INTRODUCTION

This issue of Aerospace Medicine and Biology (NASA SP-7011) lists 248 reports, articles and other documents originally announced in August 1992 in Scientific and Technical Aerospace Reports (STAR) or in International Aerospace Abstracts (IAA). The first issue of Aerospace Medicine and Biology was published in July 1964.

Accession numbers cited in this issue are:

STAR (N-10000 Series)
N92-24071 — N92-26170

IAA (A-10000 Series)
A92-36525 — A92-40949

In its subject coverage, Aerospace Medicine and Biology concentrates on the biological, physiological, psychological, and environmental effects to which humans are subjected during and following simulated or actual flight in the Earth's atmosphere or in interplanetary space. References describing similar effects on biological organisms of lower order are also included. Such related topics as sanitary problems, pharmacology, toxicology, safety and survival, life support systems, exobiology, and personnel factors receive appropriate attention. Applied research receives the most emphasis, but references to fundamental studies and theoretical principles related to experimental development also qualify for inclusion.

Each entry in the publication consists of a standard bibliographic citation accompanied in most cases by an abstract. The listing of the entries is arranged by STAR categories 51 through 55, the Life Sciences division. The citations include the original accession numbers from the respective announcement journals.

Seven indexes—subject, personal author, corporate source, foreign technology, contract, report number, and accession number—are included.

Information on availability of documents listed, addresses of organizations, and NTIS price schedules are located at the back of this issue.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Category 51</th>
<th>Life Sciences (General)</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Category 52</td>
<td>Aerospace Medicine</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Includes physiological factors; biological effects of radiation; and effects of weightlessness on man and animals.</td>
<td>266</td>
</tr>
<tr>
<td>Category 53</td>
<td>Behavioral Sciences</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Includes psychological factors; individual and group behavior; crew training and evaluation; and psychiatric research.</td>
<td>277</td>
</tr>
<tr>
<td>Category 54</td>
<td>Man/System Technology and Life Support</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Includes human engineering; biotechnology; and space suits and protective clothing.</td>
<td>281</td>
</tr>
<tr>
<td>Category 55</td>
<td>Space Biology</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Includes exobiology; planetary biology; and extraterrestrial life.</td>
<td>292</td>
</tr>
</tbody>
</table>

Subject Index ... A-1
Personal Author Index ... B-1
Corporate Source Index .. C-1
Foreign Technology Index ... D-1
Contract Number Index ... E-1
Report Number Index ... F-1
Accession Number Index ... G-1
Appendix .. APP-1
The objective of this research was twofold. First, the basic capabilities of ROBOSIM (graphical simulation system) were improved and extended by taking advantage of advanced graphic workstation technology and artificial intelligence programming techniques. Second, the scope of the graphic simulation testbed was extended to include general problems of Space Station automation. Hardware support for 3-D graphics and high processing performance make high resolution solid modeling, collision detection, and simulation of structural dynamics computationally feasible. The Space Station is a complex system with many interacting subsystems. Design and testing of automation concepts demand modeling of the affected processes, their interactions, and that of the proposed control systems. The automation testbed was designed to facilitate studies in Space Station automation concepts.

The results are reported from an experimental study tracing the effects of hypoxia on thermoregulation and on the different sources of thermogenesis in rats before and after periods of 1-4 wk of cold acclimation. Measurements of the metabolic rate (VO2) and body temperature (Tb) were made at 5-min intervals, and shivering activity was recorded continuously in groups of rats subjected to three protocols. Recordings were made in normoxia and in hypoxia on different days in the same animals. The results show that: (1) in noncold-acclimated (NCA) rats, cold exposure induced increases in VO2 and shivering that were proportional to the decrease in Ta; (2) in cold-acclimated (CA) rats in normoxia, for a given ambient temperature, VO2 and Tb were higher than in NCA rats, whereas shivering was generally lower; and (3) in both NCA and CA rats, hypoxia induced a transient decrease in shivering and a sustained decrease in nonshivering thermogenesis associated with a marked decrease in Tb that was about the same in NCA and CA rats. It is concluded that hypoxia acts on Tb control to produce a general inhibition of thermogenesis.

P.D.
AEROSPACE MEDICINE AND BIOLOGY
A Continuing Bibliography (Suppl. 366)

September 1992

51

LIFE SCIENCES (GENERAL)

A92-36534
THE EFFECT OF HELIOPHYSICAL FACTORS ON AN ORGANISM - STATISTICS OF TRANSPORT INCIDENTS AND THE PROBLEM OF THEIR PREDICTION [VLIIANIE GELIOGEFIZICHESKIH FAKTOROV NA ORGANIZM - STATISTIKA TRANSPORTNYKH PROISHHESTVII I PROBLEMA PROGNOZIROVANIA] P. V. VASILIK and A. K. GALITSKII (AN Ukrainy, Institut Kibernetiki, Kiev, Ukraine) Kibernetika i Vychislitel'naja Tekhnika (ISSN 0454-9910), no. 90, 1991, p. 8-11. In Russian. refs Copyright Data obtained on the statistics of automotive, air-transport, and railroad accidents and on work-related accidents are analyzed and related to the dynamics of heliogeophysical phenomena recorded for the same time periods. It is found that in the occurrence of transport-related incidents and accidents are correlated with the occurrences of heliophysical disturbances, in particular, with abrupt declines in the level of the cosmic-ray neutron component. In view of the fact that heliophysical disturbances are known to affect the physiological parameters of animals, it is suggested that observations on animals may be used for predicting increases in the occurrence of accidents in industry and on the roads. The correlations between heliogeophysical disturbances and accidents may be also used for the development of predictive models. I.S.

A92-36595
BASIC CHARACTERISTICS OF LOW-FREQUENCY ELECTROMAGNETOBIOLOGY [OSNOVNYE ZAKONOMERNOSTI NIZKOHASTOTNOI ELEKTROMAGNETOBIOLOGII] GENNADII F. PLEKHANOV Tomsk, Russia, Izdatel'stvo Tomskogo Universiteta, 1990, 188 p. In Russian. refs (ISBN 5-7511-0075-1) Copyright The book reviews results of 30 years of studies on the biological effects of low-frequency electromagnetic radiation and compares these results with literature data obtained in other laboratories. Results are presented on the effect of an electromagnetic field (EMF) on psychophysiological reactions of humans and animals and on the development and the behavior of insects, microorganisms, and isolated cells. An analysis of available data was used to formulate basic laws governing the biological effects of static and low-frequency EMFs and to calculate the relationship between the mean values of the response reactions of these biosystems to EMF. I.S.

A92-36599
ROLE OF OPIOID PEPTIDES IN THE REGULATION OF HEMOPOIESIS [ROL’ OPIOIDNYKH PEPTIDOV V REGULIATSII GEMOPOEIZI] EVGENII D. GOL’DBERG, ALEKSANDR M. DYGAI, and OL’GA IU. ZAKHAROVA Tomsk, Russia, Izdatel'stvo Tomskogo Universieta, 1990, 140 p. In Russian. refs (ISBN 5-7511-0103-0) Copyright The book presents a summary of recent literature data concerning the effects of endogenous opioids on the adaptability of a human organism in normal conditions and under extreme stress. Consideration is given to the characteristics of opioid peptides, their role in the formation of adaptive reactions of the organism, and their effects on the hemopoietic system. Particular attention is given to the role of the opioid-receptor ligands in the regulation of hemopoiesis under normal and stressful conditions and the relationships between the opioid mechanisms of the hemopoiesis regulation and the hemopoiesis-inducing environment and regulatory systems such as the nervous, hypophysial-adrenal, and immune systems. I.S.

A92-36610
ROLE OF GRAVITY IN GROWTH PROCESSES OF PLANTS [SILA TIAZHESTI V PROTSESSAX ROSTA RASTENII] AL’FONSAS I. MERKIS (AN Litvy, Institut Botaniki, Vilnius, Lithuania) Moscow, Izdatel'stvo Nauka (Problemy Kosmicheskoi Biologii. Vol. 88), 1990, 184 p. In Russian. refs (ISBN 5-02-004731-7) Copyright Data collected from the literature and the results of experimental investigations in the author's laboratory concerning the effect of gravity on the growth of plants are summarized. Attention is given to the origin of gravitropic reactions in plant stems and roots and to the methodology used in studies of the effect of gravity on the growth and orientation of plants. Particular consideration is given to studies on the growth and development of plants as well as cultured cells and plant tissues under high and low gravity forces. I.S.

A92-37172
COCHLEAR DEGENERATION IN GUINEA PIGS AFTER REPEATED HYPERBARIC EXPOSURES X.-Y. ZHENG (2nd Military Medical University; Naval Medical Research Institute, Shanghai, People's Republic of China) and J.-H. GONG (Naval Medical Research Institute, Shanghai, People's Republic of China) Aviation, Space, and Environmental Medicine (ISSN 0095-6562), vol. 63, no. 5, May 1992, p. 360-363. refs Copyright The effects of repeated hyperbaric exposures on inner ear function and morphology in guinea pigs were investigated with auditory electrophysiological testing, histopathological and electron microscopic techniques associated with enzymo histochemical method. The results showed that repeated hyperbaric exposures, though considered 'safe', did cause damage to the cochlear system. Possible causes of the pathology include direct effects of repeated compression and decompression on the ear, and the possibility of inner ear decompression sickness and barotrauma cannot be excluded. Author

A92-37783* National Aeronautics and Space Administration. Ames Research Center, Moffett Field, CA.

LIFE IN SPACE
JOHN B. WEST (California, University, La Jolla) Journal of Applied Physiology (ISSN 8750-7587), vol. 72, no. 5, May 1992, p. 1623-1630. refs (Contract NAG2-616) Copyright

Author
The scope of space life sciences and current research on the physiology of man in space are reviewed by examining Spacelab SLS-I. Milestones of space life sciences are discussed, with emphasis on the Spacelab facility, the Spacelift program, and the Soviet Mir space station. Attention is given to the topics of the origins of life as it relates to space life sciences. The discovery of amino acids in meteorites and the question of whether the earth was seeded with life from space are discussed. A brief overview of efforts in the search for extraterrestrial intelligence is presented. Consideration is also given to the effects of gravity on cells, the effects of radiation, plant biology, CELSS, and the effects of gravity on humans.

A92-37784
CA(2+)-MOVEMENTS IN SARCOPLASMIC RETICULUM OF RAT SOLEUS FIBERS AFTER HINDLIMB SUSPENSION

A92-37785
EFFECTS OF ACID-BASE STATUS ON ACUTE HYPOXIC PULMONARY VASOCONSTRICTION AND GAS EXCHANGE

The scope of space life sciences and current research on the physiology of man in space are reviewed by examining Spacelab SLS-I. Milestones of space life sciences are discussed, with emphasis on the Spacelab facility, the Spacelift program, and the Soviet Mir space station. Attention is given to the topics of the origins of life as it relates to space life sciences. The discovery of amino acids in meteorites and the question of whether the earth was seeded with life from space are discussed. A brief overview of efforts in the search for extraterrestrial intelligence is presented. Consideration is also given to the effects of gravity on cells, the effects of radiation, plant biology, CELSS, and the effects of gravity on humans.

A92-38103* National Aeronautics and Space Administration, Washington, DC.
GRAVITROPISM IN HIGHER PLANT SHOOTS. I - A ROLE FOR ETHYLENE
RAYMOND M. WHEELER and FRANK B. SALISBURY (Utah State University, Logan) Plant Physiology (ISSN 0322-0899), vol. 67, 1981, p. 686-690. Research supported by Utah State University. refs (Contract NSG-7567)

Two inhibitors of ethylene synthesis, Co(2+) and aminooxyvinylglycine (AVG), and two inhibitors of ethylene action, Ag(+) and CO2, are shown to delay the gravitropic response of cocklebur (Xanthium strumarium L.), tomato (Lycopersicon esculentum Mill.), and castor bean (Ricinus communis L.) stems. Gentle shaking on a mechanical shaker does not inhibit the gravitropic response, but vigorous hand shaking for 120 seconds delays the response somewhat. AVG and Ag(+) further delay the response of mechanically stimulated plants. AVG retards the storage of bending energy and does not inhibit leaf movement. In gravitropism, graviperception may first stimulate ethylene evolution, which may then influence bending directly, or responses involving ethylene could be more indirect. Author

A92-38104* National Aeronautics and Space Administration, Washington, DC.
GRAVITROPISM IN HIGHER PLANT SHOOTS. IV - FURTHER STUDIES ON PARTICIPATION OF ETHYLENE
RAYMOND M. WHEELER, ROSEMARY G. WHITE, and FRANK B. SALISBURY (Utah State University, Logan) Plant Physiology (ISSN 0322-0899), vol. 82, 1986, p. 534-542. Research supported by Utah State University. refs (Contract NSG-7567)

Various hypotheses regarding the influence of ethylene on gravitropism in higher plant shoots were experimentally tested. It was found that ethylene at 1.0 and 10.0 cu cm/cu m decreased the rate of gravitropic bending in cocklebur stems, while 0.1 cu cm/cu m of ethylene had little effect. Treating cocklebur plants with 1.0 mmol aminooxyvinylglycine (AVG, an ethylene synthesis inhibitor) delayed stem bending compared with controls, but adding 0.1 cu cm/cu m ethylene in the surrounding atmosphere partially restored the rate of bending of AVG-treated plants. Virtually all newly synthesized ethylene appeared in lower halves of horizontal stems, where ethylene concentrations were as much as 100 times those in upright stems or in top halves of horizontal stems. Auxin applied to one side of a vertical stem caused extreme bending away from that side; gibberellic acid, kinetin, and abscisic acid were without effect.

A92-38105* National Aeronautics and Space Administration, Washington, DC.
INTERPRETING PLANT RESPONSES TO CLINOSTATING. I - MECHANICAL STRESSES AND ETHYLENE
FRANK B. SALISBURY and RAYMOND M. WHEELER (Utah State University, Logan) Plant Physiology (ISSN 0322-0899), vol. 67, 1981, p. 677-685. Research supported by Utah State University. refs (Contract NSG-7567)

The possibility that the clinostat mechanical stresses (leaf flopping) induces ethylene production and, thus, the development of epinasty was tested by stressing vertical plants with constant gentle horizontal or vertical shaking or by a quick back-and-forth rotation (twisting). Clinostat leaf flopping was closely approximated by turning plants so that their stems were horizontal, rotating them quickly about the stem axis, and returning them to the vertical, with the treatment repeated every four minutes. It was found that...
horizontal and vertical shaking, twisting, intermittent horizontal rotating, and gentle hand shaking failed to induce epinastines that approached those observed on the slow clinostat. Minor epinastines were generated by vigorous hand-shaking (120 sec/day) and by daily application of Ag(+) + Igl-I. Reducing leaf displacements by inverting plants did not significantly reduce the minor epinastin generated by vigorous hand-shaking.

I.S.

A92-38108 National Aeronautics and Space Administration. Lyndon B. Johnson Space Center, Houston, TX. DEXAMETHASONE EFFECTS ON CREATINE KINASE ACTIVITY AND INSULIN-LIKE GROWTH FACTOR RECEPTORS IN CULTURED MUSCLE CELLS PEGGY A. WHITSON (NASA, Johnson Space Center, Houston, TX), CHARLES A. STUART (Texas, University, Galveston), M. H. HULS, CLARENCE F. SAMS, and NITZA M. CINTRON (NASA, Johnson Space Center, Houston, TX) Journal of Cellular Physiology (ISSN 0021-9541), vol. 146, 1989, p. 8-17. Research supported by NASA. refs (Contract NASG-172) Copyright

The effect of dexamethasone on the activity of creatine kinase (CK) and the insulin-like growth factor I (IGF-I) binding were investigated using adult and cardiac muscle-derived cultured cell lines (mouse, C2C12; rat, L6 and H9c2). It was found that, in skeletal muscle cells, dexamethasone treatment during differentiation of skeletal-muscle cells caused dose-dependent increases in CK activity and increases in the degree of myotube formation, whereas cardiac cells (H9c2) exhibited very low CK activity during culture or dexamethasone treatment. Results for IGF-I binding were similar in all three cell lines. The IGF-I binding to dexamethasone-treated cells (50 nM for 24 hr on the day prior to confluence) resulted in an increased number of available binding sites, with no effect on the binding affinities. I.S.

A92-38109 National Aeronautics and Space Administration. Lyndon B. Johnson Space Center, Houston, TX. CHARACTERIZATION OF ATRIAL Natriuretic Peptide RECEPTORS IN BRAIN MICROVESSEL ENDOTHELIAL CELLS PEGGY A. WHITSON (NASA, Johnson Space Center, Houston, TX), M. H. HULS (Krug International, Houston, TX), and CLARENCE F. SAMS (NASA, Johnson Space Center, Houston, TX) Journal of Cellular Physiology (ISSN 0021-9541), vol. 146, 1989, p. 43-51. Research supported by NASA. refs Copyright

In view of the suggestions by Chabrier et al. (1987) and Steardo and Nathanson (1987) that atrial natriuretic peptide (ANP) may play a role in the fluid homeostasis of the brain, the ANP receptors in primary cultures of bovine brain microvessel endothelial cells were quantitated and characterized. Results of partition binding studies and the effect of cGMP additions indicated the presence of at least two types of ANP receptors, with the majority of the receptors being the non-guanylate cyclase coupled receptors. The presence of at least two ANP receptor types suggests an active role for ANP in regulating brain endothelial cell function. I.S.

A92-38112* National Aeronautics and Space Administration. Lyndon B. Johnson Space Center, Houston, TX. REDUCED ENERGY INTAKE AND MODERATE EXERCISE REDUCE MAMMARY TUMOR INCIDENCE IN VIRGIN FEMALE BALB/C MICE TREATED WITH 7,12-DIMETHYLBENZ(A)ANTHRACENE HELEN W. LANE (NASA, Johnson Space Center, Houston, TX; Auburn University, AL), PATRICIA TEER, ROBERT E. KEITH, RALPH STRENGTH, JANET JOHNSON, and MARGUERITE T. WHITE (Auburn University, AL) Journal of Nutrition (ISSN 0022-3166), vol. 120, no. 11, Nov. 1991, p. 1876-1882. Research supported by American Institute for Cancer Research. refs Copyright

The effects of diet, exercise, and 7,12-dimethylbenz(a)anthracene (DMBA), a mammary-tumor carcinogen, on food intake, energy consumption, body weight, and body composition in virgin female BALB/c mice are investigated. Diet, exercise, and DMBA all had pronounced effects on energy consumption, which in turn affected body composition. These treatments may influence manifestations of breast cancer via their effects on body composition. P.D.

A92-38116 National Aeronautics and Space Administration. Lyndon B. Johnson Space Center, Houston, TX. HYPERGRAVITY SIGNAL TRANSDUCTION IN HELA CELLS WITH CONCOMITANT PHOSPHORYLATION OF PROTEINS IMMUNOPRECIPITATED WITH ANTI-MICROTUBULE-ASSOCIATED PROTEIN ANTIBODIES YASUHIRO KUME (Tokyo Medical and Dental University, Japan), PEGGY A. WHITSON (NASA, Johnson Space Center, Houston, TX), ATSUSHIGE SATO (Tokyo Medical and Dental University, Japan), and NITZA M. CINTRON (NASA, Johnson Space Center, Houston, TX) Experimental Cell Research (ISSN 0014-4827), vol. 192, 1991, p. 492-498. Research supported by NASA. refs Copyright

It is shown that hypergravity (35g) stimulates the production of inositol 1,4,5-trisphosphate (IP3) and decreases adenosine 3-prime,5-prime-cyclic monophosphate (cAMP) levels in HeLa cells.
It is proposed that IP3 and cAMP may act as second messengers in hypergravity signal transduction. Phosphorylation of microtubule-associated proteins in both the detergent-soluble and -insoluble fractions suggests that cytoskeletal structures may be influenced by gravity.

P.D.

A92-38118 National Aeronautics and Space Administration. Lyndon B. Johnson Space Center, Houston, TX. IMMUNOREACTIVE PROHORMONE ATRIAL Natriuretic Peptides 1-30 and 31-67 - EXISTENCE OF A SINGLE CIRCULATING AMINO-TERMINAL PEPTIDE

YU-MING CHEN (Krug International, Houston, TX), PEGGY A. WHITSON (NASA, Johnson Space Center, Houston, TX) Biochemical and Biophysical Research Communications (ISSN 0006-291X), vol. 166, no. 2, Jan. 30, 1990, p. 794-800. Research supported by NASA. refs

Copyright

Sep-Pak C18 extraction of human plasma and radioimmunoassay using antibodies which recognize atrial natriuretic peptide (99-128) and the prohormone sequences 1-30 and 31-67 resulted in preserving more than 85 percent of the Salivettes. It was found that a pretreatment of Salivettes with citric acid resulted in preserving more than 85 percent of the Salivettes. I.S.

Author

A92-38119* National Aeronautics and Space Administration. Lyndon B. Johnson Space Center, Houston, TX. LONG-TERM STORAGE OF SALIVARY CORTISOL SAMPLES AT ROOM TEMPERATURE

YU-MING CHEN (Krug International, Houston, TX), NITZA M. CINTRON, and PEGGY A. WHITSON (NASA, Johnson Space Center, Houston, TX) Clinical Chemistry (ISSN 0009-9147), vol. 38, no. 2, 1992, p. 304. refs

Copyright

Collection of saliva samples for the measurement of cortisol during space flights provides a simple technique for studying changes in adrenal function due microgravity. In the present work, several methods for preserving saliva cortisol at room temperature were investigated using radioimmunoassays for determining cortisol in saliva samples collected on a saliva-collection device called Salivettes. It was found that a pretreatment of Salivettes with citric acid resulted in preserving more than 85 percent of the saliva cortisol for as long as six weeks. The results correlated well with those for a sample stored in a freezer on an untreated Salivette.

I.S.

A92-38169* National Aeronautics and Space Administration. John F. Kennedy Space Center, Cocoa Beach, FL. DEVELOPING FUTURE PLANT EXPERIMENTS FOR SPACEFLIGHT

Copyright

Experiments are described which were designed to support the constructing and using clinostats for studies of microgravity effects and for measuring photosynthesis and respiration in plants in clinostat experiments. Particular attention is given to the development and testing a clinostat for rotating the Space Shuttle Mid-Deck Locker Plant Growth Unit (PGU), a sealed chamber for plan growth and gas exchange measurements on a clinostat, and a porous tube plant nutrient delivery system for the PGU. Design diagrams of these items are presented together with the results of tests.

I.S.

A92-38475*# National Aeronautics and Space Administration. Lyndon B. Johnson Space Center, Houston, TX. SPACECAB LIFE SCIENCES 1 RESULTS

RHEA SEDDON (NASA, Johnson Space Center, Houston, TX) AIAA, Space Programs and Technologies Conference, Huntsville, AL, Mar. 24-27, 1992. 5 p.

(AIAA PAPER 92-1270) Copyright

An overview is presented of the concept and development of SSF and the unique opportunities offered by SSF to take advantage of the greater space, the increased power, and especially the long duration of the station for a cascade of innovative experiments in fundamental science. It is emphasized that this space environment will provide new dimensions for approaching some of the most challenging problems still facing modern biology.

R.E.P.

A92-38517*# National Aeronautics and Space Administration. Ames Research Center, Moffett Field, CA. OPPORTUNITIES AND QUESTIONS FOR THE FUNDAMENTAL BIOLOGICAL SCIENCES IN SPACE

Copyright

The nature of biological issues which can be addressed during long-term space missions is briefly discussed. These issues include structure, from cell to organism to organism; function, the regulation of systems such as immunity, neural sciences, and behavior; and reproduction and development.

O.G.

A92-38519*# National Aeronautics and Space Administration, Washington, DC. SPACE RESEARCH WITH INTACT ORGANISMS

ROBERT W. PHILLIPS (NASA, Washington, DC) and FRANCIS J. HADDY (Uniformed Services University of Health Sciences, Bethesda, MD) AIAA, Space Programs and Technologies Conference, Huntsville, AL, Mar. 24-27, 1992. 5 p.

(AIAA PAPER 92-1344) Copyright

Effects of space exposure on intact organisms are briefly reviewed, and examples of future experiments that might provide new information on the role of gravity in the evolution of life are suggested. It is noted that long term experiments with intact plant and animals for studying gravitational thresholds will provide important new insights.

O.G.

A92-38521# A SCIENTIFIC ROLE FOR SPACE STATION FREEDOM - RESEARCH AT THE CELLULAR LEVEL

256
TERRY C. JOHNSON (Kansas State University, Manhattan) and JOHN N. BRADY (NIH, National Cancer Institute, Bethesda, MD) AIAA, Space Programs and Technologies Conference, Huntsville, AL, Mar. 24-27, 1992. 9 p. refs (AIAA PAPER 92-1346) Copyright

The scientific importance of Space Station Freedom is discussed in light of the valuable information that can be gained in cellular and development biology with regard to the microgravity environment on the cellular cytoskeleton, cellular responses to extra-cellular signal molecules, morphology, events associated with cell division and cellular physiology. Examples of studies in basic cell biology are presented, as well as their potential importance to concerns for future enabling strategies.

A92-38522#
RESEARCH IN MOLECULAR BIOLOGY - REALIZING THE POTENTIAL OF MICROGRAVITY IN BIOLOGICAL SYSTEMS NORMAN G. LEWIS and CLARENCE A. RYAN (Washington State University, Pullman) AIAA, Space Programs and Technologies Conference, Huntsville, AL, Mar. 24-27, 1992. 6 p. refs (AIAA PAPER 92-1347) Copyright

Microgravity effects on plant growth and development in the SSP space environment are discussed. Topics under consideration include identification of genes involved in gravity compensation processes, cell-cell recognition and adhesion, cell wall synthesis, and the spacecraft as a biochemistry/molecular biology laboratory. It is noted that a systematic examination of the effects of gravity on plant growth and development in the absence of gravity, at the gene/biochemical level, will make it possible to identify and design new ways to biotechnologically exploit plant life in a manner hitherto not possible.

A92-38779
SELF-SPLICING INTRONS IN tRNA GENES OF WIDELY DIVERGENT BACTERIA BARBARA REINHOLD-HUREK (Ghent, State University, Belgium) and DAVID A. SHUB (New York, State University, Albany) Nature (ISSN 0028-0836), vol. 357, no. 6374, May 14, 1992, p. 173-176. Research supported by NIH and DFG. refs Copyright

The discovery of two small self-splicing group I introns in members of two proteobacterial subgroups, Agrobacterium tumefaciens (alpha) and Azorarcus sp. (beta) is described. The introns are inserted in genes for tRNA(Arg) and tRNA(Ile), respectively, after the third anticodon nucleotide. Their occurrence in different genes of phylogenetically diverse bacteria indicates that group I introns have a widespread distribution among eubacteria.

A92-39126

Papers are presented on the topics concerned with current concepts in gravitational physiology; recent spaceflight results in gravitational physiology; gravitational biology on cellular and subcellular levels; general problems in gravitational physiology; metabolism and hormonal regulation; neuromuscular adaptation to gravity; growth, development, and regeneration; biorhythms; circulation; neuromuscular and musculoskeletal physiology; gravioresence, sensory interaction, and motion sickness; and models, methods, and equipment. Particular attention is given to the current status of acute high-G physiology, the pathogenesis of sensory disorders in microgravity, physiological mechanisms of cell adaptation to microgravitation, and digestive histochemical reactions in rats after space flight of different duration.

Consideration is also given to the age-dependency of sympathetic nerve response to gravity in humans, the hypergravity and development of mechanisms of the circadian rhythms in space flight, and modeling changes in mechanical constraints of left ventricular myocardium under +Gz acceleration.

A92-39127*

Contract NASA-12165; NIH-17331-16

The variables affecting the metabolic cost of motility at 1G and greater are investigated. Results of studies on the effect of the magnitude of the gravity vector on the amount of muscle force production are directly proportional to changes in gravitational force production and the rate of force development showed that, if changes in the amount of force produced or in the cost of force production are directly proportional to changes in gravitational acceleration, the specific resistance to locomotion will remain constant. If changes in gravitational acceleration result in a disproportionate decrease of the effective mechanical advantage of limbs or in the reduction in contact time for the developing force, the specific resistance may increase. If changes in gravitational acceleration disproportionately increase the effective mechanical advantage or the contact time for the developing force, then the specific resistance may decrease.

A92-39131

The paper examines the mechanism(s) underlying the microgravity-induced hyphopofunction of pituitary somatotrophs and thyrotrophs, which are the two major causes of the various observable physiological effects of weightlessness. Literature data are presented which suggest a hypernoradrenergic mechanism underlying the hypofunction of the pituitary somatotrophs and thyrotrophs during weightlessness. The following sequence of events is suggested: (1) a decrease during a space flight of the flow of vestibular and proprioceptive impulses to the vestibular nuclei along the vestibular and spinovestibular fibers lowers the
level of impulses from vestibular nuclei to noradrenergic neurons of the locus ceruleus, (2) this event in turn decreases the activating effect of the locus-ceruleus noradrenergic neurons upon pituitary somatotrophs and thyreotrophs. I.S.

A92-39133
FRANCE/UNITED STATES SPACE FACILITY FOR RHEUS EXPERIMENTS

The Rhesus Research Facility (RRF) designed for the Rhesus experiment aboard Spacelab is described with special attention given to the Experiment System Orbiting Primate compartments for the two Macaca mulatta monkeys (who will stay in space for 16 days) and the related hardware. Particularly consideration is given to the details of the environmental conditions control and to the monitoring of the animal health and welfare. The scientific objectives of the Rhesus experiment include studies of the monkeys' behavior and performance and measurements of the parameters of muscle physiology, bone/calcium physiology, immunology/microbiology, cardiology/microbiology, regulatory physiology, and neurophysiology. The RRF is designed to fly for the first time in 1995. I.S.

A92-39138
THE MONKEY IN SPACE FLIGHT

Results are presented from studies on two primates during their two-week space flights on board Cosmos-1887 and Cosmos-2044, in which quantitative data on the status of the cardiovascular system, conditional reflex activity, body fluids, and metabolism were collected for each subject. It is suggested that changes of some physiological parameters observed after flight in these monkeys should be considered as an adaptive response to the effect of weightlessness. For instance, after the flight, a new level of hydration homeostasis formed, with a lower content of body fluids. I.S.

A92-39199*
National Aeronautics and Space Administration, Ames Research Center, Moffett Field, CA.

CELLULAR IMMUNITY AND LYMHPHOKINE PRODUCTION DURING SPACEFLIGHTS
I. V. KONSTANTINOVA (Institute of Biomedical Problems, Moscow, Russia), G. SONNENFELD (Louisville University, KY), A. T. LESNIAK (Institute of Biomedical Problems, Moscow, Russia), L. SHAFFAR (Institut National de la Sante et de la Recherche Medicale, Nice, France), A. MANDEL (NASA, Ames Research Center, Moffett Field, CA), M. P. RYKOVA, E. N. ANTROPOVA (Institute of Biomedical Problems, Moscow, Russia), and B. FERRUA (Institut National de la Sante et de la Recherche Medicale, Nice, France) (International Union of Physiological Sciences Commission on Gravitational Physiology, Annual Meeting, 12th, Leningrad, USSR, Oct. 14-18, 1990, Proceedings. A92-39126 16-51) Physiologist, Supplement (ISSN 0031-9376), vol. 34, no. 1, Feb. 1991, p. S-52 to S-56. refs

Results are presented on changes in cellular immunity and of nonspecific T suppressors, the activity of the so-called natural killer lymphocytes, the production of gamma-interferon, and the cell-surface markers. Results showed that the frequency and the extent of changes in the immunologic resistance of subjects depended on the duration of the flight. However, even after the most prolonged (365 days) spaceflight, the changes observed were mostly of a functional character with subsequent rapid return to normal. I.S.

A92-39140
CHANGES OF LUMBAR VERTEBRAE AFTER COSMOS-1887 SPACE FLIGHT

Results are presented on changes in lumbar vertebrae of rats flown aboard Cosmos-1887 for 12 5 days, which were observed in histological sections and histomorphometric data by a comparison with those collected from ground controls. Results show a decrease in bone formation and an increase of bone destruction, confirming the reports of Zerath et al. (1990) and Kaplansky et al. (1990). It is suggested that the vertebral bone disorders observed in rats flown in space might be related to changes in hormones, particularly the 1,25 (OH)2D3 and PTH. I.S.

A92-39141
EMBRYONIC DEVELOPMENT OF JAPANESE QUAIL UNDER MICROGRAVITY CONDITIONS

Results are presented from the Incubator-2 experiment designed for a study of the embryogenesis cycle of quail under conditions of microgravity. The equipment used in the experiment included a special incubator provided with a rearing device for six quails, a driving panel, a vacuum pump for exhausting the excrements, and a feed container. Results indicate that, while the process of embryogenesis developed normally under microgravity, the hatched quails were uncapable to adapt their motor activity to microgravity. I.S.

A92-39142
PHYSIOLOGICAL MECHANISMS OF CELL ADAPATION TO MICROGRAVITATION

An analysis was performed of the results of laboratory and spaceborne experiments designed to study the nature and the regularity of structural and functional intracellular changes occurring in a study to microgravity exposures, using as subjects various prokaryotes and eukaryotes, and cells from multicellular organisms. Results indicate that intracellular processes are free of direct influence of microgravity. I.S.
RECEPTOR-LIGAND BINDING ON OSTEOSTERILANTS IN MICROGRAVITY OBTAINED BY PARABOLIC FLIGHT

The effect of microgravity on the receptor-ligand interaction on cellular surface was studied using cultured rat osteogenic sarcoma (ROS) cells during a parabolic flight experiment aboard the French 'zero-G' Caravelle, where the gravity levels reached 10 exp -4 G. Using gold-labeled epidermal growth factor molecules as a ligand, it was found that the receptor-ligand interaction at 10 exp -4 G was not different from that at 1 G. No modification of ROS cell morphology due to microgravity was observed. I.S.

CHANGES IN ION CHANNEL PROPERTIES RELATED TO GRAVITY

The effect of changes in gravity on ion channel properties of lipids bilayer membranes was investigated using lipids bilayer membranes of two different orientations, formed from phosphatidylethanolamine dispersed in heptane on a polyethylene support. Horizontal and vertical orientations of bilayer membranes were obtained by using two different kinds of polyethylene support. Single channel currents were directly recorded on hard disk for later evaluation of current amplitudes. Gramicidin channel events were measured for both horizontal and vertical bilayer arrangements. For 0.1 M solutions, the slope for conductance in horizontal membranes was steeper than in the vertical bilayer arrangements. No offset potential was observed. I.S.

A92-39146* National Aeronautics and Space Administration, Washington, DC.

HYDROSTATIC FACTORS AFFECT THE GRAVITY RESPONSES OF ALGAE AND ROOTS

The hypothesis of Wayne et al. (1990) that plant cells perceive gravity by sensing a pressure differential between the top and the bottom of the cell was tested by subjecting rice roots and cells of Caracean algae to external solutions of various densities. It was found that increasing the density of the external medium had a profound effect on the polar ratio (PR, the ratio between velocities of the downwardly and upwardly streaming cytoplasm) of the Caracean algae cells. When these cells were placed in solutions of denser compound, the PR decreased to less than 1, as the density of the external medium became higher than that of the cell; thus, the normal gravity-induced polarity was reversed, indicating that the osmotic pressure of the medium affects the cell's ability to respond to gravity. In rice roots, an increase of the density of the solution inhibited the rate of gravitropism. These results agree with predictions of a hydrostatic model for graviperception. I.S.
The 2D maps of crewmembers, obtained the day after the recovery, showed manifold increases in the contents of several proteins seen in the Soyus-Mir complex and in rats flown aboard Cosmos-1887, using results of 2D electrophoresis. The effects of space flights of different duration on the levels of plasma insulin and glucose in rats and on the insulin-binding capacity of specific membrane receptors in liver and adipose tissue were investigated in rats flown on board satellites of the Cosmos series for 7, 13, 18, and 20 days, as well as in rats in synchronous model (SM) laboratory experiments. Results showed that rats flown in space and sacrificed 6 ot 10 hours after landing had increased levels of plasma insulin, with a maximum occurring at 13 days. Glucose increased slightly after flights of up to 18 days, after which the concentrations fell to or below the control levels. The insulin binding capacity of membranes of fat cells (not of liver cells) exhibited a sharp increase in rats subjected to 14 days of space flight; no such increase was found in SM rats.

The effect of long-duration spaceflights on the composition of plasma proteins was investigated in two crewmembers of a 367-day mission and in two crewmembers of a 167-day mission in side-by-side flights aboard Cosmos-1887 and Cosmos-2044 biosatellites, using results of 2D electrophoreograms. The 2D maps of crewmembers, obtained the day after the recovery, show manifold increases in the contents of several proteins seen normally in trace amounts, as well as the appearance of several unusual protein spots. Rats flown aboard Cosmos-1887 exhibited higher levels of fibrinogen (compared to vivarium controls) two days after landing; however, rats flown on Cosmos-2044 exhibited no difference from controls. It is suggested that the observed abnormalities in plasma proteins could have been caused by gravitational stress applied by return to earth conditions.

The effects of microgravity and hypergravity on the immune system of rats, mice, and rabbits were investigated, using body suspension, tail suspension, head-down tilt (HDT), and water immersion to simulate microgravity, and centrifugation at +5G and +10 Gz to simulate hypergravity. Changes found in animals exposed to microgravity included atrophy of thymus and spleen and a reduction of serum lysozyme and splenic lymphocyte count. Hypergravity was found to cause increases in splenic lymphocyte counts.

The effect of microgravity exposures for various times on the activities of digestive enzymes and on the digestion products were investigated in rats flown aboard Soviet biosatellites for 5, 7, 13, 14, and 18.5 days, using histochemical techniques. Results of postflight analyses showed that rats flown in space had decreased contents of glycoprotein in sublingual glands and in the gastric and intestinal mucosae, as well as increased activities of leucine aminopeptidase and acid phosphatase in the small intestine. These responses were proportional to the duration of flight.

The effect of microgravity on the recruitment patterns of the soleus, gastrocnemius, and tibialis-anterior muscles was investigated by comparing electromyograms (EMGs) of these muscles of Rhesus monkeys implanted with EMG electrodes, taken before and after a 14-day flight on board Cosmos 2044. It was found that the EMG amplitude values in the soleus muscle decreased after the spaceflight but returned to normal values over the 2-wk recovery period. The medial amplitudes of gastrocnemius and tibialis anterior were not changed by flight. Joint probability density distributions displayed changes after flight in both the soleus and gastrocnemius muscles, but not in tibialis anterior.

The role of central neurochemical mechanisms in regulation of posture adjustment and voluntary movement components in the dogs was studied. The effect of microgravity on the recruitment patterns of the soleus, gastrocnemius, and tibialis-anterior muscles was investigated by comparing electromyograms (EMGs) of these muscles of Rhesus monkeys implanted with EMG electrodes, taken before and after a 14-day flight on board Cosmos 2044. It was found that the EMG amplitude values in the soleus muscle decreased after the spaceflight but returned to normal values over the 2-wk recovery period. The medial amplitudes of gastrocnemius and tibialis anterior were not changed by flight. Joint probability density distributions displayed changes after flight in both the soleus and gastrocnemius muscles, but not in tibialis anterior.
The effect of hypergravitation on the composition of different muscles in Japanese quail was investigated in animals exposed for 6 days to hypergravitation (2-1.5 G and 1.1 G) in a centrifuge. It was found that, while the chronic hypergravitation affected some parameters of the muscle metabolism of Japanese quail, it did not affect different individual muscles to the same extent. For instance, increased G lowered the contents of the sarcoplasmic and myofibrillar proteins in the breast muscles, but lowered the contents of both protein fractions in the thigh and the calf muscles. A strong effect of rotation was showed on the values of the muscle size, myofibrillar proteins, and plasma corticosterone, indicating that rotation per se is a powerful stressor which might have strongly contributed to the results of this study.

I.S.

A92-39170

HYPERGRAVITY AND DEVELOPMENT OF MAMMALS

The effect of microgravity on the repair process in M. soleus of rats was investigated in animals subjected to operative injury and either flown aboard Cosmos-2044 for 14 days or subjected to tail suspension. Results of microscopic examinations showed that M. soleus in rats of both groups displayed signs of severe...
the activity and the temperature periods have returned to 1G control levels.

A92-39177
INVESTIGATION OF HEART RATE AND BODY TEMPERATURE DYNAMICS DURING A 14 DAYS SPACEFLIGHT EXPERIMENT COSMOS 2044

The effect of microgravity on the body temperature dynamics and the heart rate (HR) was investigated in a monkey equipped with a biotelemetric temperature measuring system and flown aboard Cosmos-2044 for 14 days. Results of the biohyrhythm analyses indicated a decrease of the circadian rhythm stability (lower significance level) and the presence of phase shifting in both parameters.

A92-39184
EFFECTS OF +Gz ACCELERATIONS ON THE MECHANICAL BEHAVIOR OF RAT MYOCARDIUM OBSERVED IN ISOLATED PERFUSED HEART

The effect of +Gz on the mechanical performance of the rat myocardium was evaluated in rats trained in a 1.8-m-radius centrifuge, by measuring with an intravenous balloon technique the pressure developed by the left ventricle. The cardiac work was modified by changing concentrations of extracellular calcium. A persistent decrease in the myocardial contractility was observed in the course of three 30-sec-long exposures to +10 Gz G separated by plateaus at 1 Gz, indicating that changes in the inherent properties of the myocardial fiber might be occurring as a result of repeated exposures to high +Gz.

A92-39185
MODELLING OF CHANGES IN MECHANICAL CONSTRAINTS OF LEFT VENTRICULAR MYOCARDIUM (DIASTOLIC PHASE) UNDER +Gz ACCELERATION

The behavior of the heart ventricular diastolic function under the conditions of high +Gz acceleration was investigated using a mathematical model to represent left ventricle. The model was a thick-walled vertical cylinder, the walls of which were made of an incompressible fluid in which elastic fibers were bathing. The fibers formed two networks of regular helices; their orientation was continuously changing inside the wall. The results of measurements of the radial and longitudinal deformations of the cylinder, caused by +Gz acceleration over 150 msec, show a significant effect of +Gz acceleration on the model during diastole (i.e., an increased sucking at the beginning of the filling phase, resulting in a pressure
drop, an increased filling volume and rate, an increased tension in fibers forming the outer wall of the ventricle, and the ventricle stretching associated with the wall thinning). I.S.

A92-39186
PROBLEM OF ECG ACQUISITION AND OCCURRENCE OF SIGNIFICANT CARDIAC ARRHYTHMIAS IN WHITE RATS IN GRAVITATIONAL STRESS

The origin and the accuracy of the assessment of cardiac arrhythmias in gravitational stress are investigated by analyzing ECGs of unanesthetized rats equipped with subcutaneous electrodes, which were rotated in a 2.6-radius centrifuge with forces ranging from 0.02G to 2G. No ventricular fibrillation was observed in these experiments, though the experiments were terminated due to the electrical cardiac arrest, always preceded by the arrest of respiration. However, the results were not affected by the application of a beta-blocker metipronal nor by the application of an alpha-1-blocker prazosin, indicating that hypoxia is not the main cause of significant arrhythmias observed in gravitational stress. I.S.

A92-39187* National Aeronautics and Space Administration. Ames Research Center, Moffett Field, CA.

VARIATIONS IN RECOVERY AND READAPTATION TO LOAD BEARING CONDITIONS AFTER SPACE FLIGHT AND WHOLE BODY SUSPENSION IN THE RAT

Result are presented on studies of the effects of space flight and simulated microgravity on the cardiovascular and electrolyte characteristics, the adrenal gland weight, and hormonal responses of rats flown aboard Cosmos-605 and -782 or exposed to whole-body tail suspension. Results indicate an age-independent decrease in circulating antinatriuretic factor (ANF) in suspended rats, indicating that ANF may not significantly contribute to the sustained elevated bariuresis and diuresis observed in chronic head-down-suspended rats. I.S.

A92-39188 FUNCTIONAL PROPERTIES OF SOLEUS AND EDL MUSCLES AFTER WEIGHTLESSNESS

The effect of weightlessness on the contractile properties of single fibers from a slow muscle (soleus) and a fast muscle (extensor digitorum longus, EDL) of rats was evaluated by measuring the force amplitudes, tension/pCa relationships, and kinetics of force development in animals flown for 14 days aboard Cosmos-2044 and in control rats. Results showed pronounced morphological changes in the soleus, but not in the EDL muscle fibers. I.S.

A92-39189 PHYSIOLOGICAL CHARACTERISTICS OF RAT SKELETAL MUSCLES AFTER THE FLIGHT ON BOARD 'COSMOS-2044' BIODATELITHE

The mechanisms and the dynamics of the functional adaptation of mammalian skeletal muscles during the exposure to weightlessness were examined using preparations of glycinerized muscle fibers from forelimb, hindlimb, and postural muscles (with several muscles in each group) of rats of four groups: 2-week-long spaceflight (F) aboard Cosmos-2044, synchronous ground-based control experiment (S), vivarium control (V), and suspension (S-14). Results of muscle-fiber contractility and weight-loss studies showed that changes caused by 14-day spaceflight and by simulated weightlessness varied for different muscle groups as well as for different muscles in a given class. A comparison with literature reports on flights of shorter and longer duration suggested that animals in 14-day exposures are in an intermediate stage of the reconstruction of the skeletal muscles’ functional profile. I.S.

A92-39190* National Aeronautics and Space Administration. Ames Research Center, Moffett Field, CA.

MECHANISMS OF ACCELERATED PROTEOLYSIS IN RAT SOLEUS MUSCLE ATROPHY INDUCED BY UNWEIGHTING OR DEERNATION

A hypothesis proposed by Tischler and coworkers (Henriksen et al., 1986; Tischler et al., 1990) concerning the mechanisms of atrophy induced by unweighting or denervation was tested using rat soleus muscle from animals subjected to hindlimb suspension and denervation of muscles. The procedure included (1) measuring protein degradation in isolated muscles and testing the effects of lysosome inhibitors, (2) analyzing the lysosome permeability and autophagocytosis, (3) testing the effects of altering calcium-dependent proteolysis, and (4) evaluating in vivo the effects of various agents to determine the physiological significance of the hypothesis. The results obtained suggest that there are major differences between the mechanisms of atrophies caused by unweighting and denervation, though slower protein synthesis is an important feature common for both. I.S.

A92-39191 PRELIMINARY RESULTS OF THE INFLUENCE OF DIRECT STIMULATION ON THE MECHANICAL PROPERTIES OF THE SOLEUS MUSCLE OF RATS DURING HINDLIMB SUSPENSION

The effect of direct electrostimulation of hindlimb muscles of a rat, with the stimulation pattern resembling that of the natural firing of the innervating neurones, on the prevention of muscular atrophy during the exposure to simulated microgravity was investigated using rats subjected to hindlimb suspension (HS), HS rats with stimulation (HSS), and vivarium controls. It was found that the administration of electrostimulation prevented the decrease of the muscle wet weight due to hindlimb suspension and reversed the transformation of the soleus muscle to a faster muscle type. However, a loss of force was observed in muscles from both the HS and the HSS animals. I.S.
A92-39193

EFFECT OF STRAIN, DIET AND HOUSING ON RAT GROWTH PLATES - A COSMOS '87-SPACELAB 3 COMPARISON

Results are presented from a comparison study on the growth of longitudinal bones of rats flown aboard Cosmos-1129, -1887, -2044, and Spacelab 3. It was found that the values of the total epiphyseal growth-plates' height and the cell number per zone in bones of rats grown aboard these spacecraft were significantly affected by the conditions of housing, diet, and strain, with all the differences observed being in the hypertrophic/calcification zone.

I.S.

A92-39194

ULTRASTRUCTURAL CHARACTERISTICS OF PLASTIC CHANGES IN THE BRAIN CORTEX OF RATS EXPOSED TO SPACEFLIGHT

The effect of spaceflights on different regions of the rat brain cortex was investigated by examining the ultrastructures of the somatosensory, visual, and olfactory cortex regions from rats flown for 7 days aboard Cosmos 1667 or for 14 days aboard Cosmos-2044 and -2044 biosatellites, as well as from rats of the ground-based synchronous control and vivarium groups. It was found that the changes in the ultrastructure which developed due to spaceflights were similar for all the brain-cortex regions under study. The differences were mainly due to the extent of the observed changes, the distribution density of the changed structures, and the specific features of their localization in the corresponding brain areas.

I.S.

A92-39195

MORPHOLOGICAL CHANGES IN THE SPINAL CORD AND INTERVERTEBRAL GANGLIA OF RATS EXPOSED TO DIFFERENT GRAVITY LEVELS

The effects of exposures to different levels of gravity on the morphological characteristics of the lumbar enlargement of the spinal cord (LESC) and of the lumbar intervertebral ganglia (LIVG) were investigated using rats flown for 14 days aboard Cosmos-1887 or -2044, rats subjected to 14-day-long tail suspension, rats conditioned at 2G, and synchronous and vivarium controls (SC and VC, respectively). It was found that, compared to SC rats, the LIVG neurons of rats flown in space and exposed to the earth gravity for 6-8 hrs exhibited decreases in the body volume, cell nuclei, nucleoli, and the numbers of cells in the capsular glia, as well as a decline of the alkaline phosphatase activity in the glia cells. The LESC motoneurons from space-flown rats showed decreases in the volume of nucleoli and in the number of perineuronal glial cells.

I.S.

A92-39198

RAT AND MONKEY BONE STUDY IN THE BIOCOSMOS 2044 SPACE EXPERIMENT

The effect of microgravity on the morphological features of the cancellous bone tissues of rats and monkeys was investigated using Wistar rats and Rhesus monkeys flown for 14 days aboard Cosmos-2044. The results of the mineral labeling studies showed that the exposure to space flight resulted in decreased mineralization activity in the iliac cancellous bone of monkeys and in a transient increase in resorption in cells of rat humeri combined with a decreased osteoblast activity.

I.S.
The effect of the kidney-nourishing herb CWJ on bone metabolism was investigated by measuring the rate of bone formation in the femurs of rats subjected for 21 days to tail suspension and fed sugar solutions with or without CWG (0.2 mg/ml) added to it (CWJ and SC groups, respectively). It was found that the major contents of bone calcium, phosphorus, and protein were higher, and the fat contents were lower, in the CWJ rats than they were in SC rats. In addition, the contents of the atrial natriuretic peptide in the auricula and the blood plasma were significantly lower in the CWJ group than in the SC group.

A92-39202
FUNCTIONAL AND ADAPTIVE CHANGES IN THE VESTIBULAR APPARATUS IN SPACE FLIGHT

Results are presented from several studies on the effects of weightlessness and hypergravity on the morphological and biochemical characteristics in the vestibular apparatus. These experiments used frog larvae, fish larvae, and adult rats flown in space for 7 to 9 days; young fish subjected to 1.8-2 G centrifugation for 4 months; rats subjected to centrifugation at 2G for a month; and Rhesus monkeys kept in horizontal position under klinostatic or antarctostatic hypokinetic conditions. Results show that the exposure to weightlessness does not produce pathological changes in the structural organization of vestibular receptors. However, changes in gravity were found to produce some functional and adaptive structural rearrangements in the otolith organs and in the cristae.

A92-39203
THE OTOLITH APPARATUS AND CEREBELLAR NODULUS IN RATS DEVELOPED UNDER 2-G GRAVITY

The effect of hypergravity on the developments of the utriculus and the cerebellar nodulus of rats was investigated in 60-day-old rats that developed pre- and postnatally under conditions of continuous centrifugation at 2G. Results of SEM and TEM studies indicated that the otoliths of the rats developed under 2G was characterized by adaptive changes due to higher gravity. This was expressed by the inhibition of the formation of large otoconia in the 'K' zone of the otoconial membrane. The adaptation process was found to continue in the postnatal life to day 60, as indicated by the fact that the ultrastructures of the utriculus and the nodular cortex showed signs of the intense stimulation of gravireceptor cells and of higher impulsation coming from the otolith apparatus to the brain in the first 60 days of these rats.

A92-39204
FFT AND AMPLITUDE SPECTRUM EVALUATION OF STABILOGRAMS ON RATS WITH RESPECT TO A CONSISTENT SENSORMOTOR SYSTEM OF ORIENTATION CONTROL (SOC)

The effect of alcohol ingestion (1-4 g/kg body weight) on the posture control of rats in light and in dark was investigated by analyzing the FFT and amplitude spectra of the roll component of the stabilograms of experimental and control rats subjected to stabilography tests of Simon and Casizar (1960). It was found that alcohol acted to enhance in similar way the noisileike signal of stabilograms spectra obtained in light and in dark.

A92-39205
ORIENTATION-REFLEX-BASED EVALUATION OF POSTROTATORY NYSTAGMOSGRAMS

The adaptive changes in the horizontal canal function of adult rats subjected to the free-fall test (Simon et al., 1983) and the stabilography (Simon et al., 1987) test (relating the dynamic and the static otolithic functions, respectively) were investigated by performing, in addition, the horizontal rotational nystagmography procedure on these animals. These procedures were carried out before the unilateral plugging of the labyrinth and for three weeks later. On the basis of the results, a model of sensorimotor adaptation is proposed.

A92-39206
MATHEMATICAL SIMULATION OF THE GRAVITY RECEPTOR

A mathematical model of the otolith apparatus (OA) is developed on the basis of experimental data related to the OA structure and the physical and chemical characteristics of the OA elements and their organization. In this model, which is designed for the description of the displacements and strains arising inside the OA under the effect of quasi-static and periodic loadings, the otolith is considered as a soft elastic platelet, elastically fixed along its contour and immersed into liquid (endolymph). Results of calculations with the OA model are presented, showing that, under the same conditions of loadings and states of the otolith membrane are different.

N92-24683# California Univ., Irvine. Dept. of Ecology and Evolutionary Biology.

GENETIC VARIATION IN RESISTANCE TO IONIZING RADIATION
F. J. AYALA 24 Jun. 1991 12 p (Contract DE-FG03-88ER-07013)

We proposed an investigation of genetically determined individual differences in sensitivity to ionizing radiation. The model organism is Drosophila melanogaster. The gene coding for Cu, Zn superoxide dismutase (SOD) is the target locus, but the effects of variation in other components of the genome that modulate SOD levels are also taken into account. SOD scavenges oxygen radicals generated during exposure to ionizing radiation. It has been shown to protect against increasing radiation damage to DNA, viruses, bacteria, mammalian cells, whole mice, and Drosophila. Two alleles, S and F, are commonly found in natural populations of D. melanogaster; in addition we have isolated from a natural population 'null' (CA1) mutant that yields only 3.5 pct. of normal SOD activity. The S, F, and CA1 alleles provide an ideal model system to investigate SOD-dependent radioresistance, because
each allele yields different levels of SOD, so that S is greater than F is much greater than CA1. The roles of SOD level in radioreistance are being investigated in a series of experiments that measure the somatic and germ-line effects of increasing doses of ionizing radiation. In addition, we have pursued an unexpected genetic event-namely the nearly simultaneous transformation of several lines homozygous for the SOD 'null' allele into predominately S lines. Using specifically designed probes and DNA amplification by means of the Tag polymerase chain reaction (PCR) we have shown that (1) the null allele was still present in the transformed lines, but was being gradually replaced by the S allele as a consequence of natural selection; and (2) that the transformation was due to the spontaneous deletion of a 0.68 Kb truncated P-element, the insertion of which is characteristic of the CA1 null allele.

N92-25000# National Inst. of Health, Bethesda, MD. Office of Science Policy.

NATIONAL INSTITUTES OF HEALTH PRESENTATION AT IPE CONFERENCE PROGRAM

The conference objective was to set up a working dialogue among representatives from industry and various Federal agencies. Discussion here are present National Institutes of Health (NIH) support in the area of intelligent processing equipment (IPE) and how researchers can work together on future research objectives. Information is given in viewgraph form with accompanying comments.

N92-25047# Maryland Univ., College Park. Dept. of Botany.

ACTIVE AND PASSIVE CALCIUM TRANSPORT SYSTEMS IN PLANT CELLS

H. SZE 1991 6 p (Contract DE-FG05-86ER-13461) (DE92-05449; DOE/ER-13461/6) Avail: NTIS HC/MF A02

The ability to change cytoplasmic Ca(2+) levels (Ca(2+)) by cells has made this cation a key regulator of many biological processes. Cytoplasmic (Ca(2+)) is determined by the coordination of passive Ca(2+) fluxes which increase cytosolic (Ca(2+)) and active Ca(2+) transport systems that lower cytosolic (Ca(2+)). The mechanisms by which plant cells achieve this is poorly understood. We have initially used isolated vesicles from the plasma membrane or organelar membranes to study Ca(2+) transport systems in oat roots (a monocot) and carrot suspension cells (a dicot). The objectives of the proposal were to identify and characterize active (energy-dependent) and passive calcium transport systems that work together to regulate calcium levels in the cytoplasm of plant cells.

N92-25423# State Univ. of New York, Stony Brook.

X RAY MICROIMAGING BY DIFFRACTIVE TECHNIQUES

1991 40 p (Contract DE-FG02-89ER-60858) (DE92-00539; DOE/ER-60858/2) Avail: NTIS HC/MF A03

Progress is reported on high resolution x-ray techniques that were developed to image wet biological specimens. The minimization of radiation damage to the specimens and holographic imaging are described.

N92-26160# National Inst. of General Medical Sciences, Bethesda, MD.

STRUCTURES OF LIFE: DISCOVERING THE MOLECULAR SHAPES THAT DETERMINE HEALTH OR DISEASE, JULY 1991

The report discusses research in the molecular shapes of DNA that cause human disease or contribute to human health. Topics include the following areas: the search for key biological shapes; the reason why proteins fold; recognizing protein structures; deciphering the structure of membrane proteins; the way in which proteins turn genes on or off; and seeking a cure for the common cold. Other discussions cover drug design and the use of new technology in speeding research on DNA structures. A glossary is included.

AEROSPACE MEDICINE

Includes physiological factors; biological effects of radiation; and effects of weightlessness on man and animals.

A92-37169 PERIPHERAL AND CENTRAL BLOOD FLOW IN MAN DURING COLD, THERMONEUTRAL, AND HOT WATER IMMERSSION FLEMING BONDE-PETERSEN, LONE SCHULTZ-PEDERSEN, and NILS DRAGSTED (Danish Aerospace Medical Centre of Research, Copenhagen, Denmark) Aviation, Space, and Environmental Medicine (ISSN 0095-6562), vol. 63, no. 5, May 1992, p. 348-350. refs Copyright

A92-37171 SALIVARY SECRETION AND SEASICKNESS SUSCEPTIBILITY CARLOS R. GORDON (Tel Aviv University; Israel Naval Hyperbaric Institute, Hialfa), YAEJ JACKMAN, HANNA BEN-ARYEH (Technion - Israel Institute of Technology, Haifa), ILANA DOWECK, ORMA SPITZER (Israel Naval Hyperbaric Institute, Haifa), RAYMONDE SZARGEL (Technion - Israel Institute of Technology, Haifa), and AVI SHUPAK (Israel Naval Hyperbaric Institute, Haifa) Aviation, Space, and Environmental Medicine (ISSN 0095-6562), vol. 63, no. 5, May 1992, p. 356-359. refs Copyright

The salivary flow rate and composition of 2 groups of 31 subjects, one group at each extreme of the seasickness susceptibility scale, were compared. No significant differences were found between the two groups in flow rates and electrolyte concentrations of whole resting and stimulated saliva. Amylase activity and rate of secretion in resting saliva were significantly higher in subjects susceptible to seasickness as compared with nonsusceptible subjects. Also, the total protein rate of secretion in resting saliva was significantly higher in the susceptible group. The present findings could be explained in terms of higher sympathetic tone in subjects susceptible to seasickness, and salivary amylase levels might be recommended as an additional parameter in the evaluation of seasickness susceptibility.

A92-37174 National Aeronautics and Space Administration, John F. Kennedy Space Center, Cocoa Beach, FL.

EFFECT OF BREAKFAST ON SELECTED SERUM AND CARDIOVASCULAR VARIABLES

MARY A. B. FREY, MARION P. MERZ, and G. W. HOFFLER (NASA, Kennedy Space Center; Bionetics Corp., Cocoa Beach, FL) Aviation, Space, and Environmental Medicine (ISSN 0095-6562), vol. 63, no. 5, May 1992, p. 370-374. refs Copyright

Copyright

In view of the objections of many subjects to overnight fasting prior to their blood being drawn for analyses, the effect of eating breakfast on the results of subsequent blood analyses of selected blood constituents and on cardiovascular variables was investigated in 47 men and 34 women who were subjected to blood analyses on two occasions, one week apart: once fasting and once after breakfast. Results suggest that subjects need not fast overnight before blood is being drawn for determinations of the HDL-C levels, hemoglobin, hematocrit, total cholesterol, or phosphorus. However, based on other studies, it is suggested breakfast should not have a high content of fat.

A92-37175 HIV POSITIVITY AND AVIATION SAFETY I.S.
The paper presents the report, prepared by the Aviation Safety Committee with participation of an ad hoc committee formed by the Executive Committee of the Aerospace Medical Association, on the relationship between infection with human immunodeficiency virus (HIV) and aviation safety. Attention is given to the natural history of HIV infection, the neuropsychiatric effects of the infection, and the inappropriate nature of clinical neuropsychiatric testing to determine fitness to fly. It is suggested that a HIV-infected pilot places the flying public at increased and unnecessary risk, and is proposed that pilots should be tested for infection by the HIV virus, and, if found to be infected, should be medically disqualified for flying duties.

I.S.

A92-37766

OXYGEN COST OF EXERCISE HYPERPNEA - MEASUREMENT

Eight healthy adult subjects were required to mimic, at rest, the important mechanical components of submaximal and maximal exercise hyperpnea in order to quantitate the O2 cost of maximal exercise hyperpnea. Expired minute ventilation (V-dot-E), transpulmonary and transdiaphragmatic pressures, and end-expiratory lung volume (EELV) were measured during exercise at 70 and 100 percent of maximal O2 uptake. At rest, subjects were given visual feedback of their exercise transpulmonary pressure-tidal volume loop (W-dot-v), breathing frequency, and EELV, which they mimicked repeatedly for 5 min per trial over several trials, while hypocapnia was prevented. The O2 costs of hyperpnea correlated highly and positively with V-dot-E and W-dot-v. The O2 cost of V-dot-E rose out of proportion to the increasing hyperpnea. It is argued that these data provide a realistic conservative estimate of the actual cost of exercise hyperpnea over a broad range of ventilatory outputs during moderately heavy-to-maximum exercise in healthy human subjects. C.A.B.

A92-37767

OXYGEN COST OF EXERCISE HYPERPNEA - IMPLICATIONS FOR PERFORMANCE

The questions of whether exercise hyperpnea ever attains a 'critical useful level' and whether the work of breathing at maximum O2 uptake is fattiguing to the respiratory muscles are addressed. It is concluded that the O2 cost of exercise hyperpnea is a significant fraction of the total maximum O2 uptake but is not sufficient to cause a critical level of 'useful' hyperpnea to be achieved in healthy subjects. The O2 cost of ventilation and the work of breathing during maximum exercise are nonfatiguing and sustainable. C.A.B.

A92-37788* National Aeronautics and Space Administration. Ames Research Center, Moffett Field, CA

EFFECT OF LEG EXERCISE TRAINING ON VASCULAR VOLUMES DURING 30 DAYS OF 6 DEG HEAD-DOWN BED REST

In order to investigate the effects of leg exercise training on vascular volumes during 30 d of 6-deg head-down bed rest, plasma and red cell volumes, body density, and water balance were measured on 19 men before and after 30 d of exercise training (NOE, another near-maximal variable-intensity isokinetic exercise (ITE) for 60 min/d, and the third near-maximal intermittent isokinetic exercise (IKE) for 60 min/d. Mean energy costs for the NOE, IKE, and ITE regimens were determined. Body densities within groups and mean urine volumes between groups were unchanged during BR. Changes in red cell volume followed changes in plasma volume. There was close coupling between resting plasma volume and plasma protein and osmotic content. It is argued that the ITE training protocol is better than the IKE protocol for maintaining plasma volume during prolonged exposure to BR.

A92-38115* National Aeronautics and Space Administration. Lyndon B. Johnson Space Center, Houston, TX

ENERGY REQUIREMENTS FOR SPACE FLIGHT

HELEN W. LANE (NASA, Johnson Space Center, Houston, TX) Journal of Nutrition (ISSN 0022-3166), vol. 122, 1992, p. 13-18. refs Copyright

Both the United States and the Soviet Union perform human space research. This paper reviews data available on energy metabolism in the microgravity of space flight. The level of energy utilization in space seems to be similar to that on earth, as does energy availability. However, despite adequate intake of energy and protein and in-flight exercise, lean body mass was catabolized, as indicated by negative nitrogen balance. Metabolic studies during simulated microgravity (bed rest) and true microgravity in flight have shown changes in blood glucose, fatty acids and insulin concentrations, suggesting that energy metabolism may be altered during space flight. Future research should focus on the interactions of lean body mass, diet and exercise in space, and their roles in energy metabolism during space flight.

A92-38130* National Aeronautics and Space Administration. Lyndon B. Johnson Space Center, Houston, TX

NUTRITIONAL QUESTIONS RELEVANT TO SPACE FLIGHT

HELEN W. LANE (NASA, Johnson Space Center, Houston, TX) and LESLIE O. SCHULZ (Wisconsin, University, Milwaukee) Annual Review of Nutrition (ISSN 0199-9886), vol. 12, 1992, p. 237-258. refs Copyright

This historical review of nutritionally related research in the U.S. and Soviet space programs discusses the uses of nutrition as a countermeasure to the effects of microgravity, with respect to body composition and exercise. Available information is reviewed from space and ground research in the nutritional requirements for energy, protein, fluids, electrolytes, vitamins, and minerals. Past, present, and future systems for nutrient delivery in space are described, and finally, future directions and challenges are presented.

A92-38147* National Aeronautics and Space Administration. Lyndon B. Johnson Space Center, Houston, TX

HEMATOLOGY AND BIOCHEMICAL FINDINGS OF SPACELAB 1 FLIGHT

CAROLYN S. LEACH (NASA, Johnson Space Center, Houston, TX), J. P. CHEN (Tennessee, University, Knoxville), W. CROSBY (U.S. Army, Walter Reed Army Medical Center, Washington, DC), P. C. JOHNSON (NASA, Johnson Space Center, Houston, TX), R. D. LANGE (Tennessee, University, Knoxville), E. LARKIN (USVA Hospital, Martinez, CA), and M. TAVASSOLI (NASA, Johnson Space Center, Houston, TX; Mississippi, University, Jackson) In: Regulation of erythropoiesis. New York, PMA Publishing Corp., 1988, p. 415-453. refs Copyright

The changes in erythropoiesis in astronauts caused by weightlessness was experimentally studied during the Spacelab 1 flight. Immediately after landing showed a mean decrease of 9.3 percent in the four astronauts. Neither hypoxia nor an increase in blood phosphate caused the decrease. Red cell survival time...
and iron incorporation postflight were not significantly different from their preflight levels. Serum haptenoglobin did not decrease, indicating that intravascular hemolysis was not a major cause of red cell mass change. An increase in serum ferritin after the second day of flight may have been caused by red cell breakdown early in flight. The space flight-induced decrease in red cell mass may result from a failure of erythropoiesis to replace cells destroyed by the spleen soon after weightlessness is attained. C.D.

A92-38158* National Aeronautics and Space Administration, Lyndon B. Johnson Space Center, Houston, TX.

SPACE SHUTTLE DOSIMETRY MEASUREMENTS WITH RME-III

Copyright
A description of the radiation monitoring equipment (RME-III) dosimeter instrument and the results obtained from six Space Shuttle flights are presented. The RME-III is a self-contained, active (real-time), portable dosimeter system developed for the USAF and adapted for utilization in the ionizing radiation environment on the Space Shuttle. This instrument was developed to incorporate the capabilities of two earlier radiation instruments into a single unit and to minimize crew interaction times with longer battery life and expanded memory capacity. Flight data has demonstrated that the RME-III can be used to accurately assess dose from various sources of exposure, such as that encountered in the complex radiation environment of space. R.E.P.

A92-38520* National Aeronautics and Space Administration, Ames Research Center, Moffett Field, CA.

SPACE RESEARCH ON ORGANS AND TISSUES
MARC E. TISCHLER (Arizona, University, Tucson) and EMILY MOREY-HOLTON (NASA, Ames Research Center, Moffett Field, CA) AIAA, Space Programs and Technologies Conference, Huntsville, AL, Mar. 24-27, 1992. 9 p. refs (AIAA PAPER 92-1345) Copyright
The effects of microgravity on various physiological systems are reviewed focusing on muscle, bone, cardiovascular, pulmonary, neurovestibular, liver, and endocrine systems. It is noted that certain alterations of organs and tissues caused by microgravity are not reproducible in earth-bound animal or human models. Thus space research on organs and tissues is essential for both validating the earth-bound models used in laboratories and studying the adaptations to weightlessness which cannot be mimicked on earth. O.G.

A92-38536* National Aeronautics and Space Administration, Ames Research Center, Moffett Field, CA.

SLEEP AND CIRCADIAN RHYTHMS IN LONG DURATION SPACE FLIGHT - ANTARCTICA AS AN ANALOGUE ENVIRONMENT
PHILIPPA H. GANDER (NASA, Ames Research Center, Moffett Field, CA) AIAA, Space Programs and Technologies Conference, Huntsville, AL, Mar. 24-27, 1992. 9 p. refs (AIAA PAPER 92-1370) Copyright
The feasibility of using Antarctica as an environment for studying the impact of unusual 24 h environmental cycles (zeitgebers) on the circadian system is discussed. Adaptation of circadian rhythms and sleep of three scientists travelling from New Zealand to Antarctica during summer (which is analogous to arrival at a lunar base during the lunar day) has been studied. Data obtained indicate that sleep occurred at the same clock time, but sleep quality was poorer in Antarctica, which can be explained by the fact that the circadian system was delayed by about 2 h in Antarctica, as would be expected in a weaker zeitgeber environment. It is suggested that sleep could be improved by altering patterns of exposure to the available zeitgebers to increase their effective strength. O.G.
space may be the administration of such physiologically active compounds as indirect sympathomimetics, neuroactive amino acids, metabolites, adaptogens, and preparations that normalize mineral metabolism.

I.S.

A92-39135

PATHOGENESIS OF SENSORY DISORDERS IN MICROGRAVITY

Results are presented from investigations of the pattern and the etiology of sensory disorders observed in crewmembers participating in the spaceborne experiments Optokinesis (Kornilova et al., 1987) and Labyrinth (Grigorova et al., 1989). These experiments addressed spontaneous oculomotor reactions and reactions elicited by vestibular, visual, and combined vestibulovisual stimulation. It was found that all subjects could be divided into three types: type I, subjects whose responses to all stimuli were distinct; type II, subjects with weak or absent responses to all stimuli; and type III, subjects whose responses to stimuli varied and included changes in the role of sensory inputs. I.S.

A92-39137

MEDICAL RESULTS OF THE MIR YEAR-LONG MISSION

Results are presented from a year-long (December 21, 1987 through December 21, 1988) manned mission performed aboard the Soviet orbital complex Mir-Soyuz-TM-Quant-Progress. The crew consisted of two members who performed experiments designed to monitor changes in general body and health characteristics, cardiovascular parameters, the motor system, bone loss, metabolic parameters, and visceral organs; a graded exercise test on a bicycle ergometer and LBNP measurements were also performed. In addition, changes induced by EVA were obtained, including those in the carbohydrate and lipid metabolism, serum-enzyme activities, and fluid-electrolyte metabolism. Other experiments involved monitoring of changes in the hormonal status, blood parameters, and immune reactivity. It was found that changes observed in vital physiological systems after one year in space were not different from those reported for shorter flights. Moreover, some changes were even less significant. I.S.

A92-39144

ADRENERGIC REGULATION AND MEMBRANE STATUS IN HUMANS DURING HEAD-DOWN HYPOKINESIA (HDT)

The status of erythrocyte cellular membrane and the responsiveness of erythrocytes to adrenergic hormones were investigated in two groups (A and B) of human subjects exposed to 370-day-long head-down-till (HDT, at 6 deg) hypokinesia followed by a recovery period. Group A received a daily dose of DSM (ATPase activity, intracellular contents of K(+) and Na(+), and the rate of K(+) leakage. Results indicated that, although the countermeasures had a certain corrective effect, they failed to prevent the alterations in erythrocyte membranes caused by HDT (which included changes in the activity of membrane-bound ATPase, the membrane permeability and charge, and the density and rigidity of its lipid bilayer). I.S.

A92-39150

HUMAN CENTRIFUGE TRAINING OF MEN WITH LOWERED +GZ ACCELERATION TOLERANCE

A training method for increasing the acceleration tolerance limit (ATL) in pilots was developed, in which the +Gz loads in human centrifuge are applied gradually, based on measurement of the blood velocity and heart-rate changes. In the procedure, the +Gz stimuli are applied with such characteristics which are best tolerated by human body systems. A slow acceleration onset was used, and subjects were exposed to constant values of acceleration which did not exceed their physical compensation limits. The load value was changed after each centrifuge run since the examination was stopped before the occurrence of retrograde blood flow. This training method is shown to increase the ATLs of pilots with Gz tolerance lowered by various causes. I.S.

A92-39151

TOLERANCE TO +GZ GRAVITATIONAL STRESS BY SUBJECTS OF ELDER AGE GROUPS WITH DIFFERENT HEALTH STATE

The effects of age and health on tolerance to +Gz loads were investigated in fliers and nonfliers subjected to human centrifuge tests. Results of heart rate and blood velocity measurement obtained on 671 subjects aged 21 to 59 showed a well-defined age and health dynamics of the g-load tolerance in both fliers and nonfliers. Subjects aged between 25 and 40 were found to exhibit the highest level of g-load tolerance. It was also found that, in fliers and nonfliers aged 36 years or more, the presence of ectopic dysrhythmia led to significantly lower tolerance. I.S.
52 AEROSPACE MEDICINE

norepinephrine, a stimulation of the RAAS rhythm, and an orthostatic hypotension with three syncope at the end of bed rest. During 4-wk-long bed rest with LBNP, applied as a countermeasure, there was a lesser decrease in weight and plasma volume, a trend to increase in ANF, no change in other hormonal variables, and no change in orthostatic hypotension. It is suggested that the improvement in the orthostatic tolerance in presence of LBNP might be ANF dependent. I.S.

A92-39158

EVALUATION OF ENERGY METABOLISM IN COSMONAUTS

The effect of microgravity on the metabolism of humans was investigated in 27 cosmonauts after flights of 8 to 366 days aboard Salyut and in 39 subjects exposed to dry water immersion, bed rest, or head-down tilt for 6 to 370 days. Results of analyses of biochemical parameters of blood serum and plasma of subjects flown for 8 to 10 days showed significant increases of insulin, creatine phosphokinase (CPK), CPK-MM, and malate dehydrogenase-3 (MDH3), as well as decreases in glucose, lactate, MDH1, MDH2, and T3. Cosmonauts flown for 7-8 months exhibited significant decreases in triglycerides, and variations in MOH and isocryatr. Experiments with simulated microgravity showed that many changes consistently seen postflight develop at an early stage of exposure. I.S.

A92-39161*

National Aeronautics and Space Administration. John F. Kennedy Space Center, Cocoa Beach, FL.

MUSCLE STRENGTH AND ENDURANCE FOLLOWING LOWERLIMB SUSPENSION IN MAN

Research supported by Swedish Board for Space Activities. refs

The effect of lower-limb suspension on the muscle strength and muscle endurance was investigated in six men subjected to four weeks of unilateral unloading of a lower limb (using of a harness attached to a modified shoe), followed by seven weeks of weight-bearing recovery. Results showed a decrease in the cross-sectional area (CSA) of the thigh muscle and in the average peak torque (APT) during three bouts of 30 concentric knee extensions. While the the thigh muscle CSA returned to normal several weeks after loss of recovery, the APT recovery was still reduced extensions. While the thigh muscle CSA returned to normal cross-sectional area (CSA) of the thigh muscle and in the average peak torque (APT) during three bouts of 30 concentric knee extensions.

A92-39162

The mechanisms of musculoskeletal and cardiovascular deconditioning under microgravity are discussed together with the role of exercise as a countermeasure to these effects. Experimental results are presented showing that mild dynamic exercise leads to the moderate production and release of metabolites from aerobically working muscles and activates low-threshold muscle receptors (K receptors) which in turn induce moderating influence on the sympathetic tone, heart rate, vascular resistance, and systemic blood pressure and cause a marked increase of breathing frequency. Isometric contractions lead to the activation of threshold chemosensitive receptors (P receptors), which induce sympathetic excitation resulting in increases of the heart rate, vascular resistance, arterial pressure, and breathing depth. The type of exercise regimens that could be used as countermeasures for space deconditioning is considered. I.S.

A92-39165*

National Aeronautics and Space Administration. John F. Kennedy Space Center, Cocoa Beach, FL.

INTERACTION OF THE CAROTID BAROREFLEX, THE MUSCLE CHEMOREFLEX AND THE CARIDOPULMONARY BAROREFLEX IN MAN DURING EXERCISE

The interaction of the muscle chemoreflex and the cardiological baroreflex with the carotid baroreflex in humans performing exercise was investigated in healthy subjects using specially designed exercise regimens and apparatus. Stimulation of the muscle chemoreflex was achieved by restricting blood flow in the exercising muscles by means of applying pressure of 50 mm Hg, whereas cardiopulmonary baroreceptors were unloaded by employing LBNP of -20 mm Hg. The carotid baroreceptors were unloaded by stimulated by neck-pressure maneuvers (Spreenke et al., 1986). Results showed that the cardiodecelerating capacity of the carotid baroreflex remains active during exercise, and may even be sensitized by the chemoreflex-induced increase in arterial pressure; but it is not affected by the cardiopulmonary baroreceptor activity. I.S.

A92-39166

AGE-DEPENDENCY OF SYMPATHETIC NERVE RESPONSE TO GRAVITY IN HUMANS

The response of the muscle sympathetic outflow to gravitational stress and the effect of age on this response were investigated.
during head-up graded tilting of human subjects equipped with a tungsten microelectrode inserted percutaneously into the muscle nerve fascicle of the tibial nerve, to record the response of sympathetic nerve activity. Results of microencephalography show that muscle sympathetic outflow is changed in humans performed by different inputs from baroreceptors and play an extremely important role in control of systemic blood pressure. With increase of age, the basal level of muscle sympathetic outflow becomes higher, while the muscle sympathetic nerve responsiveness to +Gz stress becomes reduced. I.S.

A92-39178* National Aeronautics and Space Administration. John F. Kennedy Space Center, Cocoa Beach, FL.

NEUROMUSCULAR ASPECTS IN DEVELOPMENT OF EXERCISE COUNTERMEASURES

The paper reviews data obtained at the Human Life Sciences Research Program at the Kennedy Space Center on the structural and functional characteristics of the human muscle and on the effects of simulated microgravity (head-down bed rest) and exercise on the muscle. It is shown that prolonged exposure to microgravity induced ultrastructural abnormalities and the atrophy of muscle and impaired muscle functioning (especially upon return to terrestrial gravity) and that ground-based models can be effectively used to study these changes. Results indicate that the incorporation of resistive exercise with a strong emphasis on the use of eccentric muscle action, in addition to concentric action, may provide a very effective countermeasure against muscle atrophy and dysfunction caused by long-duration exposures to microgravity. I.S.

A92-39180 CARDIOVASCULAR DISTURBANCES INDUCED BY A 25 DAYS SPACEFLIGHT AND A ONE MONTH HEAD DOWN TILT

PH. ARBEILLE (Institut National de la Sante et de la Recherche Medicale, Tours, France), G. FOMINA (Institute of Biomedical Problems, Moscow, Russia), I. S. POTTIER (Institut National de la Sante et de la Recherche Medicale, Tours, France), V. BYSTROV (Institute of Biomedical Problems, Moscow, Russia), F. PATAT (Institut National de la Sante et de la Recherche Medicale, Tours, France), N. KOKOVA, L. STROGONOVA (Institute of Biomedical Problems, Moscow, Russia), L. POURCELOT (Institut National de la Sante et de la Recherche Medicale, Tours, France), O. ATKOV (All-Union Cardiology Research Center, Moscow, Russia), A. GUEELL (CNES, Toulouse, France) (International Union of Physiological Sciences Commission on Gravitational Physiology, Annual Meeting, 12th, Leningrad, USSR, Oct. 14-18, 1990, Proceedings. A92-39126 16-51) Physiologist, Supplement (ISSN 0031-9376), vol. 34, no. 1, Feb. 1991, p. S-156 to S-157. refs

The effects of different types of physical training on the cardiac hemodynamic responses to orthostatic stress were investigated by measuring cardiac parameters in human subjects divided into three groups: endurance runners, weight-lifters, and nonathletes. It was found that, although the response patterns to orthostatic stress (exposures to -20 and -40 mbar in a LBNP chamber) in these subjects differed as a function of the type of sport, training had no significant bearing on the hemodynamic responses to the orthostatic stress induced by LBNP (at least down to -40 mbar); there was no evidence of an altered baroreflex function in the endurance trained men. I.S.

A92-39181 CENTRAL HEMODYNAMICS OF THE ANTI-G STRAINING MANEUVER PERFORMED DURING ELECTIVE CARDIAC CATHETERIZATION IN MAN

Results are presented of a study undertaken to evaluate the central hemodynamic effects of the increased levels of the thoracic-abdominal Valsalve-like strain (V) performed with and without a peripheral musculoskeletal strain (the L-1 maneuver). The subjects were six Army aviators who underwent elective cardiac catheterization as part of an aeromedical evaluation. The data indicate that the initial response to the V or L-1 is a rise in central hemodynamics, and that the CVP values of cosmonauts in space were higher by about 50 percent than those observed on earth. After 20 min of recovery on earth, the CVP values decreased to values about 45 percent below the original level. It was found that the variations of heart rate and the application of clamping cuffs were effective as countermeasures. I.S.

A92-39182 CARDIOVASCULAR RESPONSES TO OXYGEN UPTAKE DURING EXERCISE IN AXILLARIS WATER IMMERSION

J. NAGANO (Bunka Woman's University, Tokyo, Japan), S. TORIKOSHI, K. YOKOZAWA (Tokyo Woman's Christian University, Tokyo, Japan), and Y. SUZUKI (Tokyo University, Japan) (International

The nature of the cardiovascular adjustment to dynamic exercise under conditions of microgravity was investigated by comparing cardiovascular responses to the oxygen uptake and work intensity in control subjects to responses of subjects undergoing ergometer exercises under the condition of water immersion (WI) to the axillary level. Results showed that, when dynamic upright pedaling was performed under WI conditions, the increase in systolic arterial pressure with increasing VO2 and percent VO2(max) was higher than in control subjects exercising under normal conditions. I.S.

A92-39183
COMPARISON OF CARDIOVASCULAR RESPONSES DURING POST-EXERCISE BETWEEN PEDALLING EXERCISE EXPOSED TO -50 MM HG LBPN AND KNEE BEND EXERCISE

The capabilities of two tests (a mild pedaling exercise during -50 mm Hg LBPN, followed by LBPN if it could no longer be tolerated, and a 1-min-long knee bending exercise) to evaluate cardiovascular responses of humans were evaluated in young female subjects. Measurements of the tolerance capacity and the systemic, mean arterial, and diastolic pressures showed significant correlation (p less than 0.01) between the arterial blood pressure ratio after 1 min knee bending exercise and the postexercise LBPN tolerance time. I.S.

A92-39192
CLASSIFICATION OF THE FREE FLUID RESERVOIR IN THE CALF BY ELECTRICAL IMPEDANCE TOMOGRAPHY

The feasibility of using electrical impedance tomography for monitoring the fluid shifts in the calf that take place following changes in the body posture, saline infusion (FL), or LBPN stress test was examined using the Sheffield Applied Potential Tomography (APT) system. The overall APT images showed an exponential resistivity increase due to the body position change from the upright to 6-deg head-down-tilt (HDT) position. The pattern of the APT images obtained during LBPN looked the same as that during FL, with both patterns showing a resistivity decrease in the overall images. A comparison of the overall APT images with the tomograms obtained simultaneously by NMR showed the same tendencies, indicating that APT is an effective method for measuring changes in the fluid reservoir of the calf. I.S.

A92-39197
THE EFFECT OF REPEATED LOADS AND METABOLIC INTENSITY ON REPARATIVE-DESTRUCTIVE PROCESSES IN SPINE

The effect of repeated loads on the spine, with a probability of p = 0.05 of causing destruction and with a probability of causing microfractures as well as the stimulation of adaptive processes, were examined using the theoretical model of Stupakov et al. (1989). The model describes the dynamics of the average number of impacted and crushed trabecula as a result of processes analogous to the chemical kinetics processes and the homeostasis restoration. Results of calculations show that this approach makes it possible to study the effects of the duration of loading, the likelihood of instant microlesions, the metabolic rate and the rate of aging of the organism under study, and the severity of osteochondropathy. I.S.

A92-39207
POSSIBILITY TO CHANGE OTOLITH-OCULAR STATIC ASYMMETRY BY GALVANIC STIMULATION OF VESTIBULAR APPARATUS

The possibility of influencing the otolithic - ocular static asymmetry by the galvanic stimulation of the vestibular apparatus was investigated in human subjects in whom the magnitudes of static ocular counterrolling, with and without galvanic stimulation, were measured by a simple indirect method. Results showed that the magnitude of ocular counterrolling was influenced by galvanic binaural stimulation of the vestibular system. The effect depended on the polarity and the intensity of stimulation. I.S.

A92-39208
THE VESTIBULAR EXPERIMENT IN THE JUNO MISSION

The paper describes three vestibular experiments planned for the USSR Mir station missions scheduled for 1991 and/or 1992, in which subjects will be the astronauts. The first experiment is designed to determine the amount of ocular counterrotation caused by the neck position receptors during the static head tilt to the left or the right side. The second experiment is designed to support the hypothesis stating that, during the vestibular adaptation to space, the weight of vestibular information increases in comparison to vestibular information. The third experiment consists of pre- and postflight on-ground measurements in which a new otolithometric test for predicting the susceptibility of subjects to space sickness will be used; the test is based on the assumption that subjects with a bilaterally asymmetric otolith apparatus are more susceptible to space sickness than those with symmetric apparatuses. I.S.

A92-39209
EXAMINATION OF EYE MOVEMENTS UNDER IMMERSION

Results are presented from three series of experiments performed to investigate the eye movements during immersion, which are stimulated by additional proprioceptive, optokinetic, and vestibular-optokinetic inputs. The electrooculographic tests of the first series involved assessments of the role of the additional support (AS) in immersion. The second-series experiments involve testing subjects during free immersion and after an additional optokinetic stimulation input by stripped projections of a light beam. In the third series of tests, the subjects were tested with the same intervals, first, during free immersion and after
additional vestibulo-oculokinetic stimulation consisting of head oscillations performed for 10 min with an amplitude of 45 deg in the frontal plane with a frequency of 0.5 Hz. I.S.

A92-39210 SENSORY INTERACTION AND METHODS OF NON-MEDICINAL PROPHYLAXIS OF SPACE MOTION SICKNESS

Data are presented from experiments on animals and humans, demonstrating the peculiarities of sensory interaction under varying experimental conditions including microgravity. These experiments included studies on the effects of electromyostimulation, vibrostimulation, and voluntary muscle tension on the toleration of Coriolis rotation test; studies of the comparative effects of drug (scopolamine), and nondrug (autotraining with feedback and voluntary muscular tension) prophylactic methods against experimental motion sickness; and studies of the effect of the compensation support unloading induced by microgravity. I.S.

A92-39212 SIMULATION OF THE EFFECT OF MICROGRAVITY ON THE HUMAN BODY BY ITS PROLONGED ROTATION ABOUT THE HORIZONTAL LOCATED LONG AXIS

The widely used methods developed for simulating microgravity effects are discussed, including methods for simulating the effects of microgravity on blood circulation, fluid/electrolyte balance, and metabolism as well as methods that simulate the vestibular effects (e.g., Coriolis acceleration cumulation tests, slowly rotating room, and Khilov swing). Special attention is given to a little-used model, (e.g., Coriolis acceleration cumulation tests, slowly rotating room, Khilov swing). Special attention is given to a little-used model, such as the VEGA rotation test; studies of the comparative effects of drug (scopolamine), and nondrug (autotraining with feedback and voluntary muscular tension) prophylactic methods against experimental motion sickness; and studies of the effect of the compensation support unloading induced by microgravity. I.S.

A92-39214 PERSPECTIVES FOR THE APPLICATION OF THE PENAZ’S METHOD FOR A NON-INVASIVE CONTINUOUS BLOOD PRESSURE MEASUREMENT IN SPACE MEDICINE

The feasibility of using the Penaz (1973) method of continuous noninvasive arterial pressure (AP) measurements for predicting health impairments in humans under gravitational blood redistribution was investigated in subjects exposed to one of the following conditions: (1) +Gz acceleration in a human centrifuge, (2) tilt-table test, and (3) low body negative pressure (LBNP). The patterns of AP monitoring were obtained according with the Penaz method, using an instrument (Servotonometer) developed for this method. The analysis of data on the dynamics of AP in subjects undergoing gravitational blood redistribution demonstrates that the Penaz method makes it possible to continuously obtain information on the systolic, diastolic, and pulse APs; it gives an opportunity to assess the effects of cardiac-rhythm disturbances on the hemodynamics; and makes it possible to predict a subject’s health condition during gravitational blood redistribution. I.S.

A92-39978* National Aeronautics and Space Administration. Ames Research Center, Moffett Field, CA.

ALERTNESS MANAGEMENT IN FLIGHT OPERATIONS - STRATEGIC NAPPING

Strategic napping in two different flight operation environments is considered to illustrate its application as a fatigue countermeasure. Data obtained from commercial short-haul and long-haul operations demonstrated the utility and current practices of strategic napping. A preparedness cockp crewacted as an acute ‘safety valve’ for the sleep loss, circadian disruption, and fatigue that occurs in long-haul flying. O.G.

A92-40624 DISTURBANCES IN CEREBRAL HEMODYNAMICS IN ACUTE MOUNTAIN SICKNESS (NARUSHENIIA TSEREBRAL’NOI GEMODINAMIKI PRI OSTROI GORNOI BOLEZNI)

S. I. SOROKO (AN Kyrgyzstan, Institut Fiziki, 1sperimental’noi Pathologi, Vysokogori’a, Bishkek, Kyrgyzstan) AND IU. A. SIDOROV (Institut Experimental’noi Pathologi, St. Petersburg, Russia) Fiziologiya Cheloveka (ISSN 0131-1646), vol. 18, no. 2, Mar.-Apr. 1992, p. 81-88. In Russian. refs

Results are presented from 3-yr-long clinical observations of a subject suffering from aftereffects of acute mountain sickness in severe form, contracted at the altitude of 3000 m in Antarctica. The tests (performed on day 15, 20, 35, 45, and 65 from the start of the illness and every 6 months afterward for three years) included rheoencephalography, nitroglycerin tests, and measurements of the blood pressure changes in the cerebral hemispheres and in selected individual arteries. Results showed that the initial stage of the sickness was characterized by an increase of blood filling in cerebral hemispheres, accompanied by decreases in tonicity and elasticity of individual cerebral vessels and the appearance of brain edema. The recovery process took a uniform form and, during the two months when the subject remained in Antarctica, failed to stabilize. The return home accompanied by chemotherapy brought about almost complete recovery after 2.5 yrs. I.S.

A92-40625 ANALYSIS OF CHANGES IN THE CARDIAC RHYTHM OF HUMAN OPERATORS, USING A MODEL FOR SUCCESSFUL AND MONOTONOUS TRACKINGS OF A TARGET AND IN THE CASE OF UNSUCCESSFUL TRACKING (ANALIZ IZMENENII SERDECHOOGO RITMA CHOLEVOKE-OPERATORA NA MODELI USPESHNOGO MONOTONNOGO SLEZHENIIA ZA TSЕL’VU PRI SBONE V RABOTE)

IU. N. SAMKO, N. I’. BATOV, AND A. A. TIUNOVA (NI Normal’noi FizioLOGii, Moscow, Russia) Fiziolohiya Cheloveka (ISSN 0131-1646), vol. 18, no. 2, Mar.-Apr. 1992, p. 149-152. In Russian. refs

Copyright

Results are presented of a mathematical analysis of the cardiac rhythm spectra of human operators performing purposeful tasks that could be successfully completed or could not be completed due to a malfunction or an interruption. The analyses revealed the occurrences of peaks in the cardiac rhythm following phases of instruction and due to interruptions. I.S.
A92-40753
A STUDY OF THE MECHANISMS REGULATING THE STATE OF OPERATORS ENGAGED IN CONTINUOUS ACTIVITY, USING A METHOD THAT REGISTERS FORESTALLING LATERAL EYE MOVEMENTS [ISSLEDOVANIE MEKHANIZMOV REGULIATSII SOSTOIANNII OPERATOROV V KHODE REZHIMA NEPRERYVNOI DEITEL'NOSTI METODOM REGISTRATSII LATER'NYKH OPEREZHAUSHCHIKH DVIZHENII GLAZ]

E. G. UDACHINA (Rossiiskaia Akademiia Nauk, Institut Psihologii, Moscow, Russia) Fiziologija Cheloveka (ISSN 0131-1646), vol. 19, no. 1, Jan.-Feb. 1992, p. 51-55. In Russian. refs Copyright

The functional asymmetry of cerebral hemispheres was examined as one of the mechanisms of adaptation and self-regulation in operators working continuously without sleep by measuring changes in the characteristics of forestalling lateral eye movements as indices of hemispheric activation. It is shown that prolonged continuous sleep deprivation brings about a change in the activation relationship between the right and the left cerebral hemispheres, reflecting a change in the type of interhemispheric regulation. 1.S.

A92-40754
AN ANALYSIS OF SCALES USED FOR MEASURING GALVANIC SKIN RESPONSES IN HUMANS [ANALIZ SHKAL, PRIMENAIEMYKH DLIA IZMERENII KOZHNO-GAL'VANICHESKIKH REAKTSII CHELOVEKA]

V. V. SUKHODOEV (Rossiiskaia Akademiia Nauk, Institut Psihologii, Moscow, Russia) Fiziologija Cheloveka (ISSN 0131-1646), vol. 19, no. 1, Jan.-Feb. 1992, p. 56-63. In Russian. refs Copyright

The effect of the level of the galvanic skin-response (GSR) signal in humans on the values of the GSR signal changes during the subject's activity and on the amplitudes of physical reaction was investigated. The logarithmic scale developed on the basis of experimental data obtained in this work for the measurements of changes in the GSR signal is compared with two traditional scales: a scale of the electrical conductivity in the skin (ECS) and a scale of skin electrical resistance of skin (SER). It is shown that of both these widely used scales are deficient. The main deficiency of the ECS and SER scales is an inadequate assessment of the GSR by subjects with individually different levels of the GSR signal. 1.S.

A92-40755
HIGH-ALTITUDE ADAPTATION AND PHYSICAL WORK CAPACITY [VYSOKOGORNAIA ADAPTATSIA I FIZICHESKAIA RABOTOSPOSOBNOST']

S. G. KRIVOSHCHEKOV, T. V. NESHUMOVA, and A. A. RAZUMENKO (Rossiiskaia AMN, Institut Fiziologii, Novosibirsk, Russia) Fiziologija Cheloveka (ISSN 0131-1646), vol. 19, no. 1, Jan.-Feb. 1992, p. 64-68. In Russian. refs Copyright

New data are presented on residual effects of the high-altitude adaptation remaining in athletes after spending one month in the Pamir mountains at altitudes between 3000 and 5000 m. It is shown that, following their return to a lowland region, the subjects exhibited increased levels in the efficiency of the muscle activity, decreased losses of body heat after performing physical work of medium intensity, and a lowered aerobic capacity in cases of high-intensity work. Mechanisms responsible for these changes are discussed. 1.S.

A92-40756
NEURODYNAMIC INDICATORS OF HIGH-ALTITUDE ADAPTATION EFFICIENCY IN HUMANS [NEURODINAMICHESKIE POKAZATELI EFFEKTVNOSTI ADAPTATSII CHELOVEKA V VYSOKOGOR'IU]

F. A. SHUKUROV and V. P. MESHCHERIAKOV (Tadzhikskii Gosudarstvennyi Meditsinskii Institut, Dushanbe, Tajikistan) Fiziologija Cheloveka (ISSN 0131-1646), vol. 18, no. 1, Jan.-Feb. 1992, p. 69-75. In Russian. refs Copyright

A method is described for studying the conditional-reflect rearrangements in the respiratory, visual, and cardiovascular systems, making it possible to investigate neuronal mechanisms of high-altitude adaptation. Results obtained with this method were used to identify the neurodynamic basis of the capability of humans for adapting to high altitudes, and to establish criteria for predicting the level of the high-altitude adaptability of an individual. 1.S.

A92-40931
PHYSIOLOGICAL RESPONSE TO PRESSURE BREATHING WITH A CAPSTAN COUNTER PRESSURE VEST

The physiological response and tolerance to the positive pressure breathing (PPB) under the higher pressures with a capstan pressure vest were evaluated. Eight subjects undertook the PPB with different pressure from 6.37 to 8.33 KPa at altitudes from 15 Km to 16.5 Km. Each of the subjects was wearing the fitted oxygen mask, the capstan vest, and the anti-G suit which was not linked together with the oxygen regulator. The test results demonstrate that the PPB of 6.37 to 8.33 KPa with the capstan pressure vest were well tolerated, although the pressure of PPB in this study was higher than that of other authors. The decrease in stroke volume was obvious, since no counter pressure on the legs was applied, therefore, blood pooled in the lower body. The capstan pressure vest could be used only for short intervals of 'get-me-down'. 1.S.

A92-24672/
Los Alamons National Lab., NM.

ELECTROMAGNETIC IMAGING OF DYNAMIC BRAIN ACTIVITY

Neural activity in the brain produces weak dynamic electromagnetic fields that can be measured by an array of sensors. Using a spatio-temporal modeling framework, we have developed a new approach to localization of multiple neural sources. This approach is based on the MUSIC algorithm originally developed for estimating the direction of arrival of signals impinging on a sensor array. We present applications of this technique to magnetic...
field measurements of a phantom and of a human evoked somatosensory response. The results of the somatosensory localization are mapped onto the brain anatomy obtained from magnetic resonance images.

N92-24899# Mount Sinai School of Medicine, New York, NY. Dept. of Physiology and Biophysics.

MOLECULAR MECHANISMS IN RADIATION DAMAGE TO DNA

R. OSMAN 28 Oct. 1991 2 p

(Contract DE-FG02-88ER60935)

(DE92-009770; DOE/ER-60675/5) Avail: NTIS HC/MF A01

The objectives of this work are to elucidate the molecular mechanisms that are responsible for radiation-induced DNA damage. The overall goal is to understand the relationship between the chemical and structural changes produced by ionizing radiation in DNA and the resulting impairment of biological function expressed as carcinogenesis or cell death. The studies are based on theoretical explorations of possible mechanisms that link initial radiation damage in the form of base and sugar damage to conformational changes in DNA. These mechanistic explorations should lead to the formulation of testable hypotheses regarding the processes of impairment of regulation of gene expression, alternation in DNA repair, and damage to DNA structure involved in cell death or cancer.

N92-25045# Brookhaven National Lab., Upton, NY.

MEDICAL APPLICATIONS OF SYNCHROTRON RADIATION

(DE92-005041; BNL-46865; CONF-9110146-5) Avail: NTIS HC/MF A03

Ever since the first diagnostic x-ray was done in the United States on 3 Feb. 1896, the application of ionizing radiation to the field of medicine has become increasingly important. Both in clinical medicine and basic research the use of x-rays for diagnostic imaging and radiotherapy is now widespread. Radiography, angiography, CAT and PET scanning, mammography, and nuclear medicine are all examples of technologies developed to image the human anatomy. In therapeutic applications, both external and internal sources of radiation are applied to the battle against cancer. The development of dedicated synchrotron radiation sources has allowed exciting advances to take place in many of these applications. The new sources provide tunable, high-intensity monochromatic beams over a wide range of energies which can be tailored to specific programmatic needs. This paper surveys those areas of medical research in which synchrotron radiation facilities are actively involved.

N92-25046# Lawrence Livermore National Lab., CA.

ABSOUITE CALIBRATION OF IN VIVO MEASUREMENT SYSTEMS USING MAGNETIC RESONANCE IMAGING AND MONTE CARLO COMPUTATIONS

M. W. MALLETT (Texas A&M Univ., College Station.), D. P. HICKMAN, and D. A. KRUCHTEN 1991 4 p Presented at the 8th International Radiation Protection Association Conference, Montreal, Quebec, 17-22 May 1992 (Contract W-7405-ENG-46)

(DE92-005255; UCRL-JC-108915; CONF-920501-14) Avail: NTIS HC/MF A01

Lawrence Livermore National Laboratory (LLNL) is currently investigating a new method for obtaining absolute calibration factors for radiation measurement systems used to measure internally deposited radionuclides in vivo. This method uses magnetic resonance imaging (MRI) to determine the anatomical makeup of an individual. A new MRI technique is also employed that is capable of resolving the fat and water content of the human tissue. This anatomical and biochemical information is used to model a mathematical phantom. Monte Carlo methods are then used to simulate the transport of radiation throughout the phantom. By modeling the detection equipment of the in vivo measurement system into the code, calibration factors are generated that are specific to the individual. Furthermore, this method eliminates the need for surrogate human structures in the calibration process. A demonstration of the proposed method is being performed using a fat/water matrix.

N92-25304# Technische Univ., Delft (Netherlands).

IN-VIVO PROTON MAGNETIC RESONANCE SPECTROSCOPY: EVALUATION OF MULTIPLE QUANTUM TECHNIQUES FOR SPECTRAL EDITING AND A TIME DOMAIN FITTING

HICKMAN, and D. A. KRUCHTEN 1991 4 p Presented at the 7th International Radiation Protection Association Conference, Montreal, Quebec, 17-22 May 1992 (Contract DE-FG02-88ER60935)

(DE92-009770; DOE/ER-60675/5) Avail: NTIS HC/MF A01

Several aspects concerning the use of multiple quantum coherence techniques for in vivo studies are detailed. It is shown that a zero quantum sequence can be used to selectively measure lactate and that this sequence can be combined with a localization technique. Editing techniques to separate signals from two complex spin systems (glutamate and glutamine) are described. Since it appeared to be very difficult to selectively measure one of these systems and suppress the other with multiple quantum coherence techniques, an alternative method is also given. Pathophysiologic mechanisms responsible for the induction of hepatic encephalopathy are studied. A study in which an editing sequence is used to detect lactate, and a nonediting sequence is used to measure the complete spectrum is performed. Data processing techniques are addressed. The incorporation of knowledge in a Gauss-Newton iterative fitting procedure is described and it is shown how actual prior knowledge can be obtained and used to analyze a signal consisting of damped sinusoids which in the frequency domain severely overlap. The method is used to fit, frequency selectively, real in vivo signals.

N92-25422# Colorado Univ., Boulder. Dept. of Pharmacology.

THE CDNA EXPRESSION MAP OF THE HUMAN GENOME: METHODS DEVELOPMENT AND APPLICATIONS USING BRAIN CDNAS

J. M. SIKELA 1991 4 p

(Contract DE-FG02-91ER61241)

(DE92-005520; DOE/ER-61241/1) Avail: NTIS HC/MF A01

The following describes the progress on human brain cDNA sequencing and mapping that our laboratory has made over the past few months. It should be noted that our first funding installment for the first phase of this grant was obtained approximately two weeks ago. Therefore, the progress that is described represents efforts that were carried out without DOE Genome funds and thus largely are a continuation of pilot studies we began last year. We anticipate, now that DOE funds have arrived, that we will be able to significantly scale up our efforts and productivity.

N92-25435# National Inst. for Occupational Safety and Health, Cincinnati, OH.

PROCEEDINGS OF THE SCIENTIFIC WORKSHOP ON THE HEALTH EFFECTS OF ELECTRIC AND MAGNETIC FIELDS ON WORKERS

Participants in the workshop discussed various aspects of the health effects on workers exposed to electric and magnetic fields. Specific topics discussed included low frequency electromagnetic fields, biological effects of extremely low frequency electromagnetic fields, health effects of exposures, occupational exposure assessment for electric and magnetic fields in the 10 to 100 hertz frequency range, and magnetic field management. Research recommendations from workshop panels concerning in-vitro/cellular mechanism studies, exposure assessments, and methods for reducing exposures were provided.

N92-25481# Brookhaven National Lab., Upton, NY.

MONOCHROMATIC COMPUTED TOMOGRAPHY OF THE HUMAN BRAIN USING SYNCHROTRON X RAYS: TECHNICAL FEASIBILITY
Presented at the 7th National Conference and Exhibition on Synchrotron Radiation Instrumentation, Baton Rouge, LA, 28-31 Oct. 1991
(Contract DE-AC02-76CH00016)
(DE92-007143; BNL-47068; CONF-9110146-7) Avail: NTIS HC/MF A03

A monochromatic computed tomography (CT) scanner is being developed at the X17 superconducting wiggler beamline at the National Synchrotron Light Source (NSLS), Brookhaven National Laboratory, to image the human head and neck. The system configuration is one of a horizontal fan beam and an upright seated rotating subject. The purpose of the project is to demonstrate improvement in the image contrast and in the quantitative accuracy that can be obtained in monochromatic CT and to apply the system to specific clinical research programs in neuroradiology.

This paper describes the first phantom studies carried out with a prototype system, using the dual photon absorptiometry (DPA) method at energies of 20 and 39 KeV. The results show that improvements in image contrast and quantitative accuracy are possible with monochromatic DPA CT. Estimates of the clinical performance of the planned CT system are made on the basis of these initial results.

N92-25508# Oak Ridge National Lab., TN.
RADIATION EFFECTS IN SPACE: RESEARCH NEEDS
(Contract DE-AC05-84OR21400)
(DE92-006597; CONF-9107136-9) Avail: NTIS HC/MF A01

At the 8th International Congress of Radiation Research an account was given of the findings of the National Council on Radiation Protection and Measurements (NCRP) on radiation environments in space and their estimates of dose equivalents. The committee gave guidance about possible career limits of exposure to radiation during low earth orbits based on risk estimates available at the time. The information about deep space was insufficient to estimate the risks for missions into deep space. It was known that new risk estimates and recommendations of dose limits for terrestrial workers were on the way, and they are now available. The NCRP has started to reassess the radiation risks in space. The gaps in the information about salient aspects of the radiation environment will be avoided. In summary, careful account was given of the findings of the National Council on Radiation Protection and Measurements (NCRP) on radiation environments in space and their estimates of dose equivalents.

This project aimed to divide chromosome 16 into approximately 50 intervals of approx. 2Mb in size by constructing a series of mouse/human somatic cell hybrids each containing a rearranged chromosome 16. Using these hybrids, DNA probes would be regionally mapped by Southern blot or PCR analysis. Preference would be given to mapping probes which demonstrated polymorphisms for which the CEPH panel of families had been typed. The hybrids would allow a correlation of the physical and genetic maps of the chromosome in an advanced stage of preparation. The somatic cell hybrids constructed have been widely distributed to groups working on chromosome 16 and other genome projects.

N92-25743# Adelaide Children's Hospital, North Adelaide (Australia)
CORRELATION OF PHYSICAL AND GENETIC MAPS OF HUMAN CHROMOSOME 16
G. R. SUTHERLAND 1991 8 p
(Contract DE-FG02-89ER-60863)
(DE92-007547; DOE/ER-60863/3) Avail: NTIS HC/MF A02

This project aimed to divide chromosome 16 into approximately 50 intervals of approx. 2Mb in size by constructing a series of mouse/human somatic cell hybrids each containing a rearranged chromosome 16. Using these hybrids, DNA probes would be regionally mapped by Southern blot or PCR analysis. Preference would be given to mapping probes which demonstrated polymorphisms for which the CEPH panel of families had been typed. The hybrids would allow a correlation of the physical and genetic maps of the chromosome in an advanced stage of preparation. The somatic cell hybrids constructed have been widely distributed to groups working on chromosome 16 and other genome projects.

N92-25989# Brookhaven National Lab., Upton, NY.
A SURVEY OF MEDICAL DIAGNOSTIC IMAGING TECHNOLOGIES
V. HEESE, N. GMUER, and W. THOMLINSON Oct. 1991 86 p
(Contract DE-AC02-76CH00016)
Avail: NTIS HC/MF A05

The fields of medical imaging and medical imaging instrumentation are increasingly important. The state-of-the-art continues to advance at a very rapid pace. In fact, various medical imaging modalities are under development at the National Synchrotron Light Source (such as MECT and Transvenous Angiography.) It is important to understand how these techniques compare with today's more conventional imaging modalities. The purpose of this report is to provide some basic information about the various medical imaging technologies currently in use and their potential developments as a basis for this comparison. This report is by no means an in-depth study of the physics and instrumentation of the various imaging modalities; instead, it is an attempt to provide an explanation of the physical bases of these techniques and their principal clinical and research capabilities.

N92-25993# Los Alamos National Lab., NM.
LASER-INDUCED CONTAINED-VAPORIZATION IN TISSUE
(Contract W-7405-ENG-36)
(DE92-008446; LA-UR-92-363; CONF-920124-11) Avail: NTIS HC/MF A02

When a transparent liquid or solid medium is present in front of an opaque target being irradiated by an intense laser beam, then the expansion of hot vapors generated (at the interface between the medium and the target) by the irradiant heating of the target is restrained by the medium. The tamping effect of the overheated liquid or solid can cause a much larger fraction of the deposited energy to go into kinetic energy, which leads to enhanced tissue disruption, compared to when a gas or vacuum is in front of the target. Condensable vapors and high thermal conductivity in the surrounding material facilitate rapid energy transport out of the vapor, which can cause a major reduction in the tamping enhancements. This contained-vaporization process is likely important in laser-medical applications such as, for example, laser angioplasty and laser lithotripsy. The work enhancement by the process is probably advantageous for lithotripsy in providing the necessary energy to break urinary stones; however, for angioplasty, the enhancement may provide little aid in removing plaque but may cause significant damage to arterial walls. If gas could be introduced into the artery preceding irradiation of the plaque, then the enhancements could be avoided. In summary, careful management of the tamping conditions during tissue irradiations in the clinical applications of lasers should lead to significant improvements in the overall desired outcome.

N92-26030# Brown Univ., Providence, RI.
MECHANICAL STIMULATION OF SKELETAL MUSCLE GENERATES LIPID-RELATED SECOND MESSENGERS BY PHOSPHOLIPASE ACTIVATION
HERMAN H. VANDENBURGH, JANET SHANSKY, PATRICIA KARLSCH, and ROSA LOPEZ SOLERSSI 1991 50 p Prepared in cooperation with Miriam Hospital, Providence, RI
(Contract NAG3-411; NIMH 18202)(NASA-CR-190158; NAS 1.26:190158) Avail: NTIS HC/MF A03

Repetitive mechanical stimulation of cultured avian skeletal muscle increases the synthesis of prostaglandins E2 and F2(alpha) which regulate protein turnover rates and muscle cell growth. Mechanical stimulation significantly increases the breakdown rate of (3)H-arachidonic acid, and the rate-limiting precursor of prostaglandin synthesis. Mechanical stimulation also significantly increases (3)H-arachidonic acid labelled diacylglycerol formation.
and intracellular levels of inositol phosphates from myo-2-(3)H inositol labelled phospholipids. Phospholipase A2, phosphatidylinositol-specific phospholipase C (PLC), and phosphatidase D (PLD) are activated by stretch. The lipase inhibitors bromophenacylbromide and RHC80267 together reduce stretch-induced prostaglandin production by 73-83 percent. The stretch-induced increases in prostaglandin production, (3)H-arachidonic acid labelled phospholipid breakdown, and (3)H-arachidonic acid labelled diacylglycerol formation occur independently of cellular electrical activity (tetrodotoxin insensitive), whereas the formation of inositol phosphates from myo-2-(3)H inositol labelled phospholipids are dependent on cellular electrical activity. These results indicate that mechanical stimulation increases the lipid-related second messengers arachidonic acid, diacylglycerol, and prostaglandins through activation of specific phospholipases such as PLA2 and PLD, but not by activation of phosphatidylinositol-specific PLC.

Author

53

BEHAVIORAL SCIENCES

Includes psychological factors; individual and group behavior; crew training and evaluation; and psychiatric research.

A92-37175
TYROSINE AND ITS POTENTIAL USE AS A COUNTERMEASURE TO PERFORMANCE DECREMENT IN MILITARY SUSTAINED OPERATIONS
JOSEPH O. OWASOYO, DAVID F. NERI, and JOHN G. LAMBERTH
Copyright

The biochemistry and physiological role of the amino acid tyrosine in normal and stressful situations such as military sustained operations are reviewed. Sustained operations consist of continuous work periods exceeding 12 h and often involve sleep loss and fatigue. These, in turn, can lead to stress, anxiety, mood deterioration, and performance decrement. Experimental data in the literature suggest that tyrosine, a precursor of the neurotransmitter norepinephrine, may be useful in countering any stress-related performance decrement and mood deterioration in the following way. First, various forms of stress induce brain depletion of catecholamines, especially norepinephrine, in animals. Second, brain norepinephrine levels are closely related to stress-induced performance decrement in animals. Third, the administration of tyrosine may minimize or reverse stress-induced performance decrement by increasing depleted brain norepinephrine levels. The types of performance degradation expected in military sustained operations and the potential physiological role tyrosine might play in improving mood and performance are discussed.

Author

A92-37476
A COMPUTER- AIDED APTITUDE TEST FOR PREDICTING FLIGHT PERFORMANCE OF TRAINEES
KYUNG S. PARK and SANG W. LEE (Korea Advanced Institute of Science and Technology, Seoul, Republic of Korea) Human Factors (ISSN 0018-7208), vol. 34, no. 2, April 1992, p. 189-204. Research sponsored by Korean Air Force. refs
Copyright

Perceptual/psychomotor and cognitive tasks in a computer-aided aptitude test were studied to predict the success of a trainee in flight training. Pilots' tasks were tentatively classified into five categories: tracking, reaction, memory, estimation, and visual scanning. To investigate the performance of a trainee in these categories, 16 single tasks and 10 dual tasks were examined. In the factor analyses three common factors (tracking, reaction, and memory) were meaningfully extracted. To select significant tasks for predicting flight performance the study employs stepwise regression and discriminate analyses. In the regression analyses, memory tasks were most significant in predicting the flight performance of a trainee. In the discriminate analyses, tracking tasks were most significant for distinguishing the passing and failing groups.

Author

A92-38124* National Aeronautics and Space Administration. Ames Research Center, Moffett Field, CA.

Rhesus monkey (Macaca mulatta) complex learning skills reassessed
DAVID A. WASHBURN and DUANE M. RUMBAUGH (Georgia State University, Atlanta) International Journal of Primatology (ISSN 0164-0291), vol. 12, no. 4, 1991, p. 377-388. Research supported by Georgia State University. refs
Copyright

An automated computerized testing facility is employed to study basic learning and transfer in rhesus monkeys including discrimination learning set and meditational learning. The data show higher performance levels than those predicted from other tests that involved compromised learning with analogous conditions. Anomalous transfer-index ratios and positive transfer of learning are identified, and indications of meditational learning strategies are noted. It is suggested that these data are evidence of the effectiveness of the present experimental apparatus for enhancing learning in nonhuman primates.

C.C.S.

A92-38157* National Aeronautics and Space Administration. Ames Research Center, Moffett Field, CA.

Crew factors in the aerospace workplace
Copyright

The effects of technological change in the aerospace workplace on pilot performance are discussed. Attention is given to individual and physiological problems, crew and interpersonal problems, environmental and task problems, organization and management problems, training and intervention problems. A philosophy and conceptual framework for conducting research on these problems are presented and two aerospace studies are examined which investigated: (1) the effect of leader personality on crew effectiveness and (2) the working undersea habitat known as Aquarius.

C.D.

A92-38382
Pilot disorientation as the most frequent cause of fatal, weather-related accidents in UK civil and general aviation
Copyright

An overview is presented that concentrates on pilot disorientation as being the most commonly reported cause of fatal weather-related civil aircraft accidents in the UK. During an analysis of UK general and civil aviation weather-related aircraft accidents, it was found that 39 of the 46 fatal accidents reported during the decade 1977-1986 had at least partly caused by various forms of pilot disorientation in low cloud, fog and/or heavy precipitation. The three factors most commonly involved in major civil aviation accidents are the pilot's visual flight in IFR conditions, crew navigational error, and a pilot's failure to react correctly to new circumstances resulting from air traffic control instructions or advice.

R.E.P.

A92-38626*# National Aeronautics and Space Administration. Ames Research Center, Moffett Field, CA.

Analog environments in space human factors
Copyright

An overview is presented that concentrates on pilot disorientation as being the most commonly reported cause of fatal weather-related civil aircraft accidents in the UK. During an analysis of UK general and civil aviation weather-related aircraft accidents, it was found that 39 of the 46 fatal accidents reported during the decade 1977-1986 had at least partly caused by various forms of pilot disorientation in low cloud, fog and/or heavy precipitation. The three factors most commonly involved in major civil aviation accidents are the pilot's visual flight in IFR conditions, crew navigational error, and a pilot's failure to react correctly to new circumstances resulting from air traffic control instructions or advice.

R.E.P.
53 BEHAVIORAL SCIENCES

A92-38630*# National Aeronautics and Space Administration. Ames Research Center, Moffett Field, CA.

TEAM DYNAMICS IN ISOLATED, CONFINED ENVIRONMENTS - SATURATION DIVERS AND HIGH ALTITUDE CLIMBERS BARBARA G. KANKI (NASA, Ames Research Center, Moffett Field, CA) and STEVEN E. GREGORICH (San Jose State University Foundation, Moffett Field, CA) AIAA, Space Programs and Technologies Conference, Huntsville, AL, Mar. 24-27, 1992. 11 p. refs

(AIAA PAPER 92-1531) Copyright

The effects of leadership dynamics and social organization factors on team performance under conditions of high altitude climbing and deep sea diving are studied. Teams of two to four members that know each other well and have a formal team structure with much sharing of responsibilities are found to do better than military teams with more than four members who do not know each other well and have a formal team structure with highly specialized rules. Professionally guided teams with more than four members, a formally defined team structure, and clearly designated role assignments did better than 'club' teams of more than four members with a fairly informal team structure and little role specialization.

C.D.

A92-38631*# ASSESSING HUMAN RELIABILITY IN SPACE - WHAT IS KNOWN, WHAT STILL IS NEEDED LEE T. OSTROM, DAVID I. GERTMAN, and HAROLD S. BLACKMAN (Idaho National Engineering Laboratory, Idaho Falls) AIAA, Space Programs and Technologies Conference, Huntsville, AL, Mar. 24-27, 1992. 10 p. refs

(AIAA PAPER 92-1532) Copyright

A method for assessing human reliability in space is presented. This method integrates a model of stressors with a known human reliability assessment technique. A model of the types of stressors an astronaut might encounter in long space flight was taken from the experience of crews that have overwintered on Antarctica. The stressors were extreme weather, interpersonal conflicts, lack of communications with friends and family, lack of privacy, supply shortages, cramped quarters, and monotony in the environment. The technique for human error rate prediction (THERP) was selected to model and quantify the human error associated with different mission tasks. The trial application was successful and illustrates the need for a detailed task analysis of a Mars mission, estimates of the human error probabilities (HEPs) from simulator trials or the actual human reliability data from the Apollo missions, and an understanding of how the stressors encountered in space affect these HEPs. A discussion of the appropriateness of existing HRA methods and data is also presented.

Author

A92-38657*# MULTI-CULTURAL CONSIDERATIONS FOR SPACE STATION TRAINING AND OPERATIONS VEIT HANSSEN (Hanssen International, Seabrook, TX), WILLIAM STAYTON (Barrios Technology, Inc., Houston, TX), and MICHAEL WLAKA (Dornier GmbH, Friedrichshafen, Federal Republic of Germany) AIAA, Space Programs and Technologies Conference, Huntsville, AL, Mar. 24-27, 1992. 7 p.

(AIAA PAPER 92-1624) Copyright

The present discussion of Space Station Freedom program-related Extreme Environment Training (EET) gives attention to cultural differences that can potentially create problems during EET, and explores those aspects of identified problems to which trainers can productively respond. These cultural differences cover the fields of native language, nonverbal communication, task-oriented behavior, assertiveness, decision-making processes, scheduling and time-management, patience and tolerance, interpersonal interest, relationship-oriented behavior, respect for foreign cultures, sensitivity to gender roles, and sense of humor. EET training must overcome any barriers to the achievement of team spirit.

O.C.

A92-38698*# National Aeronautics and Space Administration. Lyndon B. Johnson Space Center, Houston, TX.

SPACEFLIGHT TRAINING ISSUES - SHUTTLE VERSUS STATION FRANK E. HUGHES (NASA, Johnson Space Center, Houston, TX) AIAA, Space Programs and Technologies Conference, Huntsville, AL, Mar. 24-27, 1992. 9 p.

(AIAA PAPER 92-1625) Copyright

A comparative study is made of the training practices used for Space Shuttle crews and those projected for the NASA Space Station Freedom, with a view to the relative advantages anticipated for these methods in the fields of long-duration flights, on-orbit construction techniques, on-orbit maintenance requirements, medical expertise, and remote manipulator operations. A Training Operations Subpanel has been established by NASA for the coordination of training method developments across the various elements and phases of the program.

O.C.

A92-38700*# CREW TRAINING FOR PSYCHO-SOCIO ADAPTATION TO LONG DURATION MISSIONS JOHN M. NICHOLAS (Loyola University, Chicago, IL) and LARRY W. PENWELL (Mary Washington College, Fredericksburg, VA) AIAA, Space Programs and Technologies Conference, Huntsville, AL, Mar. 24-27, 1992. 9 p. refs

(AIAA PAPER 92-1627) Copyright

Research from confined, isolated environments indicates that as the duration of space missions increase, the psycho-socio dynamics of crew behavior will become potential threats to crew safety and mission success. There have been few problems in space flight associated with crew psycho-socio behavior, but current and past missions have been of relatively short duration or involved small crews. Future missions will be of longer duration and greater crew size, factors in combination which will likely magnify the effects of confinement and isolation on behavior and performance. This paper describes a model for preparing crews to live and work effectively in long duration space flight. The model addresses salient psychological and social issues identified from research, and is complementary to the current program of astronaut technical training.

Author

A92-38704*# SPACE STATION FREEDOM FLIGHT CREW INTEGRATION GROUND RULES AND CONSTRAINTS DAVID LUBIN (McDonnell Douglas Space Systems Co., Houston, TX), CAROLYNN CONLEY, and JAMES W. BILODEAU (Eagle Engineering, Inc., Houston, TX) AIAA, Space Programs and Technologies Conference, Huntsville, AL, Mar. 24-27, 1992. 12 p. refs

(AIAA PAPER 92-1634) Copyright

A Mission/Function analysis procedure was developed and implemented in order to document the intended use of Space Station Freedom (SSF). The analysis addressed four aspects of current SSF design requirements and assumptions, including: (1) crew functions required for achieving end-to-end SSF mission objectives, (2) crew roles and responsibilities, (3) intended use of different work sites and stations which execute the different classes of crew functions, and (4) whether or not the work sites and stations are equipped adequately to support the intended use as defined by mission scenarios. At the conceptual level, this analysis indicated that the SSF systems and elements have been designed to meet station requirements which are adequate to meet the
test showed that gravitational forces along the Y axis of human to S-87. refs

Author

Contract NAS9-15343; NASW-3651 Tests of the perception and use of linear acceleration sensory information were performed on the science crews of the Spacelab 1 (SL-1) and D-1 missions using linear 'sleds' in-flight (D-1) and pre-post flight. The time delay between the acceleration step stimulus and the subjective response was consistently reduced during weightlessness, but was neither statistically significant nor of functional importance. Increased variability of responses when going from one environment to the other was apparent from measurements on the first day of the mission and in the first days post-flight. Subjective reports of perceived motion during sinusoidal oscillation in weightlessness were qualitatively similar to reports on earth. In a closed-loop motion nulling task, enhanced performance was observed post-flight in all crewmembers tested in the Y or Z axes.

Author

The effect of lateral acceleration (+Gy) on various psychophysiological parameters (including mean heart rate, respiration rate, EEG theta wave, and the total energy of EMG of the forearm muscle group) and the tracking performance of humans was investigated in healthy subjects subjected to rides in a human centrifuge with 12 m radius; the +Gy stress was of trapezoidal profile having plateau levels of +1Gy, +2Gy, and +3Gy, with duration of 120 sec. Results of measurements of psychophysiological responses and of the tracking performance test showed that gravitational forces along the Y axis of human body had considerable effect on the psychophysiological functions and working performance. Possible causes of these effects are discussed. I.S.

A92-39486 FAST PERCEPTUAL LEARNING IN VISUAL HYPERACUITY TOMASO POGGIO (MIT, Cambridge, MA), MANFRED FAHLE (Tuebingen, Universitaet, Federal Republic of Germany), and SHIMON EDELMAN (Weizmann Institute of Science, Rehovot, Israel) Science (ISSN 0036-8075), vol. 256, no. 5059, May 15, 1992, p. 1018-1021. Research supported by U.S. Navy, Hughes Aircraft Corp., DFG, and DARPA. refs

Copyright

In many different spatial discrimination tasks, such as in determining the sign of the offset in a Vernier stimulus, the human visual system exhibits hyperacuity by evaluating spatial relations with the precision of a fraction of a photoreceptor's diameter. It is proposed that this impressive performance depends in part on a fast learning process that uses relatively few examples and that occurs at an early processing stage in the visual pathway. This hypothesis is given support by the demonstration that it is possible to synthesize, from a small number of examples of a given task, a simple network that attains the required performance level. Psychophysical experiments agree with some of the key predictions of the model. In particular, fast stimulus-specific learning is found to take place in the human visual system, and this learning does not transfer between two slightly different hyperacuity tasks.

Author

A92-39953 A GENERAL AVIATION FLIGHT SIMULATION PARADIGM FOR THE 21ST CENTURY DAVID A. LOMBARDO (Bowling Green State University, OH) SAE, Aerospace Technology Conference and Exposition, Long Beach, CA, Sept. 23-26, 1991. 7 p. refs (SAE PAPER 910296) Copyright

This paper outlines a paradigm for future civilian flight training that is divided into two phases of implementation. Phase I relies on a system which combines the emerging technology of the heavily dependent software-driven computer-based flight simulation (CBFS) and the more hardware dependent technology of flight training devices. Current technology exists to implement this initial phase and only awaits manufacturer acceptance of the concept. Phase II outlines the future of flight simulation based on the further refined CBFS system combined with the emerging technology of the highly sophisticated simulation capability of virtual reality. This phase is dependent upon successful continuance of current research and development in the area of virtual reality.

Author

Simulation training of air traffic controllers will undergo major changes in the next few years. Central to the selection of a new ATC simulation training system is the issue of fidelity, both physical and functional. On the one hand, a very high level of fidelity is required to conduct advanced training in simulation labs rather than in the operational environment. However, the cost, particularly in staff resources, of providing and maintaining this level of realism limits its application to earlier phases of training. This paper recommends that the future simulation training system provide levels of fidelity appropriate to the level of training to which it is applied. This could be accomplished by either segmenting the capability of the full training system or through the provision of additional PC-based systems.
The training effectiveness of a procedures trainer based on full-scale computer-drawn artwork with a touch point for each switch, light, gauge, or control has been studied. Flight-naive college students participated in the experiments. Data obtained showed that the imposition of rigid order on procedural tasks aids learning, and practice on the procedures trainer helps to impose this order and procedural transfer to the aircraft.

A92-39957
COMPUTER-BASED PROCEDURAL TRAINING
TOM CORDELL (United Airlines, Chicago, IL) SAE, Aerospace Technology Conference and Exposition, Long Beach, CA, Sept. 23-26, 1991. 8 p. refs (SAE PAPER 912100) Copyright

Changing needs in pilot training for Advanced Technology (ADVTech) aircraft are examined. The importance of line-oriented flight training and crew resource management in that training is addressed. The role of training centers, provided for under the FAA's Advanced Qualification Program, are discussed. C.D.

A92-40751
USE OF TRAINING SIMULATORS FOR DIAGNOSING FUNCTIONAL DISORDERS AND FOR RESTORATION OF PILOTS' WORK CAPACITY [ISPOZ'OVANIE TRENAZHEROV DLIA DIAGNOSTIKI FUNKTSIONAL'NYKH RASTROISTV I VOSSTANOVLENIIA PROFESSIONAL'NOI RABOTOSPOSOBNOSTI]
V. A. BODROV (Rossiiskaia Akademiia Nauk, Institut Psikhologii, Moscow, Russia) Fiziologiiia Cheloveka (ISSN 0131-1646), vol. 18, no. 1, Jan.-Feb. 1992, p. 33-41. In Russian. refs Copyright

The expediency of using training simulators for diagnosing in pilots a number of functional disorders of the nervous and cardiovascular systems at their prenosologic stages (i.e., preliminary stages devoid of definite clinical symptoms) was investigated (together with the feasibility of using simulators for rehabilitation purposes) using the results of physiological measurements and psychoanalyses. The paper describes the occupational load tests recommended for diagnostic purposes and a program of rehabilitation exercises. Results of using these regimens are presented. I.S.

A92-40752
THE CHARACTERISTICS OF ADAPTATION OF OPERATORS TO SLEEP DEPRIVATION - THE ANALYSIS OF THE DYNAMICS OF THE BRAIN BIOPOTENTIALS AND OF BEHAVIORAL PARAMETERS [OSOBNOSTI ADAPTATSII OPERATOROV K ASOMNI - ANALIZ DINAMIKI BIOPOTENTSIALOV MOZGA I POVEDENCHESKIKH POKAZATELEI]

Results are presented of an experimental study on the adaptability of human operators to a regimen of continuous 2-3-day-long activity without sleep. The experimental observations included measurements of changes in the efficiency of detecting a sound signal against a background of continuous noise, in the characteristics of the EEG spectrum, and in evoked potentials. Results identified the mechanism of the 'spotty memory' phenomenon, when the efficiency of signal recognition falls abruptly forming a gap in the detection signals, due to the destruction of the interaction between the activating, cognitive, and regulatory mechanisms of the sensory process.

N92-25372# National Space Development Agency, Tokyo (Japan). Space Station Program Dept.
PAYLOAD CREW TRAINING IN FUWATTO 1992 (FIRST MATERIAL PROCESSING TEST) PROJECT

The plan and the status of FUWATTO'92 payload crew training for Japanese payload specialist and NASA mission specialist is reported. NASA (National Space Development Agency of Japan) is preparing for the FUWATTO'92, FMPT (First Material Processing Test) planned in September, 1992 in which the space experiments will be conducted on the Space Shuttle and Spacelab. Dr. Mamoru Mouri, Japanese payload specialist, will operate the space experiments on board.

A92-39956
SIMULATOR SCENE DETAIL AND VISUAL AUGMENTATION GUIDANCE IN LANDING TRAINING FOR BEGINNING PILOTS

Beginning flight students were taught landings in a flight simulator with a visual landing display to examine the effects of scene detail, visual augmented guidance, and the number of landing training trials. Transfer as assessed in a criterion simulator configuration showed advantages for larger numbers of training trials, visual augmented guidance, and moderate scene detail. Transfer of training to the aircraft showed advantages for low-scene detail over moderate-scene detail for the number of landing training sessions. Subjects who received equal simulator time practicing an efficient pattern (control group) performed better than the moderate-scene detail group on student assisted landings and number of landing training sessions.

A92-39955
WHY SIMULATORS ARE MORE DIFFICULT TO FLY THAN AIRCRAFT
AMNON KATZ (Alabama, University, Tuscaloosa) SAE, Aerospace Technology Conference and Exposition, Long Beach, CA, Sept. 23-26, 1991. 8 p. refs (SAE PAPER 912098) Copyright

Simulators are typically more difficult to fly than the aircraft they represent. The factors involved include limited field of view, degraded visual acuity, scene distortion, absence of depth perception, attenuation or absence of motion cues, and response delays that are often inconsistent among visual, motion, and instruments. It is suggested that for most training tasks the added difficulty because of these factors is not a drawback, and should not be alleviated at the expense of dynamic fidelity. Author

N92-25732# Georgia Inst. of Tech., Atlanta.
REQUIREMENTS FOR PSYCHOLOGICAL MODELS TO SUPPORT DESIGN: TOWARDS ECOLOGICAL TASK ANALYSIS
ALEX KIRILK 1991 43 p (Contract NAG2-656)

(NASA-CR-190334; NAS 1.26:190334) Avai: NTIS HC/MF A06

Cognitive engineering is largely concerned with creating environmental designs to support skillful and effective human activity. A set of necessary conditions are proposed for psychological models capable of supporting this enterprise. An analysis of the psychological nature of the design product is used to identify a set of constraints that models must meet if they can usefully guide design. It is concluded that cognitive engineering requires models with resources for describing the integrated human-environment system, and that these models must be capable of describing the activities underlying fluent and effective
interaction. These features are required in order to be able to predict the cognitive activity that will be required given various design concepts, and to design systems that promote the acquisition of fluent, skilled behavior. These necessary conditions suggest that an ecological approach can provide valuable resources for psychological modeling to support design. Relying heavily on concepts from Brunswik's and Gibson's ecological theories, ecological task analysis is proposed as a framework in which to predict the types of cognitive activity required to achieve productive behavior, and to suggest how interfaces can be manipulated to alleviate certain types of cognitive demands. The framework is described in terms, and illustrated with an example from the previous research on modeling skilled human-environment interaction.

A92-26023# Naval Postgraduate School, Monterey, CA.
FINITE MEMORY MODEL FOR HAPTIC RECOGNITION M.S.
Thesis
PHILIP G. BEIERL Dec. 1991 81 p
(AD-A245342) Avail: NTIS HC/MF A05
This study attempts to model the process by which humans identify remote objects using a force reflecting telemanipulator in order to apply this understanding to future ROV designs employing the concept of telepresence. A theoretical model is proposed in which object identification is primarily independent upon feature identification and capacity to remember the sequence of features. A computer simulation of this model is constructed and used to produce theoretical object identification performance which can be compared to actual human performance. The capacity of short term memory of a sequence of features is also studied in a laboratory using a telemanipulator.

A92-36535
THE DESIGN PRINCIPLES AND FUNCTIONING OF AN AUTOMATED INFORMATION SYSTEM FOR ESTIMATING THE PRESHIFT WORK CAPACITY OF OPERATORS [PRINTISPI SOZDAIJA I FUNKTSIONIROVANII AVTOMATIZIROVANNII INFORMATSIONNOI SISTEMY PREDMSERNOI OTSENKI RABOTOSPOSOBNOSTI OPERATOROV]
A. IU. BUROV (VNII Tekhnicheskoi Estetiki, Kiev, Ukraine) Kibernetika i Vychislitel'naa Tekhnika (ISSN 0454-9910), no. 90, 1991, p. 29-33. In Russian. refs
Copyright

A92-37170
FLUID-ELECTROLYTE LOSSES IN UNIFORMS DURING PROLONGED EXERCISE AT 30 C
LAWRENCE E. ARMSTRONG, PATRICIA C. SZYK, JANE P. DE LUCA, INGRID V. SILS, AND ROGER W. HUBBARD (U.S. Army Research Institute of Environmental Medicine, Natick, MA; Connecticut, University, Storrs) Aviation, Space, and Environmental Medicine (ISSN 0095-0562), vol. 63, no. 5, May 1992, p. 351-355. refs
Copyright

The effects of several uniform configurations on fluid and electrolyte losses in a hot environment (30 C) were investigated in healthy humans performing 6-hr-long intermittent treadmill exercise while wearing these uniforms. Three types of uniforms were tested: the temperate battle dress uniform (BDU), two variants (C and F) of full military oriented protective posture (MOPP IV), and MOPP IV without mask or hood (M). Measurements of fluid and electrolyte losses parameters showed that both C and F MOPP IV configurations resulted in significantly greater fluid losses and physiological strain than did BDU and M. The total losses of all electrolytes, on the other hand, showed no differences due to the type of uniform.

A92-38133* National Aeronautics and Space Administration. John F. Kennedy Space Center, Cocoa Beach, FL.
CONTROL OF WATER AND NUTRIENTS USING A POROUS TUBE - A METHOD FOR GROWING PLANTS IN SPACE
THOMAS W. DRESCHEL and JOHN C. SAGER (Bionetics Corp.; NASA, Kennedy Space Center, Cocoa Beach, FL) HortScience (ISSN 0018-5345), vol. 24, no. 6, Dec. 1989, p. 944-947. refs (Contract NAS10-10285)
Copyright

A plant nutrient delivery system that uses a microporous, hydrophilic tube was developed with potential application for crop production in the microgravity of space. The tube contains a nutrient solution and delivers it to the roots. Pumps attached to the tubing create a very small suction that holds the solution within the tube. This system was used to grow wheat for 107 d in a controlled environment at suction of 0.40, 1.48, or 2.58 kPa. The water absorbed through the pores of the tube by baby diaper sections decreased as suction increased. Correspondingly, final plant biomass, seed number, and spikelet number also tended to decrease as suction increased. The reduced yield at higher suction suggests that the plants experienced water stress, although all suction were below those typical of soils at field capacity.

A92-38138* National Aeronautics and Space Administration.
Lyndon B. Johnson Space Center, Houston, TX.
HELEN W. LANE (NASA, Johnson Space Center, Houston, TX) Nutrition Reviews (ISSN 0029-6643), vol. 50, no. 1, Jan. 1992, p. 3-6. refs
Copyright

Space flight exposes humans to a hostile, stressful environment as well as to the weightlessness associated with microgravity. The stresses of space travel affect nutritional balance, as evidenced by interrelated changes in body composition, energy utilization, and endocrine function. The limited data gathered thus far suggest that space flight incurs acute decreases in fluid mass and chronic, ongoing changes in muscle and bone mass. Concurrent with these changes is an increase in energy used per unit body mass. Other preliminary data suggest that bed rest and space flight may incur increased sensitivity to insulin. Further research is needed to determine the human energy and protein requirements for space, as well as a means of quantifying changes in body composition during extended-duration space flight.

A92-38156 National Aeronautics and Space Administration.
Lyndon B. Johnson Space Center, Houston, TX.
LIGNIFICATION IN YOUNG PLANT SEEDLINGS GROWN ON EARTH AND ABOARD THE SPACE SHUTTLE
Copyright

The Space Shuttle era has provided an opportunity for...
investigators to conduct experiments in a microgravity environment. Two Shuttle flights, STS-3 and STS-51F, each contained an experiment designed principally to determine whether young plant seedlings exposed to microgravity had reduced lignin content in comparison to seedlings grown at one gravity. Three different plant species, pine, oats, and mung beans, were exposed for eight days to the microgravity environment of the Shuttle. The lignin content of in-flight seedlings was less than the control seedlings in all seven sets of seedlings included in these two experiments. In five sets of seedlings, the reduction in lignin content in flight seedlings ranged from 6 to 24 percent and was statistically significant. In addition, the activity of two enzymes involved in lignin synthesis, phenylalanine ammonia lyase and peroxidase, were significantly reduced in pine seedlings. It was therefore concluded that microgravity, as perceived by young plant seedings, results in reduced lignin synthesis. Author

A92-38161* National Aeronautics and Space Administration. John F. Kennedy Space Center, Cocoa Beach, FL. A PROTOTYPE CLOSED AQUACULTURE SYSTEM FOR CONTROLLED ECOLOGICAL LIFE SUPPORT APPLICATIONS. T. W. DRESCHEL, C. F. BAUER, M. S. KOLLER (Bionetics Corp., Cocoa Beach, FL), and J. C. SAGER (NASA, Kennedy Space Center, Cocoa Beach, FL) Aquaculture Symposium, Cornell University, Ithaca, NY, Apr. 4-6, 1991, Paper. 10 p. refs (Contract NAS10-11624) Copyright

A closed aquaculture system has been proposed as a possible component of a life support system for extended duration space exploration. Atmospheric and hydrologic closure of an aquaculture system are necessary for this application and information on mass flows through such a system is important to integrating it as part of life support. A closed aquaculture system has been constructed and an extensive computer monitoring and control system and sampling protocol developed to provide this information. Preliminary tests indicate that the system has a negligible leak rate and can provide oxygen and carbon dioxide mass flow information. Author

The problem of displaying telerobotic sensor information at operator workstations to enhance telepresence is examined. The paper addresses the challenges associated with displaying data from remote tasks and lists the requirements of operator-friendly data displays. The integration of sensors on a telerobotics device is then described along with the characteristics of the data display employed. A force-torque sensor is employed on a remote manipulator arm, and the Graphical Kernel System is used to display the force and torque data pictorially in one of four graphic formats. The data are presented as a bar chart, numerical values, vector arrows, and/or slave-wrist orientation descriptions. It is concluded that the operator should eventually be removed from the control loop by reducing operator reliance on sensory feedback to control tasks. Graphic formats that are more user-friendly such as video images and voice input can be employed to ease existing telerobotic tasks.

The telerobotic concepts as presently developed for a space robot technology experiment ROTEX to fly with the next spacelab mission D2 in 1993 are outlined; the robot is supposed to work in an autonomous mode, teleoperated by astronauts, and teleoperated from ground. One of its key hardware features is a recently developed multisensory gripper and a high-weight robot concept with new joint drives and grid-structure composite arms for the astronaut training on ground. Sensory feedback schemes and man-machine interface concepts using a 6 DOF control ball and stereo imaging is explained. Sensory simulation on ground using advanced stereo graphics is supposed to predict the sensor-based path refinement on board, while real-time fusion of stereo images and lasercan information helps to predict the motion of floating objects to be grasped. Author

A92-38501*# National Aeronautics and Space Administration. Lyndon B. Johnson Space Center, Houston, TX. DEVELOPMENT OF TASK NETWORK MODELS OF HUMAN PERFORMANCE IN MICROGRAVITY MANUEL F. DIAZ (Lockheed Engineering and Sciences Co., Houston, TX) and SUSAN ADAM (NASA, Johnson Space Center, Houston, TX) AIAA, Space Programs and Technologies Conference, Huntsville, AL, Mar. 24-27, 1992. 8 p. refs (AIAA PAPER 92-1311)

This paper discusses the utility of task-network modeling for quantifying human performance variability in microgravity. The data are gathered for: (1) improving current methodologies for assessing human performance and workload in the operational space environment; (2) developing tools for assessing alternative system designs; and (3) developing an integrated set of methodologies for the evaluation of performance degradation during extended duration spaceflight. The evaluation entailed an analysis of the Remote Manipulator System payload-grapple task performed on many shuttle missions. Task-network modeling can be used as a tool for assessing and enhancing human performance in man-machine systems, particularly for modeling long-duration manned spaceflight. Task-network modeling can be directed toward improving system efficiency by increasing the understanding of basic capabilities of the human component in the system and the factors that influence these capabilities. Author

An interactive graphical planning system has been developed, which allows a human operator to design and check traversals (cross-country paths) for a planetary rover vehicle. The display provides the operator with necessary information about the terrain and indicates violations of operational or dynamic constraints on the rover. The operator can select different kinds of two-dimensional maps as well as a perspective view of the rover environment to plan the traversals. An experiment has been carried out to determine the ability of the operator to estimate the rover attitude in a large variety of situations. It turned out that the estimation error is highly dependent on the rover attitude itself. This result can be used to determine a vertical scale for the perspective representation of the terrain which avoids an underestimation of dangerous rover attitudes.

A92-38503# neutral buoyancy and virtual environment experiments in teleoperated and autonomous control of space robots HAROLD L. ALEXANDER (MIT, Cambridge, MA) AIAA, Space Programs and Technologies Conference, Huntsville, AL, Mar. 24-27, 1992. 7 p. refs (AIAA PAPER 92-1316) Copyright

Extravehicular activity is becoming a powerful limiting factor in the exploration and exploitation of space. Free-flying robots can

282
be controlled from the ground, from space, and automatically in order to perform many of the tasks now envisioned for astronauts. This will free astronauts for their primary scientific and observational functions, and substantially reduce the hazards and cost associated with space activities. This paper reviews the technologies necessary for developing effective space robots, as well as efforts in this direction at MIT's Laboratory for Space Teleoperation and Robotics. Author

To increase quantified information about the effectiveness and subjective workload of force information relayed through manipulator input control devices, a space related task was performed by eight subjects with kinesthetic force feedback and/or local force accommodation through three different input control devices (i.e., hand controllers) operating in rate control mode. Task completion time, manipulator work, and subjective responses were measured. Results indicated a difference among the hand controllers. For the Honeywell six-degree-of-freedom hand controller, the overall task completion times were shortest, the amount of work exerted was the least, and was the most preferred by test subjects. Neither force accommodation with or without reflection resulted in shorter task completion times or reduced work although those conditions were better than no force information for some aspects. Comparisons of results from previous studies are discussed. Author

A method for telesoperator control which offers advantages over previous techniques is demonstrated. In the new method, a fundamental variable exchanged between the master and slave is the rate of change in position and force. An inherent capability of the control scheme is demonstrated for transition between control methods based on environmental constraints in a manner natural to the operator. Specifically, rate control of a manipulator makes the transition to force-force control when a force-reflecting hand controller is used with a local force accommodation algorithm running on the remote manipulator. The transition from rate to force occurs when contact is made with the environment. C.D.

A92-38581*# National Aeronautics and Space Administration, Washington, DC. GRASP FORCE CONTROL IN TELEMANIPULATION STEVEN F. WIKER and NEIL A. DUFFIE (Wisconsin, University, Madison) AIAA, Space Programs and Technologies Conference, Huntsville, AL, Mar. 24-27, 1992. 13 p. Research supported by University of Wisconsin. refs (Contract NASA-W-975) (AIAA PAPER 92-1453) Copyright

The paper presents two experiments which focus upon the issue of grasp force control in telemanipulation. The first experiment examines the ability to control and stabilize master-controller grasp force during a 30-s compensatory tracking task under different levels of master controller digit mass, friction, and backlash. The second experiment explores the potential for substituting tactile feedback in lieu of direct force-feedback to gage and control remote grasp force. Results show that subjects were better able to control force when mass and friction levels were increased. Even when perceptual gains between tactile and direct force feedback displays were matched, force reflection produced better grasp control. The lack of backlash effects and improvements in performance with direct force reflection in comparison to tactile feedback are attributable to reflexive short-loop adjustments of grasp tension afforded by the muscle's length-tension control system. The criterion of acceptable operator performance, dependent upon both the quality of the transmission of control commands and feedback, and the response of the remote device, is discussed. Author

A92-38622# WORKSTATIONS FOR THE ON-ORBIT CREW IN SPACE STATION FREEDOM GARY GERHARDT, DON CASTILLO, and ROBERT L. WILLIAMS (NASA, Langley Research Center, Hampton, VA) AIAA, Space Programs and Technologies Conference, Huntsville, AL, Mar. 24-27, 1992. 6 p. refs (AIAA PAPER 92-1522) Copyright

The operations of Space Station Freedom will be controlled from on-orbit workstations constituting the Station's nerve center; "human-engineering" flight crew integration (FCI) requirements are rendered especially important by the life- and mission-critical functions conducted by the crew at these locations over the 30-year service life of the Station. FCI design efforts must define workstation crew requirements regarding crew operations, displays and controls, overall configuration, and lighting. Workstation types encompass command/control, glass-enclosed 'cupolas' (for views of manipulators and EVAs), laboratory controllers, and crew health care sites. O.C.

Given the command and control architecture of Space Station Freedom (SSF) and the tailored nature of its Data Management System's (OMS) User Support Environment (USE) graphical user interface, constraints have been placed on the design and flexibility of the on-board displays. This paper will review the work done to provide a useable and acceptable human-computer interface for command and control on board SSF. Discussion will focus on the development tools, the current station architecture and the constraints that those impart to the on-board displays. Current design efforts will be described in detail with emphasis on the effort to provide displays that are both feasible within the program and acceptable to industry human-computer interface standards. Author

Acceleration control of robotic devices can provide improvements to many space-based operations using flexible manipulators and to ground-based operations requiring better precision and efficiency than current industrial robots can provide. This paper reports on a preliminary study of acceleration measurement on robotic motion during parabolic flights on the NASA KC-135 and a parallel study of accelerations with and without
ECLSS MODELING OF EXERCISING CREWMEMBERS ABOARD SPACE STATION FREEDOM
DOUGLAS J. BUTLER (Eagle Technical Services, Inc., Houston, TX) and MO SAUDI (McDonnell Douglas Space Systems Co., Houston, TX) AIAA, Space Programs and Technologies Conference, Huntsville, AL, Mar. 24-27, 1992. 10 p. refs (AIAA PAPER 92-1604) Copyright

Through the use of a two-node thermal man model, the environmental impacts and resources necessary to support an exercising crewmember aboard SSF are examined. The increase in humidity, carbon dioxide production, oxygen consumption, and metabolic latent and sensible heat loads which occur from exercise in an enclosed environment are simulated within the SSF ECLSS performance envelope. In an effort to benchmark model performance, model generated output has been compared with data recorded during the Preliminary ECF Ventilation Test. Results of this study have been used to support development of a preliminary ventilation scheme for the ECF of the Crew Health Care System (CHeCS) and will be used to derive daily metabolic requirements for exercising crewmembers aboard SSF.

Author

A92-38686# MICROBIAL SCREENING OF WATER SUPPLIES FOR SPACEFLIGHT MISSIONS
GORDON SNYDER, JARROD O'LEARY, BRUCE MOUNT, and BARRY H. PYLE (Perkin-Elmer Corp., Pomona, CA) AIAA, Space Programs and Technologies Conference, Huntsville, AL, Mar. 24-27, 1992. 6 p. refs (AIAA PAPER 92-1605) Copyright

The need to monitor water supplies for microbial contamination depends upon the final use requirements of the water. These requirements can be different for injectable, laboratory, hygiene, and potable water supplies. The design of a screening technique capable of automation and use in microgravity is presented. Culture chambers are continuously monitored for changes resulting from metabolically-produced times to detection can be correlated with initial CFU concentrations. The computer monitors the growth of various microorganisms in different media and various culture conditions. These data illustrate graphically and statistically changes or differences in resultant growth responses. The effects of iodine or other biocides on viability of microorganisms, recovery time, and growth rate changes can be determined.

Author

A92-38684# CHEMICAL AND MICROBIOLOGICAL EXPERIMENTATION FOR DEVELOPMENT OF ENVIRONMENTAL CONTROL AND LIFE SUPPORT SYSTEMS

Microbiological techniques are under study with a view to the identification of viable microorganisms in liquid cultures, improve the identification of stressed organisms, and determine the biocidal activity of iodine and other chemicals on isolates from recycled water. A quality-assurance program has been implemented to validate data employed in making decisions concerning engineering and human health and safety. Analytical laboratory refinements will strongly aid the development of environmental control and life-support systems.

Author

A92-38688# 90-DAY CABIN RUN - LESSONS LEARNED AND RECOMMENDATIONS FOR FUTURE MANNED CLOSED ENVIRONMENT TESTS

The purpose of this paper is to revisit and elucidate relevant data from a series of chamber tests employing closed-loop life support systems for an isolated four-person crew that were conducted at McDonnell Douglas Astronautics Company (MDAC) from 1984 to 1970. The test series culminated in a 90-day test in the Space Station Simulator (SSS). These tests, thought to pioneer human-rated chamber testing and related crew selection, management, and operational techniques, can provide significant information to support the expected revival of this test regimen under the Space Exploration Initiative. The results from the 90-day
test will be examined; share, via the references, some of the available body of reports and data; and suggest pitfalls to avoid and make recommendations for facility design, test organization, crew and staff selection, and operations based upon these experiences.

Author

A92-38705* # National Aeronautics and Space Administration. Marshall Space Flight Center, Huntsville, AL.

CREW CONSIDERATIONS IN THE DESIGN FOR SPACE STATION FREEDOM MODULES ON-ORBIT MAINTENANCE

The paper presents an approach to the maintenance process currently planned for the Space Station Freedom modules. In particular, it describes the planned crew interfaces with maintenance items, and the anticipated implications for the crew in performing the interior and exterior maintenance of modules developed by U.S., ESA, and NASDA. Special consideration is given to the maintenance requirements, allocations, and approach: the maintenance design; the Maintenance Workstation; the robotic mechanisms; and the development of maintenance techniques.

I.S.

A92-38735* # Jet Propulsion Lab., California Inst. of Tech., Pasadena.

DUAL-ARM SUPERVISORY AND SHARED CONTROL SPACE SERVICING TASK EXPERIMENTS

PAUL G. BACKES (JPL, Pasadena, CA) AIAA, Space Programs and Technologies Conference, Huntsville, AL, Mar. 24-27, 1992. 18 p. refs (AIAA PAPER 92-1677) Copyright

A dual-arm task execution primitive has been implemented for cooperative dual-arm telerobotic task execution utilizing multiple sensors concurrently. The primitive has been integrated into a telerobot task execution system and can be called by a task planning system for execution of tasks requiring dual-arm sensor based motion, e.g., force control, teleoperation, and shared control. The primitive has a large input parameter set which is used to specify the desired behavior of the motion. Move-squeeze decomposition is utilized to decompose forces sensed at the wrists of the two manipulators into forces in the move subspace, which cause system motion, and forces in the squeeze subspaces, which cause internal forces. The move and squeeze forces are then separately controlled. Several space servicing tasks utilizing the cooperative dual-arm control capability are described, and experimental results from the tasks are given. The supervisory and shared control tasks include capture of a rotating satellite, orbital replacement unit changeout, fluid coupler seating and locking, and contour following.

Author

A92-38196* National Aeronautics and Space Administration. Ames Research Center, Moffett Field, CA.

DEVELOPMENT OF EXERCISE DEVICES TO MINIMIZE MUSCULOSKELETAL AND Cardiovascular DECONDITIONING IN MICROGRAVITY

The paper describes three exercise devices, developed at the NASA-Ames Research Center, for maintaining musculoskeletal and cardiovascular fitness in astronauts during extended space flights. These devices represent the following exercise concepts: (1) exercise against LBNP, (2) instrumented dynamic interlimb resistance, and (3) multiple resistive exercise. The three devices complement each other to provide the aerobic and strength training exercises for different situations. All three devices permit eccentric, concentric, and isometric contractions for a variety of exercises.

I.S.

A92-39306 FLIGHT SAFETY - HUMAN FACTORS, THE KEY TO PROGRESS

Copyright

It is noted that although aviation is basically a technological activity, present safety levels can be enhanced most effectively through improved attention to the human component in the system. This attention must be applied by increasing an understanding of the characteristics of this human element, its capabilities and limitations at all levels in the industry, including management. Attention is given to the working interrelationship in the cockpit between hardware, software and 'liveware'(the human component).

R.E.P.

A92-39504* National Aeronautics and Space Administration. Ames Research Center, Moffett Field, CA.

HUMAN FACTORS ISSUES FOR INTERSTELLAR SPACECRAFT

Copyright

Developments in research on space human factors are reviewed in the context of a self-sustaining interstellar spacecraft based on the notion of traveling space settlements. Assumptions about interstellar travel are set forth addressing costs, mission durations, and the need for multigenerational space colonies. The model of human motivation by Maslow (1970) is examined and directly related to the design of space habitat architecture. Human-factors and technology issues encompass the human-machine interface, crew selection and training, and the development of spacecraft infrastructure during transtellar flight. A scenario for feasible instellar travel is based on a speed of 0.5c, a timeframe of about 100 yr, and an expandable multigenerational crew of about 100 members. Crew training is identified as a critical human-factors issue requiring the development of perceptual and cognitive aids such as expert systems and virtual reality.

C.C.S.

A92-39509 AUTONOMOUS ROBOTIC SYSTEMS FOR SEI TASKS

Copyright

The development of robotic sensors and displays for the Space Exploration Initiative (SEI) is described in which autonomous designs with closed control loops are incorporated. The designs are described in terms of the problem of the time delays inherent in space travel which give rise to system instability. A general control algorithm is developed for telerobotic control-system architectures that is based on a six-level hierarchy, and the implementation of the algorithm is shown schematically. The architecture is called Nasrem and its implementation can facilitate the transfer and adaptation of intelligence/autonomy from one machine to another and provide the hooks for the high-level executive to control several machines in a complex operation. The architecture is shown to have the potential for developing autonomous robotic systems so that the human operator is removed from the lower control levels required for SEI missions such as running a lunar base.

C.C.S.
A92-39539* National Aeronautics and Space Administration. Langley Research Center, Hampton, VA.

UTILIZATION OF COMMON PRESSURIZED MODULES ON THE SPACE STATION FREEDOM

Copyright

During the preliminary design review of Space Station Freedom elements and sub-systems, it was shown that reductions of cost, weight, and on-orbit integration and verification would be necessary in order to meet program constraints, particularly nominal Orbiter payload launch capability. At that time, the Baseline station consisted of four resource nodes and two 44 ft modules. In this study, the viability of a common module which maintains crew and payload accommodation is assessed. The size, transportation, and orientation of modules and the accommodation of system racks and user experiments are considered and compared to baseline. Based on available weight estimates, a module pattern comprising four of six 28 ft common elements with three radial and two end ports is shown to be nearly optimal. Advantageous characteristics include a reduction in assembly flights, dual egress from all elements, logical functional allocation, no adverse impacts to international partners, favorable airlock, cupola, ACRV (Assured Crew Return Vehicle), and logistics module accommodation, and desirable flight attitude and control characteristics.

Author

A92-39540

A ROBOT BASED CONCEPT FOR AUTOMATION AND SERVICING OF SCIENTIFIC PAYLOADS ABOARD ORBITING LABORATORIES

Copyright

A robotic system called the Equipment Manipulation and Transportation System (EMTS) is described in terms of its use for scientific-payload handling and logistics functions. Proposed applications of the EMTS are listed including use in the free-flying phase of Columbus laboratory, servicing the Columbus Free Flyer, and implementation in the Columbus Attached Pressurized Module. The performance and budgets for the EMTS are listed, and the mechanical architecture is described including elements such as the mobile base assembly, the arm assemblies, the arm-control unit, and the robot-camera unit. An automation and robotics testbed for the Columbus program is outlined that is designed to validate the robot concepts by remotely controlling the manipulation of four racks with scientific payloads. The EMTS can be used to support manned payload-operations scenarios for the Columbus Free Flyer as well as the Attached Laboratory.

C.C.S.

A92-39580* National Aeronautics and Space Administration. Ames Research Center, Moffett Field, CA.

SPACE SUITS AND LIFE SUPPORT SYSTEMS FOR THE EXPLORATION OF MARS

Copyright

The requirements and technologies needed for space suits to be used for the manned exploration of Mars are examined. Alternative concepts are proposed for both the space suit and the portable life support system (collectively called the Extravehicular Mobility Unit, or EMU) needed for Mars exploration. EMU system requirements are outlined. It is pointed out that the most fundamental difference between a Mars EMU and those that preceded it is that the design of a Mars EMU must be driven by science and permanent habitability requirements, while all prior EMU designs have been driven by engineering requirements. The EMU weight issues are discussed, and the system mass and mobility concerns are assessed along with the backpack-to-body-weight ratio. The challenges of thermal and cosmic radiation protection, micrometeorite protection, and EMU system and crew heat rejection are dealt with briefly, as well as the physiological issues of pressure regulation and bacterial or contaminant isolation. A mathematical model is then presented for an evaluation of candidate EMU designs and for concept optimization and selection. Lead technology issues are also discussed.

S.A.V.

A92-39749* National Aeronautics and Space Administration. Goddard Space Flight Center, Greenbelt, MD.

A KINEMATIC ANALYSIS OF THE MODIFIED FLIGHT TELEROBOTIC SERVICER MANIPULATOR SYSTEM

CARL CRANE (Florida, University, Gainesville), TIM CARNAHAN (NASA, Goddard Space Flight Center, Greenbelt, MD), and JOSEPH DUFFY (Florida, University, Gainesville) Journal of Robotic Systems (ISSN 0741-2223), vol. 9, no. 4, June 1992, p. 461-480. refs

Copyright

A reverse kinematic analysis is presented of a six-DOF subchain of a modified seven-DOF flight telerobotic manipulator system. The six-DOF subchain is designated as a TR-RT chain, which describes the sequence of manipulator joints beginning with the first grounded hook joint (universal joint) T, where the sequence R-R designates a pair of revolute joints with parallel axes. At the outset, it had been thought that the reverse kinematic analysis would be similar to a TTT manipulator previously analyzed, in which the third and fourth joints intersected at a finite point. However, this is shown not the case, and a 16th-degree tan-half-angle polynomial is derived for the TR-RT manipulator.

S.A.V.

FORCE-REFLECTION AND SHARED COMPLIANT CONTROL IN OPERATING TELEROBOTIC MANIPULATORS WITH TIME DELAY

WON S. KIM (JPL, Pasadena, CA), BLAKE HANNAFORD (Washington, University, Seattle), and ANTAL K. BEJCZY (JPL, Pasadena, CA) IEEE Transactions on Robotics and Automation (ISSN 1042-298X), vol. 8, no. 2, April 1992, p. 176-185. refs

Copyright

The performance of an advanced telerobotic system in the presence of a wide range of time delays between a master control station and a slave robot is quantified. The contemplated applications include multiple satellite links to LEO, geosynchronous operation, spacecraft local area networks, and general-purpose computer-based short-distance designs. The results of high-precision peg-in-hole tasks performed by six test operators indicate that task performance decreased linearly with introduced time delays for both kinesthetic force feedback (KFF) and shared compliant control (SCC). The rate of this decrease was substantially improved with SCC compared to KFF. Task performance at delays above 1 s was not possible using KFF. SCC enabled task performance for such delays, which are realistic values for ground-controlled remote manipulation of telerobots in space.

C.D.

A92-40438

PROBLEMS EXPERIENCED BY MAN WHEN CONSTRUCTING GIANT STRUCTURES IN SPACE

Challenges that will be faced by astronauts during construction and servicing of giant structures in space are discussed. The role
of the space suit in coping with these challenges is addressed. The possible use of robots as a substitute for humans in some activities is considered. C.D.

A92-40942
LIVING AND WORKING IN SPACE - HUMAN BEHAVIOR, CULTURE AND ORGANIZATION

The behavioral science aspects of living and working in space are examined. The importance of a space ethos and synergy to extraterrestrial expansion is emphasized, and the broader human dimensions of space exploration and development beyond scientific and engineering considerations are addressed. The emergence of a unique space culture in the orbital environment is examined, taking into consideration the anthropological, sociological, psychological, and living systems aspects. The impact of organizational culture on space agencies and the aerospace industry is discussed, as is the influence of space technology and habitation on earth's population and cultures. A strategy for a space personnel deployment system is presented, and NASA innovations in space management are reviewed. The challenges created by the industrialization of space are addressed, and space habitation plans from NASA and ESA are reviewed along with the SEI and its implications. C.D.

N92-24293#
California Univ., Berkeley, Lawrence Berkeley Lab.
AIR EXCHANGE EFFECTIVENESS OF CONVENTIONAL AND TASK VENTILATION FOR OFFICES
(Contract DE-AC03-76SF-00098) (DE92-008291; LBL-31652; CONF-910979-1) Avail: NTIS HC/MF A03

Air quality and comfort complaints within large buildings are often attributed to air distribution problems. We define three air exchange effectiveness parameters related to air distribution. The first two indicate the indoor air flow pattern (i.e., the extent of short circuiting, mixing, or displacement flow) for an entire building or region. The third parameter is most useful for assessments of the spatial variability of ventilation. We also define the air diffusion effectiveness which indicates the air flow pattern within specific rooms or sections of buildings. The results of measurements of these parameters in U.S. office buildings by the authors and other researchers are reviewed. Almost all measurements indicate very limited short circuiting or displacement flow between locations of air supply and removal. However, a moderate degree of short circuiting is evident from a few measurements in rooms with heated supply air. The results of laboratory-based measurements by the authors are consistent with the field data. Our measurements in office buildings do indicate that ventilation rates can vary substantially between indoor locations, probably due to variation in air supply rates between locations rather than variation in the indoor air flow patterns. One possible method of improving air distribution is to employ task ventilation with air supplied closer to the occupant's breathing zone. We have evaluated two task ventilation systems in a laboratory setting. During most operating conditions, these systems did not provide a region of substantially increased ventilation where occupants breathe. However, both systems are capable of providing substantially enhanced ventilation at the breathing zone under some operating conditions. Therefore, task ventilation is a potential option for using ventilation air more effectively. DOE

N92-24793#
Ohio State Univ., Columbus, Dept. of Aeronautical and Astronautical Engineering.
PROJECT WISH: THE EMERALD CITY, PHASE 2

The purpose of the Permanently Manned Autonomous Space Oasis, designated Project WISH: The Emerald City, is to serve as permanent living quarters for space colonists. In addition, it will serve as a stopover for space missions and will be capable of restationing itself practically anywhere within the solar system to provide support for these missions. The station should be self-sufficient, with no specific dependence on any resources from Earth. The 1990 to 1991 design team continued work started by last year's class. Further studies were conducted in the areas of orbital mechanics, propulsion, attitude control, and human factors. Critical elements were identified in each of these areas, and guidelines were established for the design of the Emerald City. Using the knowledge gained from these studies, two particular missions of interest, a Saturn Envelope mission and an Earth to Mars mission, were examined. The size and mass estimates, along with the methodologies used in their determination, are considered to be the main accomplishments of phase 2. Author

N92-25161*#
Idaho Univ., Moscow.
EXERCISE/RECREATION FACILITY FOR A LUNAR OR MARS ANALOG Final Report
Jun. 1991 40 p
(Contract NASW-4435) (NASA-CR-189993; NAS 1.26:189993) Avail: NTIS HC/MF A03

Discussed here is a project to design an exercise/recreation station for an earth based simulator of a lunar or Martian habitat. Specifically, researchers designed a stationary bicycle that will help people keep fit and prevent muscular atrophy while stationed in space. To help with motivation and provide an element of recreation during the workout, the bicycle is enhanced by a virtual reality system. The system will simulate various riding situations and the choice of mountain bike or road bike. The bike employs a magnetic brake that provides continuously changing tension to simulate actual riding conditions. This braking system will be interfaced directly with the virtual reality system. Also integrated into the virtual reality system will be a monitoring system that regulates heart rate, work rate, and other functions during the course of the session. Author

N92-25838#
Dornier System G.m.b.H., Friedrichshafen (Germany, F.R.).
EUROPEAN ECLSS TECHNOLOGY DEVELOPMENT RESULTS AND FURTHER ACTIVITIES
H. FLUNEKE, H. PREISS, S. KLINGELE, and G. TAN (European Space Agency: European Space Research and Technology Center, ESTEC, Noordwijk, Netherlands) in ESA, 4th European Symposium on Space Environmental Control Systems, Volume 1 p 103-111 Dec. 1991 Sponsored in part by ESA/ESTEC and DLR/MBFT
Copyright: Avail: NTIS HC/MF A04; ESA, EPD, ESTEC, Noordwijk, Netherlands, HC 150 Dutch guilders (2 vols)

In support of the Columbus IOC (Interorbit Communications) and EVA (Extravehicular Activity) ECLSS (Environment Control and Life Support System), a technology development program was performed on five items: regenerative CO2 removal; trace gas contamination control and monitoring; low noise variable speed fan; and fan/pump/water separator (EVA). The contents and results of the concluding subsystem level tests for the Columbus items and the assembly test results for the EVA fan/pump/water separator and consecutive program extensions are described. The present status of the development of an O2 recycling system is pointed out. The scenario of ECLSS which will be necessary within the next decades are outlined. ESA

N92-25839#
Hamilton Standard, Windsor Locks, CT.
ADVANCED REGENERATIVE LIFE SUPPORT FOR SPACE EXPLORATION
H. T. COUCH, J. W. AUMAN, JR., and T. C. FALVEY in ESA, 4th European Symposium on Space Environmental Control
Advanced regenerative Environmental Control and Life Support System (ECLSS) technology was identified by NASA as enabling space exploration. Low Earth Orbit (LEO) mass savings of over 700,000 pounds (320,000 kg) per year are expected for a lunar outpost crew of eight as compared with ECLSS systems which are currently flying. ECLSS technologies which show promise for reducing LEO mass for long range exploration initiatives are explored. The role of In Situ Resource Utilization (ISRU) and a Closed Ecological Life Support System (CELS) are discussed. Physical-chemical candidates for advanced technological development are recommended based on combined expendable, consumable and installed subsystem LEO mass savings for a number of advanced water processing and air revitalization approaches. These processes include: higher efficiency urine processing with or without pretreatment; a single water processor for potable and hygiene water; obtaining potable water and oxygen from the electrolysis system; chemical N2 storage; and membrane gas separation processes. The benefits of these for increasing loop closure on N2, O2, and H2O are discussed. ESA

Some problems of the development and the principles of construction of a complex of regenerative life support systems for space stations are dealt with. A structural schematic and the functions of a complex aboard the Soviet manned Space Station Mir are described. The possibility of water and oxygen artificial turnover being realized at zero gravity is shown and some related engineering problems are outlined. The use of simulated mathematical models and checking of serviceability of systems as components of Earth based medical/engineering complexes are considered. ESA

The development of an original technology for detection and monitoring trace-gas contamination of the Columbus Man Tended Free Flyer (MTFF) has to protect the crew from hazardous contamination of the module’s atmosphere. This has to provide a set of hardware which is able to detect hazardous trace gases in the atmosphere and to control them below their Space Maximum Allowable Concentrations (SMAC). To achieve this goal, a system consisting of a monitoring assembly and a control assembly is proposed. A load model has to be established for the design of these assemblies. This model was determined by review of trace gas measurements and experiences of previous space missions coupled with the applicable requirements. ESA

The development of an original technology for detection and
recognition of trace gas contaminants in manned spacecraft atmospheres is described. Two different implementations of the same basic technology, both based on the principle of multiple sensors and pattern recognition, but utilizing different transducing methods and software concepts, are presented. Some of the experimental activities performed to demonstrate feasibility of this "smart sensor" technology are described. In conclusion, the planning for future development (which includes a proposal for participation to the Columbus precursor flight program) is mentioned and potential free flyer applications identified.

A GAS CHROMATOGRAPHIC SEPARATOR FOR COLUMBUS TRACE GAS CONTAMINATION MONITORING ASSEMBLY

Copyright Avail: NTIS HC/MF A24; ESA, EPD, ESTEC, Noordwijk, Netherlands, HC 150 Dutch guilders (2 vols)

A development model gas chromatographic separator was designed and built for the trace gas contamination monitoring assembly on the Columbus Free Flyers (MTFFs) for environmental control and life support system. Atmospheric contaminants in the free flying laboratory will be analyzed by a gas chromatograph/mass spectrometer (GCMS). The gas chromatograph developed at this stage is compact, lightweight, low power consuming, and fast operating. It can easily be connected to the mass spectrometer, and its separation performance is very good for GCMS analysis.

SELECTION OF AN OPTIMISED HIGH TEMPERATURE CATALYST FOR ATMOSPHERE TRACE CONTAMINANT CONTROL

Copyright Avail: NTIS HC/MF A24; ESA, EPD, ESTEC, Noordwijk, Netherlands, HC 150 Dutch guilders (2 vols)

Test were carried out in a life support unit with the goal to identify an optimized catalyst for the oxidation of methane and other hydrocarbons. Such a catalyst might be used in the life support system of the Columbus Free Flying Laboratory. Optimization parameters were: high conversion at low reaction temperature, lifetime, and resistance of catalyst poisoning and vibration. For the testprograms, eleven catalyst samples were obtained and subjected to performance screening, vibration, and poisoning tests. A monolithic catalyst performed best in all tests.

INVESTIGATION OF CATALYSTS FOR THE REMOVAL OF CARBON MONOXIDE AND HYDROGEN FROM AIR

Copyright Avail: NTIS HC/MF A24; ESA, EPD, ESTEC, Noordwijk, Netherlands, HC 150 Dutch guilders (2 vols)

A catalyst screening program was conducted to optimize the low temperature catalyst of the environmental control and life support system of space stations. The activity of the catalysts for the oxidation of carbon monoxide and hydrogen in air was measured in a laboratory setup in dependence on temperature, test gas composition, flow, pretreatment, and humidity. Eighteen noble metal catalysts of various manufacturers were tested. Humidity had a large influence on the long term stability of the catalysts. Not all catalysts showed sufficient resistance to humid air.

BREADBOARDING OF THE MAIN CHARCOAL FILTER: A COMPONENT OF THE TRACE GAS CONTAMINATION CONTROL ASSEMBLY FOR THE MTFF

Copyright Avail: NTIS HC/MF A24; ESA, EPD, ESTEC, Noordwijk, Netherlands, HC 150 Dutch guilders (2 vols)

A breadboard model of a charcoal filter which is designed to remove a wide variety of organic vapors from the Space Station atmosphere by physical adsorption is described. The contaminants occurring in the space of a station's atmosphere are represented by 16 substances. Adsorption isotherms for the substances are determined in the range 0.9 to 0.001 of the saturated vapor. In a chamber, the contaminant amount generated during 180 days is simulated, and with the charcoal filter operating, equilibrium concentrations for the contaminants are determined. The influence of relative humidity on the equilibrium concentration is investigated in the range of 25 to 75 percent. Out of the 16 substances, only dichloromethane exceeds the spacecraft maximum allowable concentration at 75 percent relative humidity.

TRACE GAS MONITORING STRATEGIES FOR MANNED SPACE MISSIONS

S. KLINGELE and G. TAN (European Space Agency, European Space Research and Technology Center, ESTEC, Noordwijk, Netherlands) in ESA, 4th European Symposium on Space Environmental Control Systems, Volume 1 p 323-328 Dec. 1991

Copyright Avail: NTIS HC/MF A24; ESA, EPD, ESTEC, Noordwijk, Netherlands, HC 150 Dutch guilders (2 vols)

Intermediate results of a study to identify trace gas monitoring needs, monitoring strategies, and suitable equipment for manned future space missions are reported. The identification of standardized space mission types is based on a comprehensive literature review. Each strategy is detailed by an example list of compounds, which are to be measured qualitatively and quantitatively. A selection of suitable monitoring equipment for each space mission type is foreseen, based on the list of compounds to be monitored within each strategy. A market screening of currently available measurement technology is performed, and an outlook on first preliminary results of the technology tradeoff is given.

CARBON DIOXIDE REDUCTION SYSTEM AS PART OF AN AIR REVITALIZATION SYSTEM

K. SPERKER and G. TAN (European Space Agency, European Space Research and Technology Center, ESTEC, Noordwijk, Netherlands) in ESA, 4th European Symposium on Space Environmental Control Systems, Volume 1 p 469-472 Dec. 1991

Copyright Avail: NTIS HC/MF A24; ESA, EPD, ESTEC, Noordwijk, Netherlands, HC 150 Dutch guilders (2 vols)

To meet the challenge of European long term manned missions on board a permanently orbiting space infrastructure, an Environmental Control and Life Support (ECLS) technology is to be developed. Limited to the spacecraft atmosphere management system, the ultimate goal is to close the airloop by processing the metabolically produced carbon dioxide, and reclaiming the oxygen from onboard resources to eliminate the costly resupply of oxygen from Earth. The best option today is a combination of three chemical-physical processes, namely a solid amine based carbon dioxide concentration system, a carbon dioxide reduction system...
A carbon dioxide reduction system is being developed for long duration manned space missions. The system incorporates a Sabatier methanation reactor, utilizing previously developed catalyst materials, and a hollow fiber membrane unit to separate the products of reaction. Heat produced by the exothermic Sabatier reaction is absorbed by an air stream, which also regulates the reactor temperature to maximize yield. This absorbed heat can be utilized elsewhere in the carbon dioxide management system to reduce power requirements. The Sabatier process combines carbon dioxide and hydrogen to form methane and water. In a manned space environment, the water is then either electrolyzed to form oxygen for breathing and hydrogen to drive the reaction, or recycled to the potable water system. A computer based performance model using finite elements was developed to evaluate reactor design and catalyst performance. Performance calculations for the preliminary reactor design indicate hydrogen conversion of over 99 percent in a carbon dioxide rich reaction.

Development of a Sabatier Carbon Dioxide Reduction System for Space Application

HAL J. STRUMPF and C. Y. CHIN

In ESA, 4th European Symposium on Space Environmental Control Systems, Volume 1 p 481-487 Dec. 1991

Mathematical Modeling of Control Subsystems for CELSS: Application to Diet

AHMAD WALEH, THOI K. NGUYEN, and VALERY KANEVSKY

In ESA, 4th European Symposium on Space Environmental Control Systems, Volume 1 p 501-505 Dec. 1991

(Contract NAS2-13260)

Copyright Avail: NTIS HC/150 Dutch guilders (2 vols)

The dynamic control of a Closed Ecological Life Support System (CELSS) in a closed space habitat is of critical importance. The development of a practical method of control is also a necessary step for the selection and design of realistic subsystems and processors for a CELSS. Diet is one of the dynamic factors that strongly influences, and is influenced, by the operational states of all major CELSS subsystems. The problems of design and maintenance of a stable diet must be obtained from well characterized expert subsystems. The general description of a mathematical model that forms the basis of an expert control program for a CELSS is described. The formulation is expressed in terms of a complete set of time dependent canonical variables. System representation is dynamic and includes time dependent storage buffers. The details of the algorithm are described.
Contamination Control (TGCC) analysis software was initiated. The control the toxical hazards. For the numerical analysis and from pressurized systems and by metabolic processes of crew generated by off gassing from materials and surfaces, by leakage atmosphere is contaminated by gaseous trace contaminants. The capabilities of the ECOSIM software, primarily intended to simulate Environmental Control and Life Support (ECLS), are discussed. It may be also customized to the simulation of passive and active thermal control systems, power systems, and more generally any system which can be described as a set of interconnected physical components. ECOSIM will provide a powerful continuous simulation language, a graphical user interface and a library of ECLS custom made components. The major aims of the development are reviewed and the basic end aspects, i.e., the simulation language and the graphical user interface, are presented through examples aiming at enhancing their understanding. ECOSIM version 1, to be released in 1992, will provide capabilities for simulating air management systems of the degree of complexity encountered in the Hermes and Columbus projects.

In pressurized habitable environments, the respirable atmosphere is contaminated by gaseous trace contaminants generated by off gassing from materials and surfaces, by leakage from pressurized systems and by metabolic processes of crew members and living organisms or from experiments. These contaminants might be removed from the atmosphere by control hardware like filters, adsorbers or catalytic oxidizers in order to control the toxical hazards. For the numerical analysis and simulation of trace gas generation and removal processes within pressurized Columbus elements, the development of a Trace Gas Contamination Control (TGCC) analysis software was initiated. The conceptual design and performance is outlined, with emphasis laid upon an input scheme compatible with ESABASE.

In the course of the development of new environmental control and fuel cell systems for the European manned space flight program the thermophysical simulation is getting increasing importance for the assistance and verification of engineer's decisions. Also in the area of the chemical and environmental technologies increasing complexity of systems requires more and more powerful tools for their simulation. To satisfy the requests for a powerful and versatile simulation, a modular thermophysical system simulation package, called SIMTAS was developed. It is designed to meet the special requirements of practical engineering and is based on state of the art software technologies. The technical capabilities of the simulation program and some examples for its application in actual aerospace programs are described.

The following are reviewed: the requirements and design of the Environmental Control and Life Support System (ECLS) for Space Station Freedom; a review of the G189A ECLS computer program model developed for the complete configuration of pressurized elements or volume; and some significant computed results from this model showing transient performance for subsystems responsible for temperature and humidity control, atmosphere control and supply, air revitalization, and water recovery and management. The computed results presented are important in assessing the capabilities of the ECLS equipment in maintaining acceptable levels of temperature, humidity, O₂, N₂, and CO₂ in the occupied volumes during crew changeout events. These events will provide for up to four extra crew members from the orbiter being located temporarily in the Space Station modules in addition to the normal contingent of four crew members. These additional crew members impose additional demands on the ECS equipment, in order to control the levels of the aforementioned quantities. Satisfactory control of all these quantities was achieved. The maximum computed pp CO₂ was in the acceptable degraded performance regime. This level is higher than the 3.00 mm Hg upper limit for normal conditions.

The purpose of this report was to set preliminary nutritional requirements for crewmembers flying from 90 to 180 day missions on Space Station Freedom. Specific recommendations included providing crewmembers with in flight feedback on nutritional intake, weight and strength, and incorporating issues of energy intake, body weight, body composition, strength, and protein intake in the flight medicine program. Exercise must be considered an integral part of any plan to maintain nutritional status, especially those modes that stress the skeleton and maintain body weight. Nutrient intake, amount of exercise, and drugs ingested must be recorded daily; high priority should be given to development of fully automated record systems that minimize astronauts' effort. A system of nutritional supplements should be developed to provide a method for reducing intake deficits that become apparent. Finally, post flight monitoring should include bone density, muscle mass and function, and iron status at three and six months after landing.

In the course of the development of new environmental control and fuel cell systems for the European manned space flight program the thermophysical simulation is getting increasing importance for the assistance and verification of engineer's decisions. Also in the area of the chemical and environmental technologies increasing complexity of systems requires more and more powerful tools for their simulation. To satisfy the requests for a powerful and versatile simulation, a modular thermophysical system simulation package, called SIMTAS was developed. It is designed to meet the special requirements of practical engineering and is based on state of the art software technologies. The technical capabilities of the simulation program and some examples for its application in actual aerospace programs are described.

The following are reviewed: the requirements and design of the Environmental Control and Life Support System (ECLS) for Space Station Freedom; a review of the G189A ECLS computer program model developed for the complete configuration of pressurized elements or volume; and some significant computed results from this model showing transient performance for subsystems responsible for temperature and humidity control, atmosphere control and supply, air revitalization, and water recovery and management. The computed results presented are important in assessing the capabilities of the ECLS equipment in maintaining acceptable levels of temperature, humidity, O₂, N₂, and CO₂ in the occupied volumes during crew changeout events. These events will provide for up to four extra crew members from the orbiter being located temporarily in the Space Station modules in addition to the normal contingent of four crew members. These additional crew members impose additional demands on the ECS equipment, in order to control the levels of the aforementioned quantities. Satisfactory control of all these quantities was achieved. The maximum computed pp CO₂ was in the acceptable degraded performance regime. This level is higher than the 3.00 mm Hg upper limit for normal conditions.

The purpose of this report was to set preliminary nutritional requirements for crewmembers flying from 90 to 180 day missions on Space Station Freedom. Specific recommendations included providing crewmembers with in flight feedback on nutritional intake, weight and strength, and incorporating issues of energy intake, body weight, body composition, strength, and protein intake in the flight medicine program. Exercise must be considered an integral part of any plan to maintain nutritional status, especially those modes that stress the skeleton and maintain body weight. Nutrient intake, amount of exercise, and drugs ingested must be recorded daily; high priority should be given to development of fully automated record systems that minimize astronauts' effort. A system of nutritional supplements should be developed to provide a method for reducing intake deficits that become apparent. Finally, post flight monitoring should include bone density, muscle mass and function, and iron status at three and six months after landing.

In the course of the development of new environmental control and fuel cell systems for the European manned space flight program the thermophysical simulation is getting increasing importance for the assistance and verification of engineer's decisions. Also in the area of the chemical and environmental technologies increasing complexity of systems requires more and more powerful tools for their simulation. To satisfy the requests for a powerful and versatile simulation, a modular thermophysical system simulation package, called SIMTAS was developed. It is designed to meet the special requirements of practical engineering and is based on state of the art software technologies. The technical capabilities of the simulation program and some examples for its application in actual aerospace programs are described.
diagnostic monitoring function into the human-machine interfaces (HMI’s) or control rooms of complex process plants. The design of such a system should be properly integrated with other HMI systems in the control room, such as the alarms system or the Safety Parameter Display System (SPDS). A conceptual foundation for the development of a Plant-wide Diagnostic Monitoring System (PDMS) is presented along with functional requirements for the system and other advanced HMI systems. Insights are presented into the design of an efficient and robust PDMS, which were gained from a critical review of various methodologies developed in the nuclear power industry, the chemical process industry, and the space technological community.

N92-26158# Naval Training Systems Center, Orlando, FL
RICHARD C. HEBB Oct. 1991 20 p
(AD-A245745; NAVTRASYSCEN-TR-92-001) Avail: NTIS HC/MF A03

The use of Night Vision Goggles (NVGs) has increased dramatically and so has the number of accidents attributed to NVG aided flight. The work performed under this project represents an investigation of the use of Night Vision Goggles and the exploration of a method for providing simulation of night vision imagery in an interactive flight simulator environment. The characteristics of the Aviators Night Vision (ANVIS) Goggles were investigated and are summarized. A helmet mounted display concept was developed and a testbed was developed. A commercially available magnetic tracking device was obtained to provide head tracking, and, through a in-house designed interface, was interfaced to a SEL flight computer and various image generators. A Z-transform based predictive algorithm for compensating for the throughput delay image effects of a head tracker, flight computer, and image generator was developed and also integrated into the testbed for evaluation. The helmet display NVG concept represents a good alternative to full up flight simulators of the Weapons Tactics Trainers (WTT) type, and could provide significant enhancements to classroom and on the job training. A part task trainer could be developed using the helmet mounted NVG concept that would bridge the gap between classroom and flight.

GRA

55

SPACE BIOLOGY

Includes exobiology; planetary biology; and extraterrestrial life.

A92-39422

COSMIC RAY MODIFICATION OF ORGANIC COMETARY MATTER AS SIMULATED BY CYCLOTRON IRRADIATION
Copyright

Frozen CH4 and CH4/Ar mixtures were irradiated with 18 MeV protons and 17 MeV 3He(2+) ions at 15 and 77 K in order to simulate the interaction of cosmic rays with solid organic matter in comets. Solids, sealed into cuvettes, represented the interior of comets, those condensed onto cold finger ice surfaces. C2H2 and C2H4 were the primary volatile products and were converted to C2H6, and heavier hydrocarbons containing up to 28 carbon atoms, by increasing the radiation dose. The release of hydrogen from open ice layers is reflected in a lower H:C ratio and increased carbonization of the residues, as compared to closed targets which yield higher annulated products such as PAH.
Typical Subject Index Listing

<table>
<thead>
<tr>
<th>SUBJECT HEADING</th>
<th>AUTONOMIC NERVOUS SYSTEM</th>
<th>TITLE</th>
<th>REPORT NUMBER</th>
<th>PAGE NUMBER</th>
<th>ACCESSION NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADAPTATION</td>
<td>Non-invasive evaluation of the cardiac autonomic nervous system by PET</td>
<td>[DE91-018476]</td>
<td>p 7</td>
<td>N92-11622</td>
<td></td>
</tr>
</tbody>
</table>

The subject heading is a key to the subject content of the document. The title is used to provide a description of the subject matter. When the title is unnecessarily descriptive of document content, a title extension is added, separated from the title by three hyphens. The accession number and the page number are included in each entry to assist the user in locating the abstract in the abstract section. If applicable, a report number is also included as an aid in identifying the document. Under any one subject heading, the accession numbers are arranged in sequence.

A

ACCELERATION STRESSES (PHYSIOLOGY)
- Perception of linear acceleration in weightlessness p 279 A92-39196
- Tolerance to +Gz gravitational stress by subjects of elder age groups with different health state p 269 A92-39151
- Effect of +G stress on psychophysiological parameters and tracking performance in humans p 279 A92-39152
- Problem of ECG acquisition and occurrence of significant cardiac arrhythmias in white rats in gravitational stress p 263 A92-39186

ACCELERATION TOLERANCE
- Current status of acute high-G physiology p 268 A92-39128
- Human centrifuge training of men with lowered +Gz acceleration tolerance p 269 A92-39150
- Tolerance to +Gz gravitational stress by subjects of elder age groups with different health state p 269 A92-39151

ACTUATORS
- Redundant arm control in a supervisory and shared control system [AIAA PAPER 92-1578] p 284 A92-38669

ADAPTATION
- Neurodynamic indicators of high-altitude adaptation efficiency in humans p 274 A92-40756
- The effect of fluorine supplement on adaptive reactions of the heart during exposures to cold p 274 A92-40757

ADENOSINE TRIPHOSPHATE
- Active and passive calcium transport systems in plant cells [DE92-005459] p 266 N92-25047

ADRENAL METABOLISM
- Long-term storage of salivary cortisol samples at room temperature p 256 A92-38119

ADRENERGICS
- Adrenergic regulation and membrane status in humans during head-down hypokinesia (HDT) p 269 A92-39144

ADVANCED TECHNOLOGY LABORATORY
- Payload crew training in FUJITATTO 1992 (first material processing test project) p 280 N92-25372

AEROSPACE ENVIRONMENTS
- Flotation of a free-floating spacecraft in a liquid environment p 253 A92-37776
- Neuronal buoyancy and virtual environment experiments in teleoperated and autonomous control of space robots [AIAA PAPER 92-1315] p 282 A92-38650
- Radiation effects in space: Research needs [DE92-005579] p 278 N92-25546

AEROSPACE MEDICINE
- Effect of +G stress on psychophysiological parameters and tracking performance in humans p 279 A92-39152
- The microgravity effect on a repair process in M. soleus of the rats flown on Cosmos-2044 p 261 A92-39173
- Cardiac hemodynamics and orthostatic stress - influence of different types of physical training p 271 A92-39191
- Central hemodynamics of the anti-G straining maneuver performed during elective cardiac catheterization in man p 271 A92-39191
- The effect of repeated loads and metabolic intensity on reparator-destructive processes in space p 272 A92-39197
- Perspectives for the application of the Penaz’s method for a non-invasive continuous blood pressure measurement in space medicine p 273 A92-39214
- Problems experienced by man when constructing Giant structures in space p 286 A92-40438

AGING (BIOLOGY)
- Gravitational fields and aging p 268 A92-39130

AIR FILTERS
- Boardingroom of the main charcoal filter: A component of the space gas contamination control assembly for the MTTF p 269 N92-25647

AIR FLOW
- Air exchange effectiveness of conventional and task ventilation for offices [DE92-003291] p 287 N92-24293

AIR PURIFICATION
- A combined cabin/avionics air loop design for the Space Station logistick module p 288 N92-25841
- ESA standardisation process through the example of manned spacecraft atmospheres p 288 N92-25842
- Carbon dioxide reduction system as part of an air revitalization system p 289 N92-25867
- Air regeneration from microcontaminants aboard the orbital Space Station p 290 N92-25851
- Air purification systems for submarines and their relevance to spacecraft p 290 N92-25862
- Trace Gas Contamination Control (TGCC) analysis software for Columbus p 291 N92-25896
- G189A modelling of Space Station Freedom’s ECLSS p 291 N92-25895

AIR QUALITY
- Air exchange effectiveness of conventional and task ventilation for offices [DE92-003291] p 287 N92-24293

AIR TRAFFIC CONTROL
- Air traffic control simulation training [SIE PAPER 91-2097] p 279 A92-39554

AIRCRAFT ACCIDENTS
- Crew factors in the aerospace workplace p 277 A92-38157
- Flight disorientation as the most frequent cause of fatal, weather-related accidents in UK civil and general aviation p 277 A92-38382

AIRCRAFT PILOTS
- HIV positivity and aviation safety p 266 A92-37175

AIRLINE OPERATIONS
- Training for Advanced Technology Aircraft - A pilot’s perspective [SIE PAPER 91-2140] p 280 A92-39979

ALERTNESS
- Alertness management in flight operations - Strategic mapping [AIAA PAPER 92-1131] p 273 A92-38650

ALKANE
- Hydrocarbon factors affect the gravity responses of algae and roots p 259 A92-39146

ALGORITHMS
- Electromagnetic imaging of dynamic brain activity [DE92-005017] p 274 N92-24672

ALKALI VAPOR LAMPS
- Soybean stem growth under high-pressure sodium with supplemental blue lighting p 254 A92-38102

ALTITUDE SICKNESS
- Disturbances in cerebral hemodynamics in acute mountain sickness p 273 A92-38624
- High-altitude adaptation and physical work capacity p 274 A92-40755

ANALOG SIMULATION
- Neurodynamic indicators of high-altitude adaptation efficiency in humans p 274 A92-40756

ANTIBODES
- Hypergravity signal transduction in HeLa cells with contaminating phosphorylation of proteins immunoprecipitated with anti-microtubule-associated protein antibodies p 255 A92-38116

APTITUDE
- A computer-aided aptitude test for predicting flight performance of trainees p 277 A92-37476

AQUICULTURE
- A prototype closed aquaculture system for controlled ecological life support applications p 282 A92-38610

ARCHITECTURE (COMPUTERS)
- SIMTAS: Thermo- and fluiddynamic simulation of complex systems p 291 N92-25895

ARRHYTHMIA
- Problem of ECG acquisition and occurrence of significant cardiac arrhythmias in white rats in gravitational stress p 263 A92-39186

ARTIFICIAL INTELLIGENCE
- National Institutes of Health presentation at IPE Conference Program p 277 N92-25000

ASTRONAUT PERFORMANCE
- Assessing human reliability in space - What is known, what still is needed [AIAA PAPER 92-1532] p 278 A92-38631
- Human experiments on Spacelab SLS-1 p 280 A92-39132
- Evaluation of energy metabolism in cosmonauts p 270 A92-38158

ASTRONOMY PERFORMANCE
- Muscle strength and endurance following low-altitude suspension training p 270 A92-39161
- Influences of antorthostatic bed rest (ABR) on functional properties of neuromuscular system in man p 270 A92-39162
- Age-dependency of sympathetic nerve response to gravity in humans p 270 A92-39166
- Cardiovascular disturbances induced by a 25 days spaceflight and a one month head down tilt p 271 A92-38178
- Classification of the free fluid reservoir in the calf by electrical impedance tomography p 272 A92-39192

ASTRONAUT TRAINING
- Multi-cultural considerations for Space Station training and operations [AIAA PAPER 92-1624] p 278 A92-38687
CARDIAC VENTRICLES

CARBON MONOXIDE

CANCER

CALIBRATION

BUFFERS AND BUFFER STORAGE

CALCIUM

CALCIUM METABOLISM

CALORIC REQUIREMENTS

CALORIC REQUIREMENTS

CANCER

CARBON DIOXIDE REMOVAL

CARBONIC ANHYDRASE

CARDIAC OUTPUT

CARDIOVASCULAR SYSTEM

CARDIAC VENTRICLES

CARDIOVASCULAR SYSTEM

CARDIAC NUCLEI

COMPUTER AIDED TOMOGRAPHY

CHOLESTEROL

CHROMOSOMES

CIRCADIAN RHYTHMS

CIVIL AVIATION

CLASSIFICATIONS

CLINICAL MEDICINE

CLOSED ECOLOGICAL SYSTEMS

COGNITIVE PSYCHOLOGY

COCKPITS

COCHLEA

COLD TOLERANCE

COLD WATER

COLUMBUS SPACE STATION

COMET NUCLEI

COMMAND AND CONTROL

CONFIGURATION

COMPUTER AIDED TOMOGRAPHY

A-3
RESEARCH
Opportunities and questions for the fundamental biological sciences in space
[AIAA PAPER 92-1234] p 256 A92-38518

RESPIRATORY PHYSIOLOGY
High-altitude adaptation and physical work capacity
[AIAA PAPER 92-1453] p 283 A92-38557
Neurogenic indica of high-altitude adaptation efficiency in humans
p 274 A92-40756

RHEOCEREBRALPATHY
Disturbances in cerebral hemodynamics in acute mountain sickness
p 273 A92-40624

ROBIPCULIC ACIDS
Self-splicing introns in tRNA genes of widely divergent bacteria
p 257 A92-38779

ROBOT ARMS
Dual-arm supervisory and shared control space servicing task experiments
[AIAA PAPER 92-1573] p 283 A92-38666
Redundant arm control in a supervisory and shared control system
[AIAA PAPER 92-1578] p 284 A92-38669
Dual-arm supervisory and shared control space servicing task experiments
[AIAA PAPER 92-1578] p 283 A92-38705

ROBOT CONTROL
Sensor data display for telerobotic systems
[AIAA PAPER 92-1286] p 285 A92-38735
The space robot technology experiment ROTEX on spacecraft-D2
[AIAA PAPER 92-1294] p 282 A92-38491
Neural buoyancy and virtual environment experiments in teleoperated and autonomous control of space robots
[AIAA PAPER 92-1216] p 282 A92-38553
Results of telerobotic hand controller study using force information and rate control
[AIAA PAPER 92-1451] p 283 A92-38581
Control of robot dynamics using acceleration control
[AIAA PAPER 92-1570] p 283 A92-38553
Redundant arm control in a supervisory and shared control system
[AIAA PAPER 92-1578] p 284 A92-38669

ROBOTICS
Telerobot performance in simulated Solar Maximum Satellite repair
[AIAA PAPER 92-1574] p 284 A92-38667
Redundant arm control in a supervisory and shared control system
[AIAA PAPER 92-1578] p 284 A92-38669

ROBOTS
Autonomous robotic systems for SEI tasks
[AIAA PAPER 92-1573] p 283 A92-38705
Force-reflection and shared compliant control in operating telerobotic manipulators with time delay
p 285 A92-40369

ROBOT DYNAMICS
The space robot technology experiment ROTEX on spacecraft-D2
[AIAA PAPER 92-1294] p 283 A92-38581
Control of robot dynamics using acceleration control
[AIAA PAPER 92-1573] p 283 A92-38553
A kinematic analysis of the modified flight telerobotic manipulator system
p 286 A92-39149

ROBOT SENSORS
Autonomous robotic systems for SEI tasks
[AIAA PAPER 92-1573] p 283 A92-38553

ROBOTS
Telerobot performance in simulated Solar Maximum Satellite repair
[AIAA PAPER 92-1574] p 284 A92-38667
Redundant arm control in a supervisory and shared control system
[AIAA PAPER 92-1578] p 284 A92-38669

ROOMS
Air exchange effectiveness of conventional and telerobotic facilties for offices
[DE92-002891] p 287 A92-24293

ROTATION
Simulation of the effect of microgravity on the human body by its prolonged rotation about the horizontal located long axis
p 273 A92-39212

ROVING VEHICLES
A visual display aid for planning rover traversals
[AIAA PAPER 92-1313] p 282 A92-38502

S

SALT
Long-term storage of salivary cortisol samples at room temperature
p 256 A92-38119

SALIVARY GLANDS
Salivary secretion and seasickness susceptibility
[a] 286 A92-37171

SARCOPLASMIC RETICULUM
Calci(2+) movements in sarcoplasmic reticulum of rat soleus fibers after hindlimb suspension
p 257 A92-37774

SCHEDULING
Sleep and circadian rhythms in long duration space flight
Antarctica as an analogue environment
[AIAA PAPER 92-1370] p 268 A92-38536

SCIENTIFIC SATELLITES
A robot based concept for automation and servicing of scientific payloads aboard orbital laboratories
p 285 A92-39540

SECRETIONS
Salivary secretion and seasickness susceptibility
p 286 A92-37171

SELENIUM COMPOUNDS
Effect of chemical form of selenium on tissue glutathione peroxidase activity in developing rats
p 255 A92-38113

SENSOMOTOR PERFORMANCE
Pathogenesis of sensory disorders in microgravity
p 269 A92-39135
FFT and amplitude spectrum evaluation of stabiograms on rats with respect to a consistent sensormotor system of orientation control (SOC)
p 265 A92-39204
Orientation-reflex-based evaluation of postrotatory nystagmograms
p 265 A92-39205
Sensorial interaction and methods of non-medicinal prophylaxis of space motion sickness
p 273 A92-39210

SENSORY PERCEPTION
Pathogenesis of sensory disorders in microgravity
p 269 A92-39135

SEPARATORS
A gas chromatographic separator for Columbus trace gas contamination monitoring assembly
p 289 A92-25864

SEQUENCING
The cDNA expression map of the h- and genomic brain region using an hybridization approach
[AIAA PAPER 92-1370] p 283 A92-38536

SIGNAL PROCESSING
Using single buffers and data reorganization to implement a multi-megastep fast Fourier transform
p 262 A92-24323

SIGNS AND SYMPTOMS
High-altitude adaptation and physical work capacity
p 274 /2-40755

SIMULATORS
Exercise/recreation facility for a Lunar or Mars analog crew
[NASA-ACR-189993] p 287 A92-25111

SLEEP
Sleep and circadian rhythms in long duration space flight
-Antarctica as an analogue environment
[AIAA PAPER 92-1270] p 268 A92-38536

SLEEP DEPRIVATION
The characteristics of adaptation of operators to sleep deprivation - The analysis of the dynamics of the brain bioelectrical and behavioral parameters
p 280 A92-40752
A study of the mechanisms regulating the state of operators engaged in continuous activity, using a method that registers forestalling lateral eye movements
p 274 A92-40753

SOCIAL ISOLATION
Team dynamics in isolated, confined environments - Saturation divers and high altitude climbers
[AIAA PAPER 92-1531] p 278 A92-38630

SOFTWARE ENGINEERING
SITMOS: Thermo- and fluid-dynamic simulation of complex systems
p 291 A92-25896

SOFTWARE TOOLS
ECOSIM: An environmental control simulation software
p 251 A92-25894

SOLAR ACTIVITY
The effect of heliogeophysical factors on an organism - Statistics of transport incidents and the problem of their prediction
p 253 A92-38334

SOLAR MAXIMUM MISSION
Telerobot performance in simulated Solar Maximum Satellite repair
[AIAA PAPER 92-1574] p 284 A92-38667

SOYBEANS
Soybean stem growth under high-pressure sodium with Supplemental blue lighting
p 254 A92-38102

SPACE ADAPTATION SYNDROME
Pathogenesis of sensory disorders in microgravity
p 269 A92-39135
FFT and amplitude spectrum evaluation of stabiograms on rats with respect to a consistent sensormotor system of orientation control (SOC)
p 265 A92-39204
TUMORS

- Reduced energy intake and moderate exercise reduce mammary tumor incidence in virgin female BALB/c mice treated with 7,12-dimethylbenz(a)anthracene

p 255 A92-36112

TYROSINE

- Tyrosine and its potential use as a countermeasure to performance decrement in military sustained operations

p 277 A92-37173

VEGETATION GROWTH

- Role of gravity in growth processes of plants — Russian book

- Interpreting plant responses to clinostating. I - Mechanical stresses and ethylene

p 254 A92-36105

VEINS

- About the great importance of venous blood circulation in the pathogenesis of space-related disturbances in weightlessness

p 271 A92-39179

VENTILATION

- Air-exchange effectiveness of conventional and task ventilation for offices

[DE92-006291] p 287 N92-24293

VESTIBULAR SYSTEMS

- Weightlessness and the ontology of vestibular function

- Evidence for persistent vestibular threshold shifts in chicks incubated in space

p 262 A92-39174

- FFT and amplitude spectrum evaluation of stabiograms on rats with respect to a consistent sensorimotor system of orientation control (SOC)

p 265 A92-39204

- Orientation-flexitory-based evaluation of postrotatory nystagmograms

p 265 A92-39205

VESTIBULAR TESTS

- Functional and adaptive changes in the vestibular apparatus in space flight

p 265 A92-39202

- Possibility to change otolithic-ocular static asymmetry by galvanic stimulation of vestibular apparatus

p 262 A92-39207

- The vestibular experiment in the Juno mission

p 272 A92-39208

- Examination of eye movements under immersion

p 272 A92-39209

VIABILITY

- Utilization of common pressurized modules on the Space Station Freedom

p 286 A92-39539

VIRTUAL REALITY

- Exercise/recreation facility for a Lunar or Mars analog

VISABLE SPECTRUM

- Soybean stem growth under high-pressure sodium with supplemental blue lighting

p 254 A92-38102

VISUAL ACUITY

- Fast perceptual learning in visual hyperacuity

p 279 A92-39486

VISUAL PERCEPTION

- Fast perceptual learning in visual hyperacuity

p 279 A92-39486

- Neurodynamic indicators of high-altitude adaptation efficiency in humans

p 274 A92-40756

VISUAL TASKS

- Fast perceptual learning in visual hyperacuity

p 279 A92-39486

WATER MANAGEMENT

90-day cabin run - Lessons learned and recommendations for future manned closed environment tests

[AIAA PAPER 92-1608] p 284 A92-36888

WATER RECLAMATION

Chemical and microbiological experimentation for development of environmental control and life support systems

[AIAA PAPER 92-1608] p 284 A92-36887

WATER TEMPERATURE

- Peripheral and central blood flow in man during cold, thermoneutral, and hot water immersion

p 266 A92-37169

WATER TREATMENT

- Microbial screening of water supplies for spaceflight missions

[AIAA PAPER 92-1605] p 284 A92-38686

WEIGHTLESSNESS

- Hematological and biochemical findings of Spacelab 1 flight

p 267 A92-38147

- Hyporadrenergic syndrome of weightlessness - Its manifestations in mammals and possible mechanisms

p 257 A92-39131

- Perception of linear acceleration in weightlessness

p 279 A92-39136

- Cardiopulmonary blood flow in exercise

p 259 A92-39148

- Hypergravity and development of mammals

p 261 A92-39170

- Weightlessness and the ontogeny of vestibular function

- Evidence for persistent vestibular threshold shifts in chicks incubated in space

p 262 A92-39174

- Investigation of heart rate and body temperature dynamics during a 14 days spaceflight experiment 'Cosmos 2044'

About the great importance of venous blood circulation in the pathogenesis of space-related disturbances in weightlessness

p 271 A92-39179

- Functional properties of soleus and EDL muscles after weightlessness

p 263 A92-39188

- Functional and adaptive changes in the vestibular apparatus in space flight

p 265 A92-39202

- The vestibular experiment in the Juno mission

p 272 A92-39208

- Examination of eye movements under immersion

p 272 A92-39209

- Human factors issues for interstellar spacecraft

p 285 A92-39504

WEIGHTLESSNESS SIMULATION

- Interpreting plant responses to clinostating. I - Mechanical stresses and ethylene

p 254 A92-38105

- Gravitational aspects of thermoregulation and aerobic work capacity

p 258 A92-39134

- Effect of long-term hindlimb suspension on blood components

p 260 A92-39155

- Influences of simulated microgravity and hypergravity on the immune functions in animals

p 260 A92-39157

- Evaluation of energy metabolism in cosmonauts

p 270 A92-39158

- Muscle strength and endurance following long-term suspension in man

p 270 A92-39161

- Possibility to change otolithic-ocular static asymmetry by galvanic stimulation of vestibular apparatus

p 262 A92-39170

- Simulation of the effect of microgravity on the human body by its prolonged rotation about the horizontal located long axis

p 273 A92-39212

WORK CAPACITY

- The design principles and functioning of an automated information system for estimating the preshift work capacity of operators

p 281 A92-36553

- Analog environments in space human factors

[AIAA PAPER 92-1527] p 277 A92-38626

- Gravitational aspects of thermoregulation and aerobic work capacity

p 268 A92-39134

- Use of training simulators for diagnosing functional disorders and for restoration of pilots' work capacity

p 280 A92-40751

- High-altitude adaptation and physical work capacity

p 274 A92-40755

WORK-REST CYCLE

- Tyrosine and its potential use as a countermeasure to performance decrement in military sustained operations

p 277 A92-37173

WORKLOADS (PSYCHOPHYSIOLOGY)

- Tyrosine and its potential use as a countermeasure to performance decrement in military sustained operations

p 277 A92-37173

WORKSTATIONS

- Sensor data display for telerobotic systems

p 282 A92-36299

X

X RAYS

- X-ray microimaging by diffractive techniques

[DE92-005530] p 266 N92-25423

- Monochromatic computed tomography of the human brain using synchrotron x-rays. Technical feasibility

[DE92-007143] p 275 N92-25481
I Rapidly quantifying the relative distention of a human bladder

ADAM, SUSAN

AARON, E. A.

ALEXANDER, HAROLD L.

AKIN, D.

AIZIKOV, G. S.

AOAMOVICH, B. A.

ABRAMOV, L K.

ABELE, H.

ALLEVARD, A. M.

ALEKSEEV, E. I.

BLALOCK, TRAVIS N.

PERSONAL AUTHOR INDEX

AEROSPACE MEDICINE AND BIOLOGY / A Continuing Bibliography (Supplement 366)

September 1992

Typeset by AIP Digital Library

B-1

Typical Personal Author Index Listing

PERSONAL AUTHOR

BLALOCK, TRAVIS N.

Rapidly quantifying the relative distention of a human bladder

NARA-CASE-LAR-13901-2

TITLE

REPORT NUMBER

PAGE NUMBER

ACCESSION NUMBER

Listings in this index are arranged alphabetically by personal author. The title of the document provided by the user with a brief description of the subject matter. The report number helps to indicate the type of document listed (e.g., NASA report, translation, NASA contractor report). The page and accession numbers are located beneath and to the right of the title. Under any one author's name the accession numbers are arranged in sequence.

A

AARON, E. A.

A Rapidly quantifying the relative distention of a human bladder

p 6 N92-11621

Oxygen cost of exercise hyperpnea - Measurement

p 267 A92-37786

Oxygen cost of exercise hyperpnea - Implications for performance

p 267 A92-37787

ABELE, H.

Trace gas contamination management in the Columbus trace gas contamination monitoring assembly

p 269 N92-25664

A gas chromatographic separator for Columbus trace gas contamination monitoring assembly

p 269 N92-25664

ABRAMOV, L K.

Arterial and microcontaminants aboard the orbiter Space Station

p 290 N92-25691

ADAM, SUSAN

Development of task network models of human performance in microgravity

[AIAA PAPER 92-1211] p 282 A92-38550

ADAMOVICH, B. A.

Engineering problems of integrated regenerative life-support systems

p 288 N92-25840

AIZIKOV, G. S.

Sensory interaction and methods of non-medical prophylaxis of space motion sickness

p 273 A92-39210

AKIN, D.

Telerobotic interactions in an EVA worksite

[AIAA PAPER 92-1578] p 284 A92-38668

ALEKSSEY, E. L.

Functional morphology of pliatory in rats developed under increased weights and relatively decreased weightlessness

p 261 A92-39171

ALEXANDER, HAROLD L.

Neutral buoyancy and virtual environment experiments in teleoperated and autonomous control of space robots

[AIAA PAPER 92-1216] p 282 A92-38503

ALEXANDER, HAROLD L.

The effect of different gravity on the muscle composition in Japanese quail

p 261 A92-39169

ALEXANDER, HAROLD L.

Rapidly quantifying the relative distention of a human bladder

NARA-CASE-LAR-13901-2

ALLEVARD, A. M.

Is ANF implied in the improvement of orthostatic tolerance during head-down bed rest?

p 269 A92-39153

ALPATO, H. M.

Gravitational biology experiments aboard the biosatellites 'Cosmos No. 1887 and No. 2044'

p 259 A92-39149

Studies of circadian rhythms in space flight - Some results and prospects

p 262 A92-39175

Investigation of heart rate and body temperature dynamics during 14 days spaceflight experiment 'Cosmos 2044'

p 262 A92-39177

AMMA, N.

Selection of an optimised high temperature catalyst for atmospheric trace contaminant control

p 289 N92-25865

Investigation of catalysts for the removal of carbon monoxide and hydrogen from air

p 269 N92-25866

A gas chromatographic separator for the trace gas contamination control assembly for the MTF

p 269 N92-25867

ANTALCOVA, J.

The effect of different gravity on the muscle composition in Japanese quail

p 261 A92-39169

ANTONOV, A.

Cardiovascular disturbances induced by a 25 days spaceflight and a one month head down tilt

p 271 A92-39178

ARZIE, JORGE

Carriage formation in the CELLS 'double bubble' hardware

p 259 A92-39148

ARMSTRONG, LAWRENCE E.

Fluid-electrolyte losses in uniforms during prolonged exercise at 30 C

p 281 A92-39170

ARROTT, ANTHONY P.

Perception of film acceleration in weightlessness

p 279 A92-39136

ATKOV, O.

Cardiovascular disturbances induced by a 25 days spaceflight and a one month head down tilt

p 271 A92-39178

ATWELL, W.

Space Shuttle safety measurements with RME-III

p 268 A92-39158

AUMAN, J. W., JR.

Advanced regenerative life support system for space exploration

p 287 N92-25693

AUSSEDAT, J.

Effects of +Gz accelerations on the mechanical behavior of rat myocardium observed in isolated perfused heart

p 292 A92-39184

AYALA, F. J.

Genetic variation in resistance to ionizing radiation (DE29-00588)

p 265 N92-24683

BACKES, PAUL G.

Redundant arm control in a supervisory and shared control system

[AIAA PAPER 92-1578] p 284 A92-38660

Dual-arm supervisory and shared control space servicing task experiments

[AIAA PAPER 92-1677] p 285 A92-38735

BAISCH, F.

Classification of the free fluid reservoir in the cist by electrical impedance tomography

p 272 A92-39192

BAULIN, A. V.

Effects of a two-week space flight on osteoactive activity of bone matrix in white rats

p 264 A92-39200

BARAKOVA, M.

The effect of different gravity on the muscle composition in Japanese quail

p 261 A92-39169

BARKER, ROBERT S.

G180A modelling of Space Station Freedom's ECLSS

p 291 N92-25899

BARNES, P. R.

Effect of leg exercise training on vascular volumes during 30 days of 6 deg head-down bed rest

p 267 A92-37788

BATENSHIK-TUSCO, T. V.

About the great importance of venous blood circulation in the pathogenesis of spatial state disturbances in weightlessness

p 271 A92-39179

BATOV, NA.

Analysis of changes in the cardiac rhythm of human operators, using a model for successful and monotonous trackings of a target and in the case of unsuccessful tracking

p 273 A92-40625

BAUER, C. F.

A prototype closed aquaculture system for controlled ecological life support applications

p 282 A92-38161

BAUMGARTNER, J.

An endocrine response to short-term hypodynamic in Japanese quail selected for resistance to hypodynamic

p 261 A92-39168

BAYKUT, G.

A gas chromatographic separator for Columbus trace gas contamination monitoring assembly

p 289 N92-25664

BEIERL, PHILIP G.

Finite memory model for haptic recognition

[AIAA PAPER 92-1574] p 284 A92-38667

BEUCZY, ANTAL K.

Teleoperator performance in simulated Solar Maximum Satellite repair

[AIAA PAPER 92-1634] p 278 A92-38704

BELAVENSTEY, J. E.

A system for oxygen generation from water electrolysis aboard the manned Space Station Mir

p 290 N92-25889

BENARYEH, HANNA

Salivary secretion and seashell susceptibility

p 266 A92-37171

BENNETT, D. J.

Applied concepts for command and control human-computer interface for Space Station

[AIAA PAPER 92-1523] p 282 A92-38623

BERG, HANS E.

Muscle strength and endurance following lowertim

suspension in man

p 270 A92-39161

BERNARD, HERBERT F.

A visual display aid for planning rover traversals

[AIAA PAPER 92-1213] p 282 A92-38502

BERREBAUM, P. J.

Procedures of the Scientific Workshop on the Health Effects of Electric and Magnetic Fields on Workers

[AIAA PAPER 92-3127] p 275 N92-25435

BIODEAU, JAMES W.

Space Station Freedom flight crew integration ground rules and constraints

[AIAA PAPER 92-1634] p 278 A92-38704

BINOT, R. A.

ESA PPS-03-406: Life support and habitability manual

p 288 N92-25543

BIZZOLLO, CH. A.

Is ANF implied in the improvement of orthostatic tolerance during head-down bed rest?

p 269 A92-39153

BLACKMAN, HAROLD S.

Assessing human reliability in space - What is known, what still is needed

[AIAA PAPER 92-1532] p 278 A92-38631

BLUMA, R. K.

Adrenergic regulation and membrane status in humans during head-down hypokinesia (HDT)

p 285 A92-39153

BOCA, A.

Dietary histochemical reactions in rats after space flight of different duration

p 260 A92-39159

BODA, K.

Embryonic development of Japanese quail under microgravity conditions

p 256 A92-39141

An endocrine response to short-term hypodynamic in Japanese quail selected for resistance to hypodynamic

p 261 A92-39168
KIRBY, CHRISTOPHER
Mechanisms of accelerated proteolysis in rat soleus muscle atrophy induced by unweighting or denervation
p 269 A92-39190

KIRKOOVA, S. A.
About the great importance of venous blood circulation in the pathogenesis of spaceman state disturbances in weightlessness
p 271 A92-39179

KIRK, ALEX
Requirements for psychological models to support design: Towards ecological task analysis (NASA-CR-190334)
[280 NE2-25732]

KILMIDOV, V. I.
Investigation of heart rate and body temperature dynamics during a 14 days spaceflight experiment "Cosmos 2044"
[262 A92-39177]

KLINGELE, S.
Examination of eye movements under immersion
[272 A92-39209]

KNOTT, W. M.
Developing future plant experiments for spaceflight
[256 A92-39169]

KORZEV, E. A.
About the great importance of venous blood circulation in the pathogenesis of spaceman state disturbances in weightlessness
[271 A92-39179]

KOKOVA, N.
Cardiovascular disturbances induced by a 25 days spaceflight and a one month head down tilt
[271 A92-39178]

KOLLANDER, G.
Tolerance to +Gz gravitational stress by subjects of elder age groups with different health state
[269 A92-39151]

KOLLER, M. S.
A prototype closed aquaculture system for controlled ecological life support applications
[282 A92-39161]

KONTROCHUK, A. V.
Mathematical simulation of the gravity receptor
[265 A92-39206]

KONSTANTINOVA, I. V.
Cellular immunity and lymphokine production during spaceflights
[258 A92-39129]

KOONCE, JEFFERSON M.
Simulator scene detail and visual augmentation guidance in landing training for beginning pilots
[SAE PAPER 912099]
[280 A92-39956]

KORIAK, I. A.
Influence of antishockbed rest (ABR) on functional properties of neuromuscular system in man
[270 A92-39162]

KORNILLOVA, L. N.
Pathogenesis of sensory disorders in microgravity
[269 A92-39135]

KORUSKII, L. B.
Examination of eye movements under immersion
[272 A92-39209]

KOROLOKV, V. I.
The monkey in space flight
[258 A92-39138]

Investigation of heart rate and body temperature dynamics during a 14 days spaceflight experiment "Cosmos 2044"
[286 A92-39191]

KOROLEV, V. P.
A system for oxygen generation from water electrolysis
[272 A92-39207]

KOSUGI, KAZUO
Influences of antishockbed rest (ABR) on functional properties of neuromuscular system in man
[269 A92-39162]

KOSUGI, KAZUO
Pathogenesis of sensory disorders in microgravity
[270 A92-39162]

KOSUTA, K.
Cardiovascular disturbances induced by a 25 days spaceflight and a one month head down tilt
[271 A92-39178]

KOSYNKA, I. B.
Medical results of the Mir year-long mission
[269 A92-39137]

KOUW, F. W.
Influence of antishockbed rest (ABR) on functional properties of neuromuscular system in man
[269 A92-39162]

KOVACH, M. J.
Simulation of the effect of microgravity on the human body by its prolonged rotation about the horizontal located long axis
[273 A92-39121]

KRAJEC, I.
Hyperonadrogenic syndrome of weightlessness - its manifestations in mammals and possible mechanism
[273 A92-39210]

KRAUSS, V.
Blood and bone marrow of rats born and grown under hypogravity
[264 A92-39173]

KRASNOV, I. B.
Morphological changes in the spinal cord and intervertebral ganglia of rats exposed to different gravity levels
[264 A92-39195]

KRAVCHENKO, S. G.
High-altitude adaptation and physical work capacity
[274 A92-40575]

KRIEDEMANN, U., V.
Sensory interaction and methods of non-medical prophylaxis of space motion sickness
[273 A92-39210]

KRUTCHEN, D. A.
Absolute calibration of in vivo measurement systems using magnetic resonance imaging and Monte Carlo computations
[DE92-005253] [275 A92-25046]

KUBASOV, V. N.
Engineering problems of integrated life support systems
[258 A92-25840]

KUDRIN, V. B.
Effects of a two-week space flight on osteoinductive activity of bone matrix in white rats
[294 A92-39200]

KUMEI, YASUHIRO
Assembly of a medical instrument for monitoring of microgravity in biological systems
[259 A92-39151]

KUHN, H.
Mathematical simulation of the gravity receptor
[265 A92-39206]

KUHLE, O.
Central hemodynamics of the anti-G straining maneuver
[257 A92-39131]

KULAGA, J.
Hematology and biochemical findings of Spacelab 1 flight
[256 A92-39156]

KULAK, V. M.
Protection of Chinese medicine CWJ against +Gz gravitational stress by subjects of elder age groups with different health state
[269 A92-39151]

KULAK, V. M.
Hematology and biochemical findings of Spacelab 1 flight
[257 A92-39147]

KULYK, A.
Simulation of the effect of microgravity on the human body by its prolonged rotation about the horizontal located long axis
[273 A92-39121]

KUMAR, S.
A study for oxygen generation from water electrolysis
[272 A92-39207]

KUMILOVA, D.
An endocrine response to short-term hypodynamy in Japanese quail selected for resistance to hypodynamy
[261 A92-39168]

KUMITZ, LAWRENCE H.
Space suits and life support systems for the exploration of Mars
[259 A92-39580]

LAKOTA, N. G.
Gravitational aspects of thermoregulation and aerobic work capacity
[258 A92-39134]

LAMBERTH, JOHN G.
Tyrosine and its potential use as a countermeasure to deconditioning in space
[277 A92-39173]

LAMOSA, D.
An endocrine response to short-term hypodynamy in Japanese quail selected for resistance to hypodynamy
[261 A92-39168]

LANDETZEL, T.
The space robot technology experiment RETOX on spacestation-02
[AIAA PAPER 92-12945]
[282 A92-38491]

LANE, HELEN W.
Reduced energy intake and moderate exercise reduce weightlessness
[269 A92-39195]

LEACH, CAROLYN S.
Bone marrow of rats born and grown under hypogravity
[264 A92-39173]

LECH, REINER
Electromagnetic imaging of dynamic brain activity
[DE92-005017] [274 A92-24672]

LEBRU, A.
Breadboarding of the main charcoal filter: A component of the trace gas control system for the Columbus module
[257 A92-25481]

LÉONARD, J.
Blood and bone marrow of rats born and grown under hypogravity
[264 A92-39173]

LEPPE, A.
A computer-aided aptitude test for predicting flight performance of trainees
[277 A92-37476]

LETOMRA, J. M.
Dynamic and static exercises in the countermeasure programmes for musculo-skeletal and cardiovascular conditioning in space
[270 A92-39164]

LEVINA, V.
Tolerance to +Gz gravitational stress by subjects of elder age groups with different health state
[269 A92-39151]

LEMAY, R.
Ligation of fistulas in young plant seedlings grown on earth and aboard the Space Shuttle
[281 A92-38156]

LEPO Civic, A.
Hydrostatic factors affect the gravity responses of algea and roots
[259 A92-39146]

LEPOCHON, J. C.
ESA standardisation process through the example of manned spacecraft atmospheres
[288 NE2-25842]

LEPPARD, C. J.
Air purification systems for submarines and their relevance to spacecraft
[290 A92-25892]

LESKIAT, A.
Cellular immunity and lymphokine production during spaceflights
[256 A92-39139]

LETZFELD, D.
Central hemodynamics of the anti-G straining maneuver
[257 A92-39131]

LEWINE, J.
Electromagnetic imaging of dynamic brain activity
[DE92-005017] [274 A92-24672]

LEWIS, NORMAN G.
Research in molecular biology - Realizing the potential of gravity in biological systems
[AIAA PAPER 92-12347] [257 A92-38522]

LEWIS, P.
Electromagnetic imaging of dynamic brain activity
[DE92-005017] [274 A92-24672]

LENZHA, G. G.
Simulation of the effect of microgravity on the human body by its prolonged rotation about the horizontal located long axis
[273 A92-39212]

LIDANDAN, A.
Protection of Chinese medicine CWJ against suspension-induced bone-loss in rats
[264 A92-39201]

LILIANA, M.
Protection of Chinese medicine CWJ against suspension-induced bone-loss in rats
[264 A92-39201]

LILIANA, M.
Protection of Chinese medicine CWJ against suspension-induced bone-loss in rats
[264 A92-39201]

LILIANA, M.
Protection of Chinese medicine CWJ against suspension-induced bone-loss in rats
[264 A92-39201]

LILIANA, M.
Protection of Chinese medicine CWJ against suspension-induced bone-loss in rats
[264 A92-39201]
LINDE-HOMMES, ASTRID

LINDE-HOMMES, ASTRID
Changes in ion channel properties related to gravity
p 259 A92-39145

LINTERN, GAVAN
Simulator scene detail and visual augmentation guidance in landing training for beginning pilots
[SAE PAPER 91-2099] p 280 A92-39956

LITVINOV, L. E.
Air regeneration from microorganisms aboard the orbital Space Station
p 290 N2-25891

LIU, GUANGYUAN
Age-dependency of sympathetic nerve response to gravity in humans
p 270 A92-39116

MONAOUCHEM I, DAVID
Sensor data display for teleorbital systems
p 282 A92-38299
Autonomous robotic systems for SEI tasks
p 285 A92-39509

MARGULIS, V. I.
Air regeneration from microorganisms aboard the orbital Space Station
p 290 N2-25891

MARIE, P. J.
Receptor-ligand binding on osteoblasts in microgravity obtained by parabolic flight
p 259 A92-39149

MARTIN, T. W.
Air purification systems for submarines and their relevance to spacecraft
p 290 N2-25892

MATSNEV, E. I.
Simulation of the effect of microgravity on the human body and its prolonged rotation about the horizontal located long axis
p 273 A92-39122

MAUCER, A. J.
Autonomous robotic systems for SEI tasks
p 285 A92-39509

MEKAVICH, I. B.
Interaction of the carotid baroreflex, the muscle chemoreflex and the cardio-pulmonary baroreflex in man during exercise
p 270 A92-39165

MELENKOV, G. I.
Embryonic development of Japanese quail under microgravity conditions
p 258 A92-39141

MERFELD, DANIEL M.
Perception of linear acceleration in weightlessness
p 279 A92-39136

MILES, T. W.
Role of gravity in growth processes of plants
[ISSN 5-02-004731-7] p 253 A92-36610

MILBURN, V. L.
Effect of repeated loads and metabolic intensity on reparative-destructive processes in bone
p 272 A92-39197

MILNICHENKO, V. P.
Embryonic development of Japanese quail under microgravity conditions
p 258 A92-39141

MISTKOVIC, I. B.
Utilization of common pressurized modules on the Space Station Freedom
p 286 A92-39539

MIZUKAMI, DEAN M.
Human factors in the flight on board 'Cosmos-2044' biosatellite
p 262 A92-39165

MOKOR, T. W.
Space research on organs and tissues
p 270 A92-39165

MONTANO, J.
Effect of repeated loads and metabolic intensity on reparative-destructive processes in bone
p 272 A92-39197

MORGAN, B. C.
Monochromatic computed tomography of the human brain using synchrotron x rays: Technical feasibility
[DE92-007143] p 275 N2-25881

MORI, K. M.
Tyrosine and its potential use as a countermeasure to performance decrement in military sustained operations
p 284 A92-38688

MORIYAMA, T.
Effect of breakfast on selected serum and cardiovascular variables
p 277 A92-37173

MORIS, P. J.
Measurement in space medicine
p 273 A92-39214

MORUSCHAK, J. V.
Influences of simulated microgravity and hypergravity on immune functions in animals
p 260 A92-38520

MOSHER, J.
Crew training for psycho-socio adaptation to long duration missions
[AIAA PAPER 92-1627] p 278 A92-38700

MOYER, R. H.
Carbon dioxide reduction aboard the Space Station
p 290 N2-25881

MRCHUK, B. C.
Carbon dioxide reduction aboard the Space Station
p 290 N2-25881

MSCHERIAKOVA, K. P.
Neuroendocrine indicators of high-altitude adaptation efficiency in humans
p 274 A92-40756

MURAKAMI, DEAN M.
Brain hemodynamics during a 14 days spaceflight experiment 'Cosmos-2044' biosatellite
p 262 A92-39165

MURAKAMI, TADAAKI.
Functional properties of soleus and EDL muscles after recovery from 10 days of hindlimb suspension
p 262 A92-39197

MUKHIN, V. IU.
Investigation of heart rate and body temperature control system
p 290 N2-25892

MUKHIN, V. IU.
Investigation of heart rate and body temperature control system
p 290 N2-25892

MUMOLA, W.
Negative pressure chamber for night time in space
p 258 A92-39138

MUNAR, D. V.
Oscilloscope/latency USG measurement in space medicine
p 273 A92-39214

MUNNY, D. V.
Hyperbaric environment testing for a non-invasive continuous blood pressure measurement in space medicine
p 273 A92-39214

MURAKAMI, DEAN M.
Carbon dioxide reduction aboard the Space Station
p 290 N2-25881

MURAKAMI, TADAAKI.
Functional properties of soleus and EDL muscles after recovery from 10 days of hindlimb suspension
p 262 A92-39197

MURPHY, R. A.
Mathematical modeling of control subsystems for CELSS Application to diet
p 290 N2-25893

MURID, J.
Measurement in space medicine
p 273 A92-39214

MURAKAMI, TADAAKI.
Functional properties of soleus and EDL muscles after recovery from 10 days of hindlimb suspension
p 262 A92-39197

MURAKAMI, TADAAKI.
Functional properties of soleus and EDL muscles after recovery from 10 days of hindlimb suspension
p 262 A92-39197

MURAKAMI, TADAAKI.
Functional properties of soleus and EDL muscles after recovery from 10 days of hindlimb suspension
p 262 A92-39197
WIKER, STEVEN F.
Grasp force control in telemanipulation
[AIAA PAPER 92-1453] p 283 A92-38581

WILSON, M. E.
Chemical and microbiological experimentation for development of environmental control and life support systems
[AIAA PAPER 92-1606] p 284 A92-38687

WITT, J.
Selection of an optimised high temperature catalyst for atmosphere trace contaminant control
p 289 N92-25865

WŁAŻKA, MICHAŁ
Multi-cultural considerations for Space Station training and operations
[AIAA PAPER 92-1624] p 278 A92-38667

WOJTCZAK, MICHAŁ
Human centrifuge training of men with lowered +Gz acceleration tolerance
p 269 A92-39150

WOLSTEIN, S. A.
Applied concepts for command and control human-computer interface for Space Station
[AIAA PAPER 92-1523] p 283 A92-38623

WORKMAN, G. L.
Control of robot dynamics using acceleration control
[AIAA PAPER 92-1573] p 283 A92-38666

WU, C. M.
Autonomous robotic systems for SEI tasks
p 285 A92-39509

X

XIAO, HUA J.
Physiological response to pressure breathing with a capstan counter pressure vest
p 274 A92-40931

XIE, BAOSHENG
Effect of +Gy stress on psychophysiological parameters and tracking performance in humans
p 279 A92-39152

XU, HUA YING
Effect of +Gy stress on psychophysiological parameters and tracking performance in humans
p 279 A92-39152

XU, ZHEN YONG
Effect of +Gy stress on psychophysiological parameters and tracking performance in humans
p 279 A92-39152

XUE, YUE YING
Effect of +Gy stress on psychophysiological parameters and tracking performance in humans
p 279 A92-39152

Y

YANG, GUAN QIU
Influences of simulated microgravity and hypergravity on the immune functions in animals
p 260 A92-39157

YOKOZAWA, K.
Cardiovascular responses to oxygen uptake during exercise in axillaris water immersion
p 271 A92-39182

Comparison of cardiovascular responses during post-exercise in axillaris water immersion
p 271 A92-39182

YOUMANS, JULIAN R.
Gravitational fields and aging
p 268 A92-39130

YOUNG, LAURENCE R.
Perception of linear acceleration in weightlessness
p 279 A92-39136
Listings in this index are arranged alphabetically by corporate source. The title of the document is used to provide a brief description of the subject matter. The page number and the accession number are included in each entry to assist the user in locating the abstract in the abstract section. If applicable, a report number is also included as an aid in identifying the document.

A

Adelaide Children's Hospital, North Adelaide
(Australia)

Correlation of physical and genetic maps of human chromosome 16 [DE92-007547] p 276 N92-25743

Aer Research Mfg. Co., Torrance, CA.

Development of a Saturator carbon dioxide reduction system for space application [p 290 N92-25680

Ai Research S.p.A., Turin (Italy).

A combined cabin/avionics air loop design for the Space Station logistics module [p 288 N92-25841

Appied Sciences Consultants, Inc., San Jose, CA.

Mathemtical modeling of control subsystems for CELSS: Application to diet p 290 N92-25893

Boeing Aerospace Co., Huntsville, AL.

G189A modeling of Space Station Freedom's ECLSS p 291 N92-25699

Brookhaven National Lab., Upton, NY.

Medical applications of synchrotron radiation [DE92-009041] p 275 N92-25045

A survey of medical diagnostic imaging technologies [DE92-007633] p 276 N92-25989

Computer-based diagnostic monitoring to enhance the humanmachine interface of complex processes [DE92-011545] p 291 N92-26025

Brown Univ., Providence, RI.

Mechanical stimulation of skeletal muscle generates lipid-related second messengers by phospholipase activation [NASA-CR-190158] p 276 N92-26030

C

California Univ., Berkeley, Lawrence Berkeley Lab.

Air exchange effectiveness of conventional and task ventilation for offices [DE92-008291] p 267 N92-24293

California Institute, Irvine.

Genetic variation in resistance to ionizing radiation [DE92-005586] p 265 N92-24683

CUB Development Ltd., Portsmouth (England).

Air purification systems for submarines and their relevance to spacecraft p 290 N92-25892

Colorado Univ., Boulder.

The cDNA expression map of the human genome: Methods development and applications using brain cDNA [DE92-005520] p 275 N92-25422

Dorner System G.m.b.H., Friedrichshafen (Germany, F.R.)

European ECLSS technology development results and further activities [p 287 N92-25638

Trace gas contamination management in the Columbus MTFF [p 288 N92-25862

Trace gas monitoring strategies for manned space missions [p 269 N92-25698

SIMTAS: Thermo- and fluidodynamic simulation of complex systems [p 291 N92-25896

Draegerwerk A.G., Luebeck (Germany, F.R.)

Investigation of catalysts for the removal of carbon monoxide and hydrogen from air [p 290 N92-25866

Breadboarding of the main charcoal filter: A component of the trace gas contamination control assembly for the MTFF [p 269 N92-25687

Emperadores Agrupados, Madrid (Spain).

ECCOSIM: An environmental control simulation software [p 291 N92-25894

Erno Raumfahrtechnik G.m.b.H., Bremen (Germany, F.R.)

Trace Gas Contamination Control (TGCC) analysis software for Columbus [p 261 N92-25695

European Space Agency, European Space Research and Technology Center, ESTEC, Noordwijk (Netherlands).

ESA standardisation process through the example of manned spacecraft atmospheres [p 288 N92-25642

An innovative technology for detecting and monitoring trace-gas contamination of the Columbus Free Flyer atmosphere [p 269 N92-25693

Selection of an optimised high temperature catalyst for atmospheric trace contaminant control [p 269 N92-25685

Georgia Inst. of Tech., Atlanta.

Requirements for psychological models to support design: Towards ecological task analysis [NASA-CR-190034] p 280 N92-25732

H

Hamilton Standard, Windsor Locks, CT.

Advanced regenerative life support for space exploration [p 267 N92-25893

I

Idaho Univ., Moscow.

Exercise/recreation facility for a Lunar or Mars analog [NASA-CR-189993 p 287 N92-25161

J

Jet Propulsion Lab., California Inst. of Tech., Pasadena.

Redundant arm control in a supervisory and shared control system [AIAA PAPER 92-1578] p 284 A92-38669

Dual-arm supervisory and shared control space servicing task experiments [AIAA PAPER 92-1677] p 285 A92-38735

K

Lawrence Livermore National Lab., CA.

Absolute calibration of in vivo measurement systems using magnetic resonance imaging and Monte Carlo computations [DE92-005253] p 275 N92-25046

Los Alamos National Lab., NM.

Electromagnetic imaging of dynamic brain activity [DE92-005617] p 274 N92-24762

Laser-induced contained-vaporization in tissue [DE92-00646] p 276 N92-25993

M

Maryland Univ., College Park.

Active and passive calcium transport systems in plant cells [DE92-005469] p 286 N92-25047

Mieriam Hospital, Providence, RI.

Mechanical stimulation of skeletal muscle generates lipid-related second messengers by phospholipase activation [NASA-CR-190158] p 276 N92-26030

Mount Sinai School of Medicine, New York, NY.

Molecular mechanisms in radiation damage to DNA [DE92-006798] p 275 N92-24899

N

National Aeronautics and Space Administration, Washington, DC.

Gravitropism in higher plant shoots. I - A role for ethylene [p 285 A92-38103

Gravitropism in higher plant shoots. IV - Further studies on participation of ethylene [p 254 A92-38104

Interpreting plant responses to climatosat 1 - Mechanical stresses and ethylene [p 254 A92-38105

Dexamethasone effects on creatine kinase activity and insulin-like growth factor receptors in cultured muscle cells [p 255 A92-38108

Characterization of atrial natriuretic peptide receptors in brain microvesSEL endothelial cells [p 255 A92-38109

Hypergravity signal transduction in Hela cells with concomitant phosphorylation of proteins immunoprecipitated with anti-microtubule-associated protein antibodies [p 255 A92-38116

Immunoreactive prohormone atrial natriuretic peptides 1-30 and 31-67 - Existence of a single circulating amino-terminal peptide [p 262 A92-38118

C-1
FOREIGN TECHNOLOGY INDEX

AEROSPACE MEDICINE AND BIOLOGY / A Continuing Bibliography (Supplement 366)

September 1992

Typical Foreign Technology Index Listing

<table>
<thead>
<tr>
<th>COUNTRY OF INTELLECTUAL ORIGIN</th>
<th>TITLE</th>
<th>PAGE NUMBER</th>
<th>ACCESSION NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>CANADA</td>
<td>Effects of muscle glycogen and plasma FFA availability on human metabolic responses in cold water</td>
<td>p 3 A92-10352</td>
<td></td>
</tr>
</tbody>
</table>

Listings in this index are arranged alphabetically by country of intellectual origin. The title of the document is used to provide a brief description of the subject matter. The page number and the accession number are included in each entry to assist the user in locating the citation in the abstract section. If applicable, a report number is also included as an aid in identifying the document.

A

AUSTRALIA

- Correlation of physical and genetic maps of human chromosome 16 (DES92-00754T)
 - p 276 N92-25743

AUSTRIA

- Carbon dioxide reduction system as part of an air revitalization system
 - p 289 N92-25887

BELGIUM

- Self-splicing introns in tRNA genes of widely divergent bacteria
 - p 257 A92-38779

CANADA

- Interaction of the carotid baroreflex, the muscle chemoreflex and the cardiopulmonary baroreflex in man during exercise
 - p 270 A92-39165

CHINA, PEOPLE'S REPUBLIC OF

- Cochlear degeneration in guinea pigs after repeated hyperbaric exposures
 - p 253 A92-37172
- Effect of +Gx stress on psychophysiological parameters and tracking performance in humans
 - p 279 A92-39152
- Influences of simulated microgravity and hypergravity on the immune functions in animals
 - p 260 A92-39157
- Protection of Chinese medicine CWJ against suspension-induced bone-loss in rats
 - p 264 A92-39201
- Physiological response to pressure breathing with a caisson counter pressure vest
 - p 274 A92-40693

CZECHOSLOVAKIA

- Embryonic development of Japanese quail under microgravity conditions
 - p 258 A92-39141

DENMARK

- Peripheral and central blood flow in man during cold, thermoneutral, and hot water immersion
 - p 266 A92-37169

FRANCE

- Ca2+ movements in sarcoplasmic reticulum of rat soleus fibers after hindlimb suspension
 - p 254 A92-37784
- France/United States space facility for Rheas experiments
 - p 258 A92-39133
- Receptor-ligand binding on osteoblasts in microgravity obtained by parabolic flight
 - p 259 A92-39143
- ANF implied in the improvement of orthostatic tolerance during head-down rest bed?
 - p 269 A92-39153
- Cardiovascular disturbances induced by a 25 days spaceflight and a one month head down tilt deconditioning
 - p 271 A92-39178
- Cardiac hemodynamics and orthostatic stress - Influence of different types of physical training
 - p 271 A92-39180
- Effects of +Gz accelerations on the mechanical behavior of rat myocardium observed in isolated perfused heart
 - p 262 A92-39184
- Modelling changes in mechanical constraints of left ventricular myocardium (diastolic phase) under +Gz acceleration
 - p 262 A92-39185
- Functional properties of soleus and EDL muscles after weightlessness
 - p 263 A92-39188
- Preliminary results of the influence of direct stimulation on the mechanical properties of the soleus muscle of rats during hindlimb suspension
 - p 263 A92-39191
- Rat and monkey bone study in the Biosatmos 2044 space experiment
 - p 264 A92-39198
- Problems experienced by man when constructing giant structures in space
 - p 286 A92-40438

GERMANY, FEDERAL REPUBLIC OF

- The space robot technology experiment ROTEX on spacelab-D2
 - [AIAA PAPER 92-1294] p 282 A92-38491
- Multi-cultural considerations for Space Station training and operations
 - [AIAA PAPER 92-1624] p 278 A92-38697
- Changes in ion channel properties related to gravity
 - p 259 A92-39145
- Classification of the free fluid reservoir in the calf by electrical impedance tomography
 - p 272 A92-39102
- The vestibular experiment in the Juno mission
 - p 272 A92-39208
- Cosmic ray modification of organic cometary matter as simulated by cyclotron irradiation
 - p 282 A92-38422
- A robot based concept for automation and servicing of scientific payloads aboard orbiting laboratories
 - p 266 A92-39640

European ECLSS technology development results and further activities
- p 287 N92-25858
- Trace gas contamination management in the Columbus MTF
 - p 288 N92-25862
- A gas chromatographic separator for Columbus trace gas contamination monitoring assembly
 - p 289 N92-25864
- Investigation of catalysts for the removal of carbon monoxide and hydrogen from air
 - p 289 N92-25866
- Breadboarding of the main charcoal filter: A component of the trace gas contamination control assembly for the MTF
 - p 289 N92-25867
- Trace gas monitoring strategies for manned space missions
 - p 289 N92-25868
- Trace Gas Contamination Control (TGCC) analysis software for Columbus
 - p 291 A92-38695
- SIMTAS: Thermo- and fluiddynamic simulation of complex systems
 - p 291 N92-25896

HUNGARY

- Changes of lumbar vertebrae after Cosmos-1887 space flight
 - p 258 A92-39140
- FFT and amplitude spectrum evaluation of stiabograms on rats with respect to a consistent sensorimotor system of orientation control (SOC)
 - p 265 A92-39204

ISRAEL

- Self-rotation and seasickness susceptibility
 - p 266 A92-37171

ITALY

- Dynamic and static exercises in the countermeasures programmes for musculo-skeletal and cardiovascular conditioning in space
 - p 270 A92-39166
- A combined cabin/avionics air loop design for the Space Station logistic module
 - p 288 N92-25841

JAPAN

- Hypergravity signal transduction in HeLa cells with concomitant phosphorylation of proteins immunoprecipitated with anti-microtubule-associated protein antibodies
 - p 255 A92-38110
- Effect of long-term hindlimb suspension on blood components
 - p 260 A92-39155
- Age-dependency of sympathetic nerve response to gravity in humans
 - p 270 A92-39166
- Cardiovascular responses to oxygen uptake during exercise in axialia water immersion
 - p 271 A92-39182
- Comparison of cardiovascular responses during post-exercise between pedaling exercise exposed to -50 mm Hg LBNP and knee bend exercise
 - p 272 A92-39183
- Payload crew training in FUWATOMO 1992 (first material processing test) project
 - p 280 N92-25372

KOREA(SOUTH)

- A computer-aided aptitude test for predicting flight performance of trainees
 - p 277 A92-37476

LITHUANIA

- Role of gravity in growth processes of plants
 - [ISBN 5-02-004731-7] p 253 A92-36610

D-1
D-2

N

NETHERLANDS

In-vivo proton magnetic resonance spectroscopy: Evaluation of multiple quantum techniques for spectral editing and a time domain fitting procedure for quantification

[ETN-92-01283] p 275 N92-25024

ESA standardisation process through the example of manned spacecraft atmospheres p 298 N92-25642

An innovative technology for detecting and monitoring trace gases contamination of the Columbus Free Flyer atmosphere p 298 N92-25683

Selection of an optimised high temperature catalyst for atmosphere trace contaminant control

p 299 N92-25685

P

POLAND

Human centrifuge training of men with lowered -Gz acceleration tolerance p 269 A92-39150

R

ROMANIA (RUMANIA)

Digestive histochimical reactions in rats after space flight of different duration p 269 A92-39159

S

SPAIN

ECOSIM: An environmental control simulation software

p 291 N92-25689

SWEDEN

Muscle strength and endurance following lowerlimb suspension in man

p 270 A92-39161

U

U.S.S.R.

The effect of heliogeophysical factors on an organism - Statistics of transport incidents and the problem of their prediction

The design principles and functioning of an automated information system for estimating the preflight work capacity of operators

Basic characteristics of low-frequency electromagnetobiology

[ISBN 5-7511-0075-1] p 253 A92-36595

Role of opioid peptides in the regulation of homoefficiency

Hyponoradrenergic syndrome of weightlessness - Its manifestations in mammals and possible mechanism

p 257 A92-39131

Gravitational aspects of thermoregulation and aerobic work capacity

p 268 A92-39134

Pathogenesis of sensory disorders in microgravity

p 269 A92-39125

Medical results of the 2nd long-duration flight

p 269 A92-39137

The monkey in space flight

p 258 A92-39138

Cellular immunity and lymphokine production during spaceflights

p 258 A92-39139

Physiological mechanisms of cell adaptation to microgravity

p 258 A92-39142

Adrenergic regulation and membrane status in humans during head-down hypokinesia (HDT)

p 269 A92-39144

Gravitational biology experiments aboard the biosatellites 'Cosmos No. 1887' and 'Cosmos-2044'

p 269 A92-39144

Tolerance to -Gz gravitational stress by subjects of elder age groups with different health state

p 269 A92-39149

Protein composition in human plasma after long-term orbital missions and in rodent plasma after spaceflights on biosatellites 'Cosmos-1887' and 'Cosmos-2044'

p 260 A92-39156

Evaluation of energy metabolism in cosmonauts

p 270 A92-39158

Influences of antithrombotic bed rest (ABR) on functional properties of neuromuscular system in man

p 270 A92-39162

The role of central neurochemical mechanisms in regulation of posture adjustment and voluntary movement components in the dogs

p 260 A92-39163

Hypergravit and development of mammals

p 261 A92-39167

Functional morphology of pituitary in rats developed under increased weightness and relatively decreased weightness

p 261 A92-39171

Blood and bone marrow of rats born and grown under hypergravit

p 261 A92-39172

The microgravity effect on a repair process in M. soleus of the rats flown on Cosmos-2044

p 261 A92-39173

Studies of circadian rhythms in space flight - Some results and prospects

p 252 A92-39175

Investigation of heart rate and body temperature dynamics during a 14 days spaceflight experiment 'Cosmos 2044'

p 252 A92-39177

About the great importance of venous blood circulation in the pathogenesis of spaceman state disturbances in weightlessness

p 271 A92-39179

Physiological characteristics of rat skeletal muscles after the flight on board "Cosmos-2044" biosatellite

p 262 A92-39189

Ultrastructural characteristics of plastic changes in the brain cortex of rats exposed to space flight

p 264 A92-39194

Morphological changes in the spinal cord and intervertebral ganglia of rats exposed to different gravity levels

p 264 A92-39195

The effect of repeated loads and metabolic intensity on reparative-destructive processes in spine

p 272 A92-39197

The effect of microgravity on bone fracture healing in rats flown on Cosmos-2044

p 264 A92-39199

Effects of a two-week space flight on osteoconductive activity of bone matrix in white rats

p 264 A92-39200

Functional and adaptive changes in the vestibular apparatus in space flight

p 265 A92-39202

The otolith apparatus and cerebellar nodulus in rats developed under 2-Gz gravity

p 265 A92-39203

Mathematical simulation of the gravity receptor

p 265 A92-39206

Examination of eye movements under immersion

p 272 A92-39209

Sensory interaction and methods of non-medical prophylaxis of space motion sickness

p 273 A92-39210

Simulation of the effect of microgravity on the human body by its prolonged rotation on the horizontal located long axis

p 273 A92-39212

Disturbances in cerebral hemodynamics in acute mountain sickness

p 273 A92-40624

Analysis of changes in the cardiac rhythm of human operators, using a model for successful and monotonous trackings of a target and in the case of unsuccessful tracking

p 273 A92-40625

Use of training simulators for diagnosing functional disorders and for restoration of pilots' work capacity

p 280 A92-40751

The characteristics of adaptation of operators to sleep deprivation - The analysis of the dynamics of the brain biopotentials and of behavioral parameters

p 280 A92-40752

A study of the mechanisms regulating the state of operators engaged in continuous activity, using a method that registers forestalling lateral eye movements

p 274 A92-40753

An analysis of scales used for measuring galvanic skin responses in humans

p 274 A92-40754

High-altitude adaptation and physical work capacity

p 274 A92-40755

Neurodynamic indicators of high-altitude adaptation efficiency in humans

p 274 A92-40756

The effect of fluoride supplement on adaptive reactions of the heart during exposures to cold

p 274 A92-40757

Engineering problems of integrated recuperative life-support systems

p 288 N92-25680

Carbon dioxide reduction aboard the Space Station

p 290 N92-25888

A system for oxygen generation from water electrolysis aboard the manned Space Station Mir

p 290 N92-25889

Air regeneration from microcontaminants aboard the orbital Space Station

p 290 N92-25891

UNITED KINGDOM

Pilot disembarkation as the most frequent cause of fatal, weather-related accidents in UK civil and general aviation

p 277 A92-39382

Flight safety - Human factors, the key to progress

p 265 A92-39206

ESA PSS-03-406: Life support and habitability manual

p 288 N92-25843

Air purification systems for submarines and their relevance to spacecraft

p 290 N92-25892
Typical Contract Number Index Listing

AF PROJ. 2312 .. p 4 N92-10280

CONTRACT NUMBER PAGE NUMBER ACCESSION NUMBER

Listings in this index are arranged alphabetically by contract number. Under each contract number, the accession numbers denoting documents that have been produced as a result of research done under the contract are shown. The accession number denotes the number by which the citation is identified in the abstract section. Preceding the accession number is the page number on which the citation may be found.
Typical Report Number Index Listing

<table>
<thead>
<tr>
<th>REPORT NUMBER</th>
<th>ACCESSION NUMBER</th>
<th>ON MICROFICHE</th>
</tr>
</thead>
<tbody>
<tr>
<td>NASA-CR-185447</td>
<td>p 14</td>
<td>N92-10282 *</td>
</tr>
</tbody>
</table>

Listings in this index are arranged alphabetically by report number. The page number indicates the page on which the citation is located. The accession number denotes the number by which the citation is identified. An asterisk (*) indicates that the item is a NASA report. A pound sign (#) indicates that the item is available on microfiche.

- **AD-A245342**
 - p 261 N92-26023 #
- **AD-A245745**
 - p 292 N92-26158 #
- **AIAA PAPER 92-1370**
 - p 256 A92-38476 * #
- **AIAA PAPER 92-1294**
 - p 284 A92-38491 #
- **AIAA PAPER 92-1311**
 - p 282 A92-38501 *
- **AIAA PAPER 92-1313**
 - p 282 A92-38502 *
- **AIAA PAPER 92-1316**
 - p 282 A92-38503 *
- **AIAA PAPER 92-1342**
 - p 256 A92-38517 *
- **AIAA PAPER 92-1343**
 - p 256 A92-38518 *
- **AIAA PAPER 92-1344**
 - p 256 A92-38519 *
- **AIAA PAPER 92-1345**
 - p 268 A92-38520 *
- **AIAA PAPER 92-1346**
 - p 256 A92-38521 *
- **AIAA PAPER 92-1347**
 - p 257 A92-38522 *
- **AIAA PAPER 92-1370**
 - p 268 A92-38536 *
- **AIAA PAPER 92-1451**
 - p 283 A92-38579 *
- **AIAA PAPER 92-1452**
 - p 283 A92-38580 *
- **AIAA PAPER 92-1453**
 - p 283 A92-38581 *
- **AIAA PAPER 92-1522**
 - p 283 A92-38622 *
- **AIAA PAPER 92-1523**
 - p 283 A92-38623 *
- **AIAA PAPER 92-1527**
 - p 277 A92-38626 *
- **AIAA PAPER 92-1531**
 - p 278 A92-38630 *
- **AIAA PAPER 92-1532**
 - p 278 A92-38631 *
- **AIAA PAPER 92-1573**
 - p 283 A92-38666 *
- **AIAA PAPER 92-1574**
 - p 284 A92-38667 *
- **AIAA PAPER 92-1575**
 - p 284 A92-38668 *
- **AIAA PAPER 92-1578**
 - p 284 A92-38669 *
- **AIAA PAPER 92-1604**
 - p 284 A92-38685 *
- **AIAA PAPER 92-1605**
 - p 284 A92-38686 *
- **AIAA PAPER 92-1606**
 - p 284 A92-38687 *
- **AIAA PAPER 92-1608**
 - p 284 A92-38688 *
- **AIAA PAPER 92-1624**
 - p 278 A92-38697 *
- **AIAA PAPER 92-1625**
 - p 278 A92-38698 *
- **AIAA PAPER 92-1627**
 - p 278 A92-38700 *
- **AIAA PAPER 92-1634**
 - p 278 A92-38704 *
- **AIAA PAPER 92-1636**
 - p 285 A92-38705 *
- **AIAA PAPER 92-1677**
 - s 285 A92-38735 *

- **BNL-45739**
 - p 276 N92-25989 *
- **BNL-46865**
 - p 275 N92-25045 *
- **BNL-47068**
 - p 275 N92-25481 *
- **BNL-47229**
 - p 291 N92-26025 *
- **CONF-9107136-9**
 - p 276 N92-25508 *
- **CONF-9107137-1**
 - p 287 N92-24293 *
- **CONF-9110146-5**
 - p 275 N92-25045 *
- **CONF-9110146-7**
 - p 275 N92-25481 *
- **CONF-911106-56**
 - p 274 N92-24672 *
- **CONF-920124-11**
 - p 276 N92-25993 *
- **CONF-920501-14**
 - p 275 N92-25046 *
- **CONF-920538-12**
 - p 291 N92-26025 *
- **DE92-0005017**
 - p 274 N92-24672 *
- **DE92-0005041**
 - p 275 N92-25045 *
- **DE92-0005203**
 - p 275 N92-25046 *
- **DOE/ER-60867/5**
 - p 275 N92-24899 *
- **DOE/ER-60883/3**
 - p 276 N92-23743 *
- **DOE/ER-61241/1**
 - p 275 N92-25422 *
- **DNHS/PUB/NIOSH-91-111**
 - p 275 N92-25435 *
- **ISBN 0-13-401050-7**
 - p 287 A92-40942
- **ISBN 5-7511-0075-1**
 - p 253 A92-36535
- **ISBN 5-7511-0105-0**
 - p 253 A92-36599
- **LA-UR-91-3870**
 - p 274 N92-24672 *
- **LA-UR-92-386**
 - p 276 N92-25993 *
- **LBNL-31652**
 - p 287 N92-24293 *
- **NASA-CR-185447**
 - p 281 N92-26023 #
- **NASA-CR-189992**
 - p 287 N92-25161 *
- **NASA-CR-190011**
 - p 287 N92-24793 *
- **NASA-CR-190158**
 - p 276 N92-25303 *
- **NASA-CR-190334**
 - p 280 N92-25732 *
- **NAVITASYS/NCAS-92-001**
 - p 292 N92-26158 *
- **NIH/PUB/NIOSH-91-111**
 - p 287 N92-25161 *
- **PB2-131721**
 - p 275 N92-25435 *
- **PB2-147834**
 - p 266 N92-26160 *
- **S-672**
 - p 285 N92-25993 *
- **SAE PAPER 912096**
 - p 279 A92-39953
- **SAE PAPER 912097**
 - p 279 A92-39954
- **SAE PAPER 912098**
 - p 280 A92-39955
- **SAE PAPER 912099**
 - p 280 A92-39956
- **SAE PAPER 912100**
 - p 280 A92-39957
- **SAE PAPER 912138**
 - p 273 A92-39976 *
- **SAE PAPER 912140**
 - p 280 A92-39979
- **UCRL-JC-106915**
 - p 275 N92-25046 #
AVAILABILITY OF CITED PUBLICATIONS

IAA ENTRIES (A92-10000 Series)

Publications announced in IAA are available from the AIAA Technical Information Service as follows: Paper copies of accessions are available at $10.00 per document (up to 50 pages), additional pages $0.25 each. Standing order microfiche are available at the rate of $1.45 per microfiche for IAA source documents and $1.75 per microfiche for AIAA meeting papers.

Minimum air-mail postage to foreign countries is $2.50. All foreign orders are shipped on payment of pro-forma invoices.

All inquiries and requests should be addressed to: Technical Information Service, American Institute of Aeronautics and Astronautics, 555 West 57th Street, New York, NY 10019. Please refer to the accession number when requesting publications.

STAR ENTRIES (N92-10000 Series)

One or more sources from which a document announced in STAR is available to the public is ordinarily given on the last line of the citation. The most commonly indicated sources and their acronyms or abbreviations are listed below. If the publication is available from a source other than those listed, *p. e publisher and his address will be displayed on the availability line or in combination with the corporate source line.

Avail: NTIS. Sold by the National Technical Information Service. Prices for hard copy (HC) and microfiche (MF) are indicated by a price code preceded by the letters HC or MF in the STAR citation. Current values for the price codes are given in the tables on NTIS PRICE SCHEDULES.

Documents on microfiche are designated by a pound sign (#) following the accession number. The pound sign is used without regard to the source or quality of the microfiche.

Initially distributed microfiche under the NTIS SRIM (Selected Research in Microfiche) is available at greatly reduced unit prices. For this service and for information concerning subscription to NASA printed reports, consult the NTIS Subscription Section, Springfield, VA 22161.

NOTE ON ORDERING DOCUMENTS: When ordering NASA publications (those followed by the * symbol), use the N accession number. NASA patent applications (only the specifications are offered) should be ordered by the US-Patent-Appl-SN number. Non-NASA publications (no asterisk) should be ordered by the AD, PB, or other report number shown on the last line of the citation, not by the N accession number. It is also advisable to cite the title and other bibliographic identification.

Avail: SOD (or GPO). Sold by the Superintendent of Documents, U.S. Government Printing Office, in hard copy. The current price and order number are given following the availability line. (NTIS will fill microfiche requests, as indicated above, for those documents identified by a # symbol.)
Avail: BLL (formerly NLL): British Library Lending Division, Boston Spa, Wetherby, Yorkshire, England. Photocopies available from this organization at the price shown. (If none is given, inquiry should be addressed to the BLL.)

Avail: DOE Depository Libraries. Organizations in U.S. cities and abroad that maintain collections of Department of Energy reports, usually in microfiche form, are listed in Energy Research Abstracts. Services available from the DOE and its depositories are described in a booklet, DOE Technical Information Center - Its Functions and Services (TID-4660), which may be obtained without charge from the DOE Technical Information Center.

Avail: ESDU. Pricing information on specific data, computer programs, and details on Engineering Sciences Data Unit (ESDU) topic categories can be obtained from ESDU International Ltd. Requesters in North America should use the Virginia address while all other requesters should use the London address, both of which are on the page titled ADDRESSES OF ORGANIZATIONS.

Avail: Fachinformationszentrum, Karlsruhe. Sold by the Fachinformationszentrum Energie, Physik, Mathematik GMBH, Eggenstein Leopoldshafen, Federal Republic of Germany, at the price shown in deutschmarks (DM).

Avail: HMSO. Publications of Her Majesty's Stationery Office are sold in the U.S. by Pendragon House, Inc. (PHI), Redwood City, CA. The U.S. price (including a service and mailing charge) is given, or a conversion table may be obtained from PHI.

Avail: NASA Public Document Rooms. Documents so indicated may be examined at or purchased from the National Aeronautics and Space Administration, Public Documents Room (Room 126), 600 Independence Ave., S.W., Washington, DC 20546, or public document rooms located at NASA installations, and the NASA Pasadena Office at the Jet Propulsion Laboratory.

Avail: Univ. Microfilms. Documents so indicated are dissertations selected from Dissertation Abstracts and are sold by University Microfilms as xerographic copy (HC) and microfilm. All requests should cite the author and the Order Number as they appear in the citation.

Avail: (US Sales Only). These foreign documents are available to users within the United States from the National Technical Information Service (NTIS). They are available to users outside the United States through the International Nuclear Information Service (INIS) representative in their country, or by applying directly to the issuing organization.

Avail: USGS. Originals of many reports from the U.S. Geological Survey, which may contain color illustrations, or otherwise may not have the quality of illustrations preserved in the microfiche or facsimile reproduction, may be examined by the public at the libraries of the USGS field offices whose addresses are listed in this Introduction. The libraries may be queried concerning the availability of specific documents and the possible utilization of local copying services, such as color reproduction.

Avail: Issuing Activity, or Corporate Author, or no indication of availability. Inquiries as to the availability of these documents should be addressed to the organization shown in the citation as the corporate author of the document.
FEDERAL DEPOSITORY LIBRARY PROGRAM
In order to provide the general public with greater access to U.S. Government publications, Congress established the Federal Depository Library Program under the Government Printing Office (GPO), with 53 regional depositories responsible for permanent retention of material, inter-library loan, and reference services. At least one copy of nearly every NASA and NASA-sponsored publication, either in printed or microfiche format, is received and retained by the 53 regional depositories. A list of the regional GPO libraries, arranged alphabetically by state, appears on the inside back cover. These libraries are not sales outlets. A local library can contact a Regional Depository to help locate specific reports, or direct contact may be made by an individual.

PUBLIC COLLECTION OF NASA DOCUMENTS
An extensive collection of NASA and NASA-sponsored publications is maintained by the British Library Lending Division, Boston Spa, Wetherby, Yorkshire, England for public access. The British Library Lending Division also has available many of the non-NASA publications cited in STAR. European requesters may purchase facsimile copy or microfiche of NASA and NASA-sponsored documents, those identified by both the symbols # and ’ from ESA — Information Retrieval Service European Space Agency, 8-10 rue Mario-Nikis, 75738 CEDEX 15, France.

STANDING ORDER SUBSCRIPTIONS
NASA SP-7011 supplements and annual index are available from the National Technical Information Service (NTIS) on standing order subscription as PB92-912300, at price code A03. Current values for the price codes are listed on page APP-5. Standing order subscriptions do not terminate at the end of a year, as do regular subscriptions, but continue indefinitely unless specifically terminated by the subscriber. Questions on the availability of the predecessor publications, Aerospace Medicine and Biology (Volumes I-XI), should be directed to NTIS.
ADDRESSSES OF ORGANIZATIONS

American Institute of Aeronautics and Astronautics
Technical Information Service
555 West 57th Street, 12th Floor
New York, New York 10019

British Library Lending Division,
Boston Spa, Wetherby, Yorkshire,
England

Commissioner of Patents and Trademarks
U.S. Patent and Trademark Office
Washington, DC 20231

Department of Energy
Technical Information Center
P.O. Box 62
Oak Ridge, Tennessee 37830

European Space Agency-Information Retrieval Service
ESRIN
Via Galileo Galilei
00044 Frascati (Rome) Italy

Engineering Sciences Data Unit International
P.O. Box 1633
Manassas, Virginia 22110

Engineering Sciences Data Unit International, Ltd.
251-259 Regent Street
London, W1R 7AD, England

Fachinformationszentrum Energie, Physik, Mathematik
GMBH
7514 Eggenstein Leopoldshafen
Federal Republic of Germany

Her Majesty's Stationery Office
P.O. Box 569, S.E. 1
London, England

NASA Center for AeroSpace Information
P.O. Box 8757
Baltimore, MD 21240-0757

National Aeronautics and Space Administration
Scientific and Technical Information Program (JTT)
Washington, DC 20546

National Technical Information Service
5285 Port Royal Road
Springfield, Virginia 22161

Pendragon House, Inc.
899 Broadway Avenue
Redwood City, California 94063

Superintendent of Documents
U.S. Government Printing Office
Washington, DC 20402

University Microfilms
A Xerox Company
300 North Zeeb Road
Ann Arbor, Michigan 48106

University Microfilms, Ltd.
Tylers Green
London, England

U.S. Geological Survey Library National Center
MS 950
12201 Sunrise Valley Drive
Reston, Virginia 22092

U.S. Geological Survey Library
2255 North Gemini Drive
Flagstaff, Arizona 86001

U.S. Geological Survey
345 Middlefield Road
Menlo Park, California 94025

U.S. Geological Survey Library
Box 25046
Denver Federal Center, MS914
Denver, Colorado 80225
NTIS Price Schedules

(Effective October 1, 1991)

Schedule A
Standard Price Documents and Microfiche

<table>
<thead>
<tr>
<th>Price Code</th>
<th>North American Price</th>
<th>Foreign Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>A01</td>
<td>$9.00</td>
<td>$18.00</td>
</tr>
<tr>
<td>A02</td>
<td>12.50</td>
<td>25.00</td>
</tr>
<tr>
<td>A03</td>
<td>17.00</td>
<td>34.00</td>
</tr>
<tr>
<td>A04-A05</td>
<td>19.00</td>
<td>38.00</td>
</tr>
<tr>
<td>A06-A09</td>
<td>26.00</td>
<td>52.00</td>
</tr>
<tr>
<td>A10-A13</td>
<td>35.00</td>
<td>70.00</td>
</tr>
<tr>
<td>A14-A17</td>
<td>43.00</td>
<td>86.00</td>
</tr>
<tr>
<td>A18-A21</td>
<td>50.00</td>
<td>100.00</td>
</tr>
<tr>
<td>A22-A25</td>
<td>59.00</td>
<td>118.00</td>
</tr>
<tr>
<td>A99</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N01</td>
<td>60.00</td>
<td>120.00</td>
</tr>
<tr>
<td>N02</td>
<td>59.00</td>
<td>118.00</td>
</tr>
<tr>
<td>N03</td>
<td>20.00</td>
<td>40.00</td>
</tr>
</tbody>
</table>

Schedule E
Exception Price Documents and Microfiche

<table>
<thead>
<tr>
<th>Price Code</th>
<th>North American Price</th>
<th>Foreign Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>E01</td>
<td>$11.00</td>
<td>$22.00</td>
</tr>
<tr>
<td>E02</td>
<td>14.00</td>
<td>28.00</td>
</tr>
<tr>
<td>E03</td>
<td>16.00</td>
<td>32.00</td>
</tr>
<tr>
<td>E04</td>
<td>19.00</td>
<td>38.00</td>
</tr>
<tr>
<td>E05</td>
<td>21.00</td>
<td>42.00</td>
</tr>
<tr>
<td>E06</td>
<td>24.00</td>
<td>48.00</td>
</tr>
<tr>
<td>E07</td>
<td>27.00</td>
<td>54.00</td>
</tr>
<tr>
<td>E08</td>
<td>30.00</td>
<td>60.00</td>
</tr>
<tr>
<td>E09</td>
<td>33.00</td>
<td>66.00</td>
</tr>
<tr>
<td>E10</td>
<td>36.00</td>
<td>72.00</td>
</tr>
<tr>
<td>E11</td>
<td>39.00</td>
<td>78.00</td>
</tr>
<tr>
<td>E12</td>
<td>43.00</td>
<td>86.00</td>
</tr>
<tr>
<td>E13</td>
<td>46.00</td>
<td>92.00</td>
</tr>
<tr>
<td>E14</td>
<td>50.00</td>
<td>100.00</td>
</tr>
<tr>
<td>E15</td>
<td>54.00</td>
<td>108.00</td>
</tr>
<tr>
<td>E16</td>
<td>59.00</td>
<td>118.00</td>
</tr>
<tr>
<td>E17</td>
<td>64.00</td>
<td>128.00</td>
</tr>
<tr>
<td>E18</td>
<td>69.00</td>
<td>138.00</td>
</tr>
<tr>
<td>E19</td>
<td>76.00</td>
<td>152.00</td>
</tr>
<tr>
<td>E20</td>
<td>88.00</td>
<td>176.00</td>
</tr>
<tr>
<td>E99</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Contact NTIS for price quote.

** Effective January 1, 1991, the microfiche copy of any new document entering the NTIS collection will be priced the same as the paper copy of the document.

Important Notice

NTIS Shipping and Handling Charges

U.S., Canada, Mexico — ADD $3.00 per TOTAL ORDER
All Other Countries — ADD $4.00 per TOTAL ORDER

Exceptions — Does NOT apply to:
ORDERS REQUESTING NTIS RUSH HANDLING
ORDERS FOR SUBSCRIPTION OR STANDING ORDER PRODUCTS ONLY

NOTE: Each additional delivery address on an order requires a separate shipping and handling charge.

APP-5
Aerospace Medicine and Biology
A Continuing Bibliography (Supplement 366)

Abstract
This bibliography lists 248 reports, articles and other documents introduced into the NASA scientific and technical information system in August 1992.

Key Words (Suggested by Author(s))
- Aerospace Medicine
- Bibliographies
- Biological Effects

Distribution Statement
Unclassified - Unlimited
Subject Category - 52

No. of Pages
86

For sale by the National Technical Information Service, Springfield, Virginia 22161