FINAL REPORT

NAS8-36955
DELIVERY ORDER 134

VACUUM CHAMBER TRANSLATION / POSITIONING MECHANISM
AND WELDING POWER SUPPLY CONTROLLER

Submitted to

Richard M. Poorman
George C. Marshall Space Flight Center
National Aeronautics and Space Administration
Huntsville, Alabama 35812

Prepared by

James E. Smith, Jr., Ph.D.
Associate Professor and Chairman

and

John L. Cashon
Graduate Research Assistant

Department of Chemical and Materials Engineering
College of Engineering
The University of Alabama in Huntsville
Huntsville, Alabama 35899

August 1992

(NASA-CR-184465) VACUUM CHAMBER
TRANSLATION/POSITIONING MECHANISM
AND WELDING POWER SUPPLY CONTROLLER
Final Report (Alabama Univ.) 26 p

N93-12196

Unclas

G3/37 0125227
FINAL REPORT

NAS8-36955
DELIVERY ORDER 134

VACUUM CHAMBER TRANSLATION / POSITIONING MECHANISM
AND WELDING POWER SUPPLY CONTROLLER

Submitted to

Richard M. Poorman
George C. Marshall Space Flight Center
National Aeronautics and Space Administration
Huntsville, Alabama 35812

Prepared by

James E. Smith, Jr., Ph.D.
Associate Professor and Chairman

and

John L. Cashon
Graduate Research Assistant

Department of Chemical and Materials Engineering
College of Engineering
The University of Alabama in Huntsville
Huntsville, Alabama 35899

August 1992
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page #</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0 INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>2.0 EQUIPMENT</td>
<td>3</td>
</tr>
<tr>
<td>2.1 TRANSLATION/POSITIONING SYSTEM</td>
<td>3</td>
</tr>
<tr>
<td>2.2 POSITIONING MOTORS</td>
<td>5</td>
</tr>
<tr>
<td>2.3 EQUIPMENT MOUNTS</td>
<td>5</td>
</tr>
<tr>
<td>2.4 PC23 POSITIONING CONTROL SYSTEM</td>
<td>7</td>
</tr>
<tr>
<td>2.5 JOYSTICK</td>
<td>7</td>
</tr>
<tr>
<td>3.0 CONTROL SOFTWARE</td>
<td>8</td>
</tr>
<tr>
<td>4.0 OPERATING PROCEDURES</td>
<td>9</td>
</tr>
<tr>
<td>5.0 FINAL ACTIONS TO COMPLETE AND INSTALL THE SYSTEM AT MSFC</td>
<td>13</td>
</tr>
<tr>
<td>6.0 CONCLUSIONS</td>
<td>14</td>
</tr>
<tr>
<td>APPENDICES</td>
<td>15</td>
</tr>
</tbody>
</table>
1.0 Introduction

Welding in the vacuum of space represents an important and fundamental problem for space exploration. Repairs or connection of metal components on orbit or during travel to the moon or distant planets may be required. Cracks or holes in space craft skin or supporting structures external to the pressurized section will require some type of repair that must be permanently made to the skin or support by welding. This research addressed the development of a translation/positioning system that will permit research into welding of metal samples in a small vacuum chamber located at Marshall Space Flight Center (MSFC). The unit, described below, is fully programmable and currently configured to perform straight line translation. The software and hardware have also been provided for the eventual control of start and power control functions of a welder power supply located at MSFC.

A photograph of the completed device is shown in Figure 1. For reference and following discussions, a coordinate system will be assigned as Z, the vertical axis, X, the lateral axis, and Y the horizontal axis or direction in which the sample table is translated.
FIGURE 1
Vacuum Chamber Translation / Positioning Mechanism
and Welding Power Supply Controller
Left to Right: Welding Power Supply Controller Relay,
24VDC Power Supply, PC23 Interface Board, PC23 DB Drives
& 5VDC Power Supply mounted, Daedal Joystick, 3-axis
Translation / Positioning Mechanism
2.0 Equipment

The vacuum welding positioning system is composed of a custom designed three axis positioning system with vacuum sealed industrial grade microstepping motors and three subsystems. The subsystems are the IBM compatible PC23 three axis position control system with motor interface and limit and home switch controls, joystick for manual positioning of two axes at a time and a Keithly/Metrabyte DAC-02 D/A interface card that may be used to control welder start and power level functions.

The major components that were used to develop the vacuum welder positioning system and computer cards that can be used to control the welder power supply are listed in Table 1.

2.1 Translation/Positioning System

The translation/positioning mechanism for the vacuum welding system under development at MSFC, was manufactured from three individual translation devices. The specimen to be welded, namely 2 - 2-4" wide by 12-14" long by 1/4" thick metal plates, are mounted on a specially designed translation table and moved below two Daedal model 105021S-20E-LH series linear tables that are 5" on a side and provide 2" of linear travel. These tables are mounted in tandem on supports above the sample to form a two axis positioning system. This permits both vertical (Z) and lateral (X) positioning of a welder electrode or other device over the sample. Straight line positioning accuracy for these units is ±0.0004in with a total load capacity of 30 pounds.
<table>
<thead>
<tr>
<th>Item</th>
<th>Manufacturer</th>
<th>Model #</th>
<th>Serial #</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. X, Z Translation Motors</td>
<td>Daedal</td>
<td>EMA57-51-V-LH</td>
<td>2002</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2003</td>
</tr>
<tr>
<td>2. Y Translation Motor</td>
<td>Daedal</td>
<td>EMA57-51-V-LH</td>
<td>2004</td>
</tr>
<tr>
<td>3. X, Z Linear Tables</td>
<td>Daedal</td>
<td>105021S-20E</td>
<td>9202111501</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>9202110501</td>
</tr>
<tr>
<td>4. X Linear Table</td>
<td>Daedal</td>
<td>5086141S-LH</td>
<td>92011550601</td>
</tr>
<tr>
<td>5. Motor Drives</td>
<td>Compumotor</td>
<td>DB-Drives</td>
<td>902021000064</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>902021000065</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>902021000066</td>
</tr>
<tr>
<td>6. Joystick</td>
<td>Daedal</td>
<td>JS5300</td>
<td>9112032CN02</td>
</tr>
<tr>
<td>7. 5 VDC Power Supply</td>
<td>TDK</td>
<td>MRW150KV</td>
<td>92414565</td>
</tr>
<tr>
<td>8. 24 VDC Power Supply</td>
<td>Sola Electric</td>
<td>28-24-280-0</td>
<td>0890210</td>
</tr>
</tbody>
</table>
Horizontal positioning of the sample is provided by a Deadal rail table model 506141S-20E-LH which provides 14" of travel with a straight line accuracy of ±0.002 in/in or ±0.0028 in over the total distance traveled. The units positioning accuracy is ±0.0035 in over the travel with a repeatability of ±0.0002 in. The load capacity of this rail is 200 pounds when mounted in the horizontal direction as used in the position systems.

2.2 Positioning Motors
All axes on the vacuum welding translation/positioning system are powered by identical vacuum sealed industrial grade microstepping motors. As delivered, these motors are programmed for 25,000 pulses per revolution. One revolution moves the translation mechanism 0.20 inches for an approximate resolution of 8x10^-6 in/pulse. The stepping motors are sealed units designed to run in vacuum. They have been vacuum prepared to industrial standards by Daedal and run off of individual drive controllers located outside the vacuum environment, powered by an independent 24 VDC power supply.

2.3 Equipment Mounts
The translation equipment is mounted to a unit designed and fabricated at UAH. The mount is assembled from five heavy aluminum plates. The base plate was prepared from a 3/4" thick aluminum plate to which the Deadal model 506141S-20E-LH rail table mounts using 1/4x28 S.S. cap screws. The base plate has
adjustable legs with plastic ends to both level and cushion the unit. At one end of this base plate, two vertical supports are attached by 1/4x28 S.S. cap screws. These supports were manufactured from 3/4 inch thick aluminum plate. The vertical support members are connected by a horizontal strut that is fastened by 1/4x28 S.S. cap screws. The horizontal strut was prepared from 1/2" thick aluminum plate and has threaded holes in the center that match the Deadal model 105021S-20E-LH series linear table.

To the rail table translation platform is mounted the sample support table. This table is 14" long and can accommodate samples up to this length, though a 12" sample length is recommended to provide shielding for the translation components below the unit. The table has a channel that is lined with a thin sheet of brass to protect the table. The table contains a hole pattern that accepts 1/4x28 mounting screws (S. S. cap screws have been provided with the unit). Aluminum mounting dogs are used to secure the samples in place and are provided with 1/4 inch spacers to facilitate sample capture. This table is connected to the translation platform by 1/4x20 black iron cap screws so caution must be exercised when connecting or disconnecting this component, since all other screws throughout the unit are 1/4x28 S.S. cap screws.
All mounting plates have been black anodized to minimize reflection during the welding process. Electrical cables that power and control the motor and translation tables are attached to the mount by pee-clamps making the unit easy to move and service.

2.4 PC23 Positioning Control System
The IBM compatible PC23 positioning control system is composed of three components. A computer interface card that must be installed in the back-plane of a 286 or greater IBM compatible computer. To this card, and external to the computer, is an interface bus that is connected by cables to the stepper motor drivers and home/limit switch assemblies. This external interface is powered by a separate 5 VDC interface power supply which is the third component. Through the appropriate software, written in BASIC, this system provides the pulses to position and translate the microstepper motors and protects the unit from damage at the limits of translation.

2.5 Joystick
The vacuum translation/positioning system has been provided with a joystick that can be used to manually position any two axes at a time after simple software commands. The proportional joystick, Daedal model JS5300 interfaces with the PC23 through the external interface and provides direction and velocity control of any two of three axes.
3.0 Control Software

Operations software for the vacuum translation system is supplied on a 5 1/4" floppy disk. Copies of the source code are provided in the files, VW.BAS and VW.BAK. A listing of the program VW.BAS is provided in Table 2 and can be used as a guide to further customize the software for particular needs. The operations software was developed around a demonstration program SIMPLEX.BAS, provided by Compumotor for the PC23 hardware. The PC23 control portion of the SIMPLEX code has not been altered, and a description of its operation can be found in the documentation provided by Compumotor. The VW operations software issues commands defined in the Compumotor X Command Language in order to control the movement of the motor that moves a given axis. These commands are also described in Compumotor literature delivered with the unit.

Welder power may be controlled using a Keithly/Metrabyte DAC-02 two channel digital to an analog converter board and a 12 VDC micro-mechanical relay that handles up to 5 amperes. Channel one from the DAC-02 turns on and off a relay that can be wired to the foot control pedal interface of the welder power to replace the on-off switch currently used by the foot pedal controller. The power level from the foot pedal controller provides 0-10 VDC on the wiper of the potentiometer relative to ground as the operator depresses the foot pedal control. This function can also be controlled by the computer using channel two of the DAC-02. Channel two outputs a proportional 0-10 VDC signal which may
be wired between the negative wire of the foot pedal and the wiper of the potentiometer. In order to do this the foot pedal must be removed from the circuit. The output voltage of the DAC-02 is determined by the operations software, based on inputs requested of the operator. These inputs are the maximum current which the welder operates and the currents at which to weld. A linear interpolation is then accomplished and a subsequent output voltage between 0-10 VDC determined. Both channels are controlled with OUT statements in the VW software.

The operations software is supplied in compiled form for ease of operation and runs from the floppy disk after typing the VW command to run the program VW.EXE. The VW software was written and compiled using Microsoft's QuickBasic version 4.0.

4.0 Operating Procedures
To begin operations, apply power to the 24 VDC power supply and computer. Insert the operations software floppy disk into the disk drive of any 286 or greater IBM compatible computer (not supplied with the system) and access the disk by typing A: or B: depending how the system is configured. Once the proper drive is enabled, simply issue the command "VW" to begin systems operations. At this time all three translation stages will move to their "home" positions. The user is then prompted to respond to a series of questions regarding the desired weld to be performed, and welder system parameters. A list of these questions are given in Table 2.
TABLE 2.

Operating Commands and Limitations

<table>
<thead>
<tr>
<th>Prompt</th>
<th>Limitation or Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enter the length of the weld (min .5 inch, max 14 inches)?</td>
<td></td>
</tr>
<tr>
<td>Enter the weld translation speed (min .05 in/sec, max .4 in/sec)?</td>
<td></td>
</tr>
<tr>
<td>Enter electrode weld height (max .5 inch)? No negative numbers.</td>
<td></td>
</tr>
<tr>
<td>Enter time to raise electrode (sec)? Checks max and min velocity.</td>
<td></td>
</tr>
<tr>
<td>Enter the MAXIMUM operating current for the system?</td>
<td></td>
</tr>
<tr>
<td>Enter the initial current to begin with?</td>
<td></td>
</tr>
<tr>
<td>Do you wish to change any of the welding parameters (Y,N)?</td>
<td></td>
</tr>
</tbody>
</table>
After these questions are answered, the user is then prompted to use the joystick to manually align the sample to be welded with the welding electrode. Finally, the user must manually position the electrode to the initial position and set the desired height to begin the weld.

To align the sample, place the samples on the table and loosely tighten the dogs so that the sample will just move. Enable the joystick by typing either "A" to move the X (lateral) and Z (vertical) axes or "B" to move the Y (horizontal) or Z (vertical) axes, per the screen instructions. Using the A or B software modes, lower the electrode and position it at one end of the table approximately at the center line of the table. Adjust the position of the samples until the seam is just below the electrode. Select B, and horizontally translate the table to the other end and again align the samples with the electrode. Check the alignment by horizontally translating along the seam to be welded. When the sample is aligned to the user's satisfaction, tighten the dogs to secure the sample.

The electrode must be manually moved to the starting position. The starting position is defined as the furthest position along the sample seam and away from the motor end of the horizontal translation axis. Select B and manually move the electrode to this end of the sample and using a feeler gauge, carefully lower the electrode to the initial starting gap. Once the user is
satisfied with the electrodes position, and vacuum has been achieved, the user should press "C" to exit to the next screen and follow the prompts to begin welding.

The next screen menu is then displayed showing system parameters, system power ON/OFF, maximum system power, and key functions for desired operations. The user can press "S" to begin system operations (welder start and power levels are output and horizontal translation of the samples are begun simultaneously).

In operations, the system first enables the start switch of the welder power supply and outputs the appropriate voltage to the power supply consistent with the operators initial power requirements to strike the arc. It then raises the electrode at the user defined rate to the steady welding height which is relative to the initial starting height set during the alignment procedures. It then begins horizontally translating the sample at the user defined rate. While the system is translating, the user can increase or decrease the welder current in 1% increments of the maximum scale by pressing the "U" or "D" key of the key board to increase or decrease to welder power, respectively. Pressing the "T" key will terminate the welding operations at any time during the sequence.

Upon completion of the defined operation, or interruption from the operator, the software automatically turns off power to the welder, and returns the translation stages to their home posi-
tion. The operator is then allowed to exit the applications software or begin another weld following the same procedures as described above.

5.0 Final Actions to Complete and Install the System at MSFC.
The principle actions to install the system at MSFC is to insert the two cards into the back-plane of the user supplied 286 or greater IBM compatible computer and check for address conflicts. The addresses for these two boards are &H310 for the DAC-02 (the smaller board) and &H304 for the stepper motor drive board (the larger board supplied). Further information on these boards is available in the manufacturers manuals supplied with the system.

Mount the panel containing the DB-Drivers and 5VDC power supply and interface, noting wire and cable locations if they must be disturbed, to a user supplied standard electronics cabinet or similar supporting surface. Provide support and power connections for the 24VDC power supply. Provide feed through connectors and cut and connect wires to the motors and limit/home switches matching wire colors and gauge. Additional wiring and operating information for the DB-Drivers, external interface, Home\Limit switches and stepper motors are provided in the manufacturer manuals supplied with the system.
The final steps that must be accomplished at MSFC are to develop a machine mounting hardware to attach the welding torch and gas supply lines to the upper translation mechanism and grounding wire to the translation table. It has been assumed that the mount for the torch, will displace the point of the electrode 2" out from the Z translation surface and be mounted such that it will touch the translating samples within the 2" translation distance of the Z translation stage.

6.0 Conclusions

The system and associated software has been tested to the extent possible without the availability of the welder power supply or control computer that must be supplied by MSFC. Software has been developed for straight line welding. More extensive and varied translations are possible with simple alterations to the operating software to use the full capabilities of this three axes system. The source code "VW.BAS" has been provided to serve as an example for further development of the vacuum welder translation system.

With the delivery and acceptance of the translation mechanism and the equipment for eventual control of the welder power supply, we have met the requirements of this contract.
APPENDIX 1

Listing of VW.BAS Source Code
Prepared Using Microsoft's QuickBasic
 initializes the PC23 for translation
 GOTO 5000: REM Run the interactive Vacuum Welding System code

 The following list of variables is used to keep track of addressing and the Control Byte

 ADDRESS% = 772: REM This is the factory default base address setting

 INTRCLR = &H20 'This variable is for clearing Control Bit 5
 (to signal "Restart Watchdog Timer")

 RESTART = &H40 'This variable is for clearing Control Bit 6
 (to signal "Restart Watchdog Timer")

 CONTROL = &H60 'This is the normal state of the Control Byte
 (only Bits 5 and 6 are high)

 READY = &H17 'This is the normal state of the Status Byte
 (bits 0, 1, 2, and 4 set)

 HALT = &H64 'This variable is for setting Control Bit 2
 (to signal the "Watchdog Timer" to time out)

 CMDRDY = &H70 'This variable is a mask for setting Control Bit 4
 (to signal "Command Byte Ready in the IDB or not)

 RECEIVED = &HE0 'This variable is a mask for setting Control Bit 7
 (to signal "Message Received from the ODB")

 STOPPED2 = 1 'This variable is a mask for testing Status Bit 1
 (is the motor moving?)

 STOPPED1 = 2 'This variable is a mask for testing Status Bit 1
 (is the motor moving?)

 STOPPED3 = 4 'This variable is a mask for testing Status Bit 1

(is the motor moving?)

ODBREADY = 8 'This variable is a mask for testing Status Bit 3
(is a response waiting in the Output Data Buffer?)

IDBREADY = &H10 'This variable is a mask for testing Status Bit 4
(is the Input Data Buffer ready for a command byte)

FAIL = &H20 'this variable is a mask for testing Status Bit 5
(has the STD22 suffered a processing failure?)

MASK = &H7F 'this variable is a mask for the Status byte MSB

**
* *
* PC23 "RESET" SUBROUTINE *
* *
**

The following subroutine allows the "Watchdog Timer" to timeout, and Reset the PC23. Then the timer is restarted. A "GOSUB 700" instruction will reset the PC23.

BYTE = 0: TIMEOUT = 10000 'Set timeout duration
OUT ADDRESS% + 1, (HALT) 'Control Bit 2 high
WHILE (BYTE AND FAIL) = 0 AND TIMEOUT > 0 'Test for fail or timeout
BYTE = INP(ADDRESS% + 1) 'Read Status Byte
TIMEOUT = TIMEOUT - 1: WEND 'repeat until timeout or fail
IF TIMEOUT <= 0 THEN PRINT "Invalid response from address"; ADDRESS%: END
BYTE = 0: TIMEOUT = 10000 'Set timeout duration
OUT ADDRESS% + 1, (RESTART) 'Control Bit 2 high
WHILE (BYTE AND MASK) <> READY AND TIMEOUT > 0
BYTE = INP(ADDRESS% + 1) 'Read Status Byte
TIMEOUT = TIMEOUT - 1: WEND 'repeat until recovery
OUT ADDRESS% + 1, (CONTROL) 'Restore Control byte
OUT ADDRESS% + 1, (INTRCLR) 'Restore Control byte
IF TIMEOUT <= 0 THEN PRINT "Timeout recovering from reset!": BEEP: END
FOR I = 1 TO 1200: NEXT I
RETURN

**
* *
* PC23 "BASIC" OUTPUT DRIVER *
* *
**

The following is a handshake subroutine allowing data to be transferred from the PC BUS to the PC23. Command string data is sent to the PC23 one character at a time.

FOR I = 1 TO LEN(CMD$)
CHAR$ = MID$(CMD$, I, 1) 'fetch command characters and send them one at a time
GOSUB 1100
NEXT I
CHAR$ = CHR$(13): GOSUB 1100 ' follow with a carriage return
FOR I = 1 TO 1200: NEXT I
RETURN

BYTE = 0: TIMEOUT = 10000 'Set timeout duration
WHILE (BYTE AND IDBREADY) = 0 AND TIMEOUT > 0 'Test for ready or timeout
The following is a handshake subroutine allowing data to be transferred from the PC23 to the PC BUS. This data is sent one character at a time.

```
ANSWERS = "" 'Initialize response string
BYTE = 0: TIMEOUT = 5 'Initialize variables
WHILE (BYTE AND ODBREADY) = 0 AND TIMEOUT > 0 'Test for ready or timeout
BYTE = INP(ADDRESS% + 1) 'Read Status Byte
WHILE (BYTE AND ODBREADY) > 0 AND TIMEOUT > 0 'Test for busy or timeout
BYTE = INP(ADDRESS% + 1) 'Read Status Byte
OUT ADDRESS% + 1, (CONTROL) 'Restore control byte
CHAR$ = CHR$(ANSWER) 'Convert code to char.
ANSWERS = ANSWERS + CHAR$ 'Add char to answer
IF CHAR$ = CHR$(13) THEN RETURN ELSE
```

The following code was developed for controlling the NASA-MSFC / UAH Vacuum Welding System.

```
*** SUBROUTINE : RUN VACUUM WELDER ***
GOSUB 6000: REM SYSTEM INITIALIZATION
GOSUB 19000: REM POSITION ELECTRODE WITH JOYSTICK
GOSUB 7000: REM RUN SYSTEM

*** SUBROUTINE : SYSTEM INITIALIZATION ***
CLS
GOSUB 12000: REM MAKE SURE RELAY POWER IS OFF
GOSUB 17000: REM SET UP PC23
GOSUB 18000: REM SEND ALL THREE AXIS HOME
```
CLS : LOCATE 1, 1: PRINT "NASA-MSFC / UAH Vacuum Welding System": PRINT ": PRINT "Enter the length of the weld (min .5 inch, max 14 inches)"
6025 IF WL > 14 OR WL < .5 THEN PRINT "": PRINT "Value out of range [.5, 14]!":
6026 PRINT ": PRINT "Enter the weld translation speed (min .05 in/sec, max .4 in/sec)
6027 IF TS < .05 OR TS > .4 THEN PRINT "": PRINT "Value out of range [.05, .4]!"
6028 PRINT ": PRINT "Enter electrode weld height (max .5 inch)": INPUT EH: IF
6029 PRINT ": PRINT "Enter time to raise electrode (sec)": INPUT ET: IF ET <
6030 IF ET = 0 THEN ES = 0: GOTO 6036
6031 ES = EH / ET: IF ES > .4 OR ES < .05 THEN PRINT "": PRINT "Value out of range
6032 PRINT "": PRINT "Enter the initial current to begin with": INPUT CUR: IF
6033 CUR = CUR / 100
6040 INPUT CURM
6045 IF CURM <= 0 THEN PRINT "": PRINT "Value must be greater than zero!": GOTO
6050 PRINT ": PRINT "Enter the maximum operating current for the system":
6060 INPUT CURM
6070 CURD = CURM / 100
6071 PRINT "": PRINT "Do you wish to change any of the welding parameters (Y,N)?
6072 KK$ = INKEY$: IF KK$ = ": THEN GOTO 6072
6073 IF KK$ = "y" OR KK$ = "Y" THEN GOTO 6020
6075 GOSUB 21000: REM CALCULATE TRANSLATION VALUES
6090 GOSUB 16000: REM CALCULATE INITIAL CURRENT OUTPUT VALUES CHANNEL 2
6100 RETURN
6999 ' *** SUBROUTINE : RUN SYSTEM ***
7000 ' 7005 WFLAG = 0
7010 CLS
7020 GOSUB 8000: REM SCREEN DISPLAY
7025 GOSUB 10000: REM OUTPUT CURRENT CHANNEL 2
7030 K$ = INKEY$
7035 CSEC = TIMER
7036 IF CSEC >= SSEC + WSEC THEN WFLAG = 0: GOSUB 12000: GOSUB 8000
7045 IF K$ = "": THEN GOTO 7030
7050 IF K$ = "S" OR K$ = "s" THEN SSEC = TIMER: WFLAG = 1: GOSUB 11000: GOSUB 22
7060 IF K$ = "T" OR K$ = "t" THEN GOSUB 12000: GOSUB 23000: GOSUB 20000: REM st
7080 IF K$ = "U" OR K$ = "u" THEN GOSUB 13000: REM INCREASE CURRENT OUTPUT
7090 IF K$ = "D" OR K$ = "d" THEN GOSUB 14000: REM DECREASE CURRENT OUTPUT
7100 GOTO 7010
7110 RETURN
7999 ' *** SUBROUTINE : SCREEN DISPLAY OUTPUT ***
8000 ' 8005 WFLAG = 0
8010 CLS
8020 LOCATE 1, 1
8030 PRINT "NASA-MSFC / UAH Vacuum Welding System": PRINT "": PRINT "
8040 PRINT "Weld Power is "; SCROI$: PRINT ""
8050 PRINT USING "Maximum Operating Current = ####.## amp"; CURM: PRINT ""
8060 PRINT USING "Current = ####.## amp": CURD: PRINT ""
8070 PRINT "Key Functions": PRINT ""
8080 PRINT "U : increase current by 1%": PRINT ""
8090 PRINT "D : decrease current by 1%": PRINT ""
8100 PRINT "S : start operations": PRINT ""
8110 PRINT "T : terminate operations" or "
8120 PRINT "procede after run": PRINT ""
8130 RETURN
8999 ' 9000 ' *** SUBROUTINE : OUTPUT CHANNEL 1 ***
9001 '
1010 OUT &H310, O1L%
1020 OUT &H311, O1H%
1030 RETURN

10000 ' *** SUBROUTINE : OUTPUT CHANNEL 2 ****
10001,'
10010 OUT &H312, O2L%
10020 OUT &H313, O2H%
10030 RETURN

10999 '

11000 ' *** SUBROUTINE : TURN POWER ON ***
11001',
11010 O1L% = 240
11020 O1H% = 255
11030 SCROI$ = "ON"
11040 GOSUB 9000: REM OUTPUT CHANNEL 1
11050 RETURN

12000 ' *** SUBROUTINE : TURN POWER OFF ***
12001',
12010 O1L% = 0
12020 O1H% = 0
12030 SCROI$ = "OFF"
12040 GOSUB 9000: REM OUTPUT CHANNEL 1
12050 RETURN

13000 ' *** SUBROUTINE : INCREASE OPERATING CURRENT ***
13001',
13010 CURC = CURC + CURD
13015 IF CURC > CURM THEN CURC = CURM
13020 GOSUB 16000: REM CALCULATE OUTPUT VALUES FOR CHANNEL 2
13030 RETURN

14000 ' *** SUBROUTINE : DECREASE OPERATING CURRENT ***
14001',
14010 CURC = CURC - CURD
14015 IF CURC < 0 THEN CURC = 0
14020 GOSUB 16000: REM CALCULATE OUTPUT VALUES FOR CHANNEL 2
14030 RETURN

15000 ' *** SUBROUTINE : EXIT FROM APPLICATION ***
15001',
15010 GOSUB 12000: REM TURN OFF POWER
15011 CLS
15012 LOCATE 1, 1
15020 END
15030 RETURN

16000 ' *** SUBROUTINE : CALCULATE CHANNEL 2 OUTPUT VALUES ***
16001',
16010 OX = 4095 * CURC / CURM
16020 O2H% = INT(OX / 16)
16030 O2L% = OX - 16 * O2H%
16040 O2L% = 16 * O2L%
16050 RETURN

17000 ' *** SUBROUTINE : SET UP PC23 ***
17001',
17010 CMD$ = "1LD0 2LD0 3LD0 1MN 2MN 3MN 1A10 2A10 3A10 1V1 2V1 3V1 "
17020 GOSUB 1000: REM SEND CMD$ TO PC23
SUBROUTINE: SEND ALL THREE AXIS HOME

```
CMD$ = "1GH+2 2GH+2 3GH-2"
GOSUB 1000: REM SEND CMD$ TO PC23
RETURN
```

SUBROUTINE: POSITION ELECTRODE WITH JOYSTICK

```
J1$ = "1J1"; J2$ = "2J1"; J3$ = "3J1"
J10$ = "1J0"; J20$ = "2J0"; J30$ = "3J0"
B12$ = "X and Z"; B13$ = "Y and Z"
CMD$ = J10$: GOSUB 1000: CMD$ = J20$: GOSUB 1000: CMD$ = J30$: GOSUB 1000:
CLS : LOCATE 1, 1: PRINT "NASA-MSFC / UAH Vacuum Welding System": PRINT
PRINT "Use the Joystick to manually align the plates and position the elec-
Active axes are " SCR$:
PRINT "Active axes are " SCR$
*** SUBROUTINE : START TRANSLATION ***

CMD$ = V1$ + " " + V3$ + " " + D1$ + " " + D3$ + " "
GOSUB 1000: REM SEND CMD$ TO PC23
CMD$ = "IG 3G "
GOSUB 1000: REM SEND CMD$ TO PC23
RETURN

*** SUBROUTINE : STOP TRANSLATION ***

CMD$ = "1S 2S 3S "
GOSUB 1000: REM SEND CMD$ TO PC23
GOSUB 18000: REM ALL THREE AXES GO HOME
RETURN
APPENDIX 2

Listing of Documentation Provided with the System

1. Compumotor DB Drives User Guide
2. DAC-02 User Manual & Software
3. JS5300 Joystick Operation Manual
4. Daedal Limit & Home Switch Cable Pigtail Drawing
5. Compumotor PC23 Indexer User Guide
6. PC-23 Application Developer Disk 1
7. PC-23 Application Developer Disk 2
8. Daedal Inc. MC5300 Indexer Basic Software