AT 2500°F RIT

SUMMARY OF STRESS ANALYSIS RESULTS

CRITERIA o COMPUTED o
(30) REQUIRED 2300°F 2500°F

.2 CREEP 1,000 HRS 10,870 HRS >1,900 HRS

BURST SPEED 71,300 RPM (130%) 79,300 HRS 79,300 HRS

LOW CYCLE FATIGUE 6,000 CYCLES 8,398 CYCLES 6,367 CYCLES
(3,880 CYCLES (3,248 CYCLES
W/0 102 MATERIALS  W/0 10% MATERIALS
IMPROVEMENT) IMPROVEMENT)
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TABLE 3.4~1 TEST RIG CONDITIONS MODELING ENGINE

ROTOR PERFORMANCE

PARAMETERS

ROTOR INLET TOTAL TEMPERATURE  °F
ROTOR EXIT TOTAL TEMPERATURE F
INLET TOTAL PRESSURE - psia

ROTOR EXIT TOTAL PRESSURE - psia
EQUIVALENT TLOW - Tbm/sec

ACTUAL FLOW - 1bm/sec

EQUIVALENT SPEED - RPM

ACTUAL SPEED - RPM

EXPANSION RATIO, T-T

Uy/ Y2908h 5

POWER - WP

TORQUE - ft-1bf

REYNOLDS NUMBER

SPECITIC SPEED

ROTOR DIAMETER - in.

ACTUAL ROTOR COOLANT FLOW-1lbm/sec
ROTOR COOLANT SUPPLY TEMP - ©OF
ZSH/GC - Btu/lbm

ENGINE RIG
600

1674 306

200 37.8
51.6 9.5
0.799 2.567
1.559 1.593
27,262 15,146
61,900 21,574
3.66 3.97
0.661 0.661
1191 171

102 116
3.81 x 10° 2.81 x 10
62.2 62.9
8.021 11.4
0.196 (4.3%) 0.193
769 12

34.9

5
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3.5 Test Rotor Fabrication

Two 13 bladed test rotors were fabricated. A solid rotor, fabricated
without coolant passages, provides the capability of detailed aerodynamic
testing including rotating static pressure measurements and is shown in
Figure 4.5-1. A cooled or "hollow" rotor, fabricated with cooled passages
in place, was designed for extensive heat transfer testing. Because of
the large number and type of rotor instrumentation, two test rotors are
required. Both rig rotors are designed to be compatible with the NaSA
Lewis Research Center's warm turbine test facility. Because of the
reduced rotor stress loading at rig operating conditions, both rotors are
designed to be single alloy castings, thus omitting the required
fabrication of the PA101 hub and use of the HIP-bonding process.
Fabrication of the cooled rotor was determined to be completely compatible
with this fabrication technique.

Fabrication of the hollow rotor was accomplished using the ceramic cores
of the type shown in Figure 3.5-2. Details of the coolant flow path
within the highly wrapped blade are shown for both the blade pressure and
suction surfaces. The wax replica of the cooled rotor with cores in place
is shown in Figure 3.5-3. Core-mold attachment points are shown at the
inducer tip and coolant discharge slot. Also shown are ceramic
protrusions at the coolant inlet locations. A second view is shown in
Figure 3.5-4.

Figures 3.5-5 and 6 show the final machined casting with integral cooling
passages. A better appreciation of the cooling passages with in the
casting is gained in Figures 3.5-7 through 11 showing a casting cut to
reveal the interior geometry. It should be noted that the rotor cut to
reveal interior geometry differs in one minor detail to the delivered
rotor shown in Figure 3.5-5. The two "half-pins" in the second row of pin
fins in the outer passage of the exducer were amitted in the rotor of
Figure 3.5-7 through 11. This change in core tooling was made during late
attempts to improve fabrication accuracy which proved unnecessary. No
rotors cast in this late serial number group were final machined.

3.6 Rotor Spin Test

Prior to deliver of the machined solid bladed and air cooled metal rotors,
a spin test was conducted to demonstrate mechanical integrity. Figures
3.6-1 and 2 show the rotor after successful test. The roucgh balance slots
and spin arbor are shown.
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4.0 Conclusions

An advanced air cooled metal rotor has been designed. A combination of
series and parallel branched internal flow channels carrying coolant air
flow of 4.3%, adequately cools the rotor for an inlet temperature of
2500°F. All fabrication limitations were considered in developing the
successful design. Predicted rotor aerodynamics were enhanced through
tailoring of blade angle distribution and hub contour shape to achieve
improved blade loading distributions at the hub, mean, and shroud
streamline positions.

Heat transfer and stress examinations indicate that the resulting design
of the cooled metal radial turbine rotor is capable of meeting all rotor
life and efficiency regquirements. Hence the design of a cooled metallic
radial turbine capable of operation at rotor inlet temperatures of 2500°F
has been successfully completed.

The rotor is compatible with requirements of an advanced turbine engine
utilizing a 14:1 compressor pressure ratio and a 2500°F rotor inlet
temperature.  Further effort shows pramise in improving turbine efficiency
through the comprehensive study of hub contour modification. Modification
should be driven by aerodynamic performance improvement and developed in
conjunction with heat transfer and stress optimization analyses.
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FIGURE 3.5-2 CERAMIC CORES USED TO CAST COOLANT FLOW PASSAGES
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MACHINED AIR-COOLED TURBINE ROTOR



FIGURE 3.5-6 FINAL MACHINED AIR-COOLED TURBINE ROTOR
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FIGURE 3.5-8
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FIGURE 3.6-1 AIR-COOLED ROTOR, POST SPIN TEST
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FIGURE 3.6-2 AIR-COOLED ROTOR - POST SPIN TEST
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