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ABSTRACT

In this paper, the results of in-plane four-point bend
experiments on unidirectionally reinforced composite beams are
presented for graphite/epoxy (T300/934) and graphite/polyimide
(G30-500/PMR-15) composites. The maximum load and the location
of cracks formed during failure were measured for testpieces with
fibers oriented at various angles to the beam axis. Since most
of the beams failed near one or more of the load points, the
strength of the beams was evaluated in terms of a proposed model
for the local stress distribution. In this model, an exact
solution to the problem of a localized contact force acting on a
unidirectionally reinforced half plane is used to describe the
local stress field. The stress singularity at the load point is
treated in a manner similar to the stress singularity at a crack
tip in fracture mechanics problems. Using this approach, the
effect of fiber angle and elastic material properties on the
strength of the beam is described in terms of a 'Load intensity
factor. For fiber angles less than 45 0 from the beam axis, a
single crack is initiated near one of the load points at a
critical value of the load intensity factor. The critical load
intensity factor decreases with increasing fiber angle. For
larger fiber angles, multipleracks occur at locations both near
and away from the load points and the load intensity factor at
failure increases sharply with increasing fiber angle.
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1. INTRODUCTION

Beam deflection tests are often used to measure the strength
and some of the elastic properties of composite materials. For
example, the flexural test is described in ASTM Standard D-790
and the interlaminar short beam shear test is described in ASTM
Standard D-2344. Both of these test methods utilize classical
beam theory as the basis for data analysis. This type of
analysis is strictly applicable only for homogeneous materials.
A more detailed analysis of the stress field and the failure
mechanism is needed to interpret results of beam tests on
composite materials. In spite of this additional complexity, the
beam deflection test can be a useful tool for composite materials
research. Some advantages of beam tests are that testpieces are
easy to prepare, testpieces can be small, grips are not required
to hold the testpieces, alignment of the testpieces is very
simplified, and strain gauges are not required during testing.
These advantages become particularly desirable when a large
number of different materials must be tested or a particular
material (often an experimental formulation) is available only in
small quantities. Also, this kind of experiment is easily
adapted for elevated temperature testing and testing under
special environmental conditions.

The fatigue and fracture behavior of composites can also be
analyzed using three and four-point bend tests. Orange [1] found
that initiation and propagation of small cracks in isotropic
beams are influenced by contact stresses. In papers by Whitney
et al. [2-4] and by Browning et al. [5] the influence of contact
stresses in orthotropic beams was shown to be even greater.

Timoshenko [6] has also noted that the stresses under
flexure conditions are significantly different from beam theory
results, and he offered some of the analytical techniques to
account for the contact stresses. Leightniskii [7] obtained the
contact stress field for an orthotropic half plane loaded by a
concentrated force at the edge. He observed that the stress
distribution depends on a ratio of orthotropy (i.e. ELV ETT,
where ELL is the elastic modulus along the fiber direc ion and
ETT is the elastic modulus transverse to fibers) for 0 0 and 900
fiber angles. Green and Zerna [8] showed the complex potential
solution for the general anisotropic case. They presented the
stress distributions only for the eases of orthotropic and
isotropic materials.

In continuous fiber reinforced composites, the contact
stress can be channeled along the fiber axis and affect the
stress field at locations far from the load point. This stress
channeling phenomenon [9] was analytically and numerically
analyzed by Binienda and Saleeb [10] for unidirectionally
reinforced composite beams tested under three or four-point
bending conditions. They found that both the magnitude and
location of the maximum (flexural) tensile stress will be greatly
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influenced by the contact stress. This in turn'will have a
direct bearing on location and propagation of cracks.

In this paper, results of four-point bend tests on
unidirectionally reinforced graphite/epoxy and graphite/polyimide
beams are reported. The effects of fiber angle and material
properties on the breaking load and the location of cracks formed
during failure were measured. Experimental results are analyzed
using the exact solution to a concentrated force problem from
which the local stress conditions at crack initiation are
determined.

2. EXPERIMENTAL PROCEDURES

Unidirectional (40 ply) graphite/epoxy and
graphite/polyimide laminates were prepared by compression
molding. The epoxy laminate was made with Fiberite 1034E prepreg
(T300/934) cured for two hours at 350°F. The polyimide laminate
was made with Ferro CPI-2237 prepreg (G30-500/PMR-15 cured for
two hours at 600°F and postcured for 16 hours at 586 F. The G30-
500 fiber was surface treated but not sized. In both cases the
fiber volume fraction was 0.6. Typical elastic properties of
unidirectional laminates made using these materials are shown in
Table 1. The elastic material properties were determined in
other experimental programs and were also reported in [11].

Dimensions of both laminates were 6 in. by 12 in. (15.2 cm
by 30.4 cm) with the fiber angle along the 12 in. direction. The
thickness of the epoxy laminate was about 0.23 in. (.58 cm) and
the thickness of the polyimide laminate was about 0.19 in (.48
cm) .

Laminates were C-scanned before being cut into smaller
testpieces. The C-scan image of the epoxy laminate (Fig. la) was
uniform without large defects. The C-scan image of the polyimide
laminate (Fig. lb) shows two localized oval defects. Both
laminates were cut according to the map shown in Figure 2 using a
water-cooled, diamond-impregnated cutting wheel. Hence, four
testpieces were prepared for 15 6 30, 45, 75, and 90 0 fiber angles
and three testpieces for the 60 fiber angle. No delaminations
were observed when testpieces were cut from the epoxy laminate.
Delaminations were observed in polyimide testpieces with 600
fiber angle. These testpieces were not used. No other
delaminations were observed in the polyimide testpieces, even
though some testpieces with fiber angles of 45 0 and 90 0 were cut
from regions of the laminate in which the C-scan image showed a
defect. Widths and thicknesses for epoxy and polyimide
testpieces are shown in Tables 2 and 3, respectively.

Four-point bending tests were done using an INSTRON Model
1125 testing machine under displacement control at the rate 0.05
in/min. Forces were measured by a load cell with a maximum range
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of 10,000 lbs. The load and displacement signals were recorded
on a strip chart recorder.

3. RESULTS AND DISCUSSION

3.1 Beam Tests

In all cases the material responded elastically until the
catastrophic failure load was reached. The failure load is shown
for each specimen in Tables 2 and 3. In almost all cases the
maximum load for graphite/epoxy was about twice that of the
graphite/polyimide.

The locations of the cracks are shown for graphite/epoxy
composites in Figure 3 and for graphite/polyimide composites in
Figure 4. Multiple cracks occurred for graphite/epoxy composites
with fiber angles of 90, 75, and 60 0 . Some of the cracks were
located at the load points while others were not. A single crack
occurred for fiber angles of 45 0 and less. For these testpieces,
the cracks were initiated at the lower right load point.
Polyimide composites failed in a similar manner, except that only
a single crack occurred for all fiber angles. For fiber angles
of 90, 75, and 45 0 , the crack usually occurred away from the load
points. However a few cracks were located near the upper left
load point. For fiber angles of 30 and 15 0 , the crack was
initiated at the lower right load point.

The maximum traction force is defined as the load at failure
divided by beam width (beam width equals laminate thickness for
these testpieces). The maximum traction force, P/t, is shown in
Figure 5 for graphite/epoxy and graphite/polyimide composites.
For epoxy beams with fiber angles of 15, 30, and 45 0 , the
traction force decreases with increasing fiber angle, and error
bars are relatively small. When the fiber angle is increased
from 45 to 60 0 , the traction force increases and the error bars
become larger. The size of the error bars is related to the mode
of failure. For low fiber angles, a single crack occurs at the
same location for all testpieces, and error bars are small. For
high fiber angles, the number and locations of cracks are not the
same for different testpieces with the same fiber angle. Because
of the different possible failure modes, error bars are large.
The change in failure mode and the increase in traction force
between 45 0 and 60 0 fiber angle indicate that the resistance to
local failure at the load points is increasing, so that failure
occurs along the bottom of the beam as a result of the bending
stress. This type of failure may also be influenced by the
stress channeling effect discussed earlier. Results for
polyimide composites are similar to those for epoxy composites
with three exceptions. First, multiple cracks do not occur in
testpieces with high fiber angles. Instead, a single crack
occurs away from the load points for all testpieces except one
(n4 in Figure 3) with fiber angles of 45° and greater. Second,
the failure mode changes from local failure near a load point to
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failure along the bottom surface of the beam at-a fiber angle of
45 0 instead of 60 0 . Third, there is no abrupt increase in the
traction force when the failure mode changes. The results for
the polyimide composites are somewhat obscured by the lack of
data for the 60 0 fiber angle and the large error bars for the 450
fiber angle. The large error bars for the 45 0 fiber angle are
probably a result of defects in the laminate. As noted earlier,
the C-scan image showed an oval shaped defect in the region from
which the 45 0 fiber angle testpieces (identified as #12, 13, 14,
and 15 in Figure 2) were cut. Although significant portions of
testpieces 14 and 15 lie within the oval region, there were no
observable delaminations in these testpieces. Even though there
were no observable defects, the failure loads for testpieces 14
and 15 were much lower than those of testpieces 12 and 13 (see
Table 3).

For all fiber angles, the traction force is lower for
polyimide beams than for epoxy beams. A satisfactory explanation
for this difference in strength would require further knowledge
of resin, fiber, and interface properties in addition to
information about the microscopic failure mechanisms. This type
of analysis is beyond the scope of the present work. However,
the experimental and analytical techniques developed in this work
are now being used in further studies which include a closer
examination of the microscopic failure mechanisms and the effect
of matrix, fiber, and interface properties on the strength of
graphite/polyimide composites.

Since failure in many of the testpieces occurs as a result
of local stresses near a load point, it is misleading to describe
the strength of these beams only in terms of the traction force
at failure shown in Figure 5. An analysis of the local stress
field near a load point is presented below. The data presented
above are then re-examined in terms of the local stress analysis.

3.2. Analysis of Contact Stresses

The problem of a concentrated force applied to an anisotropic half

space Was formulated and solved by Binienda et al. [10] using the

Fourier integral technique proposed by Lekhnitskii [7] for plane strain

elasto-static conditions.

Consider an anisotropic half plane loaded as in Figure 6. The

governing equation in x-y coordinate system in terms of Airy stress

function F(x,y) is:
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expressed as:
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(4)
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In polar coordinates r,^ (see Fig. 7) it can be easily shown that

CTp
^ -7: 

0"Rr = 0 While the only non zero radial stress is:

7RR = xP M(a,b,c,d,^)	 (13)

Where M(a,b,c,d,p) is a material related parameter that can be expressed

by a,b,c,d and polar coordinate p as follows:

M
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The orthotropic case (i.e. B = 0 0 or 900 ) can be easily obtained by

noting that the imaginary part of the roots of the characteristic

equation is zero (i.e. b = d = 0). Then the radial stress become:

^rr( X ) Y) _
	

sin
P a c (a + c)	

^	
(
15 )

X	 A(a sin P+cos P)(c sin P+cos 
P) 

In case of isotropic material it can be shown that a=c=1 and M = -2sin^.

Therefore, the radial stress takes well known form:

2P sWERR -	 r
	

(16)

In the Eq. (13) the denominator A constitutes the order of the

singularity -1 which is true for all concentrated load problems. The

numerator P M, is similar to the stress intensity factor, k, for the

crack problem. For the case of unit load the parameter M depends only on

the fiber geometry and material properties. Similarly, k depends only on

the geometry and configuration of the cracks and the material

properties. Therefore, the parameter Y can be called a normalized load

intensity factor with respect to the applied concentrated load.
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3.3. Analysis of Experimental Data

Based on the discussion in the previous section, the
intensity of the local stress field is represented by nR(oRR).
According to Equation 13, the value of nR(6 RR ) at the instant of
failure can be calculated by multiplying the experimentally
determined traction force at failure (P/t from Figure 5) by the
appropriate value of the normalized load intensity factor (M from
Figure 8 or 9). If a stress criterion for failure is valid for
these materials, this product could represent a "critical load
intensity factor" analogous to the critical stress intensity
factor used in fracture mechanics. One difficulty in using this
approach for composite materials is that the dependence of o RR on
4) is much more complex for composites (see Equations 13 and 14)
than for a homogeneous material (see Equation 16). For
composites it is not possible to remove the ^ dependence from the
load intensity factor by writing M in the form of
M(O,^)=g(0)h(^). As a result, some value of ^ must be chosen in
order to calculate the load intensity factor. Results are shown
in Figure 10 for the case of ^ = (180 0 -0). This value of 4 was
chosen because the absolute value of M has a maximum near this
value of ^, and most of the cracks appear to begin at the load
point and travel along the fiber direction. The data in Figure
10 indicate that the local (compressive) stress at failure is
highest for high fiber angles, even though the traction force
(shown in Figure 5) is not. Since failure at high fiber angles
involves both local stresses and bending stresses, the load
intensity factors shown in Figure 10 are not critical values for
local failure. For low fiber angles, failure always occurs at
the lower right load point. Since the bending stress is zero at
this load point, the load intensity factors shown in Figure 10
could be critical values. However, further testing is needed to
determine the validity of using the critical load intensity
factor as a general criterion for failure in this type of four-
point bend test.

4. CONCLUSIONS

Since most of the composite beams failed as a result of
cracks initiated at one or more of the load points, some form of
local stress analysis is required to interpret the test data.
The intensity of the local stress field can be easily calculated
using the analytical method proposed in this paper. Although the
results presented in this paper demonstrate that this method
provides useful information about the resistance of composites to
local failure, the validity of this approach needs to be further
demonstrated. In particular, the idea that failure occurs at a
critical value of the load intensity factor needs to be
demonstrated by testing of beams with the same fiber angle but
different dimensions. The effect of test parameters, such as the
diameter of the loading pins, also needs to be examined. Finite
element modeling of the local stress distribution along with
microscopic examination of crack initiation under incremental
loading would also be useful.
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Table 1.

Elastic Properties of Composites

ELL	 ETT	 GLT	 VLT
GPa (Msi)	 GPa (Msi)	 GPa (Msi)Materials

Graphite/Epoxy
(T300/934)

Graphite/Polyimide
(G30-500/PMR-15)

	

140 (20)	 10.3 (1.50)	 6.6 (0.95)

	

150 (22)	 8.4 (1.23)	 4.0 (0.58)

0.21

0.27
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Table 2

Failure Loads And Dimensions For Graphite/Epoxy composites

Angle
Degrees

90
90
90
90

75
75
75
75

60
60
60

45
45
45
45

Load

P (N)

4114.6
6449.9
7152.7
7295.1

6641.2
8380.5
8198.1
7526.4

9296.8
9341.3
7295.1

6316.5
6828.0
6761.3

Width Thickness

( mm )	 t (mm)

15.65 5.85
16.03 5.79
16.07 5.81
16.06 5.82

15.68 5.83
16.03 5.82
16.03 5.82
16.04 5.82

16.03 5.84
16.02 5.86
15.61 5.83

16.02 5.80
16.02 5.79
16.04 5.78
16.25 5.78

P/t	 Average

( N / mm ) P /t (N/mm)

703.4

	

1114.0	 1075.5
1231.1
1253.5

1139.1

	

1439.9	 1320.2
1408.6
1293.2

1591.9

	

1594.1	 1479.1
1251.3

1089.0

	

1179.3	 1146.0
1169.8

Specimen

1

2
3
4

5
6
7
8

9
10
11

12
13
14
15

Std. Dev

(N/mm)

221.3

118.0

161.1

40.5

48.3

31.7

30
30
30
30

15
15
15
15

7206.1
7406.3
7517.5
7917.8

9474.7
9608.2
9706.0
9964.0

16.05 5.88
16.01 5.86
16.01 5.85
15.68 5.83

16.02 5.86
16.02 5.86
16.02 5.86
16.02 5.85

1225.5

	

1263.9	 1283.1
1285.0
1358.1

1616.8

	

1639.6	 1654.0
1656.3
1703.3

16
17
18
19

20
21
22
23
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Table 3

Failure Loads And Dimensions For Graphite/Polyimide Composites

Angle

Degrees

90
90
90
90

75
75
75
75

45
45
45
45

30
30
30
30

15
15
15
15

Load

P (N)

2037.3
2397.6
2339.8
2023.9

2273.0
2713.4
2580.0
2584.4

3747.6
3465.2
2620.0
1596.9

3936.7
3549.7
3870.0
3620.9

5426.8
5159.9
5373.5
4893.0

Width Thickness

(mm) t	 (mm)

16.01 4.92
16.03 4.85
16.04 4.86
15.67 4.82

15.65 4.87
16.00 4.86
16.02 4.84
16.04 4.84

15.98 4.88
16.01 4.85
16.03 4.85
16.05 4.84

16.01 4.88
16.01 4.89
16.02 4.88
16.02 4.87

16.01 4.90
15.99 4.87
15.99 4.87
15.99 4.89

P/t	 Average

(N/mm) P/t (N/mm)

414.1

	

494.4	 452.4
481.4
419.9

466.7

	

558.3	 523.0
533.1
534.0

768.0

	

714.5	 588.1
540.2
329.9

806.7

	

725.9	 767.3
793.0
743.5

1107.5

	

1059.5	 1067.8
1103.4
1000.6

Specimen

1

2
3
4

5
6
7
8

12
13
14
15

16
17
18
19

20
21
22
23

Std. Dev.

(N/Mm)

35.8

34.0

16.3

33.5

43.1
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a
a
a

(a) Graphite/Epoxy

(b) Graphite/Polyimide

Figure 1. C-scan images of (a) graphite/epoxy and (b)
graphite/polyimide composites.

14



E
U
N

CO

12" (30.4 cm)

Figure 2. Locations of testpieces cut from 6 " X 12" laminates.
Fiber angles relative to beam axis and testpiece
identification numbers are indicated for each
testpiece.
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Error bars are shown for 95% confidence interval.
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