Conductor-Backed Coplanar Waveguide Resonators of Y-Ba-Cu-O and Tl-Ba-Ca-Cu-O on LaAlO₃

Y.A. Miranda and K.B. Bhasin
Lewis Research Center
Cleveland, Ohio

M.A. Stan
Kent State University
Kent, Ohio

K.S. Kong
TRW
Redondo Beach, California

and

T. Itoh
University of California at Los Angeles
Los Angeles, California

CONDUCTOR-BACKED COPLANAR WAVEGUIDE RESONATORS OF
Y-Ba-Cu-O AND Ti-Ba-Ca-Cu-O ON LaAlO$_3$

F.A. Miranda and K.B. Bhasin
National Aeronautics and Space Administration
Lewis Research Center
Cleveland, Ohio 44135

M.A. Stan
Kent State University
Department of Physics
Kent, Ohio 44242

K.S. Kong
TRW
Redondo Beach, California 90278

T. Itoh
University of California at Los Angeles
Department of Electrical Engineering
Los Angeles, California 90024

Abstract—Conductor-backed coplanar waveguide (CBCPW) resonators operating at 10.8 GHz have been fabricated from Ti-Ba-Ca-Cu-O (TBCCO) and Y-Ba-Cu-O (YBCO) thin films on LaAlO$_3$. The resonators consist of a coplanar waveguide (CPW) patterned on the superconducting film side of the LaAlO$_3$ substrate with a gold ground plane coated on the opposite side. These resonators were tested in the temperature range from 14 to 106 K. At 77 K, the best of our TBCCO and YBCO resonators have an unloaded quality factor (Q_0) 7 and 4 times, respectively, larger than that of a similar all-gold resonator. In this study, the Q_0's of the TBCCO resonators were larger than those of their YBCO counterparts throughout the aforementioned temperature range.

I. INTRODUCTION

Since their discovery in 1986, high transition temperature superconducting (HTS) compounds have been employed in the development of passive microwave transmission structures such as resonators, filters, and delay lines [1-3]. Ease of fabrication and performance reliability are two requirements that these HTS compounds should meet in order to be used in microwave circuits. Because of its geometrical attribute of having the ground planes on the same surface as the signal transmission line, coplanar waveguide (CPW) structures are advantageous for HTS-based microwave integrated circuits. When a good conducting layer is deposited on the opposite side of the CPW supporting substrate the structure is known as a conductor-backed coplanar waveguide (CBCPW).

Recently, reports on YBCO-based CPW and CBCPW resonators have been published [4-7]. Until now, a comparative study to determine which type of HTS compound is more appropriate for the optimization of these structures for micro-wave applications has not been done. In this paper we present our results on the performance of CBCPW resonators fabricated from TBCCO and YBCO thin films on LaAlO$_3$.

II. EXPERIMENTAL

Figure 1 shows a schematic representation of the CBCPW resonators analyzed in this study. The TBCCO resonators were custom made by Superconductor Technologies Inc. from laser ablated films (~800 nm thick) deposited onto 1.0x1.0x0.05 cm (100) LaAlO$_3$ substrates. The YBCO resonators were patterned by us on laser ablated (NASA-Lewis) and magnetron sputtered (Conductus Inc.) thin films (~250 nm) on LaAlO$_3$ substrates of the aforementioned dimensions and crystallographic orientation. The pattern shown in Fig. 1 was transferred to the HTS films using standard photolithography techniques followed by a "back-etching" process using a 1% phosphoric acid (H_3PO_4) solution. The ground plane on the opposite side of the substrate was formed by successive evaporations of a 150 Å thick chromium layer and a ~2.5 µm thick gold layer. A similar all-gold CBCPW resonator, with its CPW layer ~1.2 µm thick, was also fabricated for comparison purposes. The testing of the resonators was done by mounting them on a brass test fixture bolted to the cold finger of a closed-cycle-helium-gas refrigerator and enclosed inside a vacuum can with feedthroughs to allow coupling between the resonator and a coaxial waveguide. The coupling between the coaxial line and the resonators was achieved through an SMA launcher. The center pin of the connector was placed in direct contact with the feed line that tapered from 0.559 mm to the width of the center conductor over a length (L1) of 1.000 mm. Coupling to the resonator was achieved across a gap (G1) 0.050 mm wide. The reflection coefficient of the resonators was measured using an HP-8510C network analyzer, and was used
Fig. 1 Top view of the conductor-backed coplanar waveguide resonator (9.230x9.230 mm). P1=0.533 mm, P2=0.559 mm, L1=1.000 mm, L2=7.020 mm, W=0.530 mm, S=0.200 mm, G1=0.050 mm, G2=0.530 mm, and G3=0.630 mm. The relative dielectric constant (ε_r) of the substrate is 22. The crosshatched sections represent the HTS material.

To determine the unloaded quality factor (Q_0) of the resonator according to the procedure described in [8]. Before the beginning of each measurement cycle the network analyzer was calibrated with short, open, and load standards.

In order to improve the contact between the launcher and the feed line, silver contacts (~250-300 nm thick) were evaporated onto the end of the feed line and the coplanar ground planes. Immediately after the evaporation the resonators were annealed in flowing oxygen (~1 SLM). The YBCO resonators were annealed at 450°C for 1 hr, and cooled afterwards at a rate of 2°C/min to room temperature. The TBCCO resonators were annealed at 450°C for 10 min, followed by a rapid cooling on a fire brick. The contact resistivity was measured by a three-point probe method, and was found to be $2.7\times10^{-8} \Omega \text{cm}^2$ for the laser ablated YBCO, the magnetron sputtered YBCO, and the TBCCO films, respectively. The transition temperature ($T_c(R=0)$) of the resonators was measured before and after silver contacts deposition and annealing using a standard four-point probe technique.

III. RESULTS

Table 1 shows a summary of the results of the characterization of the CBCPW resonators. The T_c values and film thicknesses correspond to measurements performed after patterning and annealing of the films. The Q_0's versus temperature of the resonators analyzed in this work are shown in Fig. 2.

![Graph](image)

*dc transition temperature after patterning and annealing.

a Unloaded quality factor.

b Effective surface resistance.

c Resonance frequency.

These data were found to be independent of applied power within the range of -5.0 to -26.0 dBm. The lowest Q_0 observed in this study for any of the HTS resonator corresponded to a laser ablated (LA) YBCO film (sample 1, Tab. 1). This film exhibited a $T_c=84$ K after annealing, and although Scanning Electron Microscopy (SEM) micrographs showed a smooth surface, some porosity was noticeable on one of the coplanar ground planes which gave it a hazy appearance. A very smooth surface was also observed for YBCO sample 2, also laser ablated, but not for YBCO sample 3 (magnetron sputtered, MS) which exhibits outgrowths on its surface ranging in size from 1-3 µm. Note that in spite of their different surface morphologies, the Q_0's of these...
two resonators were comparable which shows that surface roughness does not necessarily equate to a poorer microwave performance, at least for YBCO thin films deposited by the two techniques considered here. This is consistent with microwave results obtained by power transmission measurements in the same type of YBCO thin films [9]. The highest Q's amongst the YBCO resonators were exhibited by sample 3. Its Q, at 77 K was 470 which is ~ 4.3 times better than that of the gold resonator at the same frequency and temperature. This value is lower than reported Q,'s for YBCO-based CPW resonator at the same temperature and at frequencies close to 10 GHz [6]. The lower Q, may be due to the effect of placing a back conductor to the CPW structure. However, direct comparison between different resonant structures should be done cautiously due to the differences in their geometrical configuration. X-ray diffraction (XRD) analysis showed that the YBCO films considered here have a crystallographic orientation where the c-axis is predominantly oriented perpendicular to the substrate plane. No evidence of change in the XRD patterns was observed for these films after the annealing process.

The TBCCO resonators shown in Table 1. are representative of two different deposition batches, with samples 4 and 5 originating from the same batch and sample 6 from a separate batch. From Fig. 2 it can be seen that the Q,'s for the TBCCO resonators were larger than those obtained for their YBCO counterparts. For the best TBCCO resonator (sample 6, Fig. 2) a Q, of 823 was obtained at 77 K. This value is ~ 7.4 times that of the gold resonator and is ~1.75 times larger than the Q, of our best YBCO resonator. It was observed that after the annealing the Q,'s of the resonators increased (almost by a factor of 2 for sample 6) with respect to those obtained before the annealing. The enhanced Q,'s can be correlated with an increase in oxygen content in the films as reflected by the rise in T, with respect to that measured before the annealing process. For the YBCO films this increase was ~1.0-1.3 K while for the TBCCO films it was ~2.0-3.0 K. Observe that for the YBCO resonators (especially for the two laser ablated ones) the discrepancies in Q,'s are well correlated with their T, values. However, for the TBCCO resonators, although the difference between their T, values after the annealing was less than 1.3 K, and the temperature at which a measurable resonance was first observed was almost the same (~105 K), still there was a large discrepancy between their respective Q,'s. This difference can be associated with the morphology of the films. The XRD patterns contain only the (00l) reflections for both the 2212 and the 2223 phases. Based upon the relative peak intensities it appears that the films are similar in composition and composed primarily of the 2212 phase. However, SEM analysis revealed that samples 4 and 5 are characterized by a "terrace-like" surface morphology which is absent in sample 6. As such, we believe that the effective thickness of sample 4 and 5 is less than that of sample 6 and thus is responsible for their lower Q,'s.

The effective surface resistance (R,) for the YBCO and TBCCO HTS films was determined from the unloaded quality factor [10]. The surface resistance of the all-gold resonator was determined from measurements of the dc resistivity (ρ) and using the expression R,=n(μ,ωp/2π), where μ is the permeability of free space and ω=2πf, where f is the frequency. Values of R, at 77 K for the HTS-based and all-Au based CBCPW resonators are shown in Tab. 1. Note that the lowest R, for YBCO is ~0.25 of that for Au, and compares well with those reported by others [6,10] if we assume that the R, of the superconductor is proportional to the square of the frequency. For TBCCO, our lowest R, is ~0.13 of that for Au. However, the R, values obtained in this study for our best TBCCO resonator is ~6 times larger than the value obtained by others from ring resonators fabricated on films from the same source as ours (R,=6 mΩ at 35 GHz and 77 K; R,=0.5 mΩ at 10 GHz and 77 K, assuming a R,a0) [1]. This may be explained in terms of the current distribution in the conductors of the resonator. In the CPW section of the CBCPW resonator the currents are concentrated near the edges of both the center conductor and the ground planes. Therefore this structure is more sensitive to defects at the edges of the conductors that may arise during the patterning process, resulting in an increase in R, [11].

IV. CONCLUSIONS

Conductor-backed coplanar waveguide resonators have been patterned on YBCO and TBCCO HTS films on LaAlO, films. These resonators were tested in the temperature range from 14 to 106 K. Unloaded quality factors Q, as high as 823 and 470 were obtained at 77 K and 10.8 GHz for TBCCO and YBCO resonators, respectively. The highest Q,'s at 77 K for the TBCCO and YBCO resonators were nearly a factor of 7 and 4, respectively, better than that of an all-gold resonator of the same geometry at the same temperature and frequency. In this study, the Q,'s of the TBCCO resonators were larger than those of their YBCO counterparts throughout the aforementioned temperature range. Our results support the observation that a high T, does not always correlate with a good microwave performance. In addition, they suggest that the TBCCO films may be the material of choice for cryogenic microwave applications given the fact that there is still room for improvement of aspects such as the porosity of the films. However, more work is necessary to correlate Q, with porosity for films having similar T,'s.

ACKNOWLEDGEMENT

The authors wish to thank Mr. G. Subramanyam, of the University of Cincinnati, for silver contact deposition onto the TBCCO resonators. The authors also acknowledge Mr. J. Olsavsky and Mr. J. Meola for technical assistance. Our thanks to Mr. R. Garlick and Ms. R. Cipcic for XRD measurements.
Helpful discussions with Mr. C. M. Chorey and Dr. V. O. Heinen are gratefully acknowledged.

REFERENCES

Conductor-backed coplanar waveguide (CBCPW) resonators operating at 10.8 GHz have been fabricated from Ti-Ba-Ca-Cu-O (TBCCO) and Y-Ba-Cu-O (YBCO) thin films on LaAlO₃. The resonators consist of a coplanar waveguide (CPW) patterned on the superconducting film side of the LaAlO₃ substrate with a gold ground plane coated on the opposite side. These resonators were tested in the temperature range from 14 to 106 K. At 77 K, the best of our TBCCO and YBCO resonators have an unloaded quality factor (Q₀) 7 and 4 times, respectively, larger than that of a similar all-gold resonator. In this study, the Q₀'s of the TBCCO resonators were larger than those of their YBCO counterparts throughout the aforementioned temperature range.