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FOREWORD

This study was conducted by the Pratt & Whitney/Government Engine Business
(P&W/GEB) of the United Technologies Corporation under NASA/MSFC contract
NAS8-36857. The NASA/MSFC program manager was Mr. J. Thomson. The Pratt & Whitney
program manager was Mr. W. A. Visek, Jr., and D. R. Connell was the booster engine program

manager.

The technical effort started in March 1986 and was completed in March 1989. The study is
presented in three volumes.

Volume I — Executive Summary
Volume II — Final Report
Volume III — Program Cost Estimates

Special thanks go to the numerous individuals at NASA, UTC, and the major vehicle
contractors who contributed to this study effort.
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SECTION 1.0
INTRODUCTION

The United States is experiencing a critical need to place large payloads in low earth orbit.
This need exceeds the capability of current and planned fleets of Titan IV and Space Shuttle
launch vehicles, and reflects the requirements of the National Aeronautics and Space
Administration (NASA), the U. S. Air Force, the Strategic Defense Initiative Organization
(SDIO), and the civilian sector.

The Advanced Launch System (ALS) will provide a low cost, reliable means of satisfying
this need. The ALS will enable the United States to meet defense, national, and civil launch
requirements, while expending fewer resources on launch vehicles.

The objective of the Space Transportation Booster Engine Configuration Study is to
contribute to the ALS development effort by providing highly reliable, low cost booster engine
concepts for both expendable and reusable rocket engines.

The objectives of the Space Transportation Booster Engine (STBE) Configuration Study
were: (1) to identify engine configurations which enhance vehicle performance and provide
operational flexibility at low cost, and (2) to explore innovative approaches to the follow-on
Full-Scale Development (FSD) phase for the STBE.

The Pratt & Whitney (P&W) overall technical approach to the study, shown in Figure 1-1,
was based on the STBE technical requirements and guidelines presented in the Statement of
Work (SOW). These requirements and guidelines were modified continually as the results of the
joint NASA/Air Force Space Transportation Architecture Study (STAS), and later the
Advanced Launch System (ALS), became available. As a result, the study effort was completely
supportive of and interactive with the ALS and other launch vehicle studies. The schedule of the
STBE Phase A, including the three extensions and the interim final reporting documentation, is
shown in Figure 1-2.

The STBE Configuration Study consisted of six tasks. Task I (SOW Task 5.1) consisted of
parametric analyses and trade studies. First, the system design requirements and features were
defined, and the information base was established. Second, the STBE configurations that
enhance performance and provide operational flexibility at low cost were identified, and the
requirements for those engine configurations for the projected missions were defined.

During Task II (SOW Task 5.2), P&W developed a plan to evaluate the STBE
configurations identified in Task I and established criteria to select the most promising
configurations. The Configuration Evaluation and Criteria Plan used overall system life cycle
costs as the figure of merit and included considerations of mission and vehicle requirements,
operational flexibility, schedules (along with their risks), required technological advances, and
facility requirements. The evaluation and selection criteria were compatible with the NASA
requirements and the STAS results.

During Task 111 (SOW Task 5.3), P&W assessed the STBE configurations and require-
ments identified during Task I using the Configuration Evaluation and Criteria Plan developed
during Task II. This process, based on minimizing life cycle cost (LCC), was used to select the
most promising engine candidate as agreed to by NASA and P&W.
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Figure 1-1. Overall Approach to Space Transportation Booster Engine Configuration Study
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Figure 1-2. STBE Phase A and Extensions

The selected engine candidate was then the subject of Tasks IV and V. During Task 1V
(SOW Task 5.4), P&W completed the conceptual designs of the selected candidate. Under this
task, P&W prepared the Design Definition Document (DR8), including a preliminary Interface
Control Document (ICD) and preliminary Contract End Item (CEI) Specification. Task V
(SOW Task 5.5) was conducted concurrently with Task IV and provided the plans for Full-Scale
Development (FSD). These plans included FSD schedules, facility requirements, and an
Environmental Impact Analysis (DR10). In addition, a Work Breakdown Structure (WBS) and
dictionary, and program cost estimates were prepared for Phases C, D, and E of the STBE
program.

During Task VI, all of the technical reviews, status reports, and the final report were
prepared.

The Interim Preliminary Reports were published at the milestones shown in Figure 1-2.
The information and studies reported within these documents are referenced but not repeated in
this Final Report.

This Volume III of the Final Report presents the STME/Derivative STBE Program Work
Breakdown Structure (DR5) and Cost Estimates (DR6) generated as part of Task V (SOW Task
5.5) during the time period July 1, 1988 to March 31,1989. All costs contained in this volume are
engineering estimates. These costs should not be considered as contractual commitments and
should be used for Life Cycle Cost (LCC) evaluations and planning purposes only.
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SECTION 2.0
STME/DERIVATIVE STBE DESCRIPTION

NASA has defined three different ALS program scenarios to be costed as part of the STME
and STBE Configuration Studies. Scenario- 2 incorporates a methane fuel booster stage and it is
the only one of the three applicable to the STBE.

The candidate engine configurations for Scenario 2 are the bipropellant LO,/LH, Gas
Generator STME for the core stage and the bipropellant LO,/CH, Gas Generator STBE derived
from the STME (Derivative STBE) for the booster stage. This design combination takes
advantage of a 72 percent engine cost commonality, without compromising the core engine
weight and 580K vacuum thrust level. The booster engine takes advantage of the desirable
specific density and combustion stability characteristics of liquid methane while attaining a
maximum sea level thrust of 645K Ibf. The STME and Derivative STBE engine assemblies and
overall engine characteristics are presented in Figure 2-1.

2.1 STME CYCLE

The candidate STME configuration is a gas generator cycle engine which operates at a
main chamber pressure of 2250 psia at the rated power level (RPL) of 580K Ibf thrust. The
engine has a fixed nozzle with an area ratio of 62:1 and delivers 440 seconds of vacuum specific
impulse at RPL. Figures 2.1-1 and 2.1-2 are top and side views showing the engine and its major
features.

2.2 STME FLOWPATH DESCRIPTION

A flow schematic for the STME is presented in Figure 2.2-1 showing flowpaths and
components.

Liquid oxygen enters the engine at a minimum net positive suction pressure (NPSP) level
of 28.6 psi supplied by the vehicle. The high-speed, high-pressure oxidizer pump is designed to
operate at this minimum NPSP level without a boost pump. Liquid hydrogen enters the engine at
a NPSP level of 8.6 psi, again supplied by the vehicle. The high-speed, high-pressure hydrogen
pump is also designed to operate without boost pumps.

At the rated power level, the hydrogen pump operates at 21,819 rpm to provide the
hydrogen pressure level of 3387 psia required by the cycle. From the pump exit, the hydrogen
flows through the fuel shutoff valve to a split manifold at the inlet of the chamber/nozzle coolant
passages. From the split manifold, 87.4 percent of the hydrogen is used to regeneratively cool the
milled channel, copper alloy main chamber from an area ratio of 5.86:1 back to the injector face.
This flow is injected into the main chamber to combust with 98.5 percent of the oxygen. The
remaining hydrogen flow is used to cool the tubular, stainless steel nozzle from an area ratio of
5.86:1 down to an area ratio of 35:1. This hydrogen then flows through the fuel gas generator
control valve and is injected into the gas generator to combust with some of the oxygen to provide
high temperature combustion gases to operate the high pressure turbomachinery.

5
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Figure 2-1.
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Gas Generator STME and Derivative STBE Design Characteristics
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Figure 2.1-1. Gas Generator STME Assembly, Top View

The high-pressure oxidizer pump operates at 8,352 rpm to provide the oxygen pressure level
of 2784 psia required by the cycle at the rated power level. From the pump exit, approximately
98.5 percent of the oxygen flow is routed through the main oxidizer control valve and is injected
into the main chamber. The remainder of the oxygen flows through the oxygen gas generator
control valve before being injected into the gas generator.

The gas generator provides 1688 psia, 1800 R gas to drive the high-pressure propellant
pumps. The hot gas is initially expanded through the hydrogen turbine and is subsequently

routed to a second turbine which powers the oxygen pump.

A film/radiation cooled nozzle provides the final gas expansion from an area ratio of 35:1 to
an area ratio of 62:1 at the exit. Gas generator flow is used for the film cooling.
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Figure 2.1-2. Gas Generator STME Assembly, Side View

2.3 STME OPERATION

The engine is preconditioned using liquid from the tanks to soak the turbopumps until they
are sufficiently cooled. The vehicle inlet valves are opened, thus allowing liquid from the tanks to
flow down to the turbopumps, and vapors to percolate back up to the tank to be vented.

Gas Generator Assembly
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The engine start is a timed sequenced process using an oxidizer lead for reliable soft
propellant ignition. The oxidizer lead avoids hazardous buildup of unburned fuel in the
combustor during the oxygen phase transition from gas to liquid. The transition occurs prior to
fuel injection and the fuel is consumed upon injection. Reliability of ignition is enhanced by the
LO, lead because the transient mixture ratio during propellant filling includes the full excursion
of ignitable mixture ratios from greater than 200 to less than one. Pratt & Whitney has had
extensive experience with oxidizer leads with the RL10 and XLR-129 engines.

With the oxidizer lead sequence, the gas generator LO, injector is cooled and primed prior
to opening the fuel shutoff valve to facilitate liquid oxygen flow, minimizing turbine temperature
spikes due to oxygen phase change. A helium spin assist is also utilized to initiate turbopump
rotation before the fuel is introduced into the gas generator. During the start and shutdown, a
small helium purge is used in the gas generator injector and main chamber injector to eliminate
the danger of hot gas flow reversals during transient operation. Gas generator and main chamber
ignition will be accomplished with dual electrical spark excited, oxygen/hydrogen torch igniters.

Main stage engine operation is controlled by an open-loop control system. The fuel gas
generator control valve (FGCV), the oxygen gas generator control valve (OGCV), and the main
oxidizer valve (MOV), shown in Figure 2.2-1, are used to set the engine thrust and mixture ratio.
Thrust and main chamber mixture ratio are set on the ground by trimming the MOV and OGCV
respectively. The gas generator mixture ratio is set using the FGCV.

Engine acceleration is accomplished by a time-based scheduling of the valves to the
commanded starting level (~20 percent power level). The acceleration to full thrust is also
accomplished with open-loop valve schedules. Engine shutdown is accomplished using a time-
based scheduling of the propellant valves. The OGCV is closed first to power down the
turbopumps, then the MOV closes, followed by shutting off the hydrogen system.

In addition to a normal operational mode, the engine system is capable of a shutdown
resulting from detected problems.

2.4 DERIVATIVE STBE CYCLE

The Derivative STBE is a LO,/CH, gas generator cycle engine adapted from the STME
LO,/LH, gas generator cycle engine. The STBE operates at a main chamber pressure of 2250
psia with a sea level thrust of 645K Ibf. The nozzle area ratio for this engine is 28:1 and it delivers
a sea level specific impulse of 297.5 seconds. Figures 2.4-1 and 2.4-2 show top and side views of
the engine and its major features.

Components of the Derivative STBE that will be common with the STME are the main
injector, gas generator, tubular nozzle, engine controller, igniters, GO, HEX, POGO suppressor,
instrumentation, vehicle interfaces, and 80 percent of the ducting. Items that will be redesigned
for the STBE derivative are the combustion chamber, oxidizer pump, oxidizer turbine, fuel
turbine, GG oxidizer valve, GG fuel valve, and the gimbal. Table 2.4-1 summarizes the common
hardware components between the STME and Derivative STBE gas generator engines.

2.5 DERIVATIVE STBE FLOWPATH DESCRIPTION
A simplified flow schematic for the Derivative STBE is presented in Figure 2.5-1 showing
the major components and flowpaths. Liquid methane and liquid oxygen enter the engine at

NPSP levels, supplied by the vehicle, sufficient for the high-speed, high-pressure pumps to
operate with no boost pumps required.

10

RI9G1/T4



Pratt & Whitney

FR-19691-4
Volume I11
Fuel Turbopump — — Oxidizer Tank
Pressurization
Thrust Vector Fuel Inlet ——
Control Attach
Points — Gas Generator
Assembly
ﬁ
’
\
/
NN
N
\
S
>
A
e
%5{ y
Oxidizer fe—= Main Oxidizer
Turbopump _/ Valve
~— Methane Tank
Oxidizer Pressurization
Iniet — POGO
FD 366117

Figure 2.4-1. Gas Generator Derivative STBE Assembly, Top view
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Figure 2.4-2. (Gas Generator Derivative STBE Gas Generator

The two-stage methane pump operates at 10673 rpm to deliver fuel at the required pressure
of 4621 psia. From the pump exit the fuel flows through the fuel shutoff valve (FSOV) and to the
chamber/nozzle cooling jacket manifold where the flow splits so that 25 percent goes to the
regenerative nozzle cooling jacket and 75 percent goes to the regeneratively cooled main chamber
jacket. The nozzle cooling flow is used entirely to fuel the gas generator while the chamber
coolant flow is discharged at 409 R directly into the main chamber injector.

12
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Table 2.4-1. STME and Derivative STBE Gas Generator Engines — Common Hardware

Components
Turbomachinery Combustion Devices
« Fuel Pump Housing Flow Paths e Gas Generator Injector

Interpropellent Plate
Fuel Pump Impeller Flow Path
Bail and Roller Bearings
Turbine Outer Seals
Tiebolt Shaft and Disks (Modified Blade Attachments)
Internal Labyrinth Seals
Major Flange Seals
Bolts, Nuts, Studs, Washers, Pins
1st and 2nd-Stage Impeller Castings
Uniform Cross Section Static Housing Seals
Inducer Retaining Boits
Blade Retaining Rings, Tip Seals
Spacers, Bearing Sleeves, Wave Washers Made from
Same Forging or Identical Hardware

Gas Generator Injector Housing

Gas Generator Combustion Chamber

Gas Generator Combustion Chamber Liner
Tubular Nozzle

Nozzle Inlet Manifold

Nozzle Discharge Manifold

Main Injector Interpropellant Plate

Main Injector Housing

Main Injector Faceplate

Igniter Assembly — Main Injector

Igniter Assembly — Gas Generator Main
Chamber to Injector Flange, Seals, Fasteners

® & 8 ® 8 8 o & 8 8 s o

® & & o ® & & 5 o s

Engine Assembly

Ducting

80% Small Lines
80% Large Lines
GO, HEX

POGO Suppressor
Fuel Inlet Flex Joints
Fasteners, Seals

Engine Controls

« Engine Controller .
+ Engine and Component Instrumentation

R19681/75

The high-pressure oxidizer pump operates at 7601 rpm to provide the oxygen pressure level
of 3338 psia required by the cycle. From the pump exit, approximately three percent of the LO,
flow is diverted to the gas generator oxidizer control valve and subsequently to the gas generator.
The bulk of the LO, flow (97 percent) flows through the main oxidizer control valve and directly
to the main chamber injector.

The high-pressure, high-temperature (1688 psia/1800 R) gas from the gas generator
provides the power to drive the high-pressure propellant pumps. The hot gas flow is initially
expanded through the methane turbine and is subsequently routed to a second turbine which
powers the oxidizer pump. The turbine exhaust gas is then diverted through the gaseous oxygen
heat exchanger (to heat LO, for tank pressurization) and then discharged through a nozzle with
an area ratio of 5.0 to produce thrust.

2.6 DERIVATIVE STBE OPERATION
The engine is preconditioned using liquid propellants from the tanks to soak the
turbopumps until they are sufficiently cooled. The inlet valves will be opened, allowing liquid

from the tanks to flow down to the turbopumps and letting vapors percolate back up to the tanks
to be vented.
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The engine start is a timed sequence process using an oxidizer lead for reliable soft
propellant ignition. The oxidizer lead avoids hazardous buildup of unburned fuel in the
combustor or on the pad, because all fuel is consumed immediately upon injection. Reliability of
ignition is enhanced by the LO, lead because the transient mixture ratio during propellant filling
includes the full excursion of ignitable mixture ratios from greater than 200 to less than one.

With the oxidizer lead start sequence, the GG LO, injector is primed prior to opening the
GG fuel valve to assure liquid oxidizer flow, thus eliminating turbine temperature spikes due to
oxidizer phase change. After the GG LO, valve is opened, the main oxidizer valve (MOV) is
opened followed by both the fuel GG valve and the fuel shutoff valve (FSOV). Helium spin assist
is provided to the gas generator to help start the turbopump rotating and is discontinued early in
the engine acceleration. Gas generator and main chamber ignition is accomplished with common
design dual electrical spark-excited, oxygen/methane torch igniters. Engine acceleration is
accomplished by open-loop scheduling of the gas generator oxidizer control valve.

Main stage thrust control is provided through open loop control of the GG oxidizer valve.
Engine mixture ratio is preset by trim of the main oxidizer valve.

Engine shutdown is accomplished using a time based scheduling of the propellant valves.
The gas generator oxidizer valve is closed first to power down the turbopumps, then the GG fuel
valve is shut along with the MOV. The FSOV is closed when the pump is at low rpm. Provisions
for post shutdown purging of propellants are provided.

15
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SECTION 3.0
COSTING APPROACH, METHODOLOGY AND RATIONALE

3.1 PROGRAMMATIC AND COST GROUND RULES
3.1.1 General Ground Rules

Ground rules and assumptions have a significant impact on the magnitude of program
costs. P&W used the Space Transportation Engine Program ground rules and work breakdown
structure (WBS) provided by NASA/MSFC for program costing and for structuring its cost
reporting. When items were not specified, ground rules which are consistent with those being
used by the ALS vehicle contractors were selected.

The general ground rules and assumptions used for the STME/Derivative STBE Gas
Generator program cost estimate are summarized in Table 3.1.1-1. All costs are in constant FY87
dollars. The total period covered in the program cost estimate is 321 years, which includes
Phases C and D (DDT&E Phase) for 7% years and Phase E (Operations Phase) for 27 years.
Operational Production which overlaps the latter part of DDT&E and the first 22 years of
Operations occurs for 24 years while Operations occurs for 25 years. The use of one launch site
(ESMC) for the ALS flight tests and operational flight program was assumed.

The vehicle configuration used for the STME/Derivative STBE cost estimate, as specified
by the NASA ground rules, is shown in Figure 3.1.1-1. It is a two-stage vehicle using liquid
methane and oxygen propellants for the booster stage, and liquid hydrogen and oxygen
propellants for the core stage.

The core stage consists of three STME's, each designed to deliver a maximum vacuum
thrust of 580,000 pounds at an inlet mixture ratio of 6.0. The engine operates at a combustion
chamber pressure of 2250 psia and has a nozzle area ratio of 62:1.

The booster stage consists of seven Derivative STBE's, each designed to deliver a maximum
sea level thrust of 645,000 pounds at an inlet mixture ratio of 2.7. The engine operates at a
combustion chamber pressure of 2250 psia and has a nozzle area ratio of 28:1.

The Derivative STBE gas generator engine has been designed to use as many STME parts
as possible and it has 72% cost commonality with the STME. Table 3.1.1-2 shows the
common/uncommon hardware by component.

3.1.2‘ Design and Development Phase

The STME/Derivative STBE design and development phase starts in October 1991 and
extends until March 1999, a 7% year (90-month) period. The DDT&E program includes a
78-month engine development period prior to the first vehicle flight test, scheduled for April
1998. The development program includes both STME and STBE component and engine tests
with completion of Final Flight Certification for both engines occurring in March 1999. The
STBE design, fabrication and testing tasks are scheduled to start slightly behind the STME
tasks so that the STBE can take advantage of lessons learned from the STME portion of tire
program.

17
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Table 3.1.1-1. General Cost Ground Rules and Assumptions

Dollars

Life Cycle Period-Years (Phases C, D, and E)
Phases C and D (DDT&E Phase) — years
Phase E (Operations Phase) — years
Operational Production — years

Operations — years

Number Operational Flights per year

Total Number Operational Flights (Scenario 2)

FY87

32% (FY92 thru 2023)

T4 (FY92 thru 1999)

27 (FY97 thru 2023)

24 (FY97 thru 2020)

25 (FY99 thru 2023)

See Tables 3.1.3-1 thru 3.1.3-3

Nominal 300
Maximum 825
Minimum 250
STME Derivative STBE
Number of Equivalent Development Engines 28.5 16.0
Number MPTA Engines 4 9

Number Flight Test Engines

(3 installed + 1 spare) (7 installed + 2 spares)

8 19
(6 installed + 2 spares) (14 installed + 5 spares)

Number Engines per Vehicle 3 7
Total Production Buy (Scenario 2)
Nominal 175 425
Maximum 350 850
Minimum 100 . 275

Engine Refurishment

By Contractor

Number of Launch Sites 1 (ESMC)
Start Phase C and D (DDT&E) 1992

First R&D Flight 1998
Second R&D Flight 1999

First Operational Flight FY9%9
Number of Flight Tests 2

R19691/78

The ground rules associated with the design and development phase are listed in
Table 3.1.2-1. Table 3.1.2-2 presents key milestones in the design and development program

schedule.

The schedule used for the STME/Derivative STBE development cost estimate is shown in
Figure 3.1.2-1. The first scheduled tests in the STME/Derivative STBE development program
are component tests of the gas generator and thrust chamber assembly which start in
January 1994. The fuel turbopump, oxidizer turbopump and controls component tests start in
March 1994.The first engine test occurs in May 1994 while MPTA stage cluster testing starts in

September 1996.
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P /\ ALS Vehicle Configuration
L]
: 0, | Booster Stage - Reusable Engines
¢ LO,/Methane Propellants
| | r—" * Seven Liquid Rocket Engines at
L_J| |, | 645K Maximum Thrust Each (SL)
SR R Lo, | * LO, Tank Forward, Fuel Aft
|
: | ‘L _} Core Stage - Reusable Engines
—_ * LO,/Hydrogen Propellants
| L | r _} e Three Liquid Rocket Engines at
| He | ! 580K Maximum Thrust Each (Vac)
L : Fuel : e LO, Tank Forward, Fuel Aft
e
- \
i i Booster
Derivative
STME STBE
3 7
FDA 366103

Figure 3.1.1-1. ALS Vehicle Configuration

Pratt & Whitney will conduct the large component and engine tests using government-
provided test facilities at Stennis Space Center. The controls and small component laboratory
tests will be conducted by P&W using test facilities at P&W.

The component test program listed in Table 3.1.2-3 shows the total number of runs/firings
for each component for both the STME and the Derivative STBE. Engine tests are also included,
showing the total number of firings, test objectives and the number of accountable engine firings
prior to first flight. Figure 3.1.2-2 is a graphic projection of the scheduled engine test firings. The
DDT&E costs for the STME/Derivative STBE are based on this test program.
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Table 3.1.1-2. Common Hardware for STME and Derivative STBE Gas Generator

Common Hardware Components

Turbomachinery

Fuel Pump Housing Flow Paths

Fuel Pump Impeller Flow Paths

Ball and Roller Bearings

Turbine Outer Seals

Tiebolt Shaft and Disks (Modified Blade
Attachments

Internal Labyrinth Seals

Major Flange Seals

Bolts, Nuts, Studs, Washers, Pins

1st and 2nd Stage Impeller Castings
Uniform Croes Section Static Housing Seals
Inducer Retaining Bolts

Blade Retaining Rings, Tip Seals

Spacers, Bearing Sleeves, Wave Washers Made
From Same Forging or Identical Hardware

Engine Controls

Engine Controller
Engine and Component Instrumentation

Combustion Deuvices

Gas Generator [njector

Interpropellant Plate

Gas Generator Injector Housing

Gas Generator Combustion Chamber

Gas Generator Combustion Chamber Liner

Tubular Nozzle

Nozzle Inlet Manifold

Nozzle Discharge Manifold

Main Injector Interpropellant Plate

Main Injector Housing

Main Injector Faceplate

Igniter Assembly — Main Injector

Igniter Assembly — Gas Generator Main
Chamber to Injector Flange, Seals, Fasteners

Engine Assembly
Ducting
80% Small Lines
80% Large Lines
GO, HEX
POGO Suppressor
Fuel Inlet Flex Joints
Fasteners, Seals

Partial Commonality and New Design Components

Components That Utilize Same Internal Flow Path

Geometry, But Operate at a Higher Pressure

Fuel Pump Impeller and Housings
Fuel Shutoff Valve

Components That Will Be New Design

Main Combustion Chamber

Ozxidizer Pump Tmpeller and Housings
Ozxidizer Turbine Blading

Fuel Turbine Blading

GG Orxidizer Valve

GG Fuel Valve

Main Oxidizer Valve

Gimbal

R19€91/76

The test schedule has been structured to demonstrate at least 0.99 engine reliability with
90% confidence prior to first flight. This requires 230 accountable engine firings with no engine
chargeable premature shutdowns. For the STME and Derivative STBE, P&W has scheduled
414 and 264 accountable firings, respectively, thus exceeding the required 230 accountable engine
firings and providing margin for demonstrating the 0.99 reliability.

Table 3.1.2-4 shows test facility usage rates for the STME and Derivative STBE test
program. The DDT&E engine test operation and support costs are based on these levels of test

facility usage.

R19801/74
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Table 3.1.2-1. Gas Generator STME/Derivative STBE DDT&E Program Ground Rules

90-Month Phases C/D Program through Final Flight Certification (FFC)
October 1991 Phases C/D Start

Reusable Engine — 15-Mission Capability

960 STME Engine Firings

488 Derivative STBE Firings

0.99 Minimum Demonstrated Reliability at 90% Confidence on Both Engines
Prior to First Flight

STME Design, Fabrication and Testing Leads Derivative STBE — Benefits
Cost

Design Verification Tests Conducted on Same or Similar Components Using
Highest Load Set

Verification Tests Conducted with CH, on Common Parts
Government Supplied Propellants and Test, Engine Assembly, and Launch Site
Facilities

Development Engines and Components Refurbished after 30 Firings at 50%
Cost of New Development Engine or Component. Development Engines and
Components Replaced 100% after 60 Total Firings.

P&W to Conduct Large Component and Engine Tests on Government
Facilities Located at Stennis Space Center {SSC). Small Component and Rig
Tests to be Conducted by P&W at P&W Site.

Booster and Core MPTA Tests to be Conducted by Vehicle Contractors at
SSC. P&W to Provide Engine Support.

Flight Tests From Eastern Space and Missile Center (ESMC) with Booster
Engine Recovery and Refurbishment Following Flights.

R19691,76

Table 3.1.2-2. Gas Generator STME/Derivative STBE DDT&E Program Schedule

Milestones
Oct 1991 — Start Program
Oct 1993 —  Component and Subsystem Development Test Facility
Available
June 1984 — First LO,/LH, Engine Stand Available — 2 Positions
Oct 1994 — Second and Third LO,/LH, Engine Stands Available —
2 Positions Each
Sept 1996 — MPTA Stand Available at SSC
July 1997 — Deliver First Flight Engine Set With Spares
Jan 1998 — Deliver Second Flight Engine Set With Spares
April 1998 — First Flight
March 1999 — Complete DDT&E and Flight Testing. Submit Final
Report.
H1589) 775
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Table 3.1.2-3. Gas Generator STME/Derivative STBE Development Tests
Type No. of Runs/Firings

Rig Tests STME Derivative STBE
Gas Generator 150 60
Main Chamber 150 150
Fuel Pump 300 (LH,) 120 (CH,)
LO, Pump 300 120*

Accountable Firings Prior
Engine Tests Total Firings to Ist Flight
Test Objectives STME  Derivative STBE STME  Derivative STBE
Functional Checkout 15 10
I[nterface 15 10
Environmental/Structural 0 45 30 30
Operational Demonstration 150 30 30
General Development (Pre-PFC Configuration) 230 70
Mission Testing (PFC Configuration) 258 90 258 90
Performance Demonstration 40 15
Preliminary Flight Certification (PFC) 60 60 60 60
MPTA 30 70 30 7
Flight Tests (With Checkout) 12 28 6 14
Final Flight Certification (FFC) _60 _60 L .
960 488 = 1448 414 264

* Tests Limited by Facilities (Prefer 300 Tests)

R19681/75

1,000 R~ \V/ AV W4 \V4
900 First Start Complete  First Complete
Engine Accountable  PFC Flight FFC
800 | Test (2/95) Firings {9/96) (5/97) {3/98) (3/99)
700 |—
600 I—
Number Accountable Firings
of 500 t—
Firings
400 —
Total Firings
300 —
200 —
100 — 0.99 Reliability
. | | | |

1995 1996 1997 1998 1999

Calendar Year
FDA 366104

Figure 3.1.2-2. Scheduled Engine Test Firings
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Table 3.1.2-4. STME/Derivative STBE Test Facility Usage Rates Per Test Position

Max. Test Rate Avg Test Rate (Per Mo.) STME Program
(Per Mo.) STME Deriv STBE Integrated (Reference)

Component Tests

Thrust Chamber Assy 8 74 1.5 7.5 5.0

Gas Generator 8 78 1.5 7.7 5.0

LO, Pump (2 Positions) 8 7.6 79 7.9 5.6

LH, Pump (2 Positions) 8 5.6 — 56 5.6

CH, Pump (1 Position) 8 —_ 5.4 56 NA
Engine Tests (8 Positions) 10 6.4 6.1 6.3 6.3
MPTA 2 Cluster Firings 1.1 1.1 1.1 1.1

R1968 1776

Tables 3.1.2-5 and 3.1.2-6 show a compilation of the STME and Derivative STBE
development component and engine and hardware requirements. The DDT&E program costs
reflect these quantities of new hardware and rebuilds.

Table 3.1.2-5. STME/Derivative STBE Development Component Hardware Requirements

GG TCA Fuel Pump LO, Pump
STME STBE STME STBE STME STBE STME STBE
Test Positions 1 1 1 1 2 1 2 2
Test Firing Life — Rebuild 30 30 30 30 30 30 30 30
s Total 60 60 60 60 60 60 60 60
Rebuild Time — Months 2 2 3 3 3 3 3 3
Dismount/Mount Time — Weeks 1 1 2 2 1 1 1 1
(With Extensive Instrumentation) 2 2 3 3 2 2 2 2
Planned Firings 150 60 150 150 300 120 300 120
Hardware Requirements
— New Rigs 3 1 3 3 5 2 5 2
— Spare Rigs 1 1 1 1 2 1 2 1
Total 4* 2* 4 4 ™ 3 ™ 3*
Rebuilds — Equivalent Total Rigs 2° 0* 2 2 2.5° 1.5* 2.5" 1.5*
(50% New Rig Cost Each Rebuild)
Total Number of Equivalent Rigs 6* 2* 6 6 9.5* 4.5* 9.5* 1.5*

* GG components required for both GG and turbopump component tests.

R13691/73

3.1.3 Operational Phase: Operational Production and Operations
The STME/Derivative STBE Operational Production and Operations Phase (Phase E)
spans 27 years. The program requirement for production engines is based on Scenario 2 of the

NASA/MSFC-supplied cost ground rules (see Table 3.1.1-1). Scenario 2 uses the STME as the
core engine and the STBE derived from the STME as a booster engine.
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Table 3.1.2-6. STME/Derivative STBE Development Engine Hardware Requirements

Development Engine

Exp. Config _PFC Config. PFC/FFC MPTA Flight
STME STBE STME STBE STME STBE STME STBE STME STBE
Test Firing Life — Rebuild 30 30 30 30 30 30 30 30 — —
Total 80 60 60 60 30 30 30 30 N/A N/A
Rebuild Time — Months 2 2 2 3 N/A N/A N/A N/A N/A N/A
Dismount/Mount Time — Weeks 2 2 2 2 _ - —_ - — —
(With Extensive Instrumentation) 3 3 3 3 — - — — — —
Planned Firings 490 150 308 120 120 120 30 70 12 28 = 960 STME
{Based on 960 STME and = 488 STBE
488 STBE)
Engine Requirements
— New Engines 10 3 3 3 4 4 3 7 6 14
— Spare Rigs 1 1 1 1 0 0 1 2 2 5
Total 11 4 4 4 4 4 4 9 8 19 = 31 STME
= 40 STBE
Rebuilds — Equivalent Total 8 1 1.5 3 0 0 0 0 0 0 = 9.5 STME
Engines
(50% New Engine Cost Each = 4 STBE
Rebuild)
Total Number of Equivalent Engines 19 5 5.5 7 4 4 4 9 8 19 = 40.5 STME
= 440 STBE
R19681/75

There are three cases associated with Scenario 2, nominal, maximum, and minimum.
Tables 3.1.3-1 through 3.1.3-3 show the STME and Derivative STBE flight and operational
production engine delivery schedules (including spares) used for the program cost estimates.

The total number of operational flights, Figure 3.1.3-1, in the nominal, maximum, and
minimum cases are 300, 625 and 250, respectively, and the total number of booster and core
engines delivered are 600, 1200 and 375, respectively. In addition to these operational production
engines, there will be eight STME and 19 STBE refurbished flight test engines available from
the development phase for use in the operational program. A two-year procurement period prior
to the delivery year is used for each production engine.

In developing the manufacturing costs for the operational production engines, P&W has
included and accounted for the 48 production configuration engines funded and delivered under
the development program. These engines consist of the eight flight certification engines (four
STME’s and four STBE’s), the 13 MPTA engines (four STME’s and nine STBE’s), and the
27 flight test engines (eight STME's and 19 STBE's). Although built in the development phase of
the program, these engines are fabricated using tooling and manufacturing processes that reflect
an operational production environment. The engines are considered to be part of the total
quantity of production engines built and they precede the operational production engines on the
cost improvement curve. The effect is to include these engines when determining the production
TFU and to shift the first lot of operational production engines down the cost improvement
curve below these development engines.

26
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Table 3.1.3-1. STME/Derivative STBE — ALS Scenario No. 2 — Nominal Case

Quantity Quantity Cum.
STBE STME Total Total
Fiscal Booster Core Engines Engines
Year Years Flights Engines* Engines* Per Year Per Year
1999 1 2 14 6 20 20
2000 2 4 28 12 40 60
2001 3 6 42 18 60 120
2002 4 8 56 24 80 200
2003 5 10 70 30 100 300
2004 [ 12 21 9 30 330
2005 7 12 14 6 20 350
2006 8 12 14 6 20 370
2007 9 12 14 6 20 390
2008 10 12 14 6 20 410
2009 11 14 14 6 20 430
2010 12 14 14 6 20 450
2011 13 14 11 4 15 465
2012 14 14 11 4 15 480
2013 15 14 11 4 15 495
2014 16 14 11 4 15 510
2015 17 14 11 4 15 525
2016 18 14 11 4 15 540
2017 19 14 11 4 15 555
2018 20 14 11 4 15 570
2019 21 14 11 4 15 585
2020 22 14 11 4 15 600
2021 23 14 - —_ — 600
2022 24 14 —_ — — 600
2023 25 14 - — - 600
300 425 175 600 600

*Based on seven reusable STBE's per booster and three reusable STME’s per core stage.
Ri3681/78

Whole spare engines are included in the total production engine quantities specified by
NASA for the Scenario 2 maximum, nominal and minimum cases. Their costs are included in the
recurring operational production flight hardware manufacturing costs.

Component initial spare costs are based on having a two-year supply of spare parts and
components available during the period of highest mission usage. The engine spare component
requirements were estimated, taking into account expected engine reliability levels and the
number of reuses planned for each engine. The initial component spares are procured and
delivered during the early years of engine deliveries. The assumptions used for calculating the
component initial spare costs are summarized in Table 3.1.3-4.

Ground rules and assumptions used to estimate operations costs are summarized in
Table 3.1.3-5. The operations ground rules are consistent with ALS planning documents and
studies being conducted by the ALS vehicle contractors. The operations cost estimates in this
volume reflect these assumptions.

R:0691/74
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Table 3.1.3-2. STME/Derivative STBE — ALS Scenario No. 2 — Maximum Case

Quantity Quantity Cum.
STBE STME Total Total
Fiscal Booster Core Engines Engines

Year Years Flights Engines” Engines* Per Year Per Year
1999 1 2 14 6 20 20
2000 2 4 28 12 40 60
2001 3 6 42 18 60 120
2002 4 8 56 24 80 200
2003 5 10 70 30 100 300
2004 6 14 63 27 90 390
2005 7 18 56 24 80 470
2006 8 24 49 21 70 540
2007 9 28 49 21 70 610
2008 10 30 49 21 70 680
2009 11 30 49 21 70 750
2010 12 30 45 15 60 810
2011 13 30 35 15 50 860
2012 14 32 35 15 50 910
2013 15 32 35 15 50 960
2014 16 32 35 15 50 1010
2015 17 32 28 10 38 1048
2016 18 32 28 10 38 1086
2017 19 33 28 10 38 1124
2018 20 33 28 10 38 1162
2019 21 33 28 10 38 1200
2020 22 33 — — — 1200
2021 23 33 — — _ 1200
2022 24 33 — — — 1200
2023 25 33 = - _ 1200
625 850 360 1200 1200

*Based on seven reusable STBE's per booster and three reusable STME'’s per core stage.
R19991/78

A final consideration in establishing the operational production and operations costs is the
effect of cost improvement. The cost improvement slope on which P&W is basing its cost
reduction as a function of production quantity due to learning, manufacturing process
improvements, high volume production, etc., is a 90 percent Crawford learning curve. This slope
is a conservative estimate based on cost improvements experienced during production of the
F100 gas turbine engine. As shown in Figure 3.1.3-2, the F100 engine followed an 87% slope.

The cost improvement as a function of production rate, based on the lot quantity, has been
estimated by P&W to be about 94.6 percent. Production TFU is baselined at a lot size of 100
units. As shown in Figure 3.1.3-3, this cost improvement effect is based on cost data for 49
different RL10 engine parts. Annual production quantities were varied from 30 to 180 units per
year to generate this curve.

Pratt & Whitney is also estimating an 87 percent cost improvement curve for operations
cost, based on the total number of missions flown. This operations cost improvement slope is
based on maintenance cost improvements experienced for the F100 gas turbine engine. As shown
in Figure 3.1.3-4, F100 maintenance costs decreased at a rate slightly steeper than an 87% slope
as engine flight hours increased. These maintenance cost reductions resulted from both learning
and configuration changes made to improve engine life and reliability.

28
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Table 3.1.3-3. STME/Derivative STBE — ALS Scenario No. 2 — Minimum Case

Quantity Quantity Cum.
STBE STME Total Total

Fiscal Booster Core Engines Engines

Year Years Flights Engines® Engines* Per Year Per Year
1999 1 2 14 6 20 20
2000 2 4 28 12 - 40 60
2001 3 6 42 18 60 120
2002 4 8 56 24 80 200
2003 5 10 70 30 100 300
2004 6 10 17 6 23 323
2006 7 10 12 4 16 339
2006 8 10 12 — 12 351
2007 9 10 12 - 12 363
2008 10 10 12 — 12 375
2009 11 10 _ _ _ 375
2010 12 10 — _ — 375
2011 13 10 —_ - —_ 375
2012 14 10 —_ — - 375
2013 15 10 — — — 375
2014 16 12 — — — 375
2015 17 12 — — — 375
2016 18 12 — - — 375
2017 19 12 _ - -— 375
2018 20 12 —_ — — 375
2019 21 12 _ —_ - 375
2020 22 12 -— — - 375
2021 23 12 - — - 375
2022 24 12 — - - 375
2023 25 12 - = — 375
250 275 100 375 375

*Based on seven reusable STBE’s per hooster and three reusable STME'’s per core stage.
R19681/76

The ALS engine cost improvement slope due to mission rate is considered to be negligible
at present. Table 3.1.3-6 summarizes cost improvement factors used by P&W for these ALS

engine cost estimates.
3.2 COSTING METHODOLOGY

The methodologies used to estimate costs for each of the program phases and functions, and
each of the STME/Derivative STBE WBS components and subassemblies are discussed in this
section. The methodologies are discussed by program phase and are based on using the ground
rules and assumptions presented in Section 3.1.

3.2.1 Design and Development Phase

Detailed bottoms-up development cost estimates from the P&W 1971 SSME program, the
P&W 1985 SSME Power Assembly study, and the P&W 1987 SSME Alternate Turbopump
Development (ATD) program were used as a basis for the STME/Derivative STBE Design and
Development Phase cost estimates. This information was supplemented in a number of areas by
bottoms-up cost analyses performed specifically for the STME/Derivative STBE program.
Differences in the STME/Derivative STBE size and cycle, technology level, program plans and
schedule, hardware fabrication costs, and facility requirements were considered when using the
cost estimates from the other programs.

R13601/74
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Table 3.1.3-4. ALS Scenario No. 2 Component Initial Spares
% Component Initial Spares®
Flights/Year Combustion Main Propellant Support
Case Max Turbomachinery Devices Controls Feed Devices
Nominal 14 20 20 20 10 10
Maximum 33 20 20 20 10 10
Minimum 12 20 20 20 10 10
Note;: + Based on seven STBE’s and three STME's.

» Two-year supply of spare parts and components.
* Percent of engines flown in marximum two-year period.

Table 3.1.3-5.

Operations Cost Ground Rules

Operational Period
Number Operational Flights

Number of Launch Sites
Recovery Operation

Engine Maintenance Levels

Routine Engine Turnaround

Component Repair/Refurbishment

On-Pad Maintenance Procedure

Replacement Components

ESMC Labor Rate (fully burdened)
Depot Labor Rate (fully burdened)

25 Years (FY999 through 2023)

See Tables 3.1.3-1
through 3.1.3-3

1 (ESMC)

Booster Engine Recovered At Sea
(Engine subject to salt spray only);
Cote Engine Expended Or Land
Recovered.

On/Off Equipment Removal and
Replace at ESMC;
Depot at SSC.

At ESMC; Engine Check Run not
required.

At SSC Contractor Depot or by
Supplier.

Small components are LRU’s;
Engine removed for R&R of all
other components.

Calibrated during acceptance;
Engine check run not required.

$50/man-hr
$65/man-hr

R19691,73
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Initially a development program cost estimate was made for the Baseline STME in which
the STME is used for both the core and booster stages. Costs for the STME/Derivative STBE

program were then derived from this estimate.
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The specific cost methodology used in estimating the STME/Derivative STBE develop-
ment costs was as follows:

o Start with Baseline STME Design and Development cost estimate

s Determine how much could be removed from Baseline STME cost because of
core only application

o The resulting costs are the DDT&E costs required to develop the STME for
the core only

* Determine additional costs to develop Derivative STBE for booster applica-
tion in conjunction with STME

¢ These additional costs are the Derivative STBE Design and Development
costs

o Hardware costs were set by development hardware requirements considering
cost commonality

¢ Test costs were set by test stand position months for each engine considering
test manpower requirements.

The STME/Derivative STBE Engine Test Program is the highest cost item of the WBS
functional elements. It includes both component and engine development test hardware and
development test operations and support.

Engine test hardware includes the fabrication, assembly and instrumentation costs of 15
new STME and 8 new STBE development engines {(including spares). Component test hardware
includes the cost of 22 new core and 12 new booster engine development components (gas
generator, thrust chamber assemblies, and turbopumps) (including spares). Table 3.1.2-5 in
Section 3.1 shows the individual component requirements. Test hardware also includes mockups
and eight new flight certification (PFC and FFC) engines (4 STME and 4 Derivative STBE).
Costs for the development engines, and the development components were estimated using a
development engine cost factor applied to the Theoretical First Unit cost. The cost factor, which
is 1.5, is based on P&W’s experience on other engine development programs and it accounts for
the higher cost of building experimental hardware. The eight flight certification engines were
assumed to be part of the first lot of engines on the production engine cost improvement curve.
Their costs were estimated using the techniques discussed in Section 3.2.2 for operational
production engines. Acceptance test costs were included for the eight certification engines.

Test operations and support, which occurs at both SSC and P&W, includes: test planning,
supervision and conducting; test article installation and removal; test article instrumentation
hookup and calibration; and engine mechanic, test engineer and performance engineer support. It
also includes the refurbishment of development components and engines (parts and labor). The
testing portion of the cost estimate is based on P&W experience on rocket and gas turbine engine
development test programs. Table 3.2.1-1 shows the manpower estimates used for the engine and
large component testing at SSC, and for the small component testing at P&W, Development
component and engine rebuild costs were assumed to be 50 percent of the cost of a new
component or engine. The development hardware is rebuilt after 30 tests and used for an
additional 30 tests before being discarded. Tables 3.1.2-5 and 3.1.2-6 in Section 3.1 show the
number of equivalent total components and engines used for the rebuild cost estimates.
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Flight test hardware costs were estimated in a fashion similar to the costs for the eight
flight certification engines. Costs for the 27 flight test engines, 19 STBE’s and 8 STME’s, which
are also part of the first production lot, were estimated using the technique described in Section
3.2.2. Acceptance test costs were included and a factor equal to three percent of the cost of the
engines was added as an allowance for spare parts and components.

Table 3.1.3-6. P&W’s Cost Improvement Considerations

Cost Improvement Factor — %

Learning Rate
Production 90 94.6
Operations 87 —
N R196B1/T5

Main Propulsion Test Article (MPTA) engines, 9 STBE'’s and 4 STME's, are prototype
production engines used in the vehicle propulsion system cluster ground test program. MPTA
hardware costs were also estimated as part of the costs of the first lot of production engines. The
acceptance test costs and three percent spares factor used for the flight test engines were also
included in the MPTA Hardware costs.

Costs were included in the design and development phase cost estimates for the
construction of facilities needed for the engine that are not part of the currently planned test
facilities being provided by the Government at SSC. These facilities include a small component
test facility located at P&W, an engine assembly building with equipment located at SSC and an
engine launch support building with equipment located at ESMC. The cost for the small
component test facility was estimated by P&W facility engineers using experience from other
rocket and gas turbine engine development programs. The cost for the engine assembly facility at
SSC was estimated by P&W manufacturing personnel and it includes costs for both the building
and equipment. The cost estimate for the launch support building at ESMC assumes that an
existing building is used but the building is modified and equipped for this purpose.

Special test equipment (STE) costs were estimated by P&W engineers considering the
various engine and component test stands planned for the STME/Derivative STBE development
programs and the STE needed for development component and engine buildup and assembly.
Experience on other rocket and gas turbine engine programs formed the basis for these cost
estimates.

Engine design and development includes all of the technical effort required to define
technical requirements and establish the engine concepts and designs. It involves verifying that
the engine design meets technical requirements and includes technical coordination between
engineering, manufacturing and suppliers. For the STME/Derivative STBE program cost
estimate this effort was estimated using experience from other P&W engine development
programs including the bottoms-up cost estimates made for P&W’'s 1971 SSME and 1987 SSME
ATD proposals.

Program management includes contract data and other management and administrative
functions associated with the development program such as Program Planning and Control,
Contracts Administration, Configuration Management, Procurement, etc. At P&W the costs for
some of these program management functions are indirect and included in G&A and overhead.
Costs for the functions that are not indirect were estimated as a percentage of the other
development program costs.

R18491/74
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Table 3.2.1-1.

Gas Generator STME/Derivative STBE Test Operations and Support
Assumptions — Contractor Personnel

No. Test Stands
No. Test Positions

Total Stand Months
Total Test Postion Months

Technicians

Test Operations, #Persons/Test
Position

Data Recording & Inst., #Persons/Stand

Engine Mechanics, #Persons/Test Position

Engineers

Test Operations Engineers, #Persons/Stand

Test Engineers, #Persons/Test
Position

Performance Engineers, #Persons/Stand

Instrumentation Engineers, #Persons/Stand

Supervisors #Persons/Stand

Economics
Technicians, Cost/Year
Engineers, Cast/Year

Supervisors, Cost/Year

NOTE: (1) Ist ="1st Shift

(2) 2nd = 2nd Shift

AT STENNIS SPACE CENTER

AT _CONTRACTOR

Engines
TME
DD
6 6

55 103
78 189

10 (1st)
8 {2nd)

(lst)
(2nd)

Cad S

(1st)
(2nd)
(1st)
(2nd)

—_—roNN

(1st)
(2nd)
(1st)
(2nd)

— -

8 (Total)

$ 70,000
$100,000
$120,000

(3) Personnel costs are total burdened costs

Components
§|EE STHE

2

Lt o AN ] —
—
v,
b
~

—— e N

$ 70,000
$100,000
$120,000

Booster
MPTA

0o

3 (1st)
2 (2nd)

2 (Total) 1 (Total) 4 (Total)

$ 70,000
$100,000
$120,000

Core Small
MPTA Components
- §___TF€L§T'ME
1 i 1
1 4 4
9 13 19
9 51 77
-- 2 (1lst)
-- 1 {2nd)
. 4 (lst)
-—- 2 {2nd)
2 {Ist) 0.5 {lst)
1 (2nd)  0.25 (2nd)
-- 4 (lst)
-- 2 (2nd)
1 {1st) 2 (lst)
1 (2nd) 1 (2nd)
1 {lst) 3 (1st)
1 {2nd) 1 (2nd)
--(1st} 2 (1lst)
--{2nd) 1 (2nd)

$ 70,000 $§ 70,000
$100,000 $100,000
$120,000 $120,000

R19891/7S
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System Engineering and Integration includes such things as reliability, maintainability,
safety and quality assurance, engine system analysis and integration, engine/vehicle integration,
system performance, human and value engineering, logistics and training, and system cost
efforts. Software engineering includes the design, development, checkout maintenance and
delivery of computer software used on the engine as well as the development, implementation
and maintenance of other software such as engine performance and data reduction programs
used during the DDT&E program. Costs for both of these elements were estimated as a
percentage of the Engine Design and Development costs.

Costs for the remaining WBS functional elements such as GSE, Tooling and Operations
and Support were primarily based on the 1971 P&W SSME proposal data. Included in the GSE
and tooling costs are costs for the design, development, evaluation and procurement of tooling
and GSE used in the development program. Tooling costs for the prototype production engines
delivered during the development program were estimated by P&W Manufacturing personnel.
Operations and support costs include the costs for detailed operational planning for launch,
flight, recovery and refurbishment support. Also contained are the costs of establishing an initial
support capability and providing support for the two flight tests including engine refurbishment.
These costs were estimated from the costs contained in the proposals and from experience on
other engine programs.

3.2.2 Operations Phase: Operational Production

The Operational Production portion of the Operations Phase is broken into two types of
cost elements, non-recurring operational production costs and recurring operational production
costs. The following sections discuss the cost methodologies used to estimate these costs.

3.2.2.1 Non-Recurring Operational Prodiction Costs

Non-recurring Operational Production costs are composed of seven functional elements:
Program Management, System Engineering and Integration (SE&I), Facilities, Ground Support
Equipment, Tooling, Special Test Equipment and Initial Spares.

Initial spares is the element with the highest cost. As discussed in Section 3.1 initial spares
costs are based on providing sufficient spare turbopumps, combustion devices and control
components to support the two year operational period having the maximum mission rate. Using
percent spare component requirements defined from expected reliability levels and the total
number of engines being flown in the two-year period, the total quantity of initial spare
components needed was defined. It was assumed that these spare components would be delivered
as part of the early production lots along with the production engines. The quantities delivered in
each lot were determined as a function of the percentage of spares needed and the number of
engines being delivered in each lot. Unit costs for the spare components were assumed to be the
same as the unit costs for the components in the engine lots. The methodology used to determine
the engine and component unit costs for the engine lots is discussed in Section 3.2.2.2.

Ground Support Equipment (GSE) is made up of both common and peculiar GSE. Costs
were estimated for sets of both types of GSE based on GSE requirements from other engine
programs. The amount of GSE required and its delivery schedule were estimated from the
number of flights per year and the flight buildup rates taking into account the quantity of GSE
available from the development flight tests.

A large amount of production tooling, used to produce the certification, main propulsion
test article and flight test engines, will be available from the development program. Costs for

additional tooling needed to achieve maximum engine delivery rates were considered to be a non-
recurring operational production cost. These tooling costs were estimated from the initial
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production tooling requirements estimated by Manufacturing personnel for use in the develop-
ment program. Maximum engine production rates and delivery schedules were used to determine
the additional tooling requirements and schedule.

Increased Program Management and SE&I startup efforts needed at the beginning of
operational production were considered to be non-recurring cost elements. Total requirements
for these two functions were determined for the early operational years using experience from
other programs. Levels of effort expected to be available for these two functions from the
recurring operational production and operations cost elements were then determined. The
difference between the total effort required and the manpower available from the recurring cost
elements defined the non-recurring operational production requirements and costs.

All production facilities and special test equipment needed in the operations phase are
expected to be available from the development program. Therefore, no non-recurring operational
production costs were included for these items.

3.2.2.2 Recurring Operational Production Costs

Recurring Operational Production costs are composed of five functional elements: Program
Management, System Engineering and Integration, Flight Hardware Manufacturing, Tooling
Maintenance and Facilities Maintenance.

Flight Hardware Manufacturing, which has most of the cost, includes the cost of
manufacturing the production engines used in the operational flights, and the cost of performing
acceptance tests on the flight engine hardware.

Unit manufacturing costs were estimated for the STME and Derivative STBE by the P&W
Manufacturing Product Cost Estimating Group. The cost estimates are based on bottoms-up
estimates from design layout drawings using actual costs of similar manufacturing processes for
gas turbine and RL10 engine hardware, with consideration for cost reduction features and new
high volume manufacturing techniques. Where available and appropriate supplier quotes were
used. The bottoms-up estimates were made using a standard cost method referenced to the
manufacturing cost of the 250th unit produced at rate of 88 engines/year. Appropriate variances
and markups were applied to the standard manufacturing costs to obtain a total unit cost
(without fee).

The cost estimating procedure used for the STME/Derivative STBE is the same procedure
used by P&W for gas turbine engines. Manufacturing processes required for each major part
and/or subassembly within a component were identified. A determination was then made as to
whether the part would be manufactured in-house, obtained from a supplier or fabricated using a
combination of the two. Using a P&W manufacturing data base, standard labor, raw material
and/or purchase part costs were established for each part by making a similarity analysis with
current parts and using fabrication cost information contained in the data base. Typical
variances were applied for each process to adjust the standard labor hours to actual hours.
Different overhead markups were added depending on whether the costs were for labor, material
or a purchased part. All markups (except for fee) required to get the engine costs to a selling price
were included. The various cost elements considered in the manufacturing cost analysis for
material (raw material and purchase parts) and factory labor are shown in Tables 3.2.2-1 and
3.2.2-2 respectively.

R19601/74
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Table 3.2.2-1. STME/Derivative STBE Production Material Cost Elements

Direct Material and Purchase Part Elements
¢ Purchase Order Value

Plus Material Overhead

+ Source Selection

» Bid Evaluation

+ Supplier Performance Tracking
» Offsite Inspections

« Supplier Rework

« Supplier Scrap

« Alternate Sourcing

« Expediting

s Purchasing Management

« Fringe Benefits to Indirect Personnel
« Inventory Costs

Plus General and Administrative Elements

+ Specific Administration at Manufacturing
« Cost of Money

«  Warranty

« Information Systems

« Administrative Expenses

R12691,73

Table 3.2.2-2. STME/Derivative STBE Production Labor Cost Elements
]

Direct Labor Elements

» Labor Standard

+ Set-Up

« Performance Relative to Standard
* Inspection

* Rework

« Fringe Benefits

Plus Factory Overhead Elements

o Utilities

» Maintenance

» Factory Management

» Mfg. Engineering

+ Plant Engineering

« Industrial Engineering

« Capital Depreciation

« Recurring Tooling

« Fringe Benefits for Indirect Personnel

Plus General and Administrative Elements

+ Specific Administration at Manufacturing
¢ Cost of Money

»  Warranty

+ Information Systems

« Administrative Expenses

R13691,73
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Detailed costing of the STME/Derivative STBE components required definition of the
physical characteristics (dimensions, number of stages, flowrates, etc.) of each component. Both
design drawings and engine cycle sheets were used to define these characteristics.
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After costs were estimated for each of the major parts or engine assemblies, they were
summed to obtain component and total engine unit costs. Costs were added for assembly and
test. A fixed cost of $400K per engine was used as an engine acceptance test cost. The effects of
changing production quantity from the referenced 250th unit were then factored into the analysis
using a 90 percent cost improvement curve. No cost improvement was assumed for the
acceptance test cost. The effects of changing lot quantity (or annual production rate) from the
referenced 88 units/year were included using a 94.6 percent cost improvement curve. Section 3.1
discusses the source of these cost improvement slopes.

As presented in Tables 3.1.3-1 through 3.1.3-3 of Section 3.1.3, P&W defined operational
production engine delivery schedules for each ALS Scenario 2 case, i.e., nominal, maximum and
minimum. [ncluded as part of the total number of production engines produced, but not included
in the operational production schedules, are 16 STME'’s and 32 STBE’s delivered during the
development program. As shown in Figure 3.2.2-1 these engines are considered to be the first
production lot, with the first operational production engine starting down the cost improvement
curve below these engines. Cumulative average engine unit costs were calculated for each annual
operational production lot using the 90% cost improvement slope. These cumulative average lot
costs were further modified to reflect the number of engines in each lot using the lot size (or

production rate) cost improvement slope.

TFU Flight Certification Engines (4 STME, 4 STBE)
MPTA Test Engines (4 STME, 9 STBE)
Flight Test Engines (8 STME, 19 STBE)

Operational Production

Unit
! Engines (Scenario 2)

Production
Cost

Log - Log

Total Quantity

FDA 358388

Figure 3.2.2-1. Development Engines Considered In Costing Operational Production Engines

Other Recurring Operational Production cost functions include: Program Management,
System Engineering and Integration, Tooling Maintenance and Facilities Maintenance. Tooling
Maintenance and Facilities Maintenance are included in the manufacturing overhead and they
could not be priced separately. Also, some of the recurring program management functions are
included in overhead and they could not be costed separately. The remaining Program
Management functions and the SE&I costs are direct charges and their costs were estimated as a
percentage of Flight Hardware costs using typical factors derived from other production engine
programs.
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3.2.3 Operations Phase: Operations

Operations Costs for the STME/Derivative STBE are comprised of five primary functional
elements: Program Management, System Engineering and Integration (SE&I), Facilities
Maintenance, Operations and Support and Training. Operations and Support (0O&S), which
contains most of the costs, is further broken down into five functional elements: Launch 0&S,
Flight 0&S, Recovery 0&S, Refurbishment O&S and Spares Replenishment.

The Operations cost elements generally fall into two categories. Program Management,
SE&I and Flight 0&S, which contain most of the management and engineering functions, have
minimum fixed levels of effort required to maintain a viable staff to support the program. These
elements are affected to some degree by the mission rate but not as significantly as the other cost
elements. Costs for Launch 0&S, Recovery O&S, Refurbishment O&S, Spares Replenishment
and Training are driven directly by the number of engines and missions flown and their costs are
based on costs per mission estimates.

The approach that was used for the STME/Derivative STBE operations cost estimates was
to define costs at a mature point in the Operations Phase. The 100th mission was selected as this
reference point. A cost improvement slope of 87 percent was then passed through this point to
generate the total operations cost estimates. The cost improvement slope is a function of the
cumulative number of missions flown. The source of this cost improvement slope is discussed in
Section 3.1.

Program management includes those costs associated with contract management (sched-
uling and budgeting), configuration control, data management, etc. SE&I includes technical
support for the operational engines including safety, reliability, maintainability and quality
assurance. The Program Management and SE&I costs were estimated by first defining a
minimum level of effort required each year to provide this support. Additional efforts that would
be required for these functions as the flight rate increased were then defined and the two added
to obtain total annual costs for these elements. The Program Management and SE&I estimates
were based on previous experience from other programs such as the RL10 with consideration for
current ALS ground rules and scenarios.

Flight O&S includes all of the engineering and technical effort required to support the flight
program. It includes data analysis and anomaly resolution for the flights. The flight O&S costs
were estimated by determining the minimum cost per year required to maintain a staff of
engineers and technical personnel to support the flight program. A small variable cost which
changes with the number of flights per year was added to this fixed cost. The total cost is the
Flight O&S cost per year for the STME/Derivative STBE program. As with Program
Management and SE&I these cost estimates were based on previous experience.

Launch O&S costs include all the logistic costs associated with supporting engines at the
launch site that are ready for flight, as well as the costs required to perform prelaunch tasks on
installed engines prior to the vehicle being flown. These costs are primarily driven by the number
of engines launched. Costs for this element were calculated using an estimated unit cost of
$5,000/engine/mission. This unit cost was determined from an analysis of the tasks that would
be required for this function.

Recovery O&S costs are based on an ocean recovery of the vehicle propulsion module with
the engines being exposed to a salt air environment only. The engines are not immersed in the
salt water. Costs are included for engine personnel onboard the ship to wash and inspect the
engines on the propulsion module while the ship is returning to the launch site. Costs were not
included for retrieving the propulsion module and operating the ship as these functions were
assumed to be included under vehicle costs. The costs for this element were determined by
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making an analysis of the material and labor required to perform this function for each mission.
A cost estimate of $4,300 per engine per mission was used for the program cost estimates.

Refurbishment O&S costs include all the labor and consumable materials required to return
an engine to a reliable operating capability after a flight. It contains all of the turnaround tasks
required to ready an engine for the next flight and includes all scheduled and unscheduled
maintenance that may be required on an engine. Routine scheduled refurbishment of the engines
and modules will be conducted at ESMC, while refurbishment requiring component teardown
will be conducted at SSC. Refurbishment costs were determined on an average cost per engine
per mission basis. Routine turnaround costs were estimated from an analysis of labor and
material requirements for each turnaround. Estimated failure rates and repair/refurbishment
labor requirements were used to define the average unscheduled maintenance costs per mission.
Average refurbishment costs of $61,000 per engine per mission were estimated for the STME and
$69,000 per engine per mission were estimated for the Derivative STBE. The STBE has a
slightly higher cost because of additional refurbishment tasks required due to coking of the
methane fuel.

Replenishment Spares includes the cost of replacement engine parts used to repair and
refurbish the operational STME/Derivative STBE. Replenishment spares costs were determined
using estimated component failure rates to define the frequency of unscheduled maintenance and
an analysis of the potential failure modes to define the cost of parts being replaced. The average
cost for replenishment spares was estimated to be approximately $25,000 per engine per mission.

Training includes the cost of performing on-going training for engine personnel supporting
the operational flight program. The training costs, which are small, were estimated form
experience on previous programs.

Facilities used to support the operational flight program are all located at Government sites
such as SSC and ESMC. It was assumed that Facility Maintenance would be provided by the
Government, no costs were included in this Operations Cost Estimate for this functional
element.

3.2.4 Product Improvement and Support Program

Cost estimates for the STME/Derivative STBE Product Improvement and Support
Program are based on gas turbine engine experience. Historically, gas turbine component
improvement program costs have amounted to approximately 80 percent of engine development
costs. The percentage was lowered to 50 percent for the STME/Derivative STBE program since
time-phasing for the production engine deliveries is front loaded and the delivery period
significantly shorter than that of a typical gas turbine engine. Product improvement and support
programs are most cost effective when engine improvements developed in such a program can be
incorporated in the yet-to-be delivered production engines.

3.3 WORK BREAKDOWN STRUCTURE DESCRIPTION

The work breakdown structure (WBS) used for the STME/Derivative STBE program cost
estimate is consistent with the format used for the ALS Vehicle Studies, ALS Cost Reporting
Document Number ALS-SD-R-CRD-v 1.00, 4 March 1988, as well as with the WBS provided by
NASA for the Phase A Extension study program cost estimates. Table 3.3-1 shows how the main
engines (STME/Derivative STBE) fit into the overall launch vehicle system WBS. The engines
are a fifth level WBS element in the launch vehicle segment under the vehicle stage.
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Table 3.3-1. Launch Vehicle System WBS

Space System

WBS No. Work Breakdown Structure Elements

1.0 Advanced Launch System

1.1 System — Integration, Assembly and Test

1.2 Launch Vehicle System ’

1.2.1 Launch Vehicle System — Integration, Assembly and Test
1.2.N Vehicle Stage (N=2 Booster, N=3 Core)

1.2.N.7 Liquid Fuel System

1.2.N.7.2 Main Engines

1.2.N.7.2-1 Main Engines — Design and Development

1.2.N.7.2-2 Main Engines — Non-Recurring Operational Production

1.2.N.7.2-3 Main Engines — Recurring Operational Production

1.2.N.7.2-4 Main Engines — Operations

1.2.N.7.2-X Main Engines — Product Improvement and Support
Program

R12681/76

Figures 3.3-1 and 3.3-2 show the WBS structures used for the STME/Derivative STBE
Design and Development Phase and Operations Phase, respectively. The Operations Phase
encompasses Non-recurring and Recurring Operational Production and Operations. The
STME/Derivative STBE WBS is a matrix of cost elements with the STME/Derivative STBE
hardware costs broken into system hardware and integration, assembly and test. Each engine
subsystem is a fourth level WBS cost element within the main engine WBS structure. Each
engine subsystem level is further broken to a fifth engine component level. Costs are provided in
the STME/Derivative STBE cost estimates document for each program phase and its
appropriate functional elements. Most functional elements are reported at an integrated system
level while the hardware functional elements (see Figures 3.3-1 and 3.3-2) are reported at an
engine subsystem and/or an engine component level.

As discussed in Section 3.2.4 it is anticipated that there will be a Product Improvement and
Support Program (PISP) for the STME/Derivative STBE. The WBS provided by NASA for the
Phase A extension study program does not have provisions in its functions for a PISP effort. In
this cost estimates document, the STME/Derivative STBE PISP costs have been included as a
separate item (1.2.N.7.2-X) after the Operations phase costs. Since the PISP effort is shown in
the WBS matrix as a separate line item, its costs may be removed easily from the program cost
estimates if it is desired not to include them.

3.4 WORK BREAKDOWN STRUCTURE DICTIONARY

Definitions used for the STME/Derivative STBE Program Work Breakdown Structure
cost elements are included in this section. Sections 3.4.1 through 3.4.4 define the types of costs
included in each phase of the STME/Derivative STBE program and its respective functional
elements (-1 Design and Development, -2 Non-Recurring Operational Production,
-3 Recurring Operational Production, and -4 Operations). Section 3.4.5 defines the subsystems
and components included in each engine hardware WBS element while Section 3.4.6 describes
the Product Improvement and Support Program.
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3.4.1 Design and Development Phase

The terms and definitions for each STME/Derivative STBE functional cost element in the

Design and Development Phase are shown below.

WBS No. 1.2.N.7.2-

1.

1.1

1.11

1.1.2

1.2

DESIGN AND DEVELOPMENT

Design and development includes all effort necessary to convert
requirements into designs and processes that are fuily verified for
operational use to the prescribed performance standards.

PROGRAM MANAGEMENT (PM)

Program Management includes management of every aspect of the
design and development phase in the STME/Derivative STBE
program. PM must assure that all requirements of a NASA contract
are met within cost and schedule goals and constraints. PM is
responsible for configuration control, data management, scheduling,
budgeting and other functions necessary during the design and
development phase of the program.

CONTRACT DATA

The contract data portion of Program Management includes all data
items, deliverables and reports as specified in the contract for the
design and development phase.

OTHER PROGRAM MANAGEMENT

This element includes all PM tasks not included in contract data
management. Other tasks assigned to Program Management include
updating the WBS schedules and budgets of the different departments
and disciplines (e.g., SE&I, Launch Ops, etc.) In addition, PM will be
responsible for subcontract management, procurement, and
configuration management during the design and development phase
of the program.

SYSTEM ENGINEERING AND INTEGRATION (SE&D)

System engineering is the management of technical efforts to develop
an integrated system. Primarily it deals with defining a configuration
that meets operational goals or objectives in a cost effective manner.
Not included in SE&I are engineering efforts associated with designing
and producing the engine or its support equipment. Integration
requires that the engine and its components properly interface with
adjoining or functionally interdependent systems or components. This
element includes safety, reliability, maintainability, quality assurance
and other elements.
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WBS No. 1.2.N.7.2-

1.2.1

1.2.2

1.3

1.4

1.4.1

1.4.2

R19681/74

SAFETY, RELIABILITY, MAINTAINABILITY AND QUALITY
ASSURANCE (SRM&QA)

Safety requires that hazards in the project be identified, examined and
altered to an acceptable risk level. Alterations to and variances from
safety procedures must be documented by those responsible for safety.
Reliability is the degree of certainty that the engine will function
according to the desired performance specifications for the required
period of time or number of firings. This assumes all logistics, support
and maintenance requirements are met. Maintainability is the ability
of a design to retain or be refurbished to certain characteristics,
performance requirements, and reliability by following prescribed
procedures. Quality Assurance is the effort or task of determining by
destructive or non-destructive means whether an engine (or its
components) meets the prescribed standards or requirements in
materials, performance, fabrication or serviceability.

OTHER SE&I

This element includes other SE&I costs not included in SRM&QA.
Other tasks assigned to SE&I include support of the design process
with system requirements, performance/effectiveness specifications
and interface control documentation during the design and develop-
ment phase.

ENGINEERING DESIGN AND DEVELOPMENT

This element includes the engineering effort necessary to define
technical requirements, propulsion concepts and designs; and to verify
ability of the design to meet technical requirements.

ENGINE TEST PROGRAM

The engine test program includes requirements planning, test hard-
ware production, test operations, results evaluation, test
documentation and support activities and materials.

TEST ENGINES

Test engines are those engines produced for the purpose of validating
design concepts and performance characteristics through single engine
testing.

ENGINE DEVELOPMENT TEST OPERATIONS AND SUPPORT

Test operations and support includes replenishment of spares and
expendables, refurbishment of hardware, and conducting tests and
other support activities necessary to perform the single engine testing
function. Test support services related to facilities are Government
Furnished Equipment (GFE).
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WBS No. 1.2.N.7.2-

1.4.3

1.4.4

1.4.5

1.5

1.5.1

1.5.2

1.6

1.6.1

1.6.2

COMPONENT TEST HARDWARE

This element includes engine components produced for the purpose of
validating design concepts and performance characteristics through
major component testing.

COMPONENT DEVELOPMENT TEST OPERATIONS AND
SUPPORT

Component development test operations includes component testing,
replenishment of spares, refurbishment of hardware, operation and
maintenance of test facilities and other supporting activities necessary
for the major component testing function.

PROPELLANTS

Propellants includes all effort to make projections of propellant
utilization and to handle propellants, oxidizers and other chemicals
required to complete the development program. Propellants will be
government furnished.

FLIGHT TEST ENGINES

These are engines and spares required to support the development
flight test program.

MANUFACTURING

Manufacturing includes the fabrication, assembly and integration of
the flight test hardware.

ACCEPTANCE TEST

Acceptance test includes the efforts and materials necessary to
perform acceptance tests on the flight test engine hardware. It includes
test preparation, test conduct, data reduction, reporting, and
refurbishment.

MAIN PROPULSION TEST ARTICLE HARDWARE (MPTA)
MPTA hardware are those engines and spares required to support
MPTA testing.

MANUFACTURING

Manufacturing includes the fabrication, assembly and integraton of
the engines for main propulsion test articles.

ACCEPTANCE TEST

Acceptance test includes the effort and materials necessary to perform
acceptance tests on main propulsion test article engines. It includes
test preparation, test conduct, data reduction, reporting, and
refurbishment.
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WBS No. 1.2.N.7.2-

1.7 FACILITIES

Facilities include new or modified buildings and other facilities needed
to facilitate the space transportation engines mission. This includes all
efforts necessary for design and construction of test, manufacturing
and launch facilities.

1.71 PRODUCTION FACILITIES

Production Facilities include the design and construction of buildings
and other facilities necessary to produce the STME/Derivative STBE
development and production hardware.

1.7.2 LAUNCH FACILITIES

This element includes the design and construction of all engine-related
facilities necessary to support engine operations for flight. All launch
facilities are GFE.

1.7.3 TEST FACILITIES

Test facilities include the design and construction of buildings and
other facilities, and the planning of maintenance procedures, necessary
to prove the design and reliability of the Space Transportation
Engines. Engine test stands are included in this element. Major
component and system test facilities are GFE.

1.8 SOFTWARE ENGINEERING

Software engineering consists of the design and development of
computer instructions which control the STME/Derivative STBE
through valves, actuators, and solenoids during engine operation. This
element also includes other software engineering required during
design and development.

1.9 GROUND SUPPORT EQUIPMENT (GSE)

This element includes design and development of common and
peculiar GSE which is used to test, handle or maintain the STE during
ground operations. It may include checkout equipment, mock-ups,
support equipment and test equipment. Production of GSE required
only for DDT&E is included. Production of GSE required for
operations is included in non-recurring production.
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WBS No. 1.2.N.7.2-

19.1

1.9.2

1.10

1.11

1.12

1.12.1

1.12.2

COMMON GROUND SUPPORT

Common ground support equipment is GSE that is identical to
equipment used on programs other than STME/Derivative STBE
Programs.

PECULIAR GROUND SUPPORT

Peculiar GSE is designed and developed specifically for
STME/Derivative STBE use.

TOOLING

Tooling includes design and development of special machinery, jigs,
fixtures, dies, molds, and the like, necessary to fabricate and assemble
components and the engine. This element includes all production
tooling acquired under the development program even if not used until
operational production. Other tooling required to produce operational
engines is included under non-recurring production.

SPECIAL TEST EQUIPMENT

Special test equipment consists of the design and development of
electronic, hydraulic, mechanical, optical and other types of testing
devices that are used in checkout of the STME/Derivative STBE.

OPERATIONS AND SUPPORT

Operations and Support includes the design and development of detail
planning for maintenance, mission control, spares and logistics
procedures and equipment necessary for the STME/Derivative STBE
flight operations. Also included is the planning for refurbishment of
reusable hardware, storage at launch site, facilities and training of the
trainers.

LAUNCH OPERATIONS SUPPORT

The tasks and logistics necessary to control, maintain and support the
engine during and in preparation of launch are included in launch
operations support. This process is planned, designed and tested
during the design and development phase. It may include storage,
trouble-shooting, spares replenishment and ground support at the
launch site.

FLIGHT OPERATIONS SUPPORT

Flight operations support includes tasks and logistics necessary to
control, maintain and support the engine during flight. This task is
planned and designed during the design and development phase. Flight
operations begins at initial engine power-up during pre-start for
flights. It ends at return to the earth’s surface.
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WBS No. 1.2.N.7.2-

1.12.3

1.12.4

RECOVERY OPERATIONS SUPPORT

This element includes the design and planning of tasks and logistics
necessary to recover the engines after flight, including transportation
to the refurbishment facility.

REFURBISHMENT OPERATIONS SUPPORT

This element includes the design and development of tasks and
logistics necessary to return the engine to reliable operating capability.
Refurbishment operations begin at the end of recovery operations and
end at the beginning of launch operations.

3.4.2 Operations Phase: Non-Recurring Operational Production

FR-19691-4
Volume III

The terms and definitions for each STME/Derivative STBE functional cost element in the
Operations Phase: Non-Recurring Operational Production are shown below.

WBS No. 1.2.N.7.2-

2.

2.1

2.2

NON-RECURRING OPERATIONAL PRODUCTION

This category includes the production of initial tooltng, GSE and
special test equipment used to arrive at full rate manufacturing and
operational capability. Also included is the initial equipment
acquisition for launch operations, maintenance, and mission control.

PROGRAM MANAGEMENT (PM)

Program Management includes management of every aspect of non-
recurring production in the STME/Derivative STBE program. PM
must assure that all requirements of a NASA contract are met within
cost and schedule goals and constraints. PM is also responsible for
configuration control, data management, scheduling, budgeting and
other functions necessary to accomplish the non-recurring production.

SYSTEM ENGINEERING AND INTEGRATION (SE&I)

System engineering is the management of technical efforts to develop
an integrated system. Primarily it deals with defining a configuration
that meets operational goals or objectives in a cost effective manner.
Not included in SE&I are engineering efforts associated with designing
and producing each individual operational production element.
Integration requires that the non-recurring operational production
equipment properly interface with adjoining or functionally
interdependent systems or components. This element includes safety,
reliability, maintainability, quality assurance and other elements for
the non-recurring production.
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WBS No. 1.2.N.7.2-

2.21

2.2.2

2.7

271

2.7.2

2.7.3

SAFETY, RELIABILITY, MAINTAINABILITY AND QUALITY
ASSURANCE

Safety requires that hazards in the project be identified, examined and
altered to an acceptable risk level. Alterations to and variances from
safety procedures must be documented by those responsible for safety.
Reliability is the degree of certainty that the non-recurring operational
production equipment will function within the desired performance
specifications for a period of time or number of firings. This assumes
all logistics, support and maintenance requirements are met.
Maintainability is the ability of a design to retain or be refurbished to
certain characteristics, performance requirements, and reliability by
following prescribed procedures. Quality Assurance is the effort or task
of determining by destructive or non-destructive means whether the
non-recurring operational production equipment meets the prescribed
standards or requirements in materials, performance, fabrication or
serviceability.

OTHER SE&I

Other tasks assigned to SE&I include support of the production
process with system requirements, performance/effectiveness
specifications and interface control documentation related to the non-
recurring production elements. Change tracking and control are
included.

FACILITIES

This element includes the acquisition of facility related support
equipment needed to provide full rate production and operation of
STME/Derivative STBEs. This equipment is planned and designed
during the design and development phase.

PRODUCTION FACILITIES

Production facilities includes the acquisition of facility related support
equipment necessary to provide full rate production.

LAUNCH FACILITIES

Launch facilities include the procurement of launch and mission
control facility equipment needed to support full rate flight operations.
This equipment is considered to be a part of the facility and does not
include engine GSE and special test equipment. All launch facilities
are GFE.

TEST FACILITIES

Test facilities include the acquisition of facility related support
equipment necessary to provide full rate production and operations of
engines. Excluded are engine test instruments and equipment which
are included under GSE or special test equipment. Major component
and system test facitities are GFE.
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WBS No. 1.2.N.7.2-

2.9 GROUND SUPPORT EQUIPMENT

This element includes the production/acquisition of common and
peculiar GSE which is used to test, handle or maintain the
STME/Derivative STBE until launch. It may include checkout
equipment, mock-ups, support equipment and test equipment.

29.1 COMMON GSE

Common ground support equipment is GSE that is identical to
equipment used on programs other than the STME/Derivative STBE.
2.9.2 PECULIAR GSE
Peculiar GSE is similar to common GSE except that the hardware is
designed specifically for the space transportation engine use only.
2.10 TOOLING
Tooling includes the production of machinery, jigs, fixtures, dies,
molds, and the like, necessary to fabricate and assemble the engine
components.
2.11 SPECIAL TEST EQUIPMENT

Special test equipment consists of the production of electronic,

hydraulic, mechanical, optical or other type of testing device thdt is

used specifically for the STME/Derivative STBE. Excluded is the

special test equipment which was required only for DDT&E.
2.12.5 INITIAL SPARES

Initial spares include production of extra units of assembly, part or
support equipment that are held in reserve for the beginning of the
operations phase.

3.4.3 Operations Phase: Recurring Operational Production

The terms and definitions for each STME/Derivative STBE functional cost element in the
Operations Phase: Recurring Operational Production are shown below.

WBS No. 1.2.N.7.2-

3. RECURRING OPERATIONAL PRODUCTION

This category includes the fabrication, assembly and test of STE flight
engines.
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WBS No. 1.2.N.7.2-

3.1

3.2

3.2.1

3.2.2

3.5

3.5.1

PROGRAM MANAGEMENT (PM)

Program Management includes management of every aspect of
recurring production in the STME/Derivative STBE program.
PM must assure that all requirements of a contract are met within cost
and schedule goals and constraints. PM is also responsible for
configuration control, data management, scheduling, budgeting and
other functions related to the production phase of the program.

SYSTEM ENGINEERING AND INTEGRATION (SE&I)

System engineering is the management of technical efforts to develop
an integrated system. Primarily it deals with defining a configuration
that meets operational goals or objectives in a cost effective manner.
This element includes safety, reliability, maintainability, quality
assurance and other elements.

SAFETY, RELIABILITY, MAINTAINABILITY AND QUALITY
ASSURANCE

Safety requires that hazards in the project be identified, examined and
altered to an acceptable risk level. Alterations to and variances from
safety procedures must be documented by those responsible for safety.
Reliability is the degree of certainty that the engine will function
within the desired performance specifications for a period of time or
number of firings. This assumes all logistics, support and maintenance
requirements are met. Maintainability is the ability of a design to
retain or be refurbished to certain characteristics, performance
requirements, and reliability by following prescribed procedures.
Quality Assurance is the effort or task of determining by destructive or
non-destructive means whether the recurring operational production
meets the prescribed standards or requirements in materials,
performance, fabrication or serviceability.

OTHER SE&I

Other tasks assigned to SE&I include support of the production
process with system requirements, performance/effectiveness specifi-
cations and interface control documentation related to the production.
FLIGHT HARDWARE MANUFACTURING

This element includes the recurring production of engines used in the
operational flights following final acceptance of design.
MANUFACTURING

Manufacturing includes the fabrication, assembly and integration of
the flight hardware.
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WBS No. 1.2.N.7.2-

3.5.2

3171

3.10

ACCEPTANCE

Acceptance includes the effort and materials necessary to perform
acceptance tests on the flight engine hardware. It also includes test
preparation, test conduct, data reduction, reporting, and
refurbishment.

FACILITIES MAINTENANCE

Facilities maintenance will include the repair and upkeep of all
production buildings and equipment. Excluded is the maintenance of
production tooling (see 3.10).

TOOLING MAINTENANCE

Tooling maintenance will include the inspection, test, calibration,
repair or replacement of production and support tooling for the engine
production. Tooling for recurring production will be ‘hard’ or final
design tooling.

3.4.4 Operations Phase: Operations

FR-19691-4
Volume 111

The terms and definitions for each STME/Derivative STBE functional cost element in the
Operations Phase: Operations are shown below.

WBS No. 1.2.N.7.2-

4.

4.1

OPERATIONS

This category includes the maintenance, mission control, spares and
logistics necessary for the engine to meet required launch schedules.
Also included is refurbishment of resuable hardware, storage at launch
site, spares replenishment, facilities and software maintenance and
training.

PROGRAM MANAGEMENT (PM)

Program Management includes management of every aspect of
operations in the STME/Derivative STBE program. PM must assure
that all requirements of a contract are met within cost and schedule
goals and constraints. PM is also responsible for configuration control,
data management, scheduling, budgeting and other functions
necessary during the operational phase of the program.
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4.2

421

4.2.2

4.7

4.7.2

SYSTEM ENGINEERING AND INTEGRATION (SE&I)

System engineering is the management of technical efforts to develop
an integrated system. Primarily it deals with defining a configuration
that meets operational goals or objectives in a cost effective manner.
Not included in SE&I are the engineering efforts associated with
designing and producing the operational equipment. Integration
requires that the operational equipment properly interface with
adjoining or functionally interdependent systems or components. This
element includes safety, reliability, maintainability, quality assurance
and other elements.

SAFETY, RELIABILITY, MAINTAINABILITY AND QUALITY
ASSURANCE

Safety for operations requires that hazards in the project be identified,
examined and altered to an acceptable risk level. Alterations to and
variances from safety procedures must be documented by those
responsible for safety. Reliability is the degree of certainty that the
operational equipment will function within the desired performance
specifications for a period of time or number of uses. This assumes all
logistics, support and maintenance requirements are met. Maintaina-
bility is the ability of a design to retain or be refurbished to certain
characteristics, performance requirements, and reliability by following
prescribed procedures. Quality Assurance is the effort or task of
determining by destructive or non-destructive means whether opera-
tional production meets the prescribed standards or requirements in
materials, performance, fabrication or serviceability.

OTHER SE&I

Other tasks assigned to SE&I include support of the operational tasks
with product improvements, performance/effectiveness improvements
and redefinition of specifications as needed during the life of the
STME/Derivative STBE.

FACILITIES MAINTENANCE

This element includes operations and maintenance of buildings and
equipment needed to facilitate the STME/Derivative STBE mission of
inserting the spacecraft into orbit. This will include buildings for
storing ground support equipment and peculiar support equipment.
These buildings and equipment are maintained and repaired during the
operational phase of the STME/Derivative STBE,

LAUNCH FACILITIES

Launch facilities include the operation and maintenance of buildings
and support equipment needed to support launch operations. This
element does not include GSE. All launch facilities operations and
maintenance are GFE,
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4173 TEST FACILITIES MAINTENANCE AND PROCEDURES

Test facilities include the maintenance of buildings, maintenance
and replacement of test equipment and maintenance of procedures
necessary for engine operations. Engine test instruments and test
stands are included. Major component and system test facilities
operations and maintenance are GFE.

4.12 OPERATIONS AND SUPPORT

This element includes the launch operations, mission control, spares
and logistics necessary for the STME/Derivative STBE to meet
required launch schedules. Also included is refurbishment of reusable
hardware, storage at launch site and software maintenance.

4.12.1 LAUNCH OPERATIONS AND SUPPORT

Included in this element are the tasks and logistics necessary to
control, transport and support the STME/Derivative STBE from the
production stage (or storage) until launch of the spacecraft. Diagnostic
software used after flights are also included. Launch operations stop at
launch.

4122 FLIGHT OPERATIONS AND SUPPORT

Included in this element are the tasks and logistics necessary to
control, track and monitor the STME/Derivative STBE during flight.
Also included is post-flight data analysis. Flight operations begin with
launch and continue through flight data assessment and recovery.

4123 RECOVERY OPERATIONS AND SUPPORT

Included in this element are the tasks and logistics necessary to
recover the engines after return to earth. The recovery effort ends
when the engines have been delivered to the refurbishment facility.

4.12.4 REFURBISHMENT OPERATIONS AND SUPPORT

This element includes the tasks and logistics necessary to return the
engine to reliable operating capability after flight. This effort may
include scheduled or unscheduled maintenance to the reusable flight
hardware.

4125 SPARES REPLENISHMENT

All effort and materials required to produce and keep inventory of
spare parts or components for unscheduled repair purposes during the
operational phase are included. Spares replenishment does not include
initial spares produced before the STME/Derivative STBE is opera-
tional.
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4.14

TRAINING

Training includes all instructional effort, services, simulators, and
manuals to provide personnel with the knowledge and skills necessary
to operate and support the STME/Derivative STBE. Only ongoing
training is involved in the operations phase. Initial training (training
the trainers) takes place in the design and development period.

3.4.5 Engine Cost Elements

The definitions used for the STME/Derivative STBE WBS hardware cost elements are
presented below. Included in the definitions are the subsystems and components included in each
engine cost element. The numbers shown for the subsystem elements are at the fourth WBS

level, while the component elements are at the fifth WBS level.

The System Hardware element breakout is applicable for both the Design and Development

Phase and the Operations Phase.

The terms and definitions for each STME/Derivative STBE subsystem and component

cost element are shown below.

WBS No. 1.2.N.7.2-

13.

13.1

13.1.1

13.1.1.1

INTEGRATED SYSTEM

This element includes all engine components and integration effort
required to develop/produce an engine system. It also includes
checkout required prior to flight readiness.

SYSTEM HARDWARE

This element includes all components manufactured to build the
STME/Derivative STBE. Included are the turbomachinery, combus-
tion devices, controls, propellant feed and support devices subsystems.

TURBOMACHINERY

This element includes the turbomachinery components. Included in
the turbomachinery are the Low Pressure Oxidizer Turbopump, High
Pressure Oxidizer Turbopump, Low Pressure Fuel Turbopump, and
the High Pressure Fuel Turbopump. This element does not include
inlet and discharge ducts.

LOW PRESSURE OXIDIZER TURBOPUMP (LPOTP) (Not appli-
cable for current STME/Derivative STBE Designs)

This element includes the Low Pressure Oxidizer Turbopump.
Included is a turbine driven pump which provides the HPOTP with
higher net positive suction pressure (NPSP).
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13.1.1.2

13.1.1.3

13.1.1.4

13.1.2

13.1.21

13.1.2.2

13.1.2.3

13.1.2.4

13.1.2.5

LOW PRESSURE FUEL TURBOPUMP (LPFTP) (Not applicable
for current STME/Derivative STBE Designs)

This element includes the Low Pressure Fuel Turbopump. Included is
a turbine driven pump which provides the HPFTP with higher NPSP.

HIGH PRESSURE OXIDIZER TURBOPUMP (HPOTP)

This element includes the High Pressure Oxidizer Turbopump.
Included is a turbine driven pump to pump LO, which is provided by
the LPOTP. This pump provides oxygen to the heat exchanger, gas
generator injector and the thrust chamber injector. The turbine is
powered by hot gas supplied by the HPFTP turbine discharge flow.

HIGH PRESSURE FUEL TURBOPUMP (HPFTP)

This element includes the High Pressure Fuel Turbopump. Included is
a turbine driven pump supplied with liquid fuel from the LPFTP. The
turbine is powered by hot gases from the gas generator. Hot gases are
discharged into the HPOTP turbine inlet duct.

COMBUSTION DEVICES

This element includes the combustion device components. Included
are the main injector, thrust chamber, nozzle, skirt, gas generator and
igniters.

MAIN INJECTOR

This element includes the main injector. Included is the main injector,
which efficiently mixes and uniformly distributes propellants to the
main combustion chamber.

THRUST CHAMBER

This element includes the thrust chamber. Included is the main
combustion chamber (thrust chamber) where the propellant gases are
burned, and the nozzle convergent/divergent section.

NOZZLE

This element includes the nozzle extension assembly. The nozzle
assembly will contain the mounting hardware for the nozzle.

NOZZLE SKIRT (Core engine only)

This element includes the nozzle skirt. The nozzle skirt allows
continued expansion of the combustion gases from the main combus-
tion chamber and provides a higher specific impulse.

GAS GENERATOR

This element includes the gas generator. A gas generator is supplied
with fuel and oxidizer from the propellant feed system. The gas
generator combustion gases power the turbopumps.
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WBS No. 1.2.N.7.2--

13.1.2.6

13.1.3

13.1.3.1

13.1.3.2

13.1.3.3

13.1.3.4

13.1.3.5

13.1.3.6

IGNITER

This element includes all igniters in the gas generator and main
combustion chamber. Igniters ignite the propellants to begin the
combustion process. The igniters include spark plugs or spark exciter
electronics, injectors and combustion chambers.

CONTROLS

This element includes the engine controls. Included in controls are the
controllers/monitors, software, sensors, valves, actuators, and inter-
connects.

CONTROLLER/MONITORS

This element includes the controller/monitors, The controller is an
electronic/optical package that controls the engine performance and
output by interacting with sensors, valves, actuators and igniters.

SOFTWARE

This element includes the programming of the software designed by
software engineering. The software is in an on-line real time
operational mode. It provides the instructions to control the engine
through the valves, actuators, and solenoids. Commands from the
vehicle are processed and executed. Performance and conditions of the
engine are monitored through the software.

SENSORS

This element includes all engine sensors. Sensors monitor or detect the
condition of certain parts of the engine and transmit the data to the
controller/monitor that can process the data.

VALVES

This element includes the valves. Valves control the flow and pressure
of propellants in the engine. Included are the main fuel valve, main
oxidizer valve, gas generator valves, purge valves, check valves and the
like.

ACTUATORS

This element includes the actuators. Actuators are mechanical devices
that engage or disengage other devices such as valves. This element
does not include thrust vector control actuators.

INTERCONNECTS

This element includes the interconnects which consist of the control
interconnects, wire/cables, hydraulic lines, electrical lines, pneumatic
lines, and the like.

R19891/74
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WBS No. 1.2.N.7.2-

13.1.4

13.1.4.1

13.1.4.2

13.1.4.3

13.1.5

13.1.5.1

13.1.5.2

13.1.5.3

PROPELLANT FEED

This element includes the propellant feed system components. Includ-
ed are the ducts, manifolds and other miscellaneous components.

COLD DUCTS

This element includes all the cold duct components. Ducts are
rigid/flexible lines that transport fuel, pressurants or other material
throughout the engine for operation.

HOT DUCTS

Included in this element are the hot ducts. Hot ducts transport fuel
gases (usually hot) within the engine.

MISCELLANEOUS PROPELLANT FEED

This element includes other parts of the propellant feed subsystem
besides ducts and manifolds. These parts contribute to getting
propellant to the proper place in the correct location and in the correct
proportion.

SUPPORT DEVICES

This element includes all vehicle support devices on the engine.
Included are components such as gimbal assembly, tank
repressurization, power tapoff, start system and POGO system.

GIMBAL

Included in this element is the gimbal block assembly and gimbal
actuator attachment struts. Excluded is the gimbal actuator which is
included in the launch vehicle. The gimbal assembly serves two basic
functions. The first is transmitting thrust loads to the vehicle and
secondly it is responsible for allowing thrust vector control.

TANK REPRESSURIZATION

This elements includes all parts of the tank repressurization system.
The tank repressurization system consists of the hardware necessary
to provide heated and pressurized fuel and LO, to the vehicle.
Elements include lines, heat exchangers, valves, orifices, and the like.

POWER TAPOFF (Not applicable for current STME/Derivative
STBE Designs)

This element includes the power tapoff system. The power tapoff
system includes the generator and other hardware necessary to convert
the mechanical power of turbines into electrical power for the vehicle.
The power tapoff pad on the turbopump may be the only equipment
provided by the engine.
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WBS No. 1.2.N.7.2-

13.15.4 START SYSTEM

13.1.55

13.2

This element includes the start system. The start system consists of
the feed hardware that provides gas to the high pressure turbines for
start assist.

POGO FLIGHT SYSTEM

This element includes the POGO suppressor and associated hardware.
The POGO suppressor is a capacitance in the LO, flow circuit and
prevents low frequency oscillations from affecting the HPOTP.

INTEGRATION, ASSEMBLY AND TEST

This element includes the effort and materials necessary to properly
attach and install the STME/Derivative STBE components to provide
a complete engine assembly. In addition, the engine capability must be
proven with specified test procedures.

3.4.6 Product Improvement and Support Program (PISP)

. This effort covers the costs associated with a continuing engineering and testing effort
during the operations phase directed toward improving STME/Derivative STBE safety,
reliability, maintainability, durability, supportability, operability and cost reduction. PISP is

applicable to the total engine system; engine performance is not changed.
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SUMMARY COST PRESENTATIONS

4.1 TOTAL COST ESTIMATE
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Total costs estimated for the gas generator STME/Derivative STBE program over its
32-year life cycle period are summarized in Table 4.1-1. All engine-related design and
development, operational production, operations and product improvement and support program
cost elements have been included in the program cost estimates. The cost estimates are based on
ALS Scenario 2 designated by NASA for the methane booster. Scenario 2 consists of a
hydrogen/oxygen core stage powered by three reusable STME’s and a methane/oxygen booster
stage powered by seven reusable Derivative STBE’s. Nominal, maximum and minimum flight
schedules, and production engine quantities were evaluated for this scenario. Table 4.1-2
summarizes the number of missions and quantities of engines assumed for each of the three flight

schedule cases.

Table 4.1-1. STME/Derivative STBE Program Cost Summary

Scenario 2
Mission Schedule

Nominal Maximum Minimum

Design and Development $1841.1 M $1841.1 M $1841.1 M
Non-Recurring Operational Production 366.4 694.9 352.2
Core Engines 120.0 232.8 112.9
Booster Engines 246.4 462.1 239.3
Recurring Operational Production 3226.3 5728.7 2054.5
Core Engines 1064.1 1890.0 621.7
Booster Engines 2162.2 3838.7 1432.8
Operations 479.5 739.2 437.0
Core Engines 140.1 214.9 128.0
Booster Engines 339.4 524.3 309.0
Product Improvement and Support Program 739.1 739.1 739.1

Total Program Cost $6652.4 M $9743.0 M $54239M

Note: All costs in millions of constant FY87 dollars.

R19601/67

Table 4.1-2. STME/Derivative STBE Scenario 2 Operations Assumptions

Scenario 2
Core Stage Booster Stage
Nominal Maximum _ Minimum  Nomind Maximum  Minimum
Total Number of Missions 300 625 250 300 625 250
Maximum Number of Missions/Year 14 33 12 14 33 12
Total Number of Operational 175 350 100 425 850 275
Production Engines
Mazimum Number of Production 30 30 30 70 70 70
Engines/Year
Average Number of Reuses/Engine 5 5 7 5 5 6
Operational Production Period, Yrs 24 23 9 24 23 12
Note: Scenarios 1 and 3 address STME and are included in FR-19830-2.
R19681/67

The cost estimates are in constant FY87 dollars and they include engine contractor costs
only. They do not include profit and/or management reserve. Costs for propellants and

Government-provided test facilities have not been included.
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The nominal STME/Derivative STBE flight case which consists of 300 missions over a 25
year operational period results in a total program cost of approximately $6.7 billion. The highest
cost STME/Derivative STBE case (maximum flight schedule with 625 missions) has a total
program cost of approximately $9.7 billion. The lowest cost case (minimum flight schedule with
950 missions) results in a total program cost of approximately $5.4 billion.

Tables 4.1-3 through 4.1-5 summarize total program costs by functional element for the
Design and Development, Operational Production and Operations portions of the
STME/Derivative STBE program, respectively. The Design and Development Cost Summary,
Table 4.1-3, provides cost visibility for the individual STME and STBE portions of the combined
STME/Derivative STBE development program. Tables 4.1-4 and 4.1-5 provide cost visibility for
each flight schedule case for the operational portions of the program.

Table 4.1-3. STME/Derivative STBE Program — Design and Development Program Cost
Summary

STME Portion STBE Portion Total

Program Management $66M $13M $79M
System Engineering and Integration 42 24 66
Engine Design and Development 17 63 234
Engine Test

Test Hardware 352 184 536

Test Operations and Support 254 110 364
Flight Test Hardware 73 147 220
MPTA Test Hardware - 37 70 107
Facilities

Production ) 8 0 8

Launch 4 0 4

Test 22 2 24
Software Engineering 12 3 15
GSE 19 9 28
Tooling 68 10 78
Special Test Equipment (STE) 25 5 30
Operations and Support 30 18 48
Total DDT&E Program Cost $1,183M $658M $1,841M

Note: All costs in millions of FY87 dollars.

R19681/67

Figure 4.1-1 shows the percentage of the total program costs that each portion of the
program phase contributes. Pie charts are presented for the nominal, maximum and minimum
Scenario 2 cases.

The Operational Production portion of the Operations Phase is the largest cost contributor
in all cases. The Operations portion of the Operations Phase contributes about the same cost as
the Product Improvement and Support Program in the maximum case and it is the smallest cost
contributor in the nominal and minimum cases. The primary reason that Operational Production
cost is the largest cost contributor is because of the expendability of the engines. As shown in
Table 4.1-2 the engines are only used an average of 5-7 times before being expended, resulting in
a large quantity of engines being required. The size of the Operational Production contribution
increases from the minimum to the maximum case because of the increase in the number of
flights and quantity of engines required. Figure 4.1-2 compares the number of operational vehicle
flights per year for the three cases.

Ri380L/76
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Table 4.1-4. STME/Derivative STBE Program Operational Production Cost Summary

Scenario 2
Nominal Maximum Minimum

Non-Recurring Operational Production

Program Management $ 3.7 $ 37 § 3.7

System Engineering and Integration 16.1 16.1 16.1

Facilities 0 0 0

Ground Support Equipment 33.0 77.0 33.0

Tooling 48.0 48.0 18.0

Special Test Equipment 0 0 0

Initial Spares 265.7 550.4 251.5
Total Non-Recurring Production Cost $366.5 $695.2 $352.3
Recurring Operational Production

Program Management $§ 139* 24.7* 8.9*

System Engineering and Integration 111.3 187.5 70.8

Flight Hardware Manufacturing 3,101.1 5,506.8 1,9748

Tooling Maintenance o * 0o * 0 -

Facilities Maintenance 0o - 0o * 0 *
Total Recurring Production Cost $3,226.3 $5,729.0 $2,054.5
Total Operational Production Cost $3,592.8 $6,424.2 $2,406.8

* Some recurring program mansagement functions and tooling maintenance and
facilities maintenance included in flight hardware manufacturing markups.
Note: All costs in millions of FY87 dollars.

K194 /67

Table 4.1-5. STME/Derivative STBE Program Operations Cost Summary

Scenario 2
Nominal Maximum Minimum
Program Management $ 26.5 $ 288 $ 263
System Engineering and Integration 103.7 112.4 103.1
Facilities Maintenance 0 0 0
Operations and Support
Launch Operations 15.0 27.0 12.9
Flight Operations 43.2 46.9 43.0
Spares Replenishment 76.9 138.5 66.4
Recovery Operations 12.9 23.2 111
Refurbishment Operations 195.3 351.9 168.8
Training 6.0 10.8 3.2
Total Operations Cost $479.5 $739.3 3436.8

Note: All costs in millions of FY87 dollars.

R10691/67

Figure 4.1-3 shows the total annual funding requirements for each year for each case
(nominal, maximum and minimum) of the STME/Derivative STBE program. For each case
there are two times that peak costs occur with the annual costs eventually tapering off. The first
peak occurs during Design and Development in 1995. It is caused by costs for the MPTA and the
flight test hardware increasing at the same time that costs for the engine development program
are at a high level. The second peak occurs during the years 2001 and 2002 and it is caused by the
rapid increase in Operational Production costs as the engine production rate builds up during the
first five years of the operational flight program. Operations costs, in each case, set the end years
of the ALS funding requirements.
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Figure 4.1-7. STME/Derivative STBE (Scenario 2) Product Improvement and Support
Program Costs by Year

The year in which the highest Operations cost occurs (Figure 4.1-6) varies depending on the
case (nominal, maximum or minimum). The nominal case reaches its highest cost ($23M) in year
2004, while the maxirnum ($37M) and minimum ($22M) cases reach their highest cost in the
years 2008 and 2003 respectively. The primary contributor to Operations cost for each case is
Refurbishment Operations and Support. Its annual costs are strongly driven by the number of
flights in a given year, since the flight rate sets the number of engines requiring refurbishment.

Figure 4.1-7 shows the annual cost-requirements for the Product Improvement and Support
Program (PISP). The highest cost ($185M) occurs in the year 2000 which is the second year of
the program. To obtain maximum benefits from a product improvement effort the program must
be front loaded so that the improvements developed can be included in a large quantity of the
production engines delivered.
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4.2 ENGINE COST ESTIMATES

STME and Derivative STBE Recurring Production unit costs and Operations unit costs
are summarized in Table 4.2-1 and 4.2-2, respectively.

Table 4.2-1. STME and Derivative STBE Recurring Production
Theoretical First Unit Costs

Derivative
Derivative STBE Cost
STME STBE Commonality
System TFU (FY878) TFU (FY87%) % STME TFU
STBE Hardware 11349K 10305K 72%*
Turbomachinery 2867 3045 58
HPOTP 1379 1445 35
HPFTP 1488 1600 80
Combustion Devices 4046 2595 Fithe
Main Injector 330 330 100
Thrust Chamber 585 655 0
Nozzle 961 961 100
Nozzle Skirt 1521 — —
Gas Generator 357 357 100
[gniters 292 292 100
Controls 1544 1644 68
Controllers/Monitors/Software 506 506 95
Sensors 285 285 100
Valves/Actuators 670 770 30
Interconnects 83 83 100
Propellant Feed 1686 1780 84
Ducts 939 1033 80
Miscellaneous (System Hardware) 747 747 90
Support Devices 663 698 65
Gimbal 235 270 0
Tank Repressurization 261 261 100
Start System 17 17 100
POGO Flight System 150 150 100
Integration, Assembly & Test 143 143 100
Acceptance Test 400 400 100
* Reflects % of applicable STME hardware costs.
Notes: 1. All costs in thousands of FY87 dollars.
2. Lot size = 100.
R:9691/67

Table 4.2-1 presents individual engine Theoretical First Unit (TFU) production costs at an
assembly and sub-assembly level. It also shows the amount of cost commonality between the
STME and STBE. Table 4.2-2 shows Theoretical First Unit Operations costs as well as mature
operations unit costs broken down by WBS functional elements for both the STME and
Derivative STBE.

The STME production costs are primarily driven by the combustion devices which are
responsible for approximately 36 percent of the engine unit cost. The film cooled Columbian
sheet metal nozzle skirt is the largest contributor. The turbo machinery is the second highest cost
driver for the STME design, contributing approximately 25 percent to the engine unit cost.

13
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Table 4.2-2. STME and Derivative STBE Recurring Operations Unit Cost

100th Mission,
Theoretical First Unit 10 Missions/yr
Derivative Derivative
STME STBE STME STBE
Program Management 104.7 104.7 72 7.2
System Engineering and 401.1 401.1 25.3 26.3
Integration
Facilities Maintenance 0 0 0 0
Operations and Support
Launch Operations 12.6 12.6 5.0 5.0
Flight Operations 170.3 170.3 11.7 11.7
Spares Replenishment 59.8 65.8 23.7 26.1
Recovery Operations 108 10.8 4.3 4.3
Refurbishment Operations 153.9 153.9 61.0 61.0
Training 5.0 5.0 2.0 2.0
Total Operations Cost, 918.3 924.3 140.2 142.6
$/Engine/Mission
Note: All costs are in thousands of FY87 dollars.
R19691/67

Since it does not have the nozzle skirt, production cost for the Derivative STBE is primarily
driven by the turbomachinery. The Derivative STBE oxidizer turbopump has a higher cost than
the STME oxidizer turbopump and it only shares a 35 percent cost commonality with the STME.
The Derivative STBE methane turbopump has a higher cost than the STME hydrogen

turbopump but it does have a cost commonality of approximately 80 percent.

As shown in Table 4.2-2 the Derivative STBE has slightly higher operations costs than the
STME. This is because of the higher cost of turbomachinery and control system replenishment
parts for the Derivative STBE. These parts are expected to be replaced most often during
unscheduled engine refurbishments. Coking due to the use of methane rather than hydrogen fuel

also contributes to the higher STBE operations costs.

4.3 PROGRAM COST COMPARISONS

Table 4.3-1 compares program costs for the STME/Derivative STBE nominal case with
program costs for the Baseline STME (Scenario 1) nominal case. In the Baseline STME
scenario, the hydrogen/oxygen STME (without the nozzle skirt) is used as the booster engine in
place of the Derivative STBE. The Baseline STME program costs were generated under the
Space Transportation Main Engine Configuration Study and they are reported in FR-19830-2.

Total program costs for the STME/Derivative STBE are $6.65 billion compared with $5.73
billion for the Baseline STME. The STME/Derivative STBE program is $319 billion or 16%
more than the Baseline STME. Higher STME/Derivative STBE design and development costs
account for $443M of the difference. Other contributions are Operational Production, which
costs $246M more and the Product Improvement and Support Program, which costs $211M
more. The lower Production costs for the Baseline STME program are due to the booster STME

having 100% commonality with the core STME as well as slightly lower TFU costs.
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Table 4.3-1. Comparison of STME/Derivative STBE and Baseline STME Program Costs

STME/Derivative STBE Baseline STME
Scenario 2 Scenario 1
Nominal Case Nominal Case
Design and Development $1841.1M $1398.8M
Non-Recurring Operational Production 366.4 340.5
Core Engines 120.0 113.8
Booster Engines 246.4 226.7
Recurring Operational Production 3.226.3 3006.3
Core Engines 1064.1 992.5
Booster Engines 2162.2 2013.8
Operations 479.5 459.7
Core Engines . 140.1 140.1
Booster Engines 339.4 319.6
Product Improvement and Support Program 739.1 528.0
Total Program Cost $6652.4M $5733.3M
Note: All costs in millions of constant FY87 dollars.
R!9691,67

Table 4.3-2 compares costs for the STME portion of the STME/Derivative STBE Design
and Development program with similar costs for the Baseline STME program. The STME costs
in the derivative program are $215M less than the Design and Development costs for the
Baseline STME. This lower STME development cost results because the STME in the
Derivative STBE program is developed only for the core stage. However, as shown in Table 4.1-3
development of the Derivative STBE for the booster stage adds an additional $658M making the
total STME/Derivative STBE development program cost $1841M, which is $443M more than
the $1398M cost of developing the Baseline STME.

Table 4.3-2. STME/Derivative STBE Program — STME Design and Development Cost

Comparison
Baseline STME STME
STME Core Core Cost
and Booster* Only Difference
Program Management $70M $66M $4M
System Engineering and [ntegration 60 42 18
Engine Design and Development 180 171 9
Engine Test
Test Hardware 329 352 -23
Test Operations and Support 246 254 -8
Flight Test Hardware 208 7 135
MPTA Test Hardware 100 37 63
Facilities
Production 8 8 0
Launch 4 4 0
Test 22 22 0
Software Engineering 13 12 1
GSE 26 19 7
Tooling 68 68 0
Special Test Equipment (STE) 25 25 0
Operations and Support 39 30 9
Total DDT&E Program Cost $1,398M $1,183M $215M
* Baseline Gas Generator STME DDT&E program costs for Scenario 1
reported in FR-19830-2,
Note: All costs in millions of FY87 dollars.
R16A9 1,67
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SECTION 5.0
COST ESTIMATES BY WBS ELEMENTS

This section of the STME/Derivative STBE Program Cost Estimates Document presents
cost estimates for the STME/Derivative STBE program broken down into WBS elements. Costs
are included for the STME on the core stage, the STBE on the booster stage and the combined
STME/Derivative STBE. Costs are included for the whole engine at the integrated system level
and, where appropriate, down to the STME/Derivative STBE component level (WBS fifth
level). Costs are also presented for each phase of the program and each functional element within
each phase. The WBS format described in Sections 3.3 and 3.4 was used for the cost breakdowns.
Functional elements not applicable to the STME/Derivative STBE and its subassemblies are
indicated on the individual cost tables. Only costs incurred directly for the engine by the engine
contractor have been included in the cost estimates.

5.1 DESIGN AND DEVELOPMENT PHASE

Cost estimates for each functional element in the Design and Development phase are
presented in Tables 5.1-1 through 5.1-3. Table 5.1-1 shows development costs for the STME on
the core stage, while Table 5.1-2 shows development costs for the Derivative STBE on the
booster stage. Table 5.1-3 combines the costs for the individual STME and Derivative STBE
development programs into a total STME/Derivative STBE development cost. Costs for each
functional element are shown at the appropriate WBS sub-level 2, 4 and/or 5, integrated system,
engine subsystem and/or engine component respectively. The categories broken down to the
engine component or subsystem level include: Engine Test (Engine Test Hardware, Component
Test Hardware, and Component Test O&S), Flight Test Hardware-Manufacturing and MPTA
Test Hardware-Manufacturing.

The highest cost functional element for both engines is Engine Test which has test
hardware costs of $352M for the STME and 3184M for the Derivative STBE. Included in this
functional element are the costs for development components and engines, mockups and eight
new (4 STME and 4 Derivative STBE) flight certification (PFC and FFC) engines. Engine Test
also includes engine and component test operations and support which has costs of $2564M for
the STME and $110M for the Derivative STBE.

The Engine Test functional element represents 51 percent of the STME’s total Design and
Development Cost and 45 percent of the Derivative STBE’s total Design and Development Cost.

The Engine Design and Development functional element is the next highest cost element.
It is $234M for the total combined STME/Derivative STBE program. Engine Design and
Development includes most of the engineering effort needed to design and develop the
STME/Derivative STBE and to verify the ability of the design to meet technical requirements.

Flight Test hardware and MPTA Test hardware are two other high cost functions, $220M
and $107M, respectively. The Flight Test hardware includes 19 STBE’s and 8 STME'’s for the
two flight test vehicles plus spare components. The MPTA hardware includes 9 STBE’s and 4
STME's plus spares for the vehicle propulsion system cluster ground test program.

PRECEDING PAGE BLANK NOT FILMED
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Table 5.1-3. STME/Derivative STBE Program — Design and Development Program Cost

Summary
STME Portion STBE Portion Total

Program Management $66M $13M $79IM
System Engineering and Integration 42 24 66
Engine Design and Development 171 63 234
Engine Test

Test Hardware 352 184 536

Test Operations and Support 254 110 364
Flight Test Hardware 73 147 220
MPTA Test Hardware 37 70 107
Facilities

Production 8 0 8

Launch 4 0 4

Test 22 2 24
Software Engineering 12 3 15
GSE 19 9 28
Tooling 68 10 78
Special Test Equipment (STE) 25 5 30
Operations and Support 30 18 48
Total DDT&E Program Cost $1,183M $658M $1,841M

Note: All costs in millions of FY87 dollars.

R19691/67

5.2 OPERATIONS PHASE: OPERATIONAL PRODUCTION

The Operational Production portion of the Operations Phase is broken into two types of
costs, Non-recurring Operational Production and Recurring Operational Production.
Tables 5.2-1 through 5.2-9 present both types of costs for the STME in the core, the Derivative
STBE in the booster and the combined STME/Derivative STBE. Cost estimates are included for
the nominal, maximum and minimum flight schedule cases. Costs for initial spares under Non-
recurring Operational Production are reported at a subsystem or fourth WBS engine level, while
costs for flight hardware-manufacturing, under Recurring Operational Production, are reported
at a component or fifth WBS engine level. All other costs are reported at a second WBS engine
level.

As discussed in Section 3.2.2 engine Operational Production hardware costs were estimated
through a detailed analysis of engine component costs. Other Operational Production cost
elements were estimated from historical data for gas turbine and rocket engines.

Initial Spares is the largest cost driver for Non-recurring Operational Production. The
spare units, which are initial spare components and modules provided for the operational flight
program, are produced and delivered along with the early lots of production engines. Other cost
contributors to Non-recurring Production are Program Management SE&I, Ground Support
Equipment (GSE) and Tooling. The GSE costs are driven by the operational flight schedule with
sufficient GSE being procured during Operational Production to support the maximum flight
rates in the various mission scenarios. Tooling costs represent the cost of additional production
tooling beyond that available from the Development Program required to support high
production rates. The amount of additional tooling is a function of the maximum annual
production rate. For the three STME/Derivative STBE cases the maximum production rates are
the same (30/year for STME and 70/year for STBE) making the tooling costs the same.
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Table 5.2-1. Total Operational Production Cost by WBS Element
Gas Generator STME/Derivative STBE Program
Core STME
Scenario 2, Nominal Flight Schedule (Millions of FY873)
Do cmenm o aoee NON-QECURRTIAG OPERATIONAL PROQUCT[ON--=-~rommmeommmammmemem s Rt RECURRING OPERATIONGL PROOULCTION- we-mmo---d
T07TAL
ENGINE PROGEAR SE$ I FACILITIES 313 TOOLING  STE INLTIAL PRCGRAM SEL I FLIGKT HOW TOOLING FACIL PRODUCY
CCAMONENS L SPARES MGNT MANGFACT MAINT  WAINT CDST
SRe ¢ CTHER PQOOUC SAN ¢
QW TION LAUNCH TEST COMMOR PECUL QA OTHER KEG  ACCERT
INTEGRATED 5YSTEM Bs8 1TL L 7L B 00 000 000 450 400 1300 000 92 4 459 1834 18 34 985 48 4728 OO0 0 00 1184 02
SISTLM HAKCWAAE
TURBORACHINERY 27 44
LPuTR [ ]
(PFTP 0.00
HPOTP 120 34
HPFTP 129 83
CONBUSTIOM DEVICES 39 .85
MAIN INJECTOR 28 3¢
THRUST CHAMBER 51 0%
NOZZLE 83 8¢
KOZZLE SK1RT 132 13
GAS GENERATOM 3118
IGNITURS 29 48
CONTRILY 14 41
CONTROLLERS/MCM{TEIS 44 15
SOF THAKE 9 00
SENSIRS 24 37
VALVES | N
ACTUATORS 0.00
INTCRCONNECTS 724
PROPELLANT FLED 7.5%
COLD DUCTS gt 94
HOT QUCTS 4 00
NISCELLANEOUS 4319
SUPPORT DEVICES 3.6
GIMBAL SYSTEN 20.31
TANK REPRESS 5YS 2278
POMEK TAPOFF 0.00
START SYSTEM 1.4
POGO SYSTEM 13.09
000
INTEG | TEST § ASsY 12 48

SOF T4ARE COSTS INCLUCED WITH CONTROULERS/MONT TGRS COSTS
HOT DUCT CuST3 INCLUDED WITH COLD DUCT CosfS

81
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Table 5.2-2. Total Operational Production Cost by WBS Element
Gas Generator STME/Derivative STBE Program Booster Derivative STBE
Scenario 2, Nominal Flight Schedule (Millions of FY878)
lemooa-aos o= NON-RECURRING OPERATIOMAL PRODUCTION-------=-rmoc--omeommeenmn yemoemo RECURKRING QPERATICMAL PRCOUCTION-~---- ----~
TOTAL
ENGINE PROGRAM SEt I FACILITIES CSE TOOLING  STE [NITIAL PROGRAX et ! FLIGHT MDY TOOLING FACIL PRODUCT
COMPONENT NCNHT SPARES MGHT MANUFACT MAINT KAINT  COST
SRA L QTHER PRODUC SR L
[ ] TI0W LAUNCK TEST CORMMON PEZUL A OTRER WG  ACCERT
INTEGRATED SYSTEX 305 432 532 000 000 000 900 (350 3500 900 173.30 932 37 28 37 28 1915 9L 163 41 0 00 & 0C 2408 7
SYSTEM HANDWARE
TURBGMACHINERY 42 37
LPOTP 900
LPFIp 4 06
HPYTP a1y N
HPFTP 309 34
COMBUSTION DEVICES 52.23
NAIN INJECTOR 43 80
THRUST CHAXBER 124 .64
NQZ2LE 185 80
NOZZLE SKIRT 0.40
CAS GENERATOR 9 02
168170805 36 43
CUNTRELS 33.72
CUNTROLLERS/MCNITURS 97 33
SOF TNARE [ ]
SENSURS 55 10
VUALVES 148 87
ACTUATORS [ 1]
INTEQCUMRECTS 16 05
PROPELLANT FEED 17 94
CoLd ouC1s 199 72
KOT OUCTS 900
AISCELLANEOUS 144 42
SUPPORT DEVICES 7.02
GIMBAL SYSTEM $2.2¢0
TANK REPRESS 875 5048
POMER TAPGFF 000
START SYSTEM 329
POGO SYSTEM 29.00
9.00
INTEG ., (EST b ASSY 27.63
SOF THAPE COSTS INCLUDED MITH CONTROLLERS/MONTTGRS COSTS
HOT OUT COSTY INCLUDED WITH LOLD DLCT COSTS
82
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Table 5.2-3. Total Operational Production Cost by WBS Element
Gas Generator STME/Derivative STBE Program
Combined Core and Booster Engines
Scenario 2, Nominal Flight Schedule (Millions of FY87%)

Doeemmoooeem- - NON-RECURRING ORERATIONAL PROOQUCTION------------mvmmomem o omae HRER R RECURPING OPERATIONAL PRODUCTIGN-~------~---=
TOTAL
ENGINE PROGRAN SEL I FACILITIES GSE TOOLING  STE INITIAL PROGRAM SEEL FLIGHT HDW  TOOLING FACIL PRODLCT
COMPONENT NGNT SPARES MCHT MANUFACT MATNT  MAINT QST
SRN B OTHER PROUUC SRN §
[0 TION LAUNCH TEST CONKON PECIR QA OTHER WFE  ACCERT
INTEGRATED SYSTES 373 803 803 000 000 000 1350 1950 48 00 0.00 285 71 1391 55.63 33 63 2870 44 230 69 0 0C 0 00 3592 '8
SYSTER HAKDWARE
TURBOMACHINERY 89 31
LPGT? ¢.00
LPFIP ¢ .00
HeoTR 9N
APF1P 439 19
COMBUSTION DEVICES 92 09
MALN TNJECTOR 92 60
THRUST CHaNBER 177.48
NOZLLE 269 46
NOZZLE SKIRT 132.712
GRS CENERATUR 100 17
ICNITORS 81.94
CONTROLS 48 12
CONTROLLERS /MCNITEAS 141 98
SOF TWARE 0%
SENSIRS 19.97
VALVES 207.34
ACTUATORS 0.9
INTEKCONNECTS 23 29
PRGFELLANT FEED 23 51
CoLD DUCTs 281.46
HOT DUCTS 0.00
MISCELLANEQUS 209 41
SUPPCRT OEVICES 10.18
GIMBAL SYSTEM 12.71
TANX REPRESS 9YS 73 24
POWER TAPGFF 0.00
START SYSTEA an
POGO SYSTEN 42.09
0.00
INTEG . TEST & ASSY 40.13

SOF TwaRE COSGTS INCLUCED WITH CONTRULLERS/CNITORS CO5TS
HOT DUCT COSTS INCLUGED WITH COLO DUCT COSTS

R19891/78



Pratt & Whitney

FR-19691-4
Volume [
Table 5.2-4. Total Operational Production Cost by WBS Element
Gas Generator STME/Derivative STBE Program
Core STME
Scenario 2, Maximum Flight Schedule (Millions of FY873)
R bt NON-RECUQRING OPERATIONAL PRODUCT[OM----------mommeoommommm oo HE b RECURRING OQPEPATIONAL PRIQUCYION- -- - - --- -1
T0TAL
ENGINE PRUGRAA SEb I FACILITIES (373 TOOLING  STE INITIAL PROGRAA SEd I FLIGHT HCW  TODLING FACEL BROOUCT
COPPONENT L. SPARES  AGNT BANUFACT BAINT  MAINT COST
M ¢ QTHER PRODUC SRm }
QA TION LAUNCH TEST COMMON PECKL QA OTHER WC  ACTEPT
INTEGRATED SYSTER 668 171 LT 600 000 0.00 1050 1400 1300 0.04 191 29 B 1S 32 5% 32 39 1682 3¢ 134 57 0 00 0 0C 2123 99
SYSTEN HARCWARE
TURBOMACH INERT 3 719
Lpcre [ 1]
LPFIP 0.00
HPCTP 211 88
HPE TR 228 43
COMBUSTION DEVICES 82 51
MAIN INJECTOR 50 70
THRUST CHAMBER 89 88
NO22LE 147 &4
NOZILE SKIRT 233.7¢
CAS CENERATUR 54 8%
IGNETORS 44 87
CONTROLS 29 81
CONTRQULERS /BN TGRS 7178
SOF 1¥AQE (A1)
SENSURS 43 79
UaLVES 102 94
ACTUATORS 6.0¢
INTERCONKECTS 12.75
PROPELLART FEED 15 .43
Cotb oucrs 144 28
KOT DUCTS 0.00
WISCELLANEQUS 11478
SUPPORT ODEVICES §.3%
GIMBAL SYSTEM 36 11
TANK REPRESS .SYS 40 10
PONER TARQEF 0 00
START SYSTEM 2.61
POGD SYSTEM 23 05
9 00
INTEG | TEST § ASSY 21.97
SUF TWAKE COSTS INCLUDED WITH CONTROLLERS/MON{TORS COSTS
HOT OUCT COSTS INCLUOED WITH COLD OUCT COSTS
84
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Table 5.2-5. Total Operational Production Cost by WBS Element
Gas Generator STME/Derivative STBE Program
Booster Derivative STBE
Scenario 2, Maximum Flight Schedule (Millions of FY873)
Posomo-omo-mn o NUN-RECURRING OPERATLONAL PRACUCTON----===-m=-remamsmmevamc- -l -===-RECURKING QPERATIONAL PRODUCTION-  --- ce ey
TOTAL
ENGINE PRUGRAN SE b1 FACILITIES CSE FOOLING  STE IMITIAL PROGAAN SE 4! FLIGHT HGW  TOOLIMG FACIL PROCLCT
COMPONENT L3t SPARES MGAT HANUFACT NAINT  MAINT COST
SRM §  OTHER PROOUC SRN
4 TION LAUNCH TEST COMMON PECUL QA OTHER WG ACCERT
INTESRATED SYSTER 29% 632 432 000 000 006 2100 2130 3500 000 39910 1455 &6 16 46 19 3343 08 326 81 4 0 0 00 430: 10
S5YSTEM HARCWARE
TURBOMACHINERY 129 23
Lpo1e 0.0¢
LBFTP 0 00
He3TR 490 43
HFF IR 943 2%
COMBUSTION DEVICES 108 2%
ARIN INJECTOR 112 95
THRUST CHAMBLR 222 3§
NOZ2LE 326 29
NO{ZLE SKIRY 000
GRS GENERATOR 121 21
1CNTTORS 99.14
CONTROLS §9 87
CONTROLLERGMONITORY 1711 80
SOF TARE ¢ %
SENSCRS 98 17
YALUES 241 44
ACTUATGRS ¢ 00
INTERCCHNECTS 28 18
PROPELLANT FEED a2t
COLD DUCTS 350 74
H€0T DYCTS 2.00
N15CELL ANEDUS 233 43
SUPPORT DEVICES 14.5%
GIXBAL SYSTEM 91 47
TANX REPRESS.SYS 89 42
POWER TAPOFF 0.00
STAQT SYSTEM 51
POGT SYSTEM 50.93
0.00
INTEG . TEST k ASST 48 53

SOF TWARE CUSTS INCLUDED WITH CONTROLLERS/MONLIORS CASTS
HOT OUCT COSTS INCLUOED WITH COLO QUET CO9TS
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Table 5.2-6. Total Operational Production Cost by WBS Element
Gas Generator STME/Derivative STBE Program
Combined Core and Booster Engines
Scenario 2, Maximum Flight Schedule (Millions of FY873)
R Rt NON-RECURRING OPERATIUMAL PRODUCT IOM--=--==-r--=cemmmmemecanas e RECURRING OPERATIONAL PROGUCTION-----~-cceoum !
TOTAL
ENGINE PROCAAR SEd 1 FACILITIES 313 TOOLING  STE INITIAL PROGKAM SEL 1 FUIGHT HDW  TOOLINS FACIL PRGDUCT
COMPONCNT HoNT SPARES AGHT RANUFACT MAINT  MAINT £OST
SRX L OTHER 2RQ0UC SRA ¢
[ 1] TION LAUNCH TEST COMmON PECWL QA OTHER NFC  ACCEPT
INTESRATED SYSTEM 373 803 803 000 000 000 3150 4530 4800 6. 00 S50 39 2470 9878 V8 V8 045.39 461.38 B 00 O 00 6424 19
STSTER HARDWRIC
TURBORACHINERY 184 #2
Lpote 9 00
LPFTP [ 1)
KPQTP 702 51
Ty 771 B8
COMBUSTIUN DEVICES 190.74
RAIN INJECTOR 162 73
THRUST CHAMBER 312 28
MOILE 473 9%
NOZZILE SKIRT 233 1
AL GENERATOR 174 97
IGNITORS 144 01
CONTROLS 99 48
CONTROLLERS /MUNITORS 249 .33
SOF THARE [ 1]
SENSDRS 140 5%
VALVES 3464 39
ACTUATORS 0 00
INTERCONRECTS 40 93
PROPELLANT FEED 52.84
CoLO DUCTS 495,01
HOT DUCTS 0.00
NISCLLLANELUS 368 41
SUPPORT DEVICES 21.09
CIMBAL SYSTEM 127 18
TANK REPRESS 574 128 12
POWEQ TAMOFF 0.00
START SYSTEM 838
POGO SYSTEN 73 98
0.00
INTEG . TEST § ASSY 70 53
SOFTYARE COSTS INCLUDED W11H CONTROLLERS/MONITOAS COSTS
HUT DUCT €OSTS INCLUDED WITH COLO DUCT COSTS
86
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Table 5.2-7. Total Operational Production Cost by WBS Element
Gas Generator STME/Derivative STBE Program
Core STME
Scenario 2, Maximum Flight Schedule (Millions of FY875)
femoeecesem-o . NON-RECPRING OPEIATIUNAL PRODUCTION----------mmommsmmmemmnoes HRdeti RECURS ING OPERATINNAL PROCUC TIGM---w-=---- -}
TOTAL
ENGINE PROGHAM SE¢ I FACILITIES GSE TOOLING  STE INITIAL PROGHAM SEdI FLICHT nD&  TOOLING FACIL PREQUCT
SOMPINENT HCNT SPARES MGNT NANUFACT MAIKT  MAINT COST
SRM B OTHER PRODUC SRM &
1 1108 LAUNCH TEST CDARON PECUL A OTHER NFG  ACCEPT
INTEGRATED SYSTEW 042 171 17L 000 000 000 450 00 1300 000 8525 2468 1672 1072 33903 3845 000 §.00 T34 4%
SYSTEM AARD¥ARE
TURECRACKINERY 233
LpQTE [ ]
LPFTP 0.00
HPQrP 70.41
HPFTP 15 91
COMBUSTION DeVICES 36 76
BATN INJECTOR 16 8%
THRUST CHAMBER 29.87
NO2ZLE 49 §7
NOZZLE SXIRT 77 86
GAS GENESATUR 18 23
IGNITORS 14 .91
CONTROLS 1329
CONTROLLERS M ™07) . 25 84
SOF TdrkE 0.00
SENZCPS 14 83
VALYES 34 21
ACTUSTCRS 0 o¢
INTERCONSETTS 4.24
PROPELLANT rEEU 6.97
CoLD JuLts 47 %4
KGT BUCTS 400
HISCELLAREOUS 38 14
SUPPORT DEVILES 2.92
GIMBAL SYSTEM 12.00
TANK HEPRESS 579 13.33
POWER TAPOFF 0.00
START SY4TeM 0.97
POGO SY5TEM 7.66
¢.00
INTER | TEST & AGSY 7.30

SOFTWARE COSTS INCLUDSD WITH CONTAJLLERS/MONLIORS COSTS
HOT DUCT CO5TS {NCLUDED WITH COLY DUCT COSTS

R19eal/78 <ii?"‘;;;2
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ENGINE PROGRAN
CORPONENT acnty
INTEQRATED SYSTEN 3 0%

SYSTEM HARDWAKE

TURBORALHINERY
LPQTP
LPFIP
HPQTP
HOFTP

COMBUS TTUM DEVICES
HADN INJECTOR
THRUST CHAMBER
NOZILE
NOZZILE SKIRT
GAS GENEQATIR
IGNITSRS

CONTamS
CONTRILLERS/ACNTTURS
SOF TWARE
JENGURS
YALYES
ACTUATORS
INTERCONNTTTS

PROPELLANT Feced
COLD dueTs
HOT DUCTS
MISCELLANEQUS

SUPPORT DEVICES
CIMBAL SYSTEM
TANK REPRESS §Y$
POWER TAKOFF
START SYSTEM
POGO SYSTEM

INTEG | TEST & ASSY

Table 5.2-8. Total Operational Production Cost by WBS Element

Gas Generator STME/Derivative STBE Program
Booster Derivative STBE

Scenario 2, Minimum Flight Schedule (Millions of FY878)

------ NON-RECURR [NG OPERATIUNAL PROOUCTION-=-- -~--=-=---

SEL I FACILITIES CSE TO0LING

SRM § QTHER PROOUC
[} TION LAUNCK TEST COMmOr  PECUL

632 6132 000 D00 000 900 1330 350¢

SOF Twhat COSTS INCLUDED MITH CONTRGLLEAS/AlN{TORS €OSTS
HWOT DUCT COSTS INCLUDED WITH COLO GULT COSTS

STE INITIAL PROCRAM
SPARES WGAT

------------ 1-----~-RECURRING OPERATIOMAL PRCGUCTION--

SE &I FLIGHT HOW
MANUF ACY

SAN ¢
QA OTHER L

0.00 146 25 4.18 24 71 247y 1271

39 83

30 .11

32 35

1723

0.0

]
189
203

42
84
123
45
37

84

3%
98

132

93.

FC

37

(1]

98

39
:H
00
[

61
.00
90

Rl
3t
00
18
26

38

MCCERT

103 73

TOOL I#G
MAINT

0 00

TOTAL
FACIL PRODUCT
NAINT  COST

0 00 1672 34
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Table 5.2-9. Total Operational Production Cost by WBS Element
Gas Generator STME/Derivative STBE Program
Combined Core and Booster Engines
Scenario 2, Minimum Flight Schedule (Millions of FY87%)
fommmeomas oo - NON-RECUNRING OPERA[IONAL PROGUCTION-- - --- -om=emoomer omee R RECURRING QPZAATIONAL PRONLCTION- - - ----- -
T0TaL
ENCINT PRIGZAN SEt 1 FACILITIES GSE TOOLIG  STE [INITIAL PROCRAN SE 4 I FLIGHT HO¥  TOOULING FACIL PRZOLCT
COMPONERT MENT SPARES  MGHT MANUFACT NAINT  mAINT  COST
SRE T QTHER 9RIGUC SRH
g4 TION LAUNCM TEST COMACK PECIH 4A  OTHER NFG  ACCERT
INTEGRATED SY3TEM 373 803 293 000 000 500 13.50 1930 48 00 0 06 251 51 B 86 35 42 39 42 183¢ &0 14418 0 %0 9.00 2406 78
SYSTEM HARDWARE
TURBOMATHINERY 83 1%
LPCTR 0.00
LPFIP 0.00
wore 259 91
HPFTP 281 38
COMBUSTION DEVICES 84 .88
RAIN INJECTOR 39 21
THRUST ClAMBER 113 .9¢
NOZZLE {72 44
NOZZLE SKIRT 17 86
GRS SENERATOR 4406
[GNITGRS 52 9
CONTROLS 45 54
CONTRULLERS/MUNTTRS 90 79
SOF uakE ' 0 00
SEWSRS . 5 14
YALYES 133 0%
ACTUATDRS 4 .¢0
[NTERCOMNELTS 14 87
PRODCLLANT FEED 24
COLD QLTS 180 S6
HOT BUCTS 0 00
NISCELLANENUS 134 04
SUPPCRT DEVICES 9.65
GIMBAL SYSTER 46 46
TANK REPRESS SYS 44 83
PONER VAPOFF 0.00
START ST5TEM 3.05
POGO SYSTEN 26 92
0.00
INTEL . TEST L ASSY 25 44

SOF TWAYE COST9 INCLUDED WITH COmTROLLERS/AMONITORS COSTS
HOT QUCT €BSTS INCLUOED NITH COLD OULT £O5TS

89
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Production Facility costs are zero since the only new production facilities required by P&W
(assembly buildings at SSC) will be funded and used initially under the Development Program.
All other ‘facilities needed for engine production are available at P&W.

Flight Hardware is a very large contributor to Recurring Operational Production costs.
Other items which contribute a small amount to Recurring Production are Program Manage-
ment and SE&I. Tooling Maintenance and Facility Maintenance are zero because these costs are
included in overhead and are not priced separately. A portion of the Program Management
functions are also included in overhead.

Approximately 81-86% of the total Operational Production costs, depending on the flight
schedule case, are flight hardware costs. These costs include both manufacturing and acceptance
testing costs. Initial spares are the next largest contributor accounting for 7-10% of the total
Operational Production costs.

5.3 OPERATIONS PHASE: OPERATIONS

Operations Costs include costs for the following WBS elements: Program Management,
System Engineering and Integration, Facilities, Launch Operations, Flight Operations, Replen-
ishment Spares, Recovery Operations, Refurbishment Operations, and Training. Cost estimates
for the STME/Derivative STBE program for each of these functions are presented in Table
5.3-1. This table displays the estimated costs for each of these WBS elements for all three flight
schedule cases — Nominal, Maximum, and Minimum. The core and booster engine costs are
displayed separately and then totaled for each WBS element. .

Refurbishment Operations has the highest cost of the Operations WBS elements. Its cost is
estimated to be $195M for the nominal flight schedule case, $352M for the maximum case, and
$169M for the minimum case. These costs include all of the labor costs associated with engine
refurbishment, including scheduled and unscheduled maintenance. The methodologies for
estimating Refurbishment costs and the other operations costs are discussed in Section 3.2.3.

Replenishment Spares is the next highest cost WBS element. This cost includes the
component parts and materials needed for the Refurbishment Operations. The Replenishment
Spares cost for the nominal flight schedule case is estimated to be $77M, and $138M and $66M
for the maximum and minimum cases respectively.

Systems Engineering and Integration (SE&I) is broken into two components. Safety,
Reliability, Maintainability, and Quality Assurance engineering activities are included in one
component and support activities such as Logistics Support and Product Support are included in
the other component.

The estimated costs for SE&I for the nominal case are $104M. Costs for the maximum and
minimum cases are estimated to be $112M and $103M, respectively. As can be seen from the cost
differences the SE&I cost element consists mostly of a fixed cost per year. Only a small portion of
the SE&I costs are flight schedule dependent.

Flight Operations is estimated to cost $43M for the nominal case. This cost is also mostly a
fixed cost per year and it varies only between $47M and $43M for the maximum and minimum
cases. This activity includes the engineering staff that supports the flight operations and its size
does not change appreciably as the number of flights change.
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Program Management is the lowest cost element among the elements containing fixed
costs. It is estimated to be $26M for the nominal case, $29M for the maximum case, and $26M
for the minimum case.

Launch Operations, Recovery Operations, and Training are relatively low cost items being
estimated at $15M, $13M, and $6M respectively for the nominal case. Since these cost elements
are largely flight schedule dependent, the costs run from $27M, $23M, and $11M for the
maximum case to $13M, $11M, and $5M for the minimum case.

Although Facilities Maintenance costs are included as a WBS element under Operations no
costs are displayed for this element in Table 5.3-1. Most of the facilities use during operations are
government provided and their maintenance will be a government expense not included in these
cost estimates. Maintenance of P&W facilities is included in overhead and these costs can not be
broken out separately.

5.4 PRODUCT IMPROVEMENT AND SUPPORT PROGRAM

Product Improvement and Support Program (PISP) costs are $739M for the nominal,
maximum and minimum flight schedule cases. The PISP costs have not been broken down into
lower level WBS elements. The total PISP costs are displayed in Table 5.5-1.

PISP does not fit under any of the functional elements in the standard WBS. Its costs have
been included in this cost estimate as a separate line item to preserve the WBS structure set
forth by NASA. PISP costs were estimated using historical data from Component Improvement
Programs on gas turbine engines. As discussed in Section 3.2.4, the STME/Derivative STBE
PISP costs were reduced relative to the gas turbine experience because of the short time period
over which most of STME and Derivative STBE are produced. PISP efforts are most cost
effective when the engine improvements can be incorporated in a large quantity of new
production engines. -

5.5 TOTAL STME/DERIVATIVE STBE PROGRAM

Cost for each Phase of the STME/Derivative STBE program, for the nominal, maximum
and minimum cases are presented in Table 5.5-1. These costs are only broken down to the first
level WBS categories. More detailed breakdowns can be obtained from the tables in the previous
sections.
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Table 5.5-1. Total Program Costs by Work Breakdown Structure
Total STME/Derivative STBE Program
(Millions of FY878)

1.2.3.7.2.1 and 1.2.2.7.2.1 ~
DESIGN & DEVELOPMENT

1.2.3.7.2.2 and 1.2.2.7.2.2 -
! NON-RECURRING PROOUCTION
| 1.2.3.7.2.3 and 1.2.2.7.2.3 -
1 ! RECURRING PRODUCTION
| | 1.2.3.7.2.9 and 1.2.2.7.2.4 ~
1 | ! OPERATIONS
1 | | 1.2.2.7.2.x and 1.2.3.7.2.x -
| | | PRODUCT IMPROVEMENT AND SUPPORT PROGRAM
! ! !
| | |
I l 1

|
| 1.2.2.7.2 and
| I 1.2.3.7.
] | TOTAL Puocam
- -_— I
STME/DERIVATIVE STBE PROGRAM
SCENARIO 2-~--FLIGHT SCHEOULE
Nominal 1,841.1 366.4 3,226.3 479.5 739.1 6,652.9
Maximm 1,841.1 69%4.9 5,728.7 737.2 739.1 9,7641.0
Minimuam 1,841.1 352.2 2,054.5 437.0 739.1 5,423.9
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SECTION 6.0
TOTAL PROGRAM FUNDING SCHEDULE

This section of the STME/Derivative STBE Program Cost Estimates Document presents
time-phase cost estimates for the STME/Derivative STBE program for each major Work
Breakdown Structure element. Time-phased costs are included for the STME on the core, the
Derivative STBE on the booster, and the combined STME/Derivative STBE for the nominal,
maximum and minimum flight schedule.

8.1 DESIGN AND DEVELOPMENT PHASE

Costs for each functional element of the core STME and the booster Derivative STBE
Design and Development programs were time-phased to provide funding schedules for this
portion of the STME/Derivative STBE program. These costs are presented in Tables 6.1-1 and
6.1-2.

The Design and Development program schedules presented in Figure 3.1.2-1, Section 3.1
were used as a guide for the time-phasing. Milestone dates shown on this schedule plus estimated
task completion times were used to determine the timing for the various functions. General
functional elements like Program Management and System Engineering and Integration ( SE&ID)
were allocated on a level of effort basis over much of the Design and Development program
phase.

The highest annual cost for the STME development program occurs in 1995 and is
approximately $254M. For the Derivative STBE development program it occurs in 1996 and is
approximately $177M. These peak funding levels occur at this time because development
hardware and testing costs are high while the Engineering Design and Development costs are
also still at a relatively, high level.

6.2 OPERATIONS PHASE: OPERATIONAL PRODUCTION

Costs for the Operational Production portion of the Operations Phase were bookkept into
two types of cost categories, Non-recurring Operational Production Costs and Recurring
Operational Production Costs. Tables 6.2-1 through 6.2-9 present the time-phased Non-recurring
Operational Production and Recurring Operational Production funding schedules broken down
into their respective WBS functional elements.

In the Non-recurring Operational Production cost estimates Program Management and
SE&I are funded only for the first four years of Operational Production. Non-recurring costs are
included for these items to cover the transition from development to high rate production.
Tooling and GSE start in the third and fifth years of Operational Production, respectively. They
reflect the cost of additional equipment needed to support the increased rate of hardware
production and the increased flight rate. The cost for Initial Spares increases from the first year
of production, generally following the cost build-up of production hardware. The funding
schedule for initial spares is driven by the production delivery schedule, with all the spares
required acquired early in the production portion of the Operations Phase.

PRECEDI!NG PAGE BLANK ROT FILMED
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Table 6.1-1. Annual Design and Development Cost

Gas Generator STME/Derivative STBE Program
Core STME Portion
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Table 6.1

" Gas Generator STME/Derivative
Booster Derivative STBE Portion

ALS Scenario 2 (Millions of FY878)
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Time-phasing of the individual Recurring Operational Production Cost elements is dictated
by the production engine delivery schedule. Comparing costs for the nominal, maximum and
minimum cases, readily shows the greater funding requirements with the higher hardware
acquisition levels. Hardware acquisition cost begins in the year of lot procurement and it ends in
the year of lot delivery. This procurement to delivery period spans approximately three years,
with 60% of the procurement costs being incurred in the first two years and 40% in the delivery
year. Costs for Project Management and SE&I are based on a percentage of production engine
hardware costs, with the higher annual costs coinciding with the period of higher production
engine deliveries.

6.3 OPERATIONS PHASE: OPERATIONS
Costs for each WBS element in Operations were time-phased over a 25 year operational
period beginning in 1999, the year of the first operational flight. Tables 6.3-1 through 6.3-9

present the time-phased cost estimates for the STME/Derivative STBE program. Funding
profiles for each WBS functional element are presented in the tables.
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Some of the operations cost elements have a minimum fixed cost which is incurred each
year regardless of the number of operational flights flown. Costs for these functional elements
are still affected by the number of missions but the effect is not very pronounced. Other costs in
operations are variable costs which are a direct function of the number of missions flown. These
variable costs result in the annual operations costs increasing significantly as the flight rate
increases each year.

There are three flight schedules which were evaluated for the operations cost estimates.
The nominal case has 300 total flights, the maximum case has 625 total flights, and the minimum
case 250 flights. Tables 6.3-1 through 6.3-3 contain cost estimates for the nominal case. Tables
6.3-4 through 6.3-6 cover the maximum case and Tables 6.3-7 through 6.3-@ cover the minimum
case. In addition to the cost estimates, each table has a yearly and cumulative flight schedule at
the top of the table. The STME/Derivative STBE operations cost estimates are separated into
core engine costs, booster engine costs, and total costs.

The highest annual Operations Cost occurs in years 2003 to 2008 depending on the flight
schedule case. The peak cost occurs at that time because of an interaction between mission build-
up rate which is increasing annual costs and operating cost improvement which is decreasing
annual costs.

6.4 PRODUCT IMPROVEMENT AND SUPPORT PROGRAM

Annual Product Improvement and Support Program (PISP) costs are displayed in Table
6.4-1. The total cost of the program is $739M. This cost is the same for the maximum, minimum,
and nominal flight schedule cases. The PISP costs occur over the first seven years of operations
with the highest costs in the first three years.

This front loading is necessary so that the PISP design improvements can be incorporated
in as many new production engines as possible. The PISP costs are the same for the three flight
schedule cases because for the first five years the production engine schedules are the same
making the PISP schedules the same.

6.5 TOTAL STME/DERIVATIVE STBE PROGRAM

Time-phased total funding requirements for the nominal, maximum and minimum flight
schedule cases of the STME/Derivative STBE program are shown in Tables 6.5-1, 6.5-2, and
6.5-3 respectively. Included are time-phased costs for the booster and core engines for each major
portion of the program. The highest annual funding requirements are $658M, $666M, and 3658M
for the nominal, maximum and minimum cases respectively. These peak funding requirements
occur in years 2001 and 2002 when Operational Production costs are near a peak and Operations
and PISP costs are at relatively high levels.
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Table 6.4-1. Annual Product Improvement and Support Program Costs
Gas Generator STME/Derivative STBE

Goverrment Fiscal Year
1999 2000 2001 2002 2003 2004 2005 2006 Total

Program

SCENARIO 2 - GG STME/DERIVATIVE STBE
(Nomiral, Maximss, and Minimmm Cases) 147.8 184.8 147.8 110.9 73.9 51.7 22.2 0.0 739.0
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SECTION 7.0
PARAMETRIC COST EQUATIONS

This section contains parametric equations which provide performance, development,
production and operation costs for the STME/Derivative STBE.

Section 7.1 presents parametric performance data and performance curves covering the
STME/Derivative STBE configurations. Performance data is included for the STME and the
STBE derivative LO,/CH, gas generator cycle adapted from the LO,/LH, gas generator STME.

Section 7.2 presents parametric cost relationships covering development, production,
operations and product improvement and support program costs. Included are ground rules and
assumptions which form the basis for the cost estimates.

Also provided for each type of cost are parametric cost curves covering the range and
characteristics of the parametric cost equations.

Table 7-1 summarizes the parameters and range of values that can be varied in the
parametric equations. The equations are designed to provide performance and costs as engine

design parameters are varied from a set of baseline reference characteristics. These baseline
reference characteristics which are contained in the equations are shown in Table 7-2.

Table 7-3 lists and defines the acronyms used in the equations.

Table 7-1. STME/Derivative STBE Parameter Variables

Input Parameter STME Applicable Range Derivative STBE
Engine Maximum, Thrust Level, Ibf 400-800K 200K-1,000K
vacuum .
Chamber Pressure, psia 800-3,000 1,400-2,400
Nozzle Area Ratio, Overall 20-100 20-50
Throttling Capability 100-50% thrust
Fuel Pump Minimum Inlet Pressure 20-50 psi
LO, Pump Minimum Inlet Pressure 40-100 psi
Mixture Ratio 5.0-7.0 2.3-3.7
Total Engine Quantity 100-2,000 engines
Nominal Lot Size* 10-200 engines/year
Number of Engines/Stage 1-5 core; 3-10 booster
Launch Rate 10-450 engines/year
Number of Reuses 0-25 missions/engine

*Annual Production Rate Effect included with lot size.

R19691/77

7.1 PERFORMANCE PARAMETRICS

These performance parametrics have been provided in this cost volume to supplement the
cost parametrics presented in Section 7.2. This inclusion enhances the usability of the cost
parametrics since some of the parameters described by the cost equations must be derived from
the performance parametrics.

PRECEDING PAGE BLANK RCT FILMED
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Table 7-2. Baseline STME/Derivative STBE Parameter Reference Values

Table 7-3. STME/Deriv

STME Derivative STBE
Thrust Level, Ibf Vacuum 580K 712K
Mixture Ratio 6.0 2.7
Chamber Pressure, psia 2,250 2,250
Area Ratio: Overall 62 28
Regen Nozzle 35 —_

Fuel NPSP, psi 8.5 —
Oxidizer NPSP, psi 30.8 —
Throttle Capability, 2-step 2-step

(% thrust) (100 and 75%) (100 and 75%)
Number of Engines/Stage 3-Core 7-Booster
Production Lot Size 100 100
Control System Open Loop Open Loop

R19631/77

and Acronym Definitions

ative STBE Performance and Cost Parametric Equation Variable

AR Overall Nozzle Area Ratio
ARg Regeneratively Cooled Nozzle Exit Area Ratio
ARg Nozzle Extension Exit Area Ratio
BLS Booster Lot Size
CCAP Corrected Cumulative Average Engine Production Cost,
M$/Engine For Any Number of Engines ar Lot Size
CIPC Component Improvement Program Costs, M$
CLS Core Lot Size
DC Total Development Cost, M$
DPB Total Number of Production Engines (Booster) in Development Program
DPC Total Number of Production Engines (Core) in Development Program
DPE Total Number of Production Engines (Booster and Core) in Development Program
ENVH Number of engines Per Vehicle (Booster and Core)
FPY Vehicle Flights Per Year
FVAC(Fn) Engine Design Thrust: K Ibf
GG Gas Generator Cycle
ISP Vacuum Specific Impulse
NB Number of Engines Per Booster Stage
NC Number of Engines Per Core Stage
NPSP Net Positive Suction Pressure
ocC Engine Operations Cost, M$/Engine/Flight
OF(MR) Engine Mixture Ratio
PC Chamber Pressure, psia
PISP Product Improvement and Support Program
SE Split Expander Cycle
TFU Theoretical First Unit Production Cost, M$/Engine, LS = 100
TLS Total Lot Size
TNB Total Number of Booster Engines
TNC Total Number of Core Engines
TNE Total Number of Production Engines (Booster and Core)
TOB Total Number of Operational Production Booster Engines
TOC Total Number of Operational Production Core Engines
TOE Total Number of Operational Production Engines (Booster and Core)
TPC Total Production Cost, M$
B Learning Curve Slope (30% = —-0.152)

Table 7.1-1 shows the STME performance equations. Since this

stage, it includes the film cooled nozzle extension.
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Table 7.1-1. STME LO,/H, Gas Generator Parametrics — STME (LOy/H,) Engine With
Film Cooled Nozzle Extension

Max Area Ratio = 128 + 00355 (Pc) — 1.2 X 1078 (P)?
Iy = 2904 + 67.62 (OF) - 6.20 (OF)2
—189.1 OF/AR — 0.301 (P()%5
Nozzle Dia, in. = 1080 (Fy,c/580000)°% X (AR/62.)°% x (2250/P)0%
Overall Length, in. = 1347 (2250/Pg)%® X (Fy,/580000)%3 (OF/6.0)-0228 (AR/62)0644

+ 20 (OF/6.0)%7 (P()/2250)~"%9 (Fy,/580000)°635
+ 1.27 (Fypo/Po)®s

Powerhead Dia, in. = 0.002682 [ (Fysc)®S(P)®*™ | / [ (Fuel NPSP)*-53 |
+ 0.0166 [ (Fy,c)®S (Po)®3™ ] / [ (LO, NPSP)O&% |
+ 261 (Fy,e/Po)®8

Weight = 5491 (Fy,¢/580000)°5™ (OF/6.0)°0127 (P /2250)0%15
+ A [3.182 (Fy,c AR/P) + 2156 X 107* (Fy,c)]

Where A = 0.42 When 1000 < P; =< 1100
A = 0.67 When 1100 < P; < 1800

R19691/77

Figures 7.1-1 through 7.1-3 show STME design characteristics as vacuum thrust, area ratio
and chamber pressure are varied. These curves were generated from the parametric performance
equations,

The Derivative STBE characteristics are dependent upon the STME engine from which it
is derived. Table 7.1-2 shows the Derivative STBE performance relationships.

7.2 COST PARAMETRICS

The cost parametrics included in this section are Development Cost, Operational
Production Cost, Operations Cost and Product Improvement and Support Program (PISP) costs.

The Derivative STBE has been designed to use as many of the STME components as
possible. Because of this commonality, costs for the STBE configurations are driven directly by
costs for the STME design.

The parametric cost equations are based on maintaining this commonality between the
STME and STBE engines. The equations are set up for the user to select and input variables
such as thrust, chamber pressure, area ratio, etc. for the core STME. Costs for both the STME
and the booster Derivative STBE that falls out from the selected STME configuration are then
provided by the equations. The equations cannot be used to obtain costs for Derivative STBE
engines that do not have the same commonality as in the baseline STBE design.

Because common engine components will have larger quantities and more cost improve-
ment benefits than uncommon components, the production cost equations separate production
costs into these two categories. This permits the user to include the different quantity effects in
his cost studies. Separate STME and Derivative STBE development and operations costs are
generated by the equations and these costs must be combined to obtain total program costs.
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Figure 7.1-3. Chamber Pressure Curves for STME (LOy/Hy) Parametrics, Gas Generator
Cycle, Optimum AR, Thrust = 580K
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Table 7.1-2. Derivative STBE Gas Generator Parametrics

Vacuum Thrust (Fy,c) = 123 X STME Vacuum Thrust
Area Ratio (AR) = 080 X STME Regen Exit AR
Chamber Pressure (Pg) = 100 X STME

Mixture Ratio (OF) = 2.3 t0 37

I OF e
w(VAC) = - 319.7 - 182.2(0F) - 130.6 AR/ +689.6OF

+1.638 AE +0.0048 (P,)

g::nz:tter (in.) = 880 (7&“{3‘53)&6 (% ’ (%?)M

g:f;ﬁ (in.) - 696 (3%'(’))“‘ (‘r—nff? )W (%)m

+3.02 X 10 5 (F y,0) + 12,0

R19891/77

Production cost equations provide recurring engine production costs for the operational
production engines. Both Theoretical First Unit and Cumulative Average Production costs can
be calculated form the equations. Included in the production costs are the following cost
elements:

Program Management

System Engineering and Integration
Facilities Maintenance

Tooling Maintenance

Hardware Manufacturing
Integration, Assembly and Test
Acceptance Test.

Development costs generated by the equations include contractor costs for the following
functional elements:

Program Management
System Engineering and Integration

Engine Design and Development

Engine Test (including components)

Flight Test Hardware

MPTA Test Hardware

Facilities

Software Engineering

General Support Equipment

Tooling

Special Test Equipment

Operations and Support (Launch, Flight, Recovery and Refurbishment).

Operations costs provided by the equations include the following operational cost elements:

Program Management
System Engineering and Integration

129
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Facilities Maintenance
Operations and Support
Training.

Separate equations are included in this package to estimate the costs of Product
Improvement and Support programs for the engines.

Government furnished test facilities and propellants are not included in any of the costs

provided by the equations.

7.2.1 Ground Rules and Assumptions

The cost estimates provided by the equations are based on the following ground rules or

assumptions.

Parameter

Costs

Profit or Fee

Management Reserve

Development Program

Development Engine Tests
Demonstrated Reliability at First Flight
Test

Propellants

Engine Test Facilities

Major Component Test Facilities

Small Component Test Facilities
MPTA Engines

Flight Test Engines

Core Gas Generator STME

Booster Gas Generator STBE

Thrust and Mixture Ratio Setting Accuracy

Production Engine Assembly
Engine Acceptance Test
Production Learning Rate
Operational Engine Recovery

Engine Maintenance
On Launch Pad
At ESMC Engine Shop
At Contractor Depot (SSC)

7.2.2 Operational Production Costs

Ground Rules or Assumptions

Constant FY87 Dollars

Not Included

Not Included

90 months (7% years)

960 Firings STME; 488 Firings STBE
0.99 @ 90% Confidence

Government Furnished (Not Included)

Government Furnished (Not Included)

Government Furnished (Not Included)

Contractor Furnished

1 Set + 33% Spares

2 Sets + 33% Spares

Operated With Nozzle Skirt

Operated With Nozzle Skirt Removed
+13% for Thrust at 75% and 100% Fn and
+3% for MR at 75% Fn only

At SSC

At SSC ($400K/Engine)

90% Crawford

Water Landing (Engine Subjected to Salt
Air Environment Only)

3 Level

LRU Replacement; Prelaunch Checkout

Component Replacement; Turn-Around Re-
furbishment

Component/Engine Rebuild

The production cost equations can be used to determine the Theoretical First Unit (TFU)
cost and the total recurring production cost as a function of a number of design and programatic

variables. These variables include thrust size,

chamber pressure, overall nozzle area ratio (with

two-piece nozzle), throttle range, number of booster and core engines per vehicle, total quantity
of production engines, cost improvement slope and lot size (which includes production rate
effects). Over the ranges considered, variables such as gas generator temperature, design mixture
ratio and the number of engine reuses do not have a significant impact on engine production cost
and they have not been included in the equations.
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To calculate TFU’s for each engine under consideration, up to five supplementary
equations are presented in Table 7.2-1, each containing a constant which is a function of the
chamber pressure range selected, or whether the TFU is for Common parts, Core Uncommon
parts or Booster Uncommon parts. These five supplementary equations are set up for the STME
configuration (PC, FVAC, AR, etc.) and they require STME input parameters. TFU differences
between the STME Core engine and Derivative STBE Booster engine are taken care of in the
TFU equations, also in Table 7.2-1. The production cost constants used to calculate the TFU
equations are presented in Tables 7.2-2 and 7.2-3. The constant A in Table 7.2-2, is not chamber
pressure sensitive, so it is used as presented for all chamber pressure ranges. The control
constants in Table 7.2-3 are added to the calculated TFUs,

Table 7.2-1. Production Cost Equations for the STME/Derivative STBE GG Engine

Equation (1) - A ( l;‘gbc )‘“ (3%5':_0_)00‘

Equation (2) = B (2‘&0 )0«6 ( 2l2)i0 12

Equation (3) - C, (21147 (P;vs:)c ) (ggi_o) ARy ( 3.636 + (‘)&1407 xP, ).m

Equation (4) = C, (2506) @;;BC ) (%?%0_) (AR)"® [1 084 4( 3.636 + (;_(;:407 xP¢ )I m}
Equation (5) = D, f (Engine Configuration and Whether Parts Are Common or Uncommon)

.For Core Application:

Core Common TFUpgrs = Equation (1) ¥ (0.7235) + Equation (3) + Equation (5)
Core Uncommon TFUM(m = Equation (1) x (0.2765) + Equation (2) + Equation (4) + Equation (5)
TFUgyr = Core Common TFU + Core Uncommon TFU

For Booster Application;

Booster Common TFUye;s = Equation (1) x (0.7235) + Equation (3) + Equation (5)

Booster Uncommon TFUpgs = Equation (1) x (0.3264) Equation (2) x (1.12) + Equation (5)
TFUggosrer = Booster Common TFU + Booster Uncommon TFU

R:9691/7T

Table 7.2-2. Production Cost Constants for the STME/Derivative STBE GG Core and
Booster Applications With Dual Run Point Control

800 < Py < 1100 psia 100 < P, < 1800 psia 1800 = P. < 3000 psia
A B c, C, B C, C, | B C, C,
Core 6.121 0.136  0.00925 0.00592 0.467  0.00406  0.00592 1 0.585 0.00406 0.00789
Booster [
Common: D = 2.187 D - 2280 : D - 2280
Core Uncommon: D = 0.542 D = 0.542 i D = 0.964
Booster Uncommon: D = 0594 D « 0.594 J D = 0.594
[

Notes: 1. When Constants Are Used as Presented, Resulting Costs Are in MFY87$
. Costs Do Not Include Management Reserve or Profit
3. All Costs Generated by These Equations Are Engineering Estimates. These Costs Should Not Be
Considered as Contractual Commitments and Should Be used for Life Cycle Cost (LCC) Evaluations
and Planning Purposes Only.

H2681/7TT
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Table 7.2-3. Production Cost Control System Cost Impacts Applicable to
STME/Derivative STBE Gas Generator Engines
Production TFU
Control Cost Impact
Fn Accuracy MR Accuracy Type MFY878
Baseline +3% (100 and 75% +3% (75% Fn Only) Open
Fn)
(Two Run Points) Loop
Two Run Points +3% (100 and 75% +3% (100 and 75% Fn) Open +0.025M
Fn) Loop
Single Run Point +3% (100% Fn) +3% (100% Fn) Open Same Cost
Loop As Baseline
Continuously Variable +3% (100 - 75% Fn)  z3% (100 - 75% Fn) Open +0.025M
Loop
Continuously Variable +3% (100 - 50% Fn) =3% (100 - 50% Fn) Open TBD
Loop
Two Run Points +1% (100 and 75% +1% (100 and 75% Fn) Closed TBD
Fn) Loop
Continuously Variable +1% (100 - 75% Fn) %1% (100 - 75% Fn) Closed TBD
Loop
Continuously Variable +1% (100 - 50% Fn)  =1% (100 - 50% Fn) Closed TBD
Loop
Note: This production TFU cost change applies to TFU values used in all cost equations.
R19681,T7

L]
By solving the numbered equations and combining them as shown under the TFU
equations, the Theoretical First Unit cost in millions of FY87 dollars can be determined.

The first quantity of production engines will be manufactured during the DDT&E phase
with the associated costs reported under the DDT&E program costs. The TFU cost used in
calculating operational production cost is defined as the first unit cost for those engines produced
under the DDT&E phase. The Corrected Cumulative Average Production Costs (CCAP) for the
operational production engines manufactured during the production phase are first determined
individually for Common Core and Booster, Uncommon Core and Uncommon Booster
components. They are then combined to give the STME Core CCAP and Derivative STBE
Booster CCAP values.

The following equations show how the CCAP’s are calculated.

Common (Core and Booster) Parts

(TFU - S.Ai)(TNE)"_jJ TNE - [ (TFU ; 2.‘{)(1)95;)% DPE} {( %%TS )4.‘.,.} o

CCAP = TOE

132
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Where: TFU — Theoretical First Unit for Core and Booster common parts, M87%
DPE — Number of Production Engines (Core and Booster) Manufactured During
DDT&E Phase
TOE — Total Number of Operational Production Engines (Core and Booster)
TNE — Total Number of Production Engines (Core and Booster)
TLS — Total Lot Size (Core and Booster)
B — Learning Curve Slope, P&W expected value is 90% = —0.152.

Uncommon Core Parts

[ I e - [ (PEUEREE T {(SE8 )]

TOC

CCAP =

Where: TFU — Theoretical First Unit for Uncommon Core Parts, M87%
DPC — Number of Production Core Engines Manufactured During DDT&E
Phase
TOC — Total Number of Operational Production Core Engines
TNC — Total Number of Production Core Engines
CLS — Core Lot Size
B — Learning Curve Slope, P&W expected value is 90% = —0.152.

Uncommon Booster Parts

([ T s - [ EEERE | e} [ BLS )

CCAP = TOB

Where: TFU — Theoretical First Unit for Uncommon Booster Parts, M87$
DPB — Number of Production Booster Engines Manufactured During DDT&E
Phase
TOB — Total Number of Operational Production Booster Engines
TNB — Total Number of Production Booster Engines
BLS — Booster Lot Size
B — Learning Curve Slope, P&W expected value is 90% = —0.152.

The following equations define the parameters used in the above CCAP equations:

DPE = DPC + DPB
DPC = 4 + 4 (NC)
DPB = 4 + 4 (NB)
TOE = TOC + TOB
TNC = DPC + TOC
TNB = DPB + TOB
TNE = DPE + TOE.
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Total Corrected Cumulative Average Production Costs for the STME Core engine and
Derivative STBE Booster Engines can be calculated using the following equations:

CCAPCO“ - CCAPcomm + CCAPUncommon

CCAPpye = CCAPommon + CCAP prcommon

Total Production Cost can be calculated using the following equation:

TPC = CCAP,, x TOC + CCAPj . x TOB.

Figures 7.2-1 through 7.2-3 depict the relationship between Production Cost (TFU) for both
Core and Booster Space Transportation Engines and STME Pec, Overall Area Ratio, and
Vacuum Thrust. The STBE is a fallout of these STME variations. For the Pc variation an
Optimum Core Vehicle Area Ratio is used.

7.2.3 Design and Development Costs

The development cost equations can be used to determine total Contractor development
costs as a function of a number of design variables. These variables include thrust size, chamber
pressure, overall nozzle area ratio (with two-piece nozzle), throttle range, and the number of
booster engines and core engines per vehicle. Gas generator temperature, design mixture ratio
and the number of engine reuses, over the ranges shown, do not have a significant impact on
engine development cost.

For each type of engine under consideration, four supplementary equations are provided
(Table 7.2-4). Constant values for the equations are found in Tables 7.2-5 and 7.2-6 for each
engine. The control cost constants in Table 7.2-6 are added to the calculated development costs.
By solving the numbered equations and combining them as shown, Contractor Development
Costs in millions of FY87 dollars can be determined for the STME Core and Derivative STBE
Booster engines. Total Contractor Development cost can then be obtained by combining the
individual STME Core and Derivative STBE Booster development costs.

Theoretical First Unit values and the total number of production engines manufactured
during the DDT&E phase, should be taken from the Production Cost section.

Figures 7.2-4 through 7.2-6 depict the relationship between Development Cost for both
Core and Booster Space Transportation Engines and STME Pc, Overall Area Ratio, and
Vacuum Thrust. The STBE is a fallout of these STME variations. For the Pc variation an
Optimum Core Vehicle Area Ratio is used.

7.2.4 Operations Costs

Operations Costs include all of the recurring operational costs associated with the Space
Transportation Engines for the Advanced Launch System. The following cost elements are
addressed within the parametric equations: Program Management, Systems Engineering and
Integration, Facilities Maintenance, Operations and Support, and Training. Product improve-
ment and support costs are not addressed here as they are addressed in another section.
Propellants are Government furnished and no propellant costs have been included in the
operations cost.
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Table 7.2-4. Development Cost Equations for the STME/Derivative STBE GG
Development for Core and Booster Applications
Core

F\'AC .1 PC R
F ( 580 (_‘22“50‘
G(TFUc,r)

[T 22 forc

Equation (1)

Equation (2)

Equation (3)

Equation (4) - H

DCyygrs = Equation (1) + Equation {2) + Equation (3) + Equation (4)

Where: DPC _  Number of Production Core Engines in Development Program
(Defined Under Production Cost Equation Section)
TFUron - Theoretical First Unit Cost, M87$ (Core Common + Core Uncommon)
CLS _ Lot Size for Production Core Engines in Development Program

For Development Cost Equation Only CLS = DPC

] Learning Curve Slope 90% = -0.152
Booster
Equation (1) = F (ES»B%:)D\(% !
Equation (2) = G(TFUp,oger)
Equation (3) = {[(TFU“"""B:T)(DPB‘)BM( Bl )M] *0"‘] DPB

Equation (4) = H
DCys7s = Equation (1) + Equation (2) + Equation (3) + Equation (4}

Where: DPB _  Number of Production Core Engines in Development Program
(Defined Under Production Cost Equation Section)

TFUpyoee - Theoretical First Unit Cost, M87$ (Core Common + Core Uncommon)
BLS _ Lot Size for Production Core Engines in Development Program
For Development Cost Equation Only BLS = DPB

B Learning Curve Slope 90% = —0.152

RI9691/TT

The operations costs are directly affected by the number of engines per vehicle, the number
of flights per year, and the operational production TFU costs and the equations are function of
these variables. Other variables such as thrust size, chamber pressure, area ratio, and throttle
range affect operations costs only through the TFU cost used which is a function of these
variables. Gas generator temperature, design mixture ratio, the number of engine reuses and the
total quantity of flights do not have a significant impact on engine operational cost.
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Table 7.2-5. Development Cost Constants

STME/Derivative STBE GG
With Dual Run Point Control

Development STME for Core Application
F = 506 G = 423 H =34

Development Derivative STBE for Booster Application
F = 182 G =213 H=2

Notes: L. Development Costs Are Contractor Costs Only.

Government Furnished Test Facilities and propellants

are not included.

2.  When Constants Are Used as Presented, Resulting
Costs Are in MFYS87S.

3.  Costs Do Not Include Management Reserve or Profit.

4.  All Costs Generated By These Equations Are
Engineering Estimates. These Costs Should Not Be
considered As Contractual Commitments and Should
Be Used for Life Cycle Cost (LCC) Evaluations and
Planning Purposes Only.

R13691,77

Pratt & Whitney
FR-19691-4
Volume III

Table 7.2-6. Development Cost Control System Cost Impacts Applicable to

STME/Derivative STBE Gas Generator Engines

Development

Control Cost Impact
Fn Accuracy MR Accuracy Type MFY875*
Baseline 3% (100 and 75% Fn) =3% (75% Fn Only) Open —_—
(Two Run Points) Loop
Two Run Points +3% (100 and 75% Fn) +3% (100 and 75% Fn) Open Same Cost
Loop As Baseline
Single Run Point +3% (100% Fn) +3% (100% Fn) Open Same Cost
Loop As Baseline
Continuously Variable +3% (100 - 75% Fn) +3% (100 - 75% Fn) Open Same Cost
Loop As Baseline
Continuously Variable +3% (100 - 50% Fn) +3% (100 - 50% Fn) Open TBD
Loop
Two Run Points +1% (100 and 75% Fn) x1% (100 and 75% Fn) Closed TBD
Loop
Continuously Variable +1% (100 - 75% Fn) +1% (100 - 75% Fn) Closed TBD
Loop
Continuously Variable +1% (100 - 50% Fn) 1% (100 - 50% Fn) Closed TBD
Loop

*This Development Cost Impact Applies to the STME Only and [t [s in Addition to the Production TFU

Change Which Impacts Both STME and Derivative STBE Development Costs.
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General Equation

The general form of the operations cost parametric equation is as follows:

= —OFC
OC = Fpy-ENVE *OVC
Where:
OC = Operations Cost per Engine, per mission, in Millions of FY87

Dollars.

OFC = Fixed operations costs per year associated with providing Program
Management, Systems Engineering and Integration, Facilities
Maintenance, Training, and Operations and Support.

OVC = Variable operations costs per engine per mission associated with
providing Program Management, Systems Engineering and
Integration, Facilities Maintenance, Training, and Operations and
Support.

FPY = Number of Flights per Year

ENVH Number of Engines per Vehicle (Booster and Core)

(NB + NC)

NB = Number of Engines per Booster Stage

NC Number of Engines per Core Stage.

Specific Engine Configuration Equations

For the reusable gas generator Hydrogen/Oxygen Space Transportation Main Engine
(STME) and Methane/Oxygen Derivative Space Transportation Booster Engine (STBE) the
following equations apply: :

- - 55
OC Core = v * 0.0193 + RMOU + RRH(TFU Core)

— 55
OC Booster = FPY * ENVH *+ 0.0193 + RMOU + RRH(TFU Booster)
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Where:

RMOU Unscheduled Refurbishment/Maintenance Labor Constant
0.063 for gas generator STME
0.069 for Derivative STBE

RRH = Repair/Replacement Hardware Constant
0.00226 for gas generator STME
0.00249 for Derivative STBE

Theoretical First Unit Cost for STME
(from Production Cost Equation section)

TFU Core

Theoretical First Unit Cost for STBE
(from Production Cost Equation section).

TFU Booster

Figures 7.2-7 through 7.2-10 depict the relationship between Operations Costs for both the
Core and Booster Space Transportation Engines and variables such as STME chamber pressure
(Pc), Overall Area Ratio, and Vacuum Thrust and total Engine Flights per Year (EFPY). The
STBE cost is a fallout of these STME variations. For the Pc variation an Optimum Core Vehicle
Area Ratio which is a function of the Pc selected is used for the engine cost.

7.2.5 Product Improvement and Support Program Costs

The Product Improvement and Support Program (PISP) cost equations can be used to
determine total product improvement costs as function of a number of design variables. These
variables include thrust size, chamber pressure, overall nozzle area ratio and throttling range.

For each type of engine under consideration two supplementary equations {two for Core
and two for Booster) are provided, Table 7.9.7. Constant values for the equations are found in
the same table, following the equations. By solving the numbered equations and combining them
as shown, Contractor PISP cost in millions of FY87 dollars can be determined for the STME
Core and Derivative STBE Booster engines. Total contractor PISP cost can then be obtained by
combining the individual STME Core and Derivative STBE Booster PISP costs.

Theoretical First Unit values should be taken from the Production Cost section.
Figures 7.2-11 through 7.2-13 depict the relationship between Product Improvement and
Support Program (PISP) costs for both Core and Booster Space Transportation Engines and

STME chamber pressure (Pc), Overall Area Ratio and Vacuum Thrust. The STBE is a fallout of
these STME variations. For the Pc variation an Optimum Core Vehicle Area Ratio is used.
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Table 7.2-7. Product Improvement and Support Program Cost Equations for the
STME/Derivative STBE GG Product Improvement and Support Programs for Core
and Booster Applications
Core Booster
F i P F 1{ Pc
Bausion 1) = P (Z P! (5055 ) Baustion (1) = o (S5 (s
Equation (2) = Gg,, (TFUc,p) Equation (2) = Gpoogter (TFUpooucer)
Core PISPy:4 = (Equation (1)+Equation (2))x0.5 Booster PISPyg:4 = (Equation (1)+Equation (2))x0.5
Where: TFUcore -  Theoretical First Unit Cost, M87$ (Core Common + Core Uncommon)
I;‘Cor‘ - 506
Geore - 423
TFUBooster —  Theoretical First Unit Cost, M87$ (Booster Common + Booster Uncommon)
Facoster - 182
GRooster - 213
R19691/77
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