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ABSTRACT

A unique facility, the Automated Structures Research
Laboratory, is being used to investigate robotic assembly of

truss structures. A special-purpose end-effector is used to
assemble structural elements into an eight meter diameter

structure. To expand the capabilities of the facility to include
construction of structures with curved surfaces from straight
structural elements of different lengths, a new end-effector has
been designed and fabricated. This end-effector contains an
integrated microprocessor to monitor actuator operations through

sensor feedback. This paper provides an overview of the
automated assembly tasks required by this end-effector and a
description of the new end-effector's hardware and control
software.

INTRODUCTION

NASA Langley Research Center has initiated a research

program to develop methodologies for automated in-space
assembly of large truss structures. A laboratory test facility,
called the Automated Structures Assembly Laboratory, has been

recently developed in which a regular tetrahedral truss structure,
that includes 102 truss members, has been assembled using a
specialized end-effector mounted on an industrial robot arm. A
description of the truss is included in reference 1 and a

description of the facility is included in reference 2. The end-
effector currently used in the test facility was designed for, and

is restricted to, operations on fixed length struts. Fixed length
struts restrict operations to the assembly of structures composed
of regular tetrahedral subelements similar ,_ the current test
structure. To address the assembly of other structures, such as
support trusses for antennas that have a parabolic shape and

require members of many different lengths, and to expand the
capability of the system, to perform tasks such as the installation
of payloads, a new end-effector is required. Also, for the
current assembly experiment, the computational requirements
have become very large and a distributed computational
capability that incorporates dedicated microprocessors to

command actuators and verify successful operations through the
interrogations of sensors is needed. Therefore, an end-effector
which installs one end of a strut • t a time and uses a dedicated

on-board microprocessor for sensor interrogation and actuator

control, was designed and fabricated. This t,ew end-effector
will permit assembly of a variety of structures, installation of
payloads with a standardized connection, and will provide the

first opportunity for concurrent operations within the test
facility. The thne required to assemble a structure with the new
end-effector is expected to increase over that required by the

current end-effector, because the new end-effector operates On
one end of a strut at a time and is required to capture most struts
in a cantilevered configuration.

The purpose of this paper is to describe the new end-

effector and the operations involved in truss assembly, describe
the relationship between the end-effector and the overall
hierarchical control scheme used in the assembly facility, and
detail the operation of the end-effector's control software;

highlighting the advantages that can be achieved through

embedded microprocessor control. Emphasis will be placed on
the unique features of the software design. Planned tests and
further work will also be discussed.

STRUCTURAL ASSEMBLY TEST FACILITY

The current automated assembly test facility at the
Langley Research Center is shown in the photograph of figure
1. Figure la is a schematic of the assembly system with the
subcomponents labeled and figure lb is a photograph of the
actual assembly laboratory. The facility is a ground-based

research tool to permit the development and evaluation of
assembly hardware concepts, construction techniques, software;

and operator interface systems that are likely to be required for
on-orbit assembly operations. The robot arm is an electrically
controlled, six degree-of-freedom industrial model that was
commercially available when the program was initiated. The

arm was selected for the laboratory test operations primarily
because of its payload capacity, reach envelope, and positioning
repeatability. No modifications to the robot other than those that
are commercially available from the manufacturer have been
made. The robot is mounted on an x-y Cartesian motion base

that provides translational travel to position the base of the robot
anywhere in the support track area to within 0.002 of an inch.
The truss is mounted and assembled on a rotating motion base at
the end of the translational base. Both of the motion bases are

designed to minimize positional errors that may be induced by
static deformations from the mass of the robot, unbalanced

asymmetric truss assembly, and forces exerted by the robot
during assembly.

The truss selected for assembly test operations is a
regular tetrahedral truss composed of 102 strut members each
approximately two meters long. This size and configuration

were chosen because they are representative of the support
structures that are required for a number of planned and/or
proposed missions. The truss also has a number of geometric
characteristics that make it desirable for an automated assembly
test bed. These characteristics are described in reference 3. The

truss members are connected by specially designed connector
joints located near the nodes. Each node must be capable of
connecting nine members, six that are in the plane of the top or

bottom face and three core members that attach the top and
bottom faces. The joints are located as close to the nodes as

physically practical to minimize the packaging volume of the
members for launch. The confined region near the node,

however, somewhat complicates assembly operations since the
end-effector must have a small size to be capable of installing a
member. The truss joint connector is shown in figure 2. The

joint is composed of two parts; a connector section that is
bonded to the strut tube, and a receptacle section that is

mechanically attached to the node. The joint has a ramped entry
way to aid in inserting the connector into the receptacle. After

insertion, the locking nut is turned to draw the connector plunger
into the receptacle pocket and to preload the joint to eliminate
free-play in the truss, thus providing a structurally predictable
assembly unit.
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The end-effector shown in figure 1 is the first generation

model developed especially to assemble the truss shown. The
initial tests were developed around the use of this specialized
tool to establish a test database and provide experience for the
development of the operator interface while the facility hardware
was coordinated and tested.

The facility is directed and controlled by several digital

computers that are currently serially connected through RS 232
communication lines to transfer commands and status

information as shown in figure 3. For the current system all
end-effector operations are controlled by the robot computer.

This configuration was adopted because the robot computer was
capable of directly monitoring end-effector sensors and
executing commands through integrated analog-to-digitial and

digital-to-analog converters. The status of the assembled
structure, location of all truss members, position of the robot
arm and motion bases, and status of the end-effector are all

stored in appropriate databases. At the highest level, the
operator selects the desired function to be performed from a
menu of permissible commands. The executive program checks

the current status of all components and the status of the
assembled structure and determines if the requested command is
permissible. All assembly operations are performed under the

supervision of the computer executive, which operates as an
expert system. During the assembly process, a display adjacent

to one of the menus advises the operator of commands initiated
and their completion status.

Shown in figure 4 is the assembly software structure
which is divided into five hierarchical levels: planning, truss

element, device, component and verification. The figure
indicates typical operator commands at each level, which are
decomposed by the automated system into a series of commands
for the next lower level. The highest, or planning level, which
is not currently implemented, would be driven by an automated

task sequence planning tool. A command to "build" a structure
or substructure would be decomposed by the planner into a
sequence of commands for the second level. To fetch and install
a strut requires action by 3 separate devices; the motion bases,
the robot, and the end-effector. Thus, the truss element

decomposition is sequentially directed toward separate targets.
Each of the device commands, such as the end-effector install

command (INSTALL) decomposes into a sequence of individual
actuator commands (CLOSE, LOCK, EXTEND,...). If a
failure is detected, automated error recovery is activated. If the

automated error recovery is not successful, an error recovery
menu is displayed to the operator. On the menu is a list of
methods to overcome the failure. The order of the list and the

definition of the methods are based on experience. The system
will not proceed until the problem is resolved. If it cannot be
corrected, information is passed back up through the system
hierarchy, causing all commanded actions to roll back to the state

that existed prior to initiating the command. More information
regarding fault corrections and overrides, especially with regard
to the end-effector, will be discussed in a subsequent section.

Further details on the facility components and the software
system can be found in reference 3.

DESCRIPTION OF ASSEMBLY HARDWARE

The second generation end-effector discussed throughout

this paper is a follow-on to the first generation end-effector used
to assemble the planar structure shown in figure 1. This end-
effector is shown in the center of figure 5 surrounded by
enlargements of the end-effector components. The second
generation end-effector is much smaller than the first generation

model, with a length of about 0.52 meters (20.5 inches). It is
designed to insert one end of a strut at a time. The receptacle
finge'rs, nut driver, insertion platform, and strut holder are

adopted directly from the first generation end-effector. The
second strut holder (figure 5b) and alignment fingers (figure 5c)
were added to increase the moment capacity and capture zone of

the end-effector. The alignment platform permits the alignment
fingers to be extended away from the strut holders when
capturing cantilevered struts.

The end-effector contains four grippers, two platforms, a
nut driver, and seventeen sensors (not shown in the figure).

The insertion platform, shown in figure 5e, is used to insert the
strut connector into the node receptacle. The alignment platform

is used to extend the alignment fingers to prevent interference
with other end-effector components when capturing a
cantilevered strut, as mentioned above. Referring to figures 5e

and 5f both platforms will extend and retract. These operations
are accomplished by air cylinders with full extension and
retraction verified by linear potentiometers. Figures 5a and 5c

depict the operation of the receptacle and alignment fingers. The
receptacle fingers align the end-effector relative to the structure
by closing on the vee grove of the node receptacle, the alignment
fingers are used to capture a cantilevered strut by closing on the
strut tube. Both the receptacle fingers and the alignment fingers

are actuated by sliders driven by air cylinders. Position of the
cylinder piston is monitored via the manufacturer's reed
switches mounted on cylinder exterior. The reed switches are

activated by a permanent magnet internal to the pneumatic
cylinders. The receptacle and alignment fingers also contain

infrared cross-fire sensors to verify that a strut is in the capture
zone. The cross-fire sensors operate using a pair of units that
project light from an emitter unit to a receiver unit. A receptacle
or strut is detected when it blocks the light. Figure 5b depicts

operation of the strut holders. The strut holders are driven by
DC motors through a screw jack mechanism. The strut holders
align the end-effector relative to the strut by closing on the
strut's alignment adapter. Motor power is applied to the strut
latch motors until a sensor is activated or the time limit is
exceeded. Three inductive sensors are used to monitor each

strut holder's state: one sensor is used to indicate that the holder

is FORCED CLOSED, and two to sense the state of the motor-
driven latching mechanism, either DRIVEN OPEN or DRIVEN

CLOSED. The strut holders are spring loaded to the open
position. FORCED CLOSED occurs when the robot is
commanded to move until the strut holders are forced closed by
contact with the alignment adapter located on the strut, then the

strut holders are DRIVEN CLOSED securing the strut to the
end-effector.

The nut driver, figure 5d, is also driven by a DC motor.
The nut driver is used to actuate the joint connector. The nut

driver is driven using a closed loop control system with current
and position feedback. Current feedback is derived from the
voltage drop across a resistor in series with the motor winding.
Position feedback is achieved by a low resolution encoder on the

output shaft providing eight pulses per revolution. Since the
flats of the socket and the nut are randomly oriented during

acquisition of the strut, the socket will not necessarily slip onto
the nut, but instead may push the stmt away from the holders,
preventing them from grasping the strut. The socket is therefore
spring loaded toward the strut to permit grasping of the strut
even though the nut driver may not be seated. Socket seating is
monitored by an inductive sensor.

STRUT INSTALLATION

The second generation end-effect0r must be able to

install struts into nodes supported by one or more previously

installed struts. As an example of the operations required for
strut installation, a possible double cantilever installation
scenario will be developed. In this case the end-effector has
installed one end of a strut and now must connect the other

cantilevered end to an existing node at the end of a second
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cantilevered strut. A cross-fire sensor verifies that a strut is

within the capture zone of the alignment fingers, figure 6a, the
alignment fingers are closed on the cantilevered strut's tube
restricting the translation of the strut in two directions. With the
strut captured and the proper alignment achieved, figure 6b, the
insertion platform is extended and strut holders latched securing
the strut to the e_d-effector, figure 6c. The left strut holder
closes around the hexagonal aligmnent adapter that is bonded to

the strut tube. These adapters have a central vee groove that
mates with a protrusion in the left strut holder to provide passive
axial alignment, while the hexagonal cross section of the adapter

keeps the strut circumferentially aligned. The right strut holder
closes on the strut tube to increase the moment capacity of the
end-effector's grasp. At this time the alignment fingers are

opened, figure 6d, followed by the retraction of both platforms.
With the cantilevered stmt secure, the next step is the capture of
the node at the end of the second cantilever strut. After verifying
the receptacle is within the capture zone of the receptacle fingers

An assessment of the requirements for the

microprocessor system was conducted and the following
microprocessor capabilities were identified: (1) a minimum
number of signal lines passing through the quick change
mechanism, (2) small physical dimensions, (3) standard
communication support, (4) six input lines for analog to digital

conversion, (5) two output lines for digital to analog conversion,
(6) twenty-four general purpose I/O pins, and (7) three lines
providing external interrupt capability. In addition, high level

language and development tools were required to support the
implementation of the following software capabilities: (1) stand
alone checkout, (2) on line checkout, (3) communication

interrupts, (4) operator override, and (5) eventual porting to
different computer platforms.

These requirements led to the selection of a commercially
available single board computer built around an eight bit
microprocessor operating at a clock frequency of 12MHz. The
board supports up to eight general purpose eight bit ports

using the cross-fire sensor, the fingers are closed on the vee including two serial communication lines, external interrupts,
groove machined into the connector receptacle, passively
correcting small misalignments. The end-effector fingers are
designed to successfully capture the receptacle within a

cylindrical envelope of 5 cm diameter by 1.5 cm long. With the
receptacle captured, figure 6e, the insertion platform is extended
inserting the joint connector into the receptacle. The nut driver

socket is seated; if required, by incrementally turning the socket
to align it with the nut, then several full turns of the nut securely
lock the joint. While the joint is being locked motor current,
encoder counts, and socket seating are monitored. Normal

termination occurs when current draw exceeds a predefined
threshold and a minimum number of encoder counts have been

received, while the socket has remained seated. Reaching the
current threshold indicates the locking mechanism has applied

adequate closure torque to the joint connector, while the encoder
count indicates that the joint connector is fully closed. This
operation secures the strut in the structure. Next, the strut

holders are unlatched releasing the strut, the insertion platform is
retracted, and the receptacle fingers are opened, releasing the
structure and completing the connection. All operations are
verified using sensors as discussed earlier. All other installation

cases are based on variations of these operations.
The double cantilever installation is a potentially difficult

task and several operational scenarios are possible. For
example, the strut with the node may be captured first. The
purpose of the above illustration is to demonstrate how the
operation of the end-effector components must he coordinated to
perform an installation sequence and how sensors are required to
verify the operation of the end-effector components. It is

important to note that all mechanical operations must be totally
reversible to permit the end-effector to recover from an error or
to permit the truss to be disassembled for repair.

END-EFFECTOR CONTROL SOVI'WARE

The driving force for development of an on-board

embedded microprocessor has been to reduce the number of
signal lines from the end-effector to accommodate a quick
change mechanism. The end-effector is essentially a tool for the
robot and, since the robot is expected to perform many

operations, it occasionally requires different tools. This led to
the purchase of a quick change mechanism to allow the robot to
engage or disengage end-effectors. But, this piece of hardware
places a constraint on the number of signal lines between the
end-effector and the robot. Thus, a method for integrating the

sensors with the end-effector operations was required to
accommodate the increasing number of sensors on the end-

effector. This need lead to the development of _he
microprocessor based control scheme discussed in this paper.

data bus, and address bus. The board also supports eight analog
to digital lines with programmable reference voltages and up to
64 kbytes of RAM and 64 kbytes of ROM.

To minimize the number of signal lines leaving the end-
effector and provide necessary signal preparation a custom
electronics board was fabricated to interface between the end-

effector actuators]sensors and the microprocessor board. This
board provides: (1) electronics for digital to analog conversion
for proportional nut driver motor control, (2) electronit.; for
analog to digital conversion to monitor nut driver motor current,
(3) the drive electronics for the strut latch motors and solenoid

valves, (4) electronics to convert plus and minus 24 volt power
to the additional voltage levels required for the microprocessor
and the drive electronics circuits, and (5) isolation of all sensor
and actuator signals from the microprocessor ports by Schmitt
triggers or voltage followers. By locating the support
electronics on the end-effector, the number of signal lines

required to operate the end-effector has been reduced from 60 to
5, providing enough free lines in the quick change mechanism
for two color camera cables used by the operator to monitor end-
effector operations.

The software was implemented in C using a PC based
development system. The system was selected because it was
ANSI C compatible, included a source level debugger, and

included language extensions providing access to all processor
dependent features. C was selected because of its support for bit
level operations and to support transferring developed code to
other computers.

The relationship of the end-effector to the overall
assembly configuration is shown in Figure 7. Note that the
second generation end-effector will communicate with the

executive computer directly instead of through the robot as was
depicted in figure 3. The end-effector control software is
responsible for three levels of operation that were depicted
earlier (figure 4); device, component, and verification. The

software implementation focused on support for event driven
operations. Event driven refers to program flow dictated by
responses to events rather than moving serially through a state

system. Event driven applications have many advantages. In
general they provide improved response time, support
asynchronous events, and provide interrupt capability. The
ability to support asynchronous events and provide interrupt
capability were essential for this application.

The relationship between end-effector commands and
software states is shown in figure 8. Figure 8a is the state
transition diagram for the end-effector software, while figure 8b
is the corresponding transition matrix. In figure 8a arrows
represent possible transitions, dashed arrows represent
interrupts, and bold arrows represent normal operation.
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Commands associated with a given transition overlay the arrow

representing the transition. The shaded box on the left encloses
the states making up the control loop. All commands that affect
end-effector actuators occur within this box. The shaded box on

the right side of the figure encloses the three states within the

command parser. The software transitions from the box on the
left to the one on the right via an interrupt activated by the
reception of a command. When power is applied to the

microprocessor's board, or the board's reset button is
depressed, the software initializes (figure 8a) the actuators,
based on sensor information, and enters the control loop state

WAIT FOR COMMAND. Under normal operation, the

software is in the control loop in state WAIT FOR COMMAND
when an executable command is received across the serial line

activating the serial interrupt handler (command parser). The
command parser reads the command, validates the command
based on the current state, and initiates the transition from WAlT
FOR COMMAND to EXECUTE COMMAND. After execution

of the command has completed, the software waits for another
command. The software design was govemed by the possibility

of being interrupted at anytime. For this reason and because the
command parser initiates the transition from state WAIT FOR
COMMAND to state EXECUTE COMMAND, the command

parser and the commands it accepts will be discussed first.
The command interface to the microprocessor was

designed to provide a human readable ASCII format. This
greatly simplifies diagnostic and monitoring operations by

creating data that can be immediately read and interpreted by the
operator. This interface has the added advantage of supporting
dumb terminals for off-line checkout and verification. For this
verification to have relevance, it should mimic the conditions of
the actual system. Thus, the commands issued from the terminal
must be the same as those issued to the end-effector at run time.

By carefully defining the syntax of the end-effector commands,
the overhead is minimized while maintaining a human readable

format. Under normal operation the maximum command
contains seven ASCII characters.

The most critical requirement for _ynchr0nous event

sup.port was to allow PAUSE and REVERSE commands at any
point. PAUSE implies suspending the current operation
indefinitely. REVERSE implies removing the progress of the

current operation until the state of the system is the same as it
was before the command was received. As shown by the

dashed lines in figure 8a, command reception activates the
command parser. While the software is in the state EXECUTE
COMMAND, reception of a PAUSE command will cause the
software to enter the PAUSED state suspending execution

indefinitely. Either a CONTINUE or a REVERSE command is
required to resume execution.

The correspondence between the commands and
software state transitions is shown in figure 8b. The states that

can be interrupted are located on the left of the figure, the
acceptable commands in the center, and the resulting state on the

right. Commands are interpreted based on the current software
state, thus there are three cases of command evaluation within

the command parser, one for each software state that may be

interrupted by command reception. Interruption occurs when
input is detected on the serial line, because the command parser
(serial interrupt handler) is activated to process it, thus, allowing
commands to be received at anytime. Note that the command

parser contains all decision points related to software flow.
Supervisory commands can be entered from any state

and do not cause a state transition. Supervisory commands
provide a method for direct operator interaction with the end-

effector. For example, a single step mode may be turned on.
This causes the end-effector control software to execute

component commands individually. After completion of each
component command, the operator is queried to continue.

Supervisory commands also support diagnostic operations.

They give the operator a way of requesting end-effector status
information to monitor individual sensors. Consider the

platforms discussed earlier; if they indicate intermittent failures
when a platform actually worked, then the platform

potentiometer may be monitored to determine if the thresholds
representing fully extended or retracted need to be adjusted.

After completion of the supervisory action, control returns to the
state that existed prior to the reception of the supervisory
command.

While in the software state WAIT FOR COMMAND,

executable commands are accepted. Executable commands
initiate end-effector action, thus causing transition to the state
EXECUTE COMMAND." For example, LOCK NUT is an
executable command that causes the nut motor to turn.
CONTINUE and REVERSE are also accepted in the state WAIT
FOR COMMAND. Reception of these commands implies the

previous command encountered an error, because an unresolved
error terminates command execution. CONTINUE implies the
error has been overcome and execution is to resume, REVERSE

implies the error was not overcome and the system must be
rolled back to the state before the command was received.

From the state EXECUTE COMMAND, reception of
REVERSE implies the operator has foreseen a potential problem
and wishes to retract the last EXECUTABLE command. If

PAUSE is issued by the operator, while in the end-effector
software state EXECUTE COMMAND, the end-effector will

suspend its current operation prior to entering the PAUSED
state. To suspend the current end-effector operation, the control
software uses a queue of pause functions. These are functions

queued by the component or composite functions to be activated
anytime a PAUSE is received. For example, if the PAUSE
command is received while locking the nut, the nut driver motor
must be stopped. This is accomplished using a function queued

by the nut component that stops the motor and saves the encoder
counts. After activating each function in the pause queue, the
control software enters the PAUSED state. The end-effector

may remain paused indefinitely. As shown at the bottom of
figure 8b, execution of the interrupted end-effector operation,
i.e. return to the state EXECUTE COMMAND from the state
PAUSED, will occur only after reception of a CONTINUE or

REVERSE command. Queues similar to the pause queue are
maintained for CONTINUE and REVERSE. If CONTINUE is

received, continuing from the PAUSED state entered above, a
function in the CONTINUE queue is activated to restore the
encoder counts and restart the nut motor, thus returning to the
state before the PAUSE command was received. If an invalid

command is entered at any time an error is returned.
The control loop, shown on the left of figure 8a is

shown in detail in figure 9, with the corresponding portions of
the software flow diagram enclosed in circles. The block

ACTIVATE FUNCTION is further detailed in the lower right of
the figure. After power is applied to the microprocessor board

or a reset occurs, the end-effector software outputs a message,
signaling successful initialization, and waits for a command to
execute. At this time the software is in an infinite loop,
constantly checking a flag that, when TRUE, indicates a

command is available to execute. This flag can only be set to
TRUE through an interrupt handier. As mentioned above, the
command parser is an interrupt handler. By setting the flag to
TRUE after a valid command has been received, the command

parser initiates the transition from the state WAIT FOR
COMMAND to the state EXECUTE COMMAND,

Commands are of two types, component and composite.
Both are activated and processed in the same fashion within the
control loop as shown in figure 9. Component commands
interact with the hardware directly and hence, are specific to a

given end-effector. All component commands contain a timed
loop during which a specific sensor is polled to verify success of
the operation. Three basic capabilities are provided for each
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end-effector component by component commands. These
capabilities are: (1) specifying the desired configuration of the
component, for example EXTEND INSERTION; (2) exercising

the component, for example CYCLE INSERTION, which
attempts to extend and then retract the insertion platform; and (3)
analyzing the component function, for example SURVEY
INSERTION, which cycles (for a predefined number of times)

the insertion platform and displays a series of formatted strings
containing the commanded state, the thresholds representing
fully extended and retracted, and the current value of the linear

potentiometer.
An example component function block diagram is shown

in figure 10. This component is responsible for receptacle Fmger

operations. For each command available for the component, a
section of code is required to define the command operation. In
this example the executive command CLOSE RECEPTACLE
was received. Upon entering the section of code for CLOSE, a
sensor check is made for receptacle presence via infrared cross-

fire sensors. An error is generated if the receptacle is not
present. If a receptacle is present then the actuator bit
corresponding to the receptacle fingers' actuator is set. The

software then enters a timed loop during which the reed switch,
which indicates closed, is constantly polled. If the receptacle
fingers close before the allotted time has expired the operation is

successful, and a message indicating success is returned by the
control loop. Time limits used in the component commands
were established empirically based on experience with the first
generation end-effector. If the receptacle does not close within
the allotted time an error code is retumed.

In the command hierarchy, composite commands are
above component commands. Composite commands are a set of
end-effector specific component commands executed in a
predefined order. Composite commands allow for a greater

level of abstraction, thus, they provide a method for increasing
the embedded intelligence at the end-effector level. Composite
commands were established to provide a device independent
interface to the end-effector operations. Use of composite

comrnands has significantly reduced the code requirements in the
executive program by standardizing the interface to all end-

effectors. Also, by supporting the composite commands at the
end-effector level, most of the communication overhead has

been eliminated. The block diagram for an example composite

command is shown in figure 11. This is the sequence for a
subset of the double cantilever INSTALL function. In the

explanation that follows, it is assumed that the end-effector
already has a strut latched by the strut holders and the insertion
platform is retracted. Because any command performed by the
end-effector must be reversible, each composite function has a

corresponding reverse function, in this case
INSTALL REVERSE, to return the end-effector to the state

prior to reception of the composite command. Both functions

are depicted in the figure; INSTALL on the left,
INSTALL_REVERSE on the right. An INSTALL operation
with no errors will enter at the top, the continue check will be
FALSE, and the operations from SET_UP to COMPLETE will

occur sequentially. In SET_UP the receptacle is verified to be
present, then the receptacle fingers are closed in
CLOSING_RECEPTACLE. Next a message is sent to the
executive program requesting a force/torque balance.

Force/torque balancing will be used to adjust the robot arm to
correct for misalignments between the end-effector and
receptacle slot that prevent full extension of the insertion

platform. The robot is adjusted until all reaction forces between
the robot and structure have been reduced to near zero. At this

point the end-effector will be in the configuration shown in
figure 2e. As discussed previously, the insertion platform is

then extended and the nut locked to secure the strut. Finally the
strut is unlatched, the insertion platform retracted, and the
receptacle fingers opened, releasing the structure and completing

the installation sequence. A sensor is polled after each operation
to verify successful execution. Because no resources have been
allocated, no operations occur in COMPLETE. The software

then returns to the control loop where a message indicating
success is retumed to the executive program.

Software supporting error handling has dominated the
implementation efforts for the composite commands. In general,

approximately 70% of the software is required to support error
conditions. If an error occurs in one of the component
operations; the function is terminated, returning to the main

control loop where a descriptive error message is returned to the
executive program. After receiving an error message the

executive program presents an error menu to the operator
through which the operator can: (1) fix the error and continue,
(2) reverse the current command, or (3) override the error and
continue. It is important to note that, after an error is
encountered, the function is terminated and the end-effector

software is in the control loop state WAIT FOR COMMAND.
This provides two advantages. First, since there is only one

Command parser, each function does not have to support
communications during error handling. Second, there is no

restriction on the commands that can be issued when trying to
resolve an error. This is critical, because it is often necessary

for the operator to activate other end-effector components or
command other devices when resolving an error. For example,
when closing the receptacle, the end-effector's location may
need to be modified by commanding the robot to move. Thus,
the receptacle is opened, using a component command, the robot
moved, and the installation sequence resumed by a CONTINUE
command.

If the operator is able to eliminate the error by adjusting
some assembly component, then a CONTINUE command is
issued to the end-effector. The control software sets the

continue bit too TRUE, causing the CONTINUE? check at the
beginning of INSTALL to be TRUE, thus returning to the state
within the INSTALL function where the error occurred and

continuing execution from that state.

If the operator is unable to overcome the error, the
REVERSE command is sent to the end-effector. The end-

effector software sets the flag indicating CONTINUE, but also
sets a flag causing the components to abort. When the last state
is entered, it is inarnediately aborted, returning a unique error
condition to the INSTALL function. The INSTALL function

clears the error before calling the INSTALL_REVERSE
function. INSTALL_REVERSE jumps to the current state and
begins reversing the operations completed by the INSTALL
function. If another REVERSE command is received, then the
same error is cleared by the INSTALL_REVERSE function and

control is returned to the INSTALL function. This cycle can

repeat indefinitely. Jumps to the current state are depicted by
large arrows under the line TO CURRENT STATE at the bottom

center of figure 11. Note that some of the states in
INSTALLREVERSE have no actions associated with them, for

example BALANCING_FTS, which is only required after the
end-effector has grasped the structure. These states are simply
place holders so that when reversing there is an appropriate state
to jump to. An example of a reverse sequence follows. While
in the INSTALL state CLOSING_RECEPTACLE, the

receptacle f'mgers fail to close, the timing loop initiates an error

causing the INSTALL function to terminate and return to the
control loop, where an error message is sent to the executive

program. The end-effector software then enters the state WAIT
FOR COMMAND. Because the operator is unable to overcome
the error, the REVERSE command is sent to the end-effector.

The end-effector control software interprets the REVERSE
command, sets the abort flag to TRUE, sets the CONTINUE

flag to TRUE, and activates the INSTALL function. Upon
entering the INSTALL function the CONTINUE check is

TRUE, causing execution to return to the state
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CLOSING_RECEPTACLE. When the component command

responsible for receptacle operations is executed, it immediately
aborts, because the abort flag is TRUE, returning a unique error
code to the INSTALL function. The INSTALL function clears

the error before calling the INSTALL_REVERSE function, thus

reversing the sequence. While in the INSTALL_REVERSE

function, reception of another REVERSE command will result in
the same error code being cleared by the INSTALLREVERSE
function causing execution to return to the INSTALL function.

Cycling between INSTALL and INSTALL_REVERSE can
repeat indefinitely. The REVERSE command may also be
received while the software is in state EXECUTE COMMAND.

Reception of the REVERSE command from this state results in
the abort flag being set to TRUE causing the current component

operation to abort. The unique error condition is cleared and the
REVERSE function is executed as described above.

Finally, it is possible to override an error and continue
the execution of the command. This capability is provided by a
function called UPDATE. UPDATE can be thought of as a

background process, because it is never called directly.

UPDATE operates as an interrupt handler cycling at 15 Hertz
using an autoreload timer available on the microprocessor.

UPDATE provides four basic functions: (1) a method of
overriding sensor information, (2) support for asynchronous
notification of hardware changes, (3) a method for monitoring
sensor health, and (4) isolation of the software from the

computer hardware to ease the transfer of the software to other
computers. In addition UPDATE is the function responsible for
interpreting the sensor data and updating the database, as well as

interpreting the command settings and updating the database and
end-effector actuator settings.

The capability to override sensor information, requires a
database independent of the end-effector hardware. When

power is applied to the microprocessor, or the microprocessor
boards reset button is depressed, the software initializes the
database based on the current end-effector configuration. Thus,
the information in the database represents the current state of the
end-effector hardware and software control flags. However,

because this database is independent of the end-effector
hardware, the information from the senors may be ignored by

simply not updating the database. The M_VAX_CONTROL
mask is used to prevent updates of the database and actuator
settings. Bits set in this mask are not modified, thus indicating
the operator has taken responsibility for the setting of one or
more sensors. NULLIFY is the supervisory command used to
initiate sensor override. The end-effector control program uses
the last error status to set the database variable so that no error

condition will be generated, and sets bits in
M_VAX_CONTROL to prevent UPDATE from changing the
value in the database. For example, if the receptacle f'mgers did
not close, then this error will be overridden as follov_s. First the
sensor bits in the M_VAX_CONTROL mask corresponding to

the sensor which detect f'mger closure and the sensor that detects

fingers opening are both set to prevent UPDATE from
modifying these sensor bits in the database. Then the bits in the
database are set directly to indicate the receptacle fingers are
closed. The open sensor is set to FALSE and the close sensor is
set to TRUE. Note that the order is critical to prevent conflicts
which occur ff both bits are TRUE simultaneously. At this point

the database is configured so that the receptacle fingers appear
closed to the software. The next command to close the

receptacle fingers wilt succeed, thus successfully overriding the
FAILED TO CLOSE error.

Support for asynchronous notification of hardware

changes is provided by a third mask, the M_WATCH mask. If
a watched value changes, a software interrupt is activated, thus
notifying the control software of the change. For example, for

correct operation of the end-effector, the supply voltages must
remain nominally constant. Monitoring supply voltage could be

implemented using the M_WATCH mask. If the voltage
changes, the watch function is called to compare the voltage

level to predefined thresholds. If the voltage is out of range the
end-effector could be switched to battery backup and the

executive program notified so that corrective actions could be
initiated. This capability has not been implemented to date.

UPDATE provides the capability for monitoring sensor
health. Currently only conflicts are reported. Conflicts occur
between sensors that are configured so that both cannot be true
simultaneously. For example, the receptacle fingers are
designed so that they cannot simultaneously activate the two
sensors that indicate CLOSE and OPEN. If this occurs, the
hardware has failed, either mechanically or electrically, and this
failure is reported to the host as a sensor conflict. This
capability can be expanded to provide on-line sensor
reconfiguration, which would require redundant sensing
capability that is not available at this time. Note that; in general,
two sensors that disagree provide only the information that the
signal from one sensor is invalid because of some form of
failure. There is no information about the state of the bperation
being sensed. If the operation of the system has been
monitored, and the system has performed as expected, then the
sensor that disagrees with the command signal is probably
invalid, because it is unlikely that both a sensor and an end-

effector operation will fail simultaneously. If three sensors are
available; then the two that agree are considered valid, while the
remaining sensor is considered invalid and flagged for
maintenance.

UPDATE isolates the software executing on the
microprocessor from the microprocessor specific features. It is
one of two microprocessor specific functions. The other is used
to initialize the microprocessor board after turning on power or
after a reset. Thus only two functions need to be modified if it is

desired to move to a different processor.

TESTS AND CURRENT OPERATIONAL STATUS.

Currently the end-effector hardware and software are
undergoing integration tests in an off-line checkout mode. All
support software, including the composite sequences, have been

implemented. The end-effector will then undergo extensive
testing on a six-axis servo table to refine the operational

scenarios required to assemble the tetrahedral structure,
including the double cantilevered capture and insertion

operations described earlier. During this process, common
errors will be logged along with their corrective actions. This
will be used to add self-correcting logic to each of the composite
commands. The outcome of these tests should finalize the

component commands and the sequences used in the composite
commands.

After development testing is complete on the six-axis
servo table, the end-effector will be used tb assemble the two
ring structure shown previously in figure 1. Following

successful assembly, operations will likely progress to the
assembly of structures with curved surfaces, which are
assembled using straight struts with different lengths.

Work has already begun applying these routines and

techniques to other end-effectors used in the assembly facility.
In support of these activities, generic code models are being

developed for actuator/sensor groups.. Not only will these
techniques be applied to the end-effectorsof the facility, but to
other devices in the facility, such as the motion bases and pan tilt
drive units to position video cameras. These distributed
dedicated microprocessors provide an initial step toward the
realtime distributed architecture needed for efficient control of
automated assembly operations.

427



SUMMARY

NASA Langley Research Center has initiated a research

program to develop methodologies for automated in-space
assembly of large truss structures. A laboratory test facility,
called the Automated Structures Assembly Laboratory, has been

recently developed in which a regular tetrahedral truss structure,
is comprised of 102 struts, has been assembled using a
specialized end-effector mounted on an industrial robot arm. To

expand applications that can be addressed by the facility, an end-
effector which installs one end of a strut at a time and uses a

dedicated on-board microprocessor for sensor interrogation and
actuator control, was developed and fabricated. The new end-
effector will permit assembly of a variety of structures,
installation of standardized payloads, and will provide the first

opportunity for concurrent operations within the test facility.
The new end-effector has been fabricated, and most of

the control software written. The end-effector adopts many
features from the first generation end-effector. The new end-

effector contains four grippers, two platforms, and a nut driver.
The end-effector is directly controlled by an embedded
microprocessor. The software supports asynchronous interrupts
to allow the operator to suspend or reverse end-effector

operations at any time.
The end-effector control software development was

dominated by the need to support error conditions and
asynchronous events. Thus, efficient means of interrupting
software execution and servicing asynchronous events are

essential, both when interacting with human operators and when
interacting with end-effector hardware. The end-effector

software development effort has isolated and standardized the
interface to the end-effectors used in the facility, resulting in a

significant code reduction and generalization of the executive

program.
The embedded microprocessor and support electronics

board has reduced the number of signal lines required to operate
the end-effector from 60 to 5, allowing the exchange of end-
effectors via a quick change mechanism. Also, addition of an
embedded microprocessor to the end-effector currently used in

the facility is expected to significantly reduce assembly time by
supporting concurrent operations and eliminating most of the

time required for end-effector communications.
The second generation end-effector will greatly increase

the flexibility of the Automated Structures Assembly Laboratory.
This end-effector development effort represents a first step
toward the realtime distributed computational architecture needed

to provide efficient control for automated assembly systems.
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Figure la
Schematic of Automated Assembly Facility.

Figure lb
Photograph of Assembly Facility.

Figure 2
Photograph of Truss Node and Joint Connection Hardware.
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