
m

m

N93:12391

Assessing Repository Technology:

Where Do We Go From Here?*

David Eichmann t

Software Reuse Repository Lab (SoRReL)
Dept. of Statistics and Computer Science

West Virginia University
m

LJ

m

w

Send correspondence to:

David Eichmann

SoRReL

Dept. of Statistics and Computer Science

West Virginia University

Morgantown, WV 26506

email: eiehmann@cs.wvu.wvuetedu

n

w

* to appear in the International Journal of Software Engineering and Knowledge Engineering.
t This work was supported in part by NASA as Pan of the Repository Based Software Engineering project,
cooperative agreement NCC-9-16, project no. RICIS SE.43, subcontract no. 089 and in part by a grant from
MountainNct Inc.

1

l

Abstract

Three sample information retrieval_systems , archie, autoLib, and

WAIS, are _rhpared as=to_their exp_ssivene_ and usefulness, first

in the general context of information retrieval, and then as prospec-

five software reuse repositories. While the representational capabil-

ities of these systems are limited, they provide a useful foundation

for future repository efforts, particularly from the perspective of re-

pository distribution and coherent user interface design.

m

Ii

!
!

I

m

w

U

m

I

W

g

=
imm

I

S

!

m

m
1

i
m

B

I

m

i

[]

I

m

n

w

r

w

w

1 - Introduction

As information becomes an .increasingly important sector of the global economy, the way in

which we access that information - and thereby the way in which we access and structure knowl.

edge - becomes a critical concern. The engineering of knowledge is quickly becoming an area of

research in its own fight, independent of its parent disciplines of artificial intelligence, database

systems, and information retrieval; consider the fl0e of the journal that you now hold in your hands.
t

Wegner recognized the value of knowledge engineering in his landmark article on the role of cap-

ital in software development:

"Knowledge engineering is a body of techniques for managing the complexity of knowledge.., it is

capital-intensive in the sense that reusability is a primary consideration in the development of books,

expert systems, and oth_ stng'tutes for the management and use of knowledge." [10, p. 33]

Just as Wegner observed that the products of software engineering are capital, so are the products

of knowledge engineering a form of capital. Identification, structure, and locatability are critical to

the enabling of this knowledge capital. Innovation in this area is driven from two diverse perspec-

fives, the traditional perspective of researchers and a not-so-tradifional perspective of what might

be referred to as an information underground.

The goal of this information underground is not necessarily an extension of the state of the art,

but a rather more pragmatic development of an informational infrastructure [4]. The prototypes re-

suiting from this type of work propagate quickly over the Interact, immediately generating large

numbers of users. Even while still experimental, systems that provide distinct benefit frequently

need to limit access in order to maintain reasonable system performance for other users of the un-

derlying platforms.

My reference to this community as an underground is calculated, for even within the computer

science community (let alone the academic or commercial communities as a whole), only a small

percentage of individuals are aware of such information systems. This article was spurred by my

interest in software repositories, a number of conversations that I've had in recent months, and the

1

benefitI thinkcanbegainedby wideningtheforum for suchsystemsto a larger audience.

In particular, it is interesting to cvalUate_ Systems as an enab_g _chnology for software

reuse repositories. Repositories, and by implication, information retrieval mechanisms, play a crit-

ical role in successful reuse. This statement disagrees with the conventional wisdom [9], that reuse

is a social and managerial issue, and not a technical one. A closer examination of the conventional

wisdom leads to a recognition that without a repository with substantial representational capability

many of the social and managerial requirements cannot be supported.

This paper surveys a number of interesting information server projects, with an eye towards

enabling technologies. Section 2 lays down a typical scenario in which such systems are used.

Sample sessions for three systems appear in section 3, and an analysis appears in section 4. I con-

clude with remarks on the potential of future systems.

2 - A Scenario and User Profile

Consider aprogrammer involvedin a researchprojectin some reasonably sizeduniversity.I

choose this context not only for its personal familiarity, but also because

• such projects typically take place in facilities with rich local and wide area network connectiv-

ity;

• progranmaers typicallyhave a personalworkstationwith substantialdisplaycapabilities(e.g.,

X'Windows)i and

• there are strong incentives in avoiding the redevelopment of capabilities available from other

projects, either local or remote.

In effect, the development environment is one which is typical, or will be within the next few years.

In addition, the social infrastructure and equipment infrastructure for a successful reuse program

arc present, if not an explicit charter for reuse, or a true repository.

Our programmer is now faced with a dilemma-- aware that there is a strong likelihood that a

m
u

I

J

I

i
w

i

J

I

I

J

!

m
w

J

J

M

_ i

w

2

m

i

g

n

w

w

w

m

i

needed tool or component already exists somewhere out on the network, but uncertain as to where

to begin the search in the thousands of systems that currently make up the Internet, or even how to

identify the needed artifact. Un_ recently the only choices included asking acquaintances for ad-

vice (although the study by Schwartz and Wood [7] demonstrated the amazing potential for even

ad hoe mechanisms such as this), poring over intermittently posted electronic digest news articles

for likely sounding names, or manually searching a few sites maintained by volunteers and acces-

sible through anonymous ftp. Obviously, our programmer is ripe for recruitment as a client of the

services provided by the information underground.

3 - Example Repositories

Early in the evolution of the Internet, system administrators began adapting file transfer facil-

ities into what today is referred to as anonymous ftp, comprised of publicly accessible accounts, a

limited file space, and a restricted command set. These facilities, while amazingly popular as a dis-

semination tool, presume a fair amount of user knowledge, not the least of which being where to

look for the sought-after artifact. This section describes three information systems, archie, WAIS,

and autoLib. Each of these systems has a distinct design focus, anonymous ftp access in archie,

document retrieval/display in WAIS, and a limited form of electronic library in autoLib. However,

the resulting systems have much in common, and their look and feel has several similarities. These

systems were selected for discussion because they were designed primarily as information retriev-

al systems, rather than as software repository systems.

w

3.1 - archie

The arehie system is "an on-line resource directory service for an intemetworked environment"

[3]. While archie isn't truly a repository per se, since it doesn't actually contain the artifacts that it

classifies, when treated as a whole with the diverse anonymous ftp sites that it reference_, it does

fit into our discussion. An:hie grew out of the efforts of Emtage and Deutsch to automate the cre-

ation and referencing of previously hand-maintained lists of anonymous ftp sites. A demon peri-

3

. =

I i
Seaurcb Tin: I

.o._: I

I I
Is'_'" l _ I._" I lit" I

Figure 1: archie screen upon entry

odicaUy sweeps through a list of known ftp sites, creating a list of artifacts accessible at each of

them. This list of artifacts is then indexed for access by clients throughout the Internet seeking a

site for some particular item.

I describe the xarchie user interface here, developed by Ferguson for the X-windows system

from the ASCII user interface developed by Keho¢ and the Prospero system developed by Neuman

[5]. Xarehie and archie together form an example of a client/server application architecture, where

the client application (xarehie) provides user-local support for commands, information display, and

communication to the server application (arehie), which provides access to a remove facility, in

this case the archie database. Figure 1 shows xarchie's screen at entry. The series of buttons across

the top of the window control the activity of the user's xarehie client and its interaction with an

arehie server and the ftp sites which the server indexes. Figure 2 shows the xarchie settings panel,

including in particular the mode of search (exact, substring, regular expression, etc.), the order that

hits are presented (sorted by name, modification date, etc.), and the arehie server host to interro-

gate, in this case arehie.sura.net.

Entering a search term for an artifact, say xarchie.tar2, a compressed Unix tar file of the xarch-

ie source directory, and clicking the query button initiates the search, as shown in figure 3. As the

search progresses, xarehie updates the status line, indicating establishment of connection, progress,

and completion.

4

w

I

l

I

!

l

!

I

z

W

m

m

!

m

m

1

I

1

W

m

m

1

[] _ _ttk._is _ mm []

Figure 2: archie settings window

m i l !
m

i

Figure 3: Initiating an archle search

I_,IIo,,,vlI"_--_I"_-'II'_"IIh"d'_ I__._n_l_-'T_mll_. ••I

w

Figure 4: archie search results

Figure 4 shows the results of the search as a list of sites in the left scrolling region in the middle

of the window. Selecting a particular site by clicking on it results in figure 5, with the location, size,

and so on for this artifact on this site. A single instance of a match at the selected site automatically

selects the middle scrolling region (corresponding to the directories) and the right scrolling region

w

i

I

I

_m

me

Figure 5: Selection of a site and copy

[] xw_us

III _'_,_--._
Itld'°"_
II 1a,u_n_s,v,,r,

Ir_ _L_L___J
ItRllr Oil :

tqpreRe-et ere

Figure 6: WAIS main window

(corresponding to the files). Multiple matches (typical with inexact matches) require the selection

of both a directory and a file for the lower fields to be filled in. Clicking the ftp button establishes

an anonymous ftp session to the archive site and retrieves a selected artifact into the local directory

shown in the settings panel (shown in figure 2 as '.', the current directory),

i

m

I

n

g

m

i

I!

ill

3.2 - WAIS

The Wide Area Information Service (WAIS) is an experiment in text-based distributed infor-

mation systems by Thinking Machines and a number of collaborators [4]. WAIS supports the no-

tion of muldple sources of information; a user selects one or more sources to respond to a question,

phrased as a string of words which are deemed relevant tO the question. Figure 6 shows the main

window, containing a list of previously phrased questions and a list of already known sources.

n

m_

u

mmw

i

6
u

w
u

i

w

E

w

u

m

w

w

T_mr ce Edit

• ,rric, : _:0 J

O_t_,_. : Lsorrol J

c_.t: Lo I

Descrip_i_ :

$erver crea_d with U_X$ re_aN 8 b3 m Sep 20 14:$g:46 1.991 by re_Age_.ce.vI.L_t.e "_'

]t4q_ane.Ly-To: _s-directoz_-of-eervero4klu&ko. e.hi_k. _u

NN'_e fil_s of Utpe _ rood i_ the _ vere:

I /uor0_/r eux/siJttoL. _bt

• /_rO61re_els_tslt.olpel

I /_mrO_lretmels_rs/_ope2

• ($_) _rror of _e S_e_._0 _da J_f_r_o Kepooz_ory and our copy

Figure 7: Source _ndow for SoRReL archive

Opening a source displays a window containing information concerning thenature and location of

that source, as shown in figure 7 for the Ada archive that the SoRReL group maintains. This infor-

marion includes the Interact address and service port that the server for the source listens to, as well

as unit and cost fields (as yet unused) and a textual description of the source. A single server can

support multiple sources, each separately indexed and independently accessible. A distinguished

source, maintained by Thinking Machines, acts as a directory to other sources by indexing source

definitions such as the one shown in figure 7. These source definitions are retrievable using the

same question mechanism employed for other questions. The sole distinction is in the saving of

results;savinga sourcedefinitionplacesitinthedirectorycontainingtheuser'sknown sources,

making it accessible for subsequent questioning.

Figure8 shows thequestionwindow followinga successfulsearchoftheSoRReL source.Us-

ersselect one or more already known sources to be consulted for this question by clicking the add

source button and selecting from the resulting display of sources. The "Tell me about:" field ac-

cepts a collection of words to be used as a specification of the question. WA/S uses relevance feed-

back as its search mechanism; documents which match one or more of the words contained in the

"Tell me about:" field are added to the collection of matching documents, and then presented to the

user in the "Resulting Documents:" field ranked by a relevance metric, an indication of the fit to

7

U

[] X W_ Qum_Uon:

TILl. u Lbc_t.;

_x i_Lxrcee: " SLu_,l-e ras:

i :o: :e_.-_l:ot_rcl_t. arc 11
---_;ll,;l.- ,o_. Ii_ oo++.,.,_llD.l._.Do_._jt'_'_
I_,m_._ _ 1000 18 "_ ©odeg_nnb. _ /_06/re_oletarel_pel/cta-eda21

doc_m_t_ : t [11311 164, f_ It.COUL do(: AmfO_lretmo/e_tI/t_el/c_t-oda2/

401 8, _ ¢_. _ /_06/_m_lllt_rll_411ct_-Ida21
307 SOS. OK pi'_FI31, or© /_rO(;/reu_o/eim_l. ed_5_..hmark_l

307 I;71.4X pL_lz_l, st© /_rOt/re_o/oLutel. ed_1)ea_cbnazks/

2_ 149, _ d_b._t, let. /_c_;/¢e_ee/e_t_e/_pel/ct_-eLsa/

Status: Irmmd 40 docwJent_.
L

Figu re 8:i)a_ fio_- qu_on_and results

J_ elrm, m.doc /_rOSImu_/utan/tape l/cr.-eds2/

1 _,!_11,*.,,_-.11 .s,-.+, ,+"ll_,--1

Figure 9: Viewing the streams document

the words occurringin thequery string.Relevance feedback has _n shown to be more effective

than boolean expressionasa searchmechanism fortextuaJinformation(areportof one such study

appearsin [6]).

Selecting a result document for viewing retrieves the document from its server and displays it

in a window such as that shown in figure 9, which contains a portion of a document describing an

Ada implementation of a stream package. The find key button scrolls the window and highlights

in turn each Occurrence of search words in the document. WAIS lets users specify an arbitrary pro-

gram on the user's machine as the wewer to be revoked for a given class of documents, with the

class defined using the suffix of the document's file name (for example, xgif is typically used to

display images whose names end in '.git").

m

J

==_

W

i

J

m

I

iJ

_3

J

m

IkJ

Iterative refinement of a search that results in documents viewed with the text viewer is accom-

plished by selecting a salient portion of the document and clicking the add section button. An in-

dication of the text selected is added to the "Similar to" field in the question window. Subsequent

searches then append these refinements to the primary search phrase.

m

w

=

,ll.

3.3 - autoLib

The autoLib system, under development by Barrios Technology and NASA's Johnson Space

Center, is a monolithic application supported by a commercial relational database system (com-

prising the meta-information) and a UNIX file system (comprising the objects themselves). The

structure of information provided by archie and WAIS is fiat in the sense that there is little structure

provided other that an indexing mechanism. The autoLib system, on the other hand, supports both

a flexible single inheritance mechanism for definition of recta-information, and the definition of

heterogenous collections of objects drawn from the inheritance scheme [I]. Figure I0 shows the

main window for autoLib, including the topmost collection and its immediate sub-collections.

7

w

llW

Clicking on an entry in the list moves the user down the hierarchy of collections to the corre-

sponding subcolleetion, and that collection's subcollections are then displayed. The three buttons

at the bottom of the window allow the user to step back up one level in the collection hierarchy, to

move directly to the top of the hierarchy, or to view the objects associated with the current collec-

tion, respectively.

Figure 11 shows the object browser window, displaying the contents of one such collection.

The three columns of information include the object's identifier, its filename, and a .short tide.

The object viewer window for object 2446 appears in figure 12. AutoLib employs a commer-

cial relational database package for information storage, but the user model for autoLib is object-

oriented, defined not only as a hierarchy of class definitions, where superclass names are prefixes

of subclass names, but also as a hie_hy of collections, as mentioned earlier. AutoLib maps each

9

W

,am

De_mtnjt_ _ Temt

J_on SPice Center

_8 Rehash Center

Le_Ls ReseaPch Center

HCtSCl He_l(:l_ar ters

SlUiCe Station Proilram

I _k Ii r_l _ _xz

Figure IO: autoLib main window

m_

UHIQU[M JilT ID : 2446

gJI[L'T HAf_ : 000_101. gIr

TYPE: I0 ! Gi_

TYPE NANE; ! Plenetar'V Zmqe

_ I /eL/eor thtmelge8

VUSl 014 : None

LIIIMRY I[HTRY DATE: 02-0CT-91

TITLE

PACIFIC OCU_

IrOI/AT J Gl F

-Lsubclams))Plane_

Figure 12: autoLib obj_ viewer

concept (collection, class, object, etc.) into a corresponding database relation and maps each field

in an autoLib window (e.g., the object filename, 00000101.GIF, for object 2446) to an attribute in

the corresponding relation. The system derives the interpretation for a given object in the generic

object relation from the field defmitions stored by autoLib in the class field relation. While this is

10

m

_igL

W

I-

W

I

T .'

±

w

w

tL=

w -

2446 O000OI01.GIF Pf_CIFIC OCEtd_
4980 OOOOOI01.GI? P_IFZC OCEAN
4981 O0000102.GI? PACIFIC OCE¢_i
244F O(XX)OIO2.GIF PACIFIC OCEAH
2448 O0000103.GIF PACIFIC OCEAH
4982 O0000103.GIF PACIFIC 0CE¢_4

4983 O0000104.GI? PACIFIC OCECel
2449 OOOO0104.GIF I_CIFIC OCEAN
2450 O0000105.GIF PACIFIC OCEAH
4984 O0000105.GIF I_CIFIC OC_4
4985 O0000106.GIF PCW_IFIC OC£g_H
2451 O0000106.GIF PACIFIC 0CE¢.4
2452 O0000107.GIF PACIFIC OCIAH
4966 O0000107.GIF PCCIFIC OCE_H
4987 O0000100.GIF CHILE
2453 O0000108.GIF CHILE
2454 O(X)OOIOg.GIF CHILE
4988 OOOO0109.GIF CHILE
49_J O0000110.GIF CHILE
2455 O0000110.GIF CHILE
2456 O0000111.GIF ARGIHTII'W_
4990 O0000111.GIF ARGEHTIH¢_
4991 O0000112.GIF ARGEHTII'gl
2457 O0000112.GIF _D4TINA
2458 O(XX)Oll3.GIF N_GEHTIHA
4992 O0000113.GIF N_EHTIHA
4993 O(X)OOII4.GIF ARGIHTIHA
2459 O0000114.GIF I_RGEHTIHA
2460 O0000115.GIF ARGtHTINA
4994 O0000115.GIF ARGENTII_
4995 O0000118.GIF _GENTIHA
2461 O0000116.GIF N_GEHTIHA

I_qKe 1 o¢ 211

Figure II: autoLib object browser

not a true object-oriented database, it provides much of the flexibility and rich structural mecha-

nisms of a object-oriented database. The integration of objects and relations has been carried much

furtherin work on extensibledatabase systems such as POSTGRES [8].

In additionto the coUecdon browsing mechanism describedhere, autoLib supportstraditional

boolean expressionretrievaland a form of relevancefeedback.Each objectclasshas associated

with it a tool, which is used to view the object itself, as opposed to the metadata characterizing that

object,i.e.,the fieldspresentedin theobjectview window. Unlike WAIS, where toolexecution

occurred on the user workstation, tool execution in autoLib occurs on the autoLib server- the user

workstation merely acts as an X-windows display.

4 - A Brief Comparison

Viewing these three systems as potential software repositories is interesting, and at the same

time somewhat unfair to their designers, as none were created with that purpose in mind. However,

11

systems such as these are frequendy called into service in such contexts, and the flexibility and

adaptability exhibited provides interesting concepts and features for inclusion into systems specif-

ically intended as repositories. Table 1 summarizes majoras_t-S of the three systems. The popu-

Table 1: S ¢sten,a Synopsis

archie WAIS autoLib

architecture cltent/server chent/server monolithic

server sites

(nierfaces
-10

X -Windows,
ASCII

paaetn-matching (on
name only)

retrieval mechanisms

-100

X-Windows,
ASCII

relevancefeedback

X-Windows
(ASCII under development)

browsing,
boolean expression,
relevance feedback (on
abstract only. not full text)

information domain material available by textual iafixmation NASA flight center library
anonymousftp materials

information stored name, wtaxl occ_, fall text / image,
location, headline, index terms,
file attributes full text meta-information

(administrator-defined)

archiving decentraSz_ decentralized centralized
responsibility

indexing centralized decentralized centralized
responsibility

support required none moderate high
(archive)

support required moderate low high
(indexing)

promise as a poor limited a potential framework
repository

availability public public private

% $.

_w

W

J

m

i

W

f

laxity of archie stems not from its rich representation scheme or novel search mechanisms, but

rather from the low levels of effort required on the part of archive administrators and users to em-

ploy the system, it is an excellent example of how a limited purpose system implemented by vol-

unteers can provide a valuable resource. Referring to archie as a software repository, however,

stretches the definition of repository perhaps a little too far. Consideration of an artifact at a site as
• -i . _

a candidate component requires that the user knows both the name and the purpose of that artifact,

and the retrieval of the complete artifact (irrespective of the total size) before further consideration

Cm be made.

12

W

tim

I

i
J

w

i

=

",_llj+

V

w

r

The display facilities of WAIS alleviate the limitations of archie by presenting the user with a

flexible means of query specification (without requiring classification by the archivist) and the op-

portunity to select from a variety of candidates and view portions of them prior to retrieving the

complete text of the final selection. WAIS further increases flexibility in the nature of repositories

by supporting interrogation of multiple sources for a given query and the generation of both public

and private sources. (Note, however, that there is no technical impediment to doing this with archie

as well - the archie designers simply chose global _dexing rather than regional or local indexing.)

The principle virtue of WAIS, its treatment of all material as text to be indexed, is also its principle

failing from our perspective - there is no discrimination between code, supporting documents, and

so forth - resulting in slightly more cumbersome search behavior.

The use of an administrator-def'med set of collection and class definitions provides autoLib a

great deal of flexibility in organizing the information. In addition to the ability to organize the glo-

bal structure of the information base, this definitional facility supports recta-descriptions of arti-

facts, a useful feature in our chosen context.

The structuring, classification, and retrieval mechanisms of autoLib are by far the richest of the

three systems compared here. Much of this power obviously stems from the fact that autoLib is a

proprietary system, whereas archie is a volunteer effort and WAIS is a research project. However,

autoLib's look and feel suffers dramatically in our sample context. Unlike arehie and WAIS, which

use a client/server paradigm, autoLib executes solely on the server platform. In wide-area domains

like the one in which our programmer operates, this results in slow display and update of windows,

and an inability for a user to select alternative viewing tools without the intervention of the repos-

itory administrator.

5 - Conclusions

This paper reviewed three example information retrieval systems currently in use by a broad

diversity of users. I focussed on computer-supported repositories for software artifacts (i.e., corn-

13

ponents,documents,test suites, executable images, etc.) rather than addressing the more broadly-

scoped notion of an information repository, which could easily encompass entities such as public

libraries.

While these systems were not explicitly designed as software repositories, they do each provide

some aspect of repository requirements. Each is a legitimate step forward in utility from early tech-

niques for wide distribution of software. This analysis leads to the following proposal for perceiv-

ing the current state of software repository efforts from the standpoint of information systems.

Generation 1 - Program Libraries

This includes not only traditional compiler libraries, but also more distributed mechanisms

such as the Ada Software Repository [2] and the various archives for news groups such as

comp.sources.unix.

Generation 2 - Information Servers

Examples of this generation include archie, autoLib, and WA.IS:The emphasis here is on the

indexing and retrieval mechanisms, rather than upon deep representation.

Generation 3 - Component Bas_s

Fine-grain characterization of components and interrelationships distinguishes this generation.

The nature of reuse in this generation is compositional, and is typified by the Department of

Defense STARS effo_'ts and the Japanese Software Factory projects.

Generation 4 - Software Knowledge Bases

This generation provides deep knowledge about representation, generation, and composition

of components and design schemes and the process of software development.

My separation criteria for repository generations involves the namm and accessibility of the

knowledge of each artifact that comprises the repository. Generations one and two provide wide

access to artifacts, but little supporting infrastructure (although it might be argued that autoLib

14

W

iv

J

i

I

I

ml

W

U

t

I

lIB

w

could through the proper configuration efforts of a repository administrator be turned into a rudi-

mentary generation 3 system). Generations three and four provide increasingly rich information

concerning the nature of the artifacts contained within them. However, with this richness comes

increasing specialization of domain, and increasing difficulty in supporting interoperability be-

tween repositories. The component base services of today and the software knowledge base servic-

es of tomorrow should not loose sight of the design goals of today's successful information servers.

w

15

I

References

I. Barrios Technology, autoLib Automated Online Library Version 3 Product Overview, March

1990.

2. R. Corm, "The Ada Software Repository and Software Reusability," Proceedings of the Fifth

Annual Joint Conference on Ada Technology and Washington Ada Symposium, 1987, 45-53.

(Also appears in Tutorial: Software Reuse: Emerging Technology, W. Traez (ed.), IEEE

Press, 1988, 238-246.)

,

,

5.

6_

o

.

.

A. Emtage and P. Deutsch, "archie - An Electronic Directory Service for the Internet," Pro-

ceedings of USENIX, San Francisco, CA, January 1992, 93-110.

B. Kahle, Wide Area Information Server Concepts, Thinking Machines Inc., November 1989.

C. Neuman, The Virtual System Model for Large Distributed Operating Systems, The Univer-

sity of Washington, 1989.

S. E. Robertson and K. Sparck Jones, "Relevance Weighting of Search Terms," Journal of

the American Society for Information Science, 27 (1976), 129-146.

M. F. Schwartz and D. C. M. Wood, "A Measurement Study of Organizational Properties in

the Global Electronic Mall Community," Technical Report CU-CS-482-90, University of

Colorado, Boulder, August 1990.

M. S tonebraker, L. A. Rowe, and M. I--Iirohama, "The Implementation of POSTGRES," IEEE

Transactions on Knowledge and Data Engineering, 2, 1 (1990), 125-142.

W. Tracz, "Software Reuse Myths," ACM SIGSOFT Software Engineering Notes 13, 1(1988)

17-21.

10. P. Wegner, "Capital-Intensive Software Technology," IEEE Software 1, 3 (1984) 7--45.

W

J

J!P

J

J

J_m

I

IW

J

t

I

E
W

16

m

