
,,ABA-CQ-19081 I

UNIVERSITY OF CENTRAL FLORIDA

DEPARTMENT
OF

INDUSTRIAL ENGINEERING
AND

MANAGEMENT SYSTEMS

ANNUAL REPORT

ON

NASA GRANT NUMBER NAG2-625

Design of an
O"

Air Traffic Computer Simulation System to ,_

Support Investigation of Civil Tiltrotor Aircraft Operations : i,fl ¢_

I ,-- oO

G- C
Z D 0

August 15, 1992

s, Ph.D. (J

Principal Investigator

Department of Industrial Engineering and Management Systems

University of Central Florida

P.O. Box 25000

Orlando, FL

32816

o

0

N£SA PROJECT #NAG 2-625

INTRODUCTION

On 13 March 1990 the University of Central Florida formally

accepted NASA Grant #NAG 2-625 for "Design of an Air Traffic

Computer Simulation System to Support Investigation of civil

Tiltrotor Aircraft Operations." Full implementation of the

research efforts was started in May 1990. The delay of the

start of work was due to the arrival of funds in the middle of

the academic semester. Both researchers and graduate students

to be involved in the project were under contractual

obligations until the end of the semester in May. Since May,

1990 work has proceeded steadily. This paper reports on the

progress and accomplishments achieved under Grant #NAG 2-625

during the second year of efforts.

PROJECT DESCRIPTION

This research project addresses the need to provide an

efficient and safe mechanism to investigate the effects and

requirements of the tiltrotor aircraft's commercial operations

on air transportation infrastructures, particularly air

traffic control. The mechanism of choice is computer

simulation. Unfortunately, the fundamental paradigms of the

current air traffic control simulation models do not directly

support the broad range of operational options and

environments necessary to study tiltrotor operations.

Modification of current air traffic simulation models to meet

these requirements does not appear viable given the range and

complexity of issues needing resolution. As a result, the

investigation of systemic, infrastructure issues surrounding

the effects of tiltrotor commercial operations requires new

approaches to simulation modeling. These models should be

based on perspectives and ideas closer to those associated

with tiltrotor air traffic operations.

The principal objectives of the Tiltrotor Air Traffic

Simulation System (TATSS) Project are to develop a design for

computer software that will incorporate the following

capabilities in an air traffic simulation model:

Full freedom of movement for each aircraft object in the

simulation model. Each aircraft object may follow any

designated flight plan or flight path necessary as

required by the experiment under consideration.

-I-

1 PROJECT #NAG 2-625

Object position precision up to ± 3 meters vertically and

± 15 meters horizontally.

Aircraft maneuvering in three space with the object

position precision identified above.

Air traffic control operations and procedures.

Radar, communication,

performance•

navaid, and landing aid

Weather.

Ground obstructions and terrain.

Detection and recording of separation violations.

Measures of performance including deviations from flight

plans, air space violations, air traffic control messages

per aircraft, and traditional temporal based measures.

WORK ACCOMPLISHMENT

In the second year of effort the following tasks were

accomplished:

i. Established basic object

simulation model•

architecture for

• Identified data structure for implementing spatial

blackboard (a.k.a. spatial template).

3. Identified intersection identification method•

• Implemented prototype two-dimensional simulation

model in MODSIM II based on basic object

architecture and spatial blackboard data structure.

. Began implementation of interface between MODSIM II

and the expert system language CLIPS.

• Began implementation of prototype three-dimensional

simulation model in MODSIM II of basic object
architecture.

Each of these tasks will be discussed in more detail in the

following sections•

-2-

PROJECT #NAG 2-625

OBJECT ARCHITECTURE

The basic object model for the TATSS consists of two general

types of objects with a total of five basic subtypes. The two

general types are (i) Spatial Objects and (2) Model Management

Objects. The Spatial Objects have two subtypes (a) Moving

Objects and (b) Stationary Objects. The Model Management

Objects consist of three subtypes: (a) the Spatial Template

Object, (b) the Conflict Identifier Object, and (c) the

Conflict Resolver Object. (Refer to Figure 1). In any given

model there may be more than one instance of Moving and

Stationary objects. However, there is generally only one

instance per model of the Spatial Template, Conflict

Identifier, and Conflict Resolver objects. Figure 2 provides

an illustration of the interconnective relationship between

these five types of objects. The general relationships

between these objects are illustrated by following descriptive

example.

DESCRIPTIVE EXAMPLE. A two dimensional model-space contains

phenomena of interest. The phenomena consists of two

dimensional entities and their behavior. Entities may have

two basic behaviors; (1) they occupy space and (2) they may

move from one location to another. Some entities may possess

both behaviors (i.e. Moving Objects) while some may posses

only the first (i.e. Stationary Objects). Stationary Objects

are of random sizes and randomly assigned locations in the

model-space. Moving Objects start at random locations within

the model-space and move with a random velocity vector for a

random period of time. Further, no two entities can occupy the

same space at the same time.

In the basic TATSS object model the illustrative example

presented would function as follows: All stationary objects

report their dimensions and location in the model-space to the

Spatial Template Object when they are instantiated. Moving

Objects report their dimensions and their current positions in

the model-space to the Spatial Template Object when they are

instantiated. Before a Moving Object moves, it notifies the

Spatial Template Object of its next desired position or

location in the model-space. This establishes a planned model-

space trajectory for the moving object which is represented

graphically in the Spatial Template (Refer to Figure 3).

If the planned model-space trajectory of a Moving Object
intersects the model-space trajectory of another Moving Object

or the model-space of a stationary object then a possibility

of a conflict exists. The Spatial Template Object identifies

such intersections of the model-space trajectory polygon.

These intersections represent potential conflicts. When

intersections are identified, the Spatial Template notifies

the Conflict Identifier Object that a possible conflict exists

-3-

1_1_A FAO,_C2 #NA_ 2-625

MODELSPACE

Figure I. Interconnective relationship between basic object

model type.

-4-

Z_RO_CT #Z_U_ 2-625

/&'rATK
_aJE(

CO0_NAT5
l
I0

o_"n_
SP_AHOIO

_OAl_s

RE_EST_ _

_.d V

}- /
toe,E_ i:A J

R_ES'r$CO010HA_

IO',OF
_TPJ.(_E_
I_{_FUCT

f

Figure 2. Basic object model types and messages.

-5-

JAVA FRO,.TEC'T IIGIQ 2-625

Ay
Vv;;Ay
y; Ay "_

X 2 X 3

OBJECT 1

OBJECT 2

Figure 3. Construction of trajectory polygons.

between the two object instances in the model-space (Refer to

Figure 4).

The Conflict Identifier then questions the two objects to

determine when each object will arrive at the intersection

neighborhood. Obviously for stationary objects, there is no

arrival time. The objects are always there. If the arrival are

separated by enough time, no actions are required and the

moving object which wished to move to its next position is
allowed to schedule its desired destination. The current

position of the moving object and its desired/goal position

establishes a spatial trajectory in the Spatial Template

Object. If one of the two objects is a stationary object or if

the separation time of two moving objects is insufficient, the

Conflict Identifier Object notifies the Conflict Resolver

Object that a conflict exists between two objects for model-

space resources.

The Conflict Resolver determines the nature and extent of the

conflict. The Conflict Resolver also determines the course

action to be taken depending on the objects involved. For

example, a conflict may be determined to exist between a

-6-

A PROJECT #.G 2-625

¥

POSSIBLE CONFLICT

X

Figure 4. Model-space trajectory polgons for moving objects.

-7-

_A PROJECT #NAG 2-625

stationary object and a moving object. The conflict resolver

object might simply notify the moving object that it will

intersect a stationary object if corrective action is not

taken. Or, the conflict resolver may determine the best

course of action and issue new course trajectory to the moving

objects. The choice would depend on the design of a particular

model. Once a new course action is determined either by the

resolver or the objects themselves, the new course objective

is sent to the Spatial Template and the process begins again.

With this overview of the object architecture in mind, the

following sections describe each of the object subtypes in
more detail.

MOVING OBJECT. A Moving Object occupies space and follows a

model-space trajectory as it moves from one location to

another in model-space. A Moving Object is represented in the

model as a geometric surface (i.e. a polygon) in either two or

three dimensional space. A Moving Object may follow its own

goal directed model-space trajectory based upon its own

decision making capabilities and rules or it may be directed

to follow specified trajectories by other objects (e.g.

Conflict Resolver) in the model based on system model state.

A Moving Object communicates with the Spatial Template Object,

the Conflict Identifier Object, and the Conflict Resolver

Object.

STATIONARY OBJECT. A Stationary Object occupies space and does

not normally change locations in the model-space. A

Stationary Object is represented in the model-space as a

geometric surface (i.e. a polygon) in either two or three

dimensional space. A Stationary Object communicates with the

Spatial Template Object, the Conflict Identifier Object, and

the Conflict Resolver Object.

8PATIALTEMPLATE OBJECT. The Spatial Template Object provides

a graphical memory of the model-space status between model

events. The Spatial Template Object maintains this memory by

a graphical representation based on the proposed model-space

trajectory of a moving object or the occupied space of a

stationary object. When new graphical descriptions are created

representing model-space trajectories and model-space

occupation, these new graphical objects are incorporated into

the spatial template.

As each new graphical representation is added to the spatial

template, the Spatial Template Object simply identifies

instances when a new trajectory may compete for the same

model-space resources as another object with a previously

approved model-space trajectory. That is, it identifies when

a potential conflict occurs between two or more model-space

-8-

le_OJZ_ #NAG 2-625

objects. When potential conflicts are identified, the Spatial

Template passes the identification of the involve objects to

the Conflict Identifier Object.

There are two related principal technical issues associated

with implementing the Spatial Template Objects of the TATSS

base object architecture into an associated software model.
The first technical issue is the identification of a data

structure to represent the spatial template graphical based
information. The second technical issue is how to detect when

model-space object in the Spatial Template Object intersect.
Each of these issues is addressed in more detail in subsequent

sections of the report.

CONFLICT IDENTIFIER OBJECT. The Conflict Identifier Object

receives from the Spatial Template Object the identification

of spatial objects which have a potential conflict and the

location in the model-space of that potential conflict. The

Conflict Identifier Object sends messages to each of the

potentially conflicting spatial objects asking them at what

time each will arrive at the location of the potential
conflict. If the difference in the arrival times of each is

sufficiently large enough, then no conflict will occur. The

spatial object whose new position change precipitated the

conflict identification process is given permission to

schedule its event past the location identified with the

possible conflict. If the difference in the arrival times of

each object is sufficiently small enough, then a conflict will

occur. The Conflict Identifier Object then sends a message to

the Conflict Resolver Object containing the identification of

each of the conflicting spatial objects, the location in the

model-space of the conflict, and the time of the conflict.

CONFLICT RESOLVER OBJECT. The Conflict Resolver Object

determines the actions specified by the system model designed
to resolve the conflict. After determining the appropriate

course of actions, the Conflict Resolver Object sends

message(s) to one or both affected spatial object instructing
them on actions to be taken to resolve the conflict. If the

system model dictates decision making by the one or both

objects to resolve the conflict, the Conflict Resolver Object

informs one or both objects of the conflict and the other

object involved. In such a case, each spatial object must be

designed to make conflict resolution decisions.

If the system model dictates that determination of the

conflict resolution actions be made by the Conflict Resolver

Object, the conflict resolution mechanism must be directly or

indirectly a part of the Conflict Resolver Object. Once the

appropriate actions are determined by the Conflict Resolver

Object, these actions are sent as messages to the involved

-9-

KASA PROJECT I_2 2-625

objects. Each spatial object must be so designed to implement

these specified actions.

The conflict resolver mechanism is best thought of as rule-

based approach to conflict resolution. This mechanism may

include hard coded software methods and procedures as part of

the system software model or may be based on rule-based

inferencing through a separate knowledge base typical of

expert-system approaches. To obtain this latter capability,

the Conflict Resolver Object must include or interface with an

expert system shell or language. In TATSS this expert system

shell is CLIPS. CLIPS is a C based expert system language and
environment which can be interfaced with MODSIM II. A more

complete description of this interface will be presented in a

subsequent section.

SPATIAL TEMPLATE DATA STRUCTURE

In previous discussions, the Spatial Template was identified

as a graphical representation of the model state space. The

Spatial Template is both more and less than this. The

interest is fundamentally the identification of the POTENTIAL

conflicts. That is, to identify those objects whose model

space trajectories may compete for the same model space

resources (e.g. space) at the same time. The goal is reduce

the message traffic between model objects necessary to

determine if conflicts will occur. The approach taken is to

graphically represent the model space trajectory of model

system objects and to identify the intersection of

trajectories before allowing the object to proceed. How to

identify these potential conflicts in an efficient manner is

dependent on the how to represent the model state space

information.

TATSS's approach taken to address these issues requires a

partitioning of the model space. Currently, the model space is

divided into equal sectors. Thus, the model space is

represented as a either a two or three dimensional cartesian

coordinate system. Sectors are identified by their coordinate

numbers (e.g. sector 1,3, 2). The model space trajectory of an

object represented by its associated polygon is position with

reference to this coordinate system (Refer to Figure 5). The

sectors through which the trajectory polygon goes are

identified. Associated with each sector is a list of objects

whose trajectory is schedule to go through some part or all of

that sector. When new object trajectories are added a the

sector list, a check is made to determine if any other object

trajectories are also associated with that sectors. If an

object trajectory is already associated with a sector, then a

potential conflict exists. The Conflict Identifier is then

-i0-

Bfl_A FL_:)J_CT #20U_ 2-625

¥

2 3

ii i

4 5 6

2

3

4

5

6

7

_\ r/'

A

/
POS SIBLE C(INFLICT

v_ x

Figure 5. Model-space trajectory polygons in coordinate

reference system.

-II-

XJLSl PROJECT #Z_I_ 2-625

Figure 6. Spatial Template with sector queues.

-12-

tuLSA PROJECT #m_ 2-625

notified and the names of the object with potential conflicts

are sent with the notification.

The data structure employed to capture this approach is a

dynamic array of queues. The sectors of the model space

become elements in the array. Each element in the array is a

queue. As object trajectories cross a sector, the name of the

object is added to the sector (i.e. queue) (Refer to Figure

6). Once a new model trajectory has been established for an

object, the name of the object is remove from the sectors

associated with the old model trajectory.

In the object-oriented software implementation, each sector

element is defined as a queue object. The use of objects to

describe sectors enables the exploitation of the dynamic

array. The dynamic array will only use the memory necessary

for the active sector objects. Thus, if no sectors have

objects associated with them, they are not created, and do not

require computational resources. Likewise, as a sector becomes

empty, that sector object may be disposed of, freeing

computational resources.

INTERSECTION IDENTIFICATION

The identification of the intersection of the model space

trajectory of objects follows a hierarchial decision process.

The first level in the process determines if the model space

trajectories (i.e. the trajectory polygons) of objects

transverse or occupy the same sector or sectors. If more than

one model space trajectory intersects a sector, then the name

of the objects associated with that sector are sent to the

conflict identifier to establish if a conflict actually

exists. The issue of concern is to identify what sectors an

object model space trajectory intersects. This section

discusses the approach used in TATSS to identify these sectors

intersected by an object's model space trajectory.

When an object reports its current and goal positions to the

Spatial Template, the Spatial Template defines the trajectory

polygon in the model space. Determination of which sectors

are intersected is made by scanning along the x direction of

each side of two parallel sides of the polygon. The two

parallel sides chosen are the two which are parallel to the

velocity vector. Scanning is made in the direction of the x

component of the velocity vector. Scanning along the other

sides of the polygon is not necessary because the width of the

polygons are less than one sector width.

As the scanning occurs along the polygon side, the contents of

each sector queue intersected is checked. If another object's

(or objects') trajectory has already been recorded in the

-13-

)12LSA]PRO..TECT #NAG 2-625

queue, the name of the object(s) along with object who is

scanning is sent to the conflict identifier for further

conflict evaluation.

Scanning is performed by establishing the coordinate border

values for the sector under consideration. For example, in a

two dimensional coordinate system, one side of a polygon is

defined by the two points (1,2) and (8,11). Movement is in the

direction from (1,2) to (8,11). Sectors are 3 unit square.

Sector 1 would be defined by sector borders of X=3 and Y=3.

The point (1,2) is less than the value for each border but

greater than 0. Therefore, point (1,2) is in the first

sector. Scanning continues along the line defined by the

points (1,2) and (8,11). The next test point is X border

value of 6 and the Y value where the polygon side intersect

the x axis with value 6. The scan determines what sectors the

line intersects/crosses between this new point and the old

sector value (i.e. sector i, 0<X<3, 0<Y<3). The sector scan

continues until the sector contains the end points of the

polygon is identified or an identified conflict results in a

new trajectory plan.

The area of sector identification for trajectory polygons is

an area which requires further investigation. More efficient

and faster approaches than the one used should be available or

if not then developed. This is the one area of the project

which would benefit from more intensive investigation.

MODSIM II AND CLIPS INTERFACE LINK

The interface link between ModSim II and CLIPS was implemented

on an UNIX system V, using NASA's CLIPS version 5.0 for the

expert system, and ModSim II version 1.6 for the simulation

system. CLIPS and MODSIM II were run as separate processes in

UNIX with no parent child relationship required. The interface

link allows messages of any type and length to be exchanged

between the CLIPS processes and the ModSim II processes. The

interface link default as implemented allows eight separate

processes to communicate.

The prototype communications between the simulation model's

Conflict Resolver Object in ModSim II and the Resolution

Expert in CLIPS were messages about model object trajectory

conflicts and solutions for those conflicts. Messages from

the Conflict Resolution Object concerned Moving Objects in the

simulation identified as in conflict. Messages from the

Resolution Expert to the Conflict Resolution Object provided

actions commands for the Moving Object necessary to avoid the

identified conflict.

-14-

_A Z_O_C_ #Z_G 2-625

The interface link was implemented in the C language using

UNIX System V Inter Process Communications (IPC). The IPC

method used was a System V FIFO with 2-way FIFO's used between

separate processes. The interface link opens the FIFO

communication channel with a mknode call to the UNIX system.

The FIFO method was chosen to preclude the UNIX problem of

concurrent read and write by separate processes. The majority

of the interface link code is contained in a separate C header

file. This single separate header file must be compile both

with the ModSim II simulation and the CLIPS Resolution Expert

program. The violation of C program conventions to include

code in a *.h file was done to allow a generic interface.

CLIPS and ModSim employ the interface link through two

separate simple functions. The two functions are send() and

receive(). The UNIX methods invoked are completely hidden

from users of the interface link. The advantage of this

approach is that it allows the IPC method currently used to be

modified as the needs of CLIPS or ModSim interface may

require. For example, if faster communication is desired the

interface link header file could be modified to use shared

memory. CLIPS and ModSim both include this common header file

so recompiling the programs with the new interface header file

is all that is required. The ease of modification was judged

to be of more value than the C language guideline regarding

*.h files. The send and receive functions were included in

CLIPS by adding them to the usr define section of main.c,

including the interface link file and recompiling the entire

CLIPS library. Example of the procedure is detailed in the

CLIPS Advanced Programmers Manual.

The send and receive functions were included in ModSim by

adding a separate file that included interface link file and
had send and receive defined as NONMODSIM. The ModSim II

Reference Manual provides the details and an example of this

type of procedure.

TWO DIMENSIONAL TATSS PROTOTYPE

A two dimensional prototype of TATSS was implemented. The

prototype models a 150 kilometer by 150 kilometer two

dimensional space with four moving objects and two stationary

objects. Within the space, the four moving objects are

randomly assigned to some starting location. A destination

point is randomly selected for each moving object. Likewise,

a speed is randomly assigned for each moving object. This

results in an arrival event being defined for each object.

After arrival the destination point, a new destination point

is randomly assigned as well as a new speed. This four moving

objects continue to randomly move throughout the model space

during the duration of the simulation.

-15-

ZO_SA PROJECT #NAG 2-625

The TATSS system manages the movement of the moving objects to

prevent collisions between moving objects and between moving

objects and stationary objects. A potential conflict is

defined to be when objects are scheduled to occupy the same

sector within five minutes of each other. A conflict is

defined to be when the intersection of two objects' model

space trajectories occur within five minutes of each other.

Conflicts are resolved between moving objects by having the

objects with the smallest identification number wait until the

other object moves far enough to eliminate the conflict.

Conflicts between moving objects and stationary objects are

resolved by having the moving object randomly selecting a

different destination. Conflict decisions are made by the

CLIPS expert system module of TATSS. While the rules used in

the prototype are simple and basic, they do demonstrate the

feasibility of the approach.

The TATSS prototype has been exercised using the model

described above. During these exercises TATSS was able to

recognize conflicts and implement actions to resolve those

conflicts. In our testing, moving objects where able to avoid

collisions with other moving objects and with stationary

objects.

PLANNED EFFORT

The project has to date accomplished its major goals. Work is

continuing on development of the three dimensional spatial

template. This work should be completed by the end of August,

1992. A final report will be prepared and is scheduled for

delivery in mid-October, 1992.

One paper was presented at the 1991 IEEE/SMC International

Conference on Systems, Man, and Cybernetics October 13-16,

1991 in Charlottesville, Virginia. The title of the paper was,

"Understated Implications of Object-Oriented Simulation and

Modeling."

-16-

