4
s 7FEFSE

(BATA-({-1u63%4) FMAS NG3-12397
COMPUTATIONAL FLULIO JYNAMICS Final
Report, 0 Yor. 19¢9 - 19 lec. 1970
(Al2pama YUnive) ST p Unclas
G3/34 0127432
FINAL REPORT
FOR
FNAS COMPUTATIONAL FLUID DYMAMICS
Principal Investigator: Johrn F. IZiebarth

MASA/Marehzl]l Space Flight

NAS8-3€855/D.0. 17
198¢0

December 13,

Consortium for Computational Fluid

Conter

Liynamics

Under this NASA contract the Uriversity cof Alabama in Hunts-
viitle (UAH) was to provide the followinrg:

1. iderntificatiorn of critical flow problems relsted to
propulsion systems and ldentify computzticonsl {fluid
dymamics (CFD) resources for application to these
problems

z promoticn of CFD techrolog, from research zenters to
techrology development centers and direct the applice-
*ion of CFD as & design tool;

3. encourage industry and university participation in

CFD/propulaion rezearch activities through thelr own
interrnal and exterral funds;

4. provide peer review to CFD/propulsion programs;

direct the verificstiorm and validaticn of CFD methodole-
gies as thev are spplied to propulsicn problems.

o

ltems 1-4 of the proposed UAH taszke above have beern accomplished
through the establishment of four Principle Investigator Working
Groupz o Techrology Teams under the Consortium for Computational
Fluid Dynamics Application in Propulsion Techneology (cee [igures

1 and 2) established by the CFD Branch at NASA/MSFC. Toordirma-
tion of these activities has been through the Consortium for
Computational Fluid Dynmramics (CCFD), established at and by UAH

for this purpose. The four established technology teams are:
- Turbire Stage Technrnology Team
- Pump Stage Technology Team
- Combustion-Driven Flow Technology Team

- Complex Flow Paths Technology Team

The tochnrical management of each of these teams is controlled i
2 ctaff member from the CFD Branch ot MNASA/MSFC and the members
of ecach *technical team are from the member organizations in the
CCFD (see Figure 2.

The publizhed objectives and tasks of the CCFD are llisted
below.

Objectives:

1. Focu= CFD applications in propulsion
a. ETO
i. Direct baselire program towards lmproved accu-
racy, stability and efficiency

¥2-8-661-S

HOLVOLLSIANI TVdIONIHd

HOL1034IQ 1O03M0Hd ALISHIAINN

!

HOLVOLLSIANI TVJIONIHd

H01034!Q 193r0Hd HOLOVHINOD

HOLVOLLS3AN! TVdIONIHd
HOL034IQ 103M0Hd AON3OV

S103rodd S103rodd S103rodd $103ro4dd S123roud S103M0dd
a3aannd Q3anNN3 a3aanNnd - g3annd G3aNN4d Q3anNNnd
asy H3HLO gy H3H10 asgyl H3IHIO
m ||||| e B "
! SNOILVZINVOHO H3aWan "
" B ! -
1 1 [}
1 | 5 o~
i “ o
: HYN _ "
“ HOLVNIQHOO0D |
i @49 HO4 WNILHOSNOD !
“ dNOYD !
: IONNOD ONINHOM "
" ‘Hid _aomm n_DOEG "
_ ONDIHOM | !
“ "ANU'NIRd |
1
U E J

JHNLONYLS TVYNOILVZINVOHO
ADOTONHOAL NOISTNdOHd Ni SNOILYOITddV a40 HOd WNILHOSNOO

)))

91-8-9001-S

MYHOM IHL 31VLIMIOV4 ANV 3ONIIHIdXT ‘IDATTMONM FAINOHd — SNOILYZINVOHO HIGWIN @

NOILO3HIA TVOINHO31 3AIAOHd ANV S3LLIAILOV WNILHOSNOD 0

SdNOHOD ONINHOM

3d00S TTVHIAO JFHL NIHLIM SANSSI TvIINHO31 O14103dS 103HIQ —HOLVOILSIANI 21dIONIHd @

S3ILIAILOVY WNILHOSNOD 40 3d00S
IV.LOL 3HL NIHLIM ALINNILNOD T1VH3AO NIVLINIVIN NV 103410 —

SHIaGWIW WNILHOSNOD
ONOWY JOV4HILNI ANV S3ILIAILOY WNILHOSNOD 31VNIGHOOD —

S3AILIAILOY WNILHOSNOD 3HL
HO4 SNOILVANIWNOOI3H ANV MIIA3YH ‘1HDISHIAO 3AINOHd —

4 LINNWWOD NOISTNdOHd Q40 3HL 40 S3ILIALLOV TIVH3IAO 3HL YOS
IV1d 3781X31d ONINNILNOD V NIVLINIVIN ANV ‘JLYNIGHOO0D ‘L034Ia —

SNOILONNd TTVNOILVZINYOHO

ADOTONHO3L NOISTINdOHd NI
SNOILYDITddV a49 HO4d WNILHOSNOD

SJNOYD DNIXHOM
HO103HId 1O3rodd @

HOLVYNIQHOOO @

TIONNOD @

WNILHOSNOD @

2

Figure

¥2-8-008-S

NOISIAIQ INAQLI®OO0H
- NOLLYHOJHOO TYNOILYNHILNI T1I3MNO0Y

HLNOS - NOISIAIQ DNIHIINIONT ASNLIHM ? LLvHd

SVX31 4O ALISHIAINN
3LNLILSNI ADVdS
33SSIANNIL 4O ALISHIAINN

J3SSINNIL 4O ALISHIAINN

SIONIT 4O ALISH3AINN

3TUASLINNH
‘VWVEVTY 40 ALISHIAINN

VINVEVTV 4O ALISHIAINN

ALISH3AINN JLVLS IddISSISSIN
S3ILISHIAINN

NOISIAIQ ONIHIINIONT AINLIHM ? LLvHd

SW3LSASHO3L 13ro4d3v

SHOLOVHINOD 3INIONI

'ddOD SOINVHO3W TVYNOILY.LNJIWOD

"ONI “00
SOINVHO3INW TVNOILYLNIWOO

NOILYHOJHOO HOYVY3S3y
ADOTONHO3L 31NN

SLSATVNY ‘SINVLINSNOD
‘SHIINIONI IHYMLIOS

"ONI ‘S3LVIOOSSY
HOHVY3S3Y DIJILNIIOS

ANVJWNOOD
JOVdS ? JUSSIN A33HMDO0T

"ONI ‘VOIHINY HLHON 4O WVYHO

NOILYHOJHOO HOHV3S3Y 04D
SHOLOVHLINOD

SH3IGW3IN TVILINI

Figure 3

H3IN3D LHOIT4 30VdS TIVHSHVIN VSYN
H31IN3D HOHVY3S3YH SIM31 VSYN

"31N3O HOUVIS3H SINY VSYN
S3ION3 OV

ADOTONHO31l NOISTNdOHd
NI SNOILVYOITddV a40 HO4 NNILHOSNOD

)

b. CST.

i. Stimulate CFD validation towards propulsion
flows
1i. Direct applications codes toward design tools

and advanced hardware technology concepts

r

ldentify national CFD propulsion requirements

W

Ctimulaste 2 forum for government, industry, and univer-
sity interactions

4. Encourage industry *to participate in CFD developmont
with TRAD funrds

5. Provide synergism in the CFD community
6. Provide peer review of CFD programs
Tasks:

1. Develop a plan to apply CFD to current and future pro-
pulsion systems
£ Tdentify and rank critical flow problems related to
propulsicon systems
b. Identify national CFD related rescurces
C. Define high performance computing requirements to
accomplish CFD for propul=zion applications

o

. Direct CFD techrology developmert to propulsior applica-

tions
3 Ascsezs and validate CFD applications in propulsion
systems
a Develop evaluation criteria
b. Define and implement benchmark validaticon
oL Define and implement validstion tests
4. Direct the application of CFD design tools towards

advanced hardware technology concepte

[&2]

Accelerate the transfer of CFD techrology from uniwverci-
ties and research centers +o industry and hardwasre
development centers

Three of the Technology Teams are well establizhed and have been
meeting for about one vear; the fourth, the Complex Flow Fath:
Technology Team, is in start-up phase. These tzams have beer
very useful in identifying current design issues and promoting
CFD solutionz to these problems=. The quarterly meetirngs have
beer uzeful in driving the progress of the work and ccordinating
the scheduling of results by various ocrganizations.

Items 1 and 5 of the proposed UAH tasks merntiocned previousl:
have beer carried out by the prirmcipal investigator, ocne research
assocliate and four graduate students =t UAH. Three <specific

N

prcjects were accomplished to support these tasks.

One effort involved geometric modeling and numerical grid

generation using a zoftware teol called GEMNTE. This work was
carried out in collaboration Wwith an engineer at MSFC. The
explanation of how to use thiz zcoftware and 2 series of computs -

tional results sre civern in Appendis 1.

Another effort 1o support the CFD Branch has been the analy -
sis and optimizstion of a large CFD code, ROTOR. The results of
this investigstion and the znalyciz of ROTOR are included in
Appendix 2.

A third effort has beer a validation of an equilibrium
chemistry model . The results of this analysis are included in
Appendix 3.

Recommendations
It was agreed between UAH and MSFC that during the initial
implementation of the four technology teams that the development

of the Consortium Council (see Figures ! and 2) be delayed.

[t is recommended that the implementation of +he Council be

considered for 13991. The Techrnology Teams (Principal Investiga-
tor Working Groups) will be well established by +then and 1he
overall propulsion program will have benefited from +their ef-
forts. This would zlso be the appropriate time to establish a
communication network among government, industry and university
consortium members. This network would include newsletters ard

brochures.

APPENDIX 1

INTRODUCTION

This report explains the activitiesz that were carried out in
order to generate a grid on the IRIS Silicon Graphics worksta-
tion. The IRIS is a graphicz workstation that allows the user to
see & graphical representation of a solution for a particular
problem. The grid gerneration tool that was used is called GENIE.
GENIE is & 2-D and 3-D geometry modeling and grid generation tool
that is available on the IRIS workstation.

IMPLEMENTATION

To access the I[RIS workstation, the user must input the

login number and the password. The syntax for this interaction
are:

Prompt Input

login: Ernter login number and returnm

password: Enter passsword and return
The user gets a prompt on the screer that contains t+he rame of
the workstation with & rumber . The svntax of this prompt is:

[(deckard) or (rachel)].logname#%]

In order to differentiate the different worbkztations that are
available, different names were given to them. The names of the
ones that are available are deckard and rachel . For more infor-
mation on the naming convention, the system administrator should
be consulted.

To run GEMNIE on the worhstationrn, the user commard is genie.
The IRIS workstation runs on the UNIX cperating asysctem. This
means that all commands will be written in lower case letter=
because of UNIX sensitivity to upper case letters.

As an example of how to use this tool, a 51 =« 21 90 degree

duct is generated. The planes for this grid are:
Streamwise (l-value) Planes
: B ! “5Ten
3 -0.25%D
S 0 deg.D
15 30 deg.D
25 60 deg.D
30 77.5 deg.D
34 830 deg.D
36 0.25D
3 0.4D
51 2.5D
GENIE is a menu-driven program. The user defines the prob-
lem domain through interaction with the program. To define the
boundaries for a particular geometry, the first item (defining
the boundaries) is selected. After this, the =second item
(creating the grid patches) is chosen im order to create the
patches that are needed to generate the grid. In crder to plot,
the user picks the plotting item in the menu. All the data that
will be required by the program in order to run makes up the data
file. By default, this is stored in fort.?20. In order +*c¢ pre-
vent this file from being overwritten the next time a user runs
GENIE, the file can be renamed or copled to another file using
the UNIX command to move (mv filel fine2) or copy (cp filel
file2). The data file can be edited by using the editors that
are avallable on the workstations. Once the user finistes the

10

interaction wi the plotting routine, a g. uphical solution to
the problem that was defined by the user is viewed on the screen,

The output file (solution) is stored by default in fort.47,. This
is a binary file. An example of a data file can be found in Parr
A,

To plot the solutior for the grid mentioned above, the steps
that were followed are located in Part E. The plotting pachkayge
used was Plot3d 3.5. Plot3d 2.5 iz o 2-D and 3-D plotting pack -
age from NASA/Ames. The next step that was taken was stacking
the 2-D solution into 3-D. A gridstack program was written in
order to accomplizh this function. Since the output file +hat
was generated by running GENIE was = binary file, this file tad
to be converted to a formatted file. In order +o do thic,
Flot3d 3.5 was accessed again. The binary file was ther read by
inputtfng

re/bin/x=fort.47

The syntax of the command to convert a birnary file to a formatted
file is

list xyz/formatted/x=zoutputfile

The output file is specified by the user. This output file
will be the input file to the gridstack program. The gridstack
program is called gridstack.f. The program is written inm FOR-
TRAN . The program serves as a template ir the sense that « user

c¢an run a different grid simply by changing the dimension size to
reflect the size of the grid. The grid is stacked in +he 7-

direction using spacing from the Y-direction at inlet plane
(1=1). This program is located in Part C. This program was used
to stack §1 x 31, 51 x 41, 101 = 41, 101 ~ 61, and 101 g1
grids. The gridstack program is compiled by using the compile
command available on the IRIS. This command is

f77 filename (in this case, gridstack.f)
To execute the file, the execute command is used. For +this

particular program, the execute command 1is
gridstack.f -o gridstack

For more information on these two commands, the system adminic-
trator should be consulted. Using the gridstack routine, +the
input file in this case was called induct.fmt and the cutput file
outduct . fmt.

After compiling and executing the gridstack program,
Plot3dm3.5 was accessed. Since the cutput file created by exe-
cuting the gridstack program was a multigrid, the read commard

was

re/mgr/for/outduct

11

The sequence “ commands th

at followed are located in Part D.
The different plots that

Are generated can be found in Part E.

CONCLUSION

GENIE was used to do geometry modeling and grid generation

in support of engineering anmalysis at MSFC. It is recommended
that <the newer version of GENIE be implemernted on the Silicon
Graphics 4-D system. This svyetem is not currerntly available, but

its acquisition is highly recommended.

13

PART A

14

PROMPTING
7ito
NUMBER OF POINTS IN THE I DIRECTION
NUMBER OF POINTS IN THE J DIRECTION
ACTIVITY OPTION 1: DEFINING BOUNDARIES
"NDICES ARE 1 51 1 1 FOR BOUNDARY 1
—~UMBER OF SEGMENTS= 9
1 3 ARE THE INDICES OF SEGMENT 1 OF BOUNDARY 1
SEGMENT TYPE 2 STRAIGHT LINE
LINE OPTION 1 USING 2 END POINTS
INPUT POINTS ARE -.5000 -1.8000 AND -.2500 -1.8000
PACK OPTION=0 EVEN SPACING
3 5 ARE THE INDICES OF SEGMENT 2 OF BOUNDARY 1
SEGMENT TYPE 2 STRAIGHT LINE
LINE OPTION 1 USING 2 END POINTS
INPUT POINTS ARE -.2500 -1.8000 AND .0000 -1.8000
PACK OPTION=0 EVEN SPACING
S 15 ARE THE INDICES OF SEGMENT 3 OF BOUNDARY 1
SEGMENT TYPE 4 CIRCLE
CIRCLE OPTION 3 USING 3 POINTS

51
21

FIRST END POINT IS .0000 -1.8000
OTHER END POINT 1S .9000 -1.5588
THIRD POINT ON CIRCLE IS .4659 -1.7387

PACK OPTION=0 EVEN SPACING

NO, GOING COUNTERCLOCKWISE
15 25 ARE THE INDICES OF SEGMENT 4 OF BOUNDARY 1

SEGMENT TYPE 4 CIRCLE

CIRCLE OPTION 3 USING 3 POINTS

FIRST END POINT 1S .9000 -1.5588
OTHER END POINT IS 1.5588 =.9000
THIRD POINT ON CIRCLE IS 1.2728 -1.2728

'ACK OPTION=0 EVEN SPACING
TNO, GOING COUNTERCLOCKWISE
25 30 ARE THE INDICES OF SEGMENT 5 OF BOUNDARY 1
SEGMENT TYPE 4 CIRCLE
CIRCLE OPTION 3 USING 3 POINTS

FIRST END POINT IS 1.5588 -.9000
OTHER END POINT IS 1.7573 -.3896
THIRD POINT ON CIRCLE IS 1.6751 -.6597

PACK OPTION=0 EVEN SPACING
NO, GOING COUNTERCLOCKWISE
30 34 ARE THE INDICES OF SEGMENT 6 OF BOUNDARY 1
SEGMENT TYPE 4 CIRCLE
CIRCLE OPTION 3 USING 3 POINTS

FIRST END POINT IS 1.7573 ~-.3886
OTHER END POINT 1S 1.8000 .0000
THIRD POINT ON CIRCLE IS 1.7884 -.2038

PACK OPTION=0 EVEN SPACING
NO, GOING COUNTERCLOCKWISE
34 36 ARE THE INDICES OF SEGMENT 7 OF BOUNDARY 1
SEGMENT TYPE 2 STRAIGHT LINE
LINE OPTION 1 USING 2 END POINTS
INPUT POINTS ARE 1.8000 .0000 AND 1.8000 .2500
PACK OPTION=0 EVEN SPACING
36 37 ARE THE INDICES OF SEGMENT 8 OF BOUNDARY 1

15

SEGMENT TYPE 2 STRAl .T LINE
LINE OPTION 1 USING 2 END POINTS
INPUT POINTS ARE 1.8000 .2500 AND
PACK OPTION=0 EVEN SPACING
37 51 ARE THE INDICES OF SEGMENT 9 OF BOUNDARY

JEGMENT TYPE 2 STRAIGHT LINE
'LINE OPTION 1 USING 2 END POINTS
INPUT POINTS ARE 1.8000 .4000 AND
PACK OPTION=0 EVEN SPACING
INDICES ARE 1 51 21 21 FOR BOUNDARY 2
NUMBER OF SEGMENTS= 9

1 3 ARE THE INDICES OF SEGMENT 1 OF BOUNDARY
SEGMENT TYPE 2 STRAIGHT LINE
LINE OPTION 1 USING 2 END POINTS
INPUT POINTS ARE -.5000 -2.8000 AND
PACK OPTION=0 EVEN SPACING

3 5 ARE THE INDICES OF SEGMENT 2 OF BOUNDARY
SEGMENT TYPE 2 STRAIGHT LINE
LINE OPTION 1 USING 2 END POINTS
INPUT POINTS ARE -.2500 -2.8000 AND
PACK OPTION=0 EVEN SPACING

S5 15 ARE THE INDICES OF SEGMENT 3 OF BOUNDARY
SEGMENT TYPE 4 CIRCLE
CIRCLE OPTION 3 USING 3 POINTS

FIRST END POINT 1S .0000 _ -2.8000
OTHER END POINT IS 1.4000 -2.4249
THIRD POINT ON CIRCLE IS . 7247 -2.7046

PACK OPTION=0 EVEN SPACING
NO, GOING COUNTERCLOCKWISE
15 25 ARE THE INDICES OF SEGMENT 4 OF BOUNDARY
SEGMENT TYPE 4 CIRCLE
CIRCLE OPTION 3 USING 3 POINTS

FIRST END POINT IS 1.4000 -2.4249
OTHER END POINT IS 2.4249 -1.4000
THIRD POINT ON CIRCLE IS 1.9799 -1.9799

PACK OPTION=0 EVEN SPACING
NO, GOING COUNTERCLOCKWISE
25 30 ARE THE INDICES OF SEGMENT 5 OF BOUNDARY
SEGMENT TYPE 4 CIRCLE
CIRCLE OPTION 3 USING 3 POINTS

FIRST END POINT 1S 2.4249 -1.4000
OTHER END POINT IS 2.7336 -.6060
THIRD POINT ON CIRCLE IS 2.6052 ~1.0262

PACK OPTION=0 EVEN SPACING
NO, GOING COUNTERCLOCKWISE
30 34 ARE THE INDICES OF SEGMENT 6 OF BOUNDARY
SEGMENT TYPE 4 CIRCLE
CIRCLE OPTION 3 USING 3 POINTS

FIRST END POINT IS 2.7336 ~-.6060
OTHER END POINT IS 2.8000 .0000
THIRD POINT ON CIRCLE IS 2.7820 -.3170

PACK OPTION=0 EVEN SPACING
NO, GOING COUNTERCLOCKWISE

34 36 ARE THE INDICES OF SEGMENT 7 OF BOUNDARY
SEGMENT TYPE 2 STRAIGHT LINE

16

1

2

1.8000

1.8000

-.2500

.0000

.4000

2.5000

-2.8000

-2.8000

LINE OPTION 1 USING 2 END POINTS
INPUT POINTS ARE 2.8000 .0000 AND 2.8000 .2500
PACK OPTION=0 EVEN SPACING
36 37 ARE THE INDICES OF SEGMENT 8 OF BOUNDARY 2
— SEGMENT TYPE 2 STRAIGHT LINE
LINE OPTION 1 USING 2 END POINTS
INPUT POINTS ARE 2.8000 .2500 AND 2.8000 .4000
PACK OPTION=0 EVEN SPACING
37 51 ARE THE INDICES OF SEGMENT 9 OF BOUNDARY 2
SEGMENT TYPE 2 STRAIGHT LINE
LINE OPTION 1 USING 2 END POINTS
INPUT POINTS ARE 2.8000 .4000 AND 2.8000 2.5000
PACK OPTION=0 EVEN SPACING :
INDICES ARE 1 1 1 51 FOR BOUNDARY 3
NUMBER OF SEGMENTS= 1
SEGMENT TYPE 2 STRAIGHT LINE
LINE OPTION 1 USING 2 END POINTS
INPUT POINTS ARE -.5000 -1.8000 AND -.5000 ~-2.8000
PACK OPTION=7 PACKED ON BOTH ENDS USING HYPERBOLIC TANGENT STRETCHING
WITH SMALLEST INTERVAL= .0025000
SMALLEST INTERVAL IN SECOND SECTION = .0025000
INDICES ARE 51 51 1 21 FOR BOUNDARY 4
NUMBER OF SEGMENTS= 1
SEGMENT TYPE 2 STRAIGHT LINE
LINE OPTION 1 USING 2 END POINTS
INPUT POINTS ARE 1.8000 2.5000 AND 2.8000 2.5000
PACK OPTION=7 PACKED ON BOTH ENDS USING HYPERBOLIC TANGENT STRETCHING
WITH SMALLEST INTERVAL= .0025000
SMALLEST INTERVAL IN SECOND SECTION = .0025000
__ACTIVITY OPTION 2: CREATING GRID PATCHES
T INDICES ARE 1 51 1 21 FOR PATCH 1
ACTIVITY OPTION 3: CREATING AUTOPATCHES
ACTIVITY OPTION 5: PLOTTING
1 PLOTS IN PLOT SET 1
OUTER BORDER TO BE DRAWN ON PLOT 1
1 PATCHES TO BE DRAWN ON PLOT 1
INDICES ARE 151 1l 21 FOR PATCH 1 ON PLOT 1
ACTIVITY OPTION 8: OUTPUTTING FILE(S)
YES, GRID IS TO BE OUTPUT
YES, INPUTS ARE TO BE OUTPUT

17

PROMPTING

vito
NUMBER OF POINTS IN THE I DIRECTION = 101
NUMBER OF POINTS IN THE J DIRECTION = 81

ACTIVITY OPTION 1: DEFINING BOUNDARIES
-.<NDICES ARE 1 101 1 1 FOR BOUNDARY 1

NUMBER OF SEGMENTS= §

1 5 ARE THE INDICES OF SEGMENT 1 OF BOUNDARY
SEGMENT TYPE 2 STRAIGHT LINE
LINE OPTION 1 USING 2 END POINTS
INPUT POINTS ARE -.5000 -1.8000 AND
PACK OPTION=0 EVEN SPACING

S 9 ARE THE INDICES OF SEGMENT 2 OF BOUNDARY
SEGMENT TYPE 2 STRAIGHT LINE
LINE OPTION 1 USING 2 END POINTS
INPUT POINTS ARE =.2500 -1.8000 AND
PACK OPTION=0 EVEN SPACING

9 29 ARE THE INDICES OF SEGMENT 3 OF BOUNDARY
SEGMENT TYPE 4 CIRCLE
CIRCLE OPTION 3 USING 3 POINTS

FIRST END POINT IS .0000 -1.8000
OTHER END POINT IS .9000 -1.5588
THIRD POINT ON CIRCLE IS .4659 -1.7387

PACK OPTION=0 EVEN SPACING
NO, GOING COUNTERCLOCKWISE
29 49 ARE THE INDICES OF SEGMENT 4 OF BOUNDARY
SEGMENT TYPE 4 CIRCLE
CIRCLE OPTION 3 USING 3 POINTS

Pl

FIRST END POINT IS .9000 -1.5588
OTHER END POINT IS 1.5588 -.9000
HIRD POINT ON CIRCLE IS 1.2728 -1.2728

~PACK OPTION=0 EVEN SPACING
NO, GOING COUNTERCLOCKWISE
49 59 ARE THE INDICES OF SEGMENT 5 OF BOUNDARY
SEGMENT TYPE 4 CIRCLE
CIRCLE OPTION 3 USING 3 POINTS

FIRST END POINT IS 1.5588 -.9000
OTHER END POINT 1S 1.7573 -.3896
THIRD POINT ON CIRCLE IS 1.6751 -.6597

PACK OPTION=0 EVEN SPACING
NO, GOING COUNTERCLOCKWISE
59 67 ARE THE INDICES OF SEGMENT 6 OF BOUNDARY
SEGMENT TYPE 4 CIRCLE
CIRCLE OPTION 3 USING 3 POINTS

FIRST END POINT IS 1.7573 -.3886
OTHER END POINT IS 1.8000 .0000
THIRD POINT ON CIRCLE IS 1.7884 -.2038

PACK OPTION=0 EVEN SPACING
NO, GOING COUNTERCLOCKWISE

67 71 ARE THE INDICES OF SEGMENT 7 OF BOUNDARY
SEGMENT TYPE 2 STRAIGHT LINE
LINE OPTION 1 USING 2 END POINTS
INPUT POINTS ARE 1.8000 .0000 AND
PACK OPTION=0 EVEN SPACING

71 73 ARE THE INDICES OF SEGMENT 8 OF BOUNDARY

18

1

-.2500

.0000

1.8000
1

-1.8000

-1.8000

.2500

SEGMENT TYPE 2 STRAIudT LINE
LINE OPTION 1 USING 2 END POINTS
INPUT POINTS ARE 1.8000 .2500 AND 1.8000 .4000
PACK OPTION=0 EVEN SPACING
73 101 ARE THE INDICES OF SEGMENT 9 OF BOUNDARY 1
SGMENT TYPE 2 STRAIGHT LINE

LINE OPTION 1 USING 2 END POINTS
INPUT POINTS ARE 1.8000 .4000 AND 1.8000 2.5000
PACK OPTION=0 EVEN SPACING
INDICES ARE 1 101 81 81 FOR BOUNDARY 2
NUMBER OF SEGMENTS= 9

1 5 ARE THE INDICES OF SEGMENT 1 OF BOUNDARY 2
SEGMENT TYPE 2 STRAIGHT LINE
LINE OPTION 1 USING 2 END POINTS
INPUT POINTS ARE -.5000 -2.8000 AND -.2500 -2.8000
PACK OPTION=0 EVEN SPACING

S 9 ARE THE INDICES OF SEGMENT 2 OF BOUNDARY 2
SEGMENT TYPE 2 STRAIGHT LINE
LINE OPTION 1 USING 2 END POINTS
INPUT POINTS ARE -.2500 -2.8000 AND .0000 -2.8000
PACK OPTION=0 EVEN SPACING

9 29 ARE THE INDICES OF SEGMENT 3 OF BOUNDARY 2
SEGMENT TYPE 4 CIRCLE
CIRCLE OPTION 3 USING 3 POINTS

FIRST END POINT IS .0000 . -2.8000
OTHER END POINT IS 1.4000 ~2.4249

THIRD POINT ON CIRCLE IS .7247 -2.7046
PACK OPTION=0 EVEN SPACING
NO, GOING COUNTERCLOCKWISE
29 49 ARE THE INDICES OF SEGMENT 4 OF BOUNDARY 2
SGMENT TYPE 4 CIRCLE
~<IRCLE OPTION 3 USING 3 POINTS

FIRST END POINT IS 1.4000 ~2.4249
OTHER END POINT IS 2.4249 -1.4000
THIRD POINT ON CIRCLE IS 1.9799 -1.9799

PACK OPTION=0 EVEN SPACING
NO, GOING COUNTERCLOCKWISE
49 59 ARE THE INDICES OF SEGMENT S OF BOUNDARY 2
SEGMENT TYPE 4 CIRCLE
CIRCLE OPTION 3 USING 3 POINTS

FIRST END POINT IS 2.4249 -1.4000
OTHER END POINT IS 2.7336 -.6060
THIRD POINT ON CIRCLE IS 2.6052 -1.0262

PACK OPTION=0 EVEN SPACING
NO, GOING COUNTERCLOCKWISE
59 67 ARE THE INDICES OF SEGMENT 6 OF BOUNDARY 2
SEGMENT TYPE 4 CIRCLE
CIRCLE OPTION 3 USING 3 POINTS

FIRST END POINT IS 2.7336 -.6060
OTHER END POINT IS 2.8000 .0000
THIRD POINT ON CIRCLE IS 2.7820 -.3170

PACK OPTION=0 EVEN SPACING
NO, GOING COUNTERCLOCKWISE

67 71 ARE THE INDICES OF SEGMENT 7 OF BOUNDARY 2
SEGMENT TYPE 2 STRAIGHT LINE

18

LINE OPTION 1 USING 2 END POINTS
INPUT POINTS ARE 2.8000 .0000 AND 2.8000 .2500
PACK OPTION=0 EVEN SPACING
71 73 ARE THE INDICES OF SEGMENT 8 OF BOUNDARY 2
— EGMENT TYPE 2 STRAIGHT LINE
LINE OPTION 1 USING 2 END POINTS
INPUT POINTS ARE 2.8000 .2500 AND 2.8000. .4000
PACK OPTION=0 EVEN SPACING
73 101 ARE THE INDICES OF SEGMENT 9 OF BOUNDARY 2
SEGMENT TYPE 2 STRAIGHT LINE
LINE OPTION 1 USING 2 END POINTS
INPUT POINTS ARE 2.8000 .4000 AND 2.8000 2.5000
PACK OPTION=0 EVEN SPACING
INDICES ARE 1 1 1 81 FOR BOUNDARY 3
NUMBER OF SEGMENTS= 1
SEGMENT TYPE 2 STRAIGHT LINE
LINE OPTION 1 USING 2 END POINTS

INPUT POINTS ARE -.5000 -1.8000 AND -.5000 ~2.8000
PACK OPTION=7 PACKED ON BOTH ENDS USING HYPERBOLIC TANGENT STRETCHING
WITH SMALLEST INTERVAL= .0025000

SMALLEST INTERVAL IN SECOND SECTION = .0025000

INDICES ARE 101 101 1 81 FOR BOUNDARY 4
NUMBER OF SEGMENTS= 1

SEGMENT TYPE 2 STRAIGHT LINE

LINE OPTION 1 USING 2 END POINTS

INPUT POINTS ARE 1.8000 2.5000 AND 2.8000 2.5000
PACK OPTION=7 PACKED ON BOTH ENDS USING HYPERBOLIC TANGENT STRETCHING
WITH SMALLEST INTERVAL= .0025000

SMALLEST INTERVAL IN SECOND SECTION = .0025000

CTIVITY OPTION 2: CREATING GRID PATCHES
~INDICES ARE 1101 1 81 FOR PATCH 1
ACTIVITY OPTION 3: CREATING AUTOPATCHES
ACTIVITY OPTION S: PLOTTING
1 PLOTS IN PLOT SET 1
OUTER BORDER TO BE DRAWN ON PLOT 1
1 PATCHES TO BE DRAWN ON PLOT 1
INDICES ARE 1101 1 81 FOR PATCH 1 ON PLOT 1
ACTIVITY OPTION 8: OUTPUTTING FILE(S)
YES, GRID IS TO BE OUTPUT
YES,INPUTS ARE TO BE OUTPUT

PART B

21

In order to plot on Plot3d_3.5 , the following commands are followed:
1) Access Plot3d_3.5 by inputting plot3d_3.5 at the
prompt.

2) Read the file that will be the input file to
Plot3d_3.5. The format to read in Plot3d_3.5 is:
re/ for or bin or unfor/x=name of the input file.
The file created by running GENIE is a binary file.
This means that using the above format, the read
command will be re/bin/x=fort.47.
3) Plot3d_3.5 allows the user to set the background of
the screen during plotting. The syntax for this is bg
#, where #, by default represents the number
representations of the different colors that are
available in the software package. The different
colors that are available can be found in the
Plot3d_3.5 user manual. | used a white background
and the command is : bg 1.
4) At the prompt, enter wa. The following sequence of
commands and input follows:

Command Input
wa 1, grid 1
Enter | start ([,end],[,inc]): a
Enter J start ([,end),[,inc]): a
Enter K start ([end],[,inc)): a
Line Hidden, Line, or Shaded-Surface:
Enter Color: red

Enter Line Type:
Enter Line Thickness Factor:
Enter Symbol Type:
Enter Symbol Size Factor:
By inputting a , the user is specifying to the package that all of
the data in the I, J, K direction should be used. After going through
these sequence, the user can plot by using the pl command. This plot

22

will be a 2-D plot. The plot is checked in order to make sure that it
conforms to right hand co-ordinate system.. For more information on
Plot3d_3.5, the user manual should be consuited.

23

PART

24

THIS IS A GRIDSTACK PROGRAM THAT STACKS A 2D GRID TO 3D

|
(9]

THE DIMENSION SIZE REFLECTS THE SIZE OF THE GRID
DIMENSION X1(101,81,2), X2(101,81,81,3),X3(101,81,2)

c THE INPUT FILE TO THIS PROGRAM IS THE FORMATTED FILE THAT WAS
c GENERATED BY PLOT3D USING THE LIST COMMAND
C
open (S,form='formatted',file='grid3.fmt')
open (6,form='formatted',file='outduct.fmt')
c READ IN 2D FORMATTED, SINGLE BLOCK GRID
(o]
READ(5, *) IMAX , JMAX
READ (5,*) (((X1(I,J,L), I=1,IMAX), J=1,JMAX), L=1,2)
JMAXP1 = JMAX + 1
DO 100 J= 1,JMAX
DO 100 1=1,IMAX
X3(I,JMAXP1-J,1) = X1(I1,J,1) + 0.5
X3(I,JMAXP1-J,2) = X1(I,J,2) + 2.3
100 CONTINUE
C INITIALIZE THIRD DIMENSION MAXIMUM INDEX AND BLOCK SIZE

KMAX = JMAX
C STACK GRID IN THE Z-DIRECTION (K-INDEX) USING SPACING FROM Y-DIRECTION
C (J-INDEX) AT INLET PLANE (I=1) '
C

DO 200 K = 1,KMAX
DO 200 J = 1,JMAX
DO 200 I = 1,IMAX
— X2(1,J,K,1) = X3(1,J,1)
X2(1,J,K,2) = X3(1,J,2)
X2(1,3,K,3) = X3(1,K,2)
200 CONTINUE
NGRID = 1

WRITE(6,*) NGRID
WRITE(6,*) IMAX,JMAX,KMAX
DO 300 L = 1,3
WRITE (6,*)(((X2(I,J,K,L),I=1,IMAX),J=1,JMAX),K=1,KMAX)
300 CONTINUE
STOP
END

— 25

PART D

In order to get the plotting for the multigrid that is created by
running the gridstack program, the following commands and input are
done by the user.

Commands _ Input
Plot3d_3.5: wa
wa 1, grid 1

Enter | start ([.end],[,inc)): f
Enter J start ([.end],[,inc]): a
Enter K start ([end],[,inc)): a
Line Hidden, Line, or Shaded-Surface:

Enter Color: red

Enter Line Type:

Enter Symbol Type :

Enter Symbo! Size Factor:
This sequence is repeated but this time the I, J, K value will be
different. Also, the color will be different. The input are :

I: Input a

J: Input f

K: Input a

Color: Input green
The sequence is repeated again. The 1, J, K, and the color values are :

I: Input a

J: Input a

K: Input f

Color: Input blue

After the last sequence, the solution is plotted by using the pl

command. The plot will appear on the screen. The a input represents
all of the input file data in the specific direction. The f input
represents the first data in the specific direction. The | input
represents the last data. The different colors are used for checking
purpose. We want to make sure that the I, J, K direction are in the
proper direction. Also, when the plot appears on the screen, the plot

27

is checked to make sure that it abides by the right hand co-ordinate
system.

The picture of the plot is taken by entering the T command at
the prompt. After about 2 minutes, the screen will start to fade. A
message "Screen Image is saved in outduct-a® will appear. The
outduct-a file is the image file. Plot3d_3.5, by default, creates this
file anytime the user uses the T command. The user needs to quit
Plot3d_3.5 in order to send the image file to the printer. The quit
command for Plot3d_3.5 is : quit.

The user can also enter two lines of comment that will appear
on the printout of the image file. The command for this is : t. This
command is entered at the UNIX prompt not the Plot3d_3.5 prompt.
After this, the image file is sent to the printer by entering the ftek
command. The syntax for this command is :

ftek name of image file.
The name of the image file is the file that was created by Plot3d_3.5
when the user took a picture of the plot (outduct-a).

28

PART E

TEXTEXTS

i

STWN G A00E

30

TR 12XTS

I

STVN G A0CS

31

101 %61 xB1

B00Y AND MALLS

32

ADQTRP

UL
¥ Nt

AAILLSDOP

T A
W HRe
AT
Bl

TP

WAMDDEYS

NERIYTUE
L

) oot

MORG

RO

AR
! FX we

APPENDIX 2

33

OPTIMIZATION OF FORTRAN PROGRAMS WITH APPLICATION TO
COMPUTATIONAL FLUID DYNAMICS

INTRODUCTION

Anzlysis of three-dimenzicnal flow was thought impossible
until equations goverring the flow of 2ir, water and other fluids

were first published by Claude Louis M.H. Mavier in 1822 and
generalized by Sir George C. Stokes in 1840 (MNavier-Stokes equa -~
tions). The mathematics of these equations is too complex to
allow an analytical soluticn in all but the most simple cases;
thus, numerical solutions using the rnozt powerful computers
(supercomputers) currently availlable vizld the bhest approxima-
tiorns to the solutions of the Navier-Stokes equations. Corse-

quently, numerical analysis and supercomputers have become essen-
tial tools in Computational Fluid Dyramics (CFD) for the analysis
of complex three-dimensional flows, zuch as the flow of fuel
throcugh the Space Shuttle Main Erngine or the modeling of weather
conditions around the earth.

Most computastionally internse CFD code is written in FORTRAN,

although most current university curricula for engineers and
scientists either contain no course work in FORTRAN or contain
only a single elementary course in the FORTRAN language. Ager-

cies such as the National Aeronautical and Space Administration
(NASA) and the Department of Defense (DOD) as well as industry
have many large CFD codes which are often run and maintairned by
engineers and scientizts who are lacking the experience or exper-
tize of working with a FORTRAN code of this magnitude. Also,
most have had no or very little experience with a supercomputer.
Az most of these users are not trained to modify FORTRAN codes to

ture efficiently on advanced architecture computers, they ofton
have little krowledge or concern for the burden that these large
codes place on supercomputer resocurces. Both the Cray X-MP -t

the Alabama Supercomputer Center and the Cray X-MP at NASA/Mar -
shall Space Flight Center (MSFC) are examples of swupercomputers
which are used to full capacity most of the time.

BACKGROUND
Mary of the large CFD codes in current use by goverrment and

industry contain large amounts of FORTRAMN written before 1980.
At that time FORTRAN code was typically developed in a ron-

structured fashior using many language cormstructs which are beth
ocutdated and extremely inefficient for modern =supercomputers with
highly developed compilers. These compilers can overcome come of
the inefficiercy in the FORTRAN code but leave a great deal of
room for improvement by users. On current supercomputers, some
mini-supercomputers (e.g. Alliant, Convex, etc.) and even on high

performance workstations (e.g. Stardent, Silicon Graphics, etc.),
improvemert of the FORTRAN code's efficiercy can dramaticallw
improve performance. Improved performance vields reduced
demand on already saturated computer svstems, reduced design time
for hardware and reduced customer coct for computing rescurcec.

The three most effective means +o improve code efficiency
are through vectorization, optimication znd microtasking. Vec -
torization i1z a process by which s single instructior i= made to
bé??gFH““Eany operations instead of Just one, This process 1=
performed by the compiler and greatly reduces the computational
time of the code. Modern compilers prerform much vectorization
automatically; however, efficiently written code can greatl.
enharce the compiler'- effort. Vectorizstion is one of the most
important features of supercomputers and vyields the greatest
reductionrn inm computations]l time regquired. Optimization referec to
the restructuring of the code in such 5 wav that fewer acCcesven
from central memory need to be made and arithmetic operations are
simplified, also reducing the computaztional time of the code.
The large-scale problems requiring supercomputers for their
solution are often constrained by inzsufficient power of twec to
three orders of magnitude. Modern Lupercomputer architectures
have the potential +o deliver anrm order of magnitude more power if
used in an optimal way , thus making optimizaticon of the code very
desirable although, because of the irexperience of most code

Userz, it is rarely done. Microtaskiqg refers to the ability of
the supercomputer +o simultaneously execute segments of a program
on different centrsl processing units (CPU=) . Microtas! ing also

produces a code which allows the Program tc be run even whern only
one CPU is available. As additional CPUs become available the
microctasked code has the ability to make use of the free CPU(s).
Microtas#ing does not reduce computational time, but carn reduce

the wall-clock time required to runm the code. This feature is
extremely attractive to directors of computer centers who are
attempting to make optimal use of the centers' rescurces. 1t 15

a relatively new feature and little effort has Leern made to train
CFD users on itsz uze.

METHODS

The objective of the work was +o develop written guidelines

for engineers and scientists to evaluate and improve the eoffi-
ciency of large scale CFD codes In current use or codes which are
under development for future use. The writter guidelines were

to accomplish three goals:

1) Reduce the number of man~hours required by the user who
is responsible for improving the efficiency of a code;

2) Minimize the amount of control processing unit (CPU)
time the code requires to run;

3) Optimize +the use of multiple CPUs aveilable on the

supercomputer (parallel processing).

The accomplishmenrt of the objective involved identification
of software tools currently in existernce and development ¢f
guidelines to aid in the evaluation and restructuring of the
FORTRAMN code for the user. Cray Research Incorporated (CRI) is
currently the only manufacturer of supercomputers in the United
States; therefore, all very large CFD codes are developed to be
fun on & Cray computer. Thus, the firct ztep toward accomplish-
ing the objective was to incorporate the software development
tools available from CRI intec the written guidelines of +this
project. The current tools available from CRI (FLOWTRACE, LOOP -
MARK and Autotasking) are not readily used by scientists and
engineers since they require study and experience beyvord the
daily ccope of work of the typical user. The written guidelines
include instructions on how and when these tocols can be used to
the greatest benefit.

Before attempting code optimization, it was important to
identify the most time-consuming porticns of code and ther con-
centrate the efforts on thesce. CRI offers 2 tool called FLOW-
TRACE, which generates run-+ime statistics. Output from FLOW-
TRACE indicates the total computing time used by the program, the
amount of time spent in esach subroutine, the percentage of +total
time =pent in each subroutine, the number of times each subrou-
tire is called, and the average time per call. It alsc preduces
% calling tree whichk identifies the calls made st each level of
the program. FLOWTRACE was used to determine which cectioms of
the code =should be investigated for possible improvement =o that
time would not be spent improving a section of code which had
little impact on overall performance.

Another tool available on the CRI line of supercomputers ieg
called LOOPMARK. LOOPMARK examines each inner DO loop in the
FORTRAN code and comments as to whether 1t is automatically
vectorized by the compiler; it also prints ar explanation for
each loop that is nct vectorizred. LOOPMARK was uszed to determine

which loops could be restructured to allow automatic vectoriza-
tion by the compiler.

36

Autotasking is & tool that is curr zly only available
through use of the cf77 compiler. It first vectorizes the inner
loap, then breaks up the cuter loop, determining which fportions
carn be run in parallel, which variables sre private and which are
shared, and whether the loop perferme encugh work +c warramt the
overhead incurred by using more than one processor., The addi-
tional overhead assocciated with Autcotasking is ircurred even if
only one CPU is utilized:; therefore invoking Autotasking when all
CPUs zre in use can actually result in an increase in CPU 1time
with rno decrease in wall-clock time. At least 63-70% of the code
must be able to be run parallel for Autotasking to be beneficiul
N oamy case. Becaust the program statements =re nmo longer exe-
cuted in deterministic order, Autotasking can alsoc produce re-
zults different from that of the origiral code. The user muzt
determine whether +thesze differerces are sigrnificant.

OUTCOME OF TASKS

The outcome of this work is a set of Wwritten guidelirecs
whichk will guide the code uszser through the efficiency evaluation
of any CFD FORTRAN code. Thorough understanding of the mathemat-
ics and physics in the code will mnot be necessary to carry out an
analvesis of the efficiency cf the code. Once the evaluaticn I3
dore more guidelines are available to lead the engineer or
scientist through an evaluatior and modification of the code':
level of wvectorizationm and optimization and the use of autotash -
ing. This "tool box" of improvements provides easy to underztanrd
and easy to implement modifications +o CFD codes which engireers
and scientists can use to improve a code without having to know
all the details of efficient FORTRAN programming. This set of
guidelires will aid any engineering group whose main functiorm i<
code usage. Mevw candidate codesz can be immediately evaluated +o
determine their efficiency, with respect to other codes in current
use . Codes selected for use by the engineering group canm then he
taken through an evaluation/modification phase resulting in leessz
demand on computinmg resources.

37

Two

GUIDELINES FOR EFFICIENCY EVA ATION

tools, LOOPMARK &and FLOWTRACE, are awvailabls -

search to azsist you iIn evaluating the =T ficiency of

code . LOOPMARK is run at complles time; therefore n
overhead iz imcurred by using 1. FLOWTRACE oo
time , and thus requires more CPU +time *han Tunni
without ity however, it provides valuable Informati
save you a great deal of time when trvicmg to lupiroc.

efficiesncy. LOOPMARK nd FLOWTRACE can be used elth
or together.

Compile the code using LONPMARK . LOOPMARYK i-od
G

o Tray Re-
wour FORTRAMN
o additionasl

(SRR ot ELr
"y the code
an that LA
e the code's

er separstel.y

i [N
ing file with each DO locop mar!cd =o either scalar or Lec-
torized. Except for ocuter loopz, which czonro = eChor -
ized, LOOPMARK lists 1the reasons +hat o loop is not vector -

ized. To compile wour code using LODPMARY | usc
zft -v megs filemame.f
or
ctt?? ~em filemame.f
or

cf?77 -em fillenamec . f

cither

The following is an e-ample of output from LOOPMARY

(&)
[¢¢)

CRIGINAL FACE g
OF POGR QUALITY

[X X]

se e

L X X]
tas

175
176
177
178

seR
sk
LR ¥
LR 3 2
LR £ J
LR 2 7
LR X]
LE £

e

LR X]
e

178, §-—-——__ < DO 50 K=1,KEND(NT)
1768. : V--—< DO 50 1=1, 1MXI(NT)
177. : v QW(I,K)=HF

178, :——cy-—_» SO CONTINUE

Loop starting at line 124 was vectorized

Loop starting at line 128 was vectorized

Loop starting at line 133 was vectorized

Loop starting at line 139 was not vectorized because
the loop contains input/output operations

Loop starting at line 144 was not vectorized because
the loop contains input/output operations

Loop Starting at line 151 was not vectorized because
the loop contains input/output operations

Loop starting at line 160 was not vectorized because
the loop contains input/output operations

Loop starting at line 164 was not vectorized because
the loop contains input/output operations

Loop starting at line 169 was not vectorized because
the loop contains input/output operations

Loop starting at line 176 was vectorized

Loop starting at line 233 was not vectorized because
the loop contains a scalar store on NTOTAL

39

ry

Rur the code using FLOWTRACE to determine in which subrou-
tines the most effort chould be concentrated. Tutput from

FLOWTRACE indicates the total zomputing time uzed by the
program brobern down intc the +ime cpert in each subroutire
and the percentage of total +ime cpent irn each. It aslse
indicates the rumber of +imes cach zubroutire 1: called Ll
the zverage time per call, and preduces - 2xlling tree which

identifies the calling routine for caoch. When asttempting tno
improve the code's efficiency, SU should first coamine

tho=e subroutines in which Lhe larges+ rercontage of the
total time is¢ spert. Vou chould slzo =womine any sube out Do
A
1

that 1s called = large number of times Although the per-
centage of totol time cpert in it mTy be mzll, Improving
1 m

subroutine +hat 1. c=xlled many times can decreaze the total
CPU time required to rum the code. FCLOWTRACE Car be Invelod
using either the ctt, cft?7 or €77 FORTRAN complile; oy

uzing the following compile command:s:

Tilernzme.*

I
“H

cft

cft%7 -e f filename.f

fFollowing iz zn exsmple of cutput from FLOWTRACE :

-
B
]

40

1 FLOWTRACE

Alphabetized summary
Time executing Called Average T

127683 Total calls

0 Routine
24 BTRI 6.832 (14.40%)
@00062361a
10 CONTRL 0.438 (0.92%)
43 CONVRG 0.245 (0.52%)
39 CORREC 0.419 (0.88%)
20 FLUXR 3.300 (6.95%)
©00047205a
8 GETAJA > (0.00%)
©00111741a
14 GETOLD > (0.00%)
@00111631a
7 GETQ 0.002 (0.01%)
@00111565a
33 GETTMP > (0.00%)
9 CETXYZ 0.004 (0.01%)
@00112004a
48 INEXS 0.005 (0.01%)
22 LHSSI 3.190 (6.72%)
35 LHSSO 1.755 (3.70%)
18 MUKN 0.288 (0.61%)
@00047027a
19 MUTRSI 3.438 (7.25%)
34 MUTRSO 1.070 (2.25%)
2 OPNCLO 0.009 (0.02%)
49 OUTPUT 0.723 (1.52%)
8 PUTAJA > (0.00%)
13 PUTOLD > (0.00%)
S PUTQ 0.001 (0.00%)
@00111216a
30 PUTTMP > (0.00%)
™ 4 PUTXYZ > (0.00%)
3 REDWRT 16.794 (35.39%)
17 RHSSI 1,082 (2.28%)
26 RHSSO 0.840 (1.77%)
1 ROTOR 0.003 (0.01%)
23 SMATRX 5.092 (10.73%)
@00061121a
31 SRINT 0.016 (0.03%)
21 VFLUX 0.921 (1.94%)
@00046571a
25 VMAT 0.974 (2.05%)
©00060621a
$ & = TOTAL 47.448
1FLOWTRACE -- Calling tree
1l ROTOR 00025203a
2 OPNCLO 00111184a
3 REDWRT 00106441a
4 PUTXYZ 00111435a
H PUTQ 00111218a
8 PUTAJA 00111372a
17 GETQ 00111568S5a
8 GETAJA 00111741a
9 GETXYZ 00112004a
10 CONTRL 00027747a
11 PUTQ 00111218a
12 GETQ 00111585a
13 PUTOLD 00111262a
— 14 GETOLD 00111831a

510

—
(o X7 7 W)

WO WrEMHWO!mONM

L

26090

28090

41

0.

©CO0OO0O0

[=NeNeNe]

OO O™

013

.088
.049
.084

>

>

Called by

©00027747a
©00031204a
©00031526a
Called by

Called by
Called by
Called by

€©001116875a
Called by

©00026422a
@00047747a
@00054126a
Called by

@00063470a
@00077761a
©00111164a
€00026072a
€00111372a
€00111262a
Called by

©00111326a
©00111435a
@00106441a
@00035550a
©00040363a
©00025203a
Called by

©00045133a
Called by

Called by

LHSSI
318
Called by
Called by
Called by
RHSSI
23385
CONTRL
10
CONTRL
10
CONTRL
20
Called by
CONTRL
i0
Called by
Called by
Called by
RHSSI
S
Called by
Called by
Called by
Called by
Called by
Called by
CONTRL
10
Called by
Called by
Called by
Called by
Called by
Called by
LHSSI
23395
Called by
RHSSI
21210
LHSSI
21210

LHSSO
195
ROTOR

CONTRL
CONTRL
RHSSO
13985
REDWRT
3
CONVRG
10
CONVRG
10
RHSSO
CORREC
25
ROTOR
CONTRL
CONTRL
RHSSO
S
RHSSI
RHSSO
ROTOR
ROTOR
REDWRT
CONTRL
CORREC
25
RHSSO
REDWRT
ROTOR
CONTRL
CONTRL

LHSSO
139865
RHSSO
RHSSO
4880
LHSSO
4880

CORREC
30

INEXS
2

REDWRT

15
18
17
18
19
20
21
22
23
24
25
268
27
28
29
30
31
32
33
34
as
38
37
38
39
40
41
42
43
44
45
48
47
48
49

GETAJA
GETXYZ
RHSSI

RHSSO

CORREC

00111741a

00112004a

00035550a
00047027a

MUTRSI 00063470a
FLUXR 00047205a
VFLUX 00048571a
LHSSI
SMATRX 00061121a

00047747a

00062361a

00060621a
00040363a

00047027a

FLUXR 00047205a
VFLUX 00046571a
PUTTMP 00111328a
SRINT 00045133a
CETQ 00111565a
GETTMP 00111675a
MUTRSO 00077761a
LHSSO
SMATRX 00061121a

00054126a

00062361a
00060621a
00031528a
00111216a
00111565a

CETXYZ 00112004a
CONVRG

00031204a
0011156Sa

GETOLD 00111631a
INEXS
GETQ

GETXYZ

000268422a
00111565a
00112004a

OUTPUT 00026072a

3.

NOTE :

LOOPMARK and FLOWTRACE can be invoked simultaneously by
using the commands:

cft -v msgs filename.f
cft 77 ~e fm filename.f

cf?? -F -em filename.f

It is advisable +to run the code after any major
changes are made toc insure that the cutput is the same as
that of the original code. If several changes are made
before +the code is run, it can become extremely diffi-
cult to determine which change caused the discrepancy in

the output.

42

(@}

GUIDEL INES FOR VECTORIZA1 N

A loop containing anot

her loop will rever sectorize. Be -

couce the innermost loops can be voot , the ztfilcierc,
of the <code car be greatly impreoced by ensuring “hat the
Livme: mozt loop 1L: erecuted for +t Totgent rmumber of Tterz-
rions . A cection of code comtzlning nrested loops with nc
wtantements between.LS1
E:zmple: DOo1g 7T o= 1, L
DO 20 J = 1, ™
LooTo oo 1N
can i lways be roordered with o e pectod ~Tf-ct | 1F
other =ztatements ccocur within the coted loops
Exzmple: Do 10 I = 1, L
statements
DO 2 e 1, M
stetomonts
DO CO ¥ = 1, M
the loops cuan 2t1ll be reocrdered, Lut vou must be core®rl 4o
mes e ANy tatements i betweern thot moy change Wi b
happening 1 the code.
Am outer loop which 15 evweccuted for four or feuwer iter
*i"n: ever it vectorized oy the compiler, car be
“urrolled", which may significantly decresze the umcunt of
CPU *ime used. (This is somewhat machine dependent.) The
term M"unrolling” means to repeat that section of the Code
for Lno i eration, putting in conztants for the <crray
subscriptz notead of variable rames .
Example: po 10 J = 1, 2
DO 10 ¥ = 1, 1000
10 A(J,K) = exprecssion
can be urrelled te produce
oo 1¢ ¢ o= 1, 10090
S1LF) = e 3
10 AC2,K) = ==
) loop with ordy two lteraticnz will rnet bz vectoriced bae
the compiler wamd zhould alwaye e crrolled.
Arv drrmer loop with few iteraticrns may be marbed by LOoPMARYY
as a "W=" {(short vector) loop. In this case, no beneflit can
be produced by urrolling the loop.
Ay loop that contzinse 5 READ or WRITE ztatement will ~o b
voectorioe. pat WPITE ctatement withlr o 1T ctamtoment, cuoh

a3

will
to
outs
of
it),

A 1
us e
func
tain
vect

Q.

A lo
A
lOQp
requ
e ju

I+~ DEBUG THEN
WRITE (6, 1000)

kil vectorizastion even if the valuc of DERUG i- ca+
falze. If thes
ide the lcop (for coample Pesdimg 1In -

F .
e 1/0 statements carn be omitted o mo ved
1y
, M
&N array in & ceparate leoop before 4he leop that Jeoes
by 1

the elemert

vectorization can e schisved.
ovop that -ontains - cell Yo s subrout ine o crternal
~defined function will rot veotor oo, Moo+ ntrins i

tions (SORT, <IN, ctc.) arc vectorizod. e LUDES Ccon-
ing calls %o them are vectorizable. Some wave to foroe
orization are:

se a statemer+ functior inctead of ath esterral function
call. (NOTE . Be sure to lochk ot the calling tree
produced by FLOWTRACE +o determire which other subrou-
Fines coll thiz furction if vou decide to eliminate +he

\

furction sltogether.)

f

Move the it lre subroutine -cde inte tlyz loop. (NOTE
Be sure to leool 2t othe calling free Droduce ! v LW
TRACE +o cdetermine which ather subitout imes Sall thiiz

zubroutine if vou decide +o climineg s the tubrout i
altogether.)

Move the loop into the subroutine snd melbe . zall

from the criginal subroutine.

Trhiz require: : more thorough understanding of “heo .o .
and can only be dore [f thie called —ubrout i S P
called from iy other part of the program.

Move the csll sut:side the mairm loop and ipt- . Leporzte

loop of i+ts swn. This can only be done Lf othe following

Tonditicons e pet s

£ The called tubroutine dooe ot thabz 23 iammente g
varizlles referenmce irn the loop.

b. There are no STOP or alternzte PETLPN chtatemernts [
the _ubroutire.

= The zubroutine arguments sroe not STy

d. Ary zsubroutine called from withinm t~iz :ubroutime

meets *hese zame conditions.

Op containing « backward GO T0 wWill rot
Zorestructured. Qe%tructuring Foquires
and iz cometimes tmpocecsible . Wher it
ires that the loop be rewritter with -
mp: eut of the loop when = desired value

44

10.

#3) .

wiill mot vectorize i

A loop containing on zxcigrnoed O "
cannot be restructured without rowriting tc Slimine e e
ASSIGN statement, which may not Lo powoeible withour o shor -
ough underztanding of the code
A loop containing & Jump ocut of ho locp Ssced on an IF
statemenrt will rot vectorize Thiiz carn ~ometimes be rowi 2L
ten =0 that the rect of +the locp [z wnl. z.ecuted if the
oppocite of the TF condition 1z *iwuo. (NOTE T loe s ot
always cpeced up e~ecutici.)
Example: oo 100 = 1, M
ztatement:z
IF (A .GE. B) GO Tn 119
ztatements
ic CONT INUE
carn be rewriftten as
DO 10 [= 1, N
ctatemeintz
IF (A LT, B) THEM
statements
ENDIF
10 CONTINUE
In cases where thiz simple technigue will rot worbl, there i3
noc easy INE- SV to reztructure the locop without . complszte
undercstanding of the code and = thorough Frowledge o o
TRAM. Those interested chould consult the discuz=sion of

stripmining
John M -

contai
bl Y

A loop
conditicns
ing
s
tharn ornce!

using Ir-m

ich

on whic
mom-vector

Tt

N

Example:

LLevesque and

in A Guidebook to FOPTEAN on Sgpercomputers» by
Joel W. Williamzorn.

ning twoe IF ztatemeonts wirt mutusll, cxclusive
at have scalar wvariables bzing updatod deperd -
condition iz true wil e flagged bo LODPMIRY

izable becauze “"-cazlar lucs ars updated o
The loop will ecto Ize if : is rewritten

HEM-ELSE structure.
DO 210 1 = 1, N
staotemenrnts
IF (& NE. B
statement
ENDIF
= (A
statement
EMNDTE
TOMNTINUE

THEM
et 1

JEGL B OTHEN

}
iy T

11.

N
B) THEM
rt

DO 10 I = 1,
IF (A .

1
NE

ctateme zet 1
e

statement ot T

EMDIF
10 CONTIMNUE

A loocp contalining o

-
This Irclud

g
t

vectorize. €% UsSing & zcalar o PCE A e B corent it
oer the right hand —ide of 5r Trustion boforo uling 1t ocn the
left hand ide, and TILAgning A Srray fLloment o owalue b
ig the result of crlouletlon Jrvoluing Aotitcr o lement - F
the array with = subrscript decremented by 2 corat ard o B
oxpression.

Evample: 0o o100 I o= 2, N

100 ACTY = ALT - 1) caoproecTion

In this case, LOOPMARK will flag the loop
was found on &Y. This canm Ye resolved by
2 in o temporary e S R

1
-
<

DO 100 1 = 1,

TEMP (1) = A(
DO 200 1 = 2, M
200 ALY =

-
e
i

100

Although thiz permits veocts
o fezaible bectuse of the additional

riration of
Memors,

N 14
vty -

ctoring

CIowlonn

t

b loocp, 24
Cequlrement

a
+

Ml 4

r

GUIDELINES FOR OPTIMIZAT. |

f ‘he compiler can

I ccognize invarisnt code within
loop it can pre-compute 1t befcre the loop and store

\
Tulh v 4 reglztor, uhich can greatly reduce CPU

£ sode L ide warorthone o

o

e)
Placing the Irnwvoerlant portior

3

arcicts the compllor Inm the reocognlition process.,

(s}

DO 10
10 AL

iz optimally writtern oo

DO 10 I = 1, M
10 ST = (Y Yy 2 oE(T

(HNOTE . With the ceopatilitice of current complilers, this iz

Subec=pressions SOMMmS to two o more vxpression: Con 1518
computed once and stored i reglict

loters 1f the compiler iz
slhsle *o recognize them. The compiler's effort canm be 2n
hanced by placing the —ubevwpression in parentheses

Exzample:

It
o
N
—t
N
+

A(L)
£(1;
H(T)

LI
T T
N TN
—
T NS
+ o+
IS N

Y r D(1)) [/ aCny

har placing the ~ocmmonm Zule

proczion 1no s bomporsi, caricble and using the tomporary i

it
+

Againm, thiz 1o mere cfflcien

]

the Computrtiono .

I ¥ o shoirt locops contaln commorn fube ST I o
loop can be combimed without chang.ong the meaning of the
cou, do =zo. Thic allows better wutilizztion © + e
compiler's optimizoticn capabhiliticos

Multiplication operztion:z are lcoc:o _omputatiorsall. & oponidae
-4

ther e divizlion opet icns . Change divivion by a constant

te multiplicaztion whernevasr poocible without lousing accur

Example:

A(T) = B(I

N
-
Ty

ACTS

1N

51
—~
r—t
~
*
-
83

417

Convert flcocating point cxponentiation
tion whenever possible.

Example:
Y orr 4.0

becomes

48

integer exponentia-

GUIDELINES FOR MICROTASK

Microtasbing can be zccompliched automaticeally throughout
the code uzing auvtotashing or selsctively by includirng compiler
directives in the cpecific zections where microtzshking iz de-
siraed, tlee of compiler directives +to force microctasking reogulres
that the user be thoroughly familiar with the scde. He wus ot
understand the scope of the variables cffected b, thoe Code Rt
tlom = ind underastand the =ffec A s inmaltoaeous e COU N LD

s such Lz SPY and Porftr ale o

[WAVE N

different CPU-. TR or

DLl v the detorminat Thaooe irntcrootod in ueing
compiler directives * “otazsbt Ing should -far ‘o e
CRI Uszer's Guide to of
Autotazking may be irvchked using the command
cfT? -ZP
N ate may @lco be uzsed In combination with LOOPMARY sl for FLOW-
TRACE with the commsnde

et cem -Zp (LOOPMARY S
cf?? -5 -Zp {FLOWTRARLD

C'fr‘“? ~em -F -Zp (Lcth)

Autotzsbing doesz not slways reduce +the wall-clock +ime
required *to ~un the code because it depends on the number of CPle
avallable, snch car only roduce the time by 1/n, where n iz i ¥
totzal number of CPUs, 2t bLest, Autotashking iz more lllely to Le
useful wher running the code at off-peak times.

Be cure to eramire #ll output - €tor cunming k
sutotash ing, : i

statemerts may be evecuted in & d

and may produce differert resulte.,

43

RESULTS

The=c¢ methods and techrijuesz were appllisd +o 5 version of 2
lurge CFD code called ROTOR, which wes obtzined €rom MASA /Mar -
oa

zhall Space Flight Center . This wersion of ROTOR -ortzirced 31
routines, including the main plrogram. f theze 21, there were 12
which were called rel: tively faw times and In which n.01% - leszx
of the totzl CPU time was :pent. Df the o Lining R Y
tines, four were completel, Leclorized, trcluding b Lo i
whilety the lorgest percerntsces of Lime were spemt, and teis uere
Irput/outputl routinmes . Therefore, ~fforte *n cinbtorce S e
tior verc primarily limited to 10 of 4he ubroutirce .
Vectorization enhancement offorts i1 three of the-e Zubrou-
tincs resulted in an 1hcrease i the amount of CPU 4ime; e
largezt increase wa:s 8.98¢ u: ite, with & mearn irmcrezoz of 2.077
unitsz . The umit time dccrﬂa:a obzerved ir theae cther tukroutines
ranged Yrom 0.082 to 58.771, with ¢ mesn decrease of 11.422
urnits. When offorts in these zubroutine: were exhausted, +the 13

irsignificant" =subroutines were aleo examined and modified.
After zll modificaticrne had been made, the *total time for s.ecu-
tion _f the progrsm drepped from 1058.703 to 961,788 unlts, &
decreuse =f 97.415% units, ro9.2%.

a]

Framination of each zubroutire revealed that no code optimi
zation could be performed.

The code was zompiled and run with the autotashking footine
enalbled. The wvalue for cutput parameter DRIMAX differed from +he
output of fthe original code inm +fhe rirth decimel place, =nd that
for DROMAX ir the cisth decimal place. Imlet znd orit zors 4
resulte Jiffered from those obtained from the criginsl .cercior of
the code as follows

Parameter Decimal place

Bl

ROINL 12

RITTNL 3
RV INL 22
PWINL Ja
PSINL 17C
PTINL N oo Latlon
ROEMT 5
SEXT g
FTEXT 3
Velocity g

The wrer muzt determine whethor these differences e igtiifi-

W

cant .

(€3]
O

OF POOH {UA

ORIGHNAL 73 7

o
-2

LiTY

APPENDIY 2

51

Implementation of Equilibrium Chemistry

1. Introduction

The Frnowl
chemiznl o«
ic propert
wide wvar
Som

<

toom

5

i
€

(=

ri(Q

fit

n
U F
eat

> in
Qe

Cormsideral
equllibrium co
resul ted in a
calculationsz.
Research Cuorte

§ v
calculat

ing
SO
.
el
l e
sen
che

in
multidimensi
inefficie
chemizsitry =

O
computatiora
of the pre
equilibrium

To
e

improve
nergy
rium

free
equillb
formulat
energy .
method,
which &
chemical
of
most
minimizs

1z
ions -
In
the
reo
compon
condens
=1ily

tion

co
equ
mnotr e

ome
rm

Fo

€&

The
finmite -
multicin
equilibrium
Typically,
iz easured
i ol ver

o ima e
feren
1oma

if

ens

the
Ve L1

[

e LJL
computer TPRU
ing time
zol e
cpeed of

od.

ey o

e

o

odge

1o
mpositio
number

rumetr ica
nE

of

1
TH

e
fficiency

e

iz
zolv

t study
mistry

~elia
mirimizatl
ually
zquilibri
mparliszon
ilibrium ¢
bool b
ents

the

<

3

Ql
3
oo

f3
I

ber

el
Irimwl
TR

~—
C

[

st

o
[:)
-

requltrem
o code
Rl i

o
&
A

Lo
of
izecon
lat

cblem

1

peed 3
mill
EER
Impr
rgernc

o o hler

<
€

cat’

e

emical

biod

waqulliby Lum
culoulate theoretico
proportic

,A’Id

)
i

SO0
1

t

4

2

e i

il

=

These

+~

wochemis b ropul ol

T
Vs

C
-« 0

M

.L‘_.jf'l
no::lei,

4

eculpicn

1
for
di

alculations
complen
gital compute

(cEC,

<

c b
1
i

ments o

el ot

reliabilit,
C;f"ld

requlre
codes .
"L\

zmermted i
e

modif

Cequirements

the
implement

oL
o

S

e B Y

-quJLbrlum =
elacte
of
ille.

v
L

m

L
l.t.l (Raga
mi

+
zat
rergy
veral

ult
ecting fo

oy
censtants
Gibb'
mettiud
numer il
difficul
urthermors . rhe
Faor “he

o)
d W

g
e Q

3

S
ree
bae
SRER b I

>

m

ont
e

& i
.LLJL)S i &

the

[

€

]

hil

-5

<

=

mo oo lec

. PR N P R

e

[

of an
N T

lows
mil)i
A_LI"H'(

e zolve
~ith

ch o

Corte

3

i
d . Loz
e 1

ov e

alyou Y
efficl-ne
ot

-3 thm

orme

l_Lur

bt Lt

]

i}

2l L Lum

. n
L-J
rgence

chioal

Mew

ot o¥f

o
r>

itions
h £

cirmod)

0

e

B

fr

1t

el

f

(W] f
i
polied
SIG L e
ilitr
tuls

Doemsn
feo Y
— M= G
[T T
7 S

~

(8]
O
~ G

gl

+

[

wW1th
Chemi
quiwval
>f ¥

minimizati
disadvantag
with

use
pres
eMeray

r i 4

ee-enc

1

l “D

required

i tes

cheml s

cominlme

ton me:

ORIGINAL
OF POOR

LOompu Y

A
o

e

ium

e,

s 1om

e

tive

ing

the
cal
eyt

rroe

o]

Il
3J

)

I

B}

1

[l
i

F
¥

}

<

'

Ty
t e
tho-

™
K
4
(I

Y

s

2 iT‘

5
B

2

General Progr Features

< - Nl
The prezent eguillibriun = = (ADAPTY s the functionall,
_imilar fFeatures with cther eoizting zgulliby lum -oloar cogst
“he adaptabillit, witk the multidimenzlonal CFD codes. ADART
sclution procedure ueing Cibbo! free wnerg, mimimication
tochinique orovides useful cption:z eithocr o complote-combuztior
equilibirium model or = full eguilibiium modal, i wbizh the full
oy of zaecies e-isting under chomical squilibeion conditions
= obtained at wach girid point with the Siven pitEcEure ric
mnthalpy
In gencral, the ADAPT code provioas - computer-orliented
mzthemat ical wodel f e ramjet combar toe o and no ¢ which <can
be used to estimate “he performance o‘ Sivew ram design and
o parametricslly esvoluste the cffeoatz of chimngers the de=zign
on combustaor on roz-le performinoo T 1o wrilitten with rnumerous
user options ta mllow comzideration =of a rumbe: of motrential
combustor and noz=le dezigrs, Including provizionm for fuel Injec
tion in liguid from the wall:z =i ilrnstream Tucl Irnjooctors. Multi-
cle fuel Irjector locobtlons may be 1ncorporshod
Wher ADAPT s implenmczrmtod wit!h 700 oo e o le zelution
ﬁrﬁgﬁdulﬁ are summairized ar follows:
sy ewvslunting imitial prefile data for “ho dopendent ariables
for which dJdata haLe bean Irmput Tompute clement FICE-a
fraoctions from the species masz:z fracticnz input. Extract
from memory the recessary thermodyrmamic data for each of
the specle:s included. Inr genersl, it ize +he
calculation.
L) perform equlilibrium calculation at givcn cnthalpy, precsuine,
and eclement mase fractions to obtaln zpeciscs.
<) obtain all otter profile irformation, .
heznt, phycilcnl coordinates, vizcosiby, who.
D deteormine the change in the Jepe ot . RN dore, ‘.
corvection md turbulent diffusive forcocs through mean Lo
olution of the govrrning equations by uricng TFD Codes
&) return to step (k).

3.

-t

LI'HJ.

Validation of Present Equilibrium Chemistry Model

NEOLICFR]

2, overall ag ment for flame temperatu And species mole

fractions are satisfactory. In P/H ca=ze listed in Table 1, the

deviaticons ir Flame :nd epecies male Ffraction:s are

within 0.9 % end 0.2 =1, In T/P case lizted n Tablec

2, the deviations of cpeclze mole ©action: ore withisn 0.2 °. T

termz of CPU time ll-otcd in Table 1 arnd 2, ADARPT is computstion-
- A

fficiernt tharm CEC. Bzpecially for T/P casze, ADAPT e

rougihl, four times faztcocr tham TCC. These
' + 1 -

! - 1 o

mumer Dcoal resulte

p i o
indicate that ADAPT cai bondle the compley sauilibrium chemictr,
protlenc with the limitod porticipeting ctemicol species amd the
computaticnagl afficisrcy.

4. Conclusions

MNumer ical results of the prosont squilibciun chemistr, code

lave s szticfactor, s~groement with CEC rosulbts. Theses rumorlical

results indicote that the presert squilibrium solver canm handle

the complas cquilibriom clemiotry problems it Flhe limited
3 1

o

“ticipating chemicol! izne
Ty

ture worbkes include

tnd the computaticrnal =ffi
& 1
code in TFD caodee cuchk as

z c
of ADARPT zquilibrium

inplome Lt i

Lrd MAST.
References
1 Gordon, <. «nd McBride, B., "Coumputor ProgreLm for
Calcoculation of Comples CThemical Fquilibrium Tompowitionz,
Roctet Performance, incidert and Reflected Shock:, bl ¥
Chapman-Jouguet Detonaticrs". MASA-I272, 1278,
2. rn, &, "Performarce of Algorithms for
clibrium Comporition of & MiL ¢ ol

vmputaticrnal Phyaices, Vol. £0, oo .

wr
N

Table 1. Comparison of CPU time, predicted flame
temperature and speclies

mole fraction for P/H condition

CRAY -XMP Flame Mole Fraction
CPU time (sec) temp. (9K) HAO Co.
Present 0.058 2219.8 0.1423¢ 0.10087
Code
CEC 0.0%0 221¢€.0 0.14285 0.1003"%
Code
Table 2. Comparizon of CPU time, predicted flame
temperature aznd

cpecies mole fraction 4or T/P condition

CRAY - XMP Flame Mole Fraction
CPU time (sec) temp. (k) H,0 €O,
Present 0.016 221¢.0 0.142839 0.10058
Code
CEC 0.0€6 2218.0 0.1423¢ 0.1002¢
Code

[#1]
oy

