
r 

NASA Technical Memorandum 105838 

The Engine Design Engine. A Clustered 
Computer Platform for the Aerodynamic 
Inverse Design and Analysis 
of a Full Engine 

1. Sanz, K. Pischel, and D. Hubler 
Lewis Research Center 
Cleveland, 0/1;0 

Prepared for the 
Cray Users Group, "Grand Challenges" 
sponsored by the Naval Research Laboratory 
'Nashington, D.C., September 20-22, 1992 

NI\5/\ 



The Engine Design Engine. 
A Clustered Computer Platform for the Aerodynamic 

Inverse Design and Analysis of a Full Engine. 

J. Sanz, K. Pischel and D. Hubler. 

NASA Lewis Research Center. 

Introduction 

The use of parallel processing with advanced supercomputers is per
. mitting the attempt of computational tasks that very few years ago would 
have seemed unreasonable. Present parallel computing capabilities make 
perfectly reachable the aero design of a full, multi-staged, turbo engine by 
direct simulation of the Euler equations rather than depending on the ex
pensive gathering of experimental data for closure of a modeling 'ansatz' 
of these equations. 

Concurrent with the development of supercomputers, powerful worksta
tions have made their way onto researchers' desks. It is not uncommon, 
though, that these workstations, while having a very heavy interactive use 
during regular hours, may experiment a much lower use at other times. 
With workstations of 25 MFLOPs per processor it seems reasonable to 
develop applications that can harness this tremendous, and frequently hid
den, computational power. 

This paper describes an experiment in parallel computing performed in 
collaboration with the Computer Services Division and the Aeropropulsion 
Analysis Office of the NASA Lewis Research Center. A cluster of seven 
IBM RS/6000-550 powerstations and two CRAY-YMP main frames has 
been used for this experiment. The machines have been clustered using 
the Lewis Ethernet Network, with the TCP/IP protocol. Three hardware 
configurations have been tested for parallel processing: An RS/6000 clus
ter, a heterogenous cluster of RS/6000 plus two CRAY-YMP machines, 
and a stand alone CRAY-YMP using all eight processors. 

A version of the code Aida.fe, Aerodynamic Inverse Design and Anal
ysis for a Full Engine, has been parallelized using the Parallel Virtual Ma-

1 



chine (PVM) programing language. The master/slave paradigm suggested 
by the PVM developers has been followed in the parallelization of the code. 
In this environment the master runs on the host workstation and the slaves 
run on each one of the nodes attached to the cluster. The host performs 
all the I/O operations and file manipulation with little CPU use but with an 
extensive use of memory. On the other hand, the nodes execute most 
of the computational work with no I/O needed. The executable is actually 
the only file, permanent or temporary, used by the node. This is a very 
desirable feature to have in a multi-user environment, both in a distributed 
cluster of workstations or when mainframes are attached as nodes. A node 
retrieves, or sends, through PVM message passing calls, all the necessary 
information from, or to, the host or the other nodes, while the host does 
all the pre- and post-processing and storage. In the following sections we 
describe the three different configurations explored. 

The RS/SOOO Cluster 

The first test on the clustered system was performed during the month 
of April 1992. Seven IBM RS/6000-550 powerstations located in different 
buildings were linked on the Ethernet network. No subnetting was estab
lished, so the experiments ran in a shared mode with the regular network 
traffic at the Lab. 

One workstation is used as both host and node, while the remaining 
six are used as nodes. In the approach taken in the parallelization of the 
code each node handles the calculation' for one blade row or flow passage. 
It could then be classified as a macro-tasking parallelization. Figure No. 
1 'represents a schematic of the clustered configuration. The host sends 
to each node the particular information needed, and broadcasts to all of 
them the common information they have to share. The nodes return to 
the host some computed values and, after further manipulation by the 
host, the nodes are given the order to begin the main execution of the 
program. In this first test case, the nodes perform the main calculation 
with no communication between themselves. 

Table No. 1 shows the CPU time used by each node on the cluster, 
compared to the CPU time on one YMP processor of a sequential run for 

2 



the same test case. The results show that, with a coarse grid run that 
achieves a rate of 54 MFLOPs on the YMP, four AS/6000 processors are 
equivalent, in CPU time, to one YMP processor. Subsequent examples will 
show the corresponding rates when, with finer grids, the YMP delivers rates 
of 84 and 112 MFLOPs . The results shown in Table No. 1 were obtained 
after some vectorization improvements were made. The original run, in 
April, showed a 3.2 equivalence rate between RS/6000 processors and 
one YMP processor. Aeal time comparison was also made by running the 
cluster on one of the host windows while on another window the same case 
would run, sequentially, on one YMP processor. Consistently, the cluster 
would complete execution at the time the YMP would finish the fourth blade 
row. Because of the short CPU times of the tests, time sharing on the YMP 
gives high priority to the job, making the real time comparison very close 
to the CPU comparison shown before. 

Since the time at which this test was performed, the cluster has worked 
consistently well on a sustained mode of operation, including the case 
in which nodes talk to each other, producing a substantial amount of 
interprocessor communication. It is obvious, though, that the advent of 
more users performing parallel work on a distributed environment will 
require the establishment of separated subnets for those machines forming 
different clusters. This will restrict the trafic within each subnet. 

node arch CPU sec node arch CPU sec 

1 RS/6000 22.34 1 Cray 5.68 

2 RS/6000 22.00 1 Cray 11.04 

3 RS/6000 22.57 1 Cray 16.52 

4 RS/6000 22.05 1 Cray 21.88 

5 RS/6000 23.13 1 Cray 27.30 

6 RS/6000 22.39 1 Cray 32.65 

7 RS/6000 23.14 1 Cray 38.15 

RISC/YMP processors = 4 YMP MFLOPs = 54. 

Table 1. The AS/6000 versus one YMP processor. 

3 



The Heterogeneous Cluster 

In the design process established by the code methodology the CPU 
time needed by different blade passages may vary largely. It seems then 
reasonable to have the capability of attaching to the cluster, as new nodes, 
one or more processors of a CRAY-YMP to handle the blade rows that 
need a more intensive CPU. The host RS/6000 handles perfectly this 
heterogeneous system in which one or more nodes are processors of a 
CRAY-YMP. All PVM requires is to recompile the node executable on the 
new CRAY architecture. For this test, we linked to the cluster the CRAY
YMP at the Lewis Research Center and the NAS CRAY-YMP , located at 
the Ames Research Lab. 

In this new environment, we run, as in case No.1, the same test from 
the previous section. Table No. 2 shows the CPU time per node on an 
RS/6000 node compared to the CPU time on one YMP processor. It shows 
again that four RS/6000 processors perform at the same rate as one YMP 
processor. Cases No. 2 and 3, on the same table, show the comparison 
between the two architectures when the code runs on finer grids with an 
85 and 112 MFLOPs count on the YMP. In these cases, six and eight 
RS/6000 processors, respectively, are needed to produce the same work 
as one YMP processor. 

The host can request a specific architecture, for a given virtual node, 
at the initialing call. When there are more virtual nodes initialized of a 
given architecture than there are machines attached to the cluster with the 
requested architecture, PVM will start as many new processes as required, 
and will split them within the machines available of the given type. A 
practical case is the one in which just one of the two YMPs is attached 
to the cluster. In this case, as many processes are started on this machine 
as virtual CRA Y nodes are required. It is worthwhile noting that when using 
the heterogenous cluster, and if internode communication is required, the 
nodes that so require should run on the same architecture in order to have 
a balanced execution. 

Although other architectures could have been tried, the high CPU 
speed requirements make the combination of RS/6000 and YMPs a very 
formidable hardware platform for the task at hand. . 

4 



case arch CPU sec/ RISC/ arch CPU sec/ MFLOPs 
node YMP node 

1 RS/6000 23. 4 Cray 5.53 54. 

2 RS/6000 132.35 6 Cray 21.91 85. 

3 RS/6000 994.94 8 Cray 122.60 112. 

Table 2. The heterogenous cluster. 

The Stand alone YMP 

The last configuration studied comprises the eight processors CRAY
YMP at the Lewis Research Center acting as a stand alone platform with 
the host and nodes running on the same machine. The purpose of this 
test is to have an estimate of the efficiency of PVM, for our particular 
application, in using the resources available, and to assess the overhead 
imposed by the interprocessor communication. 

Ten test cases were run on this machine on dedicated time. The results 
are tabulated on Table No.3. Cases 1, 3, 5, 7 and 9 consist of tests without 
internode communication, while their counterparts 2, 4, 6, 8 and 10 run the 
same cases with large internode communication. In cases 1 and 2 only 
four processors are called, showing in case 1 a 49.2 percent use of the 
total machine or 98.4 percent of the four processors requested. Case 2 
shows that a 20 percent of the machine usage is spent in interprocessor 
communication. 

Cases 3 to 10 required the use of all eight processors. Case 3, with no 
internode communication uses 98 percent of the full machine. Case 4 adds 
a 30 percent use for internode communication. Because it is a coarse grid 
run, the rate of internode communication to CPU usage is large. Cases 5 
and 6 are equivalent to cases 3 and 4, but executed on a finer grid. The 
rate of internode communication to CPU usage is then lower than in case 
4, showing a good 4 percent use of the machine for node communication. 

Cases 7 and 8 are similar to cases 5 and 6 but executed with a 
more sustained calculation. Finally, cases 9 and 10 represent a third grid 

5 



refinement calculation with a ·112 MFLOPs count. 
Overall the test seems to indicate that the present application makes 

an efficient use of the available processors on a super-computer, and this 
is more evident when finer grids and sustained calculations are performed. 

case #nodes arch CPU sec Wall %8-CPU %Total MFLOPs 
Inode Clock Inode CPU 

1 4 Cray 31.00 31.48 12.30 49.20 54. 

2 4 Cray 46.16 71.49 8.00 40.00 54. 

3 8 Cray 51.49 52.47 12.25 98.00 54. 

4 8 Cray 53.05 85.18 8.50 68.00 54. 

5 8 Cray 62.47 65.65 11.875 95.00 85. 

6 8 Cray 62.83 68.74 11.41 91.30 85. 

7 8 Cray 207.37 226.06 11.3 90.40 85. 

8 8 Cray 209.04 257.93 9.92 79.4 85. 

9 8 Cray 119.13 124.16 11.95 95.6 112. 

10 8 Cray 119.88 129.08 11.64 93.12 112. 

Table 3. Eight processors on a YMP. 

Concluding Remarks 

An application for parallel computation on a combined cluster of power
ful workstations and super-computers has been developed. PVM, Parallel 
Virtual Machine, is used as message passage language on a macro-tasking 
parallelization of the Aerodynamic Inverse Design and Analysis for a Full 
Engine computer Code. The heterogenous nature of the cluster is perfectly 
handled by the controlling host machine. Communication is estabiished 
via Ethernet with the TCP/IP protocol over an open network. A reasonable 

6 



overhead is imposed for internode communication. rendering an efficient 
utilization of the engaged processors. Perhaps one of the most interest
ing features of the system is its versatile nature. that permits the usage of 
the computational resources available that are experiencing less use at a 
given point in time. 

Acknowledgment 

The authors would like to thank Tony Hackenberg. NASA Lewis Com
puter Service Division, for his superb assistance on the use of the CRAY
YMP on dedicated time. 

7 



ENGINE DESIGN ENGINE ' 

Nodes 

Host 

~,~ 

Nodes 

Host 

8 


