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The notation follows various rules or habits which provide a succinct treatment of the problem while maintaining
physical insight and programmable forms. A degree of notational economy beyond that previously used in work
on single-helicopter systems is useful to treat the more complex multilift systems.

First, configuration vectors and matrices are introduced to deal with the general n-body system. These are
objects in 6n-dimensional space composed of three-dimensional vectors associated with the c.g. and rotational
dynamics of the n-constituent bodies. The applications work is done entirely in terms of natural vectors and
matrices from three-dimensional rigid-body mechanics. These are the largest objects for which detailed physical
insight is readily maintained. Further expansion to scalar components of these objects is strictly avoided in order
to avoid the unmanageable number of scalar dynamic terms that can arise in multilift analysis.

Second, the coordinate frames in which vectors are specified are indicated systematically in all equations
throughout the text, using subscripts as stated above, in order to maintain a programmable form. Appendix
A contains useful relations to account for coordinate frames in the usual relations and operations of vector
mechanics; that is, an algebra of transformations is combined with the usual vector mechanics. The result is that
the underlying vector-mechanical and transformation-algebraic structure is retained in the working equations
for efficient analysis and programming. For example, the dynamic terms in the equations of motion in the
applications results consist almost entirely of coordinate transformations and their derivatives, Coriolis effects,
and centrifugal accelerations; this mass of terms is stated in a brief, programmable form.

vii






EQUATIONS OF MOTION OF SLUNG-LOAD SYSTEMS, INCLUDING
MULTILIFT SYSTEMS

Luigi S. Cicolani and Gerd Kanning
Ames Research Center

SUMMARY

General simulation equations are derived for the
rigid body motion of slung-load systems. This work is
motivated by an interest in trajectory control for slung
loads carried by two or more helicopters. An approxi-
mation of these systems consists of several rigid bodies
connected by straight-line cables or links. The sus-
pension can be assumed elastic or inelastic. Equations
for the general system are obtained from the Newton-
Euler rigid-body equations with the introduction of
generalized velocity coordinates. Three forms are ob-
tained: two generalize previous case-specific results for
single-helicopter systems with elastic and inelastic sus-
pensions, respectively, and the third is a new formu-
lation for inelastic suspensions. The latter is derived
from the elastic suspension equations by choosing the
generalized coordinates so that motion induced by ca-
ble stretching is separated from motion with invariant
cable lengths, and by then nulling the stretching coor-
dinates to get a relation for the suspension forces. The
result is computationally more efficient than the con-
ventional formulation, is readily integrated with the
elastic suspension formulation, and is easily applied
to the complex dual-lift and multilift systems. Re-
sults are given for two-helicopter systems; three con-
figurations are included and these can be integrated
in a single simulation. Equations are also given for
some single-helicopter systems, for comparison with
the previous literature, and for a multilift system.
Equations for degenerate-body approximations (point
masses, rigid rods) are also formulated and results are
given for dual-lift and multilift systems. Finally, lin-
earized equations of motion are given for general slung-
load systems are presented along with results for the
two-helicopter system with a spreader bar.

1. INTRODUCTION

Background

Various actual and proposed slung-load systems are
illustrated in figure 1. Single-helicopter slung-load op-
erations with the load suspended by cables in various
ways from a single attachment point have been com-
mon since the 1950s. Such operations were further
developed and extensively used during the Vietnam
war. Later research during the period 1965-1975 for
the Heavy Lift Helicopter was focused on the stabi-
lization of difficult loads, such as the standard 8- by 8-
by 20-ft cargo container (MILVAN), by means of sus-
pensions with multiple attachment points and various
control devices.

The use of two or more helicopters has been pe-
riodically proposed since the early success of single-
helicopter operations using suspensions consisting of
cables and spreader bars (systems 8-12 in fig. 1)
(refs. 1-3). Dual-lift suspensions have received lim-
ited flight testing, have been used to carry payloads in
a few isolated commercial operations, and have been
advocated as an alternative either to developing new
helicopters with greater payloads than those of cur-
rent helicopters (ref. 4), or to obtaining larger-capacity
helicopters than those locally available in a given sit-
uation. A significant obstacle to further operational
development is the complexity of system motion and
its guidance and control along any typical maneuver-
ing flight path (ref. 5). Until recently, progress beyond
the initial investigation of hover dynamics and control
in references 6 and 7 has been hampered by the lack
of realistic and comprehensive equations of motion for
use in theoretical and simulation studies. Tractabil-
ity of the equations for analysis and programming and
computational efficiency become critical factors for the
multilift systems. Whereas the slung-load systems can
be viewed simply as a few rigid bodies connected by
cables, considerable complexity of the equations of mo-
tion (EOMs) arises in applying the classic methods of
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n = Number of rigid bodies

¢ = Number of constraints (inelastic suspension)
d = 6n—c = number of degrees of freedom

m = Number of suspension lines

System n c d m
1 2 3 9 4
2 2 1 11 1
3 2 1 11 5
4 2 3 9 4
5 2 3 9 3
6 2 1 1 7
7 2 2 10 2
8 3 2 16 2
9 3 2 16 2 ) (12)
10 4 4 20 4
" 4 3 21 3
12 5 6 24 6

Figure 1. Examples of slung-load systems.



the previous slung-load literature to the multilift sys-
tems when the cables are modeled as inelastic.

The approach taken in this paper and in our ini-
tial report (ref. 8) is to develop a systematic analyti-
cal formulation for general slung-load systems and an-
alytical devices tailored to such systems, which are
readily applied to specific cases and yield tractable,
efficient equations. The devices include special coordi-
nates that represent the suspension constraints in an
inelastic system, and the systematic use of the natural
vectors and matrices of rigid-body mechanics in the
applications work.

An alternative approach that would circumvent the
need for further analysis would be to use one of the
commercially available computer programs for the dy-
namics of general multibody systems. A third poten-
tial approach would be to apply the previous deriva-
tion techniques to multilift systems by using symbolic
digital computations to circumvent the excessive labor
and unfavorable error probabilities of extended hand
analysis and programming. However, these alternative
approaches are designed to accommodate a very large
class of dynamic systems, and the results do not pro-
vide the insight and computational efficiency achieved
here by restricting the class to slung-load systems.

Equations of Motion for Slung-Load Systems

The slung-load systems shown in figure 1 are viewed
here as members of a class of systems consisting of rigid
bodies connected by massless straight-line links which
can be either elastic or inelastic, and which support
only forces along the link. These systems are charac-
terized by the mass, inertia, and aerodynamics of the
rigid bodies, and the suspension’s attachment point
locations, unloaded link lengths, and link elastic pa-
rameters. The limitations of these class properties in
representing the slung-load systems are as follows. The
rigid-body assumption excludes flexible loads and heli-

copter elastic modes; cable mass and aerodynamics are

neglected; and cable stretching is neglected in the case
of inelastic cables. Despite these limitations, the class
properties are expected to suffice for trajectory-control
studies in which only low-frequency phenomena are of
interest.

Previous derivations of the EOMs for single-
helicopter slung-load systems have assumed either in-
elastic cables (refs. 9-12), or elastic cables (refs. 13-15),
or considered both cable models (ref. 16). In most of

these works, the results are specific to particular sus-
pensions, but references 13 and 15 account for a gen-
eral set of elastic suspensions in which all cables con-
nect two rigid bodies. Early work on the EOMs for
multilift systems assumed inelastic cables and yielded
only limited results. In reference 17, a general formula-
tion for systems of point masses connected by inelastic
cables is given, and reference 18 contains equations for
the same approximation of the three-body, dual-lift
system 9 of figure 1. In references 6 and 7 linearized
hover equations are given for the four-body, dual-lift
system 10 of figure 1, assuming a point mass load.

In the above-cited literature, the formulation of the
EOMs depends principally on their use for simulation
or control analysis. For simulations, the suspension is
usually assumed elastic, and the equations are formu-
lated from the Newton-Euler equations for the rigid-
body velocity coordinates as, for example, in refer-
ences 13-15. This method can be readily applied to
most of the systems shown in figure 1, including the
dual-lift and multilift systems. The forces and mo-
ments applied to the configuration by the cables ap-
pear explicitly in the equations, and are calculated
from the system geometry and from a simple spring
model of cable stretching.

In practice, however, cables are relatively stiff, so the
rigid-body motion with inelastic cables differs very lit-
tle from that with elastic cables, and a reduced-order
inelastic-cable model is of interest in trajectory-control
analysis. Equations of motion for inelastic cables have
usually been derived from Lagrange’s equations for
general dynamical systems. Equations are given for a
minimal set of suspension-specific, generalized position
coordinates, and the nonworking suspension forces
are eliminated, consistent with d'Alembert’s princi-
ple. These equations require the inverse of a large
system matrix and contain lengthy second-order ve-
locity terms in exchange for the reduced system order
and eliminated suspension forces. These features ob-
struct the use of the equations in simulations, but in
controls work the objective has usually been to ob-
tain linearized EOMs for the application of linear sys-
tem theory. Satisfactory results have been obtained
for single-helicopter systems by this approach, but re-
sults for dual lift have been limited to hover, where
the second-order dynamics can be neglected. In ad-
dition, modern control design methods are available
for aeronautical systems with significant aerodynamic
or dynamic nonlinearities based on partial inversion of
the nonlinear EOMs. A segment of the dual-lift control
literature seeks to apply these methods (refs. 17-21).
For this work, a suitable nonlinear model is needed



which is both analytically tractable and computation-
ally efficient.

An alternative, ad-hoc analytical approach for in-
elastic cables is based on manipulation of the Newton-
Euler equations to eliminate cable tensions in a subset
of these equations. This subset is combined with kine-
matic constraint equations to obtain 6n equations for
the linear and angular accelerations of the system’s
rigid bodies, where n is the number of bodies. Re-
sults have been obtained for single-helicopter systems
(ref. 16) and, recently, for dual lift (twin lift), (refs. 19
and 20). This approach requires the inverse of a larger
system matrix than is required for generalized coordi-
nates, and the choice of coordinates is restricted.

Evidently, the dynamical equations for both elastic
and inelastic suspensions are of interest. The existing
formulations for these two suspension models differ sig-
nificantly in form and in analytical and computational
requirements, and difficulties of derivation or compu-
tation associated with existing methods for inelastic
cables become significant for dual-lift and multilift
systems.

In the present work, slung-load dynamics are treated
systematically. For this purpose, many formulations
of the equations for dynamical systems can be ap-
plied to both elastic and inelastic suspensions. The
Newton-Euler equations are suited to slung-load sys-
tems and are used herein. Simulation equations are de-
rived by applying the Newton-Euler equations to each
rigid body, defining configuration vectors for the n-
body system, and introducing generalized velocity co-
ordinates. The result for inelastic cables is obtained by
applying d’Alembert’s principle. Two formulations are
obtained, one for elastic and one for inelastic suspen-
sions. These formulations generalize the previous case-
specific results to general slung-load systems and any
set of generalized coordinates. The method is similar
to that described in references 22-24 for general multi-
body systems. The result for inelastic cables requires
the inverse of a d x d matrix for which an analytical
inverse is unknown, where d is the number of degrees
of freedom (DOF). Slung-load systems with inelastic
cables have only a few constraints, so d is relatively
large, near 6n in all cases, where n is the number of
rigid bodies. Values of d are listed in figure 1; d = 20
for the dual-lift system 10.

A second pair of formulations is obtained by select-
ing the generalized coordinates to represent the con-
straints found in slung-load systems. The general-
ized coordinates for the elastic system are selected to

be partitioned into d coordinates that represent the
configuration motion with invariant cable lengths and
¢ coordinates that define the motion caused by cable
stretching, where ¢ is the number of constraints im-
posed by the inelastic suspension. This can usually
be done by including appropriate cable velocity co-
ordinates in the generalized coordinates. The result
for inelastic cables is obtained by nulling the cable-
stretching coordinates to obtain an equation for the
resultant constraint forces on the configuration’s rigid
bodies. The solution for this equation requires the in-
version of a relatively small ¢ x ¢ matrix (¢ = 4 for
dual-lift system 10 of fig. 1), and the resultant force
appears in the EOMs as an additive force, just as in
the elastic-cable equations.

The second formulation has reduced the computa-
tional penalty relative to the elastic-cable equations,
can be integrated with the elastic-cable equations in
one simulation, and can be expanded nearly com-
pletely in terms of natural vectors and matrices to
obtain compact, tractable formulations. It is read-
ily applied to the multilift systems. Results are given
herein for the three dual-lift systems of figure 1 (sys-
tems 8-10), and these can be integrated into a single
simulation. Additional results are included for some
single-helicopter systems to permit comparison with
past work, and for the multilift system (system 11) of
figure 1 extended to any mumber of helicopters. The
derivation and results are sufficiently brief so that hand
analysis and computer programming are practical. In
addition, degenerate-body (point masses, rigid rods)
approximations are given for general slung-load sys-
tems and for two multilift cases. Last, linearized equa-
tions of motion are formulated for general slung-load
systems, and for dual-lift system 10 of figure 1.

Equations of Motion for Multibody Systems

A large body of literature on the dynamics of multi-
body systems has accumulated since the early 1960s
in response to the increasing importance of multibody
dynamics in the design of, for example, spacecraft, ma-
chines, robotic arms, and human motion models, and
the relevance of the approaches used and of the results
obtained to multilift helicopter systems is of interest.
The principal aim in the literature has been to develop
general-purpose computer programs to provide EOMs
from a minimal amount of user input data defining
the multibody system. This aim is motivated by the
impracticality or excessive labor and unfavorable error
probabilities of using hand derivation in most working




circumstances in these applications. Theory and anal-
ysis are given, for example, in references 24-26, and
surveys of computer programs that encode EOMs for
a general system or that generate and compile sym-
bolic case-specific code from user inputs are provided
in references 27 and 28.

Slung-load systems differ from the applications dis-
cussed above. First, slung-load systems with inelastic
cables have only a few constraints relative to the num-
ber of DOFs (¢ << d, 6n) and can be equally well
represented as unconstrained (elastic cables). The ap-
plications cited above are all highly constrained, with
relatively few DOFs. For example, spacecraft and
robotic arms are commonly represented as n rigid bod-
ies with fixed orbit or base connected by n - 1 joints
which permit one DOF of relative rotational motion;
hence, d = dy + n — 1, where d, is the number of base
body DOFs. Consequently, the conventional formula-
tion in which a d x d matrix is formed and inverted is
computationally more efficient for these applications
than one containing a ¢ X ¢ matrix, but the converse
is true for slung loads. Moreover, in most references
the interbody connections are modeled as joints, and
then convenient generalized coordinates are predefined
according to the joint model. These have little appli-
cability to slung-load suspensions. Gimbal-type joints
can represent one to three DOF's of relative rotational
motion, whereas inelastic suspensions allow three to
five DOFs of relative motion, and elastic suspensions
impose no constraints.

One code-generating program, NEWEUL, and its
underlying formulation (given in refs. 22-24), does not
specialize the interbody connection and can be applied
to slung loads. The equations from this program are
in the conventional form which requires the inverse of
a d x d matrix, and the results are obtained with all
terms expanded to their scalar elements.

An alternative computer-based approach is to use
symbolic computations to carry out routine analyti-
cal steps—for example, the energy derivatives in La-
grange’s equations. Some general possibilities of ap-
plying MACSYMA (ref. 29) for this purpose are dis-
cussed in reference 30 and this approach is used in ref-
erence 7 to obtain linearized hover equations for dual-
lift systems from Lagrange’s equations.

Symbolic computation has many practical advan-
tages, especially that of error-free derivations, and it
has been applied where possible in the present work.

Its ability to generate useful scalar equations for dual-
lift systems from traditional methods has been lim-
ited by the explosion in the number of scalar dynamic
terms. In the present efforts, it appeared necessary
to seek more efficient analytical methods. A new for-
mulation and a new applications technique are pre-
sented which improve the computational efficiency of
the inelastic-suspension equations over previous forms,
and which render hand derivation, analysis, and pro-
gramming feasible for the previously difficult dual-lift
and multilift systems.

2. SYSTEM DESCRIPTION

The systems of interest consist of one or more heli-
copters that support a load (or more than one load, in
some instances) by means of a suspension. For typical
slung loads and nominal trajectories, the total load to
be supported by the helicopters due to load weight,
acceleration, and aerodynamics, is dominated by the
load weight. The suspension consists of cables, usually
of nylon webbing, and hooks, rings, isolator springs,
spreader bars, and other hardware (ref. 31). Sus-
pension designs with controllable geometry obtained
by active cable winching and attachment-point move-
ment have been proposed for load-attitude stabiliza-
tion (refs. 32 and 33), and are included in the present
formulation.

These systems can be partitioned into n rigid bod-
ies of non-negligible weight, B1,..., Bn (helicopters,
load, spreader bar). The remainder of such systems,
referred to as the “suspension” hereinafter, consists
of m straight-line links which support force only in
the direction of the link (or only tension, in the case
of cables) and have negligible mass and aerodynamic
force compared to those of interest in trajectory con-
trol. The number of suspension links m is listed in
figure 1 for the systems shown there. In many cases,
short links attached to the load are considered part
of the load rigid body, because their elastic stretch is
negligible and they are immobile relative to the load.
The links can be modeled as inelastic, in which case
¢ < m holonomic (position) constraints are imposed
on the motion of the rigid bodies, and the system has
d = 6n — ¢ DOFs. Values of ¢ and d are listed in
figure 1. Alternatively, the links can be modeled as
elastic, because of cable or isolator-spring stretching,
in which case there are 6n DOFs.



An examination of cable and suspension elasticity
and its effect on rigid-body motion is reported in ref-
erence 34. Cable stretching under tension is usually
modeled as that of an undamped spring with damp-
ing supplied by the aerodynamic resistance of the at-
tached bodies. Cables tend to be stiff, but the sus-
pension design must avoid an upper bound which is
set by resonance with the helicopter rotor frequency
(about 4-5 Hz) where a divergent pilot-induced verti-
cal bounce mode has been observed near hover. The
net result is that natural frequencies of practical sus-
pensions are about 2-2.5 Hz. This frequency is suf-
ficiently high to be disjoint from the frequency range
of interest in trajectory control (about 0.5 Hz). The
corresponding mode is one of rapid and significant ca-
ble tension variations, but with small stretching ex-
cursions so that the rigid-body coordinates are nearly
unaffected.

Both elastic- and inelastic-suspension models are
of interest in trajectory control. For practical sus-
pensions, simulations can employ the simpler, more
general, and more computationally efficient nonlinear
equations of the elastic model. If actual suspension
stiffness were significantly greater, then difficulties of
numerical stability and ill conditioning might arise in
real-time digital simulation of the higher-frequency,
low-amplitude cable-stretching motion. In control de-
signs, practical suspensions can be approximated as in-
elastic thereby eliminating feedback of states that have
negligible influence on the rigid-body motion. If actual
suspension stiffness were significantly lower, then the
lower-frequency, higher-amplitude motions caused by
cable stretching would be of interest in trajectory con-
trol. In the present report, simulation equations for
both elastic and inelastic suspensions are considered.

The simulation of cable collapse is an application
detail outside the scope of the present paper. If a ca-
ble collapses, the resulting system is still a member
of the class of interest and can be simulated. Practi-
cal suspensions are designed and operated such that
cable collapse does not occur except during large un-
stable excursions from the nominal configuration, or
during load pickup and dropoff. System 4 of figure 1
(inverted-V suspension) is a special case in which one
or two cables can collapse during small yawing motions
if the cables are assumed inelastic, but this does not
occur in cables with typical elastic properties.

3. EQUATIONS OF MOTION OF GENERAL
SLUNG-LOAD SYSTEMS

Configuration Vectors

Physical vectors are referred to inertial or body-axis
reference frames in the following discussion. Trans-
lational motion and forces are given in inertial co-
ordinates, and rotational motion and moments are
given in body axes. The reference frame is indi-
cated by a subscript, which is N for inertial space and
i €{L,2,...,n} for body axes of the ith body. Body-
axis components of translational velocity and motion
variables relative to a reference body are commonly
used in slung-load simulations, and are readily intro-
duced later when generalized coordinates for an appli-
cation are selected.

It is convenient to use configuration vectors that
define the motion and forces of the n rigid bodies
whose masses, inertias, c.g. translational motion, Eu-
ler attitude-angle triplets, and angular velocities rel-
ative to inertial space are denoted by (ml,J1,R1*,
V1%, al, wl),...,(mn,Jn,Rn*, Vn* an,wn). The
configuration vectors of position r and velocity v are
defined as lists of the rigid body c.g. positions and
Euler attitude angles, and the rigid-body c.g. transla-
tional and angular velocities:

R1*n V1i*n
_ Rn*N _ Vn*N
= al v= wll (1)
an Wy

Let f be a list of the resultant forces and mo-
ments applied to each rigid body, and let fg, fa, fe
be corresponding lists of the gravitational forces, the
aerodynamic and rotor forces, and the cable forces,
respectively:

f=fg+ fa+ fc

TL



mligN FAly
_ mn gy N FAny
f9= 0 fa=1 a1,
0 \ Man, /
(FClN
. FC.'nN
fe=| mcu @
\MC’nn

where FAi, MAi are the sum of the aerodynamic and
rotor forces applied to the ith body and the sum of
their moments about its c.g., respectively; and where
FCi, MCi are similar force and moment sums due to
all cables acting on Bi. The applied forces f depend
on r, v, and the helicopter controls; any dependence of
the aerodynamics on the acceleration v is assumed to
be negligible.

Last, let f* be a list of the inertia reactions of the
n bodies:

ml V1*y 0
e mn Va'y | 0
- J1 (.;)11 S(wll)Jl w11
Jn wn, S{wnp)Jnwn,
=-Dv-X (3)

The term f* is abbreviated to the form -D v- X,
where D is block-diagonal with masses and inertia ma-
trices along the diagonal, v is the configuration accel-
eration, and X contains Coriolis terms due to the use
of body-axis components of rotational motion.

Kinematics

The systems of interest consist of n rigid bodies con-
nected by m cables which impose ¢ constraints on the
motion of the rigid bodies; they haved = 6n — ¢
DOFs, where ¢ = 0 for elastic cables. These
are holonomic systems; that is, the constraints im-
posed by an inelastic suspension can be given as func-
tions of position only. These constraints are usually

time-invariant, but in the special case of active ca-
ble winching or attachment-point movement they have
explicit dependence on time. To accommodate this
case, the kinematic model below includes parameters
p = (Piy---s pr)}T, which can represent the control-
lable geometric parameters of such a suspension or
other known time-varying parameters convenient to
the kinematic model in particular applications.

For holonomic systems with d DOFs there exist
d generalized position coordinates, ¢ = (q1,- .- aa) T,
which suffice to locate all points in the system and also
the configuration position

r =r(q,p) (4)

and d generalized velocity coordinates which suffice to
define all inertial velocities of the system:

u="U(q,p)q (5)

The configuration velocity is related to u by a linear
expression of the form

v = A(g,p)u + B(g,p)p (6)

Here, U is a nonsingular d x d matrix; it can be unity,
but velocity coordinates different from ¢ are commonly
useful in applications. Note that v is asserted in equa-
tion (6) to be linear in u,p. This follows from the
usual linear relationship v(#) from rigid-body kinemat-

ics (appendix A),
} i=1,...,mn

and equations (4) and (5). The term A is a 6n X d
matrix. For inelastic suspensions, A expresses the con-
straints by confining that part of the configuration ve-
locity due to u to the d-dimensional linear vector sub-
space defined by the columns of A. Ifp = 0, then
this subspace is tangent to the configuration trajec-
tory r(t).

™ _ - %
Vi*y = Ri*y
wii = Wzl(az) s %)

Equations of Motion

The Newton-Euler equations for each rigid body are
as follows: )
]V[’i,’ - Ji L;JZ';‘ - S(wi,’) Ji wii =0
where Fi, Mi are the total applied forces and moments

about the c.g. of body Bi. The same equations listed
for all n bodies are .

fot fg+ fa+ =0 (1)



To obtain the simulation equations, differentiate equa-
tion (6) with respect to time, introduce the result in il
(eq. (3)), premultiply equation (7) by AT, and solve
for a:

4= [ATDA]7 AT [fo + f] (8)

where
fof fog+fa —DAu— X-— D(B j+ B p)

The configuration vector fo denotes the combined ex-
ternal forces, second-order velocity effects resulting
from the choice of coordinates u,v, and the inertia
reaction of the configuration to p(t).

If the cables are elastic, then A is a nonsingular
6n x 6n matrix and

@=A"'D Y fo+ fd (9a)

In the case that p = 0 and we choose u = v, then
A =T and the result is identical to the Newton-Euler
equations applied to each body:

0=D"fg+ fa— X + f{ (9b)

Equation (9b) for the rigid-body velocity coordinates
can be applied to any configuration without further
analysis except as needed to express fc. Equation (9a)
generalizes this case to allow a choice of generalized
velocity coordinates; for example, the use of cable-
velocity coordinates in u provides a convenient and
well-conditioned calculation of cable lengths and di-
rections for use in the calculation of the cable forces
fe. It should be noted here that the matrix A~! in
equation (9a) represents the kinematic relation u(v)
and can be given analytically from the kinematics as
readily as the matrix 4 representing the reverse rela-
tion v(u). Therefore, it is unnecessary to perform a
matrix inversion to obtain 4~1.

The constraint force fc in equations (9) can be given
as a sum of forces and moments applied by the suspen-
sion at each attachment point:

M
fo= Zhj TC;

Jj=1

where j enumerates every attachment of a cable to a
rigid body, hj is a configuration vector defined in the
next section, and T'Cj is the cable tension, which is
given by the spring model of the cable as

TCj = maz{0, Kj(j—loj)+cj €5} j=1,2,.... M

where {o0j, Kj,cj} are the unloaded cable length and
cable spring and damping constants, respectively. Ca-
ble damping, ¢j # 0, is introduced in reference 15,

but otherwise has been neglected in simulations with
elastic-cable models. For cables made of nylon web-
bing, the spring rate K depends on loading and cable
length (ref. 34). This dependency is readily included in
the calculation of cable tensions from the above equa-
tions. If accurate simulation of the small motions that
result from suspension stretching is unimportant, then
a simplified spring model of the cable elasticity that is
consistent with typical natural modes will suffice. The
spring constants K, ¢ are related to the cable’s natu-
ral mode parameters by w2 = Kg/F, 20wy, = cg/F,
where F is the load supported by the cable. In simula-
tions with elastic cables, initial values of cable tension
and stretch can be calculated in cases with nonredun-
dant suspensions from the solution for the constraint
forces fe for inelastic cables given below. Alterna-
tively, the configuration can be allowed to settle from
an approximate initial arrangement, possibly with the
aid of cable damping as a settling device (ref. 15).

Simulation Equations for Inelastic Suspensions
Using d’Alembert’s Principle

If the cables are inelastic then the cable forces
fe drop out of equation (8) (ATfc = 0) in ac-
cordance with d’Alembert’s principle for constrained
holonomic systems; the constraint forces do no virtual
work. This result is shown as follows. F irst, enumer-
ate the cable attachments 1,2,..., M at attachment
points R1,R2,...,RM on their corresponding bod-
les Bi,t = i(1),i(2),...,i(M). One or more cables are
attached at an attachment point and every such at-
tachment of a cable to a body is numbered. The con-
straint force on the configuration is then (see fig. 2(a))

M
fe=> "hj TCj (10)
Jj=1
where TCj is the cable tension. The Jth cable at-
tachment at point Rj on body () applies a force and
moment to Bi(j) given by
FCij = kcj TCj
MCij = (Ri"j x kej) TCj
where kcj is the cable direction outward from the body
and Ri*j is the moment arm of the attachment point
about the c.g. (Rj—Ri*). Thus, hj in equation (10) is
a configuration vector whose nonzero elements are kc j
and (Ri*j x kcj), corresponding to the constraint force

and moment on Bi(j) due to the jth cable attachment,
per unit tension.

Second, enumerate the cables and links which con-
stitute the suspension, C1,C2,...,Cm. Each end of
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Figure 2. Suspension forces.

a cable or link is attached to either a rigid body or to
another link. In the restricted case, in which all cables
are attached at both ends to rigid bodies, all terms in
equation (10) can be combined in pairs, with each pair
corresponding to a single cable:

fe=Y Hj TCj (11)

Jj=1

where the nonzero elements of Hj are
kcj, —kcj, (Rj—Ri*) x kcj, —(RJ — Ri"™) xkej,
corresponding to the forces and moments on bodies
Bi, Bi' to which the cable Cj is attached at points
Rj, Rj (see fig. 2(b)). Here, kcj is the direction of
the line segment (Rj’ — Rj). From the definitions of
Hj,v it follows that vTHj combines the rigid-body
c.g. and angular velocities to give the difference in
cable endpoint velocities along the cable direction:

vTHj = Vi*ekej— Vi*ekej+wie (Ri*jx kej)

— wi' e (Ri*j' x kcj)

= (Vi-V§) e kej=—fj
That is, it is the cable stretch rate. Recalling equa-
tion (6), uT ATHj is the cable stretch rate due to u.

Since all cable lengths are invariant for arbitrary u in
an inelastic system, then

ATH;j=0 j=1,2,...,m

and
ATfe=0

For inelastic suspensions, all systems in figure 1 except
system 6 can be partitioned into rigid bodies such that
every cable connects two rigid bodies.

For more general suspensions in which links are con-
nected at both ends to a rigid body or to another link
(fig. 2(c)), fe is given by equation (10), and vIfcisa
linear combination of the attachment-point velocities.
To this combination, first add and subtract the veloc-
ities of the cable interconnection points in the cable
directions, and then apply the force-balance condition
to the linear combinations of cable forces at these in-
terconnections. The result is

M
vTfe=) Vj o kej TCj

J=1

=3 (Vi-Vj)e kej TCj

j=1
=-Y £ TCj (12)
=1

where the second and third sums are taken over all
cables and {fj} are cable lengths. Consequently, if



the suspension is inelastic then all cable lengths are
invariant for arbitrary u, and
ATfe=0 (13)
Equation (13) indicates that the cable force fc is or-
thogonal to all the columns of A and therefore to the
configuration velocity v, when p = 0. This result also
expresses d’Alembert’s principle for constrained holo-
nomic systems (the constraint forces f¢ do no virtual
work) and Jourdain’s principle for nonholonomic sys-
tems (the constraint forces have no virtual power):

ff sr=0

and
fel v=0

where the virtual position and velocity in this context
are

67‘:[ng] bq=AU bq

and
bv=[VI v bu=A46u

and the constraint forces to which these principles ap-
ply in slung-load systems are shown above to be the re-
sultant cable forces if the suspension is inelastic. Equa-
tion (8) for inelastic suspensions is now

i=[ATDA] "AT fo (14)
Here, [ATDA] is a positive definite d x d matrix; D
contains the system mass-inertia parameters; A con-
tains the system geometry and constraints; and fo (de-
fined by eq. (8)) contains the term DA u + X, which
is second-order in velocity coordinates, and the iner-
tia reactions to p. It is unnecessary to calculate cable
tensions in this result.

The principal difficulty in implementing equa-
tion (14) is the required inversion of [ATDA]. A gen-
eral analytical inverse is unknown. For slung loads,
d is relatively large (near 6n) and the inversion is
therefore computationally more costly than it is for
the elastic-cable case (eq. (9)), which requires no in-
version. Some analysis of its numerical conditioning
over the flight envelope is needed before inversion can
be confidently implemented. In addition, the matrix
inversion obstructs further expansion and rationaliza-
tion in terms of three-dimensional dynamics whereas
equation (9) can be fully expanded in applications in
terms of natural vectors and matrices to obtain an-
alytically the sensitivities of the elements of @ to the
forces and moments. A Gauss-Jordan elimination pro-
cedure to reduce the matrix to a block-diagonal form
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was considered in initial efforts to reduce the inver-
sion to the inverses of smaller blocks given in terms
of three-dimensional vectors. The procedure was ap-
plied in each case after defining the coordinates u and
identifying some subdivision of % into natural vectors
or groups of coordinates with which to associate the
blocks of the diagonalized form. For typical choices
of u, these blocks usually represented the rigid-body
inertia matrices modified by the constraint moments
(effective inertia).

Analytical results were obtained for systems 1, 2,
7, and 8 of figure 1, but the labor required increased
rapidly with the number of DOFs, and the procedure
appeared impractical to do by hand for dual-lift sys-
tem 10 of figure 1. No generalization of the effective
inertia interpretation of the blocks or of the simplifica-
tion required at each step of the reduction was found,
so the procedure was ad hoc and specific to each sys-
tem and choice of coordinates, and could not be given
effectively as a MACSYMA algorithm for analytical
reduction.

A second form of the simulation equations, which
requires the inverse of a much smaller ¢ x ¢ matrix, was
obtained after restricting the generalized coordinates
appropriately for slung-load systems; it is described
next. The result can be applied with much less labor
and likelihood of error than the procedure considered
above.

Equation (14), or equivalent forms obtained by
means of Lagrange’s equations, is implemented in
many of the general multibody programs, where d is
relatively small in typical applications in the multi-
body literature. Numerical inversion of positive defi-
nite matrices can be carried out by various algorithms
based on the Cholesky (square-root) decomposition
(ref. 35) previously applied in the field of estimation.
These are computationally efficient and resist numer-
ical instabilities. The conditioning of the coefficient
matrix [ATDA] depends on A in equation (14) or,
equivalently, on the choice of coordinates u. In the
multibody programs these coordinates are often pres-
elected based on the joint model of interbody connec-
tions, and these appropriate coordinates tend to result
in well-conditioned coefficient matrices in typical ap-
plications. In the present work, the interbody connec-
tions are suspensions composed of cables; it is left to
the applications phase to determine in each case what
constraints are imposed and what choice of coordinates
best represents the constrained system motion.

-




Simulation Equations for Inelastic Suspension:
Explicit Constraint Method

The approach in this section is to select the gen-
eralized velocity coordinates for the elastic system in
equation (9) so as to separate the motion due to ca-
ble stretching from the remaining motion by means of
invariant cable lengths, and then to study the results
when the stretching motion is nulled. A solution for
the constraint force and new simulation equations for
the inelastic system are obtained.

First, let the generalized velocity coordinates of the
elastic system u be composed of 6n—c¢ coordinates, ul,
of the system with invariant cable lengths, and ¢ length
rates, A, which suffice to define the motion resulting
from cable stretching. In general, if the ¢ independent
position constraints imposed by an inelastic suspen-
sion are given by {AL{r) = 0,...,Ac(r) = 0} then A
can be taken as (A\1,...,Ac)”. For slung-load systems,
X can usually be taken as the cable lengths and the
complete set of coordinates (ul, 5\) can be taken as the
c.g. velocity of a reference body, the angular velocities
of all rigid bodies, and the cable angular velocities and
stretching rates.

Next, substitute the partitioned u in equations (6)
and (9):

v=Au+Bp=Alul+L A+Bp (15)
ul ANT

= |= Y fo+ fo) (16)
A AT

where fo is defined in equation (8); Al, L are the
6n — ¢ and ¢ columns of A which, respectively, define
the contributions of ul, A to v; and AI1T, AT are the
6n—c and c rows of A~! which, respectively, define the
relations ul(v) and A(v). As noted earlier, A~! can be
obtained without matrix inversion since it defines the
relation u(v) for the elastic system and can be given
from the kinematics as readily as A, which defines the
relation v(u).

Equation (16) gives the simulation equation for sys-
tems wich elastic suspensions in terms of the coordi-
nates (ul, A), where ul leaves the cable lengths in-
variant. The influence of cable-stretching motion on
ul can be viewed by entering the derivative of the
partitioned generalized velocity coordinates given by
equation (15) in f*, and rederiving equation (8). The
first 6n — ¢ equations can be arranged as

wl =[A17 D A1]7! A1T[fo — D(LX + L]

11

where fo is as defined with equation (8) except that
Al ul replaces A u. As in equation (14), fc drops
out (A17 fc = 0 in view of eq. (13)) and the result
differs from the inelastic system equations (eq. (14))
only in the presence of the configuration acceleration
due to elastic stretching. The effect of the stretching
motion on ul depends on the cable spring constants:
for a fixed disturbance, the extremes of A decline with
increasing spring stiffness, whereas the extremes of the
term in A remain fixed in magnitude, although )\(t)
increases in frequency (ref. 15).

The constraint force can be given in terms of ¢ in-
dependent parameters; that is, it can be given in the

form
sl

s2

fe =H s

[H1,...,Hc]

sc
where s is arbitrary, {Hj} are configuration vectors,
and rank [H] = ¢. From equation (13), A1TH =0,
and from the construction of A~1, A1TA = 0. There-
fore, the columns of H and A are both bases of the
same linear vector space, and A can be used to define
the constraint force:

fe=As (17)

where AT is the Jacobian [VZ )], and s has units of
force, if the coordinates A are lengths.

For inelastic suspensions, A = 0, and equation (16)
gives ¢ equations from which to calculate the con-
straint forces:

0=ATD (fo+ fc)
Introduce equation (17) into equation (18) and solve
for s:

(18)

= —[ATD™IA|7IATD fo (19)

Further, A can be replaced in equations (17) and (19)
by any other convenient basis, H, of the space con-
taining fec. For example, in the special case that every
cable connects two bodies and ¢ = m, then s can be
taken as the ¢ cable tensions with the basis vectors
H1,...,Hc, as defined by equation (11) above.

The cable tensions are related to s, and can be
uniquely determined from s if the suspension is not
redundant. However, the constraint force applied to
the configuration, fc, can always be calculated. A
suspension can be separated into disjoint sets of inter-
connected links. Each such set imposes one holonomic



constraint; if the number of sets is ¢, then all cable
tensions can be uniquely determined from s, but if it
exceeds c, then the constraints are redundantly im-
posed. In the special case that all cables connect two
rigid bodies, then each cable is a disjoint set and all
cable tensions can be found only if ¢ = m.

Finally, the simulation equations are

=AD" (fo+ A s) (20)

or, for the inelastic DOFs;
ul = ANTDYI — A]ATD A7 IATD Y fo  (21)

This result has several advantages over equation (14)
for the slung-load systems. First, the leading coeffi-
cient matrix, A~! or AI1, is known analytically. Sec-
ond, equations (19) and (20) require the inversion of a
¢ X ¢ matrix, [ATD~!A], where ¢ = 1 for system 1 and
¢ = 4 for dual-lift system 10 (fig. 1), compared with
the required inversion of 11 x 11 and 20 x 20 matrices,
respectively, for these two systems when equation (14)
is used. In many cases, the cable tensions can also be
generated by equation (19).

Computational efficiency in calculating the dynam-
ics can be compared among the formulations of the
simulation equations defined above by counting the
number of multiplications required to generate @, given
A, A1, D,D7!, f;. These are shown in table 1 for sys-
tems 1 and 10 of figure 1.

In table 1, g() refers to the number of multiplica-
tions and divisions required for the Cholesky inver-
sion, which increases with the square of the matrix size
(ref. 35). The general formulas (derivations omitted)
include savings gained from generic zeros, ones, and
matrix symmetries. The number of coordinates u, v
that are identical is represented by i in these formulas,
and accounts for the generic zeros and ones. In most
cases, u can be selected such that i = 3n+3. Additions
are omitted from the operations count for brevity, but
this omission does not affect the conclusions. Equa-
tion (14) is representative of previous single-case for-
mulations of the slung load dynamics with inelastic

cables, as well as those in the multibody literature
(e.g., refs. 24 and 36). As shown, equations (19) and
(20) provide a significant reduction in the computa-
tional requirements to represent these dynamics, and
a much reduced penalty compared to the elastic cable
formulation (eq. (9)). The same conclusion applies to
all systems of figure 1.

Computational requirements are of interest in real-
time simulation and control. In simulations, the time
required to compute the dynamical terms are of in-
terest if these are a significant fraction of the cycle
time. In control systems, linear control laws use coef-
ficient matrices that can be calculated off line, and are
nearly unaffected by the underlying formulation of the
nonlinear EOMs. However, modern control-law design
methods for aeronautical systems (inverse model, out-
put linearization) treat systems with significant aero-
dynamic or dynamic nonlinearities by partially invert-
ing the simulation equations. It is beyond the scope
of this report to consider such control laws in detail,
but it is expected that the formulation of the dynam-
ics in the EOMs will affect the computational require-
ments for such control laws significantly for slung-load
systems.

Simulation Equations for Inelastic Suspensions
from Lagrange’s Equations

Lagrange’s equations have been the principal ana-
lytical approach in slung-load controls studies, where
the object is usually to obtain linearized EOMs. The
EOMs for general slung-load systems with inelastic
suspension are derived here from Lagrange’s equations,
and it will be shown that they have the same form as
equation (14).

Lagrange’s equations for general holonomic systems
with d DOF's are

d
x Vi KE-V, KE=Q (22)
where ¢ = (q1,...,¢q4)T are generalized position co-

ordinates; Q@ = (Qy,...,Qq)" are the generalized
forces, including conservative forces; and KFE is the

Table 1. Multiplications required to calculate @

Multiplies
Equation System 1 System 10 General formula
(9) 60 264 6n(6n — i+ 2)
(14) 616 + g(112) | 3430 + g(202) | d((6n — i) & + 120 + d) + g(d?)
(19) and (20) | 119 868 + g(42) d(6n — 1) + 3n(c? + ¢ + 4) + ¢* + g(c?)
12



kinetic energy. For slung-load systems, K E, Q can be
given as

KE = (1/2) vTDv = (1/2) ¢"ATDAq

Q= AT (fg+ fa)
where A defines v(g) as

(23)

v = Aq

and v, fg, fa are defined in equations (1) and (2).
The controllable parameters, p, in equation (6) have
been omitted from the velocity relation and kinetic en-
ergy for brevity, but they can be routinely included
in KE and its derivatives. The generalized forces
are obtained as coefficients of the generalized coor-
dinate displacements in the virtual work, 6W = fr
6r = fT A8 q. Here, f is the resultant force on the
configuration, f = fg + fa + fc. For inelastic cables,
fe is orthogonal to the columns of A in accordance
with d’Alembert’s principle, and drops out of Q.

After carrying out the derivatives of the kinetic en-
ergy in equation (22), the general slung-load equations
are obtained as a second-order ordinary differential
equation:

M(q)i+k(g,9)=@Q
M=ATDA

k=ATDA¢+(A-G)YT DAg (24)

where

G =[Vg (Alg) 9)]

& o4
A= a— qi
; dq;

All terms in k are second order in the velocity coordi-
nates of ¢. Equation (14) can be placed in the same
form as equation (24) for comparison:

M(q)§ + k(g,9) = AT (fg + fa)
M=ATDA
k=AT(DAj+X)=ATDA ¢+ AT X  (25)

where u has been taken to be identical to ¢ for the
comparison.

The equations of motion, (24) and (25), from La-
grange's equations and from equation (14), respec-
tively, have the same form. The inverse of a d x d
matrix, M, to obtain § is required in both cases.

In the slung-load literature, Lagrange’s equa-
tions (22) have been applied by defining generalized
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position coordinates ¢, forming K E(q,q), and gener-
ating the latter’s derivatives routinely (refs. 10, 15,
and 7). Contact with the rigid-body velocities is lost
in KE, and the terms M, k, @ in equation (24) are
obtained as structureless objects in the d-dimensional
space of constrained motion. This has sufficed for
studies of single helicopters, but appears to be imprac-
tical for multilift systems.

Equation (23) introduces the multibody structure of
slung-load systems in the Lagrangian formulation, fol-
lowing similar steps found in the multibody literature,
to obtain equation (24) in terms of objects 4, D, Ag,
and f in the 6n-dimensional space of configuration mo-
tion. Equations (24) and (25) are identical except for
differences in the analytical statement of the second-
order velocity terms, k. In particular, the term AT X
in equation (25) is given easily from the kinematics
and from equation (3), but its numerical equivalent
in equation (24), (A — G)T D Aq, requires numerous
derivatives of A. However, k can be neglected in the
derivation of linearized equations for windless hover
because its gradients with respect to g,¢ are zero for
practical choices of coordinates, g.

Additional differences between equations (14) and
(24) occur in all terms when the velocity coordinates
u are different from ¢. In the applications work, these
terms can be generated more easily from equation (14)
than from equation (24) owing to the simpler kine-
matics A, usually obtained using generalized velocities,
and the simpler expression for the nonlinear term, k.

Simulation Equations for Inelastic Suspensions
Using Rigid Body Velocity Coordinates

Simulation equations for the rigid-body velocity co-
ordinates v, (eq. (1)) have been derived assuming in-
elastic suspension for several slung-load systems in ref-
erence 16 and for dual lift in reference 20. These spe-
cialized derivations are obtained by extracting a sub-
set of the Newton-Euler equations with the suspension
forces eliminated and appending derivatives of the con-
straint equations to obtain 6n equations for the rigid-
body accelerations 9. This procedure can be formally
extended to general slung-load systems with inelastic
suspension by using the partitioned coordinates previ-
ously defined in equation (15).

As before, partition the generalized velocity coordi-
nates of the elastic system u into 6n — ¢ coordinates
ul of the system with invariant cable lengths and c
length rates X\ with suffice to define the motion due



to cable stretching. Then the kinematics can again be
partitioned as

v=Au= Al ul + L}

ul ANnT

=A"ly = (26)
A AT

Controllable parameters p have been omitted from the
kinematics for brevity but can be included routinely
in the derivation. Here, the columns of A and the
rows of A™! are partitioned into [Al, L] and [AI1, A].
The term Al is a basis of the space perpendicular to
the suspension forces fc and A is a basis of the space
containing these forces. The suspension forces can be
expressed as in equation (17) in terms of A and ¢ in-
dependent constraint force parameters s. Introduce
this into the Newton-Euler equation (9b) and premul-
tiply the result by AT to obtain the dynamic equations
(note that A17 fc = 0 and LTA = I):

A1TDo = A1T(fg + fa— X) (27)

s=LT(Dv~ fg— fa+ X)

A derivative of equation (26) provides ¢ addi-
tional kinematic constraint equations for inelastic
suspensions:

(28)

A=ATo+ ATy =0 (29)

Together, equations (27) and (29) comprise 6N scalar
equations for the rigid-body accelerations in which the
suspension forces have been eliminated. These yield
the simulation equations in the form

v=M(r)"lz

where
A1TD
M= (30)

AT

A1T(fg+ fa—X)

—ATy

Equation (30) requires the inversion of the 6n x 6n
matrix, M, composed of 6n — ¢ columns from D A and
c rows from A~!. General results for its rank or for
efficient inversion algorithms are not available. The
second-order velocity terms occur in X,AT ». The
use of the rigid-body velocity coordinates results in
calculation of relative motions from small differences
of large numbers in a simulation.
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The suspension force parameters, s, can be com-
puted from equation (28) after computing accelera-
tions. Alternatively, equation (19) gives s in terms
of the applied forces and the velocity coordinates, but
requires more computation than equation (28). In gen-
eral s suffices to define the resultant suspension forces
applied to each rigid body of the configuration. Cable
tensions are related to s by fc = As = Hr, where 7
is a list of cable tensions and H contains appropriate
configuration vectors defining the force and moment
action of each cable on each rigid body. If the number
of cables equals the number of constraints, then the
cable tensions are readily obtained from this relation.

4. APPLICATIONS

The object of this section is to demonstrate and ap-
ply the methods of this report to slung-load systems
of practical interest, particularly the dual-lift systems
for which general simulation equations were not pre-
viously available. Results are given for systems 1, 2,
and 7 and for all three dual-lift systems shown in fig-
ure 1, as well as for multilift system 11 extended to
any number of helicopters. These results are given as
summaries of simulation equations in programmable
form in the appendixes.

General Procedure

A general procedure for applying and implementing
the present results for slung-load simulation equations
is outlined in figure 3. Both elastic suspensions (eq. (9)
or (16)) and inelastic suspensions (egs. (19) and (20))
are included. The first task (fig. 3(a)) is to perform
an analysis to (1) determine the constraints of the in-
elastic suspension; (2) define 6n generalized velocity
coordinates (u1, ) such that ul are d coordinates for
the inelastic suspension and such that \ are ¢ coor-
dinates which define system motion caused by cable
stretching; and (3) obtain expressions for 4, A~1, A
from the kinematics and for B, B from the suspen-
sion geometry, if it is controlled. These items are case
specific.

The selection of appropriate generalized coordinates
u is case specific, but several features were used repeat-
edly in the applications to maintain simplicity of the
kinematics and equations. The coordinates u can be
selected to consist largely or entirely of natural vectors.
If u contains rigid-body velocities identical to those in
v, then the corresponding rows of A, A~!, A are from



c number of holonomic constraints on configuration for inelastic suspension
ul  6n — c generalized velocity coordinates for system with inelastic suspension
A ¢ generalized velocity coordinates defining suspension stretching motion

u 6n generalized velocity coordinates for system with elastic suspension
w=(u1T,\T)T

A the Jacobian [VT v] obtained from the kinematics
A-1  the Jacobian [VT u] obtained from the kinematics

A the Jacobian [V, AT] from A" or any basis of the interaction force space

B the Jacobian [V v] (required only ifp#£0)

(a) Quantities required a priori.

fa = fa(r,v,5) (6 = helicopter controls)

fo:fg+fa—DAu-X—D(Bp'+Bp)

M
f S hj maz{0, Kj (£ — €oj)} (elastic cables)
c=1< j=1
—~A[ATD7'A]"IATD ™ fo (inelastic cables)

sf =D Yfo+ fo)

uw=A"lsf

u= [udt

v=Au+Bp or :=Z,u+ZpP
7 = 7#{r,p,v,P)

r=[rdt or z=[zdt

(b) Simulation equations.

Figure 3. Procedure for simulation of slung-load systems.
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fo = fg + fa— X - D(Au + Bp + Bp)

E]M_ , i max {0, K} (£)fop)}

sf

S, p,p» fc=

-A[ATD-TATT ATD 110

st =D~ (fo + fc)

1

plé

A-1 > Z,u+ Zph 5 [ H—>

(¢) Simulation flow diagram.
Figure 3. Concluded.

the unit matrix or zero. If u contains cable veloci-
ties, the corresponding rows of 4, A~!, A contain only
coordinate transformations and skew-symmetric ma-
trices representing Coriolis velocities and Coriolis and
centrifugal accelerations. In most of the applications
discussed in this paper, u consists of the c.g. velocity
of a reference body, the angular velocities of all bod-
ies, and various cable velocitics or their equivalents. A
consideration in choosing u is that the relation v(u)
should be nonsingular and well-conditioned over the
domain of motions (v,7) of interest; that is, all con-
figuration motion should be readily detected from a
knowledge of u. Among the examples given, this was
a factor only for system 7 (fig. 1).

The second task is to implement the simulation
equations (16) or (19) and (20) as given in the equa-
tion summary (fig. 3(b)) and the information flow di-
agram for the gencral n-body system (fig. 3(c)). The
applied forces and moments due to weight, acrody-
namies, and rotor arc combined in fo with the incrtia
coupling associated with the choice of coordinates u, v
and the controllable geometry, if any. The configura-
tion vectors fg, fa, X, and D were previously defined
in terms of physical vectors and matrices of the three-
dimensional rigid-body mechanics of the system’s con-
stituent bodies, in equations (2) and (3). The aerody-
namic term fa need not be considered in detail here,
except to note that it can be assumed to be a function
of the configuration kinematics and the acrodynamic
controls, . These dependencics arc considered in more
detail later in deriving the linearized EQOMs.

The forces and moments applied by the suspen-
sion to the configuration fe arc calculated from cqua-
tions (10) or (11) (clastic cables) or cquations (18)
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and (19) (inelastic cables). Both elastic and inelastic
cable models can be accommodated by switching for-
mulas for the interaction force. Expressions are given
for both cases in all examples. For elastic cables, fcis
calculated from cable tensions and from configuration
vectors defining the force and moment action of each
cable on the 7 rigid bodies. For inelastic cables, fcis
calculated from any basis of the constraint force space
A, and the corresponding independent constraint force
parameters 8. The Jacobian, [V,AT), from A~! is al-
ways a basis. When every cable connects two bodies
and when m = ¢, as in the dual-lift systems, then
the constraint force parameters s can be taken as the
cable tensions, and the coefficient matrix defined in
cquation (11) can be used for both modecls:

fe=Hs

(maz{0, Kj(¢j —toj)}, j=1,...,e)T

(elastic cables)

—[HT D' H]"' HT D! fo
(inelastic cables)

Subsequently, the configuration-specific forces and mo-
ments sf, and, finally, @ are calculated. The remain-
ing steps generate the kinematics u, v, 7, r routinely or,
more generally, these kinematic variables can be ex-
panded to any set of velocity and position coordinates
2, z of interest after defining (2, p, u, p) from the kine-
matics and geometry. For inelastic cables, the coordi-
nates A and their equations can be climinated since A is
theoretically zero. Alternatively, all 6n equations can
be retained to permit simulation of both cable models:
for inclastic cables, the computed \ indicates numeri-
cal accuracy.

w1



The general simulation equations shown in figure 3
are given in terms of vectors in the 6n-dimensional
configuration space. These are expressed in all results
in terms of the natural vectors and matrices of the un-
derlying three-dimensional rigid-body mechanics and
geometry. General formulas used to obtain this form
are given in appendix A. The required equations are
relations from the classic vector theory of rigid-body
dynamics in a programmable form. First, the skew-
symmetric matrix is introduced to represent the cross
products which occur in the Coriolis velocities, Cori-
olis and centrifugal accelerations, and cable moments
that pervade A, A7!, Au, and fc. Second, reference
frames are defined for all rigid bodies, and standard ex-
pressions are given for the coordinate transformations,
angular velocities, and transformation rates that occur
in the results. All transformations are given in terms
of the customary Euler-angle sequence of aeronautics.
Third, the treatment of cable direction angles, cable
axes, and cable velocities is outlined; Euler angles are
again used, but only two angles are needed.

Examples

The literature describes a variety of existing and pro-
posed slung-load systems (fig. 1). These are grouped,
for this discussion, into (1) single helicopters with a
single attachment point on the helicopter, (2) single
helicopters with multiple attachment points, (3) dual-
lift systems, and (4) multilift systems. Several suspen-
sions are of interest in each category, including con-
trollable geometry in systems 5 and 6 of figure 1. Re-
sults are given for systems 1, 2, and 7 and for all three
dual-lift systems, as well as for a simple multilift sys-
tem. Systems with controllable suspension geometry
are not included in the present examples.

The single-helicopter systems 1, 2, and 3 of figure 1,
with a single attachment point on the helicopter, are
considered in appendix B. Results are obtained for sys-
tems 1 and 2 by using the above procedure. The
suspensions for systems 1 and 2 impose three con-
straints and one constraint, respectively, on the load
relative motion when inelastic. Appropriate partition-
ing coordinates were readily obtained by including the
load relative velocity (system 1) or cable-axis compo-
nents of the cable velocity (system 2) in the gener-
alized coordinates. Differences from the earlier for-
mulations of simulation equations include the use of
relative-acceleration coordinates for the elastic suspen-
sion case, the nonlinear EOMs for the inelastic suspen-
sion with explicit calculation of cable tensions, and
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the integration of both elastic and inelastic suspension
models into one equation set.

Partitioning coordinates for single-cable-and-sling
system 3 of figure 1 were not found. If the suspension
is inelastic, this system is identical to system 2 and can
be represented by the same equations. For the elastic
suspension, the principal elastic elements are the sling
legs, in which case no cable connects two rigid bodies.
Here, the suspension geometry and cable tensions are
determined from the force balance at the sling vertex.
Coordinates are given in appendix B that simplify this
calculation relative to the method found in the earlier
literature. Kinematic relations needed to obtain the
EOMs from equation (9a) are given, but these depend
on suspension elasticity parameters, as well as on ordi-
nary kinematics. A complete set of EOMs is omitted
because the coordinates given are not of the type that
is of interest in the present applications work. In this
case the EOMs for an inelastic suspension are sim-
pler than those for an elastic suspension because of
the complexity in calculating interaction forces when
each elastic link is not connected to two rigid bodies.

The single-helicopter systems, 4-7 of figure 1, with
multiple attachment points on the helicopter, are con-
sidered in appendix C. These suspensions were de-
veloped in the 1965-1975 period to stabilize difficult
loads such as the standard cargo container (MIL-
VAN). They provide yaw restraint to stabilize elon-
gated loads in a minimum-drag heading, and pitch at-
titude is restricted. The addition of active cable-length
and attachment-point control to increase load-motion
damping was also considered.

Results are given in appendix C for the bifilar sus-
pension (system 7, fig. 1), which imposes two con-
straints on load relative-motion when inelastic. This
system also approximates the inverted-Y suspension
(system 6, fig. 1) when the bar is sufficiently close to
the load. For inelastic suspension, several sets of load-
suspension coordinates have been used in the earlier
literature. The load-suspension geometry is examined
in detail in appendix C, and several] choices of coor-
dinates, some of which are ill-conditioned and some
well-conditioned, are identified. One set is selected
and expanded to a set of partitioning coordinates, and
a complete set of nonlinear EOMs for both elastic and
inelastic-suspension is given. Differences from the ear-
lier literature include the use of relative accelerations
for the elastic suspension case, and the formulation
of efficient equations for the inelastic suspension with
cable tensions explicitly calculated.



The remaining suspensions in this group are analyti-
cally difficult to represent as inelastic. In the inverted-
Y suspension (with or without the spreader bar) no
cable connects two rigid bodies, and the force balance
at the suspension interconnections must be considered
as in system 3, discussed above. Further, if the bar or
interconnections are close to the helicopter, the sus-
pension can be represented as an inverted V, and if
close to the load, as bifilar. For inelastic cables, there
can be one, two, or three constraints, depending on
these details of suspension geometry. Finally, it ap-
pears that representation of the inverted-V suspension
as inelastic is both unrealistic and intractable. Simula-
tion equations for the elastic inverted-V suspension are
given in the literature, along with approximate equa-
tions in which cable stretching motion is neglected.
Although the existing analytical difficulties in simu-
lating the multipoint suspensions of practical interest
are not relieved by the methods presented in this re-
port, recall that the principal object here is to treat
the difficult multilift systems discussed next.

Simulation equations for the three- and four-body
dual-lift systems (8-10, fig. 1) are given in ap-
pendix D. Appropriate partitioning coordinates for ap-
plying equation (16) were readily found by using cable-
axis components of the cable velocities or their equiv-
alents. The results integrate elastic and inelastic sus-
pension models; since ¢ = m for these systems, the
suspension forces fc = Hs can be calculated by using
the identical matrix of configuration vectors H for the
two models. Further, all three systems can be simu-
lated by a single equation set. System 8 is a three-
body subsystem of system 10 obtained by deleting the
load and bridle cables, and can be represented by a
subset of the coordinates and equations for system 10,
and system 9 is a simple specialization of system 8
with coincident attachment points on the load. Gen-
eral nonlinear equations for these systems with inelas-
tic suspensions were not previously available owing to
the complexity of representing the dynamics by the
traditional methods found in the slung-load literature.
The methods of this report render these dynamics ac-
cessible and tractable, and provide a new formulation
of the EOMs for inelastic suspensions that is efficient
and that provides explicit calculation of the suspension
forces.

Simulation equations for the multilift system 11 of
figure 1 extended to any number of helicopters are
given in appendix E. Each helicopter is connected to
the load by a single cable, which, if inelastic, imposes
one constraint on the motion of a helicopter relative
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to the load. Equations for this system are readily ob-
tained by extending the single-helicopter /single-cable
system formulation in appendix B. The generalized co-
ordinates include cable velocities for every cable, and
the results represent either elastic or inelastic cables.

The EOMs in the above applications work have been
systematically formulated in terms of the natural vec-
tors and matrices of rigid-body mechanics. This de-
parts from the earlier formulations which were given
in terms of the scalar components of all vectors. One
consequence is that repreated matrix and vector prod-
ucts are visible in the equation summaries, and their
repeated calculation can be eliminated in effcient cod-
ing. Another is that programming in a language that
admits operators for such products would result in
simpler, briefer code with associated savings in the
programming task. These have not been significant
issues for single-helicopter simulations, but they are
of greater consequence for the dual-lift and multilift
systems.

5. APPROXIMATE NONLINEAR MODELS

Approximations that reduce the number of DOFs
and thereby simplify the system are always of interest
in control analysis and design. These include the as-
sumption of inelastic cables considered in the previous
sections. Approximations of the rigid bodies as point
masses or as rigid rods have also appeared in the litera-
ture (e.g., ref. 10), particularly for dual-lift systems. In
references 6 and 7, the dual-lift system with spreader
bar is approximated by using a point-mass load and
a rigid-rod spreader bar. In references 17 and 18 all
bodies, including the helicopters, are approximated as
point masses. Modification of the nonlinear EOMs to
include these degenerate-body approximations is con-
sidered in this section.

The nature of these approximations in representing
real systems is of interest. The rigid rod can approx-
imate elongated bodies with negligible inertia about
one axis. The point-mass assumption implies negligi-
ble inertia about all axes. This is never realistic in
slung loads, but it does approximate possible practical
situations in which the attitude dynamics of a rigid
body do not affect the remaining DOF's (reduced sys-
tem). First, if the suspension is attached at the c.g.
of a body and the applied forces are negligibly depen-
dent on attitude, then the reduced system motion is
independent of its attitude dynamics and is governed
by EOMs identical to those obtained assuming a point

e

"o



mass. Second, if a helicopter can be assumed to control
the slung-load system solely through its applied force,
then its attitude dynamics are dependent DOF's as re-
quired to generate that force, and can be removed from
the system DOF's to leave a reduced system in which
the helicopter’s applied force is the control. Simulation
and control analysis of the reduced system can then
proceed without the details of the helicopter model
being considered, and separately from implementation
of the applied-force controller in the helicopter. A cor-
responding separation of the EOMs is examined below
and it is shown to result in equations for the load-
suspension subsystem that are identical to those ob-
tained when point-mass helicopters are assumed. This
separation of the slung-load control and the related
point-mass approximations in references 17 and 18 are
of interest for control synthesis based on inversion of
the nonlinear model.

Degenerate Body Approximations

Point-mass bodies— If any bodies in the system
are approximated as point masses, then all formula-
tions of the EOMs (egs. (8), (9), (14), (16)-(20)) can
be applied by removing the attitude coordinates, an-
gular velocities, applied and suspension moments, and
inertias of the point-mass bodies from the configura-
tion vectors and matrices 7, v, X, fa, fc, and D.

Rigid rods— A rigid rod has a singular inertia ma-
trix so that equations (9) and (16) for the uncon-
strained system, in which D~' occurs, are invalid.
Repairs can be made by defining a reduced configu-
ration velocity that contains only as many coordinates
as there are DOFs of the unconstrained system and
retracing the derivations of section 3, beginning with
the Newton-Euler equations.

A rigid rod is a line segment in space with only two
attitude DOFs. Attach body axes F, = {ib,jb,kb}
to the rod with ib along the rod and located in inertial
space by its heading and pitch angles:

Jb = diag{0, Jb', Jb'}

Ty, N = E2(6s) Ea(vs)

0 —sin 9()
0 .
wbb = 1 0 . = mb @ (31)
(
0 cosfy
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The overbar ( ) is introduced to indicate objects from
the three-DOF rigid-body attitude dynamics, such as
Wby, ab, which are reduced to represent rigid rods.
The direction angles are taken as heading and pitch
here, with the assumption that the rod is never ver-
tical. The columns of Wb are, the axes_of rotation
for pitch and heading. Also, ab = mb wbhy, since

Wb, Wb, =1I.

Next, consider a system of n bodies containing rigid
rods, where R are the indices indicating the rigid rods,
and wr, @F are lists of their angular velocities and
rates; wr = (wjj, j € R), @ = (o, j € R). To avoid
the difficulties in deriving the EOMs from equation (7)
that result from the singular D, define the reduced con-
figuration velocity 7 to contain the Euler-angle rates
of the rigid rods. The relation v(7) is

vl I vl
_ (32)
wr ar

where

Wr = diag{Wj,;, jeR}

Here, v has been partitioned into the angular velocities
of the rigid rods wr and the remaining configuration
velocities v1, and T contains 6n — r coordinates cor-
responding to the DOFs of the unconstrained system.

Also, T W ysince W' W=1I.

Next, let u be the generalized velocity coordinates
for the system and denote the relations v{u), T(u) as

v=Au and T=Au

where, from equation (32), A, A are related by
A=W 4

A=W A and

Since v = W Au, replacing A in equation (8) by W A
gives the following convenient form for the EOMs:
w=[@A DA A W' (fo+ fo)
where
D=W DW

(33)

The D term is a nonsingular (6n—7) x (6n—7) reduced
mass-inertia matrix, where the rigid-rod inertias are
now 2 x 2 matrices:

J_J:W]f Jj Wjj = Jj diag{l, cos®6;}, jeR



The configuration forces fo, fc are the usual objects
in 6n-dimensional space previously defined, with forces
and moments listed in the same order as the rigid-body
linear and angular velocities in v above (eq. (32)).

For the constrained system with inelastic cables,
equation (13) expressing d’Alembert’s principle still
applies (A7 fc aw’ fc = 0), and then equa-
tion (33) can be rewritten in a form analogous to equa-
tion (14):

w=[A DA A W fo (34)
For the system with elastic cables, 4 is a nonsingular
square matrix so that equation (34) can be expanded
in a form analogous to that of equation (9a):

w=A""D W (fo+ fe) (35)
The coordinates u can be selected as in equation (16)
to contain 6n — r — ¢ coordinates ul, representing the
configuration motion with inelastic suspension, and
¢ coordinates A, which define the motion induced by
cable stretching. Equation (35) then becomes

T

ul A

DWW (fo+ fe) (36)

A

For inelastic cables, the condition A = 0 yields ¢ scalar
equations in the constraint force. This force may be
expressed as

fe= W fe=Hs

where s is ¢ independent parameters and H is a basis
of the 6n — r dimensional constraint force space for
fe. As in section 3, it can be shown that A and H
are bases of the same space, and then the equations
obtained above yield the solution for s as
s=—[H D H'E D'W o 37)
where # = W' H , and where H is some known basis
in 6n-dimensional space, or A from the kinematics u(7)
in (6n—r)-dimensional space. Equations (36) and (37)
are analogous to equations (16) and (19), respectively.

Applications- Example applications are given in
appendixes D and E. In appendix D, the dual-lift sys-
tem with spreader bar is approximated as three point
masses, representing the two helicopters and load, and
a rigid-rod spreader bar. This system has 14 and
10 DOF's for elastic and inelastic cables, respectively.
The result completes the work begun in reference 17
to obtain a degenerate-body approximation for this
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system. In appendix E, equations are given for the
multilift system with m helicopters and a pendant sus-
pension with all bodies approximated as point masses.
These extend the equations given in reference 18 for a
two-helicopter, two-dimensional point-mass system.

Center-of-Gravity Attachments

To examine coupling between the attitude DOF's of
body Bn in an n-body system with the remaining
DOFs, partition the configuration vectors and matri-
ces to separate its attitude coordinates, inertia, and
moments:

vl
v =
Wy,

7l w-! 0 vl

0 Wn! wn,

D1 0
D=

0 Jn

fal
fa=

1“[‘471-”

fel
fe=

MCn,

The Newton-Euler equations (9b) for the configuration
with elastic suspension are then similarly partitioned
as

#l = D17 (fol + fel)
= D17Yfgl + fal — X1 + fel)
Wy Jnt (M An,, — S(wny)Jn wny, + MCn,)

Coupling of the reduced system (r1,wvl,v1) with the
attitude dynamics (an,wn,,wn,) can occur in the
aerodynamics, fal, and the suspension forces, fcl.
Aerodynamic coupling is principally coupling of the
body’s attitude and c.g. dynamics, plus secondary in-
terbody interferences. This coupling can be neglected

T



if the aerodynamic force is negligible (e.g., load aero-
dynamics at hover and low speeds) or nearly indepen-
dent of attitude (e.g., load aerodynamics when these
are dominated by attitude-independent drag, or when
the attitude is assumed to be constant).

The bodies interact principally through fc. For an
elastic suspension, fc¢ can be given by equations (10)
or (11) from the inertial cable directions and lengths,
and the attitude angles of all bodies, and these are
functions of the configuration position 7. It can be
shown that

If Rn*j=0, jeln
then  MCnp, =0, fcl= fel(rl)
where Cn = indices of the cables attached to Bn at

attachment points {Rn*j, jeCn} on Bn

Thus, if the suspension is attached at the c.g. of
Bn, and the dependence of fal on its attitude is ne-
glected, then the subsystem (r1,v1, 1) is independent
of (an,wn,,wn,). Further, generalized coordinates
for the reduced system can be selected according to
the procedure of section 4 to represent both elastic and
inelastic suspensions. The coordinates (11, v1) are also
those of a configuration in which Bn is assumed to be
a point mass, and the Newton-Euler equations for this
reduced system are identical to those obtained when
Bn is assumed to be point mass.

If Bn is a helicopter, then its aerodynamic force is
attitude dependent. However, system control is sim-
plified by a c.g. attachment at the helicopter. The
helicopter controls ©1 solely through its applied force,
FOny, and attitudeis selected to generate the required
control force. For c.g. attachment, the helicopter’s at-
titude dynamics are those of a free rigid body and
are unaffected by the suspension or the motion of any
other body. The extension of this separation of the
control to more general single-point attachments is
considered next.

Simplified Helicopter Model

Helicopter aerodynamics are a significant source of
complexity in the simulation of multilift systems and of
their control analysis and design. It is desirable to sep-
arate the design of the helicopter control from that of
the slung-load system control to allow a similar separa-
tion of the simulation and analysis work. The general
approach is to view the helicopters as force genera-

tors that control the slung-load system by means of
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their controllable applied forces, and then to consider
the slung-load control independently of the details of
controlling the helicopters’ applied forces. The heli-
copters’ applied forces are controlled through the heli-
copter attitude DOFs; that is, given the instantaneous
helicopter state and the desired force, the helicopter’s
force and moment balance equations can be solved for
the corresponding helicopter attitude angles and con-
trol settings, and then the controls can be used to drive
to its desired value. If the attitude control bandwidth
is much faster than the bandwidth of the applied forces
required to control the slung-load motion, then it can
be assumed that the attitude is always approximately
at the required value; that is, the attitude control is
instantaneous and the attitude DOFs are in steady
state (w = 0) relative to the applied force variations
needed to control the remaining DOFs of the system.
The condition w = 0 characterizes the “controlled he-
licopter approximation” considered next.

Partitioned EOMs- Let H be the indices identi-
fying the helicopter rigid bodies {Bj, j ¢ H} in an
n-body slung-load system. Denote the helicopters’ an-
gle coordinates, inertias, moments, and forces as ah,
wh, Jh, fc2, fo2, foh, as defined in part a of ta-
ble 2. Assume that 6n generalized velocity coordinates
u have been selected for use with equations (16)-(20);
that these include the helicopter angular velocities wh;
and that the remaining coordinates u1 suffice to define
the velocity of any point in the system outside the he-
licopters. A review of the generalized coordinates se-
lected for the examples in the appendixes shows that
these are “reference-point coordinates”; that is, they
contain the velocity of a reference point and additional
coordinates that define the motion of all points rela-
tive to the reference point. As such, wh is present in u
for all examples, but the use of a helicopter c.g. as the
reference point in most examples violates the above
requirement for ul. This can be repaired by moving
the reference point to the load, as in appendix E, or to
a suspension attachment point on a helicopter. Next,
partition the kinematics, the mass-inertia matrix, and
the configuration forces u, v, v(u), u(v), D, fo, fe,
as shown in part b of table 2, to separate the EOMs
into equations for wh and for the remaining (reduced
system) DOFs, 41:

ul = [AIU AI]Q]D_I (fO + fc)
= Al D17! (fol + fellt + AL, wh
oh = Jh! (fo2 + fe2)

In general, %1 is coupled with the helicopter attitude
dynamics (ah, wh, wh) through the term Al» wh
and the possible dependence of fcl, fol, and Al;; on
{ah, wh).



Table 2. Equations of motion for controlled helicopter approximation

(a) Helicopter attitude variables, inertias, moments, and forces:
‘H = indices of helicopter§ in an n-body system:
ah={(aj, jeH)
wh=(wjj, JjeH)
Jh=diag{J;, je™H)
f2=(MCj;, jeH)
fo2 = (MOj;, jeH)

foh = (FOjn, jeH)
(b) Partitioned equations:

_ vl _ = A11 A12 ul
U—(wh)_Au_(O I)(wh)

1 Al Al 1 N ~
u = (uh> A1y = ( O11 112) ((Zh)’ (AI11=A111; AIlZZ—Alll Ara)

_{ fol _ oy i
fo_(f02 s fO—fg+fa X—-DAu
For inelastic suspension:

_ [ fely _ (Al
fe= ( fe2)=\a2)®

s=—[A1T D171 A1+ A2T Jh~' A2]7! (A1T D171 fol + A2T Jh1 fo2)

ul = AI“ Dl_l (fO]. =+ fcl) + 14.[12 wh

wh = Jh~1 (fo2 + fc2)
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Table 2. Concluded

(c) Controlled helicopter approximation:
If: wh=20
Then: 41 = A[}! D171 (fol + fcl)
fo2=—fc2

s=—[A1T D17! A1)~ A17 D171 fol

If also: fel = fel(rl), Ai = An(rl), fol = fol(rl, ul, foh)
where: 71 =71 (r1, ul) and fok are the helicopter épplied forces
Then: (1) The reduced system EOMs are independent of the helicopter
attitude DOFs: ul =41 (r1, ul, foh)
And: (2) The steady-state controls and attitude of conventional helicopters
satisfy the following quasi-static trim equations:
For jeH:
Given: FOjn, &7, Vi*y, ¥J
Find: (&5, ¢j, 64) such that
VA =T~ (Vi'y — WON)
wj; = Wi;la;) &;
Tw; FAj; (VA7 wij,65) +mj gy = FOjn +mj Aj u
MAj;(VAj%, wij, 87) = S(wi;) Jj wi; = MCy;
where
FQjy is an element from foh
Aj are rows of A which give Vj*y = Aj u
MCj; is an element of fc2 = A2(r) s(rl)
WOy is the mean wind velocity
Wj; defines angular velocity from Euler-angle rates of Bj

(appendix A, eq. (72))
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Controlled helicopter approximation- If the
condition wh = 0 is imposed, then the coupling of
ul with wh drops out, and the helicopter applied-
moments satisfy fo2 = — fe2 = —A2 5. Substitute this
expression for fo2 in the equation for the interaction
force parameters s to obtain the result shown in part ¢
of table 2: s = —[A1T D17! A1]~! A1T D1~ fol.
These parameters are independent of the helicopter
moments and inertias, fo2, Jh. In general, A depends
only on position variables. If Al depends only on
position variables r1, which can be determined from
ul, then fcl = Al s is independent of the helicopter
attitudes, except for possible dependence of fol on
(ah, wh). This condition is met in all the applica-
tions examples presented in the appendixes for the
coordinates u selected there. In these examples, Al
depends on the cable directions and the attitude an-
gles of the bodies other than the helicopters, and ul
contains the cable velocities and the angular velocities
of these bodies.

To examine fol, partition it into the helicopter ap-
plied forces and inertia reactions, foh = FOjy, j¢ H,
and the forces and moments on the remaining bodies

of the system (load, spreader bar,...):
FOjn, j ¢ H

fol’ =
mj gn + FAjy ~mj dju  j ¢ H
MAj; — S(wj;) Jj wij j ¢ H

The helicopter forces foh are considered to be the con-
trols of the reduced system. The remaining forces,
fol’, contain the aerodynamics and the inertia reac-
tions of the remaining bodies. Coupling of these aero-
dynamics with (ah, wh) can be neglected. In the iner-
tia reactions, Aj are the rows of A that define Vj*y (u)
and that can introduce coupling with (ah, wh). In
the examples in the appendixes this occurs as centrifu-
gal accelerations in the helicopter attachment-point
moment arms, but these terms are zero for straight-
line flight (wh ~ 0) and are expected to be negligible
otherwise.

Last, the submatrix AI; = [VZ, ul] is independent
of ah in the examples in the appendixes for the coor-
dinates u selected there.
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Reduced system EOMs- For the examples
in the appendixes, the reduced slung-load system
(rl, ul, ul) can be approximated as being inde-
pendent of the helicopter attitude variables by using
the controlled helicopter condition and neglecting sec-
ondary coupling in fol’. The helicopter applied forces
foh are the controls for the reduced system.

Examples are omitted since the reduced system
equations are identical to the equations obtained by
assuming point-mass helicopters. For point-mass heli-
copters, wh, fe2, and fo2 are undefined, and for c.g.
attachments at the helicopters, AI}2 = 0 and fe2 =0,
so that the resulting equations for 71 and s are identi-
cal, in both cases, to those of the reduced system given
above.

Quasi-static equations for helicopter attitude
and controls- If the reduced system is known, then
the helicopter attitude angles and controls are depen-
dent variables that can be determined by solving the
quasi-static trim equations given in part c of table 2.
The helicopters are assumed to be conventional, with
four controls, and FOjy,Vj*y,&j are known for each
helicopter, Bj, jeH, along with a specified value of
the redundant attitude angle ;. Then the four heli-
copter controls and remaining two attitude angles can
be determined from the kinematic equations and the
force-and-moment balance equations listed in part ¢
of table 2. The quasi-static trim equations are related
to the usual static trim algorithm found in conven-
tional helicopter simulations. The helicopter model
(FAj;, MAj;) has the usual independent variables as
noted in the table. For isolated helicopters in static
equilibrium, the angular velocity, linear acceleration,
and suspension forces and moments are zero. Here, the
equations account (1) for nonzero angular motion, ¢J,
which is presumed to be known from the attitude his-
tory; (2) for linear acceleration and suspension forces
in FOjn, which are known from the reduced system;
and (3) for the suspension moments, MCj;, in the
moment equation. The body axis components of the
suspension moments and rigid-body velocities depend
on attitude, and these relations are included in the
iterative solution procedure.

6. LINEARIZED EQUATIONS OF MOTION
FOR GENERAL SLUNG-LOAD SYSTEMS
WITH INELASTIC SUSPENSIONS

Linear analysis is the most commonly used technique
in stability studies and control system design, hence



linearized equations of motion (LEOMs) for slung-load
systems are of interest. These define the perturbation
behavior in the neighborhood of a single flight condi-
tion, and this behavior is characterized by the eigen-
vectors and eigenvalues of the linear equations.

The LEOMSs can be obtained by numerical evalua-
tion of the gradients from a working nonlinear simu-
lation program (e.g., ref. 15) or by analytical deriva-
tion from nonlinear EOMs. Previous derivations in the
slung-load literature are specific to the suspension and
flight conditions treated, and to the approximations
made. Early studies of single-helicopter systems con-
sider single and multipoint suspensions with various
simplifications of the load and its aerodynamics (refs. 9
and 10), or without such simplifications (ref. 33). More
recent studies have focused on transport of the MIL-
VAN and bluff bodies whose stability as slung loads
is problematical (refs. 11, 15, and 16). The LEOMs
are derived from both Lagrange’s equations and from
the Newton-Euler equations, and inelastic cables are
assumed in this literature.

Linearized equations of motion for the twin-lift sys-
tem with spreader bar are derived from Lagrange’s
equations in references 6 and 7 for hover conditions
and point-mass load without load aerodynamics. Ad-
ditional linear control studies reported in references 37
and 38 utilize these results.

The present work provides formulations of the
LEOMs for general slung-load systems at general ac-
celerating or static equilibrium reference flight con-
ditions. The cables are assumed inelastic, and con-
ventional aerodynamics for all bodies are included.
Controllable suspension parameters are omitted for
brevity, but the derivation of the LEOMs can be ex-
panded routinely to include these. The LEOMs are
derived from Lagrange’s equations (egs. (23) and (24))
and from the Newton-Euler formulations of the nonlin-
ear EOMs (eqgs. (14), (19) and (20)) previously given.
In appendix F, the general formulation from equa-
tion (14) is applied to the dual-lift system with a
spreader bar. Results are given for static equilibrium,

ml gy

mngn +

fo+fa=fg+T fba=| "™

TN,

and account for load and spreader-bar inertias and
aerodynamics, and for dissimilar helicopters.

The derivation in each case is carried out in three
steps. First, a general form of the nonlinear equations
showing the dependencies of its terms on the indepen-
dent variables of the problem is stated. These depen-
dencies represent typical working simulation models.
Second, the reference trajectory or flight conditions
are defined. Third, the perturbation equations are de-
rived and evaluated on the reference trajectory. In all
cases, a representative model of the applied forces and
their linearization and a definition of reference trajec-
tories are needed; these matters are settled first.

Applied External Forces

The applied external forces and moments on each
body Bi are due to gravity and aerodynamics:

Fiy = mign +TN,z‘ F Ai; (VAi*i, wig, 62)
Mi, = MAi; (VA wis, 6i) (38)

where
VA, =Tin (Vity —WON)

It is assumed that the aerodynamic and rotor forces
and moments of Bi are given in simulation models in
body axes as functions of the body axis coordinates
of the c.g., the velocity relative to the air mass V A"
(WO is the mean wind velocity), the angular velocity,
wi;, and controls, &i. This general, conventional model
neglects position- and acceleration-dependent aerody-
namics (e.g., ground effects, other altitude-dependent
effects, interbody interference effects, unsteady aero-
dynamics), and gust disturbance effects, but is ade-
quate for most loads, systems, and flight conditions.
Most of the omitted effects can be superposed or
are only weakly position-dependent. Models for the
higher-order unsteady cargo carrier aerodynamics are
discussed in references 11, 15, and 16.

Equation 38 can be assembled for the complete con-
figuration as

FAL,
0 ]

FAn,

MAL, (39a)
I MAn,
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va=TT (v-w)=

The notation T, fba, w, va is conveniently introduced
above, where fba, va contain the body axis compo-
nents of the aerodynamic forces and c.g. velocities.
The LEOMs require the gradients of the aerodynamic
and rotor forces:

Fbyy = VT fba
Fbs = V¥ fba (40a)

where § is a list of all controls (helicopter rotor con-
trols and control-surface deflections). The terms Fb,,
and Fbs are assembled from the stability and control
derivatives for each body:

FAi
(Vi V5., VL) i=1,..,n (40b)

M A,

These derivatives are all assumed to be available from
a simulation model for any flight condition of inter-
est. Nonlinear and linear models for helicopter aerody-
namics are commonly available, but the aerodynamics
of loads are much less systematically known or pre-
dictable. Static aerodynamic data for several military
vehicles and cargo carriers are reported in literature
cited in reference 39. Stability derivatives are less well
known, but reference 33 contains data for a vehicle,
and references 11, 15, and 16 review the literature and
data for the MILVAN and cargo carriers.

Reference Trajectories

The linearization is taken about a reference configu-
ration trajectory {ro(t), vo(t), ¥o(t), 8o(t), to < t < tf}
which satisfies the EOMs and additional engineering
conditions which specify redundant variables. Quanti-
ties evaluated on the reference trajectory are indicated
by the subscript ( ),.

For a single rigid-body aircraft, a complete reference
trajectory consists of a sequence of extended quasi-
static flight segments (hovering, static equilibrium, or

V1i*ty I

V' | :
( ol 0 WO ) (39b)
Wiy, 0

accelerating straight-line flight, and various kinds of
turns) connected by brief transitional maneuvers. For
multibody slung-load systems the relative motion of
the bodies is usually carefully controlled such that the
configuration moves as a single rigid body during each
steady segment, or very nearly so. The relative posi-
tions of the bodies differ from one segment to another,
so that the configuration must be rearranged during
the transitions between these segments. In the follow-
ing discussion, the term “fixed configuration” means
that the system behaves as a rigid body. That is, if
R1" is a reference point in the configuration, and Rj is
any other point in the configuration, then the inertial
velocity of Rj is

Vj=V1* +w x R1%j

where w is the configuration angular velocity. If w = 0
then the configuration is nonrotating as well, and every
point has identical velocity. This occurs in hover, in
static equilibrium, and, approximately, in accelerating
straight-line flight.

- Linear analysis is usually limited to hover and static-
equilibrium flight conditions. Static equilibrium is de-
fined here as a fixed, nonrotating configuration that
follows an unaccelerated straight-line path:

,(t) =0
I
vy = é VO (41)
0

7o(t) = 7o(to) + v, (t — o)
8o(t) = 6,(to) = constant

where V0 is the fixed reference velocity. Hover is the
special case of equation (41) with no motion, V0 = 0.
The quantities {r,(t,),8,(t,)} are obtained from a




trim-solution algorithm. References 15 and 16 describe
trim algorithms for single helicopters with one- and
two-point suspensions. No complete algorithm has
been given yet for any dual-lift system, but a study
of equilibrium configurations along general reference
trajectories for the dual-lift system with spreader bar
obtained by solving a simplified trim problem is de-
scribed in reference 5. Results are given for configura-
tion geometry, cable forces, and thrust requirements.

The reference trajectory generalized coordinates
go(t), uo(t), o(t) are needed for the linearization, and
are obtained from the reference configuration motion
using the following geometry and kinematics:

r=r()
v=A(g) utw (42)
v=Au+Ad

Here, the kinematic model assumes that the coordi-
nates u are chosen to generate configuration velocities
relative to the mean wind, v — w, as is usual for lin-
ear analysis. If ¥ = 0, then Au = —Aq¢, and it does
not follow that u is fixed in static equilibrium with-
out further assumptions about the generalized coor-
dinates. If u is selected such that A(g) depends only
on variables that are fixed in static equilibrium, then
A(go), u, are fixed and A,,u, are zero in static equi-
librium. Such variables can be the coordinates of any
line segment connecting points in the configuration,
such as the rigid-body attitude angles and cable an-
gles relative to inertial or body axes. The coordinates
selected for the nonlinear EOMs in all the applications
cases presented in appendixes B-E are reference point
coordinates of this type. That is, (¢, u) contain the po-
sition and velocity of a reference point (R1*y,V1*y)
and additional coordinates (g,u), which suffice to de-
fine the positions and velocities of all points in the
system relative to the position and velocity of the ref-
erence point

R1*,
q= ’

q

v=A(q) u

U= 5

where g is constant and @ = 0 if the configuration
is fixed and nonrotating. For linear analysis, the
reference-point coordinates are usually given relative
to the mean wind in body axes:

J VALY at
q= )

q

VA1}
L U=A@ utw

u
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where, as above, § is constant and 7 = 0 for fixed, non-
rotating configurations. Then, for static equilibrium,

3,(t) = q(ro(t))

VAOy
(43)

and .

; 0A .
do=2_ (5—.%) =0

P AN
Linearized Equations from Lagrange’s
Equation

The nonlinear EOMs are obtained from Lagrange’s
equations in terms of the generalized position coor-
dinates q. Equations for general slung-load systems
are given by equations (23) and (24) and thesc are re-
peated in table 3. The terms M,k are obtained from
derivatives of the kinetic energy. In the generalized
forces, A defines v(q,q), and T, fba,va are defined in
equation (39). All dependencies on the independent
variables {q, ¢, ¢, 6} are indicated.

The reference trajectory {go(t),qo(t),do(2), 6,(t)}
satisfies the EOMs. The LEOMs are obtained by ex-
panding these to first order in variations about the
reference trajectory:

q=qo+dq
q-:q-o'i‘&j
q=fjo+6d
d=106,+A

and then subtracting the EOMs evaluated on the ref-
erence trajectory to get

M, 64+ 6M G, + V3K, 8¢ + [VTk], g = 6Q

The variations 6M, 6Q are further expanded by using
their general dependencies on the independent vari-
ables of the problem. Complete results are given in
the equation summary, table 3. Products and vari-
ations are interchanged where useful, for example,

6M(q) Go = 6(M(q) Go) = [VE(M(q) Go)lq. bq.

The terms in the perturbation equations that are
due to the dynamics M(q) § and k(q,q) are M,, M,,
and kg, k4. The term M, is zero whenever §, = 0;
the coordinates g are usually selected such that this



Table 3. Linearized EOMs for slung-load systems from Lagrange’s equations

Nonlinear EOMs:
M(q) G+ k(g.9) = Q(g,4,6)
v=A(g)¢+w, w=0
KE=31v"Dv
M=V V,KE=A"DA
k=[VIV4KE|§—-VKE=ATDAG+(A-G)T" Dv
G =V (Alg) )]
Q= A(¢") (fg + fa)
fa =T{q) fba({va,d)

va =T(g)" (v - w)

LEOMs:
Reference trajectory: {go(t), do(t), Go(£), 6o(t)}
Perturbations: {8¢, 6¢, §¢, A}
Equations: M, 6§+ C, 6g+ K, dg=Qs A
where C, = k4 — Qy
Ko =M, +ky— Qq
Qs = AT T, Fbs
and  Qq = A7 Fiav 4o Mo = (Vg (M(q) Go)la,
Qe =Qlg+Q2 kq = (V5 Kot
QLo = [VT(AW@)T (fg+T(q) foa))],, ki =[VIHaa,
Q2= AT T, V] fba = AT Fuan [V (To T(9)T (v — w) + A(9)do)]

9o

where Foon =T, Fby, TL; Fbs, Fua, T, fba are defined in egs. (39) and (40)
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occurs in static equilibrium. All terms in k4, k; contain
a velocity coordinate from ¢, and are zero whenever
go = 0; the coordinates ¢ are usually selected such
that this occurs in hover, and then k(q, ¢) need not be
formed, and

8G = M, (Qq 64+ Qq 8¢+ QsA) (44)

The terms that are due to k also drop out or simplify in
static equilibrium for special choices of the generalized
coordinates as established in the next subsection.

The terms in the LEOMs that are due to the applied
forces are Qs, Q4, Q4. To obtain these expressions, the
extended chain of dependencies

Q(q,4,6) = Q(A(g), fa(T(q), fba(8, va(v(g,4))))

should be noted. It can be seen in table 3 that Qs con-
tains the control derivatives and that Q,; contains the
stability derivatives. Furthermore, @, has been sepa-
rated into Q14, which contains the equilibrium forces,
and @24, which contains a combination of stability
derivatives with the reference velocity. The term Q2
is zero in windless hover where ¢, v, —w are zero. The
gradients of T, A in Q, expand principally to gradi-
ents of coordinate transformations in the applications
work; useful general formulas for this are given in ap-
pendix A (table 7).

Linearized Equations from d’Alembert’s
Principle

The nonlinear equation (14) can be arranged in a
form that parallels the result from Lagrange’s equa-
tions, and this form is given in the equation summary,
table 4. All dependencies on the independent variables
{q,u,%, 8} are noted. These EOMs differ from the La-
grangian equations in the formulation of the second-
order velocity terms k(g,u) and in the use of gener-
alized velocity coordinates, u different from ¢. The
second-order velocity term X is formulated in equa-
tion (3) in terms of the system’s angular velocities,
which are coordinates of v, whereas A is formulated
in the applications work (appendixes B-E) in terms of
{g,u} in all cases; these dependencies are assumed in
table 4. The notation £ = Au, introduced for conve-
nience, represents a configuration acceleration. Equa-
tion (14) is applied by formally defining the general-
ized velocity coordinates u, and position variables are
introduced as needed to define v(g,u) and T(g). In
general, fewer than d such variables may suffice for
this purpose, and these are assumed to be given by
a linear relation ¢ = Y(q) v in table 4, where Y has
full rank. If g is expanded to a set of d coordinates
sufficient to define r(¢), then Y is nonsingular.

A reference trajectory is any {go(t), uo(t), o(t),
8o(t), to, < t < ty} which satisfies the EOMs. The
LEOMs are obtained by expanding the EOMs to first
order in the independent variations, {q, du, §u, A},

" and then subtracting the EOMs evaluated on the ref-

erence trajectory:
M, 64+ 6M 4, + 6AT (X, + DE,)
+AT(6X + D&¢) = 6Q

The variations 6M,64,6X,6£,6Q can be expanded
further; the results are given in the equation summary,
table 4. In the coefficient matrices of the linearized
equations, M,, M, are from the term M(q) u; ky, kq
are from k(g, u); and @, Q,, Qs are from the general-
ized forces.

In static equilibrium, the rigid-body angular ve-
locities are zero, so that X,, X,, X,, X, are all zero
regardless of the choice of generalized coordinates.
Furthermore, the generalized coordinates used in all
application examples given in appendixes B-E are
reference-point coordinates. If inertial coordinates of
the reference-point velocity, V1* n, are used as in these
appendixes, then it is readily shown that the terms k,
and k, due to k, and M,, are zero in static equilib-
rium. However, for linear analysis it is customary to
use body axis coordinates of the velocity relative to the
mean wind, VA1*;. In this case, A has the partitioned
form

TN,I I
— VAl*
U= TN,l A(a) ! + é W’ON
0 u .
0
0
(45)

where 7 is fixed and @ = 0 is in static equilibrium, and
where A depends only on coordinates (g, al), which
are fixed in static equilibrium. Then

M, =0
=0
gq =0
I
€o = VT Aug = V7 é T S(VAOL) wl;
0



Table 4. Linearized slung-load EOMs from equation (14)

Nonlinear EOMs:
M(q) 4+ k(g u) = Q(q,u,8)
¢=Y(q) u
v=A{g)u+w, w=0
M = A(g)T D A(q)
k= A{g)" (X(v) + D &(q u))
§=A(qu)u
Q= A(q)" (fg+ fa)
fa=T(¢) fba(va,?)
va = T(g)T (v - w)
LEOMs:
Reference trajectory: {g,(t), uo{t), Go(t), 8o(t)}
Perturbations: {d8q, 6u, éu, A}
Equations: M, 6t +C, du+ K, 6g=Qs A
6§—Y,6q=Y, bu
where

Yo= [VZ Y(Q) uo]qo

Q

o = ku — Qu

Ko=My+k;—Qq

Qs = AT T, Fbs
and

M, = [VT(M(q) to)lq,

ky = A7 [Xu + D &)

ke = AT [X,+ D &) + [VIA(9)T(X, + D &),
where

Xy = (V5 X,

Xy =X, Ao
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Table 4. Concluded.
Xq = Xo [V5 A() wola,
&u = Ao+ [VE Algo, u) o]
& = V7 Alg,u0) uolg,
and
Qu = A7 Fun 4o
Qq =Ql, + Q2
Q1 = [VI(A(@)"(fg + T(q) fhao))],
Q2 = AT Fuan [VT(To T(g)7 (vo — w) + A(q) 0)],,

where  Fyany =T, Fbyo T Fbs, Fye, T, fba are defined in egs. (39) and (40)
Second-order ODE for 8g:

M! 65+ C' 8¢+ K., 6¢ = Qs
u="U(q) q

M, =M,U,
Cl=Co Up+ M, [Us + VT (U(4o,9) do)]

K, =Ko+ Co [VZU(Q)qo]qo + M, [VqT(U(CI, do)do + Ul(q) do)]qo
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where VAO = VO - WO0. Assuming that wl; is in-
cluded in the generalized coordinates u, then the only
nonzero column of &, is the gradient with respect to
Ldlll

{u bu = fwl 6w11 = — TN,I S(VAO])éwll

1
0

(46a)

For this case, the LEOMs for static equilibrium sim-
plify to

bu = M7 ((Qu — ATDE,)bu + Q.69 + QsA) (46b)

Here, £, is the only contribution from the second-order
velocity terms k. It is given from &, above; it is zero in
hover, and otherwise adds terms in VAO x w1l to the
velocity coefficient matrix in the LEOMs. The equa-
tions for static equilibrium and hover differ in form
only by the terms £, and @2, from Qq; these terms
are proportional to the reference airspeed.

The LEOMS can also be given as a second-order ordi-
nary differential equation (ODE) in the generalized po-
sition coordinates. This equation is obtained by form-
ing the variations éu(bq,8q), 6u(bq,84,8§) from the
kinematic relation u = U(q) ¢ and substituting these
in the state equation. Here, ¢ contains d coordinates,
which suffice to define r(t), and U is nonsingular. Re-
sults for general reference conditions and coordinates
are included in table 4. For static equilibrium and
reference-point coordinates such that

I © 0

L (VAN _ ; VALY,

0 Ul

where 7,7 have the same meaning as above and are
zero in static equilibrium, the second-order ODE form
simplifies to

M, U, 6G—(Qu—AT D €,)U, 64—Q, 6g = Qs A (47)

In applications, U is usually block diagonal and
the modifications of the coefficient matrices in equa-
tion (46b) that are required to obtain the coefficient
matrices in equation (47) are simple.
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Linearized Equations from Explicit Constraint
Method

The nonlinear equations (19) and (20) for the in-
elastic system are repeated in the equation summary,
table 5. This form assumes that 6n coordinates u
have been selected for the elastic system, which con-
tain 6n —c coordinates, u1, of the system with inelastic
suspension, and ¢ coordinates, A, which suffice to de-
fine the motion resulting from cable stretching. The
matrices A, A™! define the relations v(g,u), u(q, v),
respectively, and the matrices A1, All, A, which ap-
pear in the EOMs for the inelastic subsystem u1, are
submatrices of A, A~'. Equations (19) and (20) dif-
fer from equation (14) in the formulation of the co-
efficient matrix of fo, which is known analytically in
equations (19) and (20) up to the inverse of the ¢ x ¢
matrix, 5. The EOMs are linearized by expanding to
first order in the variations {6q,é8u,éu, A} and then
subtracting equations (19) and (20) evaluated on the
reference trajectory {go(t), uo(t), o (t), 6,(t)}:

bul = AT Al, 41, + AILT D7V [sfo+ 6fc] (48q)

In the first term, D~!(fo, + fc,) has been replaced
with its equivalent, A1, 41,. The variation of fo is as-
sembled from the variations of its terms, all of which
were previously treated in tables 3 and 4. The con-
straint force perturbation is obtained from variations
of

fe=Y fo=As
s==S"TAT D! fo
S=AT D71 A

which yield

85 = ~S8;1[85 s, + 6AT D! fo, + ATD"V 6f0]

where
68 so =6AT D7 fc, + AT D1 6A s,
and then
bs = =S [6AT Al, 4l,+AT D71 6A s,AT D! §f]
(48b)
and also
6fc="6As,+ A, 6s=13, 6f0
(I 4+ Z6)8A 5o — Ay S7 6AT Al, ul, (48¢)

In equation (48b), Al, 41, replaces its equivalent as
above. The completed expansions of the constraint-
force perturbations és,  fc are included in table 5. Fi-
nally, the results for §ul in table 5 can be obtained by



Table 5. Linearized slung-load EOMs from equations (19} and (20)

Nonlinear EOMs:

v=AlQ)u+w=Alul+LA+w, w=0

ul AIlT
(,)ZA_I(CI)(U—W)=( )(u—w)
A AT

For A=0:
§=Y(q) ul
ul = AI(q)T D7 (fo+ fe)
fe=%(q) fo=A(qg) s
T =—Alg) S(g)~ Ale)” D!
s=-5(¢)7" A(g) D! fo
S=A@)" D' Alg)
fo=fg+T(q) fba(va,8) — X(v) — D &(g,ul)
va =T(q)" (v -~ w)
£ = Al(q,ul) ul
Linearized s:uspension forces (A = 0,1 = 0):
08 =54 g + 5, bul + 355 A
bfc= A, bs+ VI Alg) solq, g
Sq =3¢+ SolFy — D & — X,
Su = So[Fuany Alo — D &y — X,
ss =S, T, Fbs
and
S, =-5;1 AT D1

3, = —S;I[VZ; A(g)T Al, uly)g,
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Table 5. Concluded.

LEOMs:
bul =T, 6g+ T, dul + I A
8¢=Y, 6q+Y, ful
where
Yo = V] Y(q) ulsly,

Fq:fq"‘GO[Fq_qu_Xq]

Fu = Go[FvaN Alo -D éu -Xu]
I's =G, T, Fbs
and

Go = ANT D' I +%,]

X, =X, Al,

X=X, [V] Al(g) uly],,

Xy = [V XL,

€u = Alo + [V]) A1(go, ul) ulolus,

& = [V Al(gulo) ul,g,
and

Ty =VI [AI(q)T — AT D=1 A, S5 A(g)T],, Al, ul,

Fy=F1,+ F2,

Flg = [Vq (T(a) fbas + Alg) so)]

F24 = Foan [V (To T(9)" (vo — w) + Al(g) ul,)],,
where

8o =—S8;1 AT D=1 fo,

Fuan =Ty Fby, TT

Fbs, Fby, T, fba are defined in equations (39) and (40)
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combining equations (48a) and (48c) and expanding
the remaining variations. The gradients of the second-
order velocity dynamics X, € and the stability and con-
trol derivatives Fy,n, Fs occur in the coefficients of
du,bg, A as previously seen in table 4. The matrix
Tq is linear in the acceleration coordinates u1,, and is
zero whenever @1, = 0. The reference trajectory forces
occur in F'l,, and differ from their occurrence in the
analogous Q14 of table 4 in that a term in the cable-
tension parameters s replaces a term in the external
forces.

Finally, if the coordinates, ¢,u, are reference-
point coordinates with body axis coordinates of the
reference-point velocity (eq. (45)) then for static equi-
librium X,, X, X,, &, Tq are zero, &, is given by
equation (46}, and the LEOMs simplify to

bul = G, [(Fyan Aly— D &,)8ul + F, g+ T, Fbs A]
(49)
The matrices G,, F, are defined in table 5.

Linearized Equations for Dual-Lift Systems

Linearized equations of motion for the dual-lift sys-
tem with spreader bar are derived in appendix F for
static equilibrium by using the formulation from equa-
tion (14). Reference-point coordinates are used with
body axis components of the reference-point velocity,
and equation (46) is applied. These results extend the
hover equations given in references 6 and 7 to general
static-equilibrium flight conditions, and include load
and spreader-bar inertias and aerodynamics, and dis-
similar helicopters.

The coeflicient matrices are expanded to a working
form in terms of the natural vectors and matrices of
three-dimensional rigid-body mechanics. The number
of such terms is much greater for the linearized -egqua-
tions for 6% than for the nonlinear EOMs for 4, but the
derivation is feasible with the methods of this report.
MACSYMA was used to expand matrix products in
order to reduce error probabilities in the analytical
expressions.

7. CONCLUSIONS

Nonlinear simulation equations for general slung-
load systems have been derived. These account for
any suspension geometry, including controllable ge-
ometry and both elastic and inelastic suspensions, for
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any number of helicopters, and for any choice of gen-
eralized velocity coordinates. Two formulations are
given that generalize the previous case-specific con-
ventional formulations for elastic and inelastic suspen-
sions that are given in the slung-load literature. These
formulations differ significantly in form and computa-
tional requirements. A third, new formulation is given
by selecting the generalized coordinates of the uncon-
strained system to represent the constraints of the
inelastic suspension. The internal suspension forces
are calculated explicitly for both elastic and inelastic
suspensions. The new formulation improves computa-
tional efficiency significantly for inelastic suspensions,
enables integration of elastic and inelastic suspension
models in a single equation set, by using a single set of
generalized coordinates, and is readily applied to the
complex dual-lift and multilift systems.

An inelastic suspension imposes constraints on the
system motion, but their number is small compared
with the number of DOFs. This fact, along with the
cable interbody connections, distinguishes the slung-
load systems from typical applications considered in
the literature on multibody systems, and accounts for
the efficiency of the new formulation for inelastic sus-
pensions compared with the conventional ones in the
slung-load and multibody literatures, the latter being
efficient for highly constrained systems.

In past work, simulations have usually utilized elas-
tic suspension models and rigid-body velocity coordi-
nates, whereas control analyses have been based on
the inelastic suspension model. These methods are se-
lected because of the analytical simplicity and compu-
tational efficiency of the former, and the elimination of
DOFs characterized by small motions in the latter. For
simulation, the present results allow the use of any gen-
eralized velocity coordinates with the elastic suspen-
sion model, and the use of inelastic suspension mod-
els with reduced computational penalties. For control,
the formulation of efficient nonlinear EOMs for inelas-
tic suspensions makes it possible to apply the recent
global inverse-model methods to slung-load systems,
and facilitates the derivation of linearized EOMs for
single-flight-condition designs.

Application of the general equations to the deriva-
tion of simulation equations for specific systems is
demonstrated for a series of single-, dual-, and
multiple-helicopter systems. Results are given in pro-
grammable form, with the dynamics formulated in
terms of the natural vectors and matrices of three-
dimensional rigid-body mechanics. This formulation



allows the devices of efficient coding to be applied to
the vector-mechanical structure of the equations.

The single-helicopter systems with single attach-
ment points at the helicopter are readily treated, and
the results provide alternative formulations of the
EOMs to those already given in the literature. Re-
sults for single-helicopter systems with multiple at-
tachment points at the helicopter are more difficult
to derive and were given solely for the bifilar suspen-
sion, which has also been treated in the literature.
Nonlinear equations for the inelastic inverted-V and
inverted-Y suspensions are not found in the open lit-
erature. The methods of this report do not address the
analytical difficulties of these cases, which are omitted
from the present work.

The principal new results are those for dual-lift and
multilift systems. Equations for three dual-lift config-
urations are given and it is shown that these can be
integrated in a single simulation. The multilift sys-
tem extended to any number of helicopters was al-
sotreated. These previously difficult problems are seen
to be tractable for derivation, analysis, and program-
ming by hand with the methods of this report.
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Equations for degenerate-body approximations
{point masses, rigid rods) are given to accommodate
various simplifications useful in control analysis, and
results for dual-lift and multilift systems are given. A
reduced-order load-suspension system is obtained by
assuming that the helicopters control the system solely
through their applied forces with the helicopter atti-
tudes in steady state relative to the reduced system
motion. The reduced system equations are those ob-
tained assuming point-mass helicopters. The reduced
system can be studied and a control law formulated
for the applied forces independently of any helicopter
details and of the problem of implementing the applied
force controller in the helicopters. This simplification
is expected to be realistic for helicopters with single-
point attachments, including the dual-lift and multilift
systems.

Linearized equations of motion for general slung-
load systems with inelastic suspensions are derived
from the nonlinear equations of motion, and results
for the dual-lift system with spreader bar are given for
general static-equilibrium flight conditions.



APPENDIX A
SUMMARY OF USEFUL KINEMATIC RELATIONS

INTRODUCTION

This appendix collects the general kinematic formu-
las used in applying the methods of this report to de-
rive the simulation equations given in appendixes B-E
and the linearized equations for dual-lift systems.
These formulas are mostly counterparts of relations
from the classic physical vector theory of rigid-body
dynamics given here in a form appropriate for digital
computations by introducing coordinate-frame trans-
formations. They facilitate derivation of the simula-
tion equations in the preferred form of this work, in
which all terms appear as operations on the underly-
ing physical vectors.

The notation for this work is stated in the list of
symbols. Occasionally, the general notational rules
for vector kinematics advocated by Kane (ref. 40), are
used; these are as follows:

lya Velocity of point Ra relative to reference
frame F;

2,1 Angular velocity of reference frame F; or
of rigid body B, relative to frame F,

% Time-derivative of physical vector V rela-

tive to reference frame, F;

To work with the scalar equations used in digital com-
putations a subscript can be added to indicate the ref-
erence frame in which the coordinates of the voctor are
given:

g Velocity of point Ra relative to frame J;
given by its coordinates in frame 7,
2wl Angular velocity of frame Fj relative to
3

frame F; given by its coordinates in frame

F3

Time-derivatives of these objects are necessarily with
respect to the reference frame in which they are given:
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dvj

L or 'V ; time-derivative of physical

( "/
vector V relative to F; and given by the
coordinates in F;

Vi

The notational specializations stated in the list of sym-
bols are continued in this appendix (e.g., Va, wb are
reserved for the inertial velocity of Ra, JF,, respec-
tively), but there is no conflict with the notation shown
above, in which superscripts are used. Definitions and
specializations reflect aeronautical usage and are gen-
erally consistent with those in reference 41.

Skew-Symmetric Matrix

First, the general skew-symmetric matrix S(z,y, 2)
is defined from the scalar triplet (z,y, z) as shown in
table 6. This allows scalar representation of the vector
cross products, which occur frequently in this work, as
shown in equation (51) for vectors V1, V2 referenced
to frame F,. The algebra of skew-symmetric matrices
is consistent with corresponding relations in vector al-
gebra such as product reversals (eq. (51)) and triple
products. Geometrically, S(V1,) maps any vector V
given in F, to the vector V1 x V referenced to F,
and perpendicular to the plane of (V1,V). The refer-
ence frames of vectors occurring in expressions based
on equation (51) can be selected in any convenient
and consistent way using transformations (eq. (52)).
When viewed as an isolated matrix, the columns of
S(V.) physically represent cross products of V with
the axes of F, and referred to F, (eq. (53)). Identities
in the matrix S(V,) represent vector operations on an
arbitrary vector, such as product reversal and the cross
product with a sum of vectors (eqs. (54) and (55)).

Cross products representing Coriolis velocities and
accelerations and centrifugal accelerations (eqs. (56)-
(58)) are the basis from three-dimensional kinematics
of virtually all terms in Au, A~'v, Aw, in the appli-
cations of this report. Cross products also represent
the applied moments due to cables in the term fc. In
general, the force F applied to body B at point Ra
imposes a moment on B about the point Re, which is
given by M(€©) = Rca x F. In the present work, this
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can be specialized to cables in tension and to moments
about the rigid body c.g.’s (eq. (59) and accompanying
sketch). If cable C'j applies tension TCj in the direc-
tion kecj at point Rj on body Bi, then its moment
about the c.g. of Bi is given by

Mij = Ri*j x kej TCj=¢ijTCj

where the symbol ¢ij is reserved for the moment of Cj
on Bi per unit tension.

Coordinate Transformations, Angular Veloci-
ties, and Transformation Rates

Formulas defining the transformation of a vector
from its coordinates in inertial space, Fn, to its co-
ordinates in body axes, F, are given in table 7 along
with relations governing its occurrence in kinematic
equations with time-derivatives and its gradient.

The primitive transformations for rotations about
a single axis i,j,k of a right-handed orthogonal ref-
erence frame, F are denoted E;(0), E2(o), E3(0), re-
spectively (egs. (60)-(62)). Then the usual Euler-angle
transformations of aeronautics is given by the yaw,
pitch, and roll sequence of rotations Tp, x as illustrated
and defined in table 7 (eq. (63)). It is often uscful to
note that the rows of Tp v are the Fy-components
of the axis vectors of F, and its columns are the Fy-
components of the axis vectors of Fn (eq. (64)). The
notation (¢,8,%) is reserved in this work for inertial
angles, and a subscript is attached to indicatc the body
axes. Euler-angle transformations from other axes F,
are sometimes needed and an ad hoc notation is de-

fined in text (e.g., Ay, OBy, Aidy).

In general, if frame F, is obtained from Fx by
any arbitrary sequence of independent rotation angles
B1,B2,-.., 3, about the axes ul,u2,...,un, respec-
tively, then its inertial angular velocity is given by the
superposition

wa=Bl ul +...,48, un (78)

Equation (66) specializes this rule to the Euler-angle
sequence defined above, and the familiar linear relation
from acronautics for wb,(&b) and its inverse arc noted
in the table, along with cxpressions for Euler-angle
rates in terms of dot products with wb. The notation
Wb is introduced to indicate the row list of the axes
of roll, pitch, and yaw rotations for body axes Fy, and
a subscript indicates the coordinate frame in which
these are given.
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Transformation rates arise in the inertial coupling
term A or A u in the equations of motion, and useful
expressions are noted in equations (69) and (70). In
general, if T,  is a transformation from F, to Fa, then

Tap = Tap S(°wy) (79)

This relation follows as a counterpart of the Coriolis
equation relating the time-derivative of a vector, V,
relative to two different frames, F,, F; that is, using
Kane’s notation,
AR AV
LYY eV

dt dt

but the time-derivative of

Va = Ta,b I/b

Va = Ta,b ‘/b + Ta,b %

whence Ta,b V} is identified as the scalar counterpart of
3P x 'V for arbitrary V; this establishes equation (79).
In all cases, A u is composed of terms that are Cori-
olis and centrifugal accelerations that arise from the
Coriolis equation and utilize equation (79).

Derivatives of transformations with respect to Euler
angles occur in the linearized EOMs, especially in the
position-perturbation term. These derivatives can be
obtained from equation (79) by identifying the terms
in the expansion

. OTyn .  OTon ;  OT
Ty = 20N 4o bN g 4 FEbN

N = 8 26, o

with corresponding terms in the expansion of
To.n S(whbn), using wb = ¢ ib + 8, jb’ + ¢, kN and
the distributive property (eq. (55)). The results are
listed in table 7 (egs. (71)-(73)) and here as

a7, . .
LN = _Tb,N S(le) = —S(lbb) Tb,N
Oy
aT 1! .17
BZL,N =—TuN S(Gby) = —S(5by) To,N (80)
oT,
6:;:/ = _Tb,N S(kNN) = _S(ko) Tb:N

These derivatives are cross products with the axes of
roll, pitch, and yaw rotations, which are illustrated in
table 7. They are also maps from Fn to F;, and the
rotation axes can be given in any convenient reference
frame by using transformations as required for consis-
tency with the input and output reference frames.



Derivatives of transformations arise commonly in the
linearized EOMs from gradients of vectors,

vy =Ty N vN, uN =Tnp vp

relative to Euler angles, where the vectors on the right-
hand side are independent of (¢, 85, %s). It follows
from equation (80) that

9Ty v UN : i
2 7 = —(ibxv)y=(vxib
Oy ( P ’
HTNON _ (b’ x v)y = (v xjbYs  (81)
a6,
o ON _ (N x v)y = (v x KN),
Oy

The vector-mechanical meaning and output reference
frame is apparent in cquation (81). Reference frames
for the vectors and the order of the cross product can
be selected in any convenient way consistent with these
characteristics. By using equation (81), the gradient
with respect to the Euler-angle triplet is

VI (Ton vn) = To.n S(un) [ibn, iby, ENN]

=T, n S(vn) Why (82)

and also
VI (Tns ) = =Tnp S(up) Why = —S(vn) Why

Again, the notation Wby, Wb, indicates the matrix of
Euler-angle rotation axes given by inertial or body-axis
components, respectively. These results arc included
in table 7 and are valid for any arbitrary vector, v.

Cables Axes

The general treatment of cable angles and cable axes
in this report is summarized in table 8. The cable di-
rection ke is located by incrtial roll and pitch angles
(¢¢,8.) taken in the usual Euler sequence, as illus-
trated in the table and in equation (83).

39

Cable axes F, = {ic,jc,kc} are constructed from
these two angles with kc along the cable and ic in the
inertial vertical plane of (iN,kN). The transforma-
tion T, n (eqs. (84) and (85)) is a specialization of the
usual Euler-angle transformation with ¢, = 0, and its
rows and columns are the axes of F. expressed by its
coordinates in Fy and, conversely, as before.

Useful formulas are given for the inertial angular ve-
locity of F. in terms of cable-angle rates (eqgs. (86)-
(88)), and for the cable velocity expressed in terms of
cable length and angle rates (egs. (89)-(92)). The F.
coordinates of the cable velocity (eq. (92)) separate
the cable-stretching motion (¢.) from the orthogonal
motion caused by cable rotation; this fact is frequently
used in selecting the generalized coordinates u in the
applications.

Cable angles relative to some noninertial axes F;
(e.g., helicopter body axes or level-heading axes) may
be more useful coordinates in some problems. For
these cases, Euler pitch and roll angles relative to
F, are used with special notation (e.g., A¢., Ab.)
to distinguish them from inertial angles. The previ-
ous coordinate transformations and illustration apply
by analogy with a change of notation (eq. (93)). The
longitudinal cable axis ic is now in the F, vertical
plane of (i1,k1). The velocities of Re, F. relative
to F, (egs. (95) and (96)) are given by analogy to
equations (88) and (92). The relative cable velocity
in cable axes !'V? separates the cable-stretching mo-
tion and motion due to cable rotations relative to Fy
into orthogonal components. The inertial transforma-
tion and velocities (eqs. (97)-(99)) are obtained from
elementary rules. Cable-stretching motion is again iso-
lated in V¢ and its rotational motion is represented as
a superposition of orthogonal rotation relative to J;
plus the effect of F)’s inertial angular velocity.

Gradients of the cable-axis transformations T,y oc-
cur in the linearized EOMs. The required general for-
mulas are specializations of the previous results ob-
tained by dropping the yaw derivative and the axis of
yaw rotation kN from table 7 (eqs. (71)-(75)).



S(z,y,2) =

ST(Va) = =5(Va)

Table 6. Skew-symmetric matrices and cross products

0 -z
T 0

(V1 x V2), = S(V1,) V2, = —(V2 x V1), = ~S(V2,) V1,
(V1x V2)g = (V1) Tap V2% = Tup S(V1) V2
S(Va) = [(V xia)a, (V xja)s, (V x ka),]

S(V1g+V2,) = S(V1a) + S(V24)

Coriolis and centrifugal terms:

(w X R)q = S(wa) Rs = —S(Ra) wa
(WwxV)g=S(ws) Vo =—-5(Va) wa
(W x wxR)q = 5%(w,) Ry = —S(wa) S(Ra) we =w e Rw, — w2R,

Moment of cable C'j on body Bi about Ri* :
Fi={ii, ji, ki} = body axes for Bi

Mij; = (Ri*j x TCj kcj); = S(Ri*j;) kej; TCj = €ij; TCj

Cable moment.
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(50)

(51)
(52)
(53)
(54)
(55)

(56)
(57)
(38)

(59)



Table 7. Coordinate transformations, angular velocities, and transformation rates

Single-axis transformations:

1 0 0
Ei(o)=]10 cosoc sinc
0 —sinc coso

cosc 0 —sinco

Eq(o) = 0 1 0
simg 0 coso }
cosog sing O

E3(c)=| —sinoc cosoc O

0 0o 1/

Euler-angle transformation, T} n:
Fn = {iN,jN,kN?} = inertial axes
Fi = {ib, jb,kb} = body axes

ab = (¢v, 0, )T = Euler-angle triplet

jb’

(a) ¥}, = heading rotation
(about kN)

kb’ kN

(b) 6, = pitch rotation
(about jb")

Euler angles.

41

kb

kb’

(c) ¢b = roll rotation
(about ib)

(60)

(61)

(62)



Table 7. Continued.

Ty, n(ab) = E1(¢s) E2(0s) E3(p)
cos 1y, cos 8 sin ¥, cos G, —sin
= | sin ¢y cosihysinf, — cosdpsin, sin @y siniy sinfy + cos dp cos Yy sin gy cosdy (63)

oS ¢y, cOS Py Sin By, + sin ¢y sinpy,  cos ¢y sin iy sin @y — sin ¢y cos Yy cos ¢y cos G

bk

Ton = | % | = (iNy, jNy, kNy) (64)
k6T

Tnp = TfN (65)

Angular velocity of F;, relative to Fy:

Nub = i, kN + 6, jb’ + ; ib (66)
1 0 —sin 8y b b
why =Why, éb= |0 cosdy, sind,cosby 0y | = (ibs, jb,, ENy)| 6 (67)
0 —sing, cosgycosby e 1!'11,
1 singptanf, cosd,tanb, ib’ e wb/ cos 6y
ab=Wb, ' why=| 0 cos ¢y — sin @p why = jb’ewb (68)
0 singy/cosf, cosdy/ cosby kb’ e wb/ cos 8y

where {ib’, jb’,kb’} are unit vectors related to Fy, Fn as illustrated above.
Transformation rates:
T =Tap S(w?) = S(®wl) Tup (69)

Tnos =Ty S(why) = S(wbn) Ty
Tin = —S(wby) Ton = ~Tp,n S(wbn) (70)
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Table 7. Concluded.

Transformation gradients:

b — ()T = Ty, S(iby) = ~S(ib) Tow 1)
M = (Za)T = ~ Ty, S(by) = ~S(;) Tow (72)
agzbbbN = (ag:;,: )T = —Tb,N S(kNN) = —S(k‘]\[b) Tb,N (73)
ng Tb,N(Oéb) UN = Tb,N S(UN) W'bN = S('Ub) Wbb (74)
VT, Tnp(ab) vy = —Tnp S(vp) Why = —S(un) Wby (75)

Wb = [ib, jb’,kN] = roll, pitch, yaw axes of rotation

cos@p cost, —sintyyy O

Wby = | cosfy, sinyy cosyyp O (76)
—sin g, 0 1
1 0 —sin 8
Wb, = 0 cos ¢b sin ¢b cos 91, (77)

0 —sing, cosgpcosty

43



Table 8. Inertial cable angles and cable axes

Cable direction:

Fn ={iN, jN, kN} = inertial axes
(0, ¢c) = cable pitch and roll angles

kc = cos ¢ sinf. iN — sin ¢, jN + cos ¢, cos 6, kN

ic
jN
bc
je
be
k¢’ kN ke o
(a) Pitch rotation (about jN) (b) Roll rotation (about ic)
Cable angles.
Cable axes, F.:
Fe = {ic, je, ke}
cos @, 0 —sin 8,

TN = Ei(¢c) Ex(b:) = | sing.sinf, cos¢. sing.cosf,
cos ¢osinf, —singd, cos@. cosb,

ick
Ten = | jek | =(iN. jN. kN.)

oo T
key
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(84)

(85)




Table 8. Concluded.

Inertial angular velocity of Fg:

we = 6, jN + ¢, ic

we = ¢, ic+ 6, (cos ¢, jc — sin ¢, ke)
we = ¢, (cos b, iN — sinf, kN) + 4, jN

Inertial velocity of cable line segment, Rec:

Rc =4, kc
Ve =74, ke + ¢, ke
fcc:wcxkc:@c COS ¢, ic—zi)cjc

Ve =4, 8, cos¢, ic — gi&c £ je+ 4. ke
Cable angles relative to non-inertial axes, F:

Fy = {i1,j1,k1}

(A8, Ap.;) = cable pitch and roll angle relative to F;

cos Af, 0

Te1 = E1(A¢) E2(A8.) = | sinAf,. sinAd.  cos A,

sin Ad, cosAgp, —sinA¢,

ic = cos Af; 11 — sin Ad, k1

—sin Af,

cos Af, sin Ag,
cos Af, cos Ag,

1,c= Ab, j1 + A, ic = Ad, ic + Ab, (cos Ag, je — sin Ag, ke)

= A, j1 + Adc(cos Ab, il — sin Af, k1)

Ve — 4 ke + £, 1o x ke = (£, Ab, cos Ag, ic — £ Ad. jc + £, ke)

Ten=Tc1 TN
we = lwc +wl

Ve=1VC 1, w1 x ke
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(86)
(87)
(88)

(89)
(90)
(91)
(92)

(97)
(98)
(99)






APPENDIX B
SIMULATION EQUATIONS FOR SINGLE-POINT SUSPENSIONS

INTRODUCTION

Figure 4 shows three suspensions of interest with a
single attachment point on the helicopter. If the cables
are modeled as inelastic, then the multicable suspen-
sion with three or more cables (fig. 4(a)) imposes three
constraints on the load motion whereas the other two
suspensions impose only one. If cable elasticity is mod-
eled, then the suspension in figure 4(b) is considered
to have only one elastic cable; the sling legs that con-
nect the load to the ring are assumed to be sufficiently
short and stiff that their elastic stretching is negligible.
Figure 4(c) represents suspensions with long sling legs
whose elastic stretching must be considered.

Previous simulations of such systems are described
in references 13, 14, and 16. Reference 14 documents
a Langley Research Center simulation of the CH-54
helicopter with a MILVAN cargo container suspended
from a single elastic cable as in figure 4(b). Refer-
cnce 13 uses a general formulation for elastic suspen-
sions with multiple attachment points in which every
cable connects the two bodies; this is readily special-
ized to systems a and b in figure 4, and an approximate
adaptation to system ¢, in which no cable connects two
bodies, is given. Reference 15 considers a system like
@ with clastic suspension and one like system b with
elastic or inelastic suspension. These formulations all
begin with the rigid-body accelerations, either inertial
or relative to body axes, and relative load velocity is
calculated in some cascs.

This appendix contains simulation equations for sys-
tems a and b obtained by the methods presented in this
report. Generalized velocity coordinates are selected
specific to each case in order to scparate the system
motion caused by cable stretching from motion with
invariant cable lengths. These are rigid-body veloci-
ties and cable velocity or relative motion coordinates in
an appropriate coordinate frame. The results account
for both elastic and inelastic suspensions. Interaction
forces are explicitly calculated in both cases. Appro-
priate partitioning coordinates for system ¢ were not

PRECEDING FAGE BLANK NOT FILMED
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obtained, but coordinates that simplify the determi-
nation of the suspension forces for elastic cables are
indicated without elaboration to EOMs.

Nomenclature and enumeration of the attachment
points, cables, rigid bodies, and system parameters
used in this appendix are defined in figure 4. The
cable-length parameters {£oj} refer to the fixed ca-
ble lengths in the case of inelastic cables and to the
unloaded cable lengths in the case of elastic cables.
Controllable parameters are not considered (p = 0).

Multicable Suspension

System and constraints- Referring to figure (4a),
m cables, C1,C2,...,Cm attach the load, B2 to the
point Ra on the helicopter, B1. Usually, three or four
cables are used. In any case, it is assumed that the
cable geometry is such that if the cables are inelastic
then the suspension fixes the distances from Ra to
three noncolinear points on B2. This suffices to impose
three holonomic constraints on the configuration

d=9 (100)

c =3,

by fixing the line segment between the load c.g. and
the helicopter attachment point in load-body axes;
that is, for inelastic cables,

Ra?'2 =0
where
Ra2%(r) = Ton (R2"y — R1"y — T R1%ay)

For some arrangements of three cables, collapse of a
cable is possible, thus leaving the load free to rotate
about a line joining the remaining two attachment
points, in which event the number of constraints is
reduced to two. However, this is prevented by adding
a cable (m = 4), and then ¢ = 3 even if one cable
collapses. With four or more inelastic cables the con-
straints are imposed redundantly, and the individual
cable forces cannot be calculated; however, their resul-
tant can always be calculated, and this calculation is
independent of the number of cables used to maintain
c=23.

‘ﬁg_mmuu



Bi

B2 B2

Parameters:
m1, J1, R1*aq
m2, J2, R2*1y, ..., R2'my
foj, j=1,...,mform > 2 fo

(a) Muiti-cable
suspension

m1, J1, R1*ay
m2, J2, R2*1,

(b) Single-cable
suspension

m1, J1, R1*aq
m2, J2, R2*2,, ..., R2*'myp
foj, j=1, ..., mform > 2

(c) Single-cabile sling
suspension

Figure 4. Single point suspensions.

Generalized velocity coordinates and config-
uration kinematics- The first task is to find gener-
alized velocity coordinates for the elastic system

)

such that, if the cables are inelastic, then A = 0 and
ul are the generalized coordinates. In the present
case, (V1*y,wl 1,w22) comprise nine generalized ve-
locity coordinates which suffice to define the configu-
ration velocity of the inelastic cable system and can
be taken as ul. The remaining element of the con-
figuration velocity, V2*y, is given from the inertial
derivative of

ul

A

(101)

R2y = R1"y + Tn,1 R1%a; + T, Ra2", (102)
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as

( Vl*N — TN,I S(Rl*al) w11
—Tw,2 S(Ra2%,) w2,

(inelastic cables)
VQ*N =
Vl*N — TN S(Rl*al) wl;

+Tn,2 [Ra2% — S(Ra2*;) w2,]

\  (elastic cables)

(103)
Thus, the configuration velocity caused by cable
stretch can be given by augmenting the coordinates
ul for the inelastic cable system given above with the
velocity of Ra2* relative to load-body axes, F»:



VI*y

w11
(104)
w22

Ra2"2

The inverse relation for Ra2}(v) is obtained from equa-
tion (103) as

Ra2*, =Ton (=V1*y + V2*y + Twn,1 S(R1*ay) wly)
+S(Ra2%) w22 (105)

The complete kinematic relations v(u), u(v) are as-
sembled in the equation summary, table 9, using equa-
tions (103) and (105). The submatrices AI1, A of A™!
required below are identified in the table. Only coor-
dinate transformations and skew-symmetric matrices
representing Coriolis terms occur in 4, A~!. Other-
wise, these matrices each contain nine rows from the
unit matrix corresponding to the nine coordinates of
u, which are also configuration velocity coordinates.

External forces and inertia coupling terms-
The external forces and inertia coupling terms fo
are assembled in part b of table 9. The notation
FO1,...,M02 for the vector elements of fo is in-
troduced for brevity in later equations; fo contains
the sum of the applied forces and moments due to
weight (ml g, m2 g), aerodynamics and rotor out-
put (FA1,... , MAZ2), and the inertia coupling terms,
X + D A u. The time-derivative of A requires only
time-derivatives of transformations, for which a gen-
eral formula is given in appendix A. The three terms
in F02y due to Au are recognized as centrifugal and
Coriolis acceleration terms of the form w x w x R and
wx V.

Suspension forces— The forces applied to the con-
figuration of rigid bodies by the suspension are denoted
for this system by

FCly

FC2y
fc (1086)

MC1,

MC2,

where FC1, ..., MC2 are the resultants of cable forces
acting on each rigid body and their moments about its

c.g.
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For inelastic cables, fc is given by equation (17) as

—T'npo
Tn,2 s1
fe=As= s2 (107)
—A%; TN,2 33
_S(RQQ*Z)

where AT are the last three rows of A™! and s are
suspension force parameters. Since FCly = —Tn,2 s,
s is identified as the F; - components of the resultant
suspension force applied to the helicopter at Ra; that
is, s = —FC1,. In that case, s can be conveniently
replaced by —T2 v FC1ly in equation (107), and To,n
can be combined with A to obtain the simple, alterna-
tive expression,

fc=A FCly = FCly (108)

AZy
Finally, for inelastic cables, FC'1y is given in terms of

A’ and fo from equation (19). The results are listed
in the equation summary, part ¢ of table 9.

For elastic cables, fc can be given by equation (11),
which applies generally whenever each cable connects
two rigid bodies. However, it is simpler to use the
form in equation (108), which is valid in this exam-
ple whether or not the cables are inelastic. It only
remains to calculate the resultant suspension force,
FC1p, from the cable tensions:

FCly = Y.y kejn TCj

= S maz{0, Kj (1— ) +¢; ¢} Rajy
(109)

Cable damping, ¢;, is usually absent from slung-load
simulation models. The cable line segments required
in equation (109) can be calculated from

Rajy = Tw 2 (Ra2"; + R2*j2) j=1,..,m

and each cable length rate can be obtained as the com-
ponent of cable velocity along the cable, and can be
shown to be

¢; = Rajj Ra2%, [¢; i=1,..,m
where {R2%j3,j = 1,..., m} are given system parame-
ters and where Ra2*,, Ra2%, T 2 are obtained directly



from the generalized position and velocity coordinates.
These results are included in the simulation equation
summary (table 9).

Simulation equations- Finally, the simulation
equations are listed in part d of table 9. The total
specific force, sf, due to fo + fe, is assembled and its
vector elements are denoted SF1,...,SM2 for conve-
nience. Last, the elements of @ are obtained by ex-
panding A~! sf. If the cables are inelastic it is unnec-
essary to calculate Ra2*, or the term due to Ra2%, in
A, but they can be evaluated to monitor computa-
tional accuracy.

Single-Cable Suspension

System and constraints— The suspension shown
in figure 4(b) has a single main cable, C, attached to
the helicopter at Ra. Additional cables or hardware
attach the load to R1, but these are assumed inelastic
here, being either short cables with negligible stretch,
or inelastic links of any length. In these cases, they
can be regarded as part of the load rigid body, B2,
since the point R1 is fixed relative to the load.

If C1 is inelastic then it imposes a single holonomic
constraint on the configuration motion by fixing the
distance between Ra on Bl and R1 on B2, in which
case

c=1, d=11 (110)
and the constraint equation can be given as
¢(r) = |Raly|
= |R2*N + TN,Q R2*12 — RliN - TN’l Rl*all
= {o

Generalized coordinates- The first task is to
select appropriate generalized coordinates (ul,)‘\)
with the properties previously stated with equa-
tion (101). Assume that the nine rigid-body coordi-
nates, (V1*y,wl;,w22) can again be included in ul.
Then the remaining rigid-body velocity, V2%, can be
given from the derivative of

R2*N = RI*N +Tn,1 Rl*a; + Raly — Ty R2*1,
as (111)
V2'y =V1*y — Ty S(R1*a;) wli + Valy

+TN,2 S(R2*12) w2y
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It remains to express Valy in terms of coordinates
that separate the cable rotational motion from the ca-
ble stretching motion, . The rotational coordinates
can be defined in several ways that represent rotations
relative to either inertial space Fy, or to helicopter
body axes F, or to level heading axes based on the
helicopter heading F3,. The kinematics are given for
all three cases, and the simulation equations are given
for coordinates defining cable rotations relative to F.

First, inertial cable pitch and roll angles 8., ¢,
are defined in table 10, and then cable axes F, =
{ic,jc, kc} can be constructed with ke along the ca-
ble and ic in the inertial vertical plane of (iN,kN).
The angular velocity of F, relative to Fy is, from ap-
pendix A:

we = ¢, ic + 8, (cos ¢. jc — sin ¢, ke)
and the velocity Val is given from
Val = ¢ ke 4 £ we x ke
or

Valy =Ty, Val, = Tn . (€ 0. cosge, ~€ ¢, €)T

(112)
The coordinates Val. are seen to separate the cable
rotational and stretching motion and, together with
(V1*y,wly,w2;), they are suitable generalized coordi-
nates for the elastic cable system. The cable rotation
is represented by linear velocity components perpen-
dicular to the cable direction. This results in a sim-
pler kinematic relation, v(u), than is obtained by us-
ing the cable angular rates 6., ¢, as coordinates. The
kinematic relations v(u), u(v) are readily given from
equations (111) and (112), and the results are listed in
part a of table 10.

Most loads suspended by a single cable will stabilize
at a steady-state position relative to the helicopter on
each steady segment of a reference flight path. For
such loads, in a steady turn, the cable will trail the ver-
tical at a steady angle in the vertical plane of (i1, kN)
because of load drag, and the load will swing out to a
steady cable angle that is about equal to the helicopter
roll angle, ¢1, from this vertical plane as a result of cen-
trifugal force. These steady angles are represented by
sinusoidal variations of the inertial cable angles 8., ¢,
with helicopter heading, ¥;. For example, 6, alter-
nately represents the trailing angle or the swing angle
at different headings. To avoid this complexity in rep-
resenting ordinary steady motion, other choices of the
generalized coordinates are considered next.




Second, cable pitch and roll angles relative to heli-
copter body axes A8, A¢,, are defined in part b of ta-
ble 10. The following derivation uses general formulas
for cable kinematics relative to noninertial axes given
in appendix A, table 8. Cable axes, F, = {ic, jc, kc}
are again constructed with kc along the cable, but ic
is now a direction in the helicopter vertical plane of
(i1,k1). In this case, a steady load-trail angle is rep-
resented by a steady relative pitch Af., and a steady
load-swing angle is represented by a relative roll an-
gle that is approximately zero. For these coordinates,
the angular velocity of F. relative to F; is (table 8,

eq. (95))
Awe = A, ic + Aéc(cos Ag. jc — sin Ag, ke)
and then the inertial velocity Val is (table 8, eq. (96))

Val = ¢ ke + {(wl + Awe) x ke

or

Valy = =Tn,; S(Raly) wl;, + Ty, AVal,
where

AVal, = (£ A, cos Age, —f Ad., £)T  (113)
Here, AVal is the velocity of Ral relative to

JFi1, and its components in F. are seen to separate
the cable rotational and stretching motions; then
(V1*y, wly, w2e, AVal,) are suitable generalized ve-
locity coordinates for the elastic system. The kine-
matic relations v(u),u(v) are given by using equa-
tions (111) and (113), and the results are listed in
part b of table 10.

Third, level heading axes, Fn = {ih,jh,kN}, are a
local vertical frame defined from the helicopter heading
1, as shown in part c of table 10. Cable pitch and roll
angles relative to Fy, are denoted Ocp, ¢cn, and then
cable axes F, = {ic,jc,kc} are constructed (part c
of table 10) with ic in the inertial vertical plane of
(ih,kIN). In this case, §.n, ¢cn have steady values in a
steady turn that are approximately the load-trail and
load-swing angles, respectively. The angular velocities
of Fp, relative to Fy, and of F. relative to Fp, are

wh = 4 kN
wch = ¢ ic+ 9ch(cos Bcn je — sin @en ke)
where v, is given in terms of wl; by the usual kine-

matic relation for Euler-angle rates (eq. (68) in ap-
pendix A):

. 1
= 0, sin ¢, 1, = ——— (k1}))T wi
V1 cos&l( sin ¢y, cos é1) wly cosGl( 1) wh
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where k1’ can be shown to be a direction in the vertical
plane containing (i1, ih,kIN) at an angle §, from kNN.
Then the inertial cable velocity is

Val = ¢ ke + ¢ (wh +wch) x ke

or

Valy = Tive (55571 (KN x ke)e (k17)T wli+Valhe)

(114)
where

Valhe = (£ Ben cosden, —L den, €)T

Here, Valh is the velocity of Ral relative to Fj,
and its components in F, are seen to separate the ca-
ble rotational and stretching motion. The coordinates
(V1*y,wli, w2, Valh,) are suitable generalized coor-
dinates for the system with elastic cables. The kine-
matic relations v(u),u(v) are readily given by using
equations (111) and (114), and the results are listed in
part ¢ of table 10.

The remaining equations for simulating the system
with these coordinates are given in parts d-f of ta-
ble 10. The suspension force is obtained from equa-
tion (11) using the last row of A~! which corresponds
to £(v).

Remarks

1. In the event of extraordinary motion in which all
the cables collapse (fc = 0), the equations for elas-
tic cables still correctly represent the motion of the
two independent rigid bodies. However, the equations
for inelastic cables assumed ¢ constraints. If the num-
ber of constraints is reduced as a result of collapsed
cables, the d equations no longer suffice, but the simu-
lation can accommodate this regime by carrying along
the complete set of 12 equations. However, additional
equations are needed to detect the onset of such col-
lapse, but these are not given here. Since such extreme
divergent load motion is unacceptable it may be un-
necessary to simulate it.

2. The suspension of figure 4(c) has not yet been
specifically discussed. This suspension consists of a
three- or four-cable sling which attaches the load to
the single cable C1, and the elasticity of the sling is
to be simulated. If the sling cables are inelastic, then
the treatment and equations of table 10 apply, since
the load and sling still form a rigid body. If the sling
cables are elastic, then all cables must be considered



in order to determine fc. In this latter case, each ca-
ble is connected to only one of the rigid bodies. The
principal analytical problem is to locate the intercon-
nection point, R1, from the force-balance equation at
R1 and from the sling geometry in order to obtain
cable lengths and tensions:

@-)Ralz

FClz =TC1 kClg = Kl (1 - 71

—Zmam{o, Kj(1- %033—)} Rj1,

j=2
Rals = Ra2'2 + R2%15 = 21 kclg
Rj12 = R2*12 - R2*j2 = 1?] kcj;

(115)
j=2,...,m

Cable C1 can be taken as elastic or inelastic in the
force-balance equation, and cable damping is omitted.
If Ra2*, is known as a result of using the coordinates
v or including RaZ“2 in the generalized velocity co-
ordinates, then cquations (115) is a nonlinear vector
cquation in R2*1, and the (dependent) cable force,
FC1,. Reference 13 provides an approximate solution
for R2*1,.

Alternatively, if the generalized coordinates u are se-
lected as (V1*y, wly, w2i, R2*13), then R2*1; and all
sling-leg lengths and tensions are known, and FCl,,
Ral, are readily given from equations (115). This use
of specially selected generalized coordinates for the
clastic-sling case circumvents the problem of solving
equation (115) for R2*1,. Moderate complexity reap-
pears in the velocity relations V2% (u) and R2*15(v),
which now depend partly on the sling geometry and
elasticity parameters:

VQ*N = V]'*N - TN,X S(Rl"al) w11
~Tw2 S(Ra2%)w2s — T2 [+ M] R2*1,

or, solving for R2*1,,

Rg*lg = —[I + ]\/I]_l T2'N [VQ*N — VI*N

+Twn1 S(R1*ay) wly + Tz S(Ra2%) w2y
(116)

where
Ra2*2 = Ralz - RQ'IQ

and M gives Raly from R2*1,. Noting in equa-
tion (115) that Ral; can be given from F'C1y which,
in turn, can be given from 22*1,, then
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Ralz = [V£Clg Ralg] FCIQ
= V¢, Rals)[VE,.,, FC1R2*1,
=—-MR2*1,

and (algebra omitted):

M =M1 M2
M1 = [Vq,, Rala] = 421 - (1 - 48)KC1]
M2 = -[V],.,, FC1,]

=37, 6Kj [KCj+ 5% [I - KCj))

where for j =1,2,...,m

KCj= kcjr_;' kcj;r
Alj =5 — foj

0 & <toj
-
1

Here, KC4, I — KCj are projections on and perpen-
dicular to the cable directions, kcj. If cable C1 is
inelastic, then Af1 =0in M1.

{5 > foj

The kinematic relations u(v), v(u) can be assembled
by using equation (116) and then the simulation equa-
tions can be given by applying equation (9a). Fur-
ther description of the resulting simulation equations
is omitted because the treatment here is outside the
pattern of interest for the applications work; that is,
there is no subset of the coordinates u that represents
the inelastic suspension.

3. The EOMs for ¢ given in reference 16 for the
two systems (a) and (b) of figure 4 with inelastic sus-
pensions can be obtained by the procedure outlined
in section 3, equations (26)-(30), by using generalized
coordinates which are reference point coordinates like
those in part a of tables 9 and, part a of table 10,
except that the reference point is moved to the load
attachment point for system (a), and to the cable mid-
point for system (b).



Table 9. Simulation equation summary: multicable suspension

(a) Configuration kinematics:

Vit I 0 0o | o Vit

VQ*N I A22 A23 I TN_Q w11
V= == A U =

wly 0 I 0 | o w2y

w2y 0 0 I | o Ra2%

Vi*y I 0 0 0
Vity
wly 0 0 I 0
ANt Vary
U= w22 = v= 0 0 0 I
- —— wly
. AT w22
Ra2§ _TQ’N TQ’N -—Tz’N Agz S(RO,Q;)

(b) External forces and inertia coupling terms:

fo=fg+fa—X-DAu

FOly ml gy + FAly

FO2y m2 gy + FA2x — m2 (Ayp wly + Az w2y + Tiva Ra2%)
Jo= Mo1, B MAL — S(wl) J1 wl,

M02, MA2; — S(w22) J2 w2,

Azg w11 = _TN,I S(wll) S(Rl*al) w11 = TN,I 52(w11) Rl*a1

Agg w2y = —TN,Q[S(WQQ) S(Ra2*2) -+ S(Ra2*2)]w22 = TN’Q S(wQQ) (S(Q)QQ) Ra2*2 + Ra2*2)
TN’z Ra2*2 = TN’2 S(wZQ) RG,Q*Q
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Table 9. Concluded.

(c) Suspension forces:

FCly I
FC2n -1
fe= =A FCly= FCly
A[Cll Ag‘Q
MC2, AL

Inelastic cables:

FCly =-[AT D ' AP AT DY fo
AT D7 fo= L FOly — 715 FO2y + App J171 MO1; + Agz J271 MO02;
AT DU N = mlm2 T A, J17 AT + Ay J271 AL

ml m2

Elastic cables:
FCly =Ty, S, maz{0, Kj (1 - €0j/j) +¢; £} Rajo
Raj; = R2*j3 + Ra2%,

éj = Ra]g R(LQ*z/gj

(d) Simulation equations:

SFlN (FO].N‘}’FClN)/lel
SF2N (FOQN-I-FCQN)/TNQ
sf= = D71 (fo+ fc) =
SM1, J1=1 (MO01; + MC1;)
SM2, J2-1 (M024 + MC2,)
u=A"1!sf
V1*y = SFly
wly, = SAM1,
w2q = SM2,

Ra2*, =Ty n [SF2x — SF1y — Ayp SM1; — Agz SM2,]
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Table 10. Simulation equation summary: single-cable suspension

(a) Configuration kinematics for inertial cable angles:

ic
jN
oc
je
oc
k¢ kN Ke
(a) q¢ = pitch rotation (about jN) (b) f = roll rotation (about ic)

Inertial cable angles.

Tc,N = E1(¢c) El(ec)
Vale = (£ 6. cose, —¢ be, O)T

V1ty I 0 0 0 V1ity

V2*y I Az Asz TN wl;
v = =Au=

wly 0 I 0 0 w?2q

w22 0 O I 0 Val,

A22 = _TN,l S(Rl*al)

A23 = TN_Q S(RQ*lz)

Vity I 0 0 0\ /VITy
wly o o I o ||vy
u = = A_l v =
w22 0 0 0 I w11
Valc ~Ten Teen Baz Baa w2
Byz = —T, n A2
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Table 10. Continued.

(b) Configuration kinematics for cable angles relative to Fy:

ic
i1 IC
Abc i
i1 Ade
jc
A6c Ade
k'c k1 ke ke
(a) Pitch rotation (about j1) (b) Roll rotation (about ic)

Cable angles relative to A-

Ty = E1(A¢c) Ea(Ab,)
AVal, = (€ Ab, cos Ag, —A¢., £)T

Vit I 0 0 0 Vit
vy I Ay Az Twe wly
Tlon | Tle 1 0 o w2;
w2, 0o 0 I 0 AVal,

R1*1; = R1*ay + Raly = Rl*a; + L ke
A =Ty, S(R1™1,)
Aoy =Tno S(R2*13)

V1, I 0 0 0\ /VlYy

Wl o 0o I o ||vey
U = =

w2s 0 0 0 I wly

AVal, —-Tenv Ten Bss By w2y
By = ~-T, N A2
By =T N Ao
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Table 10. Continued.

(c) Configuration kinematics for cable angles relative to Fp:

kN, kh

lh lN ke’ kN

(a) Heading axes (b) Pitch rotation (about jh)

Cable angles relative to .
Th,v = Es(31)
Ten = Ex(den) E2(cn)
Ten =Ten Ton
Valhe = (€ 8o cosdeny, —€ den, 6T

V1ty I 0 0 0 V1t
V2*N I A22 A23 TN,c w11
v = =Au=|"
wl; 60 I 0 0 w22
w24 0 0 I 0 Valh,
2N = oty S(ken) kNN = =T n(—sin ¢en, — €05 gep sin Ocp, 0)7

k1] = (0, sin¢;, cos¢y)”
A22 = _TN,l S(Rl“al) - sz(kl’l)T

Ags = T2 S(R2'15)

V1*y I 0 0 0\ /VIy
wly o o I o ||vey,
U= =3 A_l v =
w2s 0 0 0 I wl;
Valh, —T..n Ten Bsz By w2
By =T, n A
By =T, n Az
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ke ke’

(c) Roll rotation (about ic)



Table 10. Continued.

(d) External forces and inertia coupling for cable angles relative to Fj,:

fo=fg+fa —X —DAu

Foly ml gN+FA1N
F02y m2 gy + FA2y — m2 (Agz wly + Aoz w29 + T Valh,)
fo = =
A{()ll ]\rfAll—S(wll) Jl w11
A/{OQ?, ]\/[AQQ - S(w22) J2 w22
Auxiliary expressions for A:
éch

é’ch = [dzag(@ COS¢Ch, "‘ea 1)]_1 Vaflhc
¢

wche = (¢cha Och cosden, —Oen Sinéch)T

{bl 1 tan#; sin¢; tanéf; cos¢;
91 =10 cos ¢1 —sin ¢y wli
i 0 sing;i/cos@; cos¢py/cosb,

wee = Y1 kN, + wche

ZWN = (f/f + 6, tan 01) 2wy + £ key(we o kN) — Ty ¢ we (ke @ kIN)

cos 8,
Terms from A u:
Ago wly =Tn S*(wl)) Rl*a; — 2wy coséy ¥ — zwn ¢ O,
Asy w2 = —Tna S?(w2s) R2*1,

TN,c Valh, =Ty, S(we:) Valh,
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Table 10. Concluded.

(e) Suspension forces: cable angles relative to Fp:

FCly ken
FC2y —ken

fe= =HTC= TC
MC11 . 611
MCQz _522

611 = S(Rl*al) Tl,N kCN
522 = S(R2*12) TQ’N k‘CN
maz{0, K (£ —€o)+c £} (elastic cables)
TC =
—(HT D~ H)"' H" D! fo (inelastic cables)
HT D1 fo=kc% (FOly/ml — F02y/m2) + €17 J171 MO01; — €25 J271 M02;

HT D' H = mltm? L 1T -1 1) 4+ €27 J271 €2,

ml m2

(f) Simulation equations for cable angles relative to Fy:

SFly
SF2n
sf = =D7! (fo+ fc)
SM1,
SM2,
w=A"1sf
Vi*y = SFly
wl; =SML
w29 =SM2,

Valh, = T.n [SF2n — SF1y — Az SM1; — Aoz SM2:]
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APPENDIX C
SIMULATION EQUATIONS FOR BIFILAR SUSPENSIONS

INTRODUCTION

Several multipoint suspensions were developed or
considered in the 1965-1975 period of research for
the Heavy Lift Helicopter, including the inverted-Y
suspensions (fig. 5(a)) with or without spreader bar
(ref. 42), or with active longitudinal and lateral con-
trol of the attachment points by means of control arms
(ref. 32); the inverted-V suspension (fig. 5(b)) (refs. 15
and 43), and the three-point suspension (fig. 5(c)) with
active vertical winching of all threc cables and ac-
tive lateral movement of the forward attachment point
(ref. 33). The bifilar supension (fig. 5(d)) is of ana-
lytical interest as a tractable approximation of some
practical suspensions, and is the case treated in this
appendix. These suspension designs, along with wind-
tunnel and flight-test results and additional bibliogra-
phy, are discussed in the references cited above.

The object of these multipoint suspensions was to
stabilize difficult loads developing significant acrody-
namic specific forces and moments, such as the 8- by
8- by 20-ft standard cargo container (MILVAN). In
a single-point suspension, such elongated loads ori-
ent themselves broadside to the flight path in a max-
imum drag attitude and become unstable at speeds
(40-60 knots) that are well below the power-limited
speed of the helicopter. In addition, the light natural
damping factor of the load pendulum motion (less than
0.1) interferes with rapid, precision load placement and
can result in pilot-induced oscillations at cruisc speeds,
especially in IFR operations. The two-point suspen-
sions (figs. 5(a) and 5(b)) providc yaw restraint and re-
strict pitch attitude to achieve stable flight at higher
speeds in a minimum drag orientation, and the ad-
dition of active control of appropriate suspension pa-
rameters increases pendulum damping sufficiently to
achicve precision load placement and stable flight over
the helicopter’s power-limited speed range under IFR
conditions (refs. 32 and 43).

For many of these suspensions, the equations of mo-
tion are difficult to derive. The bifilar suspension is
tractable by the present application method in which
coordinates are selected to represent both elastic and

PRECEIMNG FAGE BLANY. NOT FiLMtU
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inelastic suspensions, but the remaining suspensions
in figure 5 are not.

A simulation of the inverted-V suspension with elas-
tic cables, obtained from equations for general elas-
tic suspensions in which all cables connect the two
rigid bodies, is reported in reference 15. The behav-
jor of elastic and inelastic inverted-V suspensions is
compared in reference 11, where it is noted that the
variation of the suspension’s yaw-restoring torque with
relative yawing of the load depends on cable elastic-
ity, and that this differs significantly between inelastic
cables and the cables with elastic properties found in
practice. Thus, cable elasticity must be considered
in any accurate simulation of yawing motion. Fur-
ther, one or two cables will collapse during small yaw-
ing motions of an inelastic inverted-V suspension, and
this appears intractably complex to simulate as well as
unrealistic. Approximate equations are given in refer-
ences 11 and 12, in which the load-suspension motion
is represented by three angle coordinates (load yaw
and longitudinal and lateral swing angles) and cable
stretching is neglected.

The inverted-Y suspension imposes one constraint
when inelastic. If the spreader bar is removed, then
¢ = 2. No cable or link in the suspension connects
two rigid bodies, so that force balance at the bar end-
points must be utilized in the simulation to locate the
load relative to the helicopter regardless of elasticity.
This renders the problem analytically difficult, as pre-
viously seen for the simpler system ¢ in appendix B.
No simulation equations were found in the open liter-
ature for this suspension. However, if the spreader bar
is sufficiently close to the helicopter, then only small
motions of the bar relative to the helicopter can occur,
and the system can be approximated as an inverted-V
suspension. Similarly, if the bar is sufficiently close to
the load, then only small motions of the bar relative
to the load can occur and the system can be approxi-
mated as a bifilar suspension, as is done in references 9
and 36.

Simulation equations for the bifilar suspension are
given in references 13 and 15 for elastic suspensions
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(a) Inverted Y
suspension

(b) Inverted V
suspension

(c) Controllable (d ) Bifilar
3-cable suspension
suspension

Parameters:
ml, J1, R1*1y, R1*2,
m2, J2 R2¥3,, R2*%4,
o1, fo2

Figure 5. Multipoint suspensions.

in terms of the rigid-body coordinates, and in refer-
ences 36 and 44 for inelastic suspensions. Equations
of motion are derived in reference 36 from Kane’s equa-
tions, but the load-suspension motion coordinates ap-
pear to be ill-conditioned for ordinary small-angle mo-
tion, as discussed below. Equations for a fixed-base bi-
filar pendulum are derived in reference 44 from Kane’s
equations; this pendulum is equivalent to the load-
suspension portion of the bifilar slung-load system. In
addition, linearized EOMs are derived in reference 9.

In this appendix, the methods of this report are ap-
plied to the bifilar suspension of figure 5(d), by us-
ing relative motion coordinates for the load-suspension
subsystem. The selection of generalized coordinates
is an issue of interest. The inelastic load-suspension
has four DOFs, which might be chosen variously from
among the seven cable and load Euler angles, but
many of these choices are ill-conditioned; that is, the
relation of dependent motion variables to some sets
of four DOFs becomes undefined or weakly depen-
dent during ordinary small-angle motion. The load-
suspension geometry is studied to determine well-
conditioned DOF's, and simulation equations are given
for one such set, including both elastic and inelastic ca-
bles. The coordinates used here are similar to those
used in reference 44. An alternative, well-conditioned
set is used in the linearized equations of reference 8.
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A third set used in the exact equations in reference 36
is found to be ill-conditioned.

System and Constraints

The bifilar suspension is shown in figure 5(d) along
with the enumeration of the bodies, cables, attachment
points, and system parameters used in the derivation.
The load is suspended by two cables, C1, C2, attached
at distinct points, R1,R2 on the helicopter, B1. It is
assumed that the suspension is uncontrolled (p = 0)
and that the line segment between load-attachment
points parallels the load x-axis, R34 = a i2. The
reference cable lengths, fo0l, £02, refer to the unloaded
lengths of elastic cables or the fixed lengths of inelastic
cables.

If the cables are inelastic, then two independent

holonomic constraints are imposed on the configura-
tion position:

Tb



1(r) = |R2*y + T2 R2*3; — R1*y — Ty, R1*14]

= {ol
(117)
02(r) = |R2*y +Tn2 R2*4; — R1*y — T R1%2|
= {02

so that the inelastic system has 10 degrees of free-
dom;
d=10

c=2, (118)

Generalized Coordinates of System with Inelas-
tic Cables

The generalized velocity coordinates of the inelastic
system can be taken as the helicopter’s rigid-body ve-
locities and four coordinates that define the motion of
the load and suspension:

Vity
w11

Y]

ul =

The immediate task is to select suitable coordinates,
2. These can be chosen from the seven cable and load
Euler angles, but, as shown next, some possible choices
of four coordinates are singular or ill-conditioned for
ordinary small-angle motion of the system.

The suspension geometry shown in figure 5(d) is
a nonplanar four-sided figure governed by the vector
equation

R12+ R24 -R34-R13 =0 (119)

These vectors can be expressed in terms of their
lengths and directions as given in table 11. The vec-
tor directions can be given in terms of the usual cable
pitch and roll angles and load Euler angles described
in appendix A. These angles can be taken relative to
inertial space or helicopter body axes F;. Angles rela-
tive to F; are used here for simplicity in representing
ordinary motion since these have steady values during
both steady turns and straight-line flight. The angles
relative to F; are indicated by appending A to the
usual notation. That is, ’

Tc,l = El(Aqﬁc) Ez(Agc) cc {Cl, 62}
Ty, = E1(A¢2) Eo(Ab:2) Es(Av)e)

(120)
where T, defines cable axes, {ic, jc, kc} such that
ke is in the cable direction away from the helicopter,
and ic is in the helicopter vertical plane of (i1, k1), as
sketched in table 11. Equation (119), when expressed
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in F; coordinates, gives three scalar equations among
six of the seven cable and load Euler angles in equa-
tion (120) (load roll angle does not occur), and three
of these angles can be given in terms of the remaining
three. However, in simulations these angles are more
conveniently calculated from their rates.

The angular rates are related by the time-derivative
of equation (119) as follows:

R12+R24-R34-R13=0 (121)

The time-derivatives in equation (121) can be taken in

any coordinate frame F, according to the general rule

If R=/u then %dR/dt = fu+ %w® x fu (122)

where ¢, u are the length and unit direction vector
of R; %d()/dt is the time-derivative in Fo; Fp is any
coordinate frame in which u is a fixed vector; and %w®
is the angular velocity of Fp and u relative to . In
this appendix the velocities relative to F; are indicated
by appending A to the usual velocity notation:

1

d
AVij = s Rij for any line segment, Rij

Awa 2 140 for any reference frame, 7,

Expressions for the velocities relative to J; are listed
in part b of table 11, and then equation (121) is ex-
panded in terms of the load-suspension angular rates.
To obtain 2, note, first, that the relative load roll rate,
Ap2, must be one of the coordinates in (2, since it
does not occur in the velocity equation and is inde-
pendent of the six load-cable angular rates which do
occur. Thus, § cannot be taken as the four cable-angle
rates. An inspection of the suspension geometry in fig-
ure 5(d) confirms that the effect of load roll about the
line segment R34 on the relative position and velocity
of any point in the load would be undetectable from
any knowledge of the suspension geometry alone.

Secondly, scalar equations in only four of the load-
suspension angular rates can be obtained from dot
products of equation (121) with any vector that is
perpendicular to two of the vector coefficients of the
load-suspension angular rates in equation 121 as ex-
panded in part b of table 11, that is, from dot prod-
ucts with kel, kc2, i2, icl x jc2, icl x j2,
icl x k2, jcl x k2, jc2 x k2, etc. We consider the
following relations obtained from dot products, with
ke2,i2,icl x k2, respectively:



j2ek

1 cosAd, icl e kc2
2 Okc2) Ar2 + (

a k20kq2

. icl
)A9c1 3 (El jcl e ke2

jelei2

a k2 e kc2 ) Aar (123)

£2 jc2 e i2

. £2 cos Ay ic2 e i2 .
= Ab,.
Abar (51 cos A¢y icl e i2) Oz + (

£2 icl X jc2 e k2 aicl ei2

?1 kcl o k2

AQicl = (

Use has been made of the triple-scalar and vector-
product identities to obtain convenient forms.

A review of the coefficients of the angular velocities
on the right-hand-side of equation (123) shows that
these are much smaller than 1. That is, in steady
flight (hover, straight-line, or turning flight) if ke2 is
perpendicular to j2,icl, jc1, then Ag2 = 0 and, other-
wise, for small-angle departures from these conditions,
then |Aq2| << maz{|Ar2|,|A8.1],|A¢.|}, assuming
£1, a are of similar size. This reflects the suspension’s
restriction of the load relative pitch. Similarly, using
the dot product of kel with equation (121), it can be
shown that |Ag2| << maz{|Ar2|, |Ab.s], [Ade|} near
the condition that kel is perpendicular to j2,ic2, jc2.
Consequently, any use of Aq2 as an independent co-
ordinate will yield equations for the dependent an-
gle rates that are singular, or nearly so, in Ag2, so
that Ag2 cannot be selected as a coordinate of . In
that case, 2 cannot contain the load angular velocity,
szg.

A similar analysis of equation (124) shows that Ad.,
has first-order dependence on A6, and second-order
dependence on the cable roll rates. This follows after
assuming that £1,£2,a are of similar size and that in
the vicinity of steady flight conditions, i2 is nearly
perpendicular to jcl, jc2 and that it forms moderate
angles with icl1,ic2. In that case, one of Af.y, Ab.g
must be included in §2 in order to represent the effects
of cable pitching motion, but not both, since these are
nearly mutually dependent coordinates.

A similar analysis of equation (125) shows that the
coefficients of Ageo, Ar2 are first order and the coef-
ficient of A6, is second order. This follows, assum-
ing that £1,¢2,a are of similar size, that F,;, Feo are
nearly parallel frames, and that k2 forms a moderate

cos Agye; icl e iZ)A(ZbC1 - (El cos Ag,; icl e i2

> Ader + (el kel .kz)m2+ (
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) Ade  (124)

22 cos Ao ic2 x icl e k2
£1 kcl e k2

(125)

) Aéc2

angle with kecl. In that case, any two coordinates
from {Ade1, Adea, Ar2} can be selected to repre-
sent the cable roll-load yaw motion. The net result
is that 2 must be selected to contain (1) Ap2, (2)
two rates from {Adc1, Agea, Ar2}, and (3) one of
{Ab,,, Aoc2}, for example,

Q = (Ab.1, Ade1, Ap2, Ar2) or
(Aécls Aq;cla AécZa AP2) (126)

The first of these, with load roll and yaw and rear-
cable angle rates, will be used below for the simulation
of the relative load motion. Equations for the depen-
dent rates, Ag2, Ab.s, Ag.s are included in table 11.
The load-suspension generalized coordinates selected
in reference 36 are

= (Aécla Aéch C‘) A¢2)

where ¢ is the load pitch angle measured about j1.
This set includes a load pitch- angle rate and is nearly
equivalent to the set (A8, Ader, Ag2, Ap?2), which
was shown above to be ill-conditioned. Similarly, the
set in reference 36 can be shown to be ill-conditioned;
that is, the equations for load yaw-angle rate and Adcg
in terms of 2 are singular, or nearly singular, for or-
dinary small-angle motion. The coordinates used in
reference 9 are equivalent to the second set in equa-
tion (126) corresponding to three cable angle rates and
load roll, and are well-conditioned. The coordinates
used in reference 44 are equivalent to those used here,
that is, the direction angle rates of the cable and the
load roll and yaw rates. The principal difference lies in
the use of polar coordinates to define cable direction in
reference 44, where one coordinate is undefined when
the cable is vertical.

Q

The angular velocity coordinates considered here do
not exhaust the possible choices of 2. For example, the
load-suspension geometry can be viewed as consisting



of two noncoplanar triangles with sides (R12, R13)
and (R24, R34). The orientation of the triangle
(R12,R13) can be defined by the rear-cable angles,
the orientation of the triangle (R24, R34) relative to
the triangle (R12,R13) by the roll angle about the
common diagonal (R23), and the orientation of the
load relative to the triangle (R24,R34) by its roll
angle about (R34). These four coordinates are well-
conditioned but the resulting v(u) is complicated.

Simulation Equations Using Generalized Load-
Suspension Coordinates Relative to Helicopter
Body Axes

The generalized velocity coordinates for the system
with elastic cables u, are to be chosen as the gener-
alized coordinates of the inelastic-cable system aug-
mented by two length rates such that (1) the aug-
mented set comprises generalized coordinates of the
system with elastic cables and (2) the length rates be-
come zero if the cables are inelastic. Here, the two ca-
ble lengths are the holonomic constraints of the inelas-
tic cable system, and their length rates can be added
to (V1*y,wl;) along with one of the well-conditioned
coordinate sets listed in equation (126) for (2, to obtain
u. Taking Q2 to be the rear-cable angle rates and the
load relative roll and yaw rates, then u can be taken

as

[ V'
w11

AV13, (127)

2

k (Ap2, Ar2)T

where AV13 is the relative velocity of the rear cable,
which, using equations from part b of table 11, is given
in terms of the cable angle and length rates by

AV13. = (01 Abgy cos Ay, —01 Ay, £1)T

The linear velocity components of AV13.; are pre-
ferred as generalized coordinates over the cable angle
rates A8, Ad.1 owing to the simpler kinematic rela-
tion v(u) obtained. Then the load c.g. inertial velocity
is given from the derivative of

R2* =R1*+R1"1 + R13 + R32"
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V2* = V1* +wl x R1*1 + (w1 x R13 + AV13)
—w2 x R2*3

or

V2*N = V].*N - TN,l S(R1*31) (4)11 + TN,cl AV1361

+Tn,2 S(R2%32) w22 (128)
The load angular velocity can be written as
w2y = Tgyl wli + Aw2s (129)

It remains to determine Ag2(u) for the case of elastic
cables in order to complete the relation v(u). This is
obtained from the dot product of ke2 with the velocity
equation for elastic cables; the result is included in
table 11.

The configuration kinematics v(u), u(v) are assem-
bled in the equation summary, part a of table 12.
The cable coordinates AV13.,#2 in the inverse rela-
tion, u(v), are obtained by solving equation (128) for
AV13,; and solving a similar kinematic relation for
the forward cable for #2. The result for A~ is seen to
be simpler than for A. Additional equations for the de-
pendent angular rates Aq2(u), Awc2.2(u) and the rel-
ative angular velocities needed to calculate T3 1,721
in a simulation are included in the equation summary
for completeness.

The external forces and inertia coupling terms fo
are assembled in part b of table 12. The notation
F01,...,MO02 for the vector elements of fo is intro-
duced for brevity in later equations. These repre-
sent the sum of applied forces and moments result-
ing from weight (mlg,m2g), aerodynamics, and he-
licopter rotor output (FA1,...,MA2), and inertia
coupling terms from X + A u. The coupling terms
comprise a large number of scalar terms that are all
second order in velocity coordinates from u,v, and
whose computation can be organized in terms of nat-
ural vectors and matrices as given in-the equation
summary. If expanded to scalar expressions, a large
number of terms are obtained. This is done in ref-
erence 36 where the number of such terms exceeds
300. If the relative motion is assumed sufficiently
small (|Awel|, |Aw?2| << 0.1 rad/sec) and the cables
are inelastic, then all terms in A u are negligible (of
the order of 1073 rad sec?, 1073g) except a term in
wl x R1*2* x wl from Ag; wl;. This greatly reduces
the programming and computations required, but is
inaccurate in representing the dynamics of larger rel-
ative motions.



Equations for the interaction force fec are given in
part c of table 12. Each cable connects two bodies so
that the interaction force can be assembled in terms
of cable directions and tensions as in equation (11) by

fC—ZH] TCi=HTC
i=1

where {Hj} are given in the equation summary. For
this example, ¢ = m so that H is also a basis of the
interaction force space and can be used for both elastic
and inelastic cables. Note that H is identical to —A
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given by the rows “of A-1 corresponding to /1 (third
component of AV'13.;) and .

Finally, the simulation equations are listed in part d
of table 12. The total specific force sf, due to
fo + fc, is assembled, and its vector elements are
denotedSF1,...,SM2 for convenience. The elements
of 7 are obtamed by expanding A~! sf. If the cables
are inelastic, then ¢1 and #2 need not be calculated,
and various terms in A u containing #1,¢2 are also
zero in the computation of fo.



Table 11. Generalized load-suspension velocity coordinates: bifilar suspension

(a) Suspension geometry:

R12+R24-R13-R34 =0

R13 = £ 1 kel
R24 = §2ke2
R34 =ai2

Suspension geometry.

Angles relative to Fi:

i1 ic ic
Abg
i1 il
Ade
ABg ke jic
ke’
k1 ke’
(a) Pitch rotation (about j1) ' (b) Roll rotation (about ic)

Cable angles relative to 7.

T.1 = E1(A¢e) E2(Ab:) c € {c1,c2}

To1 = E1(Ad2) E2(A68:) E3(A¢a)

kel = cos Adeq sin Abe il — sin Ader j1 + cos Agey cos Abeikl
kc2 = cos A¢ez sin Afz i1 — sin Age2 j1 + cos Ao cos Abkl
i2 = cos Ay cos Afs 11 4 sin A cos A, j1 —sin Af; k1
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Table 11. Concluded.

(b) Suspension velocity equation relative to helicopter body axes, F;:

AV12+ AV24 - AV13 - AV34 ='0

Velocities relative to Fi:

Awcl = Ag,; icl + Abyy (cos Ager jel — sin Ay kel)
Awe2 = Ag,p ic2 + Ab.o (cos Adea je2 — sin Ay kc2)

Aw2 =Ap2 i2 + Aq2 j2 + Ar2 k2
AV12=0

AV13 = {1 kel + £1 Awel x kel
AV24 = $2 ke2 + 62 Awe2 x ke?2

AV34 =g Aw2 x i2

Velocity equation for inelastic cables:

£2(Abe cos Az €2 — Ageg je2) — €1 (Ad,, cos Age il — Agey jel) — a (Ar2 j2 — Ag2 k2) = 0

Suspension angular rates in terms of (Adey, Ay, Ar2) for inelastic cables: .
j2eke2 ) . L

Ag2 = (fm) Ar2 + a—ﬁmmed cos Ag.y icl eke2 — A¢q jcl e ke2)

Awe2 x ke2 = (€1 Awel x kel 4+ a Aw?2 x i2)

Abgy = Awce2 x ke2 o ic2 / cos Adea

Ay = —Awe? x k2 e jc2

Velocity equation and load pitch rate for elastic cables:

€2 ke2 +£2(Aey cos Adey ic2 — Ades jc2) — AVIS — a (Ar2j2 - Ag2 k2) =0

[ §2eke2 kc2.AV13 ey
Ag2 = (1’(“1(_22 c ) Ar2+ S ke — TTookea 2
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Table 12. Simulation equation summary: bifilar suspension
(a) Configuration kinematics:
V1*y
Vs, I 0 0 0 0 \

1
I A22 A23 A24 A25 “h

v= =Au= 0 I 0 0 0 AV13a

£

0 A42 A43 A44 A45

w?2
’ \ \ (Ap2, A‘I‘Q)T)

AV13., = (£1 Ay cos Adey, —€1 Ager, €1)T

Auxilliary expressions for A: Submatrices of A:
20 = k2 e ke2 = k2T ke2, Agy = —Tn1 S(R1*2%)
z1 =j2 e ke2 = j2T ke2; Ass =Tni[T1,e1 + 71,2 sj2 2137}
2=-1/az0 Agg =Tn2 8j2 28
zr=21/20 Ags = T2 [sia, ska + 27 sj2]
213, = —28 Te1 1 ke2y A =Ty,
R1*2* = R1*1; + {1 kcly — Ty R2*3, Agz = j25 213%,
sip = (R2*3 x i2)2 = 1°* column of S(R2*33) Ayq = j29 2¢
sja = (R2*3 x j2)3 = 2™¢ column of S(R2*3;) Ags = ((1) 2‘)
0 1

sky = (R2*3 x k2)2 = 3" column of S(R2*32)

Tna2=Tn1 Ti2
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Table 12. Continued.

u(v)
Vit I 0 0 0
ol 0 0 I 0 Vg
= AV13,, —A1y=| Tanv Tan Bz  Bsy V&
i —ke2l, kedl, —e19T goof || @D
(Ap2, Ar2)T 0 0 Bn  Bu | Y

Submatrices of 4~

Tan=Tuax T1n

B3z = Te1 S(R1*11) + S(R13,) Te11
B3y = =T.11 T1,2 S(R2*35)

k2n =T, ke2,

£12; = (R1°2 x ke2), = S(R1*2,) ke

€22, = (R2*4 x ke2)y = S(R2*4y) Ta 1 ke

1 0 0 100
B53“<0 0 1) Ton B54=<o 0 1)

Relative angular velocities:

Aq2 = 2€ 02 + 2137, AV134 + 2zr Ar2

Aw2y = (Ap2, Ag2, Ar2)T

AV24) = (AVI13+ AV34); = T1 o AV13, +a (Ar2 j2; — Ag2 k2;)
Abez = ic2T AV24; / €2 cos Ages

Ader = —jc2T AV24, / £2

Awe2er = (Adea, Abey cosAGea, —Ab,s sin Ade2)T

Awe2;, = A(ﬁcg ic2; + Aécz jLi = (AQSCZ cos Ao, Aécz, —Aq'ﬁcg sin Agcz)T
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Table 12. Continued.

(b) External forces and inertia coupling terms:

fo=fg+fa—X—DAu

ml gy + FAlN

FOly
FO2y

fo= = | MAL - S(wly) J1wl
MO01, 1 ! !
A‘[022 A[AQQ - S(w22)

Auxilliary expressions for A
w2g = Tg,l wli + Aw2y

wely = wl) + Awcely

w2c29 = Aw2, — To1 Awe2,

weeleg = Ter1 (Awe2y — Awely)

30 = kc2 o (Aw2 — Awc2) x k2
= kc2T Ty 2 S{w2c22) k2;

31 =kc2 e (Aw2 — Awc2) x j2
= kc2T Ty 5 S(w2c2z) j22

20 = —2€ 30/20

zr = (21— 2zr 20)/20

A45=(

m2 g + FA2y — m2(Agy wl; + Aoz AV13er + oy €24 Ags (Ap2, Ar2)T)

J2 w2y — J2 (A42 wly + A43 AV13. + A44 éQ

+Ags (Ap2, Ar2)T)

Submatrices of A:
Agg = —Tn1[S(wl1) S(R1*2%) + S(R1*2*))]

4423 = TNYI[S(wcll) Tl,cl

+ T2 (S(w22) sj2 2137 + sj2 £130))]
Agy = Tna[2€ I + 2€ S(w22)]s72
Ags = T2 [pl2, #22]
uly = S(w2q) siz
129 = S(w22) (sko + 27 sj2) + 21 sj2
Agp = —S(Aw2s) Ty,
Auz = j29 2137

Agg =20 j2,

o0 0
0 zr
0 0

180 = —(2€ ke2 + 20(Awe2 — Awel) xke2)a = [£€/2€ I + S(we2cler)] 213¢;

R1*2*1 = Tl,cl AV13. + T2 S(R2*32) Aw2s
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Table 12. Continued.

(c) Suspension forces:

kclN kCQN
TC1 —kcly —kc2n TC1
fe=[H1, H2] =
TC?2 S N AV
—£21, —£22,

kely =Ty kel

kc2y = Tn, ke2;

§11; = (R1*1 x kel); = S(R1*1;) kel
§213 = (R2"3 x kel); = S(R2*3;) Ty kcly
§12; = (R1*2 x ke2); = S(R1*2)) kc2,

6222 = (R2*4 X kC2)2 = S(R2*42) Tg,l k021

Cable tensions for elastic cables:

TCj = max{0, Kj (¢ — loj)} ji=1,2

Cable tensions for inelastic cables:

7C1
TC2

H1T D71 fo=kelk (FOly/ml — F02y/m2)+ €117 J1-1 MO1, —£217 J2-1 M02,
N 1

) =—[HT D~' H|"! HT D~ fo

H2T D71 fo=ke2}, (FOly/ml — FO2yx/m2) + €127 J1-1 MO1, - €227 J271 M02,
H1" D7' H1 =12 + £117 J17' €11, + €217 J2-1 €21,

H2T D' H2=p12 + €127 J171 €12; + €227 J2-1 22,

H1T DY H2 = p12 kel ke2y + €117 J1-1 €12, +€21F J2-1 £22,

where

#12 = (ml + m2)/ml m2
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Table 12. Concluded.

(d) Simulation equations:

SFly

SEF2y
sf=

SM1,;

SM2,
i=A"1sf
Vi*y = SFly
wly =5SM1,

= D7 (fo+ fe)

AV13¢ = To v (SF2x — SF1x) + Bsg SM1, + B3y SM2;

2 =—H27T sf

Ap2 _(1 0 0
(32)=(5 § 9) (sn2a= oy 5201
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APPENDIX D :
SIMULATION EQUATIONS FOR DUAL-LIFT SYSTEMS

INTRODUCTION

Simulation equations are derived in this appendix
for the three dual-lift configurations shown in figure 6.

Rigid loads that are sufficiently long to allow safe
separation of the two helicopters can be suspended di-
rectly below the helicopters (fig. 6(a)). Several isolated
civil operations have used this configuration (ref. 4),
including a load carried with a separation of 1.5 ro-
tor diameters. Shorter loads can be carried by various
configurations considered in the early studies (refs. 1
and 2). Flight tests and control-system analyses have
focused principally on the arrangement shown in fig-
ure 6(c), which uses a spreader bar (refs. 3-7, 17, 20,
and 21). Limited flight tests were conducted using a
relatively heavy spreader bar that was 2 rotor diame-
ters long in order to ensure safe helicopter separation.
Control automation is expected to result in minimum
separations of 1.25 rotor diameters and a spreader-bar
weight penalty of about 5% of payload (ref. 4). Al-
though this weight is small relative to the other masses
in this system, it is included in the equations of mo-
tion, and the configuration is represented as a system
of four rigid bodies. An alternative three-body con-
figuration without a spreader bar (fig. 6(b)) has also
been considered in references 18 and 19. The stabiliza-
tion of difficult loads has not been considered in the
suspension designs of figure 6 and may lead to new
suspensions in the future.

Until recently, work on the cquations of motion of
dual-lift systems was limited to approximate models
tractable for control studies of these complex systems.
The cables have been assumed inelastic in all cases.
In reference 17, the slung-load systems are approxi-
mated as point masses linked by fixed-length cables
in tension, and general cquations of motion for these
systems are given from d’Alembert’s principle. The
general equations required inversion of a d x d ma-
trix analogous to that in equation (14), but analyt-
ical inversion did not appcar feasible for a 12-DOF
point-mass model of the system in figure 6(c). In later
work on this system at Princeton University (refs. 6
and 7) Lagrange’s equations were used, assuming a
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point-mass load and thin-rod spreader bar (16 DOFs).
Linearized equations specialized to hover are obtained
(ref. 7) and the results include a real-time simulation
of two-dimensional motion (seven DOFs, ref. 6). More
recently, nonlinear equations of two-dimensional mo-
tion have been given for a point-mass approximation
of the three-body system shown in figure 6(b), which
has four DOFs (ref. 18). General nonlinear EOMs for
the dual-lift system with spreader bar similar to those
given here were initially reported in reference 8; non-
linear EOMs in terms of the rigid body velocity coor-
dinates for the same system with inelastic suspension
are given in references 19 and 20.

Simulation equations are derived in this appendix
for the three dual-lift configurations of figure 6 using
the methods of this report. The results accommodate
elastic or inelastic cables and dissimilar helicopters.
All three dual-lift systems can be integrated in to a
single set of simulation equations. In addition, equa-
tions are given for an approximate model of the dual-
lift system with spreader bar, using point-mass heli-
copters and load, and a thin-rod spreader bar. With
elastic cables, this system has 14 DOFs; with inelastic
cables it has 10 DOFs. Cables, rigid bodies, attach-
ment points, and system parameters are enumerated
in figure 6. The system parameters arc the masses, in-
ertia matrices, and body-axis coordinates of the cable
attachment points for each body, and the reference ca-
ble lengths, {£0j}, which refer to the unloaded lengths
of elastic cables or the fixed lengths of inclastic cables.

Dual-Lift System for Long Loads

System and constraints- The configuration in
figure 6(a) accommodates long loads and consists of
three rigid bodies B1, B2, B3 connected by two ca-
bles, C1, C2, attached at R1, ..., R4. If the cables are
inelastic then each imposes one holonomic constraint
on the configuration motion by fixing the distances



B3

= =

-

(a) Long loads

BI B2

Ci c2

Parameters:
m1, J1, R1*1,
m2, J2, R2*2,
m3, J3, R3*35
fo1, fo2

(b) Pendant suspension

B1

Parameters:
m1,J1, R1*1,
m2, J2, R2*2,
m3, J3, R3*33, R3'43
fo1, fo2

Parameters:
m1, J1, R1*1,
m2, J2, R2*2,
m3, J3, R3‘33, R3*43
md, J4, R4*54
fo1, fo2, fo3, fod = fo3

(c) Spread bar suspension

Figure 6. Dual-lift suspensions and system parameters.
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R13,R24:

¢1(r) = |R3*y + Tns R3*33 — Rl
—TN,1 Rl*lll = fol

(130)
2(r) = |R3*y + Tn,3 R3*43 — R2}
—Tn,2 R2*22| = £o2
and then, for inelastic cables;
c=2, d=16 (131)

Generalized velocity coordinates and configu-
ration kinematics— The generalized velocity coordi-
nates u are to be selected so as to separate motion
caused by cable stretching from motion with invariant
cable lengths. This is readily done by extension of the
single-cable example of appendix B. First, assume that
the c.g. velocity of B1 and the angular velocities of all
bodies (V1%,wli,w22,w33) can be included in u, and
then observe that the c.g. velocities of B2, B3 can be
given from the derivatives of

R3*y = R1*y + T, R1*1; + R13y
~Tns R3*3;
(132)
R2*y = R3"y + T3 R3*43 — R24y
~Ty 2 R2*2;

as

V3*y = Vit — Tna S(R1*1;) wl;
+Tn,c1 V13c1 + Tvz S(R3*33) w33

V2*N = V3*N el TN,3 S(R3*43) w33
—TN,cz V24c2 + TN,2 S(R2*22) w22
(133)

where V13.,V24., are the inertial cable veloci-
ties referred to cable axes Fo1,Fc2. As described
in appendix A, these axes are obtained by defin-
ing inertial pitch and roll angles for each cable
(fc1,0c1), (Pe2,0c2), and then cable axes F.y, Fe2 are
obtained from the inertial axes by

Tc,N = E1(¢c) EZ(ac)

where kcl,ke2 are along the cables, R13, R24; and
icl,ic2 are in the inertial vertical plane of (iN,kN).
For these axes

c=c¢cl,c2 (134)

we = ¢ ic + b, (cos @ jc — sin é. ke) c=rcl,c2
(135)
and then
V13e; = 1 keley + (wel x kel)e €1
= (€1 6, cos¢e, —£1 ¢, él)T (136)

V24 = (£2 ey cos dez, —£2 b2, €2)7
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These velocity coordinates separate the cable rota-
tional and stretching motion, and, together with
(V1%,wli,w2s,w33), make up 24 generalized coordi-
nates for the system with elastic cables which contains
a subset of 16 coordinates for the system with inelastic
cables.

The configuration kinematics v(u) are assembled in
the equation summary of table 13. The 18 x 18 ma-
trix, A, contains 6 rows representing equations (133),
and 12 rows from the unit matrix for the coordinates
that are in both u and v. The reverse relation, v{u), is
readily given after obtaining V'13.1(v), V24c2(v) from
equations (133). Only transformations and skew-
symmetric matrices representing Coriolis terms occur
in A, A°L.

External forces and inertia coupling- The ex-
ternal forces on the configuration and the coupling
terms, fo, are assembled in part b of table 13. The
vector elements of fo are denoted (F01,...,MO03) for
brevity in later equations. The fo contains the forces
and moments on the rigid bodies due to weight, aero-
dynamics, and rotor output, along with the coupling
terms, X +DA u, which are all second order in velocity
coordinates from u,v. The submatrices of A require
only time-derivatives of transformations (appendix A),
and A u yields terms which are recognized as centrifu-
gal and Coriolis accelerations of the forms w x w x R
and w X V.

Suspension forces— The resultant forces and mo-
ments applied by the suspension to the configuration
of rigid bodies, fc, is given in part c of table 13. Here,
each cable connects two rigid bodies so that fc can be
given from equation (11) in the case of elastic cables.
Since the number of cables and constraints is equal, the
configuration vectors of the cable tensions {H1, H2},
given in table 13, comprise a basis of the suspension
force space which can be used with equations (18)
and (19) to give fc for inelastic cables. The results
are given in table 13. This basis is identical to the for-
mal basis, —A, given by the rows of A“l corresponding
to the stretching-motion coordinates £1(v), £2(v). The
suspension force parameters for inelastic cables are the
two cable tensions, and the equations for elastic and
inelastic cables differ only in the calculation of these
tensions.

Simulation equations— Finally, the equations for
%, are assembled in part d of table 13 from A~1 sf,
where sf refers to the applied specific forces and mo-
ments on the configuration due to fo + fe. The vector



elements of sf are denoted SF1,...,SM3 for conve-
nience. The equations for Vl*N, wly, w2q, W33 are
identical to those usually obtained from the Newton-
Euler equations. The equations for the (relative) cable
accelerations V13,1, V24C2, depend solely on differ-
ences of specific forces and moments on the connected
bodies. For inelastic cables, the third components of
V1301, V24,0, namely, £1,£2 are theoretically zero.

Dual-Lift System with Pendant Suspension

The system shown in figure 6(b) consists of
three rigid bodies with the load suspended by two ca-
bles C'l, C2 connected at a common point R3. The
load and the hardware attaching it at R3 are regarded
as a single rigid body, B3. This system is simply a spe-
cialization of the previous configuration to one with a
single attachment point at the load, R3. Analysis and
simulation equations are identical to those of the previ-
ous case except for replacing R4 with R3 throughout.
An equation summary is therefore omitted. Equations
for this system are also included in the results for the
multilift system with m-helicopters and pendant sus-
pension that is treated in appendix E.

Dual-Lift System with Spreader Bar

System description and constraints- The dual-
lift system shown in figure 6(c) consists of four rigid
bodies: the two helicopters, B1, B2, are connected by
tether cables, C1, C2 to a spreader bar B3, and the
load is suspended from the spreader bar by the bridle
cables, C3, C4, attached at a common point, R5. The
load and the hardware attaching it to R5 are regarded
as a single rigid body, B4.

It is unnecessary to make any specializing assump-
tions about the system parameters, but it is noted that
existing designs are characterized by bridle cables of
equal length with an angle from the spreader bar in
the range 45° — 60°, with a spreader bar length in the
range of 1.25 to 1.5 rotor diameters, and a spreader-
bar weight that is about 5% of the system payload
(ref. 4). Identical helicopters with equal loading are
usually considered, but the present results accommo-
date dissimilar helicopters and unequal loading.

If the four cables are inelastic, they impose four in-
dependent holonomic constraints on the configuration
by fixing the following distances:
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01(r) = |R3*y + T3 R3*3;

-RI*N - TN,I Rl*lll =fol

22(r) = |R3} + TN R3*43
—RQ?V - TN,Z R2*221 = {02
(137)
03(r) = [R4y +Tna R4*5,
—R3% —Tn3 R3*33| = €03
4(r) = |R4y +Tn,4 R4*54
—R3% —Tv3 R3*43| = o4
Then, for inelastic cables,
c=4, d=20 (138)

Generalized velocity coordinates and configu-
ration kinematics- The generalized velocity coor-
dinates u are to be selected so as to separate mo-
tion caused by cable stretching (four coordinates)
from motion caused by invariant cable lengths (20 co-
ordinates).  First, note that the subsystem that
consists of helicopters, tether cables, and spreader
bar is identical to the system in figure 6(a) and
can be represented by the identical 18 coordinates
(V1*y, wly, w2s, w33, V13,1, V24,). As before, in-
ertial cable angles (@c1, 0c1), (@e2, Oc2) and cable axes
Fe1, Feo are defined (eq. (134)), and then the iner-
tial velocities, V13,1, V24, separate the tether cable
stretching and rotational motions (eq. (136)), and the
rigid body velocities V3},,V2}, are given in terms of
the generalized coordinates by equation (133).

Secondly, the load motion remains to be given in
suitable coordinates. The load c.g. velocity is obtained
from the derivative of

R4*y = R3*y + R3*5n — Tng R4%54
as
Va'y = V3 + V3"5y + Tq S(R4*5,) wdy (139)

Assume that w44 can be included in u. It then remains
to develop appropriate coordinates for V3*55. This
development is given in table 14.

The inertial velocity, V3*5, results from the iner-
tial velocities of the two cables C3,C4. These cables
always form a triangle with the spreader-bar longitudi-
nal axis i3, and axes F; can be attached to the plane of
the triangle with longitudinal axis along the spreader
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bar, i3, and normal axis, kt, perpendicular to i3 in
the plane of C3, C4. This plane can have any roll
angle, ¢;, about i3, and then R3"5 has components
(€3zx,¢€3z) in this plane. For elastic cables, (£3z,£32)
are arbitrary; for inelastic cables, they have fixed val-
ues. The coordinates {G'bt, 3z, é3z} are appropriate ve-
locity coordinates which separate the stretching and
rotational motion of R3*5. To isolate these coordi-
nates in V3*5, define the modified spreader-bar ref-
erence frame Fg/, from the spreader-bar Euler angles
{#3,63}, and then give the inertial velocity of R3*5
as the sum of its velocity relative to F3. (VT in part a
of table 14) and the effect of the inertial rotation of
Fiy (AVT in part a of table 14). As seen in table 14,
the motion of R3*5 caused by cable stretching and ¢3t
is isolated in V7T, and the remaining motion, AV'T
depends only on the spreader-bar angular velocity.

Appropriate generalized coordinates for the system
can now be given by augmenting the 18 coordinates
previously used for the system of figure 6(a) with
(VTi,wdy); V4*y is given in terms of these coordinates
by

V4*N = V3*N + TN,t (VTg + BT w33)

+Tn4 S(RA54) wiy (140)

Finally, the kinematic relations v(u}), u(v) are assem-
bled in table 14, by using equations (133) and (140)
to obtain V2*y(u), V3*y(u), V4*y(u) and then re-
arranging these same equations to obtain V13c1(v),
V24.9(v), VT;(v). The remaining 15 rows of A, A1
are all from the unit matrix, since the corresponding
coordinates are in both u,v. The nontrivial submatri-
ces of A, A1 are all coordinate transformations and
skew-symmetric matrices representing Coriolis terms.

Applied forces and inertia coupling— These
terms, fo, are assembled in part ¢ of table 14. The
vector elements of fo are denoted FO1,...,M04 for
brevity in later equations. The configuration vector
fo contains the sum of applied forces due to weight
(ml g,...,m4 g), aerodynamic and helicopter rotor
forces and moments (FA1,...,MA4), and the inertia
coupling X + A u. The submatrices of A are defined
in part b of table 14 except that BT is given in part a.
Their time-derivatives are obtained principally from
derivatives of coordinate transformations. A general
expression from appendix A is repeated here along
with expressions for the cable-axis angular velocities
in the required reference frames, wcler, wc2e2, Wi, and
expressions for the nontrivial terms of A u. The time-
derivative of BT is obtained routinely, but a formula
is omitted for brevity.
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Suspension forces— Equations for the suspension
force fc are assembled in part d of table 14. Each
of the four cables C1, C2, C3, C4 connects two rigid
bodies so that fc can be given as in equation (11) by

4
fe=Y HjTCj = HTC

Jj=1

(141)

The matrix H is given in table 14. Its columns also
form a basis of the suspension force space since ¢ =
m = 4, so that equation (141) can be used for both
elastic and inelastic cables, the cable tensions being
calculated from cable stretch or from equations (18)
and (19) in the two cases, respectively. Expressions for
both cases are listed in the table. The table includes
formulas for calculating cable line segments from u,
and these suffice to determine H and the elastic cable
tensions.

Alternatively, a basis can be given as the rows of
A-1 corresponding to the cable-stretching coordinates
(rows 6, 9, 10,12). This basis is given as A in part d
of table 14. The corresponding constraint force pa-
rameters s can be identified as TC'1,TC?2, and the F;
components of the suspension force, FT, which acts
on the triangle at R5. Note that these components
can be given from the cable tensions and, conversely,
so that A can also be used to assemble fc for both
elastic and inelastic cables.

Simulation equations— The total specific force ap-
plied to the configuration, sf, is assembled in part e
of table 14 from the vector elements of the external
forces fo and the interaction forces fc. The vector
elements of sf are denoted SF1,...,SM4 for conve-
nience. Finally, the simulation equations for the vector
elements of @ are given by expanding @ = A~! sf, and
these represent either elastic or inelastic cables. For
inelastic cables, the four cable-stretching coordinates
(coordinates 6, 9, 10, 12 of i) are all theoretically zero.

Remarks— The three dual-lift systems can be inte-
grated into a single simulation. The three-body system
in figure 6(a) is a subsystem of the four-body system
c. That is, system a is obtained from system c by
dropping the load and bridle cables and by regarding
the spreader bar as the load and assigning it appropri-
ate parameter values. System a can be represented
by a subset of the generalized velocity coordinates
and equations for system c¢, obtained by deleting the
six load-triangle coordinates and the load forces and
moments. Further, as previously noted, the pendant



suspension system in figure 6(b) is a simple specializa-
tion of system a to coincident load-attachment points
(R4 = R3).

The EOMs for the rigid-body velocities, v, given in
reference 20 for dual lift with spreader bar and inelastic
suspension can be obtained by the procedure outlined
in section 3, equations (142)-(146), by using general-
ized coordinates, u, which are reference point coordi-
nates like those in part b of table 14, except that the
reference point is taken at the spreader bar c.g. These
coordinates also result in a simpler kinematic relation,
v = Au, than in part b of table 14 and are of interest
as an alternate set of generalized coordinates for the
simulation equations.

Dual-Lift System with Spreader Bar:
Degenerate-Body Approximation

In this section the system is represented by point-
mass helicopters and load, and a rigid-rod spreader
bar, as illustrated in part a of table 15. The system
with elastic cables has 14 DOFs. Inelastic cables im-
pose four holonomic constraints as in equation (137),
in which case d = 10.

The formulation of EOMs for systems with degen-
erate bodies is outlined in section 5. To account for
the point masses, B1, B2, B4, it is only necessary to
modify the equations in table 14 to remove the angu-
lar velocities from v, u, along with the associated rows
and columns of 4, A~!, and the associated moments
in fo, fe. A 15-DOF system is obtained.

The rigid-rod spreader bar has two attitude degrees
of freedom, represented by its inertial heading and
pitch angles. The spreader-bar body axes F; are now
coincident with the special axis frame Fy, defined in
table 14, and the attachment points on the spreader
bar are on the i3-axis (table 15).

To account for the rigid-rod spreader bar B3, define
the reduced configuration velocity 7, in which w3j is
replaced by the spreader-bar’s pitch and heading rates,

a3 = (83,3)7, and make the same replacement in the
generalized coordinates, u:

3= (V1*y, V2, V3%, V4%, a3)7

u=(V1*y,V13e,V24en, VT, a3)T

The required kinematic relation,

w33z = 333 9'3 + kN3 1/')3 =W3 ﬁ

80

is expanded in table 15. The cable velocities
V13, V24, VT were defined previously in equa-
tion (136) and part a of table 14. The 14 coordinates of
u contain four scalar coordinates él,éQ,éS:z,ZBz, that
represent cable stretching and 10 coordinates that rep-
resent motion with invariant cable lengths. The kine-
matic relations 7(u),u(T) are obtained by specializ-
ing equations (133) and (140) to the degenerate bod-
ies. The results are assembled in part b of table 15.
The submatrices of A4, A are coordinate transforma-
tions and cross products with the spreader-bar’s axes
of pitch and heading rotations.

Equations for the applied forces and inertia reactions
fo, are given in part c of table 15. The configuration
vector fo is expanded routinely except to note that 4
in Au is from the relation v(u) = W 4 u, where W
maps Buler-angle rates to angular velocities (eq. (32)).
The inertia reactions consist of Coriolis velocities due
to transformation rates, centrifugal accelerations due
to spreader-bar angular velocity, and an effect, z1, of
the Euler-angle rate coordinates.

The suspension forces (table 15) can be given in
terms of cable tensions as in table 14, fc = H TC,
where H here is obtained from H in table 14 by delet-
ing the elements that generate moments on the point-
mass bodies. The moment action vectors {£3j} were
defined previously in table 14 along with equations
for calculating cable line segments. For elastic cables,
T'C is calculated from the cable lengths as usual. For
inelastic cables, first obtain the reduced basis in 14-
dimensional space, H = W H , and then the cable
tensions are given by equation (37). Inversion of a
4 x 4 matrix (FT D=1 H) is again required. Expres-
sions for its elements are routinely obtained by expan-
sion of the matrix. The alternative basis, A from the
rows of A~! corresponding to the cable stretching co-
ordinates, can also be used in equation (37) to obtain

fe=As= W fe. The cable tensions can be ob-
tained from s as given in part d of table 14.

Finally, the simulation equations (36) are assem-
bled in part c of table 15. The reduced specific force,
sf= o'wt (fo + fc), contains the specific forces,
SF1,...,8F4, and the reduced specific moment on the
spreader bar, SM3; the latter contains the compo-
nents of the moment sum, M03 + MC3, along the
pitch and heading axes of rotation, j3,kN. Last,
the simulation equations for @ are given by expand-
ing equation (36).




Table 13. Simulation equation summary: dual lift for long loads

(a) Kinematics:

. I 0 0 0 0 o0
VI Vity
Vo I Tne ~Tnee Az Az Ass
N V131
V3 I Tya 0 Ay 0 Ags
B N V24,
v= TAY= 10 o 0 I 0 0 wl
wll
0 0 0 0 I 0 w2o
w22
\ e 0 0 0 00 I w33
. I 0 o 0 0 0 Ve,
V13, TN 0 Tan B2 0 B Vo,
Vod,, 0 ~Tean Ty 0 Bis By V3,
A=l
u= =A"v= 0 0 0 I 0 0
w11 w11
w2 0 0 0 0 I 0 w2
w3s 0 0 0 0 0 I w3s

V1361 = (fl écl COS¢01, ~{1 qﬁcl, él)T

V2o = (£2 0y cosdea, —£2 bea, €2)7

Agg = —Tn,;1 S(R1*1,) Boy = —To,n A

Ags = Tv2 S(R2*22) Bas = —Tc1,v Ass

Ags = —Tn 3 S(R343) Bss =Teo,n A2s

Asg = T3 S(R3*33) Bag = —Tea,n Tz S(R3%43)
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Table 13. Continued.
{b) External forces and inertia coupling;:

fo=fa -X —DAu+fyg

(mlgN—i—FAlN

FOly
m2gy + FA2Ny — mz(TN,cl V13, — TN’CQ V24,4 + A24 wly
FO2n . .
+Azs w29 + A w33)
FOB;\J . . .
fo= =] m3gn + FAIN —m3(Tn,e1 V1301 + A2s wly + Az wds)
MO1,
]L[Al} - S(w‘ll) J1 w].]
MO2,
MA25 — S(w23) J2w2y
MO033
MA3; - S(w33) J3w3s
Tne =T S(wee) }
c=cl,c2
wee = (e, Oe cosde, —bsin¢g.)T

A24 w11 = T,\,"l Sz(ull) Rl*ll
A25 w22 =1—TN52 SZ(wQQ) R2*22
Ay w33 = —Tw3 S?(w33) R3*33

Ags w33 = TN13 52((.4)33) R343
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Table 13. Continued.

(c) Suspension forces:

FCly \ kely | 0

FCQN 0 l kCQN

FC3N —kC].N | —k‘CQN TC1
fo= —HITCl+H2TC2= | .

MC1, (| TC2

MC2, o I &%

.y 315 | —€3%

£11; = (R1*1 x kecl); = S(R1*1y) Ti v kel
€313 = (R3*3 x kel)s = S(R3*33) Ts v keln
£22, = (R2*2 x kc2)y = S(R2*22) To, v k2N

£323 = (R3*4 x kc2)s = S(R3*43) T3, N kc2n

Elastic cable tensions:

TCj = maz{0, Kj (¢j — Loj)} i=12
Inelastic cable tensions:

(;g;) _ (5T D! B)~' HT D1 fo

HY D fo= kel [E%x — FBx]y e1T J171 MOL, — €315 J371 MO3s
HT D' fo=kc2% [EQ2x — FOny 4 ¢297 J2~1 M02, — €325 J371 M033
HT D1 Hy = mmd 4 11T J171 £11; + €317 J37' €313

ml m3

HT D' Hy = B2Em3 4 £99T J2-1 £22, +¢32] J371 €323

HT D' Hy = kelk, ke2n/m3 + €315 J371 £323
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Table 13. Concluded.

(d) Simulation equations:
SF].N ((F01N+FCIA7)/77?1

SF2y (FO2N+FCQN)/7T),2
SF3y (FO3x + FC3x)/m3
sf =D fo+ fo) = =
SM1, Jl_l(]\{()ll—l—ﬂ[(jll)
SM?2, J27Y(M02; + MC2,)
\ 53, J371(M033 + MC33)
= A" Sf
V1*y = SF1

V13er = T, n(SF3n — SFly — Aoy SM1, — Asg SM33)

V24e = Too N(SF3N — SF2x + Ays SM2, — Ty S(R3*43) SM33)

wly = S5M1,
w2y = SM2,
w3z = SM3;
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Table 14. Simulation equation summary: dual-lift system with spreader bar
(a) Generalized velocity coordinates for bridle cables (C3,C4):

F. = {i3, jt, kt}

i3 = spreader bar longitudinal axis, along R43

kt = perpendicular to i3 in plane of C3,C4

R3*5, = (¢3z,0,£32)T

Fa = {i3,j3',k3'}

Ty N = Ex(63)E3(¥3)

T3 = Ev(dy)

V35, 2 T, v 135y = VT, + AVT,

R3*53 = Ts, R3*5, = (£3z, —€3z singy, €3z cos )T
VT, & Tuy R3*53 = (3z, —03z ¢y, £32)7T

w3’ = 93 kKN + 03 j3’ = [j3’ j3’' + kN k3'/cosfs] e w3
AVT = -R3*5 .x wd

AVT, = BT w33

0 £3z cosA¢ €3z sinA¢
BT = | 0 —€3zsinAA¢ + £3z sinds tanfly €3z cosA¢ + €32 cosgz tanb
0 — L3z cosA¢ —£3x sinA¢

where

Ab 2 g~ ¢

85



Table 14. Continued.

(b) Configuration kinematics:

(Vl*N

V1ity

V13a

V24,
VT,
wly
w23

w33

w44

I 0
I Tna
I Tnea
I Tna
=Au= 0 0
0 0
0 0
0 0
I
—Ta,~
0
0
=A"lv= 0
0
0
0

Ass = —Tn1S(R1*11)

Agg = TN’2 S(R2*22)

Az7 = Tn 3S(R3*33)

Abr = Tn3z S(R3*43)

A27 = Ag7 — Al27 = —-TN’3 S(R343)

Agr = Azr + TnBT

Agg = Tn 4 S(R4*54)

0
—Tnc2
0

0

0
—4Lc2,N
0

0

0 0 0 0 O

=)

0 Az Az Aoy
0 Az 0 Azr O

Tn: Az 0 Agr Ags
0 I 0 0 0

0 0 I 0 0

0 0 0 0 0
Ta,n 0 By O Bar
Tean 0O 0 Bss Bsr
-Tyn Tyn O 0 -—BT

0 0 I 0 0

0 0 0 I 0

Bgys = —Tc1,NnAzs

Bss = Tco,nAzs

By = Ty, nAs7
B3r = =Tea,n Ay
Biyg = ~Ty nAus
86
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V1ity

V13a1

V24,
VT,
wly
w29
w33

u)44

Vi*y
V2*n
V3*n
Vd*n
w11
w22

w33

w44




Table 14. Continued.
(c) Applied forces and inertia couplings:

fo=fg+ fa - X ~DAuwu

+Aog w2o + Aoz w33)

FOLy mlgy + FAlN
Fo2u m2 gy + FA2y — m2[Tn.e1 V1301 ~ Tive2 V24ea + Ags wl
FO3w m3 gy + FA3N — m3[Tw e1 V134 + Azs wli + Asz w3
| PO | | md gy + Py - malTya Vi3 + T VT + Ags wly + Asr w3 + Asg wdi]
Mo MAL — S(wly) J1wl
M02 M A2, — S(w2s) J2w2s
M03s MA35 — S(w3s) J3w3s
MOdq MA44 — S(wdy) Jdwdy
TN,C = Ty, S{wee) c=1,2,3,4,cl,c2,t
wee = (¢e, e cospe, —besingc)T c=cl,c2
wt =i3 ¢ + w3’
1 —singstands —cospstants q'ﬁz
why = 0 cosA¢ sinA¢ w3s(2)
0 —sinAg cosA¢ w35(3)

Asgg wly = =T 1 S(w11)S(R1*1) wly = T, S*(wly) RI*L

Agg w29 = —Tn 2 S*(w22)R2*2;

Agr w33 = —Tn 3 S?(w33)(R3*33 — R3*43)

As7 w33 = —Tn3 S?(w33)R3*33

Agr w33 = =T 3 S*(w3s) R3*33 + Tn,e S(wts) BT w3z + Ty BT w33

Agg why = —T g S*(wds)R4*54

87




Table 14. Continued.

(d) Suspension force:

[ kel 0 0 0
0 ke2n 0 0
—kely —ke2ny ke3n kedn
0 0 —kc3ny —kedy
f.=HTC =
£11, 0 0 0
0 €22, 0 0
—§313  —£323 €333 €343
\ o0 0 —£43,  —£44y )
kcly 0 0 0
0 ke2n 0 0
—kcly —ke2y i3y ktn TC1
0 0 —i3n —ktn TC2
fe=As=
£11, 0 0 0 FTx
0 £22, 0 0 FTz
—§313  —£323 §{3x3 €3z
0 0 —&4xy —&424 )

TC1,...,T7C4 = cable tensions for C1,...,C4

Ft =kc3 TC3 + kcd TC4 =13 FTz + kt FTz

€11
€31
£22

€32

R1*1 x kcl

R3*3 x kel

= R2*2 x kc2

= R3"4 x kec2

£33 =
€43 =
£34 =

£44 =

R3*3 x kc3
R4*5 x kc3
R3*4 x kcd

R4*5 x kc4
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TC1

TC2

TC3

TC4

£3x
é4x
£3z

&4z

= {3z jt

= R4’5 x i3

il

—£3z jt

= R4'5 x kt



Table 14. Continued.

R13y =1 kely = [T, V13ey dt
RN =02 ke2y = [Tnca V24eo dt
R3*5y = [Ty, (VT + AVTy) dt
R35y = £3 ke3y = R3*5n + [ T,z S(R3*33) wis dt
R45y = €4 kedy = R3*5n + [ Tiv,g S(R3*43) w3s dt
Elastic cable tensions:
TCj =maz{0,Kj ({j —toj)} j=1,...,4
Constraint force parameters for inelastic cables:

s=TC=—[HT D~V H"' HT D! fo
H1TD™ 1§y = kel%, (FOly/ml — FO3y/m3) + £11,7 J171MO01, — £3157 J37 1 M03y
H2T D1 fy = ke2T, (FO2x/m2 — FO3n /m3) + £22,7 7271 M02; — €323 J37' M033
H3T D fy = ke3T, (FO3x/m3 — FO4y /m4) + £3357 J3~1M035 — £437 J4 ™" M044
HATD ' fo = kedT, (FO035/m3 — FO4n /md) + €34,T J31M035 — £447 J4™ M0y
H1TD YH1 = s + €11, T J172€11, + 31,7 J371€31,
H2TD-VH2 = pos + £22,7 J271€22, + €323 J371€32,
H3TD-VH3 = pgq + €333 7371333 + £43] J4~1€43,
H4TD-VHA = paq + €3437 J37 16343 + £44] J471644,
H1TD 1H2 = kel%, ke2y /m3 + €3137 7371¢32;
H1TD 1H3 = —(kc1T, ke3n/m3 + £3157 J371£333)
H1TD-1H4 = —(kclT, kedy/m3 + €3157 J371€343)
H2TD VH3 = —(kc2T, ke3n/m3 + £3237 J371£333)
HOTD1H4 = —(ke2%, kcdn/m3 + £3237 J371¢34;5)
H3TD 1HA = pgq k3% kedn + €3337 J3716345 + £43] J471€44,4
where

iz = {ml +m3)/ml m3

g2z = (M2 +m3)/m2 m3

uzs = (M3 + md)/m3 m4
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Table 14. Concluded.

(e) Simulation equations:

[ SF1x (FOly + FCly)/m1

SF2y (F02y + FC2x)/m2
SF3y (FO3y + FC3x)/m3
SFix (FOdy + FCn)/md

sf=D"Yfo+ fc) = =
SM1, JI"HMOL, + MC1,)
SM2, J2H(M02; + MC2,)
SM3; J371(M035 + MC'33)
SM4, J4H(MO04y + MC4y)

o=A"1sf

V1*y = SFly

@1y = SM1,

G2 = SM2,

@33 = SM3s

@y = SM4,

V13e1 = Toy n[SF3n — SFly — Ags SM1; — Agy SM33]
V2o = Toa n[SF3y — SF2x + Ags SM2y — Ay SM33]

VT, = T, n[SFin — SF3x — Asg SM4,] — BT SM3;,
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Table 15. Simulation Equations: Degenerate-Body Approximation of
Dual-Lift System with Spreader Bar

(a) System and spreader-bar kinematics:

2
1
Parameters:
mi
3 4 m2
m3, J3 = J3' diag {0,1,1}
ma

fo1, fo2, fo3, fod = fo3, R3*3, R3*4

Degenerate-body dual-lift system.

i3 = spreader-bar longitudinal axis
(R34,R3*4,R3*3) = (—R34 i3, —13*4 i3, +R3*3 i3)
T3 N = E2(03) E3(¢s)

Ti3 = Er(¢)

. 0 —sinfly .
03 93
w33 = (733, st)(.)= 1 0 (.)=W3353
V3 V3
0 cosf3
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Table 15. Continued.

(b) Kinematics:
/Vl“N\ (I 0 0 0 0 \ (VI*N\

Vary I Tner —Thnez 0 Ags V13,
v=|V3y |=Au=|T Twa © 0 Ass || V24
Vi, I T 0 Tny Ass VT,
a3 / \o 0 0 o 1/\ 33/
(VI*N\ ( I 0 0 0 0 \ /VI‘N\
V13, Tan 0 Tan O Bos V2ry
u=|Ve [=ZA 9= 0 -Tuy Taon 0 Bu V3,
VT, 0 0 -Tyn T.~n -BT, Vary
a3 / \ 0 0 0 0 I ) a3 /

Auxiliary expressions:

+sinfl3 cosys 4+ cosfz siny
Aps = +Tn3 S(i33) W33 = (+k3y, —cosfy J3n) =] +sinf; singy3 —cosf3 cosihs

+cos O3 0

Submatrices of 4, 4 ',

Ags = —Tn3 S(R343) W33 = R34 Ay

Ass = Tn 3 S(R3*35) W35 = R3*3 Al

Ay = —Tn 3 S(R353) W33 = —Tw 3 S(—~R3*33 + R3*5,) W3,
Bas = —To v Ass

B3s = —Tea, v Tz S(R3*43) W33 = R3*4 Ty v Al

AVT, = —~(R3*5 x w3'), = BT, a3

€3z cos ¢y €3z sing; cosf,
BT, = -S(R3*5,) T,3 W33 = | —03z sing, €3z sinfs + €3z cos ¢y cosbs
—€3x cos ¢, —€3r sing, cosfy
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Table 15. Continued.

(c) Applied forces and inertia reactions:

fo=fg+fa —X —DAu
A=W A=diag{I, I, I, I, W33} A

(FOIN\ (mlgN+FA1N \
F0O2y m2gn + FA2Ny —~m2(Tn 1 V13c1 — T2 V24c2 + Ags a3)
fo=| Fo3y | = | m3gn + FA3N — m3(Tw.c1 V13, + Ass a3)
Fody ma gy + FAdN — md(Tw o V13 + Ty VT, + Ags 03)
\0M03s/  \MA3; — S(w3s) J3 wis — JIW3s 33 /

Transformation rates:
TN,c = TN,c S(WCC) c=cl,c2,t

Wee = (Qgca éc cos ¢, "éc sin ¢C)T c=cl,c2

1 0 —sin @3 &,
wti=| 0 cos¢; sing,cosfy 93 =Wt at
0 —sing; cos¢; cosfy ¥

Other submatrices of A u:
zl3 = WS a3 = —b5 1ﬁ3 (cos B3, 0, sinf;)T
22y = Al 03 = T 3 [SH(w33) + S(z13)] 33
—6'?% cosf3 cosz + 205 1[')3 sinfy sinyg — ¢§ cos 83 cos Y3
= | —62 cosBs sinis — 263 93 sinby cosps — Y2 cosfy sinis
—9§ sin 3
Ags a3 = R34 22y
Ags o = R3*3 22y
Ays a3 = T 5[(S%(w33) + S(z13)) R353 + S(w3s) R353]
where
R35; = —R3*33 + R3*53
R353 =Ts, VT,
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Table 15. Continued.

(d) Suspension forces:

( kely 0o 0 0 \
TC1
0 kc2N 0 0
TC?2
fe=HTC =] —kcly —ke2ny kc3y kcdn
TC3
0 0 —kC3N —kC4N
TC4
\ —e31, —£32, 333  £345 /
Elastic cables:
TCj = max{0, Kj (¢ — £oj)} i=1,...,4
Inelastic cables:
keln 0 0 0 \
0 k2 0 0
T=W H=| —kely —k2y ke3n kedy
0 0 —kc3y  —kcdn
—€313 —£323 +£333 +£34; )
B35 =W3; &3z j=1,...,4

TC=-[H D 'H T D'W fo
W =diag{I, I, I, I, W33}

D-Ww’ D W =diag{m1 I, m2 I, m31, m4 I, J3}

T3 =W3, J3 W35 = J3' diag{1, cos? 3}
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Table 15. Concluded.

(e) Simulation equations:

SF1n\ (FOly + FC1y)/m1 \
SF2y (F02y + FC2y)/m2
SF=D W (fo+fc)=| SF3y | = (F03y + FC3y)/m3
SF4y (FO4y + FCdy)/md
\ 533/ \737' W3,  (M03; + MC33)/
a=A'sF
V1*y = SFly

V13e = Tan(SF3n — SF1y — R3*3 Abs SM3)
V4o = Too n(SF3n — SF2y + R34 Ay SM3)

VT, =T, (SF4n — SF3y) — BT, SM3

a3 = SM3
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APPENDIX E
SIMULATION EQUATIONS FOR A MULTILIFT SYSTEM WITH PENDANT
SUSPENSION

INTRODUCTION

This appendix gives simulation equations for the
multilift system shown in figure 7, in which m heli-
copters support a load with a single cable attaching
the load to each helicopter. This system was sug-
gested in discussions by P. K. A. Menon (ref. 18) as
one of potential interest using remotely controlled heli-
copters. These equations can be obtained by extension
of the results for a single helicopter with single-cable
suspension. Results are also given for the special case
in which all attachments are at the c.g.’s of the rigid
bodies; these include the equations for the point-mass
approximation of the system.

System and constraints- The n-body system
shown in figure 7 consists of a load DB, sus-
pended, pendant-style, from m = n — 1 helicopters,
B1,...,Bm, by cables C1,...,Cm attached to the he-
licopters at R1,...,Rm. The load and short cables
and the hardwarc attaching the load to the pendant
vertex at Rn are considered a single rigid body. If the
cables are inelastic, then each imposes one holonomic
constraint on the motion of a helicopter relative to the
load by fixing the distance

¢j(r) = [Rjn|
= |Rn*y+Tn o Rn'n,—Rj*—Tn,; Rj*j;| = oj
(142)
For inelastic cables
c=m=n-1 and d=6n-m (143)

Generalized velocity coordinates— The general-
ized velocity coordinates u, are to be selected so as to
separate motion caused by cable stretching from mo-
tion with invariant cable lengths. This is readily done
by extension of the treatment of a single-cable suspen-
sion from a single helicopter given in appendix B. The
coordinates u consist of the c.g. velocity of a refer-
ence body, taken as the load in this case, Vn*y, and
the m cable velocities given by their components in

PRECEDING FAGE BLANK NCYF Filmied
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cable axes, {Vjn,; j =1,...,m}. Thesec are aug-
mented by the angular velocities of all n rigid bodies to
obtain 6n coordinates for the elastic suspension. For
the inelastic suspension, the cable-stretching coordi-
nate #; of each cable velocity is nulled, leaving 6n —m
coordinates.

To assemble the kinematic relations v(u), u{v) note
that the c.g. position of each helicopter is given by

Rj*y = Rn*y+Rn*ny—Rjny—Rj"jn j=1,...,m

(144)
whernce its c.g. velocity is given in terms of coordinates
from u as

Vi'n =Vn'y = Tnn S(Rr*ng) wng — T e; Ving

+Tn; S(Rj*j;) wij j=1,...,m (145)

This can be rearranged to give the cable velocities in
terms of the coordinates of v as

Ving =Ten (Vn'y = Vi'y + Ty S(Rj*3;) wi;

~Tnn S(Rn*na)wn,) j=1,...,m

(146)

The kinematics v(u), u(v) can be obtained from equa-
tions (145) and (146), and are prescnted in part a
of table 16. The coefficient matrices 4, A~! contain
3(n + 1) rows from the unit matrix, corresponding to
coordinates that are in both u,v, and the remaining
rows contain only transformations and cross products
from Coriolis velocities.

External forces and inertia coupling- The ex-
ternal forces and moments on the configuration, fo,
are assembled in part b of table 16. Its vector el-
ements are denoted (F01,...,MOn) for convenience
in later equations. The fo term contains forces
and moments on the rigid bodies duc to weight,
(mlg,...,mn g), aerodynamics and helicopter rotor
output, (FA1,...,MAn), and the inertia coupling
terms X + DAu. The submatrices of A require only
time-derivatives of transformations, and the corre-
sponding terms in fo due to Au are all Coriolis accel-
erations of the cables wcj x Vjn, and centrifugal ac-
celerations of the c.g. attachment-point moment arms
for all the bodies, wj x (wj x Rj*j).

uoall . amnninan uaa.



()

PN
Fe

B1, .., Bn Rigid bodies

C1,..,Cm Cables, m=n-1

(mj, Jj, Ri*l'j), j= 1,.,0Nn Rigid body parameters
oLj=1,..,m Reference cable lengths

Figure 7. Multilift pendant suspension.
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Suspension forces- The resultant forces and mo-
ments applied by the suspension to the rigid bod-
ies of the configuration fc, is given in part c of ta-
ble 16. Since the number of cables and constraints is
equal, the configuration vectors for the cable tensions
{H1,...,Hm} comprise a basis of the suspension force
space which can also be used to give fc for inelastic ca-
bles; as a result, only the cable-tension formulas differ
for the elastic and inelastic cable models. For inelas-
tic cables, it is necessary to invert the m x m matrix
HT D' H.

Simulation equations- Finally, the equations for
i are assembled in part d of table 16 from & = A™! sf.
Here, sf refers to the specific forces and moments
on the configuration due to fo + fe. Its vector el-
ements are denoted SF1,...,SMn for convenience.
The equations for Vn*y and {wj;,j = 1,...,n} are
identical to those obtained from the Newton-Euler
equations; the cable-velocity equations depend on dif-
ferences of specific forces and moments.

Special case of c.g. attachments on point-mass
bodies— A simpler set of equations is obtained if all
cable attachments are assumed to be made at the he-
licopter and load c.g.’s (Rj*j = 0, 7 1,...,n).
Results are listed in table 17 and are obtained by im-
posing the c.g. attachment-point condition on the re-
sults given in table 16. The matrices 4, A~1 become
block diagonal for the linear and angular velocity co-
ordinates; this accounts in part for the separation of

99

these coordinates into independent subsystems. Fur-
thermore, since the suspension can apply no moments
to any body (MCj = 0, j = 1,...,n), the attitude
dynamics of each rigid body are independent of all
other coordinates of the configuration motion, except
through the aerodynamic moments, and are defined by
the usual Euler equation for independent rigid bodies
(table 17).

The remaining equations in table 17 govern the lin-
ear velocity coordinates and are also simulation equa-
tions for the point-mass approximation of the systemi.
The c.g. velocities now depend only on cable velocities
in equations (145) and (146), and in the assembled ve-
locity kinematics given in table 17. The applied forces
have no coupling with the rigid-body angular veloci-
ties through Au, although such a coupling can occur
in the aerodynamics. The interaction forces for the in-
elastic suspension are now independent of the applied
moments on any body. The corresponding cable ten-
sions still require the inverse of an m x m matrix. This
is given in table 17 as a sum of a diagonal matrix of
mass ratios and the positive semidefinite Grammian
of the cable directions, and can be inverted without
computational difficulty. The final result is almost as
simple as the elastic suspension formulation using rigid
body coordinates. It uses cable-velocity coordinates
and accommodates both inelastic and elastic suspen-
sions with explicit calculation of cable tensions in both
cases.



Table 16. Simulation equation summary: multilift with pendant suspension

(a) Configuration kinematics:

v=Au

¢4l,n+l 0

/ Vi1 *N ( —TN,cl 0 . . 0 I
0 A2,n+2

V2*y

~ .

Vm*N -0 0 —TN,cm
Vn'y, 0 0 0o I

w11

w22

wmy,

Wy,

u=A"1tw

Ving —Ta,nN 0 . . 0 Tcl,N
V2ne 0 —Tean - . 0 Teo,n

ancm 0 0 ~—Lem,N Tcm.N
Vnty 0 0 0 I

wl;

w22

wmy,

Wy,

Ajnes =Tn; S(Ri*4;)  J=1,....,m
Aion = TN S(Rn*n,)

Bint; =TejN Ajnss j=1...,m
Bjon =Tej N A12n ji=1,...,m
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A1,2n
A1,2n

Am,n+m Al,2n

0

0

Vlncl

w11

UJ22

Wiy,

wny,

V2ncg

Vmnen
*
Vn*y

Vity
V2,

*
Vm*y

*
Vn*y

w11

w2s

Wiy,

Wiy,




Table 16. Continued.

(b) Applied forces and inertia coupling:

Foi, / ml gy + FAly —ml Au \
FOmp mm gy + FAmy — mm A,u
fo=fg+fa—X —DAu=| Fony | = mn gy + FAny
MOll MAll—S(wll) J1 w11
\ MOon, MAn, — S(wn,) Jn wn, )

where:

A; = jthrow of A
Aj u=—~Tncj S(wecje;) Ving —Tnj SQ(wjj) Rj*j; + Tnn S%(wny) Rn*n, j=1,...,m

Wejej = (zﬁcj, écj oS ¢cj, —écj singg;) j=1,..,m
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Table 16. Continued.

(c) Suspension forces:

(kclN 0 e 0 \
0 ke2y . . . 0
0 0 . . . kempy TC1
—kclN —kC2N PR —kC'ITLN TC2
fe=HTC =
£11, 0o . . . 0
0 €22 . . . 0 TCm
0 0 Emmy,
—&nl, —€n2, ={nmy,

£7j; = (R§*j x kej); = S(Rj*j;) Tj,nv kein
i=1..m
&njn, = (Rn*n x kej), = S(Rn*ny) To,nv kcjn

(maz{0, Kj (£j — €0j)}, j=1,...,m)T (Elastic cables)

TC =
—[HT D' H]"* HT D! fo (Inelastic cables)
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(d) Simulation equations:
SF1n

SFTLN
sf =D} (fo+ fo) =
SM1,

\SMnn

u=A"1sf

Table 16. Concluded.

(FOly + FCip)/ml

(Fony + FCny)/mn

J171(MO1; + MC1y)

\ Jn=1(MOn, + MCn,,)

Vine = Tej N[SFny — SFin + Ajns; SMJ; + Ar2n SMny]

Vn*y = SFny
wij=SMj; j=1,..,n

103




Table 17. Simulation equation summary for c.g. attachments:

multilift with pendant suspension

c.g. Attachments: Rj*j=0 j=1,..,n

Angular velocity coordinates:
wjj = J; MAG; — S(wij) Jjwj;] j=1,..,n

Linear velocity coordinates

(a) Configuration kinematics:

Vit (Toa 001 [ Vina
VQ*N 0 —TN’CQ SR 0 I V27’lc2
Vm*y 0 0 oo Tnem I Vmnen,
Vn'y 0 0 0 I Vn'y

( Ving /_TCI,N 0 - 0 Tcl,N Vl*N
V2ncg 0 —de2, N - B 0 TCQ,N V2*N
ancm 0 0 —Lem,N Tcm,N Vm*N
Vn*y 0 o ... 0 I Vn*y

(b) Applied forces and inertia coupling:
Foly

fo=
FUTLN
FOjn = mj gy + FAjn — mj Tne; S(weje;) Ving,

Wejej = (‘ﬁcjv g'cj C05¢cja _écj sin ¢cj)

FOny =mn gy + FAny
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Table 17. Concluded.

(c) Suspension forces:

FCly kely 0 . 0
TC1 \
FC2y 0 Cke2y . . 0
. TC?2
fe= . =HTC=
FCmpy 0 0 . . . kemy .
TCm
FCny ) —kcly —~ke2y . . . —kempy

or
FCjn =kejy TCj  j=1,...m
FCny = —E?:I ijN TC]

(maz{0, Kj (¢ — Loj)}, j=1,...,m)T (Elastic cables)

TC =
~[HT D71 H)"' HT D! fo (Inelastic cables)

k1% (FOly/ml — FOny/mn)
HT D7 1fo=
kem, (FOmy/mm — FOny/mn)
HT D™' H = "ldiag{22, j=1,..,m} + KTK]
K ={keln, ke2n, ..., kemp]

(d) Simulation equations:

SFly (FOly + FC1y)/ml
sf=D"Yfo+ fe) = =

SF:nN (FOnn +F"C’nN)/mn
w=A"1sf
Vn*y = SFny

Vine = Tejn (SFnn — SFjn) j=1,..,m
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APPENDIX F
LINEARIZED EQUATIONS FOR DUAL-LIFT
SYSTEM WITH SPREADER BAR

INTRODUCTION

Linearized equations of motion (LEOMs) are given
for the dual-lift system with spreader bar for static
equilibrium reference flight conditions and assuming
inelastic suspension. These are derived from the non-
linear EOMs, equation (14); LEOMs for general slung-
load systems and for general reference flight conditions
are given in table 4, and these are specialized to static
equilibrium in equation (41). The dual-lift system ge-
ometry and details of the nomenclature are given in
appendix D (fig. 6), and notation for the configuration
vectors and matrices in the LEOMs follows that estab-
lished in section 6. Standard linearized aerodynamics
are assumed for each body axis as stated in section 6.
Various secondary effects are neglected, including in-
terbody interferences.

Coordinates and kinematics— Coordinates are
often selected for linear analysis to exploit any nat-
ural decomposition of the perturbations into nearly
decoupled subsystems of forces, controls, and motion
variables. For a single-symmetric aeronautical body
aligned with the air-velocity vector, motions in the
plane of symmetry containing (Va, ib, kb) are nearly
decoupled from its lateral-directional motions. For the
multibody dual-lift system in hover, all mass lies in or
near a plane defined by the spreader bar and local ver-
tical (i3, kIN), and the system modes of motion in this
plane are nearly decoupled from its yawing and pen-
dulum modes of motion lateral to this plane. These
two decompositions can be made coincident at hover
by aligning the helicopters in or perpendicular to the
plane of the suspension; this is done in references 6
and 7 where a comprehensive description of the nat-
ural modes is given. In static equilibrium at cruise
speeds, the spreader-bar heading may be at an angle
to the flight path, with the helicopters arranged as in
formation flying, and with the load-bar triangle swept
back to moderate angles from the local vertical, if there
is significant load specific drag (fig. 8). In this case,
the acrodynamics can couple the motion in and lateral
to the plane of the load and spreader bar.

PRECEDING PAGE DLANK NOT FILMED

For the present work, the coordinates are selected
to maximize the longitudinal-lateral aerodynamic de-
coupling; this is expected to be a satisfactory starting
set for analysis of the natural modes. The generalized
velocity coordinates u, and the kinematics v(g, u) are
given in part a of table 18. These differ from those
in appendix D in the use of body axis coordinates of
the reference-point velocity relative to the mean wind,

'VAL%, and tether cable velocities relative to body axes,
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AV13.;, AV24,5, where
AV13=V13 -wl xR13

AV24 =V24 — w2 xR24

These cable velocities and the cable axis transforma-
tions are given in terms of cable angles relative to he-
licopter body axes as given in part a of table 18, and
discussed in appendix A. Note that u contains all 24
velocity coordinates of the system with elastic suspen-
sion. This allows an easier statement of results. Re-
sults for the 20 coordinates of the system with inelastic
suspension are obtained by deleting columns 6, 9, 10,
and 12 from A corresponding to the scalar coordinates
AV13ekecl, AV24ekec2, VT i3, VT ekt of u, or
by deleting appropriate rows and columns from the co-
efficient matrices of the LEOMs derived from A for the
system of 24 coordinates, as is done at the end of this
analysis.

The generalized position coordinates g and the kine-
matic relation u(g,q) are included in part a of ta-
ble 18, for the 20 coordinates of the inelastic system.
The coordinates u, q selected here are reference-point
coordinates consisting of the c.g. position, and ve-
locity of body B1, [VAlidt, VAl}, plus additional
position coordinates § = {Aacl,..., a4}, which are
fixed in static equilibrium, and velocity coordinates
% = {AV13eicl,...,wds}, which are zero in static
equilibrium. The cable angles Aacl,Aac2 in § are
angles relative to helicopter body axes. The reference-
point position coordinates, [V Alidt in q, have no
useful physical meaning, and they do not occur in the
LEOMs. Their derivatives, V A1}, do occur, and these
are meaningful and convenient in aeronautical work.

e | 00_puopons BAY%
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(a) Plan view

F4=m4 g + FA4

(b) Side view

Figure 8. Dual-lift configuration in static equilibrium.
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Linearized EOMs for static equilibrium- The
LEOMSs are listed in part b of table 18, for both the
state equation for (6g, 6u) and the second-order differ-
ential equation for §¢. These repeat equations (46b)
and (47), which were obtained by specializing the
equations in table 4 for general slung-load systems

and general (accelerating) reference flight conditions to

static equilibrium and for reference-point coordinates,
q, u. The primitive configuration vectors, matrices,
and perturbations va, fba, T, Fbs, Fby., 6q, du, 64,
A are defined in section 6. The stability and control
derivatives F'bs, F'b,, are assumed to be given, along
with the reference flight condition and the correspond-
ing values of va,, fba,, Tp,. The matrix, &,, is defined
in table 4 and has one nonzero column for static equi-
librium and reference-point coordinates (eq. (46a)).

Results for the coefficient matrices of the state equa-
tion, M,, Qs, Q,, Q. for the dual-lift system are given
in parts c¢-h of table 18. These matrices are expanded
to a working form; that is, they are partitioned into
submatrices corresponding to the subdivision of the co-
ordinates g, u in part a of table 18, and the submatrices
are given in terms of natural vectors and matrices us-
ing coordinate frames and formulations as they would
be found in a working nonlinear simulation based on
appendix D. MACSYMA was used to carry out routine
matrix product expansions.

Acceleration coefficient matrix— Results for the
symmetric acceleration coeflicient matrix,
M,=ATDA, are given in part c of table 18.
The matrix M, ! serves the general function of
mapping perturbation forces and moments from
(@, bu + Qq 8g + Qs A) to perturbation accelera-
tions &t. Details of the map describing the sources of
effects on each element of 64 are inaccessible analyti-
cally but can be given from numerical inverses of M,
in specific cases.

Control term- The control term
QsA AL T, FbsA is given in part d of table 18,
and contains all control derivatives. Controls for the
two helicopters 61,62 are represented. Load controls
are omitted but can be added routinely if these are of
interest. The matrix T, transforms the derivatives of
the body axis components of force in Fbs to derivatives
of their inertial components, and the matrix A4, does
bookkeeping on the coordinate frames and takes cross
products with moment arms to generate the perturba-
tion moments due to perturbation forces. The vector
elements of @sA and the sum, Q" du + Qg4 6+ Qs A
are perturbation forces and moments with units and
coordinate frames consistent with the usual listing of
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forces and moments in the configuration force vectors
fa, fc, etc.

Velocity coefficient matrix— The velocity coef-
ficient matrix @, in part e of table 18, contains
all the stability derivatives of the system, along
with terms in the reference velocity. The matrix
Foanv = T, Fby, TOT transforms Fb,, to gradients
of the inertial components of the forces relative to the
inertial components of the air velocity vectors. Its sub-
matrices are conveniently indicated by the notation
FAINyy, ..., MAd44,, defined in part e of table 18.
The matrix 4, in Q) does bookkeeping on coordinate
frames and applied moment arms. Every submatrix
of @, maps an input perturbation from a vector ele-
ment of éu to an output perturbation force or moment
corresponding to the elements of fa, and has units
and input-output reference frames consistent with this
function. Every column is associated with an element
of 6u, as indicated in part e of table 18, and this de-
fines the input reference frame and input units for all
its submatrices. Every row is associated with an el-
ement of QsA, and this defines the output reference
frame and output units for all its submatrices.

Position coefficient matrix— The position coeffi-
cient matrix @, is given as a sum of two parts, Q1,
(part f of table 18), which contains the reference tra-
jectory forces fg, fba,; and Q2,4 (part g of table 18)
which contains a combination of stability derivatives
and the reference velocity. The nonzero submatrices
of Q, map angle perturbations from 6¢ to perturba-
tion forces and moments corresponding to the vector
elements of fa, and their units and output reference
frames are consistent with this function. Each column
of Qq gives the effect of an element from &g; the refer-
ence point position perturbation has no effect on the
system motion, and all other elements of ég have a
nontrivial effect.

The position coefficient matrix requires the gradi-
ents of several configuration vectors containing A{q),
T(q), and these entail gradients of coordinate trans-
formations and the matrix BT. A general formula
for the gradient of coordinate transformations is given
in appendix A. A treatment of the gradient of BT
is appended in part h of table 18. This matrix oc-
curs solely in the submatrix A47 of A and contributes
to the seventh row of Q1, in the derivatives of uls,
where pl1; is a moment due to load external forces,
F4 = m4 g+ FA4, and is given in F3 coordinates by

BTT T, v Fdn
([j3’ j3’ + kN k3 sec 93]R3*5 x Fd)3

pls



A convenient scalar form is given in part h of ta-
ble 18. The unit vectors {j3', k3'} are associated with
the spreader bar, and their coordinates in F3, Fn are
noted in part h of table 18. The vector, ulz is seen
to be a function of the variables {¢, ¢3,683,%3} from
q, and the required derivatives are obtained routinely,
and are given in part h of table 18.

For static equilibrium, the reference trajectory forces
in Q1,, satisfy

F1+F2+F3+F4=0

where F1i is the total applied external force on Bi
(eq. (38)). This has been used to simplify several sub-
matrices of Q1,. The load and spreader-bar aerody-
namics occur only in @117, @15 in columns 7 and 8,
corresponding to 6a3,6a4. In sufficiently low-speed
flight these can be neglected, and most terms in
columns 7 and 8 drop out, leaving only load-bar weight
effects. An approximate view of the equilibrium forces
on each body is given by assuming that the load-
bar aerodynamic forces are dominated by drag, and
that each helicopter supports its share of the load-bar
weight and aerodynamic force:

F3=m3g+FA3~=m3g—D3iva
Fd=md g+ FAd=m4g— Ddiva
L=F3+F4 =~ (m3+md)g— (D3 + D4) iva
Fl=mlg+FAl=-FC1=-TC1kecl =~ —pL

F2=m2g+FA2=-FC2=-TC2kec2 ~ —(1-p)L

where iva is the direction of the reference air-velocity
vector, VAO; L is the load to be supported by the two
helicopters, and is transmitted to them by means of
the tether cable forces, FC1,FC2; and p is the load
fraction supported by the helicopter B1l. If these are
substituted in Q1,4, then only the load-bar weight and
drag are present. In general, cable forces FC1,FC2
can include mutually cancelling tugging of the heli-
copters against each other through the spreader bar,
but is not present in the optimized refercnce config-
uration assumed in the expressions above. The net
external forces on the helicopters are directed oppo-
site the cables in equilibrium. Finally, it is noted that
all moments MA1,...,MAd4 drop out of the gradi-
ent in @1,. The terms in Ql, 8¢ are perturbation
forces and moments. A typical perturbation force is
illustrated by the contribution from the submatrix in
row 2, column 5:

Tcl,NS(FlN) W].N bal = (Fl X dal)cl
dal =il §¢; + j1'66, + kN 6¢,
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F1 =~ —pL

This is seen to be the cable-axis components of the
cross product of the net external force on Bl with
the total attitude perturbation of Bl. The load-bar
drag at cruise speeds appears in L. A typical pertur-
bation moment is illustrated by the contribution from
the submatrix in row 5, column 5.

—AL S(F1y) Wiy 6al = —(R1*3 x (F1 x dal)),

which is the moment about the c.g. of Bl of the
perturbation force described above applied at the
tether cable attachment point, R3, and given in F;
compornents.

The second term, Q2q, contains the stability deriva-
tives of all bodies except the reference body, Bl,
in combination with the reference air-velocity vector,
VAQO, and is zero in hover. More generally, its terms
can be rationalized by forming the vector Q2, 6¢. In
the result, all terms have the same form; for example,
the third element is

TCZ,N FAQ]VVN S(‘/rAON)[V["].;\! dal — I’VQN 5&2]

= Teon FA2Ny N (VAO X (dal — da2))y
Lo N FA2Ny N
x[kNy VA0 6(82 — 61) — jhn VAO 8(y2 — 1))

where dal,da2 are attitude perturbations of B1, B2
as above, jh is perpendicular to the reference veloc-
ity in the horizontal plane, and the expanded ap-
proximate result assumes that the body and level-
heading axes Fj,F»,Fy are nearly parallel. The
result is an aerodynamic perturbation force due to
the perturbation velocities kN V' 140 § (6, — 6:),
jh VAO 6(y2 —141). All terms in Q2, 6g similarly con-
sist of aerodynamic perturbation forces and moments
from bodies B;, ¢ = 2,3,4 due to the perturbation
velocities kN VAOQ 6(8; — 8y), jh VAO 6(x; — 1),
which are perpendicular to the flight path and depend
on differences in attitude perturbations from those of
the reference body.

Second-order ODE- Finally, the state equa-
tion is reduced to the 20 coordinates of the sys-
tem with inelastic suspensions by deleting the rows
of M,,Q,,Q4, Qs and the columns of M, Q; cor-
responding to the cable-stretching coordinates of u
(scalar coordinates 6, 9, 10, and 12). The second-order
ODE for éq is obtained from this result as defined in
part b of table 18; that is, M,, @), are post-multiplied
by the block-diagonal matrix, U (part a of table 18).

11



This modifies the columns of these matrices to convert of §u, 61 to the Euler-angle rates of 8¢, 64.
from the linear cable velocities and angular velocities

111



Table 18. Linearized equations of motion for dual-lift system

(a) Coordinates and kinematics:

Vity (Tva 0 .0 O 0 0 0 0 VALY, I
V2'y ITnag Tnet —Tnez 0 Azs Ao Ay O AV13,, d
V3, Twy Twe 0 0 A 0 Ay 0 || Avod, d
vy Ty Twer 0 Tny Ay 0 Ay Agg VT, I

v = =Autw= + 0 Won
wly I wl,
w2q I w2q 0
w33 1 w33 0
wiy I wdy 0

Cable velocity coordinates: Submatrices of A:

Tor,n = E1(Aper) E2(Ab1) Ty Ags = —Tny S(R1*1; + €1 kely)

Teo,n = E1(A¢c2) E2(Abc2) Ton Age = T2 S(R2*2 + €2 kc2,)

V13e = To,n R13y = AV13, — (R13 x wl)a Azr = ~Tn 3 S(R343)

V24 = Teg v R24n = AV24,5 — (R24 X w2),, Az = Tn 3 S(R3*33)

AV13c1 = Ter,y R131 = (€1 Abey cos Ader, ~1 A1, 61)T  Agr = Agy + T, BT
AV2461 = TCQ’N R242 = (32 Aécz Cos A¢CQ, —52 Aécz,éQ)T A43 = TN,4 S(R4*54)
VT, = (é3z, —€3z2 ¢y, £32)T

BT = —S(R3*5,) [j3, j3'3 + kN, k347 sec 6]

Notes: Scalar elements of BT are given in appendix D, table 14.

‘WO is the mean wind.



Table 18. Continued.

Generalized position coordinates (inelastic suspension):

VAL*,
VA%
AV13eicl
AV13ejcl Aacl
AV24eic2 Adc2
AV24ejc2 )
¢t
u=| VTejt =U(g) ¢=Ulq)
al
w11
a2
w22
a3
w33
a4
w44
g=U"1tu

Awcl = (A¢c11 AQCI)T
Aac2 = (A(,bcg, AQCQ)T
U(q) =d1ag{I, U22, U33, —632, Wll, VVQQ, ‘LV33, W44}

U-Yq) = diag{I, Uz}, Us!, —1/¢3z, Wil, W23, W3z, w4}

0 £1 cosAge
Usa =
-{1 0

0 {2 cosAdpe
Usz =
—£2 0

Note: {Wi;, Wit i=1,2,3,4} defined in appendix A, equations (67) and (68)
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Table 18. Continued.
(b) LEOMs for static equilibrium:

8¢ =U;"1 6u
b =M1 (QLou+Q, 6+ Qs A)
or
M} 65— Q8¢ — Qg 6q=Qs A
where
M, = AT D 4,
Q,=AT Fuv A, — AT D¢,
Qq = Q1+ Q2
Qly = [VI AT(q) (fg + fao) + AT VT T(q) fbao)la,
Q2q = AT Fuan [VT (T, T()" (vo — w) + A(g) o),
Qs = AOT T, Fbs
Foan =T, Fbyo T}

&y 1 defined in equation (46) for static equilibrium.

and
M, =M, U,
Qy=Q, U
Uo =U(go)
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Table 18. Continued.

(d) Control vector: Qs A = AT T, Fbs A:

(véTl FAlL, Ty N 0
0 Ta,n 0
0 -Tea N 0
0 0 0
Qs A= Ay + Tno VELFA2, +
VI MA1L, AL 0
0 AL VI, MA2,
0 AL 0
0 0 0

Note: Ay, Ao= control perturbations for helicopter #1,#2.
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Table 18. Concluded.
(h) Derivatives of pls: Ouls/d¢:, Vs uls:

pls = BTT T, v Fay = —[53; j3'% + k34 kN% secfs] S(F4y) Tn,, R3*5,
where:
j3 = —sinys IN + cosyyz jIN = cos ¢z j3 — sin 3 k3

k3’ =sin¢z j3 + cos g3 k3

then:
Ouls/0¢, = Z13
VI ulg = {%Ed,—?’ %’%’ %%lf]
Buls/0ps = [—735 kNF secs + k35 5337 u2n
Ouls /003 = Z23 — secfs tanfz k35 kNL p2n

Ouls/Ops = Z33 + j34 i3y u2n

where:
13" = cos®3 IN + siny jN
w2y = S(F4n) Tn s R3*5,
BT1 =53, j35" + k34 kNT sects
[Z13, Z23, Z33) = BT1 S(F4n) Tn,e S(R3*5:) Wt,

and: Wt, = [it;, j3;, kN:] (appendix A, eq. (77))
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