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Abstract 

A new model for the energy transfer mechanism in the large-scale turbulent kinetic 

energy equation is proposed. An estimate of the characteristic length scale of the energy 
containing large structures is obtained from the wavelength ~ssociated with the structures 

predicted by a weakly nonlinear analysis for turbulent free shear flows. With the inclusion 

of the proposed energy transfer model, the weakly nonlinear wave models for the turbulent 

large-scale structures are self-contained and are likely to be independent flow geometries. 

The model is tested against a plane mixing layer. Reasonably good agreement is achieved. 

Finally, it is shown by using the Liapunov function method, the balance be~ween the 

production and the drainage of the kinetic energy of the turbulent large-scale structures is 
asymptotically stable as their amplitude saturates. The saturation of the wave amplitude 
provides an alternative indicator for flow self-similarity. 
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Introd uction 

Many experiments have reported the presence and the importance of large-scale coher

ent structures in turbulent free shear flows for different flow configurations and operating 

conditions. For example, Winant and Browand1 and Brown and Roshko2 first observed 

these structures in low speed free shear layers and Papamoschou and Roshko3 in supersonic 

free shear layers. Morris and Giridharan4 and Liou and Morris5 have constructed turbu

lent models to simulate the turbulent large-scale structures explicitly. The models they 
developed are based on a weakly n.onlinear theory. Briefly, the local characteristics of the 

large-scale turbulent structure are described by linear instability waves. Their amplitude 

are determined by evolution equations derived from the turbulent kinetic energy equation. 

The predictions in Morris and Giridharan4 agreed very well with measured data for the 

growth of the compressible shear layer for a wide range of free stream operating conditions, 
including the effects of free stream Mach number. Two models were developed and imple

mented into a mean flow prediction scheme for an incompressible free shear layer in Liou 

and Morris5 • The first models the averaged development of the shear layer and the second 

simulates a single realization of the passage of a train of large-scale structures. The model 

predictions have shown a reasonable agreement with measurements and demonstrated the 

feasibility of the more general approach for other free shear flows. This short analysis is 

built upon the weakly nonlinear wave models developed by Liou and Morris5 . A model 

for the turbulent length scale is constructed and applied in the calculations of the energy 
transfer from the large structures to the small structures. The new model characterizes 

the energy transfer by the dynamics of the large-scale structure alone. This feature could 

facilitate the application of the weakly nonlinear models to free shear flows of engineering 

interests. These include turbulent free shear flows of complex geometries and at various 

operating conditions. 

In Liou and Morris5 , the random flow properties are split into three components, 

(1) 

The fluctuation with respect to the long time-average component, F i , is separated into 

a component representing the large-scale motion, Ii, and one representing the residual 

fluctuations, f~. The long time-average'of the instantaneous value is denoted by an overbar: 

(2) 
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The thin-layer approximations are used to reduce the governing equations for the mean 

flow to the following from: 

u8U + V
8U 

8x 8y 

{)U {)V _ 0 
8x + 8y - , 

8 - - 8 + -(u2 - v2 ) + -(uv) 
8x 8y 

For the large-scale fluctuation, a separable form of solution was assumed: 

{u, v, p}= A(x) [u(y),v(Y),P(y)] exp [i(ax - wt)] 

(3) 

(4) 

(5) 

The bold face quantities denote a complex solution whose real part describe the physical 

properties of the large-scale structures. a (= a r +iai) denotes a complex wavenumber and 

w the frequency. The governing equations for the local distributions of the large structures 

can be reduced to the Rayleigh equation in terms of v : 

{ ( aU - w) (~ - a2 ) - a d
2 

U} V = 0 
dy2 dy2 (6) 

The amplitude A(x) appears asa parameter in the local calculation for the u, v,p and is 

determined separately from the large scale turbulent kinetic energy equation: 

(7) 

where k = ~UiUj. k denotes the turbulent kinetic energy of the large-scale structure. 

<> represents a short time-average with an average interval much smaller than Tl but 

much larger than the characteristic time scale of the background small-scale fluctuation 7. 

The interaction terms, the third term on the right hand side of equation (7), describe the 

transfer of large-scale energy, presumably, to the small scales where energy is eventually 

dissipated by viscosity. The detailed analysis of the weakly nonlinear wave models and the 

numerical solution procedure used here can be found in Liou and Morris5 • 

The Energy Transfer Model 

The spectral energy transfer results from the interactions between turbulent fluctu

ations of different scales. For the weakly nonlinear wave turbulence models, the energy 

transfer is of crucial importance in the determination of the wave amplitude and need to 

be considered carefully. Very little information, experimental and theoretical, are available 
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regarding the stresses, - < u~uj >. Through dimensional argument, it may be assumed 

that the energy transferred out of the large structures depends ons, 

(8) 

where u and 1 are the characteristic velocity and length scales of the energetic large eddies, 

respectively. In one of the models that were developed earlier, which was referred to as 

the Model I in Liou and Morris5 , it was assumed that, 

and 

1 

U = k-z (9) 

(10) 

8 stands for the width of the mean flow defined by the transverse distance between points 

where the streamwise mean velocity is 0.9 and 0.1. The predictions by employing the 

Model I agreed with measurements for the mean velocity and the shear layer growth rate. 

Here, we propose a new model of the energy transfer from the large scales to the small 

scales. It explores a unique characteristic of the weakly nonlinear models. The model 

expresses the spectral energy transfer by the dynamics of the large-scale structures alone, 

regardless of the geometries of the mean flow. 

The weakly nonlinear analysis seeks normal mode solution of the large-scale turbulent 

fluctuation. Locally, they are described by the linearized Euler equation. On the other 

hand, the spatial extent of each of the mode of the large-scale structures could be regarded 

as being determined by the wavenumber, ar . Therefore, the proposition here is to estimate 

the characteristic size of the large scales as the wavelength associated with the structure 

that are predicted by the weakly nonlinear analysis. That is, 

1 - 1· _ 271" 
- w - ar 

(11) 

where lw denotes the wavelength. With the wavelength as a length scale, equation (8) 

becomes, 
k~ 

C2 - (12) 
lw 

This is the resulting model for the energy transfer from the large scale the the small 

scale. This estimate is in accord with the classic assumption of turbulence theory that 

dissipation ".. proceeds at a rate dictated by the inviscid inertia behavior of the large 

eddies."g. Computationally, since the wavenumber is already a part of the solution of the 
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equations for the large-scale fluctuation, this model involves no extra efforts in estimating 

the characteristic size of the energy containing large scales. This rather simple model 
provides a closure to the equations of the large-scale structure and, therefore, render the 

weakly nonlinear wave description of the large-scale structure self-contained. The self

contained nature of the weakly nonlinear wave turbulence models may be important in 

their future applications to other turbulent free shear flows. 

Results and Discussion 

The model is tested against an incompressible one-stream mixing layer. To make the 

matter simple, we choose to predict only the averaged, mean quantities of the shear layer. 

Note that, in addition to the mean flow prediction, Liou and Morris5 also calculated the 

time-dependent evolution of the turbulent mixing layer at the large scale. Since it is the 

most unstable mode that interacts most strongly with the mean flow5 , for efficiency, the 

most amplifying local instability is used to characterize the average, overall interactions 

between the mean and the large scale motions. Therefore, in the present formulation, the 

characteristic length scale lw is determined only by the locally most unstable modes. 

Figure 1 shows the estimated length scales for the two models, Le., the mean width 

model and the present wavelength model. The wavelength is about one order of magnitude 

larger than the width of the mean flow, 8. The model constant, C2 , therefore, can be 

roughly one order of magnitude higher than the C1 used in Liou and Morris5 • Numerical 

runs with different values of C2 showed that small changes in the value of C2 had no 
significant effect on the flow development. Quantitatively" for C2 = 22, the spreading rate 

of the mean flow, d8/dx = 0.142 and for C2 = 20, d8/dx = 0.158, both of which are within 

the experimental scatter. In the following figures, the results are shown for C2 = 20. 

Figure 2 shows the predicted evolution of the streamwise mean velocity profiles with 

axial distance. 'fJ is a similarity coordinate, 

Y - Y1/2 
'fJ = 

x - xo 
(13) 

where Yl/2 denotes the location where the local mean velocity is one half of the" free stream 
velocity. The predicted self-similar profiles agree well with that compiled by Patel9 ex

cept at the low speed edge of the layer. Similar differences were also observed by Liou 

and Morris5 . They attributed this difference to the single mode representation of the 

entire large scale spectrum and the uncertainties in the measurements in this region re

sulting from the local large changes in the instantaneous flow direction. Figure 3 shows 

the calculated Reynolds stress distributions in the self-similar coordinate. The difference 
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between the large-scale Reynolds stresses calculated by the weakly nonlinear model and 

the total Reynolds stress distribution measured by Patel does not necessarily mean that 
the small-scale should be included. A better agreement may be obtained if a broad range 

of instability waves are included. At the outer edge of the low speed side, the weakly 

nonlinear model predicted that the momentum transport by the large-scale fluctuation is 

counter-gradient, a phenomenon that has been observed in many experiments.lO,ll 

The streamwise evolution of the amplitude of the large-scale structures is shown in 

figure 4. After a region of establishment, the amplitude reaches a saturated value. In this 

region, the rate of the production of the large-scale turbulent kinetic energy from the mean 

flow is balanced by the rate of energy transfer from the large scales to the small scales. 

Note that, for the present energy transfer model, the amplitude equation becomes, 

dA2 () 2 () s dx = Gs x A - G4 X A (14) 

Os and 0 4 denote the normalized positive definite integrals of the production terms and 
interaction terms across the layer, respectively. The critical points of the nonlinear equation 

(14), where dd!2 = 0, are Al = 0 and 04(X2)A2 = GS (X2). Simple analyses by applying 

the Liapuonov function methodl2 show that Al is an unstable critical point. Any small 

disturbances to AI, say Ai would grow exponentially. In fact, 

(15) 

A2, on the other hand, is asymptotically stable. A disturbance about the A2, say A~, 
would decay exponentially, 

( 
° 2 )' _Q.ai:..al A2 ~ e 2 :z: (16) 

Note that the value of Gs in the equations (15) and (16) are taken as their values at the 

corresponding critical points. The saturated value of the amplitude, A2, is an asymptoti

cally equilibrium value. It indicates an asymptotically equilibrium state of the large-:-scale 

structures. The simple instability analyses also show that any deviation away from this 

equilibrium state would be damped out exponentially. Consequently, the saturation of the 
wave amplitude may provide an indication of the the self-similarity of the flow in terms of 

the development of the large-scale structures. 

The model proposed here provides a physically reasonable and self-contained repre

sentation of the energy transfer from the large scale to the small scale. For the mixing 

layer tested here, the results seem rather encouraging. It may be argued that, with a more 

realistic multi-mode representation of the large scale spectrum, modifications to the value 

of C2 should be minimal in the application of this model to free shear flows of other more 
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complex geometries. A calculation of the axisymmetric jets represents the best further 

test of the modeL Efforts to perform this non-trivial calculation is underway and will be 

reported later. 
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Figure 2. Mean velocity profiles. - - -, x = 3.82; - -, 4.43; - ,5.99; • ,Patel9 . 
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Figure 4. Variation of the wave amplitude with streamwise distance. 
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