WORKSHOP ON
THE EVOLUTION OF THE
MARTIAN ATMOSPHERE

MSATT
Mars Surface and Atmosphere Through Time

N92-10064
Unclass
07/91 1117025

LPI Technical Report Number 92-05
LUNAR AND PLANETARY INSTITUTE 3600 BAY AREA BOULEVARD HOUSTON TX 77058-1113 LPI/TR-92-05
WORKSHOP ON
THE EVOLUTION OF THE MARTIAN ATMOSPHERE

Edited by
J. G. Luhmann
B. M. Jakosky

Held at
Kona, Hawaii
June 29—July 1, 1992

Sponsored by
Lunar and Planetary Institute
The MSATT Study Group

LPI/Technical Report Number 92-05
LPI/TR--92-05
Program

Monday, June 29, 1992

8:30 a.m. – 11:30 a.m.

Welcoming Remarks
Janet Luhmann and Bruce Jakosky

INVITED OVERVIEW TALKS
Chair: Janet Luhmann

Pepin R. O.
The Early Martian Atmosphere

Carr M. H.
Water Inventories on Earth and Mars: Clues to Atmosphere Formation

Jakosky B. M.
Volatile Evolution on Mars over Geologic Time

2:30 p.m. – 6:00 p.m.

ORIGINAL INVENTORY AND EARLY HISTORY OF VOLATILES I
Chair: Robert Haberle

Walter F. M.
The Young Sun and the Protoplanetary Environment

Zahnle K.
How Mars Lost Its Atmosphere

Fegley B. Jr.
Chemical Models of Volcanic Outgassing on Mars

Schaefer M. W.
Volcanic Recycling of Carbonate Deposits on Mars

Craddock R. A. Maxwell T. A.
Nature and Evolution of the Early Martian Atmosphere: Evidence from Highland Crater Populations

Flynn G. J.
Time Variation of the Meteoritic Contribution to the Atmosphere of Mars

Kasting J. F.
A Reduced Atmosphere for Early Mars?
Tuesday, June 30, 1992

8:00 a.m. - 11:30 a.m.

ORIGINAL INVENTORY AND EARLY HISTORY OF VOLATILES II

Chair: Martha Schaefer

Brown L. L. Kasting J. F.

A Photochemical Model for NH₃ in an Early Martian Atmosphere

Influences of CO₂ Sublimation Condensation Processes on the Long-term Evolution of the Martian Atmosphere
Wednesday, July 1, 1992

8:00 a.m. – 11:30 a.m.

CLUES TO THE PAST, AND PRESENT CONSTRAINTS II

Chair: James Kasting

Burns R. G.
Oxygen in the Martian Atmosphere: Regulation of P_02 by the Deposition of Iron Formations on Mars

Wright I. P., Hartmetz C. P., Pillinger C. T.
* Martian Surficial Carbon—Constraints from Isotopic Measurements of Shock-Produced Glass in EET A79001*

Zent A. P., Roush T. L.
Spectral Identification of Chemisorbed CO_2 and Application to Mars Analog Materials

Anbar A. D., Allen M., Nair H., Leu M.-T., Yung Y. L.
The Impact of Temperature Dependent CO_2 Cross Section Measurements: A Role for Heterogeneous Chemistry in the Atmosphere of Mars?

Martin L. J.
Using the Historical Record to Determine Dust Sources

Bell J. F. III, Crisp D.
Surface vs. Atmospheric Origin of 2.1 – 2.5 μm Absorption Features in the Martian Spectrum

Santee M., Crisp D.
The Thermal Structure, Dust Loading, and Meridional Transport in the Martian Atmosphere During Late Southern Summer

Justus C. G., James B. F.
Mars Global Reference Atmosphere Model (Mars-GRAM)

2:30 p.m. – 6:00 p.m.

FUTURE MEASUREMENTS AND MEASUREMENT OBJECTIVES

Chairs: Janet Luhmann and Bruce Jakosky

Elphic R. C., Barraclough B. L., McComas D. J., Nordholt J. E.
An Ion Mass Specirometer for Measuring Isotopic Abundances and Loss Rate of O, C and H in Mars' Upper Atmosphere

Feldman W. C., Boynton W. V., Jakosky B. M., Mellon M. T.
Redistribution of Subsurface Neutrons Caused by Ground Ice on Mars

Discussion: *Led by Janet Luhmann and Bruce Jakosky*
Contents

Workshop Summary ... 1
List of Workshop Participants ... 5
Workshop Summary

J. G. Luhmann and B. M. Jakosky
Conveners

An MSATT workshop on the evolution of the martian atmosphere was held June 29—July 1, 1992 in Kona, Hawaii. Thirty-three papers based on the state of our knowledge prior to the anticipated new results from Mars Observer were presented. Because of the nature of the subject, the scope of the papers covered a broad disciplinary range encompassing astronomy and solar physics, geology and geophysics, climatology, atmospheric science, aeronomy, and space physics. The 42 participants heard about topics from the evolution of solar-type stars [1] to candidate instrumentation for measuring escape to space on yet-unscheduled future missions [2]. The diverse expertise within the group of attendees greatly enhanced the amount of cross-fertilization and the educational aspects of the meeting.

Some of the major issues pertinent to Mars atmosphere evolution include the sources and makeup of the "original inventory" [3,4]; the likelihood and effects of an early hydrodynamic escape phase [5,6] or massive impact(s) either delivering or eroding volatiles; the existence of an early "greenhouse" phase and the causative atmospheric constituent(s) [7-11]; whether carbonates or other mineralogical deposits containing a substantial fraction of the original atmosphere are still present on the surface and in the crust [12-14]; and our general ability to interpret the presently available "clues" to the past. The latter include isotope abundances (principally of the noble gases and H, C, N, and O) derived from a number of sources [15], the properties of the SNC meteorites [16], surface features [10,17,18], groundbased observations [12], laboratory experiments [13], and related measurements from previous spacecraft mission (Mariners, Vikings, and Phobos 2). Modeling studies [7-9,19-23] provide means of extending these observations and their interpretations into the past.

The workshop included critical discussions of the currently reigning dogmas in the field. In particular, it was considered that while the interpretation of isotope fractionation is fairly straightforward in the case of $^{14}\text{N}/^{15}\text{N}$ [22], it is fraught with potential pitfalls in many other cases. For example, the D/H ratio can be temporarily altered by the impact delivery of volatiles, while the C and O isotopes are affected by exchange with the surface. In the case of the fractionations of the rare gases, it is agreed that they probably indicate early and massive escape, but for the most part it is not certain whether hydrodynamic escape is the only credible candidate mechanism. Minor species have also been continuously delivered by the solar wind [5] and in meteorites and interplanetary dust (e.g., [24]). Some participants noted that isotope abundance measurements derived from both the bulk atmosphere at Mars and at other planets (particularly Venus and Jupiter) are the keys to making significant progress in the use of this type of evidence.

With regard to the SNC meteorites [16], the outstanding issue is clearly whether they are indeed representative samples of martian regolith. If they are, their composition indicates that the mantle of Mars was dry when they were released ~1.5 Ga ago. While some participants felt some confidence concerning the martian origin of SNCs, a "wait-and-see" attitude in advance of a sample return was generally held. All agreed that traditional sample return should be a primary Mars mission goal. However, even mineralogical experiments on the surface on a mission such as MESUR would immensely improve our ability to both interpret the SNC "samples" and to understand the history of Mars.
Surface features have perhaps offered the most convincing evidence of a past thick atmosphere and warm climate of Mars (e.g., [17,23]). Although hypotheses have been advanced proposing liquid SO$_2$ as a possible alternative to water in producing the striking out-flow channel features (e.g., [3]), the generally held view of the channels favors water. Whether they represent a single period of erosion prior to 3.5 Ga ago or include more recent episodic events is still debatable. The existence of glaciers, lakes, and oceans is regarded as more speculative at this time [25]. It was pointed out that mineralogical experiments on a MESUR lander at a proposed lake bed or beach site would be of considerable value in settling this issue. Craters provide clues relating to both the history of impacts and erosion, but there is more to be exploited than has been to date. In particular, the extent to which crater erosion is water related as opposed to wind related can in principle be used to "date" the periods of climate change (e.g., [18]). Moreover, laboratory experiments could be used to help determine whether the craters produced during the period(s) of thick atmosphere should look different from those produced during the period(s) of thin atmosphere. Wind erosion features and processes, including dust storms (e.g., [26]), will be studied extensively by Mars Observer experiments, thereby resolving this question to some extent.

The appearance of the polar caps and their cycle deserve separate mention because of their status as the solid "reservoirs" for the atmosphere. Apparently, these caps are major players in the climate system due to their ability to store much larger quantities of volatiles than can be held in the atmosphere at any single time. The ability of the water in the polar caps to exchange with the atmosphere and mix between the two poles on timescales of up to 10 m.y. was noted [27]. More detailed modeling of the seasonal cycle on these same timescales suggests that the formation of polar caps at other epochs is governed to a large extent by the role of atmospheric radiation due to dust [19]. Atmospheric heat transport also plays a role in the stability of the polar caps during periods of higher atmospheric pressure [9,28]. On shorter timescales, the requirement for heterogeneous atmospheric chemistry was questioned based on new determinations of photochemical cross sections [29]. These results also allow assessment of the interannual variations in atmospheric chemistry forced by possible variations in the water abundance of the atmosphere [30]. In general, the water cycle of Mars is still an area of active research that should be helped by results from Mars Observer.

The main difficulties in interpreting ground-based spectroscopic observations seem to center on the removal of telluric and solar backgrounds. In particular, it was shown that observations such as the previously inferred existence of surface carbonates, including scapolite, must be questioned [12]. On the other hand, the presence of OH groups (e.g., [30]) in the atmosphere of Mars and of ferric oxides on the surface [31] are not disputed because of the data made available by the Viking landers. Hubble Space Telescope and Mars Observer should eventually provide freedom from at least the telluric contamination of ground-based spectroscopic observations. Along the same lines, laboratory experiments can help with the interpretation of the complex spectra that are obtained only if they are tightly controlled [13].

Of course, the consensus was that if progress is to be made, emphasis should be attached to making specific \textit{in situ} measurements in the future. Observations provided by earlier spacecraft, especially Viking, were critical in their importance and yet very limited. Phobos 2 instruments provided a tantalizing first look at some previously underrated evolutionary processes such as ion scavenging by the solar wind. Enthusiastic support was expressed for both the impending Mars Observer measurements pertaining to questions such as the water content of the crust (e.g., [32], as well as for pertinent instrumentation on the MESUR landers (especially tools for mineralogical analyses such as α, p, \times spectrometers, seismometers, and pH probes). Other pertinent experiments, not currently planned by NASA and perhaps best carried out on an orbiter, are "aeronomical" experiments such as the measurement of ion density and composition profiles and escaping ion and neutral components of the atmosphere (e.g., [2]). The Mars 94 and Planet B missions have the potential to make important
contributions in these areas. Measurements of isotope abundances at other planets, especially at Venus and Jupiter, are likely to be of some value in our efforts to understand the isotope history puzzle. Galileo probe measurements may help in this regard.

Finally, modeling exercises were recognized for their ability to fill in the interpretational gaps and for their potential to delve into the past. The problem of maintaining an early greenhouse in the face of CO₂ condensation (clouds) is the source of one of the current controversies sparked by climate modeling [7,9]. Was Mars warm and wet, or cold and dry? Did methane or ammonia provide the greenhouse [8]? Was the greenhouse episodic [10]? Also, what were the effects of the martian orbit eccentricity and Mars' obliquity variations over time [19]? The contemporary loss processes of nonthermal escape and ion scavenging processes can be extrapolated backward [22,23], but as in the other models, these require an understanding of the early Sun's output [1]. In this case, histories of both visible and ionizing (EUV) wavelengths are needed, as well as a description of the evolution of the solar wind. Finally, models of the earliest periods of evolution such as those invoking hydrodynamic escape must explain not only the current state of the Mars atmosphere, but also the states of the atmospheres of all of the terrestrial planets [5,6].

In summary, the Kona workshop highlighted once more the fact that the problem of Mars atmosphere evolution is best addressed with multidisciplinary and multimethod modeling and experimental efforts. In many areas, only direct information from Mars will lead to progress. It will be exciting to see how our current views of the scenarios for evolution change as new data are supplied by HST, the Mars Observer, and hopefully by the MESUR missions. In the
List of Workshop Participants

Ariel Anbar
Mail Stop 170-25
California Institute of Technology
Pasadena CA 91125

James F. Bell III
Planetary Geosciences Division
University of Hawaii
2525 Correa Road
Honolulu HI 96822

Lisa L. Brown
Department of Geosciences
Pennsylvania State University
203 Deike Building
University Park PA 16902

Roger G. Burns
54-816
Massachusetts Institute of Technology
Cambridge MA 02139

Michael H. Carr
Mail Stop 946
U.S. Geological Survey
345 Middlefield Road
Menlo Park CA 94025

Joe Chamberlain
18622 Carriage Court
Nassau Bay TX 77058

Robert A. Craddock
CEPS/NASM Room 3775
MRC 315
Smithsonian Institution
Washington DC 20560

David Crisp
Mail Stop 169-237
Jet Propulsion Laboratory
4800 Oak Grove Drive
Pasadena CA 91109

Wanda Davis
Mail Stop 245-3
NASA Ames Research Center
Moffett Field CA 94035-1000

Rick Elphic
Mail Stop D438
Los Alamos National Laboratory
Los Alamos NM 87545

Fraser P. Fanale
Planetary Geosciences Division
Department of Geology and Geophysics
University of Hawaii
2525 Correa Road
Honolulu HI 96822

Bruce Fegley
Department of Earth and Planetary Science
Campus Box 1169
Washington University
St. Louis MO 63130

William C. Feldman
Mail Stop D438
Los Alamos National Laboratory
Los Alamos NM 87545

George J. Flynn
Dept. of Physics
SUNY at Plattsburgh
Hudson Hall -223
Plattsburgh NY 12901

Francois Forget
Mail Stop 245-3
NASA Ames Research Center
Moffett Field CA 94035-1000

Jane L. Fox
SUNY at Stony Brook
Department of Mechanical Engineering
Institute of Terrestrial and Planetary Atmospheres
Stony Brook NY 11794

R. M. Haberle
Mail Stop 245-3
NASA Ames Research Center
Space Science Division
Moffett Field CA 94035-1000

W. K. Hartmann
Division of Natural Sciences
University of Hawaii
Hilo HI 96720

Bruce Jakosky
LASP
Campus Box 392
University of Colorado
Boulder CO 80309-0392
Evolution of the Martian Atmosphere

Bonnie James
ES44
Marshall Space Flight Center
Redstone Arsenal
Huntsville AL 35812

J. Kasting
Pennsylvania State University
211 Deike Building
University Park PA 16802

Konrad Kossacki
Institute of Geophysics
Warsaw University
ul. Pasteura 7
02-093 Warszawa
POLAND

Jacek Leliwa-Kopystynski
Institute of Geophysics
ul. Pasteura 7
02-093 Warszawa
POLAND

James B. Pollack
Mail Stop 245-3
NASA Ames Research Center
Moffett Field CA 94035-1000

Susan Postawko
School of Meteorology
University of Oklahoma
100 East Boyd
Norman OK 73019

Michelle Santee
Mail Stop 170-25
California Institute of Technology
Pasadena CA 91125

Ben Schuraytz
Lunar and Planetary Institute
1000 Bay Area Boulevard

ul. Pasteura 7
02-093 Warszawa
POLAND

Katharina Lodders
P. O. Box 4182
Chesterfield MO 63006

Janet Luhmann
Institute of Geophysics
University of California
6877 Slichter Hall
Los Angeles CA 90024-1567

Leonard Martin
Lowell Observatory
1800 Mars Hill Road
Flagstaff AZ 86001

C. P. McKay
Mail Stop 245-3
NASA Ames Research Center
Moffett Field CA 94035-1000

Mike Mellon
LASP
Campus Box 392
University of Colorado
Boulder CO 80302

Martha W. Schaefer
Mail Code 921
NASA Goddard Space Flight Center
Greenbelt MD 20771

Lisa S. Shaw
University of Hawaii
P. O. Box 61128
Honolulu HI 96839-1128

Ann Vickery
Lunar and Planetary Laboratory
University of Arizona
Tucson AZ 85721

Fred Walter
Earth and Space Sciences
Room 440
SUNY Astronomy Program
Stony Brook NY 11794-2100

H. Wänke
Max-Planck-Institut für Chemie
Abteilung Kosmochemie
Staarstrasse 23
D-6500 Mainz
GERMANY

Laurie Watson
Mail Stop 170-25
California Institute of Technology
Pasadena CA 91125

Ian Wright
Department of Earth Sciences
Open University

H. A. Nair
Mail Stop 170-25
California Institute of Technology
Pasadena CA 91125

Robert O. Pepin
School of Physics and Astronomy
University of Minnesota
116 Church Street SE
Minneapolis MN 55455

James B. Pollack
Mail Stop 245-3
NASA Ames Research Center
Moffett Field CA 94035-1000

Susan Postawko
School of Meteorology
University of Oklahoma
100 East Boyd
Norman OK 73019

Michelle Santee
Mail Stop 170-25
California Institute of Technology
Pasadena CA 91125

Ben Schuraytz
Lunar and Planetary Institute
1000 Bay Area Boulevard

ul. Pasteura 7
02-093 Warszawa
POLAND

Katharina Lodders
P. O. Box 4182
Chesterfield MO 63006

Janet Luhmann
Institute of Geophysics
University of California
6877 Slichter Hall
Los Angeles CA 90024-1567

Leonard Martin
Lowell Observatory
1800 Mars Hill Road
Flagstaff AZ 86001

C. P. McKay
Mail Stop 245-3
NASA Ames Research Center
Moffett Field CA 94035-1000

Mike Mellon
LASP
Campus Box 392
University of Colorado
Boulder CO 80302

Martha W. Schaefer
Mail Code 921
NASA Goddard Space Flight Center
Greenbelt MD 20771

Lisa S. Shaw
University of Hawaii
P. O. Box 61128
Honolulu HI 96839-1128

Ann Vickery
Lunar and Planetary Laboratory
University of Arizona
Tucson AZ 85721

Fred Walter
Earth and Space Sciences
Room 440
SUNY Astronomy Program
Stony Brook NY 11794-2100

H. Wänke
Max-Planck-Institut für Chemie
Abteilung Kosmochemie
Staarstrasse 23
D-6500 Mainz
GERMANY

Laurie Watson
Mail Stop 170-25
California Institute of Technology
Pasadena CA 91125

Ian Wright
Department of Earth Sciences
Open University

H. A. Nair
Mail Stop 170-25
California Institute of Technology
Pasadena CA 91125

Robert O. Pepin
School of Physics and Astronomy
University of Minnesota
116 Church Street SE
Minneapolis MN 55455