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ABSTRACT Pr

q
Navier-Stokes calculations were carried out in Re

order to predict the heat transfer rates on tur- S
bine blades. 'the calculations were performed us- St

ing TRAF2D which is a two-dimensional, explicit., fi- t

nite volume mass-averaged Navier-Stokes solver. Tur- T

bulence was modeled using Coakley's q-w and Chien's Tu

k-e two-equation models and the Baldwin-Lomax a]- u

gebraic model. The model equations along with the v"

flow equations were solved explicitly on a non-periodic y

C grid. hnplicit residual snaoothing ORS) or a corn- y+
bination of multigrid technique and IRS was applied

to enhance convergence rates. Calculations were per-

formed to predict the Stanton number distributions on

the first stage vane and blade row as well as the second /3

stage vane row of the Rocketdyne Space Shuttle Main 7
Engine (SSME) high pressure fuel turbine. The com-

parison with the experimental results, although gener- 60
ally favorable, serves to highlight the weaknesses of the tc

turbulence models and the possible areas of improving /t
these models for use in turbomachinery heat transfer u
calculations.

P

NOMENCLATURE

C Axial chord

D Leading edge circle diameter

Fr Frossling number,:VUD/Ivf]_

k Turbulent kinetic energy

_e Turbulent length scale
M Maeh nunal)er

Nu Nusselt nnnlber

p Pressure

a" Member A1AA

t Resident Research Associate, NASA Lewis research

Center

This paper is declared a work of the U.S. Government and

is not suhject to copyright prolection in lhe United Stales.

Prandtl number

Variable in the q -w equations =v_

Reynolds number
Surface distance

Stant,on number

Time

Temperature

Turbulence intensity

velocity vector

Shear velocity
Distance from a solid surface

Distance in wall coordinates, yv'/v

Greek Symbols

hflet angle

Specific heat ratio

Turbulence dissipation rate
Kronecker delta

Thermal conductivity of the fluid

Viscosity

Kinematic viscosity

Density

Subscripts

0
1

D

2

T

le

Total condition

Inlet condition

Diameter as characteristic length
Derivative normal to the surface

Exit condition

Turbulent quantity

Surface conditions (wall)

INTRODUCTION

Accurate predict, ion of the airfoil heat transfer

rates is critical in the design of modern gas turbines.

Performiug this task is (lifticull by virtue of the very



complexflowphenomenapresentinsuchturbines.Ef-
fectssucha.sturbulenceororganizedunsteadinessare
modeledbecausetheyareimpracticalto directlysim-
ulatedueto limitationson computermemoryand
speed.Algebraicmodelsusuallyworkwell for two-
dimensionalshearflowsil, localequilibriumandtheir
implementationis easy and economical. However, in

general, it may not. be enough to prescribe turbulent

scales by algebraic formulas. The time and length

scales are dependent on transport effects and there-
fore need to be found from transport equations. Two

equation models strike a good balance between the

complex multi-equation models which represent more
of the physics of turbulence and the simpler models.

The model equations in low Reynolds number mod-

els are solved through the buffer layer to the wall.
Low Reynolds number two-equation models are able

to mimic transition induced by the free-stream turbu-
lence. As the cases considered herein included tran-

sition, this ability is investigated in this paper. The

phenomenon of reversed transition or relaminarizatio|_

can also be accounted for using these types of mod-

els[l]. The features relating to transition and relami-

narization are particularly useful in three-dimensional

calculations where it is difficult to take advantage of

empirical relations for the location of the start and

exte|a of transition. The empirical relalions are also
often determined for two-dimensional flows which may

limit their range of applicability.

In the presenl work Coakley's q- w [2] and

Chien's [3] k - e low Reynolds number two-equation
models are usetl. Previous applications [4,5,6] of the

models to the prediction of blade heat transfer have

beenreported. The above models were chosen for their
good numerical convergence properties. The motlel

equations were incorporated in a two-dimensional cas-

cade analysis code. For Ithe ro|ating blade, the flow
was solved in the relative reference frame and the

body forces were neglected. The code utilized was

the TRAF2D(TRAnsonic Flow 2D)[7] code which is

a compressible, mass-averaged, Navier-Stokes solver.

This code uses an explicil, lime-marching, four stage

Runge-Kutta scheme. The code also uses implicit

residual smoothing (IRS) and multigrid technique to

enhance convergence. For the turbulence closure prob-

lem, the code uses the Baldwin-Lomax[S] algebraic

model. Two new versions of the code utilizing the

chosen turbulence models were prepared. The model

equations were solved using the same explicit scheme.

IRS was adapted to the turbulence model equations to

allow for larger time steps. It was possible to further

enhance the convergence rate when using the q- w

model by employing |he multigrid technique for the
flow and the model equations.

Calculations were made for the Rockeldyne Space

Shuttle Main Engine (SSME) high-pressure fuel tur-

bine. Stanton number distributions were predicted
for the first-stage vane and blade rows as well as the

second-stage vane row. The results of the calculations

were compared with the experimental measurements of

Dunn and Kim [9] which were obtained using a short

duration measureme|lt technique.

DESCRIPTION OF THE ANALYSIS

The flow was modeled using mass-weighted con>

pressible Navier-Stokes equations and perfect gas

equation of state. The variation of viscosity with tem-

perature was assumed to follow Sutherland's law[10].

The effect of turbulence was modeled using two low

Reynolds number two-equation models. Solutions us-

ing the Baldwin-Lomax algebraic model were also gen-

erated for comparison.

"lhlrbulenee Models

The turbulence was modeled using two-equation,

low-Reynolds number turbulence models. Transition

to turbulence is automatically mimicked by such mod-

els. Chien's k - _ and Coakley's q - _0 models were

chosen for this work. The general formulation of the

two models is written below following [2]:

(PSi)t Jr- (psi lt.j "Jc qij ).j = ffi

qij = --(t t 4-11t/Pri)si,j , i = 1,2 (l)

For Chien's model the variables .¢1 and s_ are:

S 1 = k = q2 , s 2 = ( -----wk

PT = C.,, Dpk/_

The Reynolds stresses can be calculated from:

2
_rT,j = 2 6ijpk - ItT(_ti,j + ttj i -- _(g,jttk,t:} (2)

d

The source ter|ns in the model equations are:

q _ 2 2uU_ = [C.D./w" - D./w - (1 + ---7)]pwk (3)
3 wy-

H, : [CI(CuDS/w" - P/_) - (('2E + ------¢,F)]/r._e
my_

The strain rate invariant S, and the divergence of the

velocity "D appearing in the equations are:

_¢_ : (lti.j -'_ Uj.i -- _6ij_tl,.,k )U,',j



D, E and F are damping functions

2 , r--RT21
D = 1.- exp(-O.Oll5y+), E = 1. - _eapt_j,

and

F = ezv(-0.Sq +)

k

also,

Pvk = 1.0, Pr_ = 1.3, C I, = 0.09, Ct = 1.35, C2 = 1.8

For tile q -w model,

,S 1 : q , 32 =

m" = C, Dpk/w

Tile source terms in the model equations are:

= - 11 ,,

I,-% [G ' " _-_ -= (c,,_/_- _,1_) c_]_:

D is a damping function defined as:

D = I. - ea'p(-.R)

wJlere

and

R = q_l/V'

(4)

Prq : 1.0, Pr_ = 1.3, C_, =0.09,

Cl = 0.405D + 0.045, (% = 0.92, cr = 0.0065

The damping fimctions in Chien's model are de-

signed to produce the correct asymptotic behavior of

turbulent stress, kinetic energy and dissipation of tur-

bulence near a solid wall. For the q - a_ model the

damping fimctions were designed to produce accu-
rate distributions of skin fi'iction and profiles of ki-

netic energy and velocity in calculations of low-speed

boundary-layers and pipe flows. Use of 9+ in damping
functions is proper for attachd wall flow, however it.

is not. very meaningful once the flow separates. It also

causes the damping function to go to zero along the

grid line emanating from the stagnation point leading
to a non-physical condition.

Boundary Conditions

At. the inlet of the calculation domain the value

of k or q is specified using the experimental conditions,

namely:
k = q_- = 1.5(,1 Tu) -_

-0.5

--10 ,Flow [qns.

'_ -15 ode_ Eqns

-2.0

_" -2.5 %

-35
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Figure 1: Convergence history- q -ca model, 2 levels

of multigrid

Where Tu is the intensity of turbulence at the inlet
of the computational domain and ul is the inlet ve-

locity. The value of e at the inlet is specified using

the following relationship:

where g is the turbulence length scale representing the

size of the energy containing eddies. This length scale

is usually not reported as a part. of the experimental

conditions. For cascade conditions the length scale is

assumed to be equal to a certain percent of the pitch.

For exalnple Ilah [ll] assumed a length scale equiva-
lent to one percent of the pitch. Tile boundary condi-

tions for the turbulent parameters on the walls are:

k:q=_=O, wn =0

At. tim exit., all the turbulent parameters are extrapo-

lated along the circumferential grid lines.

Nmnerieal Scheme

The code TRAF2D/7] uses a cell-centered finite-

volume approach. The code employs a multigrid

method wil h a four-stage Runge-Kutta local time step-

ping as a driving scheme. The local time step is
corrected for the viscous effects. Variable coefficient,

implicit smoothing of the residuals devised by Mar-

t.inelli[12] is performed to further increase the robust-
ness of the code. Eigenvalue scaling of the artificial

dissipation terms also devised by Martinelli is used to

prevent, odd-even decoupling and to capture shocks.

The model equations were incorporated into the code

and solved explicitly along with the flow equations.

To solve the model equations, following Kunz [13],
constant, coefficient second order artificial dissipation
terms were added in the circumferential direction to

the model equations. No fourth order dissipation
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terms were needed for the model equations. Variable

coefficient implicit residual smoothing was adapted to

tile model equations by setting up the coefficients using
the eigenvalues of the model equations. This allowed

larger CFL numbers and therefore faster convergence
rates. A CFL number of 5.0 was used for all the cal-

culalions except for k - e model's equations for which

the CFL was in the range of 1.25-2.5. For the q -

model, it was possible to extend the multigrid capa-
bility of the code to the model equations. Addition

of second order dissipation terms was found to be un-

necessary on the coarse grid for the model equations.

Figures 1 and 2 show the convergence history for the

q- w model with and without nmltigrid. Figure 3
shows the convergence history for a calculation per-
formed using Chien's model. The ordinate in those

figures is the logarithm of the square root of the sum

of the squares of the residuals over all the grid points

divided by the number of grid points. The calculations
were done for the first stage vane to be discussed later.

The convergence history varies with varying values of

exit. Math number and number of grid points among
other factors.

Computational Grid

The discretization was performed on a non-

periodic, C grid [7] generated by using a modified ver-

sion of the Grape [14] code. With this type of grid the
number of grid points on the suction surface of the air-

foil is different than that on the pressure surface which

leads to a much less skewed grid construction.

CPU Requirements

The CPD" requirement per iteration per grid point

was approximately 5.0E-5 second for the Baldwin-

Lomax calculations with two levels of multigrid, 3.2E-5
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Figure 3: Convergence history- k - e model

second for the q - w runs with one level of multigrid
and 5.0E-5 second for the Chien's model runs. The

number of iterations needed was approximately 500,

2500 and 4000 for the above models respectively.

RESULTS AND DISCUSSION

The Stanton number is defined &s:

t¢ aT Iwat!
St-- - "_

P,.,ICpVreI(T,,, - To) (5)

where Tw and To are the wall temperature and the inlet

total temperature respectively. Prey, Cp and Vre]
are the reference density, heat capacity and reference

velocity. In the experiments the inlet to the first stage
vane row is selected ms reference.

Given the two-stage turbine overall pressure ra-
tio, the pressure ratio across each row of airfoils is

needed as input to the N-S solver. The pressure ratio

across the row as well as inlet total pressure and tem-
perature and the airfoil Reynolds number were taken

from the MTSB [15] flow analysis code as provided
by Boyle [16]. The experimental runs were made for

two values of total pressure, resulting in two values of
Reynolds number for each airfoil. Calculations were

made for both values of Reynolds numbers. Table I
contains the flow conditions of the turbine airfoils con-

sidered in this work. The free-stream turbulence levels

for the three cascade rows are necessary for the calcula-

tions. The turbulence level upstream of the first stage

vane was experimentally determined but was guessed
for the other two cascade rows.

As stated earlier, the calculations were performed

using the q - _v and Chien's k - ( two equation models

as well as Baldwin-Lomax algebraic model. For the al-
gebraic model the location of transition to turbulence

on the two sides of the airfoil was specified to best

fit the experimental results. It. is worth mentioning

that there are a host of empirical relations that can be

used [17] to predict the start and the length of transi-

tion for use with algebraic models in two dimensions,

4
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Figure 6: Surface pressure distribution, first stage vane

Figure 4: First stage vane and a typical grid

however, that was not done here

First Stage Vane

Figure 4 shows the geometry of the first stage vane

and the C grid generated. The mesh has 388x64 grid

cells. The grid points are distributed such that there

are 64 grid cells on the wake line on the pressure side
of the airfoil and 32 grid cells on the wake line on the

suction side. Figure 5 shows the distance of the first

point away from the wall in terms of the dimensionless

parameter y+ on the first vane for the lower Reynolds

number run. As can be seen, this value is consistently

below unity. For the higher Reynolds number run the

wall grid spacing was halved to keep the same y+ dis-

tribution. Figure 6 presents the surface pressure dis-
tribution on the blade surface as a function of surface

distance. On the suction side there is an initial region

of favorable pressure gradient. The flow is likely to be

laminar in this region for small values of free-stream

turbulence. On the pressure side the flow encounters

a small region of adverse pressure gradient following

a short region of favorable pressure gradient. The ad-

verse pressure gradient again can trigger transition for

16.0'
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Figure 7: Variation of St with length scale, q-

w model, Re2 = 3.6E5
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Po(psI) T0(°R) /_1° T,_/To M2 Re_ x 10 -5 Tu%
1st STAGE VANE 6782.0 995.0 0.0 0.55 0.45 3.6 6.0

13564.0 995.0 0.0 0.55 0.45 7.2 6.0

1st STAGE BLADE 6079.0 968.3 42.5 0.55 0.45 2.07 10.0

12159.0 968.3 42.5 0.55 0.45 4.14 10.0

2rid STAGE VANE 5527.0 947.9 26.1 0.55 0.44 3.13 10.0
11054.0 947.9 26.1 0.55 0.44 6.26 10.0

Table 1. Flow Conditions
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Figure 9: First stage vane, surface Stanton number,

low Reynolds number

large free-stream t.urbulence.

Figures 7 and 8 sinew the variation of airfoil heat

transfer with the free-stream length scale using the
two turbulence models. An increase in the turbulence

length scale causes an increase in the stagnation re-

gion heat transfer and also causes the location of tran-

sition to move upstream. The results predicted by

the two-equation models were obtained using an ex-

perimentally determined value of turbulence intensity

upstream of the airfoils. The value of the turbulence

length scale is not known, but is usually estimated to

be on the order of 1-10 percent of tl,e blade pitch in

the absence of measured values. A value of one per-
cent was used for all the ensuing results. The stagna-

tion point heat transfer is augmented due to the free-

stream turbulence. Neither one of the two-equation

models used in this work are designed to predict the

augmentation of stagnation point heat transfer due to

free-stream turbulence. In fact eddy viscosity models
are suitable for shear dominated flows. The stagna-

tion region of blades is dominated by normal stresses

and the stress/strain relation of equation 2 may be

inaccurate[18]. As a double check, stagnation point
Stanton number values based on Frossling analysis

(Fr=l.0) were also computed. This analysis resulted

in a Stanton number of 0.013 for the low Reynolds

number case and 0.009 in the high Reynolds number

20.0 ,

I • 0ATA

S,SME H P FUEL'/1JtqEINE SIT STAGE Vt_E _ ¢l'q Mad_

ge2.)'.gEfi w---- Ctgtn kledll

...... IIId.Leml
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100 ,SO. 0 fi_) tO0.

SiC

Figure 10: First stage vane, surface Stanton numl)er,

high Reynolds number

case. The Laminar calculations yielded similar val-

ues for the stagnation point lleat transfer. In the case

of the low Reynolds number flow of figure 9 the ex-

perimental results seem to indicate laminar flow up to
approximately 20% of the surface distance on both the

pressure and suction sides. The q- _v model performs

better in terms of capturing the location of transition

and predicting the level of heat transfer. Chien's k-

model seems to damp out the development of the tur-

bulent boundary layer on the suction side. This behav-

ior was consistently observed in [6] and was attributed

to the low Reynolds number damping function's de-
pendence on y+. Both two-equation models and the

Baldwin-Lomax model underpredict the pressure side
heat transfer. For the higher Reynolds number case

of figure 10, Stanton number values in the vicinity of

the stagnation point as calculated using a laminar flow

assumption are much lower than the experimental val-

ues. The heat transfer downstream of the stagnation

point is enhanced which is predicted by both of the

models. The calculation using tile Baldwin-Lomax

algebraic model was made assuming fully turbulent

flow starting just downstream of the stagnation point.

Again it is observed tl_at except for the underpredic-
tion on the pressure side the agreement is generally

good.
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tion

Figure 11: First stage rotor blade and a typical grid

First Stage Blade

Figure 11 presents the rotor blade of the first stage
of the SSME turbine at the midspan. The mesh has

388x64 grid cells. The grid points are distributed such

that there are 64 grid cells on the wake line on the pres-

sure side of the airfoil and 32 grid cells on the wake

line on suction side. The same care regarding the grid
resolution close to the wall was exercised when con-

structing the grid for this blade. Figure 12 is a plot of

the surface pressure distribution as a function of the

surface distance. Figures 13 and 14 compare the Stan-

ton number results with the experimental results. The

laminar flow calculation for the high Reynolds number

separated on the suction side. The Frossling analysis

yields values of 0.019 and 0.014 for the low and high

Reynolds number stagnation point Stanton numbers,

respectively. The corresponding experimental values

are 0.016 and 0.015 resulting in Frossling numbers of
0.85 and 1.07. The location of transition on the suc-

tion surface is further upstream of the experimentally
determined location. Referring to figures 12-14, both

of the models predict transition on the suction side

through the first adverse pressure gradient. The suc-

tion side level of Stanton number in the fully turbu-

lent regime is correctly predicted for the low and the

.12.0.

N..0 •
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Figure 13: First stage rotor, surface Stanton number,

low Reynolds number
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Figure 14: First stage rotor, surface Stanton number,

high Reynolds number
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Figure 16: Second stage vane surface pressure

Figure 15: Second stage vane and a typical grid

high Reynolds number cases with both of the mod-

els. On the pressure side, the q -w model underpre-
dicts the experimental Stanton number distribution.
Chien's model and Baldwin-Lomax model both under-

predict the pressure surface heat transfer for the high

Reynolds number condition. Dunn et al. [19] numer-

ically investigated the effect of surface roughness on
the heat transfer characteristics of this blade since the

blade surface was rough. They concluded that the sur-

face roughness effect was limited to the high Reynolds
number condition where there was a small effect on

the pressure side and a 12% increase on the suction
side.

Second Stage Vane

Figure 15 presents the geometry and a typical grid
constructed for the second stage vane of the SSME tur-

bine at the midspan. The mesh has 388x64 grid cells.

The grid points are distributed such that there are 64

grid cells on the wake line on the pressure side of the

airfoil and 32 grid cells on the wake line on suction

side. Figure 16 is a plot of the surface static pressure

as a function of the surface distance. Figures 17 and

18 present the Stanton number variation on the vane's

surface for the two Reynolds numbers. A stable lami-

nar calculation was not possible to achieve. The stag-

nation point Stanton numbers for the low and high

s/c

Figure 17: Second stage vane surface Stanton number,

low Reynolds number

_0

Ii&! H p, imJiL _E aNO ITAOE V,tj4E • l_i_

RI 2.S_II _____ _hn Idedd

IS.O

Stl"IOOC

I_LO

6.0

0.0

-I00. -SO. 0. _. _m.

s/c

Figure 18: Secot_d _.age vane surface Stanton number,

high Reynolds n_ber



Reynolds llumber cases were calculated to I)e 0.0135

and 0.0096, respectively. The L'Xl._erinmnt, al iileastlre-

merits are smaller than the ahoy. results, aml yh'td

Frossling numbers of 0.75 and 0,9 which are quhe low

in the highly turbulent envh'omaem of the yaw'. The

transition process has been capt, ured wid_ the q- _'

model, albeit not as well for the higher Reynolds m_u>

ber case. The k - ¢ model damped out, tlw transitiou

process, as was the case in the first vane. The data

shows a phenomenon resembling a second transition

process at the back of the blade on the suction sur-

face which was not captured. Tile pressure side heat

transfer result,s are satisfactory using both of the two-

equation models although Chien's model'.s agreelacm

with the exper'illlelital ille'astlfcfll_'llt.s [_ [)('( ll'l'.

SUMMARY AND CONCLUSIONS

Navier-Stokes calculations to obtain the Stanton

number distribution on the airfoil surfaces of [{ockel-

dyne SSME fuel high pressure turbine were perfortt,ed.

Coakley's q - w and Chien's k - e low Reynolds nun>

ber turbulence models and the Baldwiu-lomax alg,,-

braic models were used. '['he Juode[ equations wet'c

solved using an explicit schenm It waspossibl+ _toap-

ply the mult.igrid t.ec/mique to tlw solution of tim q--_'

model. Implicit, residual smoothing was adapted to the

solution of tl> equations for both of the two-equatiou

models. Use of the M)ow:e stralegies helped to acceler-

ate convergence. One of the models, uamely, the alge-

braic model of Baldwin and Lomax performed well as

long as the location of transition was provided. The

other two models performed well in the fully turbtl-

lent regimes. The location of, and the process I.ransi-

tion, was better sir!related when ushlg the q-_' model,

while Chien's k- ( model temh'd to hasten aim smear

out the transition process. Pressure sid<' heal trans-

fer was better predicted tlSillg lhe k - ( ULkod('l when

the boundary-layer was 1.urt:mh_mt close to the leading

edge. The overall agreement with the exp,+rin,enl.al

results appears t.o he decided based ou the accuracy

with which the location and extent of transition is

predicted. Therefore the accuracy of }teal. transfer pre-

dictions can be improved hy improving the t.rausiti(m

prediction capability of the models. Both lwo-equatiot_

models need modifications to improve the predictions

near the stagna.tion point.
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