be essentially that of the host rock. It is apparent from grain
deformation that transport distances were on the order of millime-
ters to centimeters along the veins.

The textures of feldspar, quartz breccia, and pseudotachylite are
fundamentally different when viewed petrographically. Although
each of the rock types appears darkly opaque (dark gray or black) in
hand specimen, the only sample with a matrix that is truly opaque is
in thin section the feldspar. No clasts representing compositions and
textures of the other impactites have been observed in the
pseudotachylite thus far. Present work is directed at determining
what textural and compositional changes were involved during
formation and whether the pseudotachylite represents material
comparable to associated impactites.

References:

Introduction: Within the framework of the Sudbury project
[1–3] a considerable number of Sr-Nd isotope analyses were carried
out on petrographically well-defined samples of different breccia
units [4–7]. Together with isotope data from the literature these
data are reviewed in this abstract under the aspect of a self-consistent
impact model [5,8–10]. The crucial point of this model is that the
Sudbury Igneous Complex (SIC) is interpreted as differentiated
impact melt sheet [5,8–11] without any need for an endogenic
“magmatic” component such as “impact-triggered” magmatism or
“partial” impact melting of the crust and mixing with a mantle-
derived magma [e.g., 12]. For the terminology used here we refer to
the companion abstracts in this volume [1–3].

Strontium and Neodymium Isotopes: Impact melt rocks
such as the sublayer [12], the SIC [11,12], and the clast-rich melt
breccia on its top [5,6], as well as melt breccia bodies, matrix,
and melt particles from the Onaping breccias [5,6], are characterized by
ε_{Nd} between -5 and -12 with Onaping lithologies tending toward
lower ε_{Nd} values (Fig. 1). Their Nd-model ages TDM relative to a
depleted mantle [13] cluster around 2.7 Ga, which agrees well with
the time of the last major crust-forming event in the Archean
basement [14,15], Proterozoic Intrusives [16,17], and the Huronian Supergroup
[16,18] that were mixed into the melt. Distinct fields for the sublayer
from different localities [12,19] in Fig. 1 show that the impact melt
sheet (SIC) assimilated local bedrocks after its emplacement in the
final modified crater. Strongly deviating Sr isotope ratios for some
Onaping rocks in Fig. 1 with $(^{97\text{Sr}}/^{96\text{Sr}})_{T}=1.85 \pm 0.05$ are due to a reopening of the Rb-Sr system during the
Penokean orogeny [4, see also 7]. This is demonstrated with selected
growth curves in Fig. 2: Some recrystallized melt particles and
devitrified glass have enhanced Rb/Sr ratios but the majority of the
material has L_{Sr} identical to the granophyre. Together with their ε_{Nd}
this fact supports our view that the melt-breccia on top of the
granophyre and the melt material in the suevitic Onaping breccias
and in the Green Member originated from the same source as the
SIC, namely impact-melted crustal material.

Oxygen isotope data [21] support our findings. The norite,
the granophyre, and the matrix of Onaping breccias all show a consid-
erable spread in $^{18\text{O}}$, but typical trends as known from differenti-
ated layered intrusions are absent. The $^{18\text{O}}$ values of these lithologies
are bracketed by oxygen isotopic compositions observed for local
Archean and Proterozoic bedrocks with the Onaping breccias re-lecting a higher input of Huronian greywackes. To explain the Os
isotope ratios for the Sudbury ores [22] by mixing between a mantle
magma and crust would need up to 90% crustal material. Therefore
these data are also in line with a derivation of the ores exclusively
from ancient crustal sources by impact melting followed by segre-
gation of a sulfide liquid out of the melt sheet.

Summary and Outlook: While in the original contributions
SIC isotope systematics were discussed preferentially in terms of a
possible mixing between a hypothetical mantle component with up
to 75% crustal material, the impact melt model does not have any
problem explaining the crustal signatures of the SIC, the Onaping
breccias, and the Sudbury ores—total melting of basement and
supracrustal lithologies can only produce crustal signatures. Future
studies on Sudbury should concentrate on combined analyses of

Fig. 1. ε_{Nd}-ε_{Sr} diagram for different lithologies of the structure
with data recalculated to 1.85 Ga, the time of the impact event [14];
data sources [4–6,11,12,15–17,19].

Neodymium isotope ratios of the impact melt concur with Nd
characteristics of the target lithologies in the Sudbury region, for
example, the Levack gneiss [12]. The observed spread in ε_{Nd} reflects the
widely varying $(^{97\text{Sr}}/^{96\text{Sr}})_{T}=1.85 \pm 0.05$ for the Archean basement
[4,15], Proterozoic Intrusives [16,17], and the Huronian Supergroup
[16,18] that were mixed into the melt. Distinct fields for the sublayer
from different localities [12,19] in Fig. 1 show that the impact melt
sheet (SIC) assimilated local bedrocks after its emplacement in the
final modified crater. Strongly deviating Sr isotope ratios for some
Onaping rocks in Fig. 1 with $(^{97\text{Sr}}/^{96\text{Sr}})_{T}=1.85 \pm 0.05$ as low as 0.700 [6,7]

https://ntrs.nasa.gov/search.jsp?R=19930000943 2018-07-21T12:20:03+00:00Z
of respectability. Also, the recent apparent successful tying in of the K/T extinctions to the Chicxulub asteroid in Yucatan encourages the search for an impact event that may have caused the other two major post-Paleozoic extinctions (P/T, T r/f). This gives us heart to offer two further outrageous hypotheses.

Noril'sk Ores/Siberian Basalts: The cosmogenic concept for the Sudbury ore deposit remains viable because it is giant, nonultramafic, and unique (except for Noril'sk). It also has telling geologic relationships; for example, the ore-hosting sublayer appears to be a splash-emplaced target/bolide melting the Sudbury Basin cavity like spackle on a bowl that was also injected centrifugally into tensional cracks (offsets) (see [3] for further evidence). At Sudbury, endogenic scenarios usually have been assumed, especially the concept of the ring-dike sublayer fed from a deep magma reservoir [5]. This view has recently been seriously challenged by Grieve and Stöffler [6], who explain the Sudbury Intrusive Complex as an impact melt sheet. Although the geologic relationships between the ore and the country rock at Noril'sk remain enigmatic, it seems a remarkable Sudbury look-alike. Their ore mineralogy is similar, including platinum group metals, and they are both large scale (one Noril'sk sulfide body covers 2 sq km and is 20 m thick.) Naldrett et al. [7] believe that the Noril'sk ores and adjacent Siberian plateau basalts are intimately related and consanguineous. A similar view was offered by several other authors at the 1991 American Geophysical Union Fall Meeting symposium (Noril'sk Siberia: Basalts, Intrusions, and Ores). Using argon/argon laser fusions, Dalrymple et al. [8] assigned a date for the ores and flood basalt of 249 ± 1 Ma, indistinguishable from the Permian/Triassic boundary. We therefore suggest that the Noril'sk ores may be of cosmogenic parenthood and that this impact also triggered the Siberian plateau basalts. An associated event then might be the great extinction of life forms at the P/T boundary, all tied together as an event horizon.

Bahama Nexus: Olsen [9] has attributed the Triassic/Jurassic boundary catastrophic extinctions to the Manicouagan asteroidal impact, but recent radiometric dating [10] indicates these events are diachronous (Manicouagan asteroid 212 ± 2 Ma and Tr/J boundary 200 Ma). This boundary is also marked by extensive tholeiitic basalts (flows, sills, and dikes) of the rapidly extruded Newark Supergroup. Radially emplaced dikes on Pangaea (now broken up into Africa, North America, and South America) focus toward the Bahama Platform might then be a mega coral reef laid down (North America/Africa) from Nova Scotia southward until the Bahama Platform is reached. Then the conjugate point between North America and Africa jumps to the eastern tip of the Bahama crescent platform rather than being at the tip of Florida. Clearly the seafloor spreading (dikesplitting) was overprinted by the hot spot, causing newly fragmented Gondwana (Africa/South America) to remain fixed (relative to the Earth's spin axis) while North America (North America/Africa) from Nova Scotia southward until the Bahama platform is reached. Then the conjugate point between North America and Africa jumps to the eastern tip of the Bahama crescent platform rather than being at the tip of Florida. Clearly the seafloor spreading (dikesplitting) was overprinted by the hot spot, causing newly fragmented Gondwana (Africa/South America) to remain fixed (relative to the Earth's spin axis) while North America drifted away. We can observe a modem example by the eastward offsetting of the Mid-Atlantic ridge as it transects Iceland hot spot.) Eventual death of the hot spot allowed the Mid-Atlantic Ridge to pave the ocean floor symptomatically. Thus almost the entire Bahama Platform was stranded on the North American plate, leaving but a very small conjugate volcanic exesrrence attached to Africa—the Bijagos Plateau off Portuguese Guinea. This great magmatic event