Index to 1981
NASA Tech Briefs
Volume 6, Numbers 1-4
July 1986

Electronic Components and Circuits
Electronic Systems
Physical Sciences
Materials
Computer Programs
Mechanics
Machinery
Fabrication Technology
Mathematics and Information Sciences
Life Sciences
INTRODUCTION

Tech Briefs are short announcements of new technology derived from the research and development activities of the National Aeronautics and Space Administration. These briefs emphasize information considered likely to be transferrable across industrial, regional, or disciplinary lines and are issued to encourage commercial application.

This Index to NASA Tech Briefs contains abstracts and four indexes — subject, personal author, originating Center, and Tech Brief number — for 1981 Tech Briefs.

Availability of NASA Tech Briefs

Distribution of NASA Tech Briefs, a bi-monthly free publication, is limited to engineers in U.S. Industry and to other domestic technology transfer agents.

Requests for individual Tech Briefs or for copies of the bi-monthly publication should be addressed to the Manager, Technology Transfer Office, P.O. Box 8757, Baltimore/Washington International Airport, Maryland 21240.

If you are seeking any information on NASA's Technology Utilization Program, its documents and services, please call (301) 859-5300, Ext. 241 or 243.

The January 1976 edition of the NASA Thesaurus (NASA SP-7050) is used as the authority for the indexing vocabulary that appears in the subject index. The NASA Thesaurus should be consulted in examining the current indexing vocabulary, including associated cross-reference structure. Only the subject terms that have been selected to describe the documents abstracted in this issue appear in the subject index. Copies of the NASA Thesaurus may be obtained from the National Technical Information Service at $35.00 for Volume 1 and $20.00 for Volume 2.
Originating Center Prefixes

<table>
<thead>
<tr>
<th>Prefix</th>
<th>Full Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARC</td>
<td>Ames Research Center</td>
</tr>
<tr>
<td>GSC</td>
<td>Goddard Space Flight Center</td>
</tr>
<tr>
<td>HQN</td>
<td>NASA Headquarters</td>
</tr>
<tr>
<td>KSC</td>
<td>Kennedy Space Center</td>
</tr>
<tr>
<td>LAR</td>
<td>Langley Research Center</td>
</tr>
<tr>
<td>LEW</td>
<td>Lewis Research Center</td>
</tr>
<tr>
<td>MFS</td>
<td>Marshall Space Flight Center</td>
</tr>
<tr>
<td>MSC</td>
<td>Johnson Space Center (formerly Manned Spacecraft Center)</td>
</tr>
<tr>
<td>NPO</td>
<td>Jet Propulsion Laboratory/NASA Pasadena Office</td>
</tr>
</tbody>
</table>
TABLE OF CONTENTS

Abstract Section

<table>
<thead>
<tr>
<th>Category</th>
<th>Subject</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>Electronic Components and Circuits</td>
<td>1</td>
</tr>
<tr>
<td>02</td>
<td>Electronic Systems</td>
<td>4</td>
</tr>
<tr>
<td>03</td>
<td>Physical Sciences</td>
<td>6</td>
</tr>
<tr>
<td>04</td>
<td>Materials</td>
<td>11</td>
</tr>
<tr>
<td>05</td>
<td>Life Sciences</td>
<td>15</td>
</tr>
<tr>
<td>06</td>
<td>Mechanics</td>
<td>16</td>
</tr>
<tr>
<td>07</td>
<td>Machinery</td>
<td>23</td>
</tr>
<tr>
<td>08</td>
<td>Fabrication Technology</td>
<td>27</td>
</tr>
<tr>
<td>09</td>
<td>Mathematics and Information Sciences</td>
<td>35</td>
</tr>
</tbody>
</table>

Indexes

<table>
<thead>
<tr>
<th>Index Type</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subject</td>
<td>I-1</td>
</tr>
<tr>
<td>Personal Author</td>
<td>I-27</td>
</tr>
<tr>
<td>Originating Center/Tech Brief Number</td>
<td>I-37</td>
</tr>
<tr>
<td>Tech Brief/Originating Center Number</td>
<td>I-39</td>
</tr>
</tbody>
</table>
Control loop measures weld-spot temperature to regulate focus current. Square-wave generator modulates current in electron-beam focus coil so that focal point is varied between points slightly above and below surface of weld. Sensor detects intensity of light emitted by weld, proportional to fourth power of temperature at hottest part of weld spot. Sensor signal is detected by chopper demodulator synchronized by square-wave generator, to determine whether average position of focal point is higher than, coincident with, or lower than optimum point; and focus coil current is adjusted accordingly.
01 ELECTRONIC COMPONENTS AND CIRCUITS

B81-10001
THREE-PHASE POWER FACTOR CONTROLLER
F. J. NOALA
Sep. 1982
MFS-25535

Three-Phase Power-Factor Controller develops a control signal for each motor winding. As motor loading decreases, rms value of applied voltage is decreased by feedback-control circuit. Power consumption is therefore lower than in unregulated operation. Controller employs phase detector for each of three phases of delta-connected induction motor. Phase-difference sum is basis for control.

B81-10002
LOAD-RESPONSIVE MOTOR CONTROLLER
T. M. EDGE
Sep. 1982
MFS-25560

New circuit controls voltage applied to a three-phase induction motor in response to magnitude of current, so as to reduce power consumption when the motor is idling or operating at less than full load. Control circuit decreases rms applied voltage to match decreases in motor load over entire torque range. This considerably decreases power consumption in motors operating at a fraction of their rated torques.

B81-10003
POWER-FACTOR CONTROLLER WITH REGENERATIVE BRAKING
F. J. NOALA
Sep. 1982
MFS-25477

Modified power-factor motor-control circuit operates motor as a phase-controlled generator when load attempts to turn at higher than synchronous speed. An induction motor is required to act as a brake. Circuit modification allows power-factor controller to save energy in motoring mode and convert automatically to an induction-generator controller in generating, or braking, mode.

B81-10004
COMPACT DUAL-MODE MICROWAVE ANTENNA
K. L. CARR (Microwave Associates, Inc.)
Sep. 1982
LAR-12784

Compact dual-mode antenna, 3.66 cm wide by 1.83 cm thick is used both for heating and thermographic detection of tumors in cancer research. Temperature sensor operates independently or simultaneously with heater. Antenna includes 1.6-GHz transmitter and 4.76-GHz receiver. Strip heater between antennas controls temperature of device. Maximum power output is 25 W.

B81-10005
RESISTORS IMPROVE RAMP LINEARITY
L. L. KLEINBERG
Sep. 1982
GSC-12635

Simple modification to bootstrap ramp generator gives more linear output over longer sweep times. New circuit adds just two resistors, one of which is adjustable. Modification cancels nonlinearities due to variations in load on charging capacitor and due to changes in charging current as the voltage across capacitor increases.

B81-10006
SPIKE-FREE AUTOMATIC LEVEL CONTROL
P. C. TOOLE and D. MCCARTHY (Planning Research Corp.)
Sep. 1982
KSC-11170

New automatic-level-control circuit protects against signal 'overshoot.' Zener diodes and series capacitors prevent voltage spikes (caused by sudden increase in input level) from appearing at output. When spike voltage drops below breakdown voltage of Zener diodes, they turn off. Initial output level is determined by Zener breakdown voltage and capacitance of series capacitor.

B81-10007
IMPROVED MODEL FOR MOS BREAKDOWN
S. P. LI (CALTECH) and J. MASERJIAN (CALTECH)
Sep. 1982
NPO-14850

With an improved model, accelerated high-field tests can be used to predict gate-oxide breakdown in metal-oxide-semiconductor (MOS) structures. Principal mechanism in MOS breakdown is mobile-ion emission from metal/oxide interface, which occurs during application of positive gate-bias field. Breakdown is related to clustering of emitted ions at localized defect sites in oxide/silicon interface. Using new model to interpret data, tests that normally take several weeks at low fields to accumulate sufficient statistics can be completed in only a few hours at high fields.

B81-10008
ROTARY TRANSFORMER SEALS POWER IN
P. A. STUDER and J. PAULKOVICH
Sep. 1982
GSC-12595

Rotary transformer originally developed for spacecraft transfers electrical power from stationary primary winding to rotating secondary without sliding contacts and very little leakage of electromagnetic radiation. Transformer has two
01 ELECTRONIC COMPONENTS AND CIRCUITS

stationary primary windings connected in parallel. Secondary, mounted on a shaft that extends out of housing, rotates between two windings of primary. Shaft of secondary is composed of electrically conducting inner and outer parts separated by an insulator. Electrical contact is made from secondary winding, through shaft, to external leads.

B81-10009 MULTILAYER, FRONT-CONTACT GRID FOR SOLAR CELLS
A. G. MILNES (Carnegie Mellon Univ.) and A. FLAT (Carnegie Mellon Univ.)
Sep. 1982
LAR-12613 Vol. 6, No. 1, P. 10
Proposed multilayer, front-contact grid structure for solar cells optimizes collection of photogenerated current with minimum power losses. It is constructed of several layers of conducting grids. With multilayer concept, peak efficiency can occur at higher output-power levels. Because of this, higher solar concentrations can be applied to solar-cell arrays.

B81-10010 LOG-OUTPUT SIGNAL PROCESSOR SCANS EIGHT DECADES
J. L. HAYDEN (Martin Marietta Corp.)
Sep. 1982
ARC-11293 Vol. 6, No. 1, P. 11
Processor has automatic range switching and continuous readout over eight decades. Comparator output switches logarithmic converter to detector of interest and enables blind grid to protect more-sensitive detector when operating in high-input range. Could be used to process any wide-varying signal that is to be read on a limited-range recording device such as a strip-chart recorder.

B81-10011 HIGH-FREQUENCY GATED OSCILLATOR
C. A. BERARD (RCA Corp.)
Sep. 1982
MSC-18634 Vol. 6, No. 1, p. 12
New gated oscillator generates bursts of high-frequency sine waves, square waves, and triangular waves in response to control signals. Each burst starts at zero phase, with tight tolerances on signal amplitude and frequency. Frequencies in megahertz range are made possible by using high-speed comparators and high-speed flip-flop as fast-response threshold detector.

B81-10119 SOLAR-ARRAY SIMULATOR
M. C. WRIGHT (Lockheed Corp.)
Nov. 1982
MSC-18894 Vol. 6, No. 2, P. 123
A convenient solar-array simulator has been built for testing systems powered by solar cells. Built for evaluating power extension package in Space Shuttle, the circuit produces the V/I curves of photocell sources; even duplicating transient behavior under partial illumination associated with morning and evening penumbras.

B81-10120 HIGH-EFFICIENCY DC/DC CONVERTER
J. STURMAN
Nov. 1982
LEW-13486 Vol. 6, No. 2, P. 124
High-efficiency dc/dc converter has been developed that provides commonly used voltages of plus or minus 12 Volts from an unregulated dc source of from 14 to 40 Volts. Unique features of converter are its high efficiency at low power level and ability to provide output either larger or smaller than input voltage.

B81-10121 WIRE-WRAP CHATTER DETECTOR
G. Z. FISCH (CALTECH) and T. J. BORDEN (CALTECH)
Nov. 1982
NPO-15290 Vol. 6, No. 2, P. 125
Monitoring circuit responds to changes in resistance as little as 0.1 ohm. Has been used to detect defective wire-wrap connections during thermal and vibration tests. Defect is indicated to operator by light-emitting diode and by increase in count on a two-digit display.

B81-10122 ELECTRONICALLY CALIBRATABLE CLOCK
J. R. DAVIDSON and J. S. HEYMAN
Nov. 1982
LAR-1254 Vol. 6, No. 2, P. 126
Calibration circuit corrects apparent clock rate (ACR) of digital clock without altering oscillator frequency. Calibration circuit does not require iterative adjustments to reference frequency or rate, and correction to ACR is controlled by pushbuttons. Technique is applicable to any timer or counter that counts up to predetermined number then outputs a pulse to a readout register or to control another device.

B81-10123 LOAD PULSER IS SPARKLESS
F. D. WASHBURN (Boeing Services International, Inc.)
Nov. 1982
KSC-11199 Vol. 6, No. 2, P. 127
Electronic load pulser uses silicon-controlled rectifier (SCR) and timer to open and close circuit periodically. It replaces a motor-driven mechanical switch, which causes sparks and is unsafe in hazardous environments. Device should find applications in chemical petroleum, and transportation industries.

B81-10124 ALTERNATING-CURRENT MOTOR DRIVE FOR ELECTRIC VEHICLES
S. KRAUTHAMER (CALTECH) and W. E. RIPPEL (CALTECH)
Nov. 1982
NPO-14758 AND NPO-14830 Vol. 6, No. 2, P. 128
New electric drive controls speed of a polyphase as motor by varying frequency of inverter output. Closed-loop current-sensing circuit automatically adjusts frequency of voltage-controlled oscillator that controls inverter frequency, to limit starting and accelerating surges. Efficient inverter and ac motor would give electric vehicles extra miles per battery charge.

B81-10125 TWO-STAGE LINEARIZATION CIRCUIT
G. C. WALDECK (Sperry Flight Systems) and J. B. DENDY (Sperry Flight Systems)
Nov. 1982
LAR-12577 Vol. 6, No. 2, P. 129
High accuracy is obtained by combining analog and digital corrections. Proximity-sensor linearization circuit has two stages. First-stage linearization is accurate to about 3 percent; accuracy of final output is better than 0.5 percent. By modifying contents of the Programable Read-Only Memory (PROM), circuit can also be used to derive a nonlinear output.

B81-10126 LIGHTWEIGHT, LOW-LOSS DC TRANSDUCER
S. NAGANO (CALTECH), T. KOERNER (CALTECH), P. BRISENDINE (CALTECH), H. WEINER (CALTECH), and R. DETWILER (CALTECH)
Nov. 1982
NPO-14813 Vol. 6, No. 2, P. 130
Direct current is measured by lightweight, magnetically coupled transducer that weighs only 4 grams, without actually being wired into circuit under test. Miniature dc transducer has five windings: 2 for ac excitation inputs, 2 for dc control inputs, and 1 for feedback. Wire gages are selected for minimum size and weight. Size and number of
tions between two sources. Also stabilized against thermal effects and against noise that could produce erroneous readings. Heat sinking, buffer amplifiers, and low-noise zero-crossing detector make picosecond precision possible.

B81-10254

FLASHLAMP DRIVER FOR QUASI-CW LASER PUMPING

K. E. LOGAN (International Laser Systems, Inc.)

Vol. 6, No. 3, P. 253

Circuit maintains constant high-current level through lamp while lighted and a low simmer current through lamp while not lighted. Lamp current is switched between these two modes by transistor; transistor is therefore called current-mode switch. Stable light pulses are emitted from flashlamp when monostable multivibrator goes high, in part because unsaturated transistor switch has negative feedback control that keeps lamp current constant.

B81-10255

LOW-NOISE BAND-PASS AMPLIFIER

L. KLEINBERG

Vol. 6, No. 3, P. 254

Circuit uses standard components to overcome common limitation of JFET amplifiers. Low-noise band-pass amplifier employs JFET and operational amplifier. High gain and band-pass characteristics are achieved with suitable choice of resistances and capacitances. Circuit should find use as low-noise amplifier, for example as first stage instrumentation systems.

B81-10256

ARC-FREE HIGH-POWER DC SWITCH

W. N. MILLER (Rockwell International Corp.) and O. E. GRAY (Rockwell International Corp.)

Vol. 6, No. 3, P. 255

Hybrid switch allows high-power direct current to be turned on and off without arcing or erosion. Switch consists of bank of transistors in parallel with mechanical contacts. Transistor bank makes and breaks switched circuit; contacts carry current only during steady-state on condition. Designed for Space Shuttle orbiter, hybrid switch can be used also in high-power control circuits in aircraft, electric autos, industrial furnaces, and solar-cell arrays.

B81-10257

POWER-MOSFET VOLTAGE REGULATOR

W. N. MILLER (Rockwell International Corp.) and O. E. GRAY (Rockwell International Corp.)

Vol. 6, No. 3, P. 256

Ninety-six parallel MOSFET devices with two-stage feedback circuit form a high-current dc voltage regulator that also acts as fully-on solid-state switch when fuel-cell cut-out fails below regulated voltage. Ripple voltage is less than 20 mV, transient recovery time is less than 50 ms. Parallel MOSFET's act as high-current dc regulator and switch. Regulator can be used wherever large direct currents must be controlled. Can be applied to inverters, industrial furnaces photovoltaic solar generators, dc motors, and electric autos.

B81-10258

MODULAR AMPLIFIER/ANTENNA ARRAYS

E. F. BELHOUBEK (RCA Corp.)

Vol. 6, No. 3, P. 257
Two proposed solar-powered microwave transmitter modules would include amplifiers in direct contact with antenna dipoles so that metallization of dipoles serves as heat-dissipation areas for amplifiers. In integrated energy converter (solar radiation to microwaves), solar cells feed dc power directly to microwave amplifier/antenna modules. Antenna elements also serve as heat sinks for amplifiers.

Optical Memory Stores 10,243 Sup. Bits

H. C. GELDERLOOS (Honeywell, Inc.) Sep. 1982

Optical Mass Memory has separate recorder (write) and reproducer (read) modules. Data are recorded on fischers and stored in a carrousel. Fischer is retrieved from carrousel by transporter in under 10 seconds. Input to optical memory is standard TV camera. TV monitor at memory output displays stored video images when they are retrieved from fischers. Input to the optical memory can also be taken from pseudorandom sequence generator.

New Algorithms Manage Fourfold Redundancy

H. C. GELDERLOOS (Honeywell, Inc.) Sep. 1982

Redundant sensors, actuators, and computers improve reliability of complex control systems, such as those in nuclear powerplants and aircraft. If one or more redundant elements fail, another takes over so that normal operation is not interrupted. Quad selection filter rejects data from null-failed and hardover-failed and hardover-failed units.

Graphics-System Color-Code Interface

J. S. TULPPO (Sperry Rand Corp.) Sep. 1982

Circuit originally developed for a flight simulator interface a computer graphics system with color monitor. Subsystem is intended for particular display computer (AGT-130, ADAGE Graphics Terminal) and specific color monitor (beam penetration tube—Penetron). Store-and-transmit channel is one of five in graphics/color-monitor interface. Adding 5-bit color code to existing graphics programs requires minimal programing effort.

Solar-Powered Supply Is Light and Reliable

A. E. WILLIS, H. GARRETT, and J. MATHENEY Sep. 1982

Solar-powered spacecraft propulsion is lightweight and very reliable. Operates from 100-200 volt output of solar panels to produce 11 different dc voltages, with total demand of 3,138 watts. With exception of specially wound inductors and transformers, system uses readily available components.

Improved Phase-Lock Detector

L. M. BRONSTEIN Sep. 1982

Single detection channel is used alternatively by in-phase (I) and quadrature (Q) signals, under control of a dither switch. By eliminating errors caused by unbalance of the I and Q channels, this dither-balanced detector reduces false locking. Can be used to improve detection probability and reduce false alarm probability for any loop that must acquire signal with low signal-to-noise ratio.
patchboard of 1,632 connections can be verified in about a minute.

B81-10130
ARRAY PROCESSOR HAS POWER AND FLEXIBILITY
G. H. BARNES (Burroughs Corp.), S. F. LUNDSTROM (Burroughs Corp.), and P. E. SHAFFER (Burroughs Corp.)

Proposed processor architecture would have flexibility of a multi-processor and computational power of a lock-step array. Using an efficient interconnection network, it accommodates a large number of individual processors and memory modules. Array architecture would be suitable for very large scientific simulation problems and other applications.

B81-10131
AUTOMATICALLY RECONFIGURABLE COMPUTER
Innovator Not Given (Hughes Aircraft Co.)

Modular system changes its architecture to maximize either reliability or capacity. Reconfigurable computer is assembled from four kinds of modules: organizer/scheduler, memory, input/output processor, and central processor. Reconfiguration is initiated by a signal from a control panel or by fault interrupt from one of the modules.

B81-10132
FAST HOLOGRAPHIC COMPARATOR
D. W. VAHEY (Batelle Columbus Laboratories)

Comparator is an integrated-optical system constructed on a LiNbO3sub. waveguide chip. Only the laser, lens and detector are external to the chip. Aluminized surface gratings serve as input coupler and beam splitter. Light beams striking edges are returned by ordinary total internal reflection. Three operating modes are possible: 'screening' mode, an 'identification' mode and a novel 'self-subtraction' mode.

B81-10133
CONTROLLER REGULATES AUXILIARY SOURCE FOR SOLAR POWER
F. J. NOLA

Load driven by two motors continuously draws power from a varying source (solar cells) and steady auxiliary source (utility company). Power-factor controller apportions electrical load between two sources to maintain motor speed. This novel application of power-factor controller would regulate input of auxiliary energy to a solar-powered system in response to availability of Sunlight.

B81-10134
IMPROVED PARALLEL-ACCESS ALIGNMENT NETWORK
G. H. BARNES (Burroughs Corp.)

Network channels elements of data array from memory ports to processor ports using a hardware-generated binary control work. Depending on control work selected, data may be shifted in increments or transposed in each of three levels to reach appropriate processing ports. A similar arrangement with reversed wiring is used to return data from processing ports to respective memory modules. Selection gate used in network incorporates two AND gates feeding an OR gate. In some logic families the OR gate may be fabricated as a 'wired OR'.

B81-10135
PARALLEL-ACCESS ALIGNMENT NETWORK USING BARREL SWITCHES
G. H. BARNES (Burroughs Corp.)

Nov. 1982

ARC-11155

Vol. 6, No. 2, P. 140

02 ELECTRONIC SYSTEMS

B81-10136
LINE REPLACEABLE UNIT ANALYSIS
T. OEPOMO (Rockwell International Corp.) and T. V. PROUTY (Rockwell International Corp.)

Shuttle LRU (Line Replaceable Unit) Analysis Program (SLAP) aids in evaluation of LRU interface voltages in Shuttle orbiter electrical system. SLAP includes reduced model of Shuttle LRU circuit. Although primarily intended for analysis of Shuttle LRU's SLAP could be adapted for voltage analysis in other situations.

B81-10260
METHOD FOR CANCELING IONOSPHERIC DOPPLER EFFECT
R. F. C. VESSOT (Smithsonian Institution)

Nov. 1982

Microprocessor-based interface simplifies interconnection of peripheral device with common memory of network of minicomputers. Interface consists of microprocessor, bidirectional port that connects to common memory, bidirectional port that connects to user-selected peripheral, and asynchronous serial communications port. Programable interface is based around 8600 microprocessor. It is assembled from 90 integrated circuits.

B81-10261
PROGRAMABLE INTERFACE HANDLES MANY PERIPHERALS
M. JASINSKI (IBM Corp.)

Nov. 1982

KSC-11132

Vol. 6, No. 3, P. 263

B81-10262
PROCESSING PCM DATA IN REAL TIME
T. L. WISSINK (IBM Corp.)

Nov. 1982

KSC-11131

Vol. 6, No. 3, P. 263

Load driven by two motors continuously draws power from a varying source (solar cells) and steady auxiliary source (utility company). Power-factor controller apportions electrical load between two sources to maintain motor speed. This novel application of power-factor controller would regulate input of auxiliary energy to a solar-powered system in response to availability of Sunlight.

B81-10263
ONE WAY OF TESTING A DISTRIBUTED PROCESSOR
R. EDSTROM (IBM Corp.) and D. KLECKNER (IBM Corp.)

Nov. 1982

KSC-11125

Vol. 6, No. 3, P. 263

Launch processing for Space Shuttle is checked out, controlled, and monitored with new system. Entire system can be exercised by two computer programs—one in master console and other in each of operations consoles. Control program in each operations console detects change in status...
and begins task initiation. All of front-end processors are
exercised from consoles through common data buffer, and
all data are logged to processed-data recorder for posttest
analysis.

B81-10264
ANALYZING MULTIRATE-SAMPLED SYSTEMS
N. HENDRIX
Dec. 1982
MFS-25541 Vol. 6, No. 3, P. 284
New method available for monitoring stability of system
on basis of data sampled at multiple rates—especially, at
two rates, one of which is twice frequency of other. Method
is called Multirate Matrix Frequency Response (MMFR)
analysis. MMFR was used in Space Shuttle to evaluate
effect of decreasing sample rate of error loop in ascent-
phase digital autopilot. Should also be useful to designers
of other control systems and to structural, civil, and
mechanical engineers for structure and vibration analysis.

03 PHYSICAL SCIENCES

B81-10019
BEAM SPLITTER INTENSITIES ARE PRESELECTED
W. CAMPBELL and R. B. OWEN
Sep. 1982
MFS-25312 Vol. 6, No. 1, P. 23
New beam splitter is a block of optically clear material
with two parallel polish faces. Some of area of one surface
is coated with totally reflecting layer, which may be metal
or dielectric. On opposite surface, a metal coating of stepped
thickness offers a different reflectivity at each step. Width
and spacing of reflecting zones are chosen to accommodate
angle of spacing of incidence of input beam and desired
spacing of output beams.

B81-10020
SEQUENTIAL-IMPULSE GENERATOR USES FIBER-
OPTICS
L. C. YANG (CALTECH)
Sep. 1982
NPO-14939 Vol. 6, No. 1, P. 24
Light pulse from a ruby or neodymium-glass laser enters
miniature optics of repetitive-detonation apparatus. Traveling
along a bundle of optical fibers, light strikes laser-sensitive
micromodulator and charge explodes. Apparatus then
advances next charge in train into position. Possible
applications of sequential-impulse generator are in creating
shock waves for aerodynamics research and in generating
electrical power by magnetohydrodynamics.

B81-10021
NEW ENERGY-SAVING TECHNOLOGIES USE INDUC-
TION GENERATORS
F. NOLA
Sep. 1982
MFS-25513 Vol. 6, No. 1, P. 25
Two energy-saving technologies tested recently at
Marshall Space Flight Center use an induction motor
operated on reverse (as an induction generator). In the first,
energy ordinarily dissipated during load testing of machinery
is recovered and returned to powerline. In the second,
efficiency of wind-driven induction generator is improved,
and useful range of windspeed is broadened. Both technol-
gies take advantage of ac voltage developed across
terminals of an induction motor when rotated at higher
than-synchronous speed in the direction it normally turns
when power is applied.

B81-10022
TEMPERATURE CONTROLLER FOR A SOLAR FURNACE
R. R. HALE (CALTECH) and A. R. MCDougAL (CALTECH)
Sep. 1982
NPO-15388 Vol. 6, No. 1, P. 26
Relatively-simple movable shield has been suggested
for controlling temperature of solar furnace. Temperature
modulator can be set to have collected solar energy fully
"on", fully "off", or any intermediate level. Parabolic mirror
concentrates Sunlight into receiver. Shade plate that blocks
insolation at back of receiver produces shade zone in center
of collector. No radiation is returned to receiver from
shade zone; only rays falling on other areas of reflecting
surface are directed back toward receiver.

B81-10023
BATTLE KEEPS SOLAR ENERGY IN RECEIVER
A. R. MCDougAL (CALTECH) and R. R. HALE (CALTECH)
Sep. 1982
NPO-13587 Vol. 6, No. 1, P. 27
Mirror structure in solar concentrator reduces heat loss
by reflection and reradiation. Baffle reflects entering rays
back and forth in solar-concentrator receiver until they reach
heat exchanger. Similarly, infrared reradiated by heat
exchanger is prevented from leaving receiver. Surfaces of
baffle and inside wall of receiver are polished and highly
reflective at solar and infrared wavelengths.

B81-10024
PYRAMIDAL-REFLECTOR SOLAR HEATER
Innovator Not Given (Wormser Scientific Corp.) Sep.
1982 See Also DOE/NASA CR-161202(N80-33665/NSP)
MFS-25571 Vol. 6, No. 1, P. 27
Motor-driven reflector compensates for seasonal
changes in Sun's altitude. System has flat-plate absorbers
mounted on north side of attic interior. Skylight window on
south-facing roof admits Sunlight into attic, lined with
mirrors that reflect light to absorbers. Reflectors are inner
surfaces of a pyramid lying on its side with window at its
base and absorber plates in a cross-sectional plane near
its apex.

B81-10025
SOLAR WATER HEATER INSTALLATION PACKAGE
Innovator Not Given (Eclam, Inc.) Sep. 1982 See Also
DOE/NASA CR-161562(N80-33666/NSP)
MFS-25573 Vol. 6, No. 1, P. 28
A 48-page report describes water-heating system,
installation (covering collector orientation, mounting,
plum-bing and wiring), operating instructions and maintenance
procedures. Commercial solar-powered water heater sys-
tem consists of a solar collector, solar-heated-water tank,
electrically heated water tank and controls. Analysis of
possible hazards from pressure, electricity, toxicity, flam-
ability, gas, hot water and steam are also included.

B81-10026
MOTEL DHW RETROFIT--DALLAS, TEXAS
Innovator Not Given (Day's Inn of America, Inc.) Sep.
1982 See Also DOE/NASA CR-161568(N81-10524/NSP)
MFS-25580 Vol. 6, No. 1, P. 28
Solar-energy system designed to provide 65% of total
domestic-hot-water (DHW) demands for 100-room motel in
Dallas, Texas is subject of a report now available. System
is retrofit, and storage-tank size was limited to 1,000
gallons (3,785 l) by size of room where it is located.

B81-10027
SOLAR HOT WATER FOR MOTOR INN--TEXAS CITY,
TEXAS
Innovator Not Given (LaQuinta Motor Inns, Inc.) Sep.
1982 See Also DOE/NASA CR-261605(N81-15460/NSP)
MFS-25614 Vol. 6, No. 1, P. 29
Final report describes solar domestic-hot-water heater
installation at LaQuinta Motor Inn, Texas City, Texas which
furnished 63% of total hot-water load of new 98-unit inn.
Report presents a description of system, drawings and photographs of collectors, operations and maintenance instructions, manufacturers' specifications for pumps, and an engineer's report on performance.

B81-10028
SOLAR-ENERGY SYSTEM FOR A COMMERCIAL BUILDING—TOPEKA, KANSAS
Innovator Not Given(Kaw Valley State Bank and Trust Co.) Sep. 1982 See Also DOE/NASA CR-161595(N81-14393/NSP)
MFS-25609 Vol. 6, No. 1, P. 29
Report describes a solar-energy system for space heating, cooling and domestic hot water at a 5,600 square-foot (520-square-meter) Topeka, Kansas, commercial building. System is expected to provide 74% of annual hot-water requirements of an industrial laundry. Large retrofit solar-water-heating system uses lightweight collectors.

B81-10029
SOLAR-HEATED WATER AT A MOTEL—MOBILE, ALABAMA
Innovator Not Given(LeQuinta Motors Inns, Inc.) Sep. 1982 See also DOE/NASA CR-161587(N81-13461/NSP)
MFS-25609 Vol. 6, No. 1, P. 29
Solar-assisted hot-water system for a new 122-unit motor inn in Mobile, Alabama, generates more than half the energy needed for hot-water heating at motel each year. System consists of 93 flat-plate collectors, 2,500 gallon (9,500 l) insulated storage tank located outdoors, heat exchangers and controls. Electronic thermometers, measuring the temperatures at 22 locations monitor system performance.

B81-10030
SOLAR-HEATED PUBLIC LIBRARY—TROY, OHIO
Innovator Not Given(Troy-Miami County Public Library) Sep. 1982 See also DOE/NASA CR-161588(N81-12545/NSP)
MFS-25601 Vol. 6, No. 1, P. 30
Report on installation, operation and performance of a solar-heating system installed at the Troy-Miami County Public Library in Troy, Ohio. Solar retrofit system complements passive solar-energy system and interfaces with existing heat, ventilation and air-conditioning systems.

B81-10031
SOLAR-COOLED CLASSROOM BUILDING—COLUMBUS, OHIO
Innovator Not Given(Columbus Technical Inst.) Sep. 1982 See also DOE/NASA CR-161589(N81-12544/NSP)
MFS-25597 Vol. 6, No. 1, P. 30
Advanced, evacuated tubular collectors supply energy for heating and cooling of a university building. Report includes site files, specification references, drawings, and installation, operation and maintenance instructions.

B81-10032
SOLAR-HEATED AND COOLED OFFICE BUILDING—COLUMBUS, OHIO
Innovator Not Given(Columbia Gas System Service Corp.) Sep. 1982 See also DOE/NASA CR-161603(N81-14394/NSP)
MFS-25608 Vol. 6, No. 1, P. 30
Final report documents solar-energy system installed in office building to provide space heating, space cooling and domestic hot water. Collectors mounted on roof track Sun and concentrate rays on fluid-circulating tubes. Collected energy is distributed to hot-water-fired absorption chiller and space-heating and domestic-hot-water preheating systems.

B81-10033
SOLAR HOT WATER FOR AN INDUSTRIAL LAUNDRY—FRESNO, CALIFORNIA
Innovator Not Given(ARATEX Services, Inc.) Sep. 1982 See Also DOE/NASA CR-161537(N81-32851/NSP)
MFS-25550 Vol. 6, No. 1, P. 31
Final report describes an integrated wastewater-heat recovery system and solar preheating system to supply part of hot-water requirements of an industrial laundry. Large retrofit solar-water-heating system uses lightweight collectors.

B81-10034
SOLAR WATER-HEATER DESIGN PACKAGE
Innovator Not Given(EIcam, Inc.) Sep. 1982 See Also DOE/NASA CR-161558(N80-33867/NSP)
MFS-25574 Vol. 6, No. 1, P. 31
Information on a solar domestic-hot water heater is contained in 146 page design package. System consists of solar collector, storage tanks, automatic control circuitry and auxiliary heater. Data-acquisition equipment at sites monitors day-by-day performance. Includes performance specifications, schematics, solar-collector drawings and drawings of control parts.

B81-10035
ENERGY-SYSTEMS ECONOMIC ANALYSIS
J. DOANE (Solar Energy Research Institute), M. L. SLONSKI (CALTECH), and C. S. BORDEN (CALTECH) Sep. 1982
NPO-15097 Vol. 6, No. 1, P. 32
Energy Systems Economic Analysis (ESEA) program is flexible analytical tool for rank ordering of alternative energy systems. Basic ESEA approach derives an estimate of those costs incurred as result of purchasing, installing and operating an energy system. These costs, suitably aggregated into yearly costs over lifetime of system, are divided by expected yearly energy output to determine busbar energy costs. ESEA, developed in 1979, is written in FORTRAN IV for batch execution.

B81-10136
COMPACT ION SOURCE FOR MASS SPECTROMETERS
V. G. ANICICH (CALTECH) and W. T. J. HUNTRESS (CALTECH) Nov. 1982
NPO-14324 Vol. 6, No. 2, P. 145
Cyclotron-resonance device uses miniature components and permanent magnet for small size, low weight, and low cost. Gas molecules are ionized by electrons from hot filament. Magnetic field, acting with electrostatic drift field, causes ions to move in circles with a superimposed drift perpendicular to both fields, toward the exit. Compact source can be used for studying ion-molecule reactions by ion cyclotron-resonance methods in conventional mass spectrometer with either magnetic sector or quadrupole sector.

B81-10137
3-D MANIPULATOR FOR MASS SPECTROMETER
J. C. CIRNER, I. HARDING-BARLOW, and K. G. SNETSINGER 1982
ARC-11323 Vol. 6, No. 2, P. 146
Small mass-spectrometer specimens are positioned in three dimensions by a manipulator that employs two bellows to provide vacuum seal and accommodate movement of specimen holder. Inner bellows and outer bellows accommodate vertical and horizontal motion, respectively. Y-axes movement is in and out of plane of page. Specimen-holder column is hollow so electrical wires can pass through it to specimen.

B81-10138
EFFICIENT ENERGY-STOREAGE CONCEPT
L. W. J. BRANTLEY and C. RUPP Nov. 1982
MFS-25331 Vol. 6, No. 2, P. 147
Space-platform energy-storage and attitude-stabilization system utilizes variable moment of inertia of two masses attached to ends of retractable cable. System would be
brought to its initial operating speed by gravity-gradient pumping. When fully developed, concept could be part of an orbiting solar-energy collection system. Energy would be temporarily stored in system then transmitted to Earth by microwaves or other method.

B81-10139 EMR GAGE WOULD MEASURE COAL THICKNESS ACCURATELY
J. D. KING (Southwest Research Institute) and W. L. ROLLWITZ (Southwest Research Institute)
Nov. 1982
MFS-25579 Vol. 6, No. 2, P. 148
Laboratory tests indicate electron magnetic resonance (EMR) would be effective in measuring thickness of coal overlying rock substrate. In prototype dual-frequency EMR system, sample is irradiated by two radio frequencies. Signals are mixed, producing sum and difference output frequencies that are detected by receiver. Magnetic field is varied to scan resonant spot through sample. In system designed for field use, electromagnet is U-shaped, so that sample can be adjacent to, rather than inside the probe. Same coil is used for transmitting and receiving.

B81-10140 SENSORS FOR PRECISE TRACKING
T. F. ZEHNPFENNING (Visidyne)
Nov. 1982
MFS-25579 Vol. 6, No. 2, P. 149
Sun-sensor optical system uses four pairs of pentaprisms to simplify alinement and reduce mechanical-stability requirements. Cross-shaped windows in field stop enhance sensitivity of signal detectors to changes in angular position. Two virtual images viewed by telescopes mark position and orientation of occulter panel. Reflector vertex, point source and corresponding virtual image are all equally spaced along a straight line.

B81-10141 SOLAR CONCENTRATOR IS GAS-FILLED
R. R. HALE (CALTECH)
Nov. 1982
NPO-15416 Vol. 6, No. 2, P. 150
Proposed reflector for concentrating solar rays is made of two flexible polymer films with pressurized gas between them. First film is clear, serving as a protective cover and pressure envelope; second film is metalized to serve as concentrating mirror. Focal length of mirror is adjusted by changing gas pressure.

B81-10142 POWERPLANT THERMAL-POLLUTION MODELS
S. S. LEE (University of Miami) and S. SENGUPTA (University of Miami)
Nov. 1982
KSC-11210 Vol. 6, No. 2, P. 150
Three models predict nature of thermal plumes from powerplant discharge into water. Free-surface model accommodates major changes in ocean currents. Rigid-model accurately predicts changes in thermal plume caused by other inputs and outputs, such as pumped-water storage and hydroelectric-plant discharges. One-dimensional model predicts approximate stratification in lake with such inputs and outputs over a long period.

B81-10143 PROPOSED INTEGRATED RADIO-TELESCOPE NETWORK
M. H. COHEN (CALTECH), M. S. EWING (CALTECH), G. S. LEVY (CALTECH), R. K. MALLIS (CALTECH), A. C. S. READHEAD (CALTECH), J. R. SMITH (CALTECH), and D. C. BACKER (University of California, Berkeley)
Nov. 1982
NPO-15417 Vol. 6, No. 2, P. 151
Proposed network of radio telescopes, controlled by a central computer and managed by a single organization, offer potential for research on a scale that could not be matched by present privately and publicly-owned radio telescopes. With 10 antenna sites, network would establish base lines thousands of miles long. Antennas will be linked to computer center by telephone circuits.

B81-10144 COMBUSTION OF COAL/OIL/WATER SLURRIES
R. O. KUSHIDA (CALTECH)
Nov. 1982
NPO-15462 Vol. 6, No. 2, P. 152
Proposed test setup would measure combustion performance of new fuels by rapidly heating a droplet of coal/oil/water mixture and recording resulting explosion. Such mixtures are being considered as petroleum substitutes in oil-fired furnaces.

B81-10145 ENERGY- STORAGE MODULES FOR ACTIVE SOLAR HEATING AND COOLING
J. C. PARKER
Nov. 1982 See Also DOE/NASA TM-82415(N81-23604/NSP)
MFS-25681 Vol. 6, No. 2, P. 153
34-page report describes a melting salt hydrate that stores 12 times as much heat as rocks and other heavy materials. Energy is stored mostly as latent heat; that is, heat that can be stored and recovered without any significant change in temperature. Report also describes development, evaluation and testing of permanently sealed modules containing salt hydrate mixture.

B81-10146 SOLAR WATER-HEATER DESIGN AND INSTALLATION
P. HARLAMERT, J. KENNARD, and J. CIRIUNAS
Nov. 1982
LEW-13665 Vol. 6, No. 2, P. 153
Solar/Water heater system works as follows: Solar-heated air is pumped from collectors through rock bin from top to bottom. Air handler circulates heated air through an air-to-water heat exchanger, which transfers heat to incoming well water. In one application, it may reduce oil use by 40 percent.

B81-10147 HEAT-TRANSFER FLUIDS FOR SOLAR-ENERGY SYSTEMS
J. C. PARKER
Nov. 1982
MFS-25629 Vol. 6, No. 2, P. 154
43-page report investigates noncorrosive heat-transport fluids compatible with both metallic and nonmetallic solar collectors and plumbing systems. Report includes tables and figures of X-ray inspections for corrosion and schematics of solar-heat transport systems and heat rejection systems.

B81-10148 EFFECTS OF HIGH TEMPERATURE ON COLLECTOR COATINGS
J. R. LOWERY
Nov. 1982
MFS-25651 Vol. 6, No. 2, P. 154
Report reveals electroplated black chrome is good coating for concentrating collectors in which temperatures are in the 560 degrees-800 degrees F (340 degrees - 430 degrees C) range. Black chrome thermal emissance is low and solar-absorption properties are not seriously degraded at high temperatures. Black coatings are used to increase absorption of solar energy by base metal while decreasing emission of infrared energy. Coatings are intended to improve efficiency of solar collectors.

B81-10149 SOLAR HEATING AND COOLING FOR A CONTROLS MANUFACTURING PLANT LUMBERTON, NEW JERSEY
Innovator Not Given(RKL Controls Co.) Nov. 1982
Also DOE/NASA CR-161679(N81-23597/NSP)
MFS-25665 Vol. 6, No. 2, P. 154
Comprehensive report documents computer-controlled system which has separate solar-collector and cooling-tower areas which has separate solar-collector and cooling-tower areas located away from building and is completely computer controlled. System description, test data, major problems and resolution, performance, operation and maintenance, manufacturer’s literature and drawing comprise part of 257-page report.

B81-10150 SOLAR SPACE AND WATER HEATING FOR HOSPITAL — CHARLOTTESVILLE, VIRGINIA
Innovator Not Given(David C. Wilson, Neuropsychiatric Hospital) Nov. 1982 See Also DOE/NASA CR-161675(N81-22471/NSP)
MFS-25666 Vol. 6, No. 2, P. 155
Solar heating system described in an 86-page report consists of 86 single-glazed selectively-coated baseplate collector modules, hot-water coils in air ducts, domestic-hot-water preheat tank, 3,000 Gallon (11,350-1) concrete urethane-insulated storage tank and other components.

B81-10151 SOLAR HOT WATER FOR A MOTOR INN — LAS VEGAS, NEVADA
Innovator Not Given(LeQuinta Motor Inns) Nov. 1982 See Also DOE/NASA CR-161642(N81-21535/NSP)
MFS-25646 Vol. 6, No. 2, P. 155
Solar hot-water installation at motor inn in Las Vegas, Nevada is described in report containing descriptions of design, philosophy, operation of system and problems and solutions. Provides drawings of solar roof plan, operator’s instructions, manufacturers’ brochures and copy of acceptance report.

B81-10152 SOLAR HEATING FOR A BOTTLEING PLANT — JACKSON, TENNESSEE
Innovator Not Given(Energy Solutions, Inc.) Nov. 1982 See Also DOE/NASA CR-161586(N81-73511/NSP)
MFS-25595 Vol. 6, No. 2, P. 156
Report describes retrofit solar-heating system designed for and installed in bottle works in Tennessee. System consists of 9,480 square feet (880 Square meters) of evacuated-tube solar collectors with attached specular cylindrical reflectors. Tubular collectors are expected to supply 55 percent of total thermal load.

B81-10153 ECONOMIC EVALUATION OF OBSERVATORY SOLAR-ENERGY SYSTEM
Innovator Not Given(Federal Systems Division of IBM Corp.) Nov. 1982 See Also DOE/NASA CR-161724(N81-25510/NSP)
MFS-25682 Vol. 6, No. 2, P. 156
Long-term economic performance of a commercial solar-energy system was analyzed and used to predict economic performance at four additional sites. Analysis described in report was done to demonstrate viability of design over a broad range of environmental/economic conditions. Report contains graphs and tables that present evaluation procedure and results. Also contains appendices that aid in understanding methods used.

B81-10155 ECONOMIC EVALUATION OF TOWNHOUSE SOLAR-ENERGY SYSTEM
Innovator Not Given(Federal Systems Division of IBM Corp.) Nov. 1982 See Also DOE/NASA CR-161722(N81-23605/NSP)
MFS-25684 Vol. 6, No. 2, P. 156
Solar-energy site in Columbia, South Carolina, is comprised of four townhouse apartments. Report summarizes economic evaluation of solar-energy system and projected performance of similar systems in four other selected cities. System is designed to supply 65 percent of heating and 75 percent of hot water.

B81-10156 ECONOMIC EVALUATION OF OFFICE SOLAR-HEATING SYSTEM
Innovator Not Given(Federal Systems Division of IBM Corp.) Nov. 1982 See Also DOE/NASA CR-161726(N81-23607/NSP)
MFS-25685 Vol. 6, No. 2, P. 157
Solar-energy system at U.S. Department of Transportation Test Center at Pueblo, Colorado and five similar installations around the country is the subject of 109-page report. Objective of economic analysis is to report long-term economic performance of system at installation site and to extrapolate results to four other locations and an alternate site.

B81-10157 DORMITORY SOLAR-ENERGY-SYSTEM ECONOMICS
Innovator Not Given(Federal Systems Division of IBM Corp.) Nov. 1982 See Also DOE/NASA CR-161726(N81-24531/NSP)
MFS-25693 Vol. 6, No. 2, P. 158
102-page report analyzes long-term economic performance of a packaged solar energy assembly system at a dormitory installation and extrapolates to four additional sites about the U.S. Method of evaluation is f-chart procedure for solar-heating and domestic hotwater systems.

B81-10158 TWO-STORY-DWELLING SOLAR INSTALLATION
Innovator Not Given(Federal Systems Division of IBM Corp.) Nov. 1982 See Also DOE/NASA CR-161727(N81-24585/NSP)
MFS-25697 Vol. 6, No. 2, P. 158
Report covers system description of a roof mounted solar energy system in Georgia. Includes study approach, economic analysis, results of analysis and economic uncertainty analysis. Elaboration on some of equations, procedures, and parameters used in analysis is found in report appendices.

B81-10159 RANGER STATION SOLAR-ENERGY SYSTEM RECEIVES ECONOMIC EVALUATION
Innovator Not Given(Federal Systems Division of IBM Corp.) Nov. 1982 See Also DOE/NASA CR-161728(N81-24541/NSP)
MFS-25699 Vol. 6, No. 2, P. 158
Economic performance of Giendo Reservoir Ranger Station solar-energy system in Wyoming and extrapolated performance in four other locations around the U.S. is reviewed in report. System is a passive drain-down system using water as heat-transfer medium for space and hot-water heating.

B81-10160 ECONOMIC EVALUATION OF DUAL-LEVEL-RESIDENCE SOLAR-ENERGY SYSTEM
Innovator Not Given(Federal Systems Division of IBM Corp.) Nov. 1982 See Also DOE/NASA CR-161729(N81-24589/NSP)
MFS-25700 Vol. 6, No. 2, P. 159
Long-term economic performance of a commercial solar-energy system was analyzed and used to predict economic performance at four additional sites. Analysis described in report was done to demonstrate viability of design over a broad range of environmental/economic conditions. Report contains graphs and tables that present evaluation procedure and results. Also contains appendices that aid in understanding methods used.
03 PHYSICAL SCIENCES

Corporation) Nov. 1982 See Also DOE/NASA CR-161729(N81-25541/NSP)
MFS-25700 Vol. 6, No. 2, P. 159
105-page report is one in a series of economic evaluations of different solar-energy installations. Using study results, an optimal collector area is chosen that minimizes life-cycle costs. From this optimal size thermal and economic performance is evaluated.

B81-10161 ECONOMIC EVALUATION OF SINGLE-FAMILY-RESIDENCE SOLAR-ENERGY SYSTEM
Innovator Not Given(Federal Systems Division of IBM Corporation) Nov. 1982 See Also DOE/NASA CR-161730(N81-25542/NSP)
MFS-25701 Vol. 6, No. 2, P. 159
Report concludes that where solar-energy system investment costs are presently high, future promise of savings due to increased conventional energy costs is not optimistic. This is because cost of system tends to increase at a rate not significantly less than the cost of conventional energy.

B81-10265 ROTATING THE PLANE OF PARALLEL LIGHT BEAMS
K. L. ORLOFF and H. YANAGITA
Dec. 1982
ARC-11341 Vol. 6, No. 3, P. 267
Rhomboid prism laterally displaces beam of light. Pairs of rhomboid prisms can rotate plane of two parallel beams of light and change spacing of beams. If each element of pair is mounted on independent motor-driven disk, angle of rotation of plane of beams can be varied over wide range. Among other uses, prism configurations can rotate plane of parallel laser beams used in laser velocimeter.

B81-10266 SOLAR-DRIVEN LIQUID-METAL MHD GENERATOR
F. HOHL and J. H. LEE (Vanderbilt University)
Dec. 1982 NASA TM-81985(N81-27926/NSP)
LAR-12495 Vol. 6, No. 3, P. 268
Liquid-metal magnetohydrodynamic (MHD) power generator with solar oven as its heat source has potential to produce electric power in space and on Earth at high efficiency. Generator focuses radiation from Sun to heat driving gas that pushes liquid metal past magnetic coil. Power is extracted directly from electric currents set up in conducting liquid. Using solar energy, as fuel can save considerable costs and payload weight, compared to previous systems.

B81-10267 IMPROVED LIXISCOPE
L. I. YIN
Dec. 1982
GSC-12567 Vol. 6, No. 3, P. 269
Improved lixiscopes utilize fast-decay scintillators and multiple or curved microchannels to achieve high energy and spatial resolution as well as single-photon counting. This unit, with higher energy resolution, is intended for X-ray astronomy, although it could be applied terrestrially wherever a sensitive portable radiation spectrometer is required for 20- to 200-keV range.

B81-10268 TEST-BED AIRCRAFT SCANNER
Dec. 1982
LAR-12796 Vol. 6, No. 3, P. 270
Test-bed aircraft multispectral scanner (TBAMS) is line-scanning multispectral imaging system with eight visible/near-infrared channels and one thermal-infrared channel. Key design features of TBAMS are its large size and modular subsystem mounted on horizontal baseline. This unique layout allows easy access to and replacement of subsystems and their subcomponents. System designed around existing inexpensive parts, sacrifices compactness for ease of modification.

B81-10269 SOLAR SIMULATOR AT MARSHALL SPACE FLIGHT CENTER
Innovator Not Given(Wyle Laboratories) Dec. 1982 See Also DOE/NASA CR-161825(N81-30523/NSP)
MFS-25742 Vol. 6, No. 3, P. 271
Solar Simulator is subject of 73-page report. Simulator can establish a variety of conditions that can be set at constant levels over a broad range. Conditions include solar-radiation intensity, spectrum and collimation; solar altitude; and wind speed and direction. Report describes Sun simulator, solar-collector system simulator, overall simulation setup, and instrumentation.

B81-10270 EVALUATION OF A LINE-CONCENTRATING SOLAR COLLECTOR
Innovator Not Given(Wyle Laboratories) Dec. 1982 See Also NASA CR-161856(N82-105002/NSP)
MFS-25779 Vol. 6, No. 3, P. 271
45-page report contains results of performance evaluation of line-concentrating solar collector. Collector employs parabolic trough to direct sunlight to line along its focal axis, along which lies a black-chrome plated receiver tube covered by a glass tube containing still air. Reflective trough has aluminum-mirror surface covered with metalized acrylic film. Array of four collectors, positioned end to end, was used for evaluation. Array was driven by single drive mechanism which was controlled by electronic tracking device.

B81-10271 MANIFOLD INSULATION FOR SOLAR COLLECTORS
Innovator Not Given(Wyle Laboratories) Dec. 1982 See Also NASA CR-161856(N82-105001/NSP)
MFS-25779 Vol. 6, No. 3, P. 271
45-page report contains results of performance evaluation of line-concentrating solar collector. Collector employs parabolic trough to direct sunlight to line along its focal axis, along which lies a black-chrome plated receiver tube covered by a glass tube containing still air. Reflective trough has aluminum-mirror surface covered with metalized acrylic film. Array of four collectors, positioned end to end, was used for evaluation. Array was driven by single drive mechanism which was controlled by electronic tracking device.

B81-10272 SOLAR HEATER IN A WEST VIRGINIA COLLEGE
Innovator Not Given(J. E. Sturm, Inc.) Dec. 1982 See Also DOE/NASA CR-161756(N81-25491/NSP)
MFS-25706 Vol. 6, No. 3, P. 272
Solar space- heating and hot water system installed at Alderson-Broaddus College, Philippi, West Virginia, is described in 87-page document. Simulator contains description of building and its solar-energy system, including collectors, coolant, storage tanks, circulation equipment, piping, controls, and insulation; acceptance test data; and discussion of problems with installation, their solution, and recommendations for dealing with excess solar energy.

B81-10273 SOLAR HEATING SYSTEM AT A RACQUETBALL CLUB
Innovator Not Given(Arc Associates) Dec. 1982 See Also NASA CR-16179(N81-28518/NSP)
MFS-25720 Vol. 6, No. 3, P. 272
81-10274
SOLAR HEATING IN AN ELEMENTARY SCHOOL
Innovator Not Given (Portsmouth Public Schools) Dec. 1982
See Also DOE/NASA CR-161830 (N81-28515/NSP)
MFS-25747 Vol. 6, No. 3, P. 272
Solar-heating and hot-water system installed in elementary school in Virginia is described in 154-page report. Report includes design philosophy and acceptance test report. Provides instructions for installation, maintenance, and operation. Also furnishes mechanical drawings and manufacturers' data on pumps, valves, controllers, and other components.

81-10275
SOLAR-COOLED HOTEL IN THE VIRGIN ISLANDS
H. HARBER
Dec. 1982
See Also DOE/NASA CR-161820 (N81-28515/NSP)
MFS-25776 Vol. 6, No. 3, P. 273
Performance of solar cooling system is described in 21-page report. System provides cooling for public areas including ball rooms, restaurant, lounge, lobby and shops. Chilled water from solar-cooling system is also used to cool hot water from hotel's desalination plant.

81-10276
HOT WATER FOR MOTOR INN--GARLAND, TEXAS
Innovator Not Given (Day's Inn of America, Inc.) Dec. 1982
See Also DOE/NASA CR-161830 (N81-28515/NSP)
MFS-25726 Vol. 6, No. 3, P. 273
35-page report describes solar collector system and its operation and presents projected system performance. Details calibration and maintenance procedures and lists and describes equipment that makes up system. System provides hot water for laundry, for showers and sinks in inn rooms.

81-10277
SOLAR SPACE HEATING FOR WAREHOUSE--KANSAS CITY, KANSAS
Innovator Not Given (Ducat Investments, Inc.) Dec. 1982
MFS-25712 Vol. 6, No. 3, P. 273
New report describes warehouse/office building in Kansas City, Kansas which uses solar heating for warehouse portion and conventional heating and cooling for office portion. Building is divided into 20 equal units, each with its own solar-heating system. Modular design enables multiple units to be combined to form offices or warehouses of various sizes as required by tenants.

81-10278
THE ECONOMICS OF SOLAR HEATING
J. A. FORNEY
Dec. 1982
MFS-25391 Vol. 6, No. 3, P. 274
SHCOST program assesses economic feasibility of solar energy for single-family residences and light commercial applications. Program analyzes life-cycle costs as well as sensitivity studies to aid designer in selecting most economically attractive solar system for single-family residence or light commercial application. SHCOST includes fairly comprehensive list of cost elements from which user may select.

81-10036
PREPARATION OF PERFLUORINATED IMIDOYLMIDOXIM-POLYMER POLYMERS
R. W. ROSER, R. H. KRATZER (Ultrasync Inc.), K. J. L. PACIOREK (Ultrasync Inc.), and T. I. ITO (Ultrasync Inc.)
Sep. 1982
ARC-11267 Vol. 6, No. 1, P. 35
Perfluorinated imidoylamidoxime polymers with excellent resistance to heat, chemicals and solvents are prepared by condensing a perfluorinated nitrile with a perfluorinated amidoxime in vacuum or inert atmosphere from 20 degrees to 70 degrees C. When both reactants are difunctional, oligomeric or polymeric products are obtained. After cyclization of imidoylamidoxime groups to 1,2,4-oxadiazole linkages, process yields highly resistant elastomers. Competing side reactions are inhibited by low processing temperature.

81-10038
SYNTHESIS OF FIRE-EXTINGUISHING DAWSONITES
R. L. ALTMAN
Sep. 1982
ARC-11326 Vol. 6, No. 1, P. 36
Simple nonaqueous process synthesizes sodium or potassium dawsonites effective against hydrocarbon fuel fires. Fire-extinguishing alkali metal dawsonites are prepared using a finely-pulverized equimolar mixture of hydrogen carbonate, or carbonates and aluminum hydroxide heated for 1 to 6 hours under carbon dioxide pressure.

81-10039
IMPROVED FIRE-RESISTANT RESINS FOR LAMINATES
G. M. FOHLEN, J. A. PARKER, and I. K. VARMA (National Research Council)
Sep. 1982
ARC-11321 Vol. 6, No. 1, P. 37
Fire-resistant resins for fabricating laminates with inorganic fibers, especially graphite fibers, are formed from bisimides containing main-chain phosphorus and olefinic end groups. Bisimides are thermally polymerized to form resins and laminates virtually incombusable in pure oxygen at 300 degrees C. New resins are suitable for many applications requiring good adhesion and excellent resistance to heat, fire, solvents and chemicals.

81-10040
ELASTOMER-TOUGHENED POLYIMIDE ADHESIVES
A. K. ST. CLAIR and T. L. ST. CLAIR
Sep. 1982
LAR-12775 Vol. 6, No. 1, P. 38
T-Peel strengths of adhesive/Titanium bonds are compared for LARC-13 with and without elastomer additives. Elastomer toughening (incorporation of small amounts of rubber into polymer matrix) has been one of the most successful methods for modifying polymer toughness. Addition polyimides are currently under consideration as high-temperature adhesives for bonding composite materials such as titanium.

81-10041
VISCOELASTIC PROPERTIES OF POLYMER BLENDS
S. D. HONG (CALTECH), J. MOACANIN (CALTECH), and D. SOONG (CALTECH)
Sep. 1982
NPO-14924 Vol. 6, No. 1, P. 39
Viscosity, shear modulus and other viscoelastic properties of multicomponent polymer blends are predicted from behavior of individual components, using a mathematical model. Model is extension of two-component-blend model based on Rouse-Bueche-Zimm theory of polymer viscoelasticity. Extension assumes that probabilities of forming various possible intracomponent and intercomponent entanglements among polymer molecules are proportional to relative abundances of components.

81-10042
TWO-STAGE COMBUSTOR REDUCES POLLUTANT EMISSIONS
R. M. CLAYTON (CALTECH)
Sep. 1982
NPO-14911 Vol. 6, No. 1, P. 40
By controlling fuel-to-air ratio of local reactants, pollutant
emissions would be minimized in a proposed two-stage
combustor for gas-turbine engines. It would use fuel-rich
partial-oxidation slag and air-rich combustion stage to
reduce emissions of nitrogen oxide, carbon monoxide and
hydrocarbons. Combustor fuel-lean burning limit would be
extended simultaneously.

B81-10043
DEFORMATION-INDUCED ANISOTROPY OF POLYMERS
S. T. J. PENGE (CALTECH) and R. F. LANDEL (CALTECH)
Sep. 1982
NPO-15325 Vol. 6, No. 1, P. 41
New theory calculates anisotropies induced by large
deformations in polymers. Theory was developed primarily
for calculating anisotropy of thermal expansivity, but is also
applicable to thermal conductivity, elastic moduli and other
properties. Theory assumes that in isotropic state, long
polymer chains are randomly coiled and not oriented in
picular direction. They acquire an orientation when
material is deformed. As average molecular orientation
increases with deformation, properties of bulk material
exhibit averaging of the microscopic anisotropies of the
oriented molecular segments.

B81-10044
PLASMA DEPOSITION OF AMORPHOUS SILICON
H. F. CALCOTE (Aerochem Research Laboratories, Inc.)
Sep. 1982
NPO-14954 Vol. 6, No. 1, P. 42
Strongly adhering films of silicon are deposited directly
on such materials as Pyrex and Vycor (or equivalent
materials) and aluminum by a non-equilibrium plasma jet.
Amorphous silicon films are formed by decomposition of
silicon tetrachloride or trichlorosilane in the plasma. Plasma-
jet technique can also be used to deposit an adherent
silicon film on aluminum from silane and to dope such films
with phosphorus. Ability to deposit silicon films on such
readily available, inexpensive substrates could eventually
lead to lower cost photovoltaic cells.

B81-10162
SYSTEM CONTROLS AND MEASURES OXYGEN FUGACITY
R. J. WILLIAMS
Nov. 1982
See Also NASA TM-58234(81-17188/NISP)
MSC-20098 Vol. 6, No. 2, P. 163
System developed at Johnson Space Center controls and
measures oxygen fugacity in high-temperature chemical
research. A ceramic-electrolyte cell is the sensing element.
All hardware needed to control gas flow and temperature
and to measure cell electromotive force is included. An
analytic balance allows in situ thermogravimetric sample
analysis.

B81-10163
SURFACE SEAL FOR CARBON PARTS
D. M. SHUFLORD (Vought Corp.) and J. P. SPRUIELL (Vought
Corp.)
Nov. 1982
MSC-18899 Vol. 6, No. 2, P. 164
Surface pores in parts made of graphite or reinforced-
carbon/ carbon materials are sealed by a silicon carbide-
based coating. Coating inhibits subsurface oxidation and
lengthens part life. Starting material for coating is graphite
felt, which is converted to silicon carbide felt by processing
it according to a prescribed time/temperature schedule.
Converted felt is pulverized in a ball mill and resulting powder
is mixed with an equal weight of black silicon carbide powder.
Powder mixture is combined with an equal weight of
adshesive to form a paste.

B81-10154
IMPROVED CURE-IN-PLACE SILICONE ADHESIVES
C. E. BLEVINS (McDonnell Douglas Corp.), J. SWEET
(McDonnell Douglas Corp.), and R. GONZALEZ (McDonnell
Douglas Corp.)
Nov. 1982
MSC-18792 Vol. 6, No. 2, P. 164
Two improved cure-in-place silicone-elastomer-based
adesives have low thermal expansion and low thermal
conductivity. Adhesives are flexible at low temperature and
withstand high temperatures without disintegrating. New
ablative compounds were initially developed for in-flight
repair of insulating tile on Space Shuttle orbiter. Could find
use in other applications requiring high-performance adhe-
vies, such as sealants for solar collectors.

B81-10165
MEASURING INTERDIFFUSION IN BINARY LIQUIDS
S. H. GELLES (Battelle Columbus Laboratories) and A. J.
MARKWORTH (Battelle Columbus Laboratories)
Nov. 1982
MFS-25576 Vol. 6, No. 2, P. 165
Liquid-phase binary interdiffusion sample is prepared by
enclosing wires of two metals in a capillary tube with ends
touching. While sample is at elevated temperature, tube is
kept oriented with lighter metal at top to prevent convect-
. New method is potential research tool in such areas as
zone refining of metals, recycling of spent fuel rods, and improving
removal of slag and inclusions from steel castings.

B81-10166
SUPERCRITICAL-FLUID EXTRACTION OF OIL FROM
TAR SANDS
L. E. COMPTON (CALTECH)
Nov. 1982
NPO-15476 Vol. 6, No. 2, P. 166
New supercritical solvent mixtures have been laboratory-
tested for extraction of oil from tar sands. Mixture is
circulated through sand at high pressure and at a tempera-
ture above critical point, dissolving organic matter into the
compressed gas. Extract is recovered from sand residues.
Low-temperature super-critical solvents reduce energy
consumption and waste-disposal problems.

B81-10167
PROLONGING THE LIFE OF REFRACTORY FILLERS
C. SCHOMBURG and R. L. DOTT
Nov. 1982
MSC-18832 Vol. 6, No. 2, P. 166
Useful life of refractory glass-cloth gan filler is increased
by coating it with a suspension of silicon carbide in butanol
and polyethylene. Coating is applied to refractory-fiber
cloth filler that seals gaps between insulating tiles on Space
Shuttle orbiter. Tests showed that cloth fibers would be
embrittled by extreme temperatures encountered on reentry
into Earth's atmosphere and that only 25 percent of the
serious of fillers would be reusable after a mission.
With coating, 95 percent of fillers would be reusable.

B81-10168
FLAME-RETARDANT COATING IS HEAT-SEALED
R. F. TSCHIRCH (Arthur D. Little, Inc.) and K. R. SIJMAN
(Arthur D. Little, Inc.)
Nov. 1982
MSC-18382 Vol. 6, No. 2, P. 167
Plastic coating that makes fabrics flame and abrasion-
resistant is sealed to fabric by heat. Coating produces
flexible, lightweight, impermeable fabrics that are
iresafe and can withstand rough use. Coated fabric was
veloped for use in garments and containers for space explora-
tion, but would also be suitable for rainwear, clothing for
hazardous environments, and leakproof containers.

B81-10169
SUPERABSORBENT MULTILAYER FABRIC
J. V. COREALE and F. S. DAWN
Nov. 1982
MSC-18223 Vol. 6, No. 2, P. 168

B81-10170
FACTORS AFFECTING LIQUID-METAL EMBRITTLEMENT IN C-103
R. MOLEMORE (The Marquardt Co.) and F. K. LAMPSON (The Marquardt Co.)
Nov. 1982
MSC-18965 Vol. 6, No. 2, P. 168

B81-1171
ULTRAVIOLET-INDUCED MIRROR DEGRADATION
F. L. BOUQUET (CALTECH), N. T. HASEGAWA (CALTECH), and E. L. CLELAND (CALTECH)
Nov. 1982
NPO-15520 Vol. 6, No. 2, P. 169
Recent tests of second-surface mirrors show that ultraviolet radiation penetrates glass and metalized zone and impinges upon backing paint. According to report, many backing materials are degraded by ultraviolet radiation. Mirror cracking is a serious problem in solar-energy collection systems. Effects of UV on polymeric materials have been studied, and in general, all are degraded by UV. Polymers most resistant to UV radiation are polyimides.

B81-1072
LOW-GRAVITY INVESTIGATIONS IN CAST-IRON PROCESSING
W. L. FRANKHouser (System Planning Corp.), J. M. MILLER (H. L. COOKE, Inc.), and R. P. VASQUEZ (CALTECH)
Nov. 1982
MFS-25491 Vol. 6, No. 2, P. 169

B81-1073
'SIAION' MATERIALS FOR ADVANCED STRUCTURAL APPLICATIONS
S. DUTTA
Nov. 1982
LEW-13671 Vol. 6, No. 2, P. 170
New ceramics for gas turbines and other applications are strong, oxidation resistant, and chemically stable. Recently prepared state-of-the-art report on SIAION materials includes work on phase relations, crystal structure, synthesis, fabrication, micro-structure, and properties of various SIAION's.

B81-10279
SILICONE/ACRYLATE COPOLYMERS
W. E. DENNIS (Dow Corning Corp.)
Dec. 1982
NPO-15523 Vol. 6, No. 3, P. 277

B81-10280
COAL AS A SUBSTITUTE FOR CARBON BLACK
R. O. KUSHIDA (CALTECH)
Dec. 1982
NPO-15481 Vol. 6, No. 3, P. 277

B81-10281
SOUND-BURST GENERATOR FOR MEASURING COAL PROPERTIES
W. J. HADDEN (Georgia Institute of Technology), J. M. MILLS (Georgia Institute of Technology), and A. D. PIERCE (Georgia Institute of Technology)
Dec. 1982
MFS-25438 Vol. 6, No. 3, P. 278

B81-10282
CATALYZING THE COMBUSTION OF COAL
M. F. HUMPHREY (CALTECH) and W. DOKKO (CALTECH)
Dec. 1982
NPO-15456 Vol. 6, No. 3, P. 279

B81-10283
LOW-GOLD-CONTENT BRAZING ALLOYS
A. BRENNAN (Rockwell International Corp.) and R. D. MCKOWN (Rockwell International Corp.)
Dec. 1982
MFS-19639 Vol. 6, No. 3, P. 280

B81-10284
ELECTROCHEMICAL ASSAY OF GOLD-PLATING SOLUTIONS
R. CHIODO (Rockwell International Corp.)
Dec. 1982
MFS-19639 Vol. 6, No. 3, P. 280

B81-10285
XPS STUDY OF SiO2 AND THE Si/SiO2 INTERFACE
F. J. GRUNTHANER (CALTECH), P. J. GRUNTHANER (CALTECH), R. P. VASQUEZ (CALTECH), B. F. LEWIS (CALTECH), J. MASERJIAN (CALTECH), and A. MADHU (CALTECH)
Dec. 1982
MSC-18965 Vol. 6, No. 3, P. 168

B81-10286
NEW PROPOSAL SHOWS SPRAYED COAL POWDER FORMED BY EXTRUSION OF COAL HEATED TO PLASTIC STATE MAY BE INEXPENSIVE SUBSTITUTE FOR CARBON BLACK. CARBON BLACK IS USED EXTENSIVELY IN RUBBER INDUSTRY AS REINFORCING AGENT IN SUCH ARTICLES AS TIRES AND HOSES. IT IS MADE FROM NATURAL GAS AND PETROLEUM, BOTH OF WHICH ARE IN SHORT SUPPLY.

B81-10287
A NEW APPROACH TO THE PRODUCTION OF CARBON BLACK IS DESCRIBED. THE CARBON BLACK IS PRODUCED FROM THE COMBUSTION OF COAL AND THE INGREDIENTS TO PRODUCE CARBON BLACK ARE FORMED BY SIMPLY POURING OR SPRAYING MIXTURES ONTO LIGHT G/clage AND ALLOWING THE SOLVENT TO EVAPORATE. FILMS SHOWED GOOD WEATHERABILITY. DURABLE, CLEAR POLYMER FILMS PROTECT PHOTOVOLTAIC CELLS.
04 MATERIALS

NPO-14968

Vol. 6, No. 3, P. 281

X-ray photoelectron spectroscopy (XPS) is analytical technique for understanding electronic structure of atoms close to surface in solids, in preference to bulk structure of material. Study found evidence for core-level chemical shifts arising from changes in local structural environment in amorphous SiO2 and at Si/SiO2 interface. Observed XPS spectra may be understood as sequential convolution of several functions, each with well-defined physical interpretation.

B81-10286

BLOWING AGENTS FOR FABRICATION OF POLYIMIDE FOAMS

J. GAGLIANI (International Harvest Co.), U. A. K. SORAT-HIA (International Harvest Co.), and R. LEE (International Harvest Co.)

Dec. 1982

MSC-18983

Vol. 6, No. 3, P. 282

Polyamide resin can be foamed by agent generated within matrix of powder precursor. Blowing agent is mixture of water and methanol that are by-products of condensation/polymerization reaction in resin. Expansion of these two compounds produces cellular foam structure that is flexible and resilient but that tends to have very fine cellular structure. More open structure with lower density can be attained by modifying mechanism of foam formation. Foams have applications as fillers for seat cushions, wall panels, floor sheets, and thermal and acoustical insulation.

B81-10287

VAPOR DETECTOR

H. M. WADDELL (Rockwell International Corp.), G. C. GARRARD (Rockwell International Corp.), and D. W. HOUSTON (Rockwell International Corp.)

Dec. 1982

MSC-19989

Vol. 6, No. 3, P. 282

Detector eliminates need for removing covers to take samples. Detector is canister consisting of screw-in base and clear plastic tube that contains two colors of silica gel. Monoethylhydrazine and nitrogen tetroxide vapors are visually monitored with canister containing color-changing gels.

B81-10288

REGENERATING WATER-STERILIZING RESINS

G. V. COLOMBO (Upqqua Research Co.) and D. F. PUTNAM (Upqqua Research Co.)

Dec. 1982

MSC-20001

Vol. 6, No. 3, P. 282

Iodine-dispersing resin can be regenerated after iodine content has been depleted, without being removed from water system. Resin is used to make water potable by killing bacteria, fungi, and viruses. Regeneration technique may be same basis of water purifier for very long space missions. Enough crystalline iodine for multiple regeneration during mission can be stored in one small cartridge. Cartridge could be inserted in waterline as necessary on signal from iodine monitor or timer.

B81-10289

WIDE-TEMPERATURE-RANGE TORQUE-STRIPPE PAINT

E. R. MILLS (Rockwell International Corp.)

Dec. 1982

MFS-59644

Vol. 6, No. 3, P. 284

'Torque-stripe' paint withstands wide range of temperatures. The bright yellow paint, brushed on electrical connectors, serves as both locking agent and indicator of loosened connection. Crack in paint stripe is readily visible and shows that bolts that are exposed to extremes of heat and cold.

B81-10290

NEUTRALIZING AMINE-CURED EPOXY SURFACES

S. Y. LEE

Dec. 1982

GSC-12688

Vol. 6, No. 3, P. 284

New surface treatment is a rapid, convenient, and effective method for converting unused amines and amine functional groups into noncorrosive substituted ureas. Reaction proceeds at room temperature, takes only a few minutes, and leaves no corrosive residue. Surface should first be washed with alcohol to remove as much as possible of unreacted amine. Then it should be dried, since residual moisture or alcohol may consume some of treatment reagent and neutralization may then be incomplete.

B81-10291

HEAT-EXCHANGE FLUIDS FOR SULFURIC ACID VAPORIZERS

D. D. LAWSON (CALTECH) and G. R. PETERSEN (CALTECH)

Dec. 1982

NPO-15015

Vol. 6, No. 3, P. 285

Some fluorine-substituted organic materials meet criteria for heat-exchange fluids in contact with sulfuric acid. Most promising of these are perfluoropropylene oxide polymers with degree of polymerization (DP) between 10 and 50. It is desirable to have DP in high range because vapor pressure of material decreases as DP increases, and high-DP liquids have lower loss due to vaporization.

B81-10292

GAS DIFFUSION IN FLUIDS CONTAINING BUBBLES

M. ZAK (CALTECH) and M. C. WEINBERG (CALTECH)

Dec. 1982

NPO-15060

Vol. 6, No. 3, P. 286

Mathematical model describes movement of gases in fluid containing many bubbles. Model makes it possible to predict growth and shrinkage of bubbles as function of time. New model overcomes complexities involved in analysis of varying conditions by making two simplifying assumptions. It treats bubbles as point sources, and it employs approximate expression for gas concentration gradient at liquid/bubble interface. In particular, it is expected to help in developing processes for production of high-quality optical glasses in space.

B81-10293

GRAPHITE-FIBER-REINFORCED GLASS-MATRIX COMPOSITE

K. M. PREWO (United Technologies Corp.) and D. I. DICUS

Dec. 1982

See Also NASA CR-165711 (N81-24181/NSP) and NASA CR-159312 (N80-23440/NSP)

LAR-12764

Vol. 6, No. 3, P. 286

G/G structural composite material made of graphite fibers embedded in borosilicate glass exhibit excellent strength, fracture toughness, and dimensional stability at elevated temperatures. It is made by passing graphite-fiber yarn through slurry containing suspension of fine glass particles in carrier liquid and winding on drum to produce prepregged uniaxial tape. After drying, tapes are cut into appropriate lengths and laid up in graphite die in desired stacking scheme. Stack is consolidated by hot pressing in furnace.

B81-10294

BINDERS FOR THERMAL-CONTROL COATINGS

W. J. PATTERSON and J. E. CURRY

Dec. 1982

MFS-25620

Vol. 6, No. 3, P. 287

Methyl trialkoxysilane hydrolysates have been found to be superior binders for radiative thermal-control coatings. Using sprayed test panels, candidate coating formulations were optimized with respect to binder/pigment ratio, ethanol content, pigment particle size, coating thickness, and curing conditions. Binders are made from monomers of trialkoxy-silanes or chain-extended alkoxysilanes. Monomers are believed to polymerize to ladder-type structures like methyl silicate.
05 LIFE SCIENCES

B81-10045
ALGORITHMS COULD AUTOMATE CANCER DIAGNOSIS
A. A. BAKY (Northrop Services, Inc.) and D. G. WINKLER
(Northrop Services, Inc.)
Sep. 1982
MSC-18764
vol. 6, no. 1, p. 45
Five new algorithms are a complete statistical procedure for quantifying cell abnormalities from digitized images. Procedure could be basis for automated detection and diagnosis of cancer. Objective of procedure is to assign each cell an atypia status index (ASI), which quantifies level of abnormality. It is possible that ASI values will be accurate and economical enough to allow diagnoses to be made quickly and accurately by computer processing of laboratory specimens extracted from patients.

B81-10046
CONSTRAINT-FREE MEASUREMENT OF METABOLIC RATE
K. L. KOESTER (Technology, Inc.)
Sep. 1982 See Also NASA CR-160893(N81-14614/NSP)
MSC-18885
vol. 6, no. 1, p. 46
By using hardware and software originally developed for manned spacecraft, metabolism is now measured while subject wears a loose-fitting mask. This more comfortable, less-restrictive measurement technique uses speed, accuracy and control capabilities of a microcomputer. Because mask imposes minimum interference to subject undergoing testing, it can be used to measure respiratory responses to such activities as treadmill exercise. Mask can be worn for long periods with little discomfort.

B81-10047
PORTABLE RADIOMETER MONITORS PLANT GROWTH
C. J. TUCKER, III and L. D. MILLER
Sep. 1982 See Also NASA TM-80641(N80-27674/NSP)
GSC-12412
vol. 6, no. 1, p. 47
Three-band hand-held spectral radiometer measures electromagnetic energy reflected from plant canopies in the visible and infrared portions of the spectrum. It is mobile and easy to use for rapid, repeated measurements. Radiometer probe is held level over plant canopy, readout range switches are set and measurements are recorded. Chlorophyll content, leaf area index and leaf water content can be quickly and easily measured.

B81-10048
CHEMICAL GROWTH REGULATORS FOR GUAYULE PLANTS
M. A. DASTOOR (CALTECH), W. W. SCHUBERT (CALTECH), and G. R. PETERSEN (CALTECH)
Sep. 1982
NPO-15213
vol. 6, no. 1, p. 48
Test tubes containing Guayule - tissue cultures were used in experiments to test effects of chemical-growth regulators. The shoots grew in response to addition of 2-(3,4-dichlorophenoxo)triethylamine (TEA derivative) to agar medium. Preliminary results indicate that a class of compounds that promotes growth in soil may also promote growth in a culture medium. Further experiments are needed to define the effect of the TEA derivative.

B81-10174
IMPROVED ELECTROPHORESIS CELL
P. H. RHODES and R. S. SNYDER
Nov. 1982
MFS-25426
vol. 6, no. 2, p. 173
Several proposed modifications are expected to improve performance of a continuous-flow electrophoresis cell. Changes would allow better control of buffer flow and would increase resolution by suppressing thermal gradients. Improved electrophoresis device would have high resolution and be easy to operate. Improvements would allow better flow control and heat dissipation.

B81-10175
SPEEDY ACQUISITION OF SURFACE-CONTAMINATION SAMPLES
J. R. PULEO (CALTECH) and L. E. KIRSCHNER (CALTECH)
Nov. 1982
NPO-14934
vol. 6, no. 2, p. 174
Biological contamination of large-area surfaces can be determined quickly, inexpensively, and accurately with the aid of a polyester bonded cloth. Cloth is highly effective in removing microbes from a surface and releasing them for biological assay. In releasing contaminants, polyester bonded cloth was found to be superior to other commercial cleanroom cloths, including spun-bond polyamid cloths and cellulose cloths.

B81-10176
RETRACTOR TOOL FOR BRAIN SURGERY
R. HELMS and T. HAYES
Nov. 1982
MFS-25380
vol. 6, no. 2, p. 175
Proposed brain-surgery tool has an octogonal fixture for positioning lateral tube over incision. Eight stainless-steel wires embedded in latex extend to hold positioning fixture. Another eight are also embedded in the latex. Concentric sleeves are successively inserted into expandable latex tube. The first sleeve is placed over a solid rod. Last sleeve is a stainless-steel tube 1 inch in diameter. It is overcoated with Teflon (or equivalent) material.

B81-10177
IMPROVED METHOD FOR CULTURING GUINEA-PIG MACROPHAGE CELLS
J. SAVAGE (Alabama A&M University)
Nov. 1982 See Also NASA CR-158777(N79-27814/NSP)
MFS-25307
vol. 6, no. 2, p. 176
Proper nutrients and periodic changes in culture medium maintain cell viability for a longer period. New method uses a thioglycolate solution, instead of mineral oil, to induce macrophage cells in guinea pigs and also uses an increased percent of fetal-calf bovine serum in culture medium. Macrophage cells play significant roles in the body's healing and defense systems.

B81-10178
AERIAL INFRARED PHOTOS FOR CITRUS GROWERS
C. H. BLAZQUEZ and F. W. J. HORN
Nov. 1982 See Also NASA RP-1067(N81-21437/NSP)
KSC-11209
vol. 6, no. 2, p. 176
Handbook advises on benefits and methods of aerial photography with color infrared film. Interpretation of photographs is discussed in detail. Necessary equipment for interpretation is described--light table, magnifying lenses, and microfiche viewers, for example. Advice is given on rating tree condition; identifying effects of diseases, insects, and nematodes; and evaluating effects of soil, water, and weather.
flow direction at probe location. By rotating target, data are shown to be independent of target-sputtered ions.

B81-10052
DUAL-LASER SCHLIEREN SYSTEM
P. B. OWEN and W. K. WINTHEROW
Sep. 1982

MFS-25315
Vol. 6, No. 1, P. 54
Proposed schlieren system uses two lasers and two knife edges to simultaneously view perpendicular refractive-index gradients in a test volume. It is improvement over conventional schlieren systems, which monitor gradient along only one axis. Although originally developed to monitor materials-processing experiments in space, it should find application wherever there is need to study two-dimensional temperature, pressure, concentration or other gradients related to index of refraction.

B81-10053
FIBRE-OPTIC SEMICONDUCTOR TEMPERATURE GAGE
M. SHARMA (TRW, Inc.)
Sep. 1982
See Also NASA CR-160448(N80-17848/NSP)

MSC-18852
Vol. 6, No. 1, P. 55
'Safe' temperature gage for explosive liquids is based on optical transmission. Semiconductor crystal inserted between input and output optical fibers is temperature-sensing element in a new approach to measuring temperature of cryogens. Since no electrical components are immersed in liquid, new sensor minimizes danger of electrically ignited explosions in hazardous cryogens such as oxygen and hydrogen. Gage also useful for handling noncryogenic liquids in aircraft, automobiles, boats and water tanks.

B81-10054
DETECTING CRACKS ON INNER SURFACES
A. SAX (Rockwell International Corp.)
Sep. 1982

MSC-19575
Vol. 6, No. 1, P. 56
Microscopic cracks or flaws in surface of a workpiece are often detected with fluorescent dye. Dye is spread over surface to be inspected and then washed off. When piece is viewed under ultraviolet light, a glow is seen from dye trapped in any flaws. Intensity of fluorescence gives a rough indication of depth of defect. Fluorescent inspection procedure is fast, inexpensive and simple to perform.

B81-10055
VISCOUS TORQUES ON A LEVITATING BODY
F. BUSSE (CALTECH) and T. WANG (CALTECH)
Sep. 1982

NPO-15413
Vol. 6, No. 1, P. 56
New analytical expressions for viscous torque generated by orthogonal sound waves agree well with experiment. It is possible to calculate torque on an object levitated in a fluid. Levitation has applications in containerless materials processing, coating, and fabrication of small precision parts. Sound waves cause fluid particles to move in elliptical paths and induce azimuthal circulation in boundary layer, giving rise to time-averaged torque.

B81-10056
ADHESIVE-BONDED TAB ATTACHES THERMOCOUPLES TO TITANIUM
C. F. COOK
Sep. 1982

FRC-11017
Vol. 6, No. 1, P. 57
Mechanical strength of titanium-alloy structures that support thermocouples is preserved by first spotwelding thermocouples to titanium tabs and then attaching tabs to titanium with a thermosetting adhesive. In contrast to spot welding, a technique previously used for thermocouples, fatigue strength of the titanium is unaffected by adhesive bonding. Technique is also gentler than soldering or attaching thermocouples with a tap screw.
INTERFEROMETER ACCURATELY MEASURES ROTATION ANGLE
P. O. MINOTT
GSC-12614
Vol. 6, No. 1, P. 58

Ultrasonic transducer-beam-intensity distributions are determined by analyzing echoes from a spherical ball. Computers control equipment and process data. Important beam characteristics, such as location of best beam focus and beam diameter at focus, can be determined quickly from extensive set of plots generated by apparatus.

FAR-FIELD ANTENNA PATTERN FROM A NEAR-FIELD TEST
Y. RAHMAT-SAMII (CALTECH), V. GALINDO-ISRAEL (CALTECH), and R. MITTRA (University of Illinois)
GSC-12614
Vol. 6, No. 1, P. 60

Planar polarization simplifies measurement of far-field data for this antenna and allows a determination of far-field pattern by Jacobi-Bessel series expansion of data. Measuring probe is an undersized, dielectrically loaded and open-ended waveguide with a far-field pattern similar to that of a small magnetic dipole in its forward directions, making it unnecessary to rotate probe in direction similar to antenna rotation.

HEAT PIPE BLOCKS RETURN FLOW
J. E. ENINGER (TRW, Inc.)
GSC-12614
Vol. 6, No. 1, P. 61

Metal-foil reed valve in conventional slab-wick heat pipe limits heat flow to one direction only. With sink warmer than source, reed is forced closed and fluid returns to source side through annular transfer wick. When this occurs, wick slab on side of valve dries out and heat pipe ceases to conduct heat.

NOZZLE MODIFICATION SUPPRESSES FLOW TRANSIENTS
G. V. RAO (Rockwell International Corp.)
GSC-12614
Vol. 6, No. 1, P. 62

Proposal for steadying flow from rocket nozzle on Space Shuttle main engine could be applied to other large-area ratio contoured nozzles. Oscillations and pulsations in boundary-layer flow would be reduced by flaring nozzle exit. Transient side loads on nozzle would be suppressed. Large pressure gradients and eddies that can lead to fluctuations are suppressed. Exact radius of curvature of corner would depend on shear-layer thickness.

MICROCOMPUTER CHECKS BUTT-WELD ACCURACY
W. CLISHAM (Martin Marietta Aerospace), W. GARNER (Martin Marietta Aerospace), C. COHEN (Martin Marietta Aerospace), J. BEAL (Martin Marietta Aerospace), R. POLEN (Martin Marietta Aerospace), and J. LLOYD (Martin Marietta Aerospace)
GSC-12614
Vol. 6, No. 1, P. 67

Conventional pressure switch, fabricated by printed-
circuit manufacturing techniques, can indicate when charge on battery departs from preset level. Membrane on switch is exposed to internal pressure of battery, which varies according to stored charge. When pressure varies from preset level, switch can turn on a light-emitting diode or similar indicator to warn user that battery is low.

B81-10068

PULSED PHASE-LOCKED-LOOP STRAIN MONITOR

J. S. HEYMAN and F. D. STONE
Sep. 1982
LAR-12772
Vol. 6, No. 1, p. 68

P2sup,L2sup. strain monitor measures strain by monitoring change in phase of acoustic signal that passes through stressed sample. Phase sample causes shift in frequency of VCO. As with other monitors of this type, instrument is only accurate in elastic range of material. Monitor is expected to have broad application in materials testing, structural design, fabrication and assembly.

B81-10069

STRAIN-GAGED BOLTS ARE EASILY PREPARED

R. L. WALKER (Rockwell International Corp.)
Sep. 1982
MSC-18823
Vol. 6, No. 1, p. 69

New method for installing strain gages in structural bolts is implemented as standard workbench procedure. Rather than potting gages in a hole along axis of bolt, gages are first installed on outside of plastic cartridge tube. Tube is then epoxied in axial hole. Procedure can be used to prepare gages to monitor bolt tension, shear, or torsion.

B81-10070

LOAD-DISPLACEMENT MEASUREMENT ON PIN-LOADED SPECIMENS

D. M. FISHER and R. BUZZARD
Sep. 1982
NPO-14835
Vol. 6, No. 1, p. 70

Heat-energy analysis program (HEAP) solves general heat-transfer problems, with some specific features that are 'custom made' for analyzing solar receivers. Receiver can be utilized not only to predict receiver performance under varying solar flux, ambient temperature and local heat-transfer rates but also to detect locations of hotspots and metallurgical difficulties and to predict performance sensitivity of neighboring component parameters.

B81-10071

HEAT-ENERGY ANALYSIS FOR SOLAR RECEIVERS

F. L. LANSING (CALTECH)
Sep. 1982
NPO-14835
Vol. 6, No. 1, p. 70

Heat-energy analysis program (HEAP) solves general heat-transfer problems, with some specific features that are 'custom made' for analyzing solar receivers. Receiver can be utilized not only to predict receiver performance under varying solar flux, ambient temperature and local heat-transfer rates but also to detect locations of hotspots and metallurgical difficulties and to predict performance sensitivity of neighboring component parameters.

B81-10072

PROGRAM FOR ANALYSIS AND RESIZING OF STRUCTURES

R. T. HAFTKA (Illinois Institute of Technology), B. PRASAD (Illinois Institute of Technology), and U. TSACH (Illinois Institute of Technology)
Sep. 1982
LAR-12704
Vol. 6, No. 1, p. 71

Program for Analysis and Resizing of Structures (PARS) determines optimum change of structure subject to stress, displacement, and flutter constraints. Is an efficient code for sizing large- or small-scale finite-element models in presence of strength, thermal, and aeroelastic constraints with minimum and maximum bounds on structural dimensions. PARS is composed of individual processors that are executed in a logical sequence to perform analysis or synthesis.

B81-10073

UNSTEADY SUBSONIC LOADINGS DUE TO CONTROL-SURFACE MOTION

W. S. ROWE (The Boeing Co.)
Sep. 1982
LAR-12802
Vol. 6, No. 1, p. 71

RHOIV computer program predicts unsteady lifting-surface loadings caused by motions of leading edge and trailing-edge control surfaces having sealed gaps at hinge lines and side edges. Analysis is based on linear, subsonic, potential-flow theory using kernel function method. Linear combinations of pressure distributions are used that are continuous except at planform edges and hinge lines. Loading solution is based on idealization of unsteady deflection or motion of main wing and control surfaces.

B81-10074

AERODYNAMICS OF SOUNDING-ROCKET GEOMETRIES

J. BARROWMAN
Sep. 1982
GSC-12680
Vol. 6, No. 1, p. 72

Theoretical aerodynamics program TAD predicts aerodynamic characteristics of vehicles with sounding-rocket configurations. These slender, Axisymmetric finned vehicles have a wide range of aeronautical applications from rockets to high-speed armament. TAD calculates characteristics of separate portions of vehicle, calculates interference between portions, and combines results to form total vehicle solution.

B81-10075

AEROLEASTIC ANALYSIS FOR ROTORCRAFT

W. JOHNSON
Sep. 1982
ARC-11150
Vol. 6, No. 1, p. 72

Aerelastic-analysis computer program incorporates an analytical model of aeroelastic behavior of wide range of rotorcraft. Such an analytical model is desirable for both pretest predictions and posttest correlations. Program can be applied in investigations of isolated rotor aeroelasticity and helicopter-flight dynamics and could be employed as basis for more-extensive investigations or aeroelastic behavior, such as automatic control system design.

B81-10179

FLIGHT-MANAGEMENT ALGORITHM FOR FUEL-CONSERVATIVE DESCENTS

C. E. KNOX and D. G. CANNON (Boeing Commercial Airplane Co.)
Nov. 1982
LAR-12814
Vol. 6, No. 12, p. 179

Federal Aviation Administration has developed an automated time-based metering form of air traffic control for arrivals into terminal area called local flow management/profile descent (LFM/PD). LFM/PD saves fuel by matching airplane arrival flow to airport acceptance rate through time-control computations and by allowing pilot to descend at discretion from cruise altitude to metering fix in an idle-thrust, clean configuration (landing gear up, flaps zero, speed brakes retracted).

B81-10180

MOISTURE IN COMPOSITES IS MEASURED BY POSITION LIFETIME

J. S. HEYMAN and F. D. STONE
Sep. 1982
LAR-12778
Vol. 6, No. 2, p. 180

New technique is expected to measure the moisture content and moisture depth distribution in fiber-reinforced polymeric composites. Technique is based on dependence of positron lifetime on moisture content of composite specimen. None of the previous non-destructive testing
techniques measured moisture content and depth distribution simultaneously.

B81-10181

LASER/HETERODYNE MEASUREMENT OF TEMPERATURE AND SALINITY

D. J. JOBSON, C. L. FALES, and S. J. KATZBERG

Nov. 1982

LAR-12544

Vol. 6, No. 2, P. 181

Proposed visible-light laser/heterodyne receiver would remotely measure temperature and salinity of subsurface water. Operation is based on acoustic/optical scattering of light by sound waves. Application of this concept is foreseen in current research on energy conversion from ocean currents produced by thermal gradients and on future marine remote-sensing program.

B81-10182

WINGTIP-VORTEX TURBINE LOWERS AIRCRAFT DRAG

J. C. PATTERSON

Nov. 1982

LAR-12544

Vol. 6, No. 2, P. 182

Turbine captures some of energy lost in aircraft wingtip vortices. Wing-tip vortex turbine operates in crossflow of the lift-induced vortex; i.e., flow not parallel to the flightpath. Each turbine blade generates a force as a result of angle of attack between blade and nonstreamwise local flow. Turbine converts lost vortex energy to rotational energy and reduces induced drag.

B81-10183

ENGINE-VIBRATION ANALYZER

V. R. TOLMEI (Rockwell International Corp.)

Nov. 1982

MFS-19320

Vol. 6, No. 2, P. 183

Proposed circuit would monitor vibration spectrum of engines under test or in service. It could detect subtle out-of-specification conditions and could be programmed to shut down engine if an out-of-limits condition develops. Possible uses of monitor are in bench testing automobiles and outboard motors and as a safety device in very critical engine applications.

B81-10184

TIRE TEMPERATURE AND PRESSURE MONITOR

I. O. MACCONOCHIE and A. G. BESWICK

Nov. 1982

LAR-19262

Vol. 6, No. 2, P. 184

Wheel-mounted miniature transmitter would signal dangerous conditions to the driver or pilot. Monitor would include a sensor and a radio transmitter mounted so as not to imbalance the wheel. Sensor and batteries are enclosed in a plastic housing on the rim. Also has possibilities as a research tool for experiments on vehicle safety.

B81-10185

ORIFICE BLOCKS HEAT PIPE IN REVERSE MODE

J. P. ALARIO (Grumman Aerospace Corp.)

Nov. 1982

ARC-11341

Vol. 6, No. 2, P. 185

High forward-mode conductance is combined with rapid reverse-mode shutoff in a heat pipe originally developed to cool spacecraft payloads. A narrow orifice within the pipe "choke off" the evaporator if heat sink becomes warmer than source. During normal operation, with source warmer than sink, orifice has little effect. Design is simpler and more compact than other thermal-diode heat pipes and requires no special materials, forgings, or unusual construction techniques.

B81-10186

RANGEFINDER CORRECTS FOR AIR DENSITY AND MOISTURE

J. B. ABSHIRE

Nov. 1982

GSC-12609

Vol. 6, No. 2, P. 186

Proposed distance-measuring instrument compensates for variations in both dry atmospheric density and water-vapor content. Instrument would be expected to be more accurate than previous laser-ranging instruments. New rangefinder sends three signal trains to target: Two trains in two independent frequencies, and one is at a microwave frequency. All three signals are phase-locked.

B81-10187

FASTER TEST FOR CABLE SEALS

A. T. SHEPHARD (Martin Marietta Corp.)

Nov. 1982

MFS-25518

Vol. 6, No. 2, P. 187

Vacuum-assisted immersion test is much faster than conventional atmospheric immersion tests of cable seals. Vacuum speeds removal of air, allowing its replacement by conductive salt solution in leaking specimens. Previously, 24-hour immersion was necessary to assure displacement of trapped air. Improved method takes only 10 minutes.

B81-10188

CIRCUIT COUNTS CARBON FIBERS

L. C. YANG (CALTECH)

Nov. 1982

NPO-14940

Vol. 6, No. 2, P. 188

Carbon fibers are counted when they fall on high-voltage grid. An arc discharge vaporizes fiber and triggers timer. The equal-duration pulses from timer are integrated by operational amplifier, giving an output voltage that is proportional to the number of fibers incident after reset switch was opened. If two or more fibers arrive at grid simultaneously, they are vaporized one at a time; thus all of them are counted.

B81-10189

MULTIPRESSURE AND TEMPERATURE PROBE

K. R. RAMAN (Raman Aeronautics Research)

Nov. 1982

ARC-11166

Vol. 6, No. 2, P. 189

Aerodynamic probe is a small cylinder tube holding a network of tiny tubes leading to various ports. Six parameters are recorded simultaneously with little interference aerodynamic flow. Two tubes connected by a hot-wire tungsten probe sense steady and fluctuating components of total and static pressures; the feedbacks from these tubes are input into differential-pressure sensors to measure fluctuating components of the pressures. Data are recorded by instruments at the back end of the probe.

B81-10190

SURFACE-CONTAMINATION INSPECTION TOOL FOR FIELD USE

T. SMITH (Rockwell International Corp.)

Nov. 1982

MFS-25581

Vol. 6, No. 2, P. 190

Inspection tool detects surface contamination by measuring photoelectron emission. No vacuum chamber or controlled environment is used. Photoemission is measured under ordinary atmospheric conditions, so surfaces may easily be inspected in factories or in the field.

B81-10191

PRESSURE TRANSDUCER HAS LONG SERVICE LIFE

P. E. PROUT (Rockwell International Corp.) and A. J. CHAVES (Moog, Inc.)

Nov. 1982

MSC-19504

Vol. 6, No. 2, P. 191

Differential-pressure transducer includes a piston, helical springs, and a linear variable differential transformer concentric with piston. Transducer senses motion of piston in response to changes in pressure differential. Eight seals within the transducer prevent fluid leakage from one pressure line to the other. Reliability and operating life of the new unit are superior to many conventional transducers.
B81-10192
HEATER COMPOSITE MEASURES HEAT TRANSFER
S. A. HIPPENSTEELE, L. M. RUSSEL, F. S. STEPKA, and
R. J. MOFFAT (Stanford University)
Nov. 1982 See Also NASA TM-81639(N81-21313/NSP)
LEW-13731 Vol. 6, No. 2, P. 192

Composite consisting of commercially available ele-
ments has been developed to measure heat transfer.
Components provide a simple, convenient, low-cost device
for use in heat-transfer work for rapid evaluation of thermal
performance of both flat and simply curved objects. Device
utilizes available off-the-shelf materials and provides a
convenient method, with good resolution of local tempera-
tures and heat transfer, with measurement accuracy at
near-normal room conditions.

B81-10193
SURVEY OF FACILITIES FOR TESTING PHOTOVOLTA-
ICS
R. W. WEATHER (CALTECH)
Nov. 1982
NPO-15361 Vol. 6, No. 2, P. 192

42-page report describes facilities capable of testing
complete photovoltaic systems, subsystems, or components.
Compilation includes facilities and capabilities of five field
centers of national photovoltaics program, two state-
operated agencies, and five private testing laboratories.

B81-10194
GRAPHICS FOR FINITE-ELEMENT ANALYSIS
E. A. THORNTON (Old Dominion University Research
Foundation) and L. M. SAWYER (Old Dominion University
Research Foundation)
Nov. 1982
LAR-12653 Vol. 6, No. 2, P. 193

ELPLOT program is a passive computer graphics system
that could be utilized for display of models and responses
of general finite-element analyses. Program includes: Wide
range of view-orientation selections, number of alternative
data-input formats, extensive family of finite-element types,
and capabilities for both static and dynamic-response
displays.

B81-10195
FINITE-ELEMENT ANALYSIS OF FORCED CONVECTION
AND CONDUCTION
A. R. WITEN (J. W. Wiggins Co.)
Nov. 1982
MFS-23806 Vol. 6, No. 2, P. 194

MOVES uses experimental data to verify mathematical
models of 'mixed' dynamic systems. The term 'mixed' refers
to interactive mechanical, hydraulic, electrical, and other
components. Program compares analytical transfer functions
with experiment.

B81-10196
MODEL VERIFICATION OF MIXED DYNAMIC SYSTEMS
D. A. EVENSEN (J. W. Wiggins Co.), J. D. CHROSTOWSKI
(J. W. Wiggins Co.), and F. T. HASSMAN (J. W. Wiggins
Co.)
Nov. 1982
MFS-23806 Vol. 6, No. 2, P. 194

MOVES uses experimental data to verify mathematical
models of 'mixed' dynamic systems. The term 'mixed' refers
to interactive mechanical, hydraulic, electrical, and other
components. Program compares analytical transfer functions
with experiment.

B81-10197
SIMPLIFIED THERMAL ANALYZER -VAX VERSION
J. T. SKLADANY
Nov. 1982
GSC-12698 Vol. 6, No. 2, P. 195

SINDA Analyzer, solves differential and algebric equations representing
physical systems. SINDA solves numerically almost any set of
ordinary differential equations that represent transient behavior of a lumped-parameter system or any set of
nonlinear algebraic equations that represents the steady
state conditions of a physical system.

B81-10199
AERODYNAMICS OF SUPERSONIC AIRCRAFT
W. D. MIDDLETON (The Boeing Co.), J. L. LUNDRY (The
Boeing Co.), and R. G. COLEMAN (The Boeing Co.)
Nov. 1982
LAR-12638 Vol. 6, No. 2, P. 195

An integrated system for the analysis of super sonic
configurations consists of an executive driver and eight basic
computer programs that build up force coefficients of an
selected configuration. System employs modified linearized
theory for calculation of surface pressures and employs
supersonic-area-rule concepts in combination with linearized
theory for calculation of aerodynamic force coefficients.

B81-10200
DYNAMIC-LOADS ANALYSIS OF FLEXIBLE AIRCRAFT
WITH ACTIVE CONTROLS
B. L. PERRY and B. J. DURLING
Nov. 1982
LAR-12747 Vol. 6, No. 2, P. 196

Integrated system of stand-alone computer programs,
DYLOFLEX, analyzes dynamic loads on flexible aircraft with
active controls. DYLOFLEX capabilities include calculating
dynamic loads due to continuous atmospheric turbulence,
discrete gusts, and discrete control inputs. Each of the
eight individual DYLOFLEX programs may be used alone
or in conjunction with other DYLOFLEX programs.

B81-10298
FAST-ACTING ELECTROHYDRAULIC SERVO
J. A. J. WEBB, O. MEHDD, and C. F. LORENZ
Dec. 1982 See Also NASA TP-1678(N80-29369/NSP)
LEW-13730 Vol. 6, No. 3, P. 295

Electrohydraulic servo controls moving elements of
airflow valve. Position of moving element and attached
piston is monitored by linear variable-differential transformer
(LVDT). Single-stage servo valve lets fluid into and out of
piston volume in response to feedback signals from the
LVDT.

B81-10299
IMPROVED MAGNETIC-FIELD-COMPONENT RESOL-
VERS
H. D. GARNER
Dec. 1982
LAR-12638 Vol. 6, No. 3, P. 296

New resolvers for vectorially summing outputs of
aircraft-mounted magnetometers are lighter and more
economical to fabricate than conventional electromagnetic
resolvers. One resolver is based on potentiometric princi-
ple, the second uses opulation filters, and the third has
variable-capacitance elements. Optical, capacitive and
potentiometric devices have applications in aircraft naviga-
tion systems.

B81-10300
SIMPLE MAGNETOMETER FOR AUTOPILOTS

20
H. D. GARNER
Dec. 1982
LAR-12832
Vol. 6, No. 3, P. 297
Simple, low-cost magnetometer is suitable for heading-reference applications in autopilots and other directional control systems. Sensing element utilizes commercially available transformer core; and supporting electronics consist of one transistor, two readily-available integrated-circuit chips, and associated resistors and capacitors.

B81-10301
ULTRASONIC INSTRUMENT FOR EVALUATION OF COMPOSITES
A. VARY and A. GREEN (Acoustic Emission Technology Corp.)
Dec. 1982
LEW-13716
Vol. 6, No. 3, P. 288
Ultimate strength of composite material is related to normalized stress-wave factor, a measure of attenuation of stress wave. New portable ultrasonic inspection instrument measures strength of composite materials. New commercial instrument has similar specifications to prototype developed at Lewis Research Center. Device may ultimately help to reduce energy consumption and improve efficiencies of vehicles by allowing use of composite materials to their full potential in critical application areas.

B81-10302
SMALL FIXTURE STRAINS COMPOSITES FOR ENVIRONMENTAL TESTS
F. W. TERVE (CALTECH)
Dec. 1982
NPO-19352
Vol. 6, No. 3, P. 298
Fixture for long-term strain tests of composites is based on inexpensive tool for repairing motorcycle chains. (In normal use tool forces rivet out of chain element.) As modified for composite testing, tool has precision screw and shim. Qualification tests for graphite/epoxy composites are made less expensive by simple test fixture. Used in quantity, fixtures apply precisely similar loads to many samples.

B81-10303
SOLUTION ACCOUNTS FOR STRUCTURAL DAMPING
L. H. ROUSSES, M. W. HYER (Virginia Polytechnic Institute and State University), and E. A. THORNTON (Old Dominion University)
Dec. 1982
LAR-12853
Vol. 6, No. 3, P. 299
New analytical technique determines dynamic response of damped structures dominated by internal structural damping mechanisms. Though structural damping is often negligible compared with damping due to air friction and friction in joints, structural damping can be of major importance in structures having heavy damping treatments or in outer-space structures. Finite-element model includes nonlinear, nonviscous internal damping.

B81-10304
TILE-GAP MEASUREMENT TOOL
D. H. HELMAN (Rockwell International Corp.) and A. R. KEIR (Rockwell International Corp.)
Dec. 1982
MSC-20057
Vol. 6, No. 3, P. 300
Hand-held tool measures small gaps between tiles rapidly and accurately, even when gap is tapered or indented below surface. Tool indicates gap dimensions on calibrated disk. Measurements are accurate within plus or minus 0.003 inch. Tool was developed for determining gap between tiles on Space Shuttle, but may be of use in other applications requiring precise setting of gaps between tiles or other structures.

B81-10305
GAGE FOR SURFACE WAVINESS
G. W. WILLIAMS (Rockwell International Corp.)
Dec. 1982
MSC-20055
Vol. 6, No. 3, P. 301
New device gives qualitative readings of flatness, curvature, or waviness of surface. Designed to check for waviness in surface of Space Shuttle prior to installation of heat-resistant tiles, it could be used to measure irregularity of other surfaces. Irregularities are measured by noting readings of three dial indicators on simple, inexpensive instruments.

B81-10306
NEW CONFIGURATION FOR COMPRESSION-TEST FIXTURE
G. C. SHANKS (McDonnell Douglas Corp.)
Dec. 1982
MSC-18723
Vol. 6, No. 3, P. 301
Gravity-loades axial-compression test fixture is operated by raising lower platen and specimen against weighted upper platen. Wheel turns nut on threaded rod to move lower platen up or down. Limiting rods prevent further upward movement if sample buckles.

B81-10307
MASS-LOSS BUTTONS MONITOR MATERIAL DEGRADA-
TION
C. N. WEBSTER (Vought Corp.)
Dec. 1982
MSC-18903
Vol. 6, No. 3, P. 302
Small button-sized samples attached to parent materials are simple way of monitoring degradation of parent in harsh environments. Samples determine effects of multiple exposures to environmental extremes without disturbing fit or function of parent. They are less costly and more convenient than complex instrumentation normally required to measure complete temperature/pressure time history of parent component.

B81-10308
HOT FILM STATIC-PRESSURE PROBE FOR FLOW-FIELD SURVEYS
L. M. WEINSTEIN and G. C. J. ASHBY
Dec. 1982
LAR-12799
Vol. 6, No. 3, P. 303
New hot film static pressure probe significantly reduces response time in flow-field surveys during wind-tunnel tests. Probe incorporates two hot film sensors, unheated film for temperature compensation and heated film for pressure measurement, and sonic orifice for flow control. Hot film probe measures static pressure while compensating for gas temperature.

B81-10309
PREDICTING THE STRENGTHS OF ANGLE-PLIED LAMINATES
C. C. CHAMIS
Dec. 1982
See Also NASA TM-81404(N80-16107/NSP)
LEW-13733
Vol. 6, No. 3, P. 304
Simplified convenient procedure has been developed that can be used to determine elastic and strength properties of angle-plied laminates. Method is suitable for use with pocket calculator. Consists of simple equations and graphs of ply combinations from most frequently used composites. Procedure makes use of well-known transformation equations, ply stress influence coefficients, and ply uniaxial composites including interply and intraply hybrids.

B81-10310
IMPROVED TENSILE TEST FOR CERAMICS
R. A. OSIECKI (Lockheed Missiles & Space Co., Inc.)
Dec. 1982
MSC-20105
Vol. 6, No. 3, P. 304
For almost-nondestructive tensile testing of ceramics, steel rod is bonded to sample of ceramic. Assembly is then pulled apart in conventional tensile-test machine. Test destroys only shallow surface layer which can be machined away making specimen ready for other uses. Method
should be useful as manufacturing inspection procedure for low-strength brittle materials.

B81-10311

PREDICTING TENSILE STRENGTHS OF BORON/ALUMINUM COMPOSITES

J. A. DECARLO

Dec. 1982

To develop predictive theory to account for time/temperature effect of B/A1 composites, series of deformation and fracture studies was performed on commercial boron fibers over wide ranges of stress, stress application time, and temperature. By combining these single fiber results with fracture theory for matrix metal composites, design formulas were derived that describe B/A1 composite tensile and stress rupture strengths as function of time and temperature. Using derived formulas, calculated and experimental results agree to within 3 percent.

B81-10312

DOUBLE-ADHESIVE TAPE TEST REDUCES WASTE

L. C. LEE (Vought Corp.) and M. W. REED (Vought Corp.)

Dec. 1982

New method for testing peel strength of particular thermal-control tape used on Space Shuttle orbiter radiators requires only half amount of tape method previously employed. Thermal-control tape consists of layers of FEP, silver, Inconel metal, adhesive, Kapton Film, and second adhesive layer. Method also avoids cost of labor and materials to prepare second test coupon and can be adapted for testing other types of double-faced adhesive tapes in military, industrial and consumer applications.

B81-10313

DETECTING CONTAMINATION WITH PHOTOELECTRON EMISSION

T. SMITH (Rockwell International Corp.)

Dec. 1982

Photoelectron emission from aluminum or epoxy-painted aluminum can be used to reveal presence and concentration of surface contaminants. Emission can be used to locate those parts of surface that are excessively contaminated and to which coatings cannot be reliably bonded. Cleaning can then be done on areas that most need it. Probe moves at rate of typically 1 ft/s (30 cm/s), speed slow enough to ensure sensitivity but fast enough to keep scanning time within reasonable limit.

B81-10314

NEW APPARATUS TESTS PRESSURE-SUIT JOINTS

H. C. VYKUKAL and B. WEBBON

Dec. 1982

New apparatus measures applied torque and angle-of-flexure in pressurized flexible joints, such as those found in diving suits and flight suits. Torque and flexure are permanently recorded on x-y plotter. Family of curves can be taken as function of suit pressure or other variables. Apparatus could also measure torque-versus-angle in mechanical linkages.

B81-10315

MODULAR ENGINE INSTRUMENTATION SYSTEM

W. J. RICE and A. G. BIRCHENOUGH

Dec. 1982

System that provides information and measurements never obtained before in real time has been developed. System shows not only real-time measurements but also results of computations of key combustion parameters in meaningful and easily understood display. Standard commercially-available shaft encoder plus data from pressure transducer act as principal drivers to device. Eventually, modular system could be developed into onboard controller for automobile engines.

B81-10316

ALGORITHM FOR UNSTEADY POTENTIAL FLOW ABOUT AIRFOILS

R. CHI-HMAN (Grumman Aerospace Corp.)

Dec. 1982

Implicit finite-difference scheme efficiently computes unsteady potential flow about airfoils. Formulation uses density and velocity potential as dependent variables. Conservation form is retained to assure that shock wave location and speed are computed correctly. Scheme fills need for method to calculate efficiently unsteady potential flow about airfoils and to predict flutter and other unsteady aerelastic phenomena in transonic flow regimes.

B81-10317

USING NOMARSKI INTERFERENCE TO DETECT MICROCRACKS IN GLASS

C. M. J. FLEETWOOD

Dec. 1982

Nomarski interference-contrast microscopy has been proposed as technique for detecting, measuring, and observing Griffith microcracks in glass and glasslike substances. Would facilitate research into cause and elimination of these flaws, along with short- and long-term effects of temperature, humidity, and other conditions. Nomarski interference-contrast technique is expected to find wide use in inspection of glass and other materials.
B81-100321
ELASTIC SURFACE WRINKLING
M. ZAK (CALTECH)
Dec. 1982
MSC-18868 Vol. 6, No. 1, P. 77
Instability phenomena in elastic surfaces subject to
compressive stresses are examined theoretically in new
report. Theory is potentially applicable to such practical
problems as aircraft panel flutter, nondestructive testing,
piezoelectric transducer design, distortion of optical sur-
faces, and tolerance studies of very precise machine parts.

B81-100322
STRUCTURAL DESIGN WITH STRESS AND BUCKLING
CONSTRAINTS
J. KIUSALAAS (The Pennsylvania State University) and G.
B. REDDY (The Pennsylvania State University)
Dec. 1982
MSC-18916 Vol. 6, No. 1, P. 77
DESAP 2 synthesizes linear-elastic structures under
static loads. Objective is to find element sizes (cross-
sectional areas, plate thicknesses, and the like) that
minimize total structural weight without changing layout of
structure. Weight is minimized for given layout subject to
prescribed contraints.

B81-100323
PLASTIC AND LARGE-DEFLECTION ANALYSIS OF
NONLINEAR STRUCTURES
R. G. THOMSON, R. J. HAYDUK, M. P. ROBINSON, B. J.
DURLING, A. PIFKO (Grumman Aerospace Corp.), H. S.
LEVINE (Grumman Aerospace Corp.), H. J. ARMEN (Grum-
man Aerospace Corp.), A. LEVY (Grumman Aerospace Corp.),
and P. GILVIE (Grumman Aerospace Corp.)
Dec. 1982
LAR-12816 Vol. 6, No. 3, P. 314
Plastic and Large Deflection Analysis of Nonlinear
Structures (PLANS) system is collection of five computer
programs for finite-element static-plastic and large deflection
analysis of variety of nonlinear structures. System consid-
ers bending and membrane stresses, general three-
dimensional bodies, and laminated composites.

B81-100324
HIGH-LIFT SEPARATED FLOW ABOUT AIRFOILS
L. A. CARLSON (Texas A & M University)
Dec. 1982
LAR-12853 Vol. 6, No. 3, P. 315
TRANSEP Calculates flow field about low-speed single-
element airfoil at high-angle-of-attack and high-lift conditions
with massive boundary-layer separation. TRANSEP in-
cludes effects of weak viscous interactions and can be used
for subsonic/transonic airfoil design and analysis. The
approach used in TRANSEP is based on direct-inverse
method and its ability to use either displacement surface
or pressure as airfoil boundary condition.

B81-100326
DYNAMIC ISOLATION FOR CRYOGENIC REFRIGERATORS
R. D. AVERILL and J. CROSSLEY EDWARD A.
Sep. 1982
LAR-12728 Vol. 6, No. 1, P. 75
Prototype pressure-compensated mounting isolates a
Tunable Diode Laser (TDL) housing from mechanical vibration.
Mounting is being tested as part of Langley
Research Center program for development of highly sensi-
tive instruments that remotely measure important chemical
constituents of atmosphere. Instruments typically have
requirement for cryogenic cooling of sensitive detectors and
components that are necessary to detect presence of
tenuous constituents of atmosphere. Key elements of
mounting are two bellows, reaction plate, flexible straps
and vibration isolators.

B81-10077
CONSTANT-PRESSURE HYDRAULIC PUMP
C. W. GALLOWAY
Sep. 1982
MSC-18754 Vol. 6, No. 1, P. 76
Constant output pressure in gas-driven hydraulic pump
would be assured in new design for gas-to-hydraulic power
converter. With a force-multiplying ring attached to gas
piston, expanding gas would apply constant force on
hydraulic piston even though gas pressure drops. As a result,
pressure of hydraulic fluid remains steady, and power output
of the pump does not vary.

B81-10078
ADHESIVES MIXER APPLICATOR
D. O. RAMOS (General Electric Co.) and K. E. WERNER
Sep. 1982
MSC-18916 Vol. 6, No. 1, P. 77
Two-part adhesives are stored, mixed, and dispensed
by an applicator originally developed for use aboard the
Space Shuttle orbiter. Compressed gas furnishes energy
for mixing and dispensing. An operator need only to open
pressure valve and pull a trigger on dispenser nozzle to
apply adhesive.

B81-10079
AUTOMATIC COLLECTION OF ROCK AND SOIL SAM-
PLES
G. M. KYRIAS (Martin Marietta Corp.)
Sep. 1982
MSC-18868 Vol. 6, No. 1, P. 77
Proposed machine would sample rock or soil automatic-
ally. Mounted on a wheeled or tracked vehicle, machine
positions drill for cut at any angle from horizontal to vertical,
moves power head to drive drill into cut, and stores drilled
core in a container. New concept may also be useful in
terrestrial agricultural and geologic surveys.

B81-10080
AERODYNAMICS IMPROVE WIND WHEEL
V. W. RAMSEY (National Research Counsel)
Sep. 1982
MFS-25506 Vol. 6, No. 1, P. 78
Modifications based on aerodynamic concepts would
raise efficiency of wind-wheel electric-power generator.
Changes smooth airflow, to increase power output, without
increasing size of wheel. Significant improvements in
efficiency anticipated without any increase in size or number
of moving parts and without departing from simplicity of
original design.

B81-10081
LATHE ATTACHMENT FINISHES INNER SURFACE OF
TUBES
A. J. LANCKI
Sep. 1982
MSC-18780 Vol. 6, No. 1, P. 79
Extremely smooth finishes are machined on inside
surfaces of tubes by new attachment for a lathe. The
relatively inexpensive accessory, called a 'microhone,' holds
a honing stone against workpiece by rigid tangs instead of
springs as in conventional honing tools. Inner rod permits
adjustment of honthing stone, while outer tube supports
assembly. Outer tube is held between split blocks on lathe
toolpost. Microhoning can be done with either microhone
or workpiece moving and other member stationary.
ADVANCES IN TURBINE-ENGINE TECHNOLOGY
J. C. FRECHE and M. G. AULT
Sep. 1982 See Also NASA TM-X-73628(N77-33159/NSP)

Status report describes major advances in high-temperature materials, coatings, and turbine-blade cooling technology for aircraft turbine engines, which are keys to achieving improved performance.

B81-10201
SIMPLER VARIABLE-SPEED DRIVE FOR FAN OR PUMP
H. D. OBLER
Nov. 1982

Static pressure developed by a fan or pump is used directly to control its speed in a new drive unit. System is simpler and more economical than many other speed controllers, although it is less accurate and has a narrower speed range. However, since very accurate control is not usually required for fans and pumps, unit would work well in many applications.

B81-10202
MAGNETIC BEARING CONSUMES LOW POWER
P. A. STUDER
Nov. 1982

Energy-efficient linear magnetic bearing maintains a precise small separation between its moving and stationary parts. Originally designed for cryogenic compressors on spacecraft, proposed magnetic bearing offers an alternative to roller or gas bearing in linear motion system. Linear noncontacting bearing operates in environments where lubricants cannot be used.

B81-10203
MAGNETIC BEARING WITH ACTIVE CONTROL
M. GOLDOWSKY (North American Philips Corp.)
Nov. 1982

Magnetic shaft bearing employs electromagnets energized by signals related to shaft position and velocity. Electromagnets are arranged in orthogonal pairs. Axial and rotational shaft motions are accommodated, and lateral motions are restrained. Axial motion can also be restrained. Self-regulating bearing includes velocity and position control.

B81-10204
SPRING SUPPORT FOR TURBOPUMP ROTOR BEARING
M. L. STRANGELED (Rockwell International Corp.) and C. T. ELLINGBOE (Rockwell International Corp.)
Nov. 1982

Novel bearing support for liquid-oxygen turbopumps protects against impact loads while avoiding a major disadvantage of earlier flexible supports. It allows controlled axial movement necessary for proper operation of pressure-operated pump impeller. While spring-loading rotor to midpoint of the axial movement to avoid impact-load damage to turbopump components. Support is made by machining azimuthal slots in cylindrical portion. Resulting structure permits controlled axial deformations.

B81-10205
'BOTTLE-BRUSH' HEAT EXCHANGER
E. TWARD (CALTECH) and J. R. GATEWOOD (CALTECH)
Nov. 1982

Heat exchanger consists of a metal tube with wires extending inward from wall. Conduction of heat along wires improves heat transfer to gas or other filling. Fluid is heated throughout the cross section of tube. Suggested applications are refrigerators, heat engines, thermal instrumentation, and heat switches.

B81-10206
CAM-DESIGN TORQUE WRENCH
P. H. J. SCHICK (Rockwell International Corp.) and S. A. GATTUSO (Rockwell International Corp.)
Nov. 1982

MFS-19586 Vol 6., No. 2, P. 98
GA'I-rUSO (Rockwell International Corp.)

Panels, sheets, doors and other structures could be easily attached to and removed from mating part by proposed new fastener. Fastener is permanently anchored in removable part only. Its protruding end is inserted into a hole in mating part. When wedge pin is screwed tightly closed, segmented collar contracts or expands to release parts or to grip them. Installation has no loose parts, and no rear nut is needed.

B81-10083
RESISTANCE HEATER HELPS STIRLING-ENGINE RESEARCH
F. W. HOEHN (CALTECH)
Sep. 1982

Stirling engine heater head consists of 18 double-turn coils of tubing, each of which is tightly wrapped with resistance-heating element, through which working gas flows. Coils form a toroid about periphery of heater-head body. With a new resistance heater, total circuit resistance can be selected independently of tube geometry by changing size of wires and/or number of wire wraps around each tube.

B81-10084
BALL-AND-SOCKET JOINT CAN BE DISASSEMBLED
R. S. TOTAH (Rockwell International Corp.)
Sep. 1982

Ball-and-socket joint originally developed for construction of large platforms in zero g could be used in such Earth-based temporary structures as scaffolding, camping equipment, tent posts, trade shows and displays. New joint consists of a socket mounted on central hub or union and ball-ended bolt or fitting mounted at end of a column or any structural member. Unit is self-contained, requires no loose hardware and is engaged or disengaged without tools manually, or remotely by a manipulator.

B81-10085
INTEGRATED STRUCTURAL AND CABLE CONNECTOR
R. S. TOTAH (Rockwell International Corp.)
Sep. 1982

Ball-and-socket coupling includes fiber-optic cable. Three steps couple two parts of fiber-optic cable: ball is inserted into socket; cone is released in, and cable moves toward plug. Sleeve is pulled to end of its travel and cable and plug are mated. Device is a quick-connect/disconnect coupling that has application in hazardous environments, such as space, undersea and nuclear installations.

B81-10086
DEVICE ACQUIRES, ORIENTS, AND CLAMPS
E. C. PRUETT (Essex Corp.) and K. B. ROBERTSON (Essex Corp.)
Sep. 1982

Proposed mechanism secures an object in three stages: initial acquisition, alinement, and clamping. Originally developed to aid Space Shuttle crews in retrieving satellites, concept may also be useful in undersea work or as a machine-tool attachment for quick changes of tools.

B81-10087
ADVANCES IN TURBINE-ENGINE TECHNOLOGY
J. FRECHE and M. G. AULT
Sep. 1982

Status report describes major advances in high-temperature materials, coatings, and turbine-blade coating
New Torque wrench for electrical connectors automatically tightens its grip with increasing torque to insure against slippage. Tool requires only minimal clearance between connector and adjacent structures or components. Wrench is operated with one hand and can be used on connectors of various shapes.

B81-10207
CLAMP RESTRAINS PRESSURE LINE
J. A. ALIBERTI
Nov. 1982
KSC-11205 Vol. 6, No. 2, P. 204

Safety restraint protects people and property if a high-pressure fitting fails. As long as pressure line remains attached at the fitting, clamp exerts essentially no force on hose. If fitting fails, force of fluid leaving free end of hose causes the cam on the clamp to compress hose with a positive locking action.

B81-10208
UNIDIRECTIONAL FLEXURAL PIVOT
H. BAHIMAN
Nov. 1982
GSC-12622 Vol. 6, No. 2, P. 204

Flexural pivot deflects in only one angular direction (either clockwise or counterclockwise) and has a longer operating life than many previous designs. Pivot consists of two rings interconnected by three flat metal parallelograms welded into grooves or slots in inside diameters of rings. Springs flex to relieve compressive stress imparted by angular rotation.

B81-10209
TECHNIQUE FOR MACHINING GLASS
S. H. RICE
Nov. 1982
GSC-12636 Vol. 6, No. 2, P. 205

Process for machining glass with conventional carbide tools requires a small quantity of a lubricant for aluminum applied to area of glass to be machined. A carbide tool is then placed against workpiece with light pressure. Tool is raised periodically to clear work of glass dust and particles. Additional lubricant is applied as it is displaced.

B81-10210
IMPROVED HIGH-TEMPERATURE SEAL
K. E. WOOD (Rockwell International Corp.), P. P. ZEBUS (Rockwell International Corp.), and A. R. OLSON (Rockwell International Corp.)
Nov. 1982
MSC-19526 Vol. 6, No. 2, P. 206

High-temperature seals on Space Shuttle Orbiter elevons will be improved by a new flexible seal design that increases the number of leak barriers, allows for thermal expansion and cuts weight by more than two-thirds. Improved seal may be useful in applications where it is necessary to seal gaps between moving surfaces.

B81-10211
COMPACT LIQUID DEAERATOR
S. T. YAMAUChI (Rockwell International Corp.)
Nov. 1982
MSC-18936 Vol. 6, No. 2, P. 206

Gases are removed from liquids by a new deaerator that takes up only 5 inches (12.7 cm) at top of a medium-sized storage tank. Deaerator has a multiple cascading header that exposes more fluid at lower pressures than typical commercial deaerators. Potential applications are in hydraulic systems for aircraft and heavy machinery, in cooling systems where deaerated liquid is needed to prevent cavitation of pump.

B81-10212
TOUCH SENSOR RESPONDS TO CONTACT PRESSURE
A. K. BEJCZY (CALTECH)
Nov. 1982
NPO-15375 Vol. 6, No. 2, P. 207

Optical tactile sensor for mechanical hands senses contact pressure via change in light reflected from an elastic covering. Pressure against a cell cover causes distortion, which changes internal reflection of light. Change is sensed by detector, and output signal informs operator of contact. The greater the pressure and distortion, the greater the change in light reflection.

B81-10213
STAGED TURBOJET ENGINE WOULD EMIT LESS NO
R. A. CRAIG and H. O. PRITCHARD (Centre for Research in Experimental Space Science, York University)
Nov. 1982
ARC-10814 Vol. 6, No. 2, P. 208

New turbojet-engine concept could reduce nitric oxide emissions to a level from one-fifteenth to as little as one three-hundredth that of conventional units. Multi-stage combustor could overcome flame instability problems associated with previous low-flame-temperature systems. It operates in a relatively-simple adiabatic mode without elaborate fuel-flow and air circulation patterns.

B81-10214
IMPROVED CABLE GRIP REDUCES WEAR
R. J. PEYRAN
Nov. 1982
ARC-11318 Vol. 6, No. 2, P. 209

Improved cable grip reduces wear due to sliding friction between cable and gripping surfaces. Drive wheels are grooved with a helical pattern that meshes with the lay of cable, analogous to a worm gear. Cable is gripped between drive wheels and guide rollers, and cable pull is exerted on the grip when drive wheels are slowed by hydraulic clutches. Cable grip may be applicable to cable-operated systems, such as ore trams in mines, overhead cable cars and ski lifts.

B81-10215
VACUUM HEAD REMOVES SANDING DUST
C. G. BENGLE (Rockwell International Corp.) and J. W. HOLT (Rockwell International Corp.)
Nov. 1982
MSC-19526 Vol. 6, No. 2, P. 210

Vacuum sander prevents sanding dust from entering a work area, since dust particles are drawn off as quickly as they are produced. Tool is useful where dust presents health hazards, interferes with such processes as semiconductor manufacture, or could destroy wet paint or varnish finishes. Could be used to sand such materials as lead paint.

B81-10216
TOOL LIFTS AGAINST SURFACE TENSION
P. MILLER (McDonnell Douglas Corp.), S. MCCORMICK (McDonnell Douglas Corp.), E. MUEGGE (McDonnell Douglas Corp.), and P. DEVEREAUX (McDonnell Douglas Corp.)
Nov. 1982
GSC-12672 Vol. 6, No. 2, P. 210

Simple tool overcomes surface tension gently but firmly by tightening a bolt in steel angle located on either side of an object mounted on a base plate, such as a battery. As bolts press against protective sheets of metal on the mounting plate, they lift the object, overcoming surface tension of grease on the mounting plate.

B81-10217
FOUR-DEGREE-OF-FREEDOM PLATFORM
R. C. CHOU (Franklin Institute)
Nov. 1982
ARC-11208 Vol. 6, No. 2, P. 211

Hydraulic actuators make a new motion control system more compact and more efficient than previous designs that use gimbal systems. Platform moves a platform in four degrees of freedom—simultaneous pitch, roll, yaw, and displacement. Developed for flight simulators, kinematic concept may also
be useful in stabilizing platforms for shipboard equipment, material-handling machinery, and construction equipment.

B81-10218
EXPLOSIVE SEPARATION OF ELECTRICAL CONNECTORS

R. T. BARBOUR (Rockwell International Corp.)

Vol. 6, No. 2, P. 212

Nov. 1982

MSC-18828

Concept proposed for separating electrical cable that connects the Space Shuttle to deployable payloads could be used to sever electrical connections in other inaccessible environments. Although triggered explosively, connector would not release combustion products that could damage sensitive electronics. Suggested applications are undersea exploration, chemical processing and areas with high levels of radiation.

B81-10219
RELIABLE 'UNLATCH'

T. O. KILLGROVE (CALTECH)

Vol. 6, No. 2, P. 213

Nov. 1982

NPO-15438

Reliable unlatching mechanism utilizes preloading, a favorable geometric arrangement of mating surfaces, and redundancy to assure release. Even if only one rocking arm initially releases, the entire assembly will rotate or rock sideways to complete unlatching. Device could be useful in other applications requiring reliable remote disconnection of cables or pipes.

B81-10220
LATCH WITH SINGLE-MOTION RELEASE

D. N. SETZER (Pan American World Airways, Inc.) and S. L. HOOPER (Pan American World Airways, Inc.)

Vol. 6, No. 2, P. 214

Nov. 1982

MSC-18923

Quick-load/quick-release mechanism allows an object such as a battery to be inserted with a single motion, locks and latches the object, and allows the object to be released with a single motion.

B81-10325
A SIMPLE TILT METER

M. G. DIX, D. R. HARRISON, and T. M. EDWARDS

Dec. 1982

ARC-11344

Bubble vial with external aluminum-foil electrodes is sensing element for simple indicating tiltmeter. To measure bubble displacement, bridge circuit detects difference in capacitance between two sensing electrodes and reference electrode. Tiltmeter was developed for experimentation on forecasting seismic events by changes in Earth’s magnetic field.

B81-10326
‘TEACHING’ AN INDUSTRIAL ROBOT TO SPRAY

A. R. EVANS (United Space Boosters Inc.) and G. K. SWEET (United Space Boosters Inc.)

Dec. 1982

MFS-25523

Vol. 6, No. 3, P. 320

Teaching device, consisting of spacer rod or tube with three-pointed tip and line level, is used during pattern ‘teach-in’ to make sure that robot manipulator holds spray gun perpendicular to surface to be sprayed and at right distance from it. For slanted surfaces angle adapter is added between spacer rod and line-level indicator. Angle is determined by slope of surface to be sprayed, thus allowing a perpendicular spray pattern against even slanted surfaces.

B81-10327
HYBRID POSITION/FORCE CONTROL OF ROBOT MANIPULATORS

M. H. RAIBERT (CALTECH) and J. J. CRAIG (CALTECH)

Dec. 1982

NPO-14997

In proposed method for task-oriented control of robot manipulator, position and force error signals for each task degree of freedom are used to calculate appropriate control parameters in task coordinates. Position and force error signals are transformed and summed to create drive signal for each actuator. New hybrid control technique does not require operator to supply complex transform matrices. Control trajectories are easily visualized in terms of task to be performed.

B81-10328
PRECISE RESTRAIGHTENING OF BENT STUDS

R. E. BOARDMAN (Rockwell International Corp.)

Vol. 6, No. 3, P. 321

Dec. 1982

MSC-18905

New method allows for virtually any bolt to be easily converted to ‘captive’ bolt. Method eliminates need for separate design for each application. Cup-shaped washer that is flattened secures tap to bolt. Wire attached to tab holds bolt assembly captive. Flattening washer can also be done during installation of bolt. Wash, tab and spacer are all made of corrosion-resistant steel.

B81-10330
ARTICULATED VACUUM CHUCK

S. A. PETERSON (Rockwell International Corp.)

Vol. 6, No. 3, P. 323

Dec. 1982

MSC-18933

Vacuum chuck conforms to complex surface contours. Gripping surface is polyurethane panel embedded with links of roller chain. Panel flexes under vacuum to adjust to surface contour, and then bolts are tightened to lock configuration. Possible applications of new chuck are in pull-testing contoured surfaces, holding assemblies together for repairs, or for handling unusually-shaped parts.

B81-10331
FLYWHEELS WOULD COMPENSATE FOR ROTOR IMBALANCE

J. A. S. HRASTAR

Vol. 6, No. 3, P. 323

Dec. 1982

GSC-12550

Spinning flywheels within rotor can null imbalance forces in rotor. Flywheels axes are perpendicular to each other and to rotor axis. Feedback signals from accelerometers or strain gauges in platform control flywheel speeds and rotation directions. Concept should be useful for compensating rotating bodies on Earth. For example, may be applied to large industrial centrifuge, particularly if balance changes during operation.

B81-10332
HIGH-SPEED WAFER SLICER

F. SCHMID (Crystal Systems, Inc.), C. P. KHATTAK (Crystal Systems, Inc.), and M. B. SMITH (Crystal Systems, Inc.)

Vol. 6, No. 3, P. 324

Dec. 1982

NPO-15483

Multiblade cutter slices silicon ingots into solar-cell wafers quickly and with little waste. Speed and blade pressure ensure high wafer-production rate. Lightweight, balanced construction minimizes blade vibration and reduces sideways motion that would otherwise widen kerf and waste silicon.
08 FABRICATION TECHNOLOGY

B81-10333
BRUSHLESS CLEANING OF SOLAR PANELS AND WINDOWS
H. W. SCHNEIDER (CALTECH)
Dec. 1982
MFS-19645 Vol. 6, No. 3, P. 325
Machine proposed for cleaning solar panels and reflectors uses multiple vortexes of air, solvent, and water to remove dust and dirt. Uses no brushes that might abrade solar surfaces and thereby reduce efficiency. Machine can be readily automated and can be used on curved surfaces such as aprismatic reflectors as well as on flat ones. Cleaning fluids are recycled, so that large quantities of water and solvent are not needed.

B81-10334
SAFETY BOLT DOUBLES AS A BUSHING-REMOVAL TOOL
C. E. HAVENKAMP (McDonnell Douglas Corp.)
Dec. 1982
MSC-20032 Vol. 6, No. 3, P. 328
Bolts fitted to close tolerances and limited access can be removed without damage to housing by using bolt with integrated locking dog. Such self-retaining positive-locking bolts are normally used as fasteners in critical joints where accidentally loosened bolt could cause damage or injuries.

B81-10335
IMPROVED NOZZLE WOULD REDUCE CRYOGENIC BOILING
E. D. SIMON (Martin Marietta Corp.) and W. E. SIMON (Martin Marietta Corp.)
Dec. 1982
MFS-25589 Vol. 6, No. 3, P. 327
Improved nozzle has slotted orifice that would impart swirling motion to cryogenic liquid inside cylinder. Nozzle is installed with axis vertical. Since most of flow out of cylinder would be radial, fluid spray would not reach liquid surface.

B81-10336
STAKING TOOL FOR HARD METALS
J. A. STEIN (Rockwell International Corp.)
Dec. 1982
MSC-20009 Vol. 6, No. 3, P. 328
Simple tool staked hard-steel parts—that is, forces one part into recess on another, deforming receiving part so that it restrains inserted one. Tool allows small machine shops to stake hard steel without massive presses. Can be used, for example, to insert ball and spring into hard steel snap-in tool body such as that used to turn socket wrenches. Use is not limited to hard steel; can be used as well to assemble parts made of softer materials.

B81-10337
FORCE AUGMENTATION FOR RELIEF VALVE
J. LUER (Parker Hannifin Corp.)
Dec. 1982
MSC-20065 Vol. 6, No. 3, P. 329
Simple design change for poppet relief valve enables flow through valve to exert additional force to help keep valve open. Although originally intended for relief valves for liquid oxygen and liquid nitrogen in Space Shuttle orbiter, concept is applicable to pressure-or flow-actuated valves for wide range of fluids and temperatures.

B81-10338
DAMPING VIBRATION AT AN IMPELLER
J. A. HAGER (Rockwell International Corp.) and B. F. ROWAN (Rockwell International Corp.)
Dec. 1982
MFS-19645 Vol. 6, No. 3, P. 329
Vibration of pump shaft is damped at impeller—where vibration-induced deflections are greatest—by shroud and seal. Damping reduces vibrational motion of shaft at bearings and load shaft places on them. Flow through clearance channel absorbs vibration energy.

B81-10339
TESTS OF 38 BALL-BEARING GREASES
E. L. MCMURTRY
Dec. 1982
MFS-25624 Vol. 6, No. 3, P. 330
Report presents interim results in program of long-term tests of ball-bearing greases in vacuum, oxidizing, and otherwise hostile environment. Program is motivated by need for mechanisms that will operate for long periods in spacecraft or space stations. Class of lubricants based on perfluoroalkylpolyether (PFPE) with fluorotelomer thickeners has given best results in vacuum tests completed thus far. Test methods and performances of various lubricants could be of interest in automotive and industrial communities.
FURNACE fabricating ribbons or sheets of silicon. It is cell performance.

dendritic crystal assembly allows molten silicon to supercool over in crucible.

a region of supercooled molten silicon supercooled melt, so width of ribbon depends on how wide by growing wide dendritic webs, which can be very long quality silicon ribbon crystals. One way to produce them is NPO-14859 Vol. 6, No. 1, P. 91 Sep. 1982

polysilicon Stopper moves out of opening in hopper, allowing part of fastened to cone-shaped stopper in bottom of hopper. through an isolation valve. Cable that supports hopper is growing wide dendritic webs, which can be very long quality silicon ribbon crystals. One way to produce them is NPO-14859 Vol. 6, No. 1, P. 91 Sep. 1982

silicate in beta-silicon nitride. to molten silicon. SiBON is a solid candidate material is

inexpensive solar-cell array. Prevention in can arise in crystal growth of any material that pressures above about 4 torr, silicon carbide can be used as refractory liner. The problem of carbide contamination can arise in crystal growth of any material that forms a carbide more stable than carbon monoxide. Prevention in such cases is possible by using noncarbon refractories in place of graphite.

improved facility for producing silicon web C. S. DUNCAN (Westinghouse Electric Corp.) Sep. 1982

Growth of continuous silicon dendritic web that is up to 5 cm wide instead on only 1.3 cm is formed by freezing of supercooled liquid silicon between two needlelike dendritic crystals. Growth takes place in a work chamber filled with argon gas. As web grows, it is drawn out of chamber through a duct and guided to a storage reel.

A new circuit, when combined with melt-replenishment system and melt level sensor, offers continuous closed-loop automatic control of melt-level during web growth. Installed on silicon-web furnace, circuit controls melt-level to within 0.1 mm for as long as 8 hours. Circuit affords greater area growth rate and higher web quality, automatic melt-level control also allows semiautomatic growth of web over long periods which can greatly reduce costs.

B81-10098 TEMPERATURE-CONTROLLED SUPPORT FOR A SEED CRYSTAL J. L. REEVE (TRW, Inc.) Sep. 1982 MFS-25341 Vol. 6, No. 1, P. 94

A rodlike structure called a sting has been proposed for supporting a seed crystal at center of a body of saturated fluid and for controlling temperature/time profile of seed for experiments on crystal growth. Seed crystal is cooled or heated by thermoelectric modules while surrounding sheath remains at solution temperature. Heat is withdrawn to cooling fins by heat pipe, which replaces solid copper rod in a previous design.

Addition of silica fibers greatly reduces shrinkage and cracking during casting of ceramics. Fiber-reinforced slip-cast silica ceramics are also tougher and have lower dielectric loss. Silica fibers are hyperpure material containing only 1 part per million total metal-ion impurities. Hyperpure fibers ensure high reflectance and allow casting to be fired at temperature greater than 2,200 degrees F without loss of strength from devitrification.

B81-10100 FLUXLESS BRAZING OF LARGE STRUCTURAL PANELS C. S. BELIVUKAN (Rockwell International Corp.) Sep. 1982 See Also NASA CR-3159(N79-31628/NSP) LAR-12519 Vol. 6, No. 1, P. 96

Fluxless brazing is used in fabricating aluminum structural panels that withstand high internal pressure. Aluminum sheet of structural thickness with 4045 aluminum/silicon-braze-alloy cladding is brazed to corrugated 'fin stock' having channels 0.001 inch (0.025mm) high by same width. Process is carried out in an inert (argon) atmosphere in a retort furnace. Filler bars are used in some channels to prevent fin stock from collapsing as pressure is applied.

B81-10101 WEATHERPROOF CRIMP CONNECTOR F. J. MOSNA (Motorola, Inc.) Sep. 1982 NPO-15497 Vol. 6, No. 1, P. 97

Concept for electrical connector combines environmental durability of a sealed connection with simplicity and economy of a crimped connection. Device should provide convenient and reliable outdoor electrical connections. Environmental durability and crimppability are ensured by
elastomer tube and metal barrel. An external metal sheath protects elastomer from damage during crimping.

B81-10102
CAPACITIVELY-HEATED FLUIDIZED BED
E. J. MCHAULE (Union Carbide Corp.)
Sep. 1982

Fluidized-bed chamber in which particles in bed are capacitively heated produces high yields of polycrystalline silicon for semiconductor devices. Deposition of unrecoverable silicon on chamber wall is reduced, and amount of recoverable silicon depositing on seed particles in bed is increased. Particles also have a size and density suitable for direct handling without consolidation, unlike silicon dust produced in heated-wall chambers.

B81-10103
SHAPING TRANSISTOR LEADS FOR BETTER SOLDER JOINTS
H. MANDEL (TRW, Inc.) and J. D. DILLON (TRW, Inc.)
Sep. 1982

Special lead-forming tool puts step in leads of microwave power transistors without damaging braze joints that fasten leads to package. Stepped leads are soldered to circuit boards more reliably than straight leads, and stress on braze is relieved. Lead-forming hand-tool has two parts: a forming die and an actuator. Spring-loaded saddle is adjusted so that when transistor package is placed on it, leads rest on forming rails.

B81-10104
METALLIC PANELS WOULD INSULATE AT 2,700 DEGREES F
R. L. JACKSON
Sep. 1982

Multilayer metallic panels now under development as replacements for ceramic surface-insulation tiles of Space Shuttle could eventually be used in other aircraft, possibly even as thermal protection in ground-based applications. Various configurations of basic multilayer sandwich are expected to protect against temperatures ranging from 700 degrees to 2,700 degrees F (370 degrees -1, 480 degrees C). With assistance from heat-pipe cooling panels should withstand temperature to 3,500 degrees F (1,930 degrees C); however, heat pipes would not exceed 1,600 degrees F (870 degrees C).

B81-10105
WIRE EDM FOR REFRACTORY MATERIALS
G. R. ZELLARS, F. E. HARRIS, C. E. LOWELL, W. M. POLLMAN, V. J. RYS, and R. J. WILLS
Sep. 1982

In an attempt to reduce fabrication time and costs, Wire Electrical Discharge Machine (Wire EDM) method was investigated as tool for fabricating matched blade roots and disk slots. Eight high-strength nickel-base superalloys were used. Computer-controlled Wire EDM technique provided high quality surfaces with excellent dimensional tolerances. Wire EDM method offers potential for substantial reductions in fabrication costs for 'hard to machine' alloys and electrically conductive materials in specific high-precision applications.

B81-10106
HEAT LAMPS SOLDER SOLAR ARRAY QUICKLY
P. J. COYLE (RCA Corp.) and M. S. CROUTHAMEL (RCA Corp.)
Sep. 1982

Interconnection tabs in a nine-solar-cell array have been soldered simultaneously with radiant heat. Cells and tabs are held in position for soldering by sandwiching them between compliant silicone-rubber vacuum plates and transparent polyimide sealing membrane. Heat lamps warm cells, producing smooth, flat solder joints of high quality.

B81-10107
HIGH-TEMPERATURE SEAL FOR SLIDING-GATE VALVE
R. G. LEONARD (Rockwell International Corp.)
Sep. 1982

Sliding-gate valve originally developed for rocket exhaust-gas ducts is sealed by a Belleville spring. It is simple, compact, and operates over a wider range of temperatures than conventional O-ring sealed valves.

B81-10108
STRUCTURAL MODULES WOULD CONTAIN TRANSMISSION LINES
W. A. LEAVY
Sep. 1982

New proposal, originally suggested for Spacecraft, is a set of uniformly sized mass-transported modular structural elements that contain electric, fluid, and other transmission lines. Since lines are encapsulated, they are less likely to be damaged. Module shell could be solid metal, sheet metal, honeycomb, fiberglass, plastic, composites, or wood.

B81-10109
IC CAPACITORS ON GROUPS III-TO-V SUBSTRATES
G. E. ALCORN and R. JONES
Sep. 1982

 Oxides applied by a 'spin-on' process have been used to fabricate capacitors on gallium arsenide and indium phosphide substrates. They might also be used with other compounds of elements in groups III to V of the periodic table. The III-to-V materials are attractive for integrated circuits because they offer responses potentially six times faster than silicon.

B81-10210
LEVIATOR FOR CONTAINERLESS PROCESSING
L. H. BERG, W. A. ORAN, and J. M. THEISS
Sep. 1982

Objects are levitated by aerodynamic forces in an apparatus originally developed for space research but just as effective on Earth. New levitator is orientation-independent. Also works equally as well whether or not gravity is present. Apparatus supports a sphere by aerodynamic forces from gas flowing through convergent/divergent section. Concentric inner tube is moved along axis of cylindrical housing.

B81-10111
SPRAYED COATING RENEWS BUTYL RUBBER
R. B. MARTIN (Boeing Service International, Inc.)
Sep. 1982

Damaged butyl rubber products are renews by spray technique originally developed for protective suits worn by NASA workers. A commercial two-part adhesive is mixed with Freon-113 (or equivalent) trichlorofluoroethane to obtain optimum viscosity for spraying. Mix is applied with an external-air-mix spray gun.

B81-10112
METAL SANDWICH PANEL WITH BIAxially CORRUGATED CORE
W. L. KO
Sep. 1982

Biaxially-corrugated sandwich core, formed by concurrent diffusion bonding and superplastic deformation, makes a proposed sandwich panel unusually strong and stiff. New panel should be useful where light-weight panel that
resists bending is needed. Panel would have internal core consisting of multitude of hollow, truncated pyramids. Four layers of panel would be diffusion-binded at all contacting areas.

B81-10113

ULTRA-THIN-FILM GaAs SOLAR CELLS
K. L. WANG (CALTECH), B. K. SHIN (CALTECH), Y. C. M. YEH (CALTECH), and R. J. STIRN (CALTECH)

Sep. 1982

NPO-14930 Vol. 6, No. 1, P. 108

Process based on organo-metallic chemical vapor deposition (OM/CVD) of trimethyl gallium with arsine forms economical ultrathin GaAs epitaxial films. Process has higher potential for low manufacturing cost and large-scale production compared with more-conventional halide CVD and liquid-phase epitaxy processes. By reducing thickness of GaAs and substituting low-cost substrate for single-crystal GaAs wafer, process would make GaAs solar cells commercially more attractive.

B81-10114

SEALING STRIP LINE FOR EXTREME TEMPERATURES
G. C. SARMENT (Wattsing Johnson Co.)

Sep. 1982

MSC-16994 Vol. 6, No. 1, P. 108

Enclosed strip-line feed for microwave antennas is made by plating exterior of an assembly of etched copper-clad dielectric boards. New circuit consists of inner conductor, dielectric, and outer conductor, in a structure similar to a coaxial transmission line. New strip line could be used in airborne-radar front ends and feed networks; adaptable for underwater applications.

B81-10115

WIRE WHIP KEEPS SPRAY NOZZLE CLEAN
H. R. CARROLL (Martin Marietta Corp.)

Sep. 1982

MFS-25175 Vol. 6, No. 1, P. 109

Air turbine-driven wire whip is clamped near spray-gun mount. When spray gun is installed, wire whip is in position to remove foam buildup from nozzle face. Two lengths of wire 1 to 2 inches long and about 0.03 inch in thickness are used. Foam spray would be prevented from accumulating on nozzle face by increasing purge flow and cutting vortex-generating grooves inside cap and on nozzle flats.

B81-10116

MATERIALS PROCESSING IN SPACE
R. J. NAUMANN

Sep. 1982 See Also NASA TM-79294(N80-31418/NSP)

MFS-26544 Vol. 6, No. 1, P. 110

A report describes investigations of materials processing in low-gravity environment. Ultimately, research could lead to new commercially-applicable materials and processes and to an understanding of constraints imposed by gravity. NASA-supported work is carried out in 46 academic, industrial, and Government laboratories, and covers a number of areas. An overview is given of objective and current status of development for over 100 tasks.

B81-10221

SOUND WAVES LEVITATE SUBSTRATES
M. C. LEE (CALTECH) and T. G. WANG (CALTECH)

Nov. 1982

NPO-15435 Vol. 6, No. 2, P. 217

System recently tested uses acoustic waves to levitate liquid drops, millimeter-sized glass microballoons, and other objects for coating by vapor deposition or capillary attraction. Cylindrical contactless coating/handling facility employs a cylindrical acoustic focusing radiator and a tapered reflector to generate a specially-shaped standing wave pattern. Article to be processed is captured by the acoustic force field under the reflector and moves as reflector is moved to different work stations.
08 FABRICATION TECHNOLOGY

B81-10228
EDDY-CURRENT METER WOULD CHECK WELD WIRE
ONLINE
G. R. BAILEY (General Dynamics Corp.)
Nov. 1982
MSC-18891 Vol. 6, No. 2, P. 222
Simple technique samples an entire spool of welding wire to test for contamination or unauthorized filler wire. Since unit monitors entire length of wire used in welding, completed welds need not be inspected individually. Technique would save time, avoiding human interface and production delays.

B81-10229
RUGGEDIZED' MICROCOMPUTER BUS
T. J. BUDNEY and R. W. J. STONE
Nov. 1982
GSC-12681 Vol. 6, No. 2, P. 222
"Ruggedized" version of the STD microcomputer bus withstands rigors of space-flight. Could be used as a basis for microcomputers in other hazardous environments, including those at high and low temperatures, those in vacuum, or those subject to extreme shock and vibration.

B81-10230
BORON/ALUMINUM-TITANIUM HAT-SECTION STIFFENER
C. R. MAIKISH (General Dynamics Corp.) and R. R. ECKBERG (General Dynamics Corp.)
Nov. 1982
MSC-18895 Vol. 6, No. 2, P. 223
B/Al-Ti hat-section stiffener is formed from laminated boron/ aluminum and titanium foils. Double layers of titanium at end of a section offer additional strength and protection. Advanced composite structural element combines stiffness, light weight and durability.

B81-10231
PROLONGING THE LIFE OF REFRACTORY FILLERS
C. SCHOMBURG and R. L. DOTTIS
Nov. 1982
MSC-18832 Vol. 6, No. 2, P. 223
Useful life of a refractory glass cloth gap filler is increased by coating it with a suspension of silicon carbide in butanol and polyethylene. Coating is applied to the refractory filler that seals gaps between insulating tiles on the Space Shuttle orbiter. Silicon carbide coating prevents embrittlement at high temperatures such as those encountered on reentry into Earth's atmosphere.

B81-10232
NEW METHOD FOR JOINING STAINLESS STEEL TO TITANIUM
W. H. EMANUEL (McDonnell Douglas Corp.)
Nov. 1982
MSC-18820 Vol. 6, No. 2, P. 224
In new process, edge of stainless-steel sheet is perforated, and joined to titanium by resistance seam welding. Titanium flows into perforations forming a strong interlocking joint. Process creates a quasi-metallurgical bond between the thin sheets of stainless steel and titanium.

B81-10233
ORIENTATION INSENSITIVITY FOR ELECTROCHEMICAL SENSOR
R. B. BROMER (Becton-Dickinson and Co.)
Nov. 1982
KSC-11176 Vol. 6, No. 2, P. 224
Using a wettable polypropylene wick, performance of an electro-chemical hydrazine sensor is made independent of its orientation. Wick keeps all electrodes in constant contact with electrolyte solution so that one or more of the electrodes do not become isolated from the electrolyte if the sensor is tilted or vibrated.

B81-10234
IMPROVED AIR-TREATMENT CANISTER
A. M. BOEHM (United Technologies Corp.)
Nov. 1982
MSC-18942 Vol. 6, No. 2, P. 225
Proposed air-treatment canister integrates a heater-in-tube water evaporator into canister header. Improved design prevents water from condensing and contaminating chemicals that regenerate the air. Heater is evenly spiraled about the inlet header on the canister. Evaporator is brazed to the header.

B81-10235
EASILY ASSEMBLED REFLECTOR FOR SOLAR CONCENTRATORS
F. L. BOUQUET (CALTECH) and T. HASEGAWA (CALTECH)
Nov. 1982
NPO-15518 Vol. 6, No. 2, P. 226
Reflectors for concentrating solar collectors are assembled quickly and inexpensively by method that emplois precontoured supports, plastic film, and adhesive to form a segmented glass mirror. New method is self-focusing, and does not require skilled labor at any stage. Contoured rib support film and mirror segments of reflector. Nine mirror segments are bonded to sheet. Combined mirror surface closely approximates a spherical surface with a radius of curvature of 36 inches (0.91 m).

B81-10236
INTEGRATED SOLID-ELECTROLYTE CONSTRUCTION
R. RICHTER (CALTECH)
Nov. 1982
NPO-15471 Vol. 6, No. 2, P. 227
Proposed construction method for electrolytic cells would integrate porous surface electrodes into a block of solid electrolyte. Porous electrodes would facilitate unrestricted gas flow thereby improving cell performance. Electrode wire mesh is embedded at surface of solid electrolyte. Construction would assure high electrode conductance and low resistance to gas flow.

B81-10237
ASSEMBLING MULTICOLOR PRINTING PLATES
W. J. WATERS
Nov. 1982
LEW-13598 Vol. 6, No. 2, P. 227
Improved joining method uses wave-soldering techniques developed for integrated-circuit-board assemblies. Thermosetting plastic is replaced by wave soldering, which applies a thin even coat of solder to mating copper surfaces. This is done after ink holes and channels have been protected by water-soluble, high-temperature solder mask which prevents wetting and clogging.

B81-10238
SELECTIVE ETCHING OF SEMICONDUCTOR GLASSIVATION
N. CASPER (Sperry Corp.)
Nov. 1982
GSC-12687 Vol. 6, No. 2, P. 228
Selective etching technique removes portions of glasivation on a semi-conductor die for failure analysis or repairs. A periodontal needle attached to a plastic syringe is moved by a microprobe. Syringe is filled with a glass etch. A drop of hexane and vacuum pump oil is placed on microcircuit die and hexane is allowed to evaporate leaving a thin film of oil. Microprobe brings needle into contact with area of die to be etched.

B81-10239
INDIUM SECOND-SURFACE MIRRORS
F. L. BOUQUET (CALTECH) and T. HASEGAWA (CALTECH)
Nov. 1982
NPO-15085 Vol. 6, No. 2, P. 228
Second-surface mirrors are formed by vapor deposition of indium onto glass. Mirrors have reflectances comparable to those of ordinary silver or aluminized mirrors and are expected to show superior corrosion resistance. Mirrors may be used in solar concentrators.

B81-10240

MATCHING DISSIMILAR GRAPHICAL SCALES

R. H. FRENCH (Magnavox Co.)

Nov. 1982

MSC-14874 Vol. 6, No. 2, P. 229

Projection of one drawing on another with projected image adjusted to have same scale as other drawing permits quick comparisons of such features as relative sizes of parts and clearance or interferences in assemblies. Technique uses standard overhead projector and transparency of one drawing to project an enlarged image, the scale of which matches scale of second drawings. Image may be traced directly onto copy of second drawing.

B81-10241

DISH ANTENNA WOULD DEPLOY FROM A CANISTER

L. A. PINLEY (Astro Research Corp.) and J. A. HEDGEPETH (Astro Research Corp.)

Nov. 1982

NPO-15448 Vol. 6, No. 2, P. 229

37-tile portable microwave antenna is composed of hexagonal tiles supported by a truss. Skewed connecting struts are hinged at their ends, and rotated during storage and deployment. Proposed microwave antenna would be stored compactly in a canister and deployed onsite.

B81-10242

AIR BAG APPLIES UNIFORM BONDING PRESSURE

C. A. GILLESPIE (Rockwell International Corp.)

Nov. 1982

KSC-11182 Vol. 6, No. 2, P. 231

Air-bag box applies constant uniform pressure to tiles and other objects undergoing adhesive bonding. Box is basically a compliant clamp with adjustable force and position. Can be used on irregular surfaces as well as on flat ones. Pressurized air is led to bag through a tube so that it expands, filling the box and pressing against work. Bag adopts a contour that accommodates surface under open side of box.

B81-10243

GLASSES FOR SOLAR-CELL ARRAYS

F. L. BOUQUET (CALTECH)

Nov. 1982

NPO-15528 Vol. 6, No. 2, P. 231

Report presents data on glass for encapsulation of solar-cell arrays, with special emphasis on materials and processes for automated high-volume production of low-cost arrays. Commercial suppliers of glass are listed. Factors that affect the cost of glass are examined: type (sheet, float, or plate), formulation, and energy consumed in manufacturing.

B81-10244

CADAT PRINTED-WIRING-BOARD DESIGNER

C. D. BRINKERHOF (M & S Computing, Inc.)

Nov. 1982

MFS-25464 Vol. 6, No. 2, P. 232

CADAT printed-wiring-board (PWB) design printed-circuit and hybrid-circuit boards. It is comprised of four programs: preprocessor, placement program, organizer program, and the router. Component placement and interconnection paths are optimized.

B81-10245

COMPOSITE-MATERIAL POINT-STRESS ANALYSIS

F. SPEARS, S. (Rockwell International Corp.)

Nov. 1982

MSC-18978 Vol. 6, No. 2, P. 232

PSANAL computes composite-laminate elastic and thermal properties and allowable load levels for any combination of applied membrane and bending loads occurring at a point. Basic linear orthotropic stress/strain relationships and standard composite-laminate theory formulas are utilized.

B81-10340

AUTOMATED SOLAR-ARRAY ASSEMBLY

A. SOFFA (Kulicke & Soffa Industries, Inc.) and M. BYCER (Kulicke & Soffa Industries, Inc.)

Dec. 1982

NPO-15501 Vol. 6, No. 3, P. 333

Large arrays are rapidly assembled from individual solar cells by automated production line developed for NASA's Jet Propulsion Laboratory. Apparatus positions cells within array, attaches interconnection tabs, applies solder flux, and solders interconnections. Cells are placed in either straight or staggered configurations and may be connected either in series or in parallel. Are attached at rate of one every 5 seconds.

B81-10341

WALKING-BEAM SOLAR-CELL CONVEYOR

H. FEDER (Kulicke & Soffa Industries, Inc.) and W. FRASCH (Kulicke & Soffa Industries, Inc.)

Dec. 1982

NPO-15503 Vol. 6, No. 3, P. 334

Microprocessor-controlled walking-beam conveyor moves cells between work stations in automated assembly line. Conveyor has arm at each work station. In unison arms pick up all solar cells and advance them one station: then beam retracts to be in position for next step. Microprocessor sets beam stroke, speed and position.

B81-10342

VACUUM PICKUP FOR SOLAR CELLS

W. FRASCH (Kulicke & Soffa Industries, Inc.)

Dec. 1982

NPO-15500 Vol. 6, No. 3, P. 334

Flexible vacuum cups that handle solar cells conform to shape or cell back surfaces. Cups lift vertically, without tilt that might cause stress on interconnections, inaccurate placement, or damage to cells. Vacuum source is venturi valve mounted on air manifold.

B81-10343

ORIENTING AND APPLYING FLUX TO SOLAR CELLS

H. FEDER (Kulicke & Soffa Industries, Inc.) and W. FRASCH (Kulicke & Soffa Industries, Inc.)

Dec. 1982

NPO-15504 Vol. 6, No. 3, P. 335

Solar cells are oriented and fluxed automatically at first work station along solar-array assembly line. In under 2 seconds rotary drive rotates cell into proper position for applying solder flux to bus pad on collector side. When contact bus pad is in correct position, capstan drive is disengaged, and vacuum holddown beneath cell is turned on. Flux system lowers and applies preset amount of solder flux to bus pad. Two interconnect tabs are soldered to fluxed areas.

B81-10344

TAB INTERCONNECT WORK STATION

G. GARWOOD (Kulicke & Soffa Industries, Inc.)

Dec. 1982

NPO-15505 Vol. 6, No. 3, P. 336

Second work station along solar-array assembly line automatically attaches two interconnect tabs to each silicon solar cell. Machine feeds, forms, and cuts tabs from reel of pretinned metal ribbon, transfers tabs into position, and solders them to cell.

B81-10345

WORK STATION FOR INVERTING SOLAR CELLS

H. FEDER (Kulicke & Soffa Industries, Inc.) and W. FRASCH (Kulicke & Soffa Industries, Inc.)
INK: Feasibility of technique has been demonstrated in laboratory tests which show that neither angular orientation of materials eliminates need for fasteners (which require drilling or punching, add weight, and degrade stiffness) and can be totally automated in beam fabrication and assembly jigs. Proliferation of technique has been demonstrated in laboratory tests which show that neither angular orientation nor vacuum affect weld quality.

REFERENCES

B81-10346

SOLAR-CELL STRING CONVEYOR

W. FRASCH (Kulicke & Soffa Industries, Inc.) and W. FRASCH (Kulicke & Soffa Industries, Inc.)

Dec. 1982

NPO-15509

Vol. 6, No. 3, P. 337

String-conveyor portion of solar-array assembly line holds silicon solar cells while assembled into strings and tested. Cells are transported collector-side-down, while uniform cell spacing and registration are maintained. Microprocessor on machine controls indexing of cells.

B81-10347

BONDER FOR SOLAR-CELL STRINGS

G. CIAVOLA (Kulicke & Soffa Industries, Inc.) and W. FRASCH (Kulicke & Soffa Industries, Inc.)

Dec. 1982

NPO-15507

Vol. 6, No. 3, P. 338

String bonder for solar-cell arrays eliminates tedious manual assembly procedure that could damage cell face. Vacuum arm picks up face-down cell from cell-inverting work station and transfers it to string conveyor without changing cell orientation. Arm is activated by signal from microprocessor.

B81-10348

TRANSPORTING SOLAR-CELL STRINGS

M. BYCER (Kulicke & Soffa Industries, Inc.) and W. FRASCH (Kulicke & Soffa Industries, Inc.)

Dec. 1982

NPO-15502

Vol. 6, No. 3, P. 339

Vacuum 'lance' picks up assembled chain of solar cells from string conveyor without disturbing cells or interconnecting tabs. Lance has 2 vacuum pickups per cell, for total of up to 32 pickups. Positions and number of pickups can be varied. Lance can be adjusted for range of cell sizes, shapes, and spacings.

B81-10349

TRANSFER OF STRINGS TO THE MODULE FIXTURE

W. FRASCH (Kulicke & Soffa Industries, Inc.)

Dec. 1982

NPO-15509

Vol. 6, No. 3, P. 340

Work station for transferring entire strings of solar cells places successive strings aligned, with offset, or reversed end for end. Thus, various solar module formats can be accommodated. Two vacuum cups hold each solar cell in string being transferred.

B81-10350

ULTRASONIC WELDING OF GRAPHITE/ THERMOPLASTIC COMPOSITE

S. S. HARDY (General Dynamics Corp.) and D. B. PAGE (General Dynamics Corp.)

Dec. 1982

MSC-20013

Vol. 6, No. 3, P. 340

Ultrasonic welding of graphite/thermoplastic composite materials eliminates need for fasteners (which require drilling or punching, add weight, and degrade stiffness) and can be totally automated in beam fabrication and assembly jigs. Proliferation of technique has been demonstrated in laboratory tests which show that neither angular orientation nor vacuum affect weld quality.

B81-10351

INK: METAL FRACUTURE TOUGHNESS

P. L. LAWING, W. H. WOOD, and P. G. J. SANDEFUR (General Dynamics Corp.)

Dec. 1982

MSC-20058

Vol. 6, No. 3, P. 345

In test procedure developed at Langley Research Center several thin sheets of metal are diffusion-brazed together in vacuum furnace to create thick piece of metal that retains much of fracture toughness of its thin components. Technique is expected to make many of high-strength stainless steels, not currently suitable, usable at cryogenic temperatures.

B81-10352

CONTROLLING ELECTRON-BEAM-WELD FOCUS

F. M. COATE (Rockwell International Corp.)

Dec. 1982

MFS-19635

Vol. 6, No. 3, P. 342

Control loop measures weld-spot temperature to regulate focus current. Square-wave generator modulates current in electron-beam focus coil so that focal point is varied between points slightly above and below surface of weld. Sensor detects intensity of light emitted by weld, proportional to fourth power of temperature at hottest part of weld spot. Sensor signal is detected by chopper demodulator synchronized by square-wave generator, to determine whether average position of focal point is higher than, coincident with, or lower than optimum point; and focus coil current is adjusted accordingly.

B81-10353

PLASMA SPRAY FOR DIFFICULT-TO-BRAZE ALLOYS

A. BRENNAN (Rockwell International Corp.)

Dec. 1982

MFS-19630

Vol. 6, No. 3, P. 343

Nickel plating on surfaces makes brazing easier for some alloys. Sometimes nickel plating may not be feasible for manufacturing sequence, size of hardware, or lack of suitable source for nickel plating. Alternative surface preparation in such cases is grit-blast surfacing lightly and then plasma-spray 1/2 to 2 mils of fine nickel powder or brazing alloy material directly on surface. Powder is sprayed from plasma gun, using argon as carrier gas to prevent oxidation of nickel or braze alloy.

B81-10354

WELD WIDTH INDICATES WELD STRENGTH

A. C. J. NUNES, H. L. NOVAK, and M. C. MCLLWAIN (Rockwell International Corp.)

Dec. 1982

MFS-25648

Vol. 6, No. 3, P. 344

Width of butt weld in 2219-T87 aluminum has been found to be more reliable indicator of weld strength than more traditional parameters of power input and cooling rate. Yield stress and ultimate tensile strength tend to decrease with weld size. This conclusion supports view of many professional welders who give priority to weld geometry over welding energy or cooling rate as indicator of weld quality.

B81-10355

CLEANING INTERNAL-WELD SPLATTER

R. SNOODGRASS (Parkway Hannifin Corp.)

Dec. 1982

MSC-20068

Vol. 6, No. 3, P. 345

Splattered metal produced by welding can be easily removed from inaccessible areas by method resembling ball milling. Hard steel balls are vibrated inside welded unit so that they 'scrub away' excess metal on interior side of weld joint.
08 FABRICATION TECHNOLOGY

New way of laminating curved graphite/epoxy parts prevents delamination and porosity. Originally developed for a sharply curved expansion joint frame on Space Shuttle payload-bay doors, new method may also be useful in constructing laminated parts for boat hulls or small aircraft. Method employs shims strategically positioned in layup of graphite/epoxy tape. Shims allow for extra length in layup plies. On final cure, added length compensates for shrinkage that would otherwise have caused delamination.

In improved cavity radiometer, each sensor cone ends in small tube so that black paint cannot form truncating meniscus. Inner diameter of tube is 0.25 mm; its outer diameter is 0.5 mm. After painting, excess paint is drawn out through tube, preventing formation of meniscus at apex. After paint is cured, end of tube is crimped shut to form effective light trap.

Metal-plated butyl rubber seal has been devised for enclosure of electronic equipment that must be maintained under dry, inert atmosphere. Seal prevents gas leakage over prolonged periods, while conductivity suppresses electromagnetic emissions from sealed equipment. Seal is formed by depositing aluminum or gold onto molded-in-place butyl rubber gasket and surrounding areas of flange.

B81-10359 CLAMP AND GAS NOZZLE FOR TIG WELDING G. B. GUE (AMETEK) and H. L. GOLLER (AMETEK) Dec. 1982

Tool that combines clamp with gas nozzle is aid to tungsten/inert-gas (TIG) welding in hard-to-reach spots. Tool holds work to be welded while directing a stream of argon gas to weld joint, providing an oxygen-free environment for tungsten-arc welding.

B81-10360 ACOUSTIC EMISSIONS COULD INDICATE WELD QUALITY P. E. GUSTAFSON (Honeywell, Inc.) and F. S. SUTCH (Honeywell, Inc.) Dec. 1982

Preliminary tests show quality of welds can be assessed by acoustic-emission monitor mounted on welder. Nondestructive measurement technique allows operator to determine uniformity and integrity of weld as being made, evaluate equipment performance and condition, and initiate corrective action if quality is not satisfactory.

B81-10361 INTEGRAL FACE SHIELD CONCEPT FOR FIREFIGHTER'S HELMET F. ABELES (Grumman Aerospace Corp.), E. HANSBERRY (Grumman Aerospace Corp.), and V. HIMEL (Grumman Aerospace Corp.) Dec. 1982

Stowable face shield could be made integral part of helmet worn by firefighters. Shield, made from same tough clear plastic as removable face shields presently used, would be pivoted at temples to slide up inside helmet when not needed. Stowable face shield, being stored in helmet, is always available, ready for use, and is protected when not being used.

B81-10362 RADIANT HEATING OF AMPOLLE CONTENTS L. R. HOLLAND (Athens State College) Dec. 1982

Amppule charge heating system exploits spectral properties of blackbody radiation and amppule material transparency to heat charge to high temperature. Cooling gas prevents softening of outside wall of amppule. Use of proposed method may be limited by tendency of silica (or any other viterous material) to devitrify on prolonged exposure to temperatures near softening point.

B81-10363 YIELDING TORQUE-TUBE SYSTEM REDUCES CRASH INJURIES D. G. MCSMITH Dec. 1982

Yielding-torque-tube system minimizes injuries by limiting load transferred to occupant in crash. When properly integrated into seat structure, torque tube yields in plastic deformation stage of material and maintains a relatively constant resistence to applied torque for many degrees of rotation. Yielding torque-tube system is expected to find application in aircraft and automobile industries.

B81-10364 MONITORING CRYSTAL GROWTH FROM SOLUTION P. B. LAL (Alabama Agriculture and Mechanical University) Dec. 1982

Experimental system for monitoring growth of triglycine sulfate (TGS) crystals from solution is being studied. System consists of outer cell containing distilled water heated and stirred to maintain constant temperature to within plus or minus 0.1 degrees C, inner (growth) cell containing supersaturated solution of TGS, and seed crystal mounted in plastic-covered stainless-steel wire equipped with controlled cooling mechanism and temperature sensors.

Proposed apparatus for welding large arrays of solar cells to flexible circuit substrates would sense infrared emission from welding spot. Emission would provide feedback for control of welding heat. Welding platform containing optical fibers moves upward through slots in movable holding fixture to contact solar cells. Fibers pick up infrared radiation from weld area.

B81-10366 STORING AND DEPLOYING SOLAR PANELS D. L. BROWNING (General Dynamics Corp.), H. M. STOKER (General Dynamics Corp.), and E. H. KLEIDON (General Dynamics Corp.) Dec. 1982

Like upward-drawn window shades, solar blankets are unfurled to length of 60m, almost filling opening in 9.5-meter-square frame. When frame is completely assembled, solar blankets are pulled from canisters, one by one by electric motor. A thin cushion sheet is rolled up with each blanket to cushion solar cells. Sheet is taken up on roller as blanket is unfurled. Unrolling proceeds automatically.
B81-10367
CUTTING A TAPERED EDGE ON PADDING MATERIAL
M. J. MITCHELL (Rockwell International Corp.)
Dec. 1982
MSC-20011 Vol. 6, No. 3, P. 353
Resilience and flexibility of felt, rubber, or other padding materials allow them to be clamped in form block, cut straight down, and then released to produce straight clean tapered edge. With material held in slanted position, edge can be cut straight down; hence cut depth is minimum.

B81-10368
PIVOT ATTACHMENT FOR PREFABRICATED BEAMS
H. W. J. STROLL (University of Wisconsin)
Dec. 1982
MFS-25476 Vol. 6, No. 3, P. 354
Assembly of prefabricated structural beams for roof trusses, bleachers, or other lightweight structures made easier by use of flexural pivot at one or both ends. When pivot is attached, joint is flexible, thus simplifying alignment; joint is subsequently rigidized by threaded collar that completes attachment.

B81-10369
FABRICATING STRUCTURAL BEAMS
E. E. ENGLER (Grumman Aerospace Corp.), J. EHL (Grumman Aerospace Corp.), W. MUENCH (Grumman Aerospace Corp.), H. MORFIN (Grumman Aerospace Corp.), J. HUBB (Grumman Aerospace Corp.), R. BRAUN (Grumman Aerospace Corp.), W. MARX (Grumman Aerospace Corp.), A. ALBERI (Grumman Aerospace Corp.), R. ROMAN-ECK (Grumman Aerospace Corp.), C. JOHNSTON (Grumman Aerospace Corp.) et al
Dec. 1982
MFS-25228 Vol. 6, No. 3, P. 354
Automatic machine described in new report has demonstrated on Earth feasibility of machine fabricating beams for huge structures in space. Such structures include solar mirrors, radiometer reflectors, microwave power transmitters, solar-thermal power generators, and solar photoelectric generators, ranging in size from few hundred meters long to tens of kilometers long.

B81-10117
LINEAR-ALGEBRA PROGRAMS
C. L. LAWSON (CALTECH), F. T. KROGH (CALTECH), S. S. GOLD (CALTECH), D. R. KINCAID (University of Texas), J. SULLIVAN (University of Texas), E. WILLIAMS (University of Texas), R. J. HANSON (Sandia Laboratories), K. HAS-KELL (Sandia Laboratories), J. DONGARRA (Argonne National Laboratory), and C. B. MOLER (University of New Mexico)
Sep. 1982
NPO-15108 Vol. 6, No. 1, P. 113
The Basic Linear Algebra Subprograms (BLAS) library is a collection of 38 FORTRAN-callable routines for performing basic operations of numerical linear algebra. BLAS library is portable and efficient source of basic operations for designers of programs involving linear algebraic computations. BLAS library is supplied in portable FORTRAN and Assembler code versions for IBM 370, UNIVAC 1100 and CDC 6600 series computers.

B81-10118
I/O ERROR ANALYZER (UNIVAC 1100 VERSION)
E. T. VAUGHAN
Dec. 1982
GSC-12621 Vol. 6, No. 1, P. 113
IOALZ4 is an Assembly-language utility program for UNIVAC 1108, operational under level 53 of EXEC 8 operating system. It scans user-selected portions of system log file, whether located on tape or mass storage, searching for and processing I/O error entries.

B81-10246
CALCULATING THE PERFORMANCE OF A SOLAR REFLECTOR
M. K. SELCUK (CALTECH)
Nov. 1982
NPO-15314 Vol. 6, No. 2, P. 235
New method calculates efficiency and useful heat of parabolic solar concentrator. Method uses three-part nomogram, consisting of a main chart and two other components. User enters the nomogram using known factors, then proceeds to plot lines to intercept on nomogram to find results.

B81-10247
PROGRAM STRUCTURE COMBINES SEGMENTATION AND DYNAMIC STORAGE
S. H. TIFFANY (Kentron International, Inc.)
Nov. 1982 See Also NASA CR-3315(N80-31071/NSP)
LAR-12830 Vol. 6, No. 2, P. 236
Programming techniques incorporate advantages of overlaying into segmented loads while retaining all dynamic load advantages of segmentation, employing those capabilities that best suit mode of operation, whether batch or interactive. User is allowed to load a program automatically in a variable manner, based solely on a single data input to the program, to maintain minimal field lengths for interactive use.

B81-10370
NUMERICAL SOLUTION FOR NAVIER-STOKES EQUATIONS
Z. U. A. WARSI (Mississippi State University), R. A. WEED (Mississippi State University), and J. F. THOMPSON (Mississippi State University)
Dec. 1982
MFS-25617 Vol. 6, No. 3, P. 357
Carefully selected blend of computational techniques solves complete set of equations for viscous, unsteady, hypersonic flow in general curvilinear coordinates. New algorithm has tested computation of axially directed flow about blunt body having shape similar to that of such practical bodies as wide-body aircraft or artillery shells. Method offers significant computational advantages because of conservation-law form of equations and because it reduces amount of metric data required.

B81-10371
USER DOCUMENTATION FOR MULTIPLE SOFTWARE RELEASES
R. HUMPHREY (International Business Machines Corp.)
Dec. 1982
KSC-11189 Vol. 6, No. 3, P. 358
In proposed solution to problems of frequent software releases and updates, documentation would be divided into smaller packages, each of which contains data relating to only one of several software components. Changes would not affect entire document. Concept would improve dissemination of information regarding changes and would improve quality of data supporting packages. Would help to insure both timeliness and more thorough scrutiny of changes.

B81-10372
PROPOSED RELIABILITY/COST MODEL
L. M. DELIONBACK
Dec. 1982 See Also NASA TMX-64777(NT73-32372/NSP)
MFS-25494 Vol. 6, No. 3, P. 359
New technique estimates cost of improvement in
reliability for complex system. Model format/approach is dependent upon use of subsystem cost-estimating relationships (CER's) in devising cost-effective policy. Proposed methodology should have application in broad range of engineering management decisions.

B81-10373
COMPUTING THE POWER-DENSITY SPECTRUM FOR AN ENGINEERING MODEL
H. J. DUNN
Dec. 1982 See Also NASA TM-83120(N81-25699/NSP)
LAR-12818 Vol. 6, No. 3, P. 360

Computer program for calculating of power-density spectrum (PDS) from data base generated by Advanced Continuous Simulation Language (ACSL) uses algorithm that employs fast Fourier transform (FFT) to calculate PDS of variable. Accomplished by first estimating autocovariance function of variable and then taking FFT of smoothed autocovariance function to obtain PDS. Fast-Fourier-transform technique conserves computer resources.
Subject Index

Typical Subject Index Listing

<table>
<thead>
<tr>
<th>SUBJECT HEADING</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABRASION Cleaning Internal-Weld Splatter</td>
</tr>
<tr>
<td>TITLE ORIGINATING CENTER TECH BRIEF NUMBER CATEGORY</td>
</tr>
<tr>
<td>ACTUATORS Fast-Acting Electrohydraulic Servo</td>
</tr>
<tr>
<td>ACTIVITY Tests</td>
</tr>
<tr>
<td>ADHESIVE BONDING</td>
</tr>
<tr>
<td>ADHESIVES</td>
</tr>
<tr>
<td>AERODYNAMIC CONFIGURATIONS</td>
</tr>
<tr>
<td>AERODYNAMIC FORCES</td>
</tr>
<tr>
<td>AERODYNAMIC LOADS</td>
</tr>
<tr>
<td>AERODYNAMIC STABILITY</td>
</tr>
<tr>
<td>AERODYNAMIC</td>
</tr>
<tr>
<td>AERODYNAMICS</td>
</tr>
<tr>
<td>AEROSTATICITY</td>
</tr>
<tr>
<td>ARODYNAMIC</td>
</tr>
<tr>
<td>AIR POLLUTION</td>
</tr>
<tr>
<td>AIR PURIFICATION</td>
</tr>
<tr>
<td>AIRCRAFT CONTROL</td>
</tr>
<tr>
<td>AIRCRAFT DESIGN</td>
</tr>
<tr>
<td>AIRCRAFT EQUIPMENT</td>
</tr>
<tr>
<td>AIRCRAFT INSTRUMENTS</td>
</tr>
<tr>
<td>AIRCRAFT</td>
</tr>
<tr>
<td>AIRFOILS</td>
</tr>
<tr>
<td>AIRFOILS</td>
</tr>
<tr>
<td>AIRGAUGE</td>
</tr>
<tr>
<td>ALGEBRA Linear-Algebra Programs</td>
</tr>
<tr>
<td>ALGORITHMS New Algorithms Manage Fourfold Redundancy</td>
</tr>
<tr>
<td>ALLOYS Lightweight Low-Gold-Content Brazing Alloys</td>
</tr>
<tr>
<td>ALUMINUM Precipitating Tensile Strengths of Boron/Aluminum Composites</td>
</tr>
<tr>
<td>AMMETERS</td>
</tr>
<tr>
<td>PAPERS</td>
</tr>
</tbody>
</table>

The title of each Tech Brief is listed under several selected subject headings to provide the user with a variety of approaches in his search for specific information. The Tech Brief number, e.g., B81-1036, is located under and to the right of the title and is followed by a two-digit number, e.g., 06, which designates the subject category in which the entire entry can be found.
COATINGS

- Plasma Deposition of Amorphous Silicon
- NPO-14954 B81-10044 04
- Effects of High Temperature on Collector Coatings
- MFS-25651 B81-10148 03
- Surface Seal for Carbon Parts
- MSC-18698 B81-10163 04
- Flame-Resistant Coatings
- Heat-Sealed Binders for Thermal-Control Coatings
- MFS-25629 B81-10294 04
- Thermal Polymerization of N-Butyl Acrylate
- NPO-15010 B81-10295 04

COAXIAL CABLES

- Sealed Strip Line for Extreme Temperatures
- MSC-16994 B81-10114 08

COLD WORKING

- Stacking Tool for Hard Metals
- MSC-20097 B81-10336 07

COLOR TELEVISION

- Graphics-System Color-Code Interface
- LAR-12846 B81-10014 02

COMBUSTION CHAMBERS

- Two-Stage Combustor Reduces Pollutant Emissions
- NPO-14911 B81-10042 04

COMBUSTION EFFICIENCY

- Combustion of Coal/Oil/Water
- MFS-25987 B81-10226 05
- Detecting Contamination With Photoelectron Emission
- MFS-25619 B81-10313 08

CLIPS

- Boltless Seal for Electronic Housing
- NPO-14918 B81-10249 01

CLOCKS

- Electronically Calibrated Clock
- LAR-12654 B81-10122 01

CLOSED ECOLOGICAL SYSTEMS

- Protective Garment Ensemble
- KSC-11203 B81-10722 08

Closures

- Boltless Seal for Electronic Housing
- NPO-14918 B81-10249 01

COAL

- EMR Gage Would Measure Coal Thickness Accurately
- MFS-25555 B81-10139 03
- Sound-burst Generator for Measuring Coal Properties
- MFS-25438 B81-10281 04
- Catalyzing the Combustion of Coal
- NPO-15456 B81-10282 04

COAL UTILIZATION

- Combustion of Coal/Oil/Water
- NPO-15462 B81-10144 03
- Coal as a Substitute for Carbon Black
- NPO-15461 B81-10280 04

COATING

- IC Capacitors on Groups III-to-V Substrates
- GSC-12543 B81-10109 08

BORON/ALUMINUM-TITANIUM ON STIFFENER

- MSC-18695 B81-10230 08

COMPOSITE-MATERIAL POINT-STRESS ANALYSIS

- MSC-18678 B81-10245 08

COAL AS A SUBSTITUTE FOR CARBON BLACK

- NPO-15461 B81-10280 04

GRAPHITE-FIBER-REINFORCED MATRIX COMPOSITE

- LAR-12764 B81-10293 04

ULTRASONIC INSTRUMENT FOR EVALUATION OF COMPOSITES

- LEW-13716 B81-10301 06

SMALL FIXTURES, COMPOSITES FOR ENVIRONMENTAL TESTS

- NPO-15082 B81-10302 06

PREDICTING THE STRENGTHS OF ANGLE-PIELED LAMINATES

- LEW-13733 B81-10309 06

PREDICTING TENSILE STRENGTHS OF BORON/ALUMINUM COMPOSITES

- LEW-13745 B81-10311 06

ULTRASONIC WELDING OF GRAPHITE/Thermoplastic Composite

- MSC-20013 B81-10350 08

ELIMINATING DELAMINATION IN CURVED COMPOSITE PARTS

- MSC-20027 B81-10356 08

COMPRESSION TESTS

- New Configuration for Compression-Test Fixture
- MSC-18723 B81-10306 08

COMPUTER COMPONENTS

- 'Ruggedized' Microcomputer Bus
- GSC-12691 B81-10229 08

- Programmable Interface Handles Many Peripherals
- KSC-1132 B81-10261 02

COMPUTER DESIGN

- Array Processor Has Power and Flexibility
- ARC-11292 B81-10130 02

- Automatically Reconfigurable Computer
- MFS-25455 B81-10131 02

- Aerodynamics of Supersonic Aircraft
- LAR-12657 B81-10199 06

- CAD System Designer
- MFS-25484 B81-10244 08

COMPUTER GRAPHICS

- Graphics-System Color-Code Interface
- LAR-12646 B81-10014 02

- Graphics for Finite-Element Analysis
- LAR-12793 B81-10194 06

COMPUTER PROGRAMMING

- Program Structure Combines Segmentation and Dynamic Storage
- LAR-12830 B81-10247 09

COMPUTER PROGRAMS

- Unsteady Subsonic Loadings Due to Control-Surface Motion
- LAR-12802 B81-10073 06

- I/O Error Analyzer (UNIVAC 1108 Version)
- GSC-12621 B81-10118 09

- Improved Numerical Differentiating Analyzer
- GSC-12671 B81-10197 06

- Simplified Thermal Analyzer --VAX Version
- GSC-12698 B81-10198 06
CRUDE OIL

Recharging the Silicon Crucible in a Hot Furnace
NPO-14980 B81-10093 08

Cruible Grows Wide Silicon Ribbon
NPO-14859 B81-10094 08

Cyclotron Resonance
NPO-14980 B81-10166 04

CYCLIC FLUID STORAGE
Improved Nozzle Would Reduce
Cryogenic Boiloff
MFS-25589 B81-10335 07

DEADMANN
Aerodynamics of Sounding-Rocket
Geometries
GSC-12680 B81-10074 06

DATA PROCESSING EQUIPMENT
Programmable Interface Handles Many
Peripherals
KSC-11139 B81-10261 02

DATA TRANSMISSION
Programmable Interface Handles Many
Peripherals
KSC-11139 B81-10261 02

DECONTAMINATION
Vacuum Head Removes Sanding
Dust
MSC-18936 B81-10218 07

DECOUPLING
Explosive Separation of Electrical
Connectors
MSC-19526 B81-10259 06

DETECTORS
Sequential-Impulse Generator Uses
IC Capacitors on
MSC-18923 B81-10218 07

DEGRADATION
Ultraviolet-Induced
Degradation
NPO-15520 B81-10171 04

DEHUMIDIFYING
Large-Deflection Analysis of
Nonlinear Structures
LAR-12816 B81-10323 06

DIFFUSION
Diffusion-Induced Anisotropy of
Polymers
NPO-15325 B81-10043 04

DIFFUSE PRESSURE
Pressure Transducer Has Long
Service Life
MSC-18904 B81-10191 06

DIFFUSION CHAMBERS
Compact Liquid Deaerator
MSC-18936 B81-10211 07

DIFFUSION CHAMBERS
Compact Liquid Deaerator
MSC-18936 B81-10211 07
FUEL CONSUMPTION

STORAGE
- Storage of Coal/Oil/Water Storages
NPO-15462 B81-10144 03
- Staged Turbojet Engines Would Emit Less NO
ARC-10814 B81-10213 07

FUEL TANKS
- Improved Nozzle Would Reduce Cryogenic Boiloff
MFS-25589 B81-10335 07

FUEL-AIR RATIO
- Staged Turbojet Engines Would Emit Less NO
ARC-10814 B81-10213 07

FUNCTION GENERATORS
- Sound-burst Generator for Measuring Coal Properties
MFS-25438 B81-10281 04

FURLABLE ANTENNAS
- Dish Antenna Would Deploy From a Canister
NPO-15448 B81-10241 04

FURNACES
- Radiant Heating of Ampoule contents
MFS-25436 B81-10362 08

G

GALLIUM ARSENIDES
- Ultra-Thin-Film GaAs Solar Cells
NPO-14930 B81-10113 08

GAP
- Prolonging the Life of Refractory Fillers
MSC-18632 B81-10167 04
- Prolonging the Life of Refractory Fillers
MSC-18632 B81-10231 06

GAS DETECTORS
- Orientation Sensitivity for Electrochemical Sensor
KSC-11176 B81-10233 06
- Vapor Detector
MSC-18989 B81-10287 04

GAS TUNGSTEN ARC WELDING
- Clamp and Gas Nozzle for TIG Welding
MSC-20108 B81-10359 08

GASEOUS DIFFUSION
- Gas Diffusion in Fluids Containing Bubbles
NPO-15060 B81-10292 04
- Graphite-Fiber-Reinforced rlx Composite
LAR-12764 B81-10293 04

GLASS
- Technique for Machining Glass
GSC-12646 B81-10021 03
- Glasses for Solar-Cell Arrays
NPO-15528 B81-10243 08
- Gas Diffusion in Fluids Containing Bubbles
NPO-15060 B81-10292 04
- Graphite-Fiber-Reinforced rlx Composite
LAR-12764 B81-10293 04

H

HARNESS
- Clamp Restrains Pressure Line
KSC-11205 B81-10207 07

HEAT EXCHANGERS
- Heat Pipe Blocks Return Flow
ARC-11285 B81-10060 06
- Resistance Heater Helps Stirring-Engine Research
NPO-14928 B81-10083 07
- Heat-Exchanger Method of Crystal Growth
NPO-14819 B81-10090 08

HEAT PIPES
- Metallic Panels Would Insulate at 2,700 Degrees F
LAR-12620 B81-10104 08

HEAT SHIELDING
- Reflective Panels Would Insulate at 2,700 Degrees F
LAR-12620 B81-10104 08

HEAT TRANSFER
- Heat-Transfer Fluids for Solar Receivers
NPO-14835 B81-10071 06
- Heat-Transfer Fluids for Solar-Energy Systems
MFS-25629 B81-10147 03

HEATING EQUIPMENT
- Pyramidal-Reflector Solar Heater
MFS-25571 B81-10024 03
- Solar Water Heater Installation Package
MFS-25573 B81-10025 03
- Hotel DHW Retrofit--Dallas, Texas
MFS-25560 B81-10026 03
- Solar Hot Water For Motor Inn--Texas City, Texas
MFS-25548 B81-10031 07
- Solar Energy System for a Commercial Building--Topeka, Kansas
MFS-25609 B81-10207 07
- Solar-Heated Water At a Motel--Mobile, Alabama
MFS-25603 B81-10029 03
- Solar-Heated Public Library--Troy, Ohio
MFS-25601 B81-10030 03
INDIUM

Solar-Cooled Classroom Building--Columbus, Ohio MFS-25597 B81-10031 03
Solar-Heated and Cooled Office Building--Columbus, Ohio MFS-25586 B81-10032 03
Solar Hot Water for an Industrial Laundry--Fresno, California MFS-25565 B81-10033 03
Solar Water-Heater Design Package MFS-25574 B81-10034 03
Resistance Heater Helps Stirling-Engine Research NPO-14928 B81-10003 07
Energy-Storage Modules for Active Solar Heating and Cooling MFS-25681 B81-10145 03
Solar Water-Heater Design and Installation LEW-13655 B81-10146 03
Solar Heating and Cooling for a Controls Manufacturing Plant Lumberton, New Jersey MFS-25685 B81-10149 03
Solar Heating and Water Heating for Hospital --Charlottesville, Virginia MFS-25666 B81-10150 03
Solar Hot Water for a Motor Inn -- Las Vegas, Nevada MFS-25646 B81-10151 03
Solar Heating for a Bottling Plant -- Jackson, Tennessee MFS-25585 B81-10152 03
Economic Evaluation of Observatory Solar-Energy System MFS-25682 B81-10153 03
Economic Evaluation of Townhouse Solar Energy System MFS-25684 B81-10155 03
Economic Evaluation of Office Solar-Heating System MFS-25685 B81-10156 03
Dormitory Solar-Energy System Economics MFS-25693 B81-10157 03
Two-Story-Dwelling Solar Installation MFS-25697 B81-10158 03
Ranger Station Solar-Energy System Receives Economic Evaluation MFS-25699 B81-10159 03
Economic Evaluation of Dual-Level-Residence Solar-Energy System MFS-25700 B81-10160 03
Heater Composite Measures Heat Transfer LEW-13731 B81-10192 06
Solar Simulator at Marshall Space Flight Center MFS-25742 B81-10269 03
Evaluation of a Line-Concentrating Solar Collector MFS-25776 B81-10270 03
Manifold Insulation for Solar Collectors MFS-25779 B81-10271 03
Solar Heater in a West Virginia College MFS-25706 B81-10272 03
Solar Heating System at a Racquetball Club MFS-25720 B81-10273 03
Solar Heating in an Elementary School MFS-25747 B81-10274 03
Solar-Cooled Hotel in the Virgin Islands MFS-25776 B81-10275 03
Hot Water for Motor Inn--Garland, Texas MFS-25726 B81-10276 03
Solar Space Heating for Warehouse--Kansas City, Kansas MFS-25712 B81-10277 03
The Economics of Solar Heating MFS-25391 B81-10278 03
Radiant Heating of Ampoule contents MFS-25436 B81-10362 08
Helicopter Design Aerelastic Analysis for Rotorcraft ARC-11150 B81-10075 06
Helicopter Performance Aerelastic Analysis for Rotorcraft ARC-11150 B81-10075 06
Helicopters Improved Lighting for Firefighters MFS-25545 B81-10088 08
Integral Face Shield Concept for Firefighter's Helmet MFS-25493 B81-10361 08
High Temperature Environments High-Temperature Seal for Sliding-Gate Valve MFS-19607 B81-10107 08
Sealed Strip Line for Extreme Temperatures MSC-18394 B81-10114 08
High Temperature Fluids Heat-Exchange Fluids for Sulfuric Acid Vaporizers NPO-15015 B81-10291 04
High Temperature Tests Temperature Controller for a Solar Furnace NPO-15388 B81-10022 03
Hinges Unidirectional Flexural Pivot GSC-12622 B81-10208 07
Holders Air Bag Applies Uniform Bonding Pressure KSC-11182 B81-10242 08
Universal Assembly for Captive Bolts MSC-18905 B81-10329 07
Articulated Vacuum Chuck MSC-18933 B81-10330 07
Walking-Beam Solar-Cell Conveyor NPO-15503 B81-10341 08
Vacuum Pickup for Solar Cells NPO-15500 B81-10342 08
Orienting and Applying Flux to Solar Cells NPO-15504 B81-10343 08
Tab Interconnect Work Station NPO-15505 B81-10344 08
Work Station For Inverting Solar Cells NPO-15506 B81-10345 08
Solar-Cell String Conveyor NPO-15508 B81-10346 08
Bonder for Solar-Cell Strings NPO-15507 B81-10347 08
Transporting Solar-Cell Strings NPO-15502 B81-10348 08
Transfer of Strings to the Module Fixture NPO-15509 B81-10349 08
Holographic interferometry Fast Holographic Comparator LAR-12509 B81-10132 02
Honeycomb structures Metallic Panels would Insulate at 2,700 Degrees F LAR-12620 B81-10104 08
Honoring Lathe Attachment Finishes Inner Surface of Tubes MSC-18780 B81-10081 07
Hormones Chemical Growth Regulators for Guayule Plants NPO-15213 B81-10048 05
Hot-wire Flowmeters Hot Film Static-Pressure Probe for Flow-Field Surveys LAR-12793 B81-10308 06
Hydraulic control Fast-Acting Electrohydraulic Servo LEW-13730 B81-10298 06
Hydraulic equipment Constant-Pressure Hydraulic Pump MSC-18794 B81-10077 07
Four-Degree-of-Freedom Platform ARC-11321 B81-10217 07
Hydraulic lines Vapor Detector MSC-18898 B81-10287 04
Hydrosyonic Flow Numerical Solution for Navier-Stokes Equations MFS-25617 B81-10370 09

Image Converters Improved Lixiscope GSC-12587 B81-10267 03
Image Intensifiers Improved Lixiscope GSC-12587 B81-10267 03
Imaging Techniques Test-Bed Aircraft Scanner LAR-12796 B81-10268 03
Imides Improved Fire-Resistant Resins for Laminates ARC-11321 B81-10039 04
Impact loads Impact-Energized Transmitter MFS-25379 B81-10127 02
Impact tests Lacquer Reveals Impact Damage in Composites LAR-12700 B81-10064 06
Impedance Matching Unequal-Split Strip-Line Power Divider LAR-12797 B81-10250 01
Impulse Generators Sequential-Impulse Generator Uses Fiber-Optics NPO-14939 B81-10020 03
Indium Indium Second-Surface Mirrors NPO-15065 B81-10239 08

I-11
INDUCTION MOTORS

INSTRUMENTATION

INSTRUMENTATION MOTORS

INSTRUMENT COMPENSATION

INTEGRATED CIRCUITS

INTEGRATED CIRCUITS
METAL FATIGUE

Weld width indicates weld strength
MFS-25648 B81-10354 04

METAL FATIGUE
Increasing Metal Fracture
TO-12805 B81-10351 08

METAL OXIDE SEMICONDUCTORS
Improved Model for MOS Breakdown
NPO-14850 B81-10007 01

METAL PLATES
Metal Sandwich Panel With Biaxially Corrugated Core
FRC-11026 B81-10112 08

METAL WORKING
Staking Tool for Hard Metals
MSC-20009 B81-10336 07

METAL-METAL BONDING
Increasing Metal Fracture
TO-12805 B81-10351 08

MICROCOMPUTERS
Microcomputer Checks Butt-Weld Accuracy
MFS-25657 B81-10062 06

MICROCRACKS
Using Nomarski Interference to Detect Microcracks in Glass
GSC-12649 B81-10317 06

MICROSCOPY
Using Nomarski Interference to Detect Microcracks in Glass
GSC-12649 B81-10317 06

MICROWAVE AMPLIFIERS
Modular Amplifier/Antenna Arrays
MSC-18691 B81-10256 01

MICROFACTORIES
Compact Dual-Mode Microwave Antenna
LAR-12784 B81-10004 01

MICROWAVE EQUIPMENT
Sealed Strip Line for Extreme Temperatures
MSC-16994 B81-10114 08

MILLING (MACHINING)
Technique for Machining Glass
GSC-12636 B81-10209 07

MINING
EMI Gage Would Measure Coal Thickness Accurately
MFS-25555 B81-10139 03

MIRRORS
Ultraviolet-Induced Mirror Degradation
NPO-15520 B81-10171 04

Easily Assembled Reflector for Solar Concentrators
NPO-15518 B81-10235 08

Indium Second-Surface Mirrors
NPO-15085 B81-10239 08

MIXING
Adhesives Mixer Applicator
MSC-18316 B81-10078 07

Compact Liquid Deaerator
MSC-18396 B81-10211 07

MODELS
Model Verification of Mixed Dynamic Systems
MFS-23806 B81-10196 06

MODULES
Integrated Structural and Cable Connector
LAR-12789 B81-10085 07

MOISTURE CONTENT
Moisture in Composites is Measured by Position Lifetime
LAR-12776 B81-10180 06

MOOMENTS OF INERTIA
Efficient Energy-Storage Concept
MFS-25331 B81-10138 03

MONITORS
Processing PCM Data in Real Time
KSC-11131 B81-10262 02

One Way of Testing a Distributed Processor
KSC-11123 B81-10263 02

Mass-Loss Buttons Monitor Material Degradation
MSC-18903 B81-10307 06

Modular Engine Instrumentation System
LEW-13729 B81-10315 06

Acoustic Emissions Could Indicate Weld Quality
MFS-25608 B81-10360 08

MOTION SENSORS
Four-Direction-of-Freedom Platform
ARC-11286 B81-10217 07

MOTORS
Alternating-Current Motor Drive for Electric Vehicles
NPO-14768 AND NPO-14830
Tests of 38 Ball-Bearing Greases
MFS-25624 B81-10339 07

MOUNTING
Adhesive-Bonded Tab Attaches Thermocouples to Titanium
FRC-11017 B81-10056 06

Dynamic Isolation for Cryogenic Refrigerators
LAR-12728 B81-10076 07

MULTIPLEXING
Self-Correcting Pressure Sensor
LAR-12686 B81-10063 06

MULTIPROCESSING (COMPUTERS)
Array Processor Has Power and Flexibility
ARC-11292 B81-10130 02

MULTISPECTRAL PHOTOGRAPHY
Test-Bed Aircraft Scanner
LAR-12797 B81-10268 03

NAVIER-STOKES EQUATION
Numerical Solution for Navier-Stokes Equations
MFS-25617 B81-10370 09

NAVIGATION INSTRUMENTS
Improved Magnetic-Field-Component Resolvers
LAR-12636 B81-10299 06

Simple Magnetometer for Autopilots
LAR-12632 B81-10300 06

NEAR FIELDS
Far-Field Antenna Pattern From a Near-Field Test
NPO-14905 B81-10079 06

NEGATIVE RESISTANCE CIRCUITS
Low-Noise Band-Pass Amplifier
GSC-12567 B81-10255 01

NETWORK ANALYSIS
Short-Circuited Power Networks
MSC-18977 B81-10018 02

Load Pulse Is Sparkless
KSC-11199 B81-10123 01

NEUTRALIZERS
Neutralizing Amine-Cured Epoxy
Surfaces
GSC-12566 B81-10290 04

NEWTON-RAPHSON METHOD
Finite-Element Analysis of Forced Convection and Conduction
LAR-12794 B81-10195 06

NICKEL ALLOYS
Plasma Spray for Difficult-To-Braze Alloys
MFS-19630 B81-10353 08

NIOBIUM
Factors Affecting Liquid-Metal Embrittlement in C-103
MSC-18865 B81-10170 04

NITRIC OXIDE
Staged Turbojet Engine Would Emit Less NO
ARC-10814 B81-10213 07

NITROGEN TETROXIDE
Vapor Detector
MSC-18989 B81-10267 04

NOISE REDUCTION
Low-Noise Band-Pass Amplifier
GSC-12567 B81-10255 01

NOMOGRAPHS
Calculating the Performance of a Solar Reflector
NPO-15314 B81-10246 09

NONAQUEOUS ELECTROLYTES
Integrated Solid-Electrolyte Construction
NPO-18571 B81-10236 08

NONDESTRUCTIVE TESTS
Strain-Gaged Bolts Are Easily Prepared
MSC-18823 B81-10069 06

Automatic Weld Wire Online
MFS-19603 B81-10227 08

Eddy-Current Meter Would Check Weld Wire Online
MSC-18891 B81-10228 08

Improved Tensile Test for Ceramics
MSC-20105 B81-10310 06

Acoustic Emissions Could Indicate Weld Quality
MFS-25441 B81-10360 08

NOZZLE DESIGN
Nozzle Modification Suppresses Flow Transients
MFS-19567 B81-10061 06

NOZZLE FLOW
Nozzle Modification Suppresses Flow Transients
MFS-19567 B81-10061 06

NOZZLES
Improved Nozzle Would Reduce Cryogenic Boiloff
MFS-25589 B81-10335 07

NUMERICAL ANALYSIS
Linear-Algebra Programs
NPO-15106 B81-10117 09

NUMERICAL CONTROL
'Teaching' an Industrial Robot To Spray
MFS-25523 B81-10326 07

NUMERICAL INTEGRATION
Numerical Solution for Navier-Stokes Equations
MFS-25617 B81-10370 09
S

SAFETY DEVICES

Engine-Vibration Analyzer
MFS-19320 B81-10183 06

Tire Temperature and Pressure
Monitor
LAR-19262 B81-10184 06

Clamp Restrains Pressure Line
KSC-11205 B81-10207 07

Lightweight Face Mask
LAR-12903 B81-10224 08

Failure Detector for Power-Factor
Controller
MFS-25607 B81-10252 01

Integral Face Shield Concept for
Firefighter’s Helmet
MFS-25493 B81-10361 08

Yielding Torque-Tube System
Reduces Crash Injuries
LAR-12901 B81-10363 08

SALINITY

Laser/Heterodyne Measurement of
Temperature and Salinity
LAR-12766 B81-10181 06

SAMPLERS

Automatic Collection of Rock and Soil
Samples
MSC-18966 B81-10079 07

SAMPLING

Speedy Acquisition of
Surface-Contamination Samples
NPO-14934 B81-10175 05

Mass-Loss Buttons Monitor Material
Degradation
MSC-18903 B81-10307 06

SANDS

Vacuum Head Removes Sanding
Dust
MSC-19526 B81-10215 07

SATURABLE REACTORS

Lightweight, Transducer
NPO-14618 B81-10216 01

SAWTOOTH WAVEFORMS

Two-Stage Linearization Circuit
LAR-12577 B81-10125 01

SCALE (RATIO)

Matching Dissimilar Graphical
Scales
MSC-14864 B81-10240 08

SCANNERS

Rotating the Plane of Parallel Light
Beams
ARC-11131 B81-10265 03

SCARFING

Cutting a Tapered Edge on Padding
Material
MSC-20011 B81-10367 08

SCATTERING

Ultrasonic Transducer Analyzer
MFS-25410 B81-10058 06

SCHLIEREN PHOTOGRAPHY

Dual-Laser Schlieren System
MFS-25315 B81-10052 06

SCREWS

Universal Assembly for Captive
Bolts
MSC-18905 B81-10329 07

SEALERS

Synthesis of Perfluorinated Polymers
ARC-11241 B81-10037 04

SEALING

High-Temperature Seal for
Sliding-Gate Valve
MSC-18907 B81-10107 06

Surface Seal for Carbon Parts
MSC-18988 B81-10163 04

Flame-Resistant Coating is
Heat-Sealed
MSC-18952 B81-10168 04

Boilless Seal for Electronic
Housings
NPO-14918 B81-10249 01

SEALS (STOPPERS)

Faster Test for Cable Seals
MFS-25618 B81-10187 06

Improved High-Temperature Seal
MSC-18790 B81-10210 07

Electrically-conductive
Hydraulic Pressure Seal
MSC-20022 B81-10358 06

SEATS

Yielding Torque-Tube System
Reduces Crash Injuries
LAR-12801 B81-10363 08

SELECTIVE DISSEMINATION OF
INFORMATION

Software Releases
KSC-12119 B81-10371 09

SELF FOCUSING

Electron-Beam-Weld Focus
MFS-19653 B81-10352 08

SEPARATED FLOW

High-Lift Separated Flow About
Airfoils
LAR-12853 B81-10324 06

SERVICE LIFE

Mass-Loss Buttons Monitor Material
Degradation
MSC-18903 B81-10307 06

SERVOCONTROL

Fast-Acting Electrohydraulic Servo
LEW-13730 B81-10298 06

SERVOMECHANISMS

Fast-Acting Electrohydraulic Servo
LEW-13730 B81-10298 06

SHIELDING

Integral Face Shield Concept for
Firefighter’s Helmet
MFS-25493 B81-10361 08

SHIFT REGISTERS

Study of Two Digital Charge-Coupled
Devices
MFS-25606 B81-10128 02

SHOCK ABSORBERS

Dynamic Isolation for Cryogenic
Refrigerators
LAR-12728 B81-10076 07

Vacuum Head Removes Sanding
MFS-25410 B81-10058 06

SEALING

High-Temperature Seal for
Sliding-Gate Valve
MSC-18907 B81-10107 06

Surface Seal for Carbon Parts
MSC-18988 B81-10163 04

Flame-Resistant Coating is
Heat-Sealed
MSC-18952 B81-10168 04

Boilless Seal for Electronic
Housings
NPO-14918 B81-10249 01

SEALS (STOPPERS)

Faster Test for Cable Seals
MFS-25618 B81-10187 06

Improved High-Temperature Seal
MSC-18790 B81-10210 07

Electrically-conductive
Hydraulic Pressure Seal
MSC-20022 B81-10358 06

SEATS

Yielding Torque-Tube System
Reduces Crash Injuries
LAR-12801 B81-10363 08

SHOCK LAYERS

Numerical Solution for Navier-Stokes
Equations
MFS-25617 B81-10370 09

SHORT CIRCUITS

Short-Circuited Power Networks
MSC-18977 B81-10018 02

SIGNAL DETECTORS

Improved Phase-Lock Detector
MSC-18797 B81-10016 02

SIGNAL GENERATORS

High-Frequency Gated Oscillator
MSC-18634 B81-10011 01

Sound-burst Generator for Measuring
Coal Properties
MSC-25438 B81-10281 04

SIGNAL PROCESSING

Log-Output Signal Processor Scans
Eight Decades
ARC-11293 B81-10010 01

SIGNAL TRANSMISSION

Rotary Transformer Seals Power In
GSC-12595 B81-10008 01

SILICON

Nitride-Growth of Silicon Based on a
Multiple Crystal Growth Method
MSC-18907 B81-10363 08
SUBJECT INDEX

Crucible Grows Wide Silicon Ribbon
NPO-14859 B81-10094 08
Refractories Keep Silicon Crystals Pure
NPO-14820 B81-10095 08
Improved Facility for Producing Silicon Web
NPO-14860 B81-10096 08
Automatic Control of Silicon Melt Level
NPO-15487 B81-10097 08
Capacitively-Heated Fluidized Bed
NPO-14912 B81-10102 08
High-Speed Wafer Slicer
NPO-15463 B81-10332 07

SLICING
NPO-15463 B81-10094 08
Refractories Keep Silicon Crystals Pure
NPO-14820 B81-10095 08
Surface Seal for Carbon Parts
MFC-25748 B81-10173 04
SiAlON Materials for Advanced Structural Applications
LEW-13671 B81-10173 04

SILICON CARBIDES
Refractories Keep Silicon Crystals Pure
NPO-14820 B81-10095 08
SiAlON Materials for Advanced Structural Applications
LEW-13671 B81-10173 04

SILICON COMPOUNDS
SiAlON Materials for Advanced Structural Applications
LEW-13671 B81-10173 04
XPS Study of SiO2 and the Si/SiO2 Interface
NPO-14968 B81-10285 04

SILICON FILMS
Plasma Deposition of Amorphous Silicon
NPO-14954 B81-10044 04
SiAlON Materials for Advanced Structural Applications
LEW-13671 B81-10173 04

SILICONES
Silicone/Acrylate Copolymers
NPO-15523 B81-10279 04
Binders for Thermal-Control Coatings
MFS-25620 B81-10294 04

SILICONE RUBBER
Improved Cure-in-Place Silicone Adhesives
MSC-18782 B81-10164 04

SIMULATIONS
Solar-Array Simulator
MSC-18664 B81-10119 01
Line Replaceable Unit Analysis
MSC-20183 B81-10259 02
Solar Simulator at Marshall Space Flight Center
MFS-25742 B81-10269 03
Torque Simulator for Rotating Systems
LAR-12751 B81-10318 06

SITE DATA PROCESSORS
Self-Correcting d Pressure Sensor
LAR-12866 B81-10063 06

SIZE DETERMINATION
Program for Analysis and Resizing of Structures
LAR-12704 B81-10072 06

SLICING
High-Speed Wafer Slicer
NPO-15463 B81-10332 07

Cutting a Tapered Edge on Padding Material
MSC-20111 B81-10367 08

SLURRIES
Combustion of Coal/Oil/Water Slurries
NPO-15462 B81-10144 03
SMOOTHING
L ate Attachment Finishes Inner Surface of Tubes
MSC-18780 B81-10081 07

SOIL SCIENCE
Automatic Collection of Rock and Soil Samples
MSC-18688 B81-10079 07

SOLAR ARRAYS
Heat Lamps Solder Solar Array Quickly
NPO-14866 B81-10106 08
Brushless Cleaning of Solar Panels and Windows
NPO-14922 B81-10333 07
Automated Solar-Array Assembly
NPO-15501 B81-10340 08
Walking-Beam Solar-Cell Conveyor
NPO-15503 B81-10341 08
Vacuum Pickup for Solar Cells
NPO-15500 B81-10342 08
Orienting and Applying Flux to Solar Cells
NPO-15504 B81-10343 08
Tab Interconnect Work Station
NPO-15505 B81-10344 08
Work Station For Inverting Solar Cells
NPO-15506 B81-10345 08
Solar-Cell String Conveyor
NPO-15508 B81-10346 08
Bonder for Solar-Cell Strings
NPO-15507 B81-10347 08
Transporting Solar-Cell Strings
NPO-15502 B81-10348 08
Transfer of Strings to the Module Fixture
NPO-15509 B81-10349 08
Storing and Deploying Solar Panels
MSC-18685 B81-10366 08

SOLAR CELLS
Multilayer, Front-Contact Grid for Solar Cells
LAR-1261 B81-10009 01
Heat Lamps Solder Solar Array Quickly
NPO-14866 B81-10106 08
Ultra-Thin-Film GaAs Solar Cells
NPO-14930 B81-10113 08
Solar-Array Simulator
MSC-18684 B81-10119 01
Survey of Facilities for Testing Photovoltaics
NPO-15561 B81-10193 06
Glasses for Solar-Cell Arrays
NPO-15528 B81-10243 08
Silicone/ Acrylate Copolymers
NPO-15523 B81-10279 04
Thermal Polymerization of N-Butyl Acrylate
NPO-15010 B81-10295 04
Automated Solar-Array Assembly
NPO-15501 B81-10340 08
Walking-Beam Solar-Cell Conveyor
NPO-15503 B81-10341 08
Vacuum Pickup for Solar Cells
NPO-15500 B81-10342 08
Orienting and Applying Flux to Solar Cells
NPO-15504 B81-10343 08

SOLAR ENERGY
Tab Interconnect Work Station
NPO-15505 B81-10344 08
Work Station For Inverting Solar Cells
NPO-15506 B81-10345 08
Solar-Cell String Conveyor
NPO-15508 B81-10346 08
Bonder for Solar-Cell Strings
NPO-15507 B81-10347 08
Transporting Solar-Cell Strings
NPO-15502 B81-10348 08
Transfer of Strings to the Module Fixture
NPO-15509 B81-10349 08

SOLAR COLLECTORS
Battle Keeps Solar Energy in Receiver
NPO-15387 B81-10023 03
Effects of High Temperature on Collector Coatings
MFS-25651 B81-10148 03
Easily Assembled Reflector for Solar Concentrators
NPO-15508 B81-10235 08
Solar-Driven Liquid-Metal MHD Generator
LAR-12495 B81-10266 03

SOLAR ENERGY
Temperature Controller for a Solar Furnace
NPO-15388 B81-10022 03
Battle Keeps Solar Energy in Receiver
NPO-15387 B81-10023 03
Pyramidial-Reflector Solar Heater
MFS-25571 B81-10024 03
Solar Water Heater Installation Package
MFS-25735 B81-10025 03
Motel DHW Retrofit--Dallas, Texas
MFS-25580 B81-10026 03
Solar Hot Water for Motor Inn--Texas City, Texas
MFS-25614 B81-10027 03
Solar-Energy System for a Commercial Building--Topeka, Kansas
MFS-25605 B81-10028 03
Solar-Heated Water at a Motel--Mobile, Alabama
MFS-25601 B81-10029 03
Solar-Heated Public Library--Troy, Ohio
MFS-25601 B81-10030 03
Solar-Cooled Classroom Building--Columbus, Ohio
MFS-25597 B81-10031 03
Solar-Heated and Cooled Office Building--Columbus, Ohio
MFS-25608 B81-10032 03
Solar Hot Water for an Industrial Laundry--Fresno, California
MFS-25550 B81-10033 03
Solar Water-Heater Design Package
MFS-25574 B81-10034 03
Heat-Energy Analysis for Solar Receivers
NPO-14835 B81-10071 06
Controller Regulates Auxiliary Source for Solar Power
MFS-25607 B81-10133 02
Solar Concentrator is Gas-Filled
NPO-15416 B81-10141 03
Energy-Storage Modules for Active Solar Heating and Cooling
MFS-25681 B81-10145 03

I-19
SOLAR ENERGY CONVERSION

Solar Water-Heater Design and Installation
LEW-13865 B81-10116 03
Heat-Transfer Fluids for Solar-Energy Systems
MFS-25629 B81-10147 03
Effects of High Temperature on Collector Coatings
MFS-25651 B81-10148 03
Solar Heating and Cooling for a Controls Manufacturing Plant
Lancaster, New Jersey
MFS-25665 B81-10149 03
Solar Space and Water Heating for Hospital --Charlottesville, Virginia
MFS-25666 B81-10150 03
Solar Hot Water for a Motor Inn -- Las Vegas, Nevada
MFS-25646 B81-10151 03
Solar Heating for a Bottling Plant -- Jackson, Tennessee
MFS-25595 B81-10152 03
Economic Evaluation of Observatory Solar-Energy System
MFS-25682 B81-10153 03
MFS-25683 B81-10154 03
Economic Evaluation of Townhouse Solar Energy System
MFS-25684 B81-10155 03
Economic Evaluation of Office Solar-Heating System
MFS-25685 B81-10156 03
Dormitory Solar-Energy-System Economics
MFS-25693 B81-10157 03
Two-Story-Dwelling Solar Installation
MFS-25687 B81-10158 03
Ranger Station Solar-Energy System Receives Economic Evaluation
MFS-25699 B81-10159 03
Economic Evaluation of Dual-Level-Residence Solar-Energy System
MFS-25700 B81-10160 03
Economic Evaluation of Single-Family-Residence Solar-Energy System
MFS-25701 B81-10161 03
Easily Assembled Reflector for Solar Concentrators
NPO-15518 B81-10235 08
Solar-Driven Liquid-Metal MHD Generator
LAR-12495 B81-10266 03
Solar Simulator at Marshall Space Flight Center
MFS-25742 B81-10269 03
Evaluation of a Line-Concentrating Solar Collector
MFS-25778 B81-10270 03
Manifold Insulation for Solar Collectors
MFS-25779 B81-10271 03
Solar Heater in a West Virginia College
MFS-25706 B81-10272 03
Solar Heating System at a Racquetball Club
MFS-25720 B81-10273 03
Solar Heating in an Elementary School
MFS-25747 B81-10274 03
Solar-Cooled Hotel in the Virgin Islands
MFS-25776 B81-10275 03
Hot Water for Motor Inn--Garland, Texas
MFS-25726 B81-10276 03
Solar Space Heating for Warehouse--Kansas City, Kansas
MFS-25712 B81-10277 03
The Economics of Solar Heating
MFS-25391 B81-10278 03
SOLAR ENERGY CONVERSION
Modular Amplifier/Antenna Arrays
MSC-18991 B81-10258 01
SOLAR FURNACES
Temperature Controller for a Solar Furnace
NPO-15388 B81-10022 03
SOLAR GENERATORS
Solar-Powered Supply is Light and Reliable
MFS-25430 B81-10015 02
Controller Regulates Auxiliary Source for Solar Power
MFS-25637 B81-10133 02
Solar-Driven Liquid-Metal MHD Generator
LAR-12495 B81-10266 03
SOLAR HEATING
Solar-Driven Liquid-Metal MHD Generator
LAR-12495 B81-10266 03
SOLAR RADIATION
Solar-Driven Liquid-Metal MHD Generator
LAR-12495 B81-10266 03
SOLAR REFLECTORS
Battle Keeps Solar Energy in Receiver
NPO-15387 B81-10023 03
Solar Concentrator is Gas-Filled
NPO-15416 B81-10141 03
Easily Assembled Reflector for Solar Concentrators
NPO-15518 B81-10235 08
Indium Second-Surface Mirrors
NPO-15085 B81-10239 08
Calculating the Performance of a Solar Reflector
NPO-15314 B81-10246 09
SOLAR SENSORS
Sensors for Precise Tracking
MFS-25579 B81-10140 03
SOLDERING
Shaping Transistor Leads for Better Solder Joints
MSC-18837 B81-10103 08
Heat Lamps Solder Solar Array Quickly
NPO-14866 B81-10106 08
Assembling Multicolor Printing Plates
LEW-13598 B81-10237 08
Orienting and Applying Flux to Solar Cells
NPO-15054 B81-10343 08
Tab Interconnect Work Station
NPO-15050 B81-10344 08
Bonder for Solar-Cell Strings
NPO-15007 B81-10347 08
SOLID ELECTROLYTES
Integrated Solid-Electrolyte Construction
NPO-15471 B81-10236 08
SOLVENT EXTRACTION
Supercritical-Fluid Extraction of Oil From Tar Sands
NPO-15476 B81-10166 04
SOUND GENERATORS
Sound Waves Levitate Substrates
NPO-15435 B81-10221 08
Sound-burst Generator for Measuring CIP Properties
MFS-25438 B81-10281 04
SOUNDING ROCKETS
Aerodynamics of Sounding-Rocket Geometries
MSC-18690 B81-10074 06
SPACE LABORATORIES
Materials Processing in Space
MFS-25544 B81-10116 08
SPACE MANUFACTURING
Low-Gravity investigations in Cast-Iron Processing
MFS-25491 B81-10172 04
SPACE SUITS
Thermally Insulated Glove With Good Tactility
MSC-18926 B81-10223 08
SPACECRAFT ANTENNAS
Dish Antenna Would Deploy From a Canister
NPO-15448 B81-10241 08
SPACECRAFT PROPULSION
Sequential-Impulse Generator Uses Fiber-Optics
NPO-14939 B81-10020 03
SPACERS
"Teaching" an Industrial Robot To Spray
MFS-25523 B81-10326 07
SPARK MACHINING
Wire EDM for Refractory Materials LEW-13460 B81-10105 08
SPECTROSCOPY
XPS Study of SiO2 and the Si/SiO2 Interface
NPO-14968 B81-10285 04
SPEED CONTROL
Alternating-Current Motor Drive for Electric Vehicles
NPO-14768 AND NPO-14830 B81-10124 01
Controller Regulates Auxiliary Source for Solar Power
MFS-25657 B81-10133 02
Simplex Variable-Speed Drive for Fan or Pump
GSC-12643 B81-10201 07
Failure Detector for Power-Factor Controller
MFS-25607 B81-10252 01
SPRAY MACHINING
Three-Phase Power Factor Controller
MFS-25535 B81-10001 01
Load-Responsive Motor Controller
MFS-25660 B81-10002 01
Power-Factor Controller With Regenerative Braking
MFS-2477 B81-10003 01
New Energy-Saving Technologies Use Induction Generators
MFS-25513 B81-10021 03
SPHINXES
Constraint-Free Measurement of Metabolic Rate
MSC-18685 B81-10046 05
SYNCHRONIZED OSCILLATORS
Flashlamp Driver for Quasi-CW Laser
MFS-25541 B81-10098 08
Energy-Storage Modules for Active
MFS-25541 B81-10099 08
Solar Heating and Cooling
MFS-25561 B81-10145 03
Solar Water-Heater Design and
MFS-25561 B81-10145 03
Installation
LEW-13665 B81-10146 03
Heat-Transfer Fluids for Solar-Energy
Systems
MFS-25629 B81-10147 03
Solar Heating and Cooling for a
Controls Manufacturing Plant
Lumberton, New Jersey
MFS-25665 B81-10149 03
Solar Space and Water Heating for
Hospital --Charlottesville, Virginia
MFS-25666 B81-10150 03
Solar Hot Water for a Motor Inn --
Las Vegas, Nevada
MFS-25666 B81-10151 03
Solar Heating for a Bottling Plant --
Jackson, Tennessee
MFS-25595 B81-10152 03
Economic Evaluation of Observatory
Solar-Energy System
MFS-25682 B81-10153 03
Economic Evaluation of
Single-Family-Residence Solar-Energy
Installation
MFS-25683 B81-10154 03
Economic Evaluation of Townhouse
Solar Energy System
MFS-25684 B81-10155 03
Economic Evaluation of Office
Solar-Heating System
MFS-25685 B81-10156 03
Dormitory Solar-Energy System
Economics
MFS-25693 B81-10157 03
Two-Story-Dwelling Solar Installation
MFS-25697 B81-10158 03
Ranger Station Solar-Energy System
Receives Economic Evaluation
MFS-25699 B81-10159 03
Economic Evaluation of
Dual-Level-Residence Solar-Energy
System
MFS-25700 B81-10160 03
Economic Evaluation of
Single-Family-Residence Solar-Energy
System
MFS-25701 B81-10161 03
Evaluation of a Line-Concentrating
Solar Collector
MFS-25779 B81-10207 03
Manifold Insulation for Solar
Collectors
MFS-25779 B81-10207 03
Solar Heater in a West Virginia
College
MFS-25706 B81-10272 03
Solar Heating System at a
Racquetball Club
MFS-25720 B81-10273 03
Solar Heating in an Elementary
School
MFS-25747 B81-10274 03
Solar-Cooled Hotel in the Virgin
Islands
MFS-25776 B81-10275 03
Hot Water for Motor Inn--Garland,
Texas
MFS-25726 B81-10276 03
Solar Space Heating for
Warehouse--Kansas City, Kansas
MFS-25712 B81-10277 03
Monitoring Crystal Growth From
Solution
MFS-25622 B81-10364 08
Infrared-Controlled Welding of Solar
Cells
MFS-25612 B81-10365 08
TEMPERATURE DISTRIBUTION
Simplified Thermal Analyzer --VAX
Version
GSC-12698 B81-10198 06
TEMPERATURE EFFECTS
Predicting Tensile Strengths of
Boron/Aluminum Composites
LEW-13745 B81-10311 06
Monitoring Crystal Growth From
Solution
MFS-25622 B81-10364 08
TEMPERATURE MEASUREMENT
Fibre-Optic Temperature Gage
MSC-18627 B81-10053 06
Tire Temperature and Pressure
Monitor
LAR-19262 B81-10184 06
TEMPERATURE MEASURING
INSTRUMENTS
Compact Dual-Mode Microwave
Antenna
LAR-12784 B81-10004 01
Laser/Heterodyne Measurement of
Temperature and Salinity
LAR-12766 B81-10181 06
TEMPERATURE PROBES
Multipressure and Temperature
Probes
ARC-11166 B81-10189 06
TEMPERATURE SENSORS
Heater Composite Measures Heat
Transfer
LEW-13731 B81-10192 06
Hot Film Static-Pressure Probe for
Flow-Field Surveys
LAR-12799 B81-10308 06
TEMPLATES
'Teaching' an Industrial Robot To
Spray
MFS-25523 B81-10326 07
TENSILE STRENGTH
Predicting Tensile Strengths of
Boron/Aluminum Composites
LEW-13745 B81-10311 06
TENSILE TESTS
Improved Tensile Test for Ceramics
MSC-20105 B81-10310 06
TEST EQUIPMENT
Solar-Array Simulator
MSC-18864 B81-10119 01
Wire-Wrap Chatter Detector
NPO-15290 B81-10121 01
Load Pulser Is Sparkless
KSC-11199 B81-10123 01
Fastener Test for Cable Seals
MFS-25618 B81-10187 06
TEST FACILITIES
Survey of Facilities for Testing
Photovoltaics
NPO-15361 B81-10193 06
TESTS
Survey of Facilities for Testing
Photovoltaics
NPO-15361 B81-10193 06
<table>
<thead>
<tr>
<th>SUBJECT INDEX</th>
</tr>
</thead>
<tbody>
<tr>
<td>THERMAL CONTROL COATINGS</td>
</tr>
<tr>
<td>THERMAL DEGRADATION</td>
</tr>
<tr>
<td>THERMAL EXPANSION</td>
</tr>
<tr>
<td>THERMAL INSULATION</td>
</tr>
<tr>
<td>THERMAL POLLUTION</td>
</tr>
<tr>
<td>THERMOCHEMICAL PROPERTIES</td>
</tr>
<tr>
<td>THERMOCOUPLES</td>
</tr>
<tr>
<td>THERMOGRAVIMETRY</td>
</tr>
<tr>
<td>THICK FILMS</td>
</tr>
<tr>
<td>THICKNESS</td>
</tr>
<tr>
<td>THIOLS</td>
</tr>
<tr>
<td>TIME MEASUREMENT</td>
</tr>
<tr>
<td>TIME MEASURING INSTRUMENTS</td>
</tr>
<tr>
<td>TIME SIGNALS</td>
</tr>
<tr>
<td>TIRES</td>
</tr>
<tr>
<td>TITANIUM</td>
</tr>
<tr>
<td>TITANIUM ALLOYS</td>
</tr>
<tr>
<td>TOOLS</td>
</tr>
<tr>
<td>TORSION</td>
</tr>
<tr>
<td>TOUCH</td>
</tr>
<tr>
<td>TRACKING (POSITION)</td>
</tr>
<tr>
<td>TRANSDUCERS</td>
</tr>
<tr>
<td>TRANSFER FUNCTIONS</td>
</tr>
<tr>
<td>TRANSFORMERS</td>
</tr>
<tr>
<td>TRANSIENTS</td>
</tr>
<tr>
<td>TRANSISTORS</td>
</tr>
<tr>
<td>TRANSMISSION LINES</td>
</tr>
<tr>
<td>TRANSPORT PROPERTIES</td>
</tr>
<tr>
<td>TRUSSES</td>
</tr>
<tr>
<td>TUBES</td>
</tr>
<tr>
<td>TURBINES</td>
</tr>
<tr>
<td>TURBINE BLADES</td>
</tr>
<tr>
<td>TURBINE ENGINES</td>
</tr>
<tr>
<td>TURBINES</td>
</tr>
<tr>
<td>TURBOJET ENGINES</td>
</tr>
<tr>
<td>TURBULENT FLOW</td>
</tr>
<tr>
<td>TWISTING</td>
</tr>
<tr>
<td>TWISTING (POSITION)</td>
</tr>
</tbody>
</table>

I-23
ULTRASONIC TESTS

U

ULTRASONIC TESTS
Ultrasound Instrument for Evaluation of Composites
EW-13716
B81-10301 06

ULTRASONIC WAVE TRANSDUCERS
Ultrasound Transducer
MFS-25410
B81-10058 06

ULTRASONIC WELDING
Welding
Graphite/Thermoplastic Composite
MSC-20013
B81-10350 06

ULTRAVIOLET RADIATION
Ultraviolet-Induced Mirror Degradation
NPO-15520
B81-10171 04

UNDERWATER TESTS
Faster Test for Cable Seals
MFS-25618
B81-10187 06

UNSTEADY FLOW
Algorithm for Unsteady Potential Flow About Airfoils
ARC-11378
B81-10316 06

USER MANUALS
User Documentation for Multiple Software Releases
KSC-11189
B81-10371 09

V

VACUUM
Articulated Vacuum Chuck
MSC-18933
B81-10330 07

VACUUM APPARATUS
3-D Manipulator for Mass Spectrometer
ARC-11323
B81-10137 03

VACUUM CHAMBERS
Faster Test for Cable Seals
MFS-25618
B81-10187 06

VALUE ENGINEERING
Proposed Reliability/Cost Model
MFS-25494
B81-10372 09

VALVES
High-Temperature Seal for Sliding-Gate Valve
MFS-19807
B81-10107 08

VAPOR JETS
Plasma Deposition of Amorphous Silicon
NPO-14954
B81-10044 04

VAPORS
Vapor Detector
MSC-18989
B81-10287 04

VARIABLE GEOMETRY STRUCTURES
Solar Concentrator is Gas-Filled
NPO-15416
B81-10141 03

VECTOR SPACES
Linear-Algebra Programs
NPO-15108
B81-10117 09

VENTILATION FANS
Simple Variable-Speed Drive for Fan or Pump
GSC-12643
B81-10201 07

VIABILITY
Improved Method for Culturing Guinea Pig Macrophage Cells
MFS-25007
B81-10177 05

W

VIBRATION DAMPING
Solution Accounts for Structural Damping
LAR-12663
B81-10303 06

VIBRATION ISOLATORS
Dynamic Isolation for Cryogenic Refrigerators
LAR-12728
B81-10076 07

VIBRATION METERS
Engine-Vibration Analyzer
MFS-19320
B81-10183 06

VISCOELASTICITY
Viscoelastic Properties of Polymer Blends
NPO-14924
B81-10041 04

VISCOUS FLOW
High-Lift Separated Flow About Airfoils
LAR-12853
B81-10324 06

VOLTAGE CONVERTERS (DC TO DC)
High-Efficiency dc/dc Converter
LEW-13486
B81-10120 01

VOLTAGE REGULATORS
Power-MOSFET Voltage Regulator
MSC-20059
B81-10257 01

VORTICES
Wingtip-Vortex Turbine Lowers Aircraft Drag
LAR-12544
B81-10182 06

WAFFERS
High-Speed Wafer Slicer
NPO-15463
B81-10332 07

WARNING SYSTEMS
Engine-Vibration Analyzer
MFS-19320
B81-10183 06

WATER POLLUTION
Powerplant Thermal-Pollution Models
KSC-11210
B81-10142 03

WATER TEMPERATURE
Powerplant Thermal-Pollution Models
KSC-11210
B81-10142 03

WATER TREATMENT
Regenerating Water Sterilizing Resins
MSC-20001
B81-10288 04

WAVEFORMS
High-Frequency Gated Oscillator
MFS-16634
B81-10011 01

WEATHERING
Ultraviolet-Induced Mirror Degradation
NPO-15520
B81-10171 04

WEATHERPROOFING
Weatherproof Crimp Connector
NPO-15497
B81-10101 06

WEIGHT REDUCTION
Structural Design With Stress and Buckling Constraints
MFS-25234
B81-10322 06

WEIGHTLESSNESS
Materials Processing in Space
MFS-25544
B81-10116 06

WELD TESTS
Microcomputer Checks Butt-Weld Quality
MFS-25577
B81-10062 06

WELDING
Fluxless Brazing of Large Structural Panels
LAR-10227 07

WELD TESTS
Technique Lowers Weld Power Requirements
MFS-19655
B81-10226 08

WELDING
Weld-Wire Monitor
MFS-19603
B81-10227 08

WEIGHT REDUCTION
Controlling Electron-Beam-Weld Focus
MFS-16935
B81-10352 08

WEIGHTLESSNESS
Orientation Sensitivity for Electrochemical Sensor
KSC-11767
B81-10233 08

WELDING MACHINES
Gravity-Feed Growth of Silicon Ribbon
NPO-14957
B81-10060 08

WHEATSTONE BRIDGES
Mismatching of Apparent-Strain Characteristics
LAR-12743
B81-10066 06

WICKS
Superabsorbent Multilayer Fabric
MSC-18223
B81-10169 04

WIND TUNNELS
Multipressure and Temperature Probe
ARC-11186
B81-10819 06
SUBJECT INDEX

WINDMILLS (WINDPOWERED MACHINES)
 Aerodynamics Improve Wind Wheel
 MFS-25506 B81-10080 07

WINDPOWERED GENERATORS
 New Energy-Saving Technologies
 Use Induction Generators
 MFS-25513 B81-10021 03

WING TIPS
 Wingtip-Vortex Turbine Lowers
 Aircraft Drag
 LAR-12544 B81-10182 06

WIRING
 Structural Modules Would Contain
 Transmission Lines
 GSC-12523 B81-10108 08
 CADAT Printed-Wiring-Board Designer
 MFS-25464 B81-10244 08
 High-Density Terminal Box for
 Testing Wire Harness
 NPO-15147 B81-10251 01

WRENCHES
 Cam-Design Torque Wrench
 MFS-19586 B81-10206 07

WRINKLING
 Elastic Surface Wrinkling
 NPO-15091 B81-10321 06

X

X RAYS
 Improved Lixiscope
 GSC-12587 B81-10287 03
INDEX TO NASA TECH BRIEFS

JULY 1986

PERSONAL AUTHOR INDEX

<table>
<thead>
<tr>
<th>PERSONAL AUTHOR</th>
<th>TITLES</th>
<th>ORIGINATING CENTER NUMBER</th>
<th>TECH BRIEF NUMBER</th>
<th>CATEGORY</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABELES, F.</td>
<td></td>
<td></td>
<td>B81-10361</td>
<td>08</td>
</tr>
<tr>
<td>ABELES, F. J.</td>
<td></td>
<td></td>
<td>B81-10088</td>
<td>08</td>
</tr>
<tr>
<td>ABITTA, J. L.</td>
<td></td>
<td></td>
<td>B81-10186</td>
<td>06</td>
</tr>
<tr>
<td>ADAMS, W. A.</td>
<td></td>
<td></td>
<td>B81-10186</td>
<td>06</td>
</tr>
<tr>
<td>ALARIO, J. P.</td>
<td></td>
<td></td>
<td>B81-10253</td>
<td>01</td>
</tr>
<tr>
<td>ALBERI, A.</td>
<td></td>
<td></td>
<td>B81-10185</td>
<td>06</td>
</tr>
<tr>
<td>ALCORN, G. E.</td>
<td></td>
<td></td>
<td>B81-10369</td>
<td>06</td>
</tr>
<tr>
<td>ALIBERTI, J. A.</td>
<td></td>
<td></td>
<td>B81-10109</td>
<td>08</td>
</tr>
<tr>
<td>ALTMAN, R. L.</td>
<td></td>
<td></td>
<td>B81-10207</td>
<td>07</td>
</tr>
<tr>
<td>ANICICH, V. G.</td>
<td></td>
<td></td>
<td>B81-10103</td>
<td>02</td>
</tr>
<tr>
<td>ARMEN, H. J.</td>
<td></td>
<td></td>
<td>B81-10323</td>
<td>06</td>
</tr>
<tr>
<td>ABELES, F.</td>
<td></td>
<td></td>
<td>B81-10103</td>
<td>02</td>
</tr>
<tr>
<td>ABBOTT, J. W.</td>
<td></td>
<td></td>
<td>B81-10208</td>
<td>07</td>
</tr>
<tr>
<td>BAECHLER, D. C.</td>
<td></td>
<td></td>
<td>B81-10143</td>
<td>03</td>
</tr>
<tr>
<td>BAHLMAN, H.</td>
<td></td>
<td></td>
<td>B81-10208</td>
<td>07</td>
</tr>
<tr>
<td>BAKER, J. W.</td>
<td></td>
<td></td>
<td>B81-10319</td>
<td>06</td>
</tr>
<tr>
<td>BALEY, G. R.</td>
<td></td>
<td></td>
<td>B81-10228</td>
<td>08</td>
</tr>
<tr>
<td>BAKY, A. A.</td>
<td></td>
<td></td>
<td>B81-10250</td>
<td>01</td>
</tr>
<tr>
<td>BALINSKAS, R.</td>
<td></td>
<td></td>
<td>B81-10045</td>
<td>05</td>
</tr>
<tr>
<td>BARBOUR, R. T.</td>
<td></td>
<td></td>
<td>B81-10218</td>
<td>07</td>
</tr>
<tr>
<td>BARRETT, A. G.</td>
<td></td>
<td></td>
<td>B81-10087</td>
<td>06</td>
</tr>
<tr>
<td>BARRETT, A. G.</td>
<td></td>
<td></td>
<td>B81-10135</td>
<td>02</td>
</tr>
<tr>
<td>BARNES, G. H.</td>
<td></td>
<td></td>
<td>B81-10130</td>
<td>02</td>
</tr>
<tr>
<td>BARNES, G. H.</td>
<td></td>
<td></td>
<td>B81-10135</td>
<td>02</td>
</tr>
<tr>
<td>BARETTE, J. P.</td>
<td></td>
<td></td>
<td>B81-10103</td>
<td>02</td>
</tr>
<tr>
<td>BAXTER, J. W.</td>
<td></td>
<td></td>
<td>B81-10067</td>
<td>06</td>
</tr>
<tr>
<td>BEAL, J.</td>
<td></td>
<td></td>
<td>B81-10224</td>
<td>08</td>
</tr>
<tr>
<td>BEJECZY, A. K.</td>
<td></td>
<td></td>
<td>B81-10062</td>
<td>06</td>
</tr>
</tbody>
</table>

This index is arranged alphabetically by author. The Tech Brief title is listed followed by the originating Center number, e.g., MFS-25493. The Tech Brief number, e.g., B81-10361, is followed by a two-digit number, e.g., 08, which designates the subject category.

A

- **ABELES, F.** Integral Face Shield Concept for Firefighter's Helmet
 - MFS-25493
- **ABELES, F. J.** Improved Clothing for Firefighters
 - MFS-25546
- **ABITTA, J. L.** Pressure Switch Is a Low Cost Battery Indicator
 - GSC-12679
- **ABSHIRE, J. B.** Rangeinder Corrects for Air Density and Moisture
 - GSC-12609
- **ADAMS, W. A.** Wideband Amplifier With Subpicosecond Stability
 - GSC-12646
- **ALARIO, J. P.** Onsite Blocks Heat Pipe in Reverse Mode
 - ARC-11341
- **ALBERI, A.** Fabricating Structural Beams
 - MFS-25228
- **ALCORN, G. E.** IC Capacitors on Groups III-to-V Substrates
 - GSC-12543
- **ALIBERTI, J. A.** Clamp Restrains Pressure Line
 - KSC-11205
- **ALTMAN, R. L.** Synthesis of Fire-Extinguishing Dawsonites
 - ARC-11326

B

- **BACKER, D. C.** Proposed Integrated Radio-Telescope Network
 - NPO-15417
- **BAHLMAN, H.** Unidirectional Flexural Pivot
 - GSC-12622
- **BAILEY, J. W.** Eddy-Current Meter Would Check Weld Wire Online
 - MFS-25509
- **BAILEY, J. W.** Unigual-Split Strip-Line Power Divider
 - LAR-12624
- **BAKY, A. A.** Algorithms Could Automate Carcinoma Diagnosis
 - MSC-18634
- **BALINSKAS, R.** Thermally Insulated Glove With Good Tactility
 - MSC-18626
- **BARETTE, J. P.** Explosively Actuated Opening for Rapid Egress
 - LAR-12624
- **BARK, J. W.** Improved Parallel-Access Alinement Network
 - ARC-11155
- **BARROWMAN, J.** Cryogenic Pressure Switch Is a Low Cost Battery Indicator
 - B81-10067
- **BAULT, M. G.** Dynamic Isolation for Cryogenic Refrigerators
 - LAR-12728
- **BECHLER, D. C.** Explosively Actuated Opening for Rapid Egress
 - LAR-12624
- **BENNIT, G. C.** Vacuum Head Removes Sanding Dust
 - MSC-19526
- **BERARD, C. A.** High-Frequency Gated Oscillator
 - MSC-19534
- **BERG, L. H.** Levitator for Containerless Processing
 - KSC-11205
- **BESWICK, A. G.** Tire Temperature and Pressure Monitor
 - ARC-11292
- **BEYUKIAN, C. S.** Fluxless Brazing of Large Structural Panels
 - LAR-12519
- **BIRCHENOUGH, A. G.** Modular Engine Instrumentation System
 - LEW-13729
- **BLAZQUEZ, C. H.** Aerial Infrared Photos for Citrus Growers
 - KSC-11209
- **BLOOM, J. C.** Improved Cure-in-Place Silicone Adhesives
 - MFS-25567
- **BLOUIN, J. C.** Improved Cure-in-Place Silicone Adhesives
 - MFS-25567
- **BLOOM, J. C.** Improved Cure-in-Place Silicone Adhesives
 - MFS-25567
CULLEN, G. W.
CROUTHAMEL, M. S.
PERSONAL AUTHOR INDEX
DASTOOR, M. N.
CURRY, J. E.
DECARLO, J. A.
DAWE, R.
DAVIS, W. T.
DAVIDSON,
DEFILER, R.
DENNIS, W. E.
DENDY, J. B.
DELIONBACK, L. M.
DECKER, H. J.
DOANE, J.
DIX, M. G.
DILLON, H.

d
DOKKO, W.
DONAGARRA, J.
Linear-Algebra Programs
NPO-15108
DOTTIS, R. L.
Prolonging the Life of Refractory Fillers
MSC-18832
Prolonging the Life of Refractory Fillers
MSC-18832
DRENNAN, D. N.
Fiber-Reinforced Slip Castings
ARC-11279
DUNCAN, C. S.
Improved Facility for Producing Silicon Web
NPO-14860
Automatic Control of Silicon Melt Level
NPO-15487
DUNN, H. J.
Computing the Power-Density Spectrum for an Engineering Model
LAR-12918
DURLING, B. J.
Dynamic-Loads Analysis of Flexible Aircraft With Active Controls
LAR-12747
Plastic and Large-Deflection Analysis of Nonlinear Structures
LAR-12816
DUTTA, S.
'SAION' Materials for Advanced Structural Applications
LEW-13671

E
ECKBERG, R. R.
Boron/Aluminum-Titanium on Stiffener
MSC-18995
EDGE, T. M.
Load-Responsive Motor Controller
MFS-25560
EDSTROM, R.
One Way of Testing a Distributed Processor
KSC-11123
EDWARDS, T. M.
A Simple Tiltmeter
ARC-11344
EHL, J.
Fabricating Structural Beams
MFS-19528
ELLINGBOE, C. T.
Spring Support for Turbopump Rotor Bearing
MFS-19524
EMANUEL, W. H.
New Method For Joining Stainless Steel to Titanium
MSC-18928
ENGLE, E. E.
Fabricating Structural Beams
MFS-25528
ENNINGER, J. E.
Heat Pipe Blocks Return Flow
ARC-11285
EVANS, A. R.
"Teaching" an Industrial Robot To Spray
MFS-25523
EVANS, J. T.
Boltless Seal For Electronic Housings
NPO-14988
EVANS, R. C.
Lightweight Face Mask
LAR-12943
EVENSEN, D. A.
Model Verification of Mixed Dynamic Systems
MFS-23006
EWING, M. S.
Proposed Integrated Radio-Telescope Network
NPO-15417

F
FALES, C. L.
Laser/Heterodyne Measurement of Temperature and Salinity
LAR-12766
FEDER, H.
Walking-Beam Solar-Cell Conveyor
NPO-15503
Orienting and Applying Flux to Solar Cells
NPO-15504
Work Station For Inverting Solar Cells
NPO-15506
FITFAL, C. F.
Measuring Cyclic-Stress Properties of Pressure Vessels
MFS-23734
FINLEY, L. A.
Dish Antenna Would Deploy From a Canister
NPO-15448
FINNELL, S. E.
Infrared-Controlled Welding of Solar Cells
MFS-25612
FISCH, G. Z.
Wire-Wrap Chatter Detector
NPO-15290
FISHER, D. M.
Load-Displacement Measurement on Pin-Loaded Specimens
LEW-13624
FLAT, A.
Multilayer, Front-Contact Grid for Solar Cells
LAR-12613
FLEETWOOD, C. M.
Using Nomarski Interference to Detect Microcracks in Glass
GSC-12649
FOHLIN, G. M.
Improved Fire-Resistant Resins for Laminates
ARC-11321
FORDAY, J. A.
The Economics of Solar Heating
MFS-25391
FRANKHOUSEW, W. L.
Low-Gravity Investigations in Cast-Iron Processing
MFS-25491
FRASCH, W.
Walking-Beam Solar-Cell Conveyor
NPO-15503
Vacuum Pickup for Solar Cells
NPO-15500
PERSONAL AUTHOR INDEX

HAYES, T.
Retractor Tool for Brain Surgery
MFS-25380 B81-10176 05

HEDGEPETH, J. A.
Dish Antenna Would Deploy From a Canister
NPO-15448 B81-10241 08

HELMAN, D. H.
Tile-Gap Measurement Tool
MSC-20057 B81-10304 06

HELMS, R.
Retractor Tool for Brain Surgery
MFS-25380 B81-10176 05

HENDRIX, N.
Analyzing Multirate-Sampled Systems
MFS-25541 B81-10264 02

HEYMAN, J. S.
Pulsed Phase-Locked-Loop Strain Monitor
LAR-12772 B81-10088 06

HIMEL, V.
Integral Face Shield Concept for Firefighter's Helmet
MFS-25493 B81-10361 08

HIPPENSTEELE, S. A.
Heat Composite Measures Heat Transfer
LEW-19731 B81-10192 06

HODOR, J. R.
Infrared-Controlled Welding of Solar Cells
MFS-25612 B81-10365 08

HOEHN, F. W.
Resistance Heater Helps Stirling-Engine Research
NPO-14928 B81-10083 07

HOHL, F.
Solar-Driven Liquid-Metal MHD Generator
LAR-12495 B81-10266 03

HOLLAND, L. R.
Radiant Heating of Amoule contains MFS-25436 B81-10362 08

HOLT, J. W.
Vacuum Head Removes Sanding Dust
MSC-19526 B81-10215 07

HOLT, W. H.
Moisture in Composites is Measured by Positron Lifetime
LAR-12776 B81-10190 06

HONG, S. D.
Viscoelastic Properties of Polymer Blends
NPO-14924 B81-10041 04

HOOPER, S. L.
Latch With Single-Motion Release
MSC-18923 B81-10220 07

HORN, F. W. J.
Aerial Infrared Photos for Citrus Growers
KSC-11209 B81-10178 05

HOUSTON, D. W.
Vapor Detector
MSC-18899 B81-10287 04

HRARSTAR, J. A. S.
Flywheel Would Compensate for Rotor Imbalance
GSC-12550 B81-10331 07

HUBER, J.
Fabricating Structural Beams
MFS-25228 B81-10369 08

HUMPHREY, M. F.
Analyzing the Combustion of Coal
NPO-15456 B81-10282 04

HUMPHREY, R.
User Documentation for Multiple Software Releases
KSC-11189 B81-10371 09

HUNTRESS, W. T. J.
Compact Ion Source for Mass Spectrometers
NPO-14324 B81-10136 03

HYER, M. W.
Solution Accounts for Structural Damping
LAR-12863 B81-10303 06

INGHAM, J. D.
Thermal Polymerization of N-Butyl Acrylate
NPO-15010 B81-10295 04

IRWIN, S. H.
Test-Bed Aircraft Scanner
LAR-12796 B81-10268 03

ITO, T. I.
Preparation of Perfluorinated Imidoylamidoxime Polymers
ARC-11267 B81-10036 04

JACKSON, R. L.
Metallic Panels Would Insulate at 2,700 Degrees F
LAR-12620 B81-10104 08

JASINSKI, M.
Programmable Interface Handles Many Peripherals
KSC-11132 B81-10261 02

JOBSON, D. J.
Laser/Heterodyne Measurement of Temperature and Salinity
LAR-12796 B81-10181 06

JOHNSON, C.
Fabricating Structural Beams
MFS-25228 B81-10369 08

JOHNSON, D. C.
Aerelastic Analysis for Rotorcraft
ARC-11150 B81-10075 06

JONES, R.
IC Capacitors on Groups III-to-V Substrates
GSC-12543 B81-10109 08

KATZBERG, S. J.
Laser/Heterodyne Measurement of Temperature and Salinity
LAR-12766 B81-10181 06

KEESER, J.
Preparation of Perfluorinated Imidoylamidoxime Polymers
ARC-11267 B81-10036 04

KESSELER, T. O.
Compact Ion Source for Mass Spectrometers
NPO-14324 B81-10136 03

KIRCHNER, L. E.
Speedy Acquisition of Surface-Contamination Samples
NPO-14934 B81-10175 05

KLEINBERG, L.
Storing and Deploying Solar Panels
MSC-18950 B81-10366 08

KLEINBERG, L. L.
Structural Band-Pass Amplifier
GSC-12567 B81-10255 01

KNOX, C. E.
Flight-Management Algorithm for Fuel-Conservative Descent
LAR-12414 B81-10179 06

KO, W. L.
Metal Sandwich Panel With Biaxially Corrugated Core
FRG-11026 B81-10112 08

KOERNER, T.
Lightweight, Low-Loss dc Transducer
NPO-14618 B81-10126 01

KOESTER, K. L.
Constraint-Free Measurement of Metabolic Rate
MSC-18885 B81-10046 05

KROGH, F. T.
Linear-Algebra Programs
NPO-15108 B81-10117 09

KROGH, F. T.
Linear-Algebra Programs
NPO-15108 B81-10117 09
PERSONAL AUTHOR INDEX

MILLER, P.
Tool Lifts Against Surface Tension
GSC-12672 B81-10216 07

MILLER, W. N.
Arc-Fire High-Power dc Switch
MSC-20091 B81-10256 01
Power-MOSFET Voltage Regulator
MSC-20059 B81-10257 01

MILLS, E. R.
Wide-Temperature-Range Inks Paint
MFS-19644 B81-10289 04

MILLS, J. M.
Sound-burst Generator for Measuring Coal Properties
MFS-25438 B81-10281 04

MILNES, A. G.
Multilayer, Front-Contact Grid for Solar Cells
LAR-12613 B81-10009 01

MINOTT, P. O.
Interferometer Accurately Measures Rotation Angle
GSC-12614 B81-10057 06

MITCHELL, M. J.
Cutting a Tapered Edge on Padding Material
MSC-20011 B81-10367 08

MITTRA, R.
Far-Field Antenna Pattern From a Near-Field Test
NPO-14904 B81-10059 06

MOACANIN, J.
Viscoelastic Properties of Polymer Blends
NPO-14924 B81-10041 04

MOCK, W. J.
Moisture in Composites is Measured by Position Lifetime
LAR-12776 B81-10198 06

MOFFAT, R. J.
Heater Composite Measures Heat Transfer
LEW-13731 B81-10192 06

MOLER, C. B.
Linear-Algebra Programs
NPO-15108 B81-10117 09

MOORE, T. C.
Matching of Apparent-Strain Characteristics
LAR-12743 B81-10066 06

MORFIN, H.
Fabricating Structural Beams
MFS-25228 B81-10369 08

MOSNA, F. J.
Weatherproof Crimp Connector
NPO-15497 B81-10101 08

MUEGGE, E.
Tool Lifts Against Surface Tension
GSC-12672 B81-10215 07

MUENCH, W.
Fabricating Structural Beams
MFS-25228 B81-10369 08

NAGANO, S.
Lightweight, Low-Loss dc Transducer
NPO-14618 B81-10126 01

NAUMANI, R. J.
Materials Processing in Space
MFS-25544 B81-10116 08

NAGLE, P. F.
New Energy-Saving Technologies
Use Induction Generators
MFS-25513 B81-10021 03

NAGLE, F. J.
Three-Phase Power Factor Controller
MFS-25535 B81-10001 01
Power-Factor Controller With Regenerative Braking
MFS-25477 B81-10003 01
Controller Regulates Auxiliary Source for Solar Power
MFS-25637 B81-10133 02
Failure Detector for Power-Factor Controller
MFS-25607 B81-10252 01

NOVAK, H. L.
Weld width indicates weld strength
MFS-25648 B81-10354 08

NUNES, A. C. J.
Weld width indicates weld strength
MFS-25648 B81-10354 08

OBLER, H. D.
Simpler Variable-Speed Drive for Fan or Pump
GSC-12643 B81-10201 07

OEPOMO, T.
Line Replaceable Unit Analysis
MSC-20189 B81-10299 02

OEPOMO, T. S.
Short-Circuited Power Networks
MSC-12697 B81-10225 02

OGILVIE, P.
Plastic and Large-Deflection Analysis of Nonlinear Structures
LAR-12813 B81-10032 06

OLSON, A. R.
Improved High-Temperature Seal
MSC-12670 B81-10021 07

OLSON, R.
Weld-Wire Monitor
MFS-19603 B81-10227 08

ORAN, W. A.
Levitated for Containerless Processing
MFS-25509 B81-10110 08

ORLOFF, R. J.
Rotating the Plane of Parallel Light Beams
ARC-11311 B81-10265 03

OSTECKI, R. A.
Improved Tensile Test for Ceramics
MSC-20105 B81-10310 06

OWEN, R. B.
Beam Splitter Intensities Are Pressembled
MFS-25312 B81-10019 03
Dual-Laser Schlieren System
MFS-25315 B81-10052 06

PACIOREK, K. J. L.
Preparation of Perfluorinated Imidoylamidoxime Polymers
ARC-12621 B81-10036 04

PAGE, D. B.
Ultrasonic Welding of Graphite/Thermoplastic Composite
MSC-20013 B81-10350 08

PARKER, J. A.
Improved Fire-Resistant Resins for Laminates
ARC-11321 B81-10039 04

PARKER, J. C.
Energy-Storage Modules for Active Solar Heating and Cooling
MFS-25681 B81-10145 03
Heat-Transfer Fluids for Solar-Energy Systems
MFS-25629 B81-10147 03

PARKER, K.
Environmental-Analysis Routine Library
MSC-18925 B81-10297 05

PATTERSON, J. C.
Wing-tip-Vortex Turbine Lowers Aircraft Drag
LAR-12544 B81-10182 06

PATTERSON, W. J.
Binders for Thermal-Control Coatings
MFS-25620 B81-10294 04

PAULKOVICH, J.
Rotary Transformer Seals Power In GSC-12659 B81-10008 01

PAULSON, R.
Infrared-Controlled Welding of Solar Cells
MFS-25612 B81-10365 08

PENG, S. T. J.
Deformation-Induced Anisotropy of Polymers
NPO-15325 B81-10043 04

PERRY, B. I.
Dynamic-Loads Analysis of Flexible Aircraft With Active Controls
LAR-12747 B81-10200 06

PERRY, R.
Explosively Actuated Opening for Rapid Egress
LAR-12624 B81-10319 06

PESSIN, R.
Technique Lowers Weld Power Requirements
MSC-19655 B81-10226 08

PETEJSEN, G. R.
Chemical Growth Regulators for Guayule Plants
NPO-15213 B81-10048 05
Heat-Exchange Fluids for Sulfuric Acid Vaporizers
NPO-15015 B81-10291 04

PETJERSON, S. A.
Fastener Easier To Install
MSC-18742 B81-10082 07
Articulated Vacuum Chuck
MSC-18933 B81-10330 07

PEYRAN, R. J.
Improved Cable Grip Reduces Wear
ARC-11318 B81-10214 07

PIERCE, A. D.
Sound-burst Generator for Measuring Coal Properties
MFS-25438 B81-10281 04

PIERCE, W. B.
High-Density Terminal Box for Testing Wire Harness
NPO-15147 B81-10251 01

PIFLKO, A.
Plastic and Large-Deflection Analysis of Nonlinear Structures
LAR-12816 B81-10323 06

POLEN, R.
Microcomputer Checks Butt-Weld Accuracy
MFS-25557 B81-10062 06

I-33
VAHEY, D. W.
Fast Holographic Comparator
LAR-12509 B81-10132 02

VARMA, I. K.
Improved Fire-Resistant Resins for Laminates
ARC-11321 B81-10039 04

VARY, A.
Ultrasonic Instrument for Evaluation of Composites
LEW-13716 B81-10301 06

VASQUEZ, R. P.
XPS Study of SiO2 and the Si/SiO2 Interface
NPO-14969 B81-10105 01

VAUGHAN, E. T.
I/O Error Analyzer (UNIVAC)
NPO-15374 B81-10357 08

VESSOT, R. C.
Method for Canceling Ionospheric Doppler Effect
MFS-25599 B81-10260 02

VIKUKAL, H. C.
New Apparatus Tests Pressure-Suit Joints
ARC-11314 B81-10314 06

WADDELL, H. M.
Vapor Detector
MSC-18989 B81-10132 04

WAKFIELD, M. E.
Protective Garment Ensemble
MSC-18989 B81-10132 04

WALDECK, G. C.
Two-Stage Linearization Circuit
LAR-12577 B81-10125 01

WALKER, R. L.
Strain-Gaged Bolts Are Easily Prepared
MSC-18823 B81-10069 06

WANG, K. L.
Ultra-Thin-Film GaAs Solar Cells
NPO-14930 B81-10113 08

WANG, T.
Viscous Torques on a Levitating Body
NPO-15413 B81-10055 06

WANG, T. G.
Sound Waves Levitate Substrates
NPO-15435 B81-10221 06

WARSI, Z. U. A.
Numerical Solution for Navier-Stokes Equations
MFS-25617 B81-10370 09

WASHBURN, F. D.
Load Pulser Is Sparkless
KSC-11159 B81-10123 01

WATERS, W. J.
Assembling Multicolor Printing Plates
LEW-13598 B81-10237 06

WEAVER, R. W.
Survey of Facilities for Testing Photovoltaics
NPO-15361 B81-10193 06

WEBB, J. A. J.
Fast-Acting Electrohydraulic Servo
LEW-13790 B81-10298 06

WEBBON, B.
New Apparatus Tests Pressure-Suit Joints
ARC-11314 B81-10314 06

WEBSTER, C. N.
Mass-Loss Buttons Monitor Material Degradation
MSC-18903 B81-10307 06

WEED, R. A.
Numerical Solution for Navier-Stokes Equations
MFS-25617 B81-10370 09

WEINBERG, M. C.
Gas Diffusion in Fluids Containing Bubbles
NPO-15060 B81-10292 04

WEINER, H.
High-Resolution Optical Transducer NPO-14168 B81-10126 01

WEINSTEIN, L. M.
Hot Film Static-Pressure Probe for Flow-Field Surveys
LAR-12799 B81-10308 06

WERNER, K. E.
Adhesives Mixer Applicator
MSC-18916 B81-10078 07

WEYHRETER, A.
Fabricating Structural Beams
MFS-25228 B81-10369 06

WICTING, A. R.
Finite-Element Analysis of Forced Convection and Conduction
LAR-12799 B81-10195 06

WILLIAMS, E.
Linear-Algebra Programs
NPO-15106 B81-10117 09

WILLIAMS, G. W.
Gage for Surface Waviness
MSC-20055 B81-10305 06

WILLIAMS, J. G.
Lacquer Reveals Impact Damage in Composites
LAR-12700 B81-10064 06

WILLIAMS, R. J.
System Controls and Measurements
NPO-15096 B81-10162 04

WILLIS, A. E.
Solar-Powered Supply Is Light and Reliable
MFS-25430 B81-10015 02

WILLS, R. J.
Wire EDM for Refractory Materials
LEW-13460 B81-10105 08

WILLS, R. R.
Ceramic for Silicon-Shaping Dies
NPO-14783 B81-10032 08

WILSON, D. D.
Study of Two Digital Charge-Coupled Devices
MFS-25606 B81-10128 02

WILSON, R. C.
Improving Radiometer-Cavity Absorbance
NPO-15374 B81-10357 08

WINKLER, D. G.
Algorithms Could Automate Cancer Diagnosis
MSC-18704 B81-10045 05

WINHEROW, W. K.
Dual-Laser Schlieren System
MFS-25315 B81-10052 06

WISSINK, T. L.
Processing PCM Data in Real Time
NPO-15262 B81-10262 02

WOOD, K. E.
Improved High-Temperature Seal
MSC-18790 B81-10210 07

WOOD, W. H.
Increasing Metal Fracture Toughness
LAR-12805 B81-10351 08

WRIGHT, M. C.
Solar-Array Simulator
MSC-18864 B81-10119 01

YAMAUCHI, S. T.
Compact Liquid Deaerator
MSC-18936 B81-10211 07

YANAGITA, H.
Rotating the Plane of Parallel Light Beams
MSC-11111 B81-10265 03

YANG, L. C.
Sequential-Impulse Generator Uses Fiber-Optic
NPO-14939 B81-10020 03

Circuit Counts Carbon Fibers
NPO-14940 B81-10188 06

YEH, Y. C. M.
Improved Lixiscope
GSC-12587 B81-10267 03

YOUNG, V. F.
Study of Two Digital Charge-Coupled Devices
MFS-25606 B81-10128 02

ZEBSUS, P. P.
Improved High-Temperature Seal
MSC-18790 B81-10210 07

ZEHNPFENNIG, T. F.
Sensors for Precise Tracking
MFS-25579 B81-10140 03

ZELLARS, G. R.
Wire EDM for Refractory Materials
LEW-13460 B81-10105 08
Typical Originating Center Number Index Listing

<table>
<thead>
<tr>
<th>ORIGINATING CENTER NUMBER</th>
<th>TECH BRIEF NUMBER</th>
<th>CATEGORY</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARC-10814</td>
<td>B81-10213 07</td>
<td></td>
</tr>
<tr>
<td>ARC-11150</td>
<td>B81-10075 06</td>
<td></td>
</tr>
<tr>
<td>ARC-11155</td>
<td>B81-10134 02</td>
<td></td>
</tr>
<tr>
<td>ARC-11162</td>
<td>B81-10135 02</td>
<td></td>
</tr>
<tr>
<td>ARC-11166</td>
<td>B81-10189 06</td>
<td></td>
</tr>
<tr>
<td>ARC-11241</td>
<td>B81-10037 04</td>
<td></td>
</tr>
<tr>
<td>ARC-11257</td>
<td>B81-10049 06</td>
<td></td>
</tr>
<tr>
<td>ARC-11264</td>
<td>B81-10296 05</td>
<td></td>
</tr>
<tr>
<td>ARC-11267</td>
<td>B81-10036 04</td>
<td></td>
</tr>
<tr>
<td>ARC-11279</td>
<td>B81-10099 08</td>
<td></td>
</tr>
<tr>
<td>ARC-11285</td>
<td>B81-10060 06</td>
<td></td>
</tr>
<tr>
<td>ARC-11286</td>
<td>B81-10217 07</td>
<td></td>
</tr>
<tr>
<td>ARC-11292</td>
<td>B81-10130 02</td>
<td></td>
</tr>
<tr>
<td>ARC-11293</td>
<td>B81-10010 01</td>
<td></td>
</tr>
<tr>
<td>ARC-11311</td>
<td>B81-10265 03</td>
<td></td>
</tr>
<tr>
<td>ARC-11314</td>
<td>B81-10314 06</td>
<td></td>
</tr>
<tr>
<td>ARC-11318</td>
<td>B81-10214 07</td>
<td></td>
</tr>
<tr>
<td>ARC-11321</td>
<td>B81-10039 04</td>
<td></td>
</tr>
<tr>
<td>ARC-11323</td>
<td>B81-10137 09</td>
<td></td>
</tr>
<tr>
<td>ARC-11326</td>
<td>B81-10038 04</td>
<td></td>
</tr>
<tr>
<td>ARC-11341</td>
<td>B81-10185 06</td>
<td></td>
</tr>
<tr>
<td>ARC-11344</td>
<td>B81-10221 04</td>
<td></td>
</tr>
<tr>
<td>ARC-11375</td>
<td>B81-10315 06</td>
<td></td>
</tr>
<tr>
<td>FRC-11017</td>
<td>B81-10056 06</td>
<td></td>
</tr>
<tr>
<td>FRC-11026</td>
<td>B81-10112 08</td>
<td></td>
</tr>
<tr>
<td>GSC-12412</td>
<td>B81-10047 06</td>
<td></td>
</tr>
<tr>
<td>GSC-12517</td>
<td>B81-10202 07</td>
<td></td>
</tr>
<tr>
<td>GSC-12523</td>
<td>B81-10108 08</td>
<td></td>
</tr>
<tr>
<td>GSC-12543</td>
<td>B81-10109 08</td>
<td></td>
</tr>
<tr>
<td>GSC-12550</td>
<td>B81-10321 07</td>
<td></td>
</tr>
<tr>
<td>GSC-12566</td>
<td>B81-10254 01</td>
<td></td>
</tr>
<tr>
<td>GSC-12567</td>
<td>B81-10255 01</td>
<td></td>
</tr>
<tr>
<td>GSC-12582</td>
<td>B81-10203 07</td>
<td></td>
</tr>
<tr>
<td>GSC-12587</td>
<td>B81-10267 03</td>
<td></td>
</tr>
<tr>
<td>GSC-12635</td>
<td>B81-10005 01</td>
<td></td>
</tr>
<tr>
<td>GSC-12636</td>
<td>B81-10209 07</td>
<td></td>
</tr>
</tbody>
</table>

The left hand column identifies the originating Center number, to the right of each originating Center number is the Tech Brief number, e.g., B81-10213, followed by a two-digit number, e.g., 07, which identifies the subject category containing the entire citation.
The left hand column identifies the Tech Brief number, e.g., B81-10045, followed by a two-digit number, e.g., 05, which identifies the subject category containing the entire citation. Following the subject category number is the originating Center number.