MISSION: THE UNIVERSE
The other worldly beauty of planet Venus as portrayed in three-dimensional perspective of radar image data from NASA's Magellan spacecraft.
Is there life on other planets? What can we do about greenhouse warming here on Earth? Did our universe really start with a Big Bang?

People around the world discuss these questions everyday, and everyday at NASA, people work at finding the answers.

NASA, to most Americans, is the "space program" — the Right-Stuff mystique of the early rocket plane pilots, John Glenn’s first orbital flight, Neil Armstrong’s Moon walk, the Space Shuttle.

Manned space flight is only a part of NASA’s overall mission, but it symbolizes the spirit that has characterized the agency from its founding in 1958 — the spirit of exploration and discovery.

The agency is unique in history as an enterprise devoted to broadening human knowledge across the scientific spectrum. NASA investigations range from the world of subatomic physics to the cosmic study of super novae and black holes... from charting Earth’s ocean currents and winds, to testing the theory of relativity.

NASA’s programs are as immediately practical as improving wind shear avoidance for aircraft and as long range as sending astronauts to other planets.

NASA scientists and engineers work at the future’s threshold, on projects that often require knowledge we don’t yet have, and technologies and materials still to be developed.

Programs to build an orbiting Space Station and to establish a lunar base, for
"As a system engineer at Kennedy, my job essentially involves testing, maintenance, and trouble-shooting of the onboard flight computer systems for the Space Shuttle. I'm also assigned to an active role as a member of the launch team for a specific mission. And I get involved with special projects supporting improvements in Shuttle processing. "The whole process of getting the Shuttle ready for flight involves a complex integration of components, testing, and work tasks by many people—both NASA engineers and various contractor engineers, technicians, and other engineering support personnel. You really get a well-rounded professional experience working with all types of disciplines.

"The real payoff is to see the Space Shuttle lift off with all systems working, just the way it should, and knowing that you played a part in it."

CARLOS O. MARIN
Flight Data Systems Engineer
Kennedy Space Center
Florida International University
Joined NASA in 1987

instance, require extensive research in biochemistry and behavioral sciences that will prepare astronauts for prolonged, confined living at zero gravity, as well as new technologies, materials, and breakthroughs in solar power, robotics, computer science, and a host of other areas.

NASA is constantly recruiting exceptional personnel to provide the ingenuity to meet these challenges and to maintain the strong technological base that keeps the United States the world leader in space science and aviation.

The agency offers bright, highly motivated graduates an unmatched career opportunity — the chance to work at the cutting edge of their fields, in company with the nation's top scientists and engineers, in the most advanced facilities found anywhere.

NASA's specialty fields include space sciences, earth sciences, fluid and flight mechanics, materials and structures, propulsion and power, flight systems, measurement and instrumentation systems, data systems, facilities, operations, and life sciences.

The most numerous employment opportunities at NASA are for graduates with major study in an appropriate field of engineering — aerospace, aeronautical, mechanical, electrical, electronic — or physical science, life science, computer science, mathematics, and related areas.

NASA also employs people in a wide range of administrative and technical posts that support its science and engineering activities. Both the types and numbers of job opportunities vary at each of the field installations depending upon specific needs. Detailed information on career opportunities and the application process can be obtained by writing to the NASA installation of interest to you (see page 24).

Major program directions in the '90s continue to thrust NASA toward the galaxies as well as homeward toward a comprehensive look at the biosphere of planet Earth.

The flights of the Great Observatories, the Ulysses probe aimed at our own Sun,
Launch of the Columbia, a mixed media painting by Chet Jezierski.
"Many fascinating programs are coming up over the next 20 years that are going to dazzle the public. I expect to see us put human beings on Mars during my career at NASA, and in fact I'd like to go on that mission myself.

"Right now I'm working on a test program to develop the propulsion systems to be used on a heavy lift vehicle that will be needed for establishing a lunar base and Mars exploration.

"You can be involved in so many projects at NASA. Management is willing to listen to new ideas, young ideas. So you've got great latitude to help define your work and to grow and take on new responsibilities."

and other space science voyages both under way and in development portend some of the most exciting discoveries ever made about the cosmos.

NASA once again is firing the public's imagination with initiatives out of yesterday's science fiction, such as the push to establish manned bases on the Moon and Mars.

At the same time, much of NASA's work continues in the vital areas of aeronautical research and engineering. The agency's research centers contain the world's most sophisticated aerodynamics and flight control testing facilities. Its research into aircraft safety, increased fuel efficiency, and experimental designs for enhanced performance promises to maintain America's preeminence in civil and military aviation.

Spinoff technology has long been a major dividend of the space program. NASA research has led to products such as long-life power cells for flashlights, to new medical procedures, and breakthroughs in computer technology, and to important public safety applications such as a quick deicing method for aircraft as well as highway bridges. NASA researchers work closely with industry to bring countless spinoffs into our lives.

Although NASA's realm is air and space, its ultimate concern has always been that of benefiting life on Earth. And today, a top priority is the examination of such environmental threats as global greenhouse warming.

The agency's Mission to Planet Earth includes a series of Earth science missions and the launch of long-term orbiting spacecraft to find out how our planet works as a complete ecological system.

Besides looking at changing atmospheric chemistry and its impact on world climate, NASA is working to furnish the first complete picture of the interaction among the atmosphere, oceans, solid earth, and the hydrologic and carbon cycles.

How do clouds influence the radiation balance on our planet? How does polar ice affect sea levels and heat transfer? How does ocean biology govern carbon dioxide levels in the air? Can we predict volcanic eruptions and earthquakes?

And then there's the longer range goal of piloting astronauts to Mars, which
How do clouds influence the radiation balance on our planet? How does ocean biology affect the atmosphere? Earth observation is a key element of today's space program.
sets a clear future reference point for NASA space exploration. It also provides
that spark of bold human adventure that has always characterized NASA and
fueled public enthusiasm for the space program.

Having reached the Moon, our quest to walk
upon the red planet is a logical next step, an
inspiring challenge. But it’s the journey
itself that gives purpose to this pursuit and defines NASA’s role — a journey that
is setting in motion a vast range of scientific initiatives and challenging the
creativity of the best engineers.

In similar fashion, the technological solutions for a lunar mission were far
from apparent in the early days of the “space race,” when President John F.
Kennedy declared in 1961 that Americans would walk on the Moon before the end
of that decade.

To get to the Moon, NASA first had to prove through the Mercury program
that astronauts could survive in Earth orbit and return safely. Then the Gemini
flights of 1965-66 deepened our knowledge of space technology, research tech-
niques, and human factors, which paved the way for the Apollo program to the
Moon.

Meanwhile, unmanned science missions — the Ranger and Surveyor pro-
grams — were needed to provide close-up pictures of the Moon and data from
actual robot landings on the lunar surface.

In 1969, the final achievement of the manned Moon landing gave the nation a
marvelous surge of pride. But it was the sum of the effort’s by-products that
established the space program as a worthy ongoing endeavor: the great leap in our
scientific knowledge, the many technological advances and practical spinoffs, and
a new educational thrust in science, mathematics, and engineering.

Since Apollo, NASA has been laying the foundation for today’s Moon-Mars
exploration program by way of scientific probes throughout the solar system and
beyond, soft robot landings on Mars, microgravity experiments, and advances in
rocket propulsion and other fields.
The Apollo moon landings were “a giant step for mankind,” paving the way for today’s ambitious space exploration program: a permanent lunar base and then on to planet Mars.
The Space Shuttle’s development has been a key to launching many of the scientific missions and also to giving us the capacity to build and maintain a permanently occupied orbiting Space Station. As the Shuttle program continues to evolve and provide ready access to near space, NASA is developing other advanced transportation systems to extend our reach even farther.

The journey to planet Mars will depend upon a continuing process of discovery. Men and women joining NASA today will solve the problems of extended survival in the weightlessness of space, build and launch the payloads for further study of Mars, and create self-contained environments to sustain astronauts in the hostile lunar and Martian landscapes.
Researcher enters “virtual reality” — a computer-created world that you can see, touch, and hear. NASA’s virtual technology will be used in astronaut training to simulate actual planetary exploration.
NASA's labs, clean rooms, wind tunnels, flight simulators, tracking stations, rocket assembly plants, launch pads, and other facilities are located in eight field installations around the country.

At any given time, several installations are working on various aspects of major programs, such as Space Station Freedom — including design studies, human factors research, development and testing of hardware and life-support systems, launch operations, science experiments, and data processing and analysis.

Administrative offices for key program areas are located at NASA Headquarters in Washington, D.C., under the direction of NASA associate administrators.

Headquarters offices are responsible for the management of NASA's research and development program, including determination of projects and programs, establishment of management policies, evaluation of progress, and review and analysis of the aerospace program.

The Office of Inspector General (OIG), which operates independently, oversees NASA's programs in order to prevent and detect abuses. OIG personnel are located at NASA Headquarters and at each installation; these positions — primarily auditors and criminal investigators — are staffed through the OIG Headquarters personnel office.

NASA overall employs some 24,000 civil servants — most of them scientists, engineers, and technicians. In addition, thousands of contract personnel from private aerospace companies and universities also work on NASA programs.

Job applicants are hired directly by the individual field installations. Each one maintains a recruiting office that can provide details on its personnel needs and employment programs (see page 24 and inside back cover).

A description of NASA's four chief program offices follows.

AERONAUTICS, EXPLORATION, AND SPACE TECHNOLOGY

Advanced technological research and development supporting all of NASA's programs is the mission of the Office of Aeronautics, Exploration, and Space Technology.
The state-of-the-art Transonic Tunnel testing facility at Langley Research Center is setting for the painting, Maiden Flight of the B-1, by Nixon Galloway.
Images from the Hubble Space Telescope have caused great excitement among astronomers. The pictures have revealed the structure of a "window curtain" of gas, shown here, at the edge of the famous Great Nebula of Orion.

This office has institutional management responsibility for the Ames Research Center, Langley Research Center, and Lewis Research Center.

These installations aid U.S. civil and military aviation through state-of-the-art research and testing of materials, propulsion methods, and aerodynamic innovations for improved efficiency. NASA also is spearheading aircraft safety advances such as enhanced cockpit warning of weather and collision hazards.

The space research and technology programs are broadly focused across the scientific disciplines, reflecting NASA's dual emphasis on analyzing Earth's ecological system and conducting further space exploration.

SPACE FLIGHT

NASA's space flight programs have captured the public's imagination since the days of Apollo, and tomorrow's goals are no less intriguing: establishment of permanent manned bases — first in Earth orbit, then on to the Moon and Mars.

NASA's Office of Space Flight (OSF) operates the Space Shuttle and provides the launch and mission control facilities that give America access to space. Scientists and engineers at the space flight field installations are creating new propulsion systems and spacecraft, learning more about human factors in space, and developing the capability for manned exploration of the solar system.

OSF has institutional management responsibility for the Johnson Space Center, Kennedy Space Center, Marshall Space Flight Center, and Stennis Space Center.

SPACE OPERATIONS

The Office of Space Operations is responsible for NASA's overall communications and data systems, including management of the complex ground- and space-based tracking network.

This office supports planetary spacecraft, Earth-orbiting satellites, Shuttle missions, sounding rockets and balloons, and aeronautical test vehicles.

Besides providing mission control and communications, data collection and data processing for flight missions, the office also furnishes administrative communications such as teleconferencing and computer-to-computer data-sharing for NASA field installations and Headquarters.
Improving aircraft safety is a major NASA effort. This experimental takeoff performance monitoring system will aid pilots at the critical “go, no-go” juncture.
"My work generally has to do with observing active and interacting galaxy systems and analyzing science data from many different observatories. I like to be involved in diverse projects and work with people from various fields, and I get to do that here.

"It's never boring, and it sometimes gets really exciting. For instance, I was part of the team that dealt with the failure of the onboard computer terminal for the Astro Observatory mission. The onboard terminal died 4 days into a 10-day mission. It was a day-and-night crash project to make the instruments work from the ground — a matter of living on cokes and candy bars and no sleep. We succeeded in talking to the instruments and ended up getting terrific data."

SUSAN NEFF
Astrophysicist
Goddard Space Flight Center
Vanderbilt University, and
University of Virginia
Joined NASA in 1985

This decade has been often and aptly called a golden age for space science. From explorations of the Hubble Space Telescope, to probes of the solar system and deep space, to intensive studies of planet Earth, a wide range of science programs is directed by the Office of Space Science and Applications.

Besides having institutional management responsibility for NASA's Goddard Space Flight Center, the office also oversees the Jet Propulsion Laboratory (JPL), which is operated under contract with the California Institute of Technology in Pasadena. JPL personnel are employed by the university.

NASA FIELD INSTALLATIONS

AMES RESEARCH CENTER

Ames Research Center operates at two locations — Ames Moffett in "Silicon Valley" just south of San Francisco at Moffett Field, and Ames Dryden Flight Research Facility at Edwards Air Force Base in southern California.

Ames conducts a diverse program of basic and applied research in experimental and computational aerodynamics, flight research, computer systems analysis, aeronautical and space human factors, space sciences, life sciences, infrared astronomy, and Earth system science. Ames is a principal center for computational fluid dynamics, rotocraft and powered-lift technology, artificial intelligence, and high-performance flight research. Other speciality areas include air traffic control and advanced flight simulation.

Among its advanced facilities are the Numerical Aerodynamic Simulator, which is a national pathfinder laboratory in supercomputing and related technologies, and the world's largest wind tunnel.

The Dryden facility in the Mohave Desert has been a famous testing ground for experimental high-performance aircraft since the 1940s — and it continues to pioneer in this field. It also serves as the prime landing site for the Space Shuttle.

GODDARD SPACE FLIGHT CENTER

Goddard's mission focuses on space and Earth sciences, project management, space-
Test of vertical takeoff and landing research aircraft developed jointly by NASA's Ames Research Center and the U.S. Army.
The X-30 Aero-Space Plane, now in development by NASA and the Department of Defense, will take off horizontally, accelerate into Earth orbit, and return for a runway landing.

"My job is helping design equipment for testing both liquid and solid fuel rocket engines. Here at Marshall, you can go down to the shop and watch the technicians building your hardware and then follow through and see it perform in an actual test. We have a huge stand for testing the Space Shuttle's main engine... it's really impressive to watch the test in action.

"There's a great mix of personnel here — young engineers working alongside people who have years of experience going back to the Apollo program. The older engineers are terrific about sharing their knowledge and helping you along. You get a real sense of the history of the space program talking with them."

PHILIP LEE
Mechanical Design Engineer
Marshall Space Flight Center
California Institute of Technology
Joined NASA in 1989

craft tracking and communications, and applied engineering technologies. Activities extend from the identification of scientific objectives to project development, launch, spacecraft operations, data acquisition, distribution, and analysis.

Among its major projects are the Earth Observing System, Hubble Space Telescope operations, Gamma Ray Observatory, the Upper Atmosphere Research Satellite, and NASA's sounding rocket program.

Goddard is made up of a major facility at Greenbelt, Maryland, and the Wallops Flight Facility at Wallops Island, Virginia.

LYNDON B. JOHNSON
Space Center

The Johnson Space Center near Houston, Texas, is famous as "Mission Control" — the command center for all of NASA's manned space flights since Gemini 4 in 1965. Johnson plays a key role in the Space Shuttle program, as well as in the development of Space Station Freedom, which will be launched and maintained by the Shuttle. This installation also selects and trains NASA astronauts, conducts life science research, and designs and tests vehicles for manned flight.

Johnson is responsible for the White Sands Test Facility at Las Cruces, New Mexico, where testing is done on Space Shuttle and Space Station Freedom power and propulsion systems, materials, components, and subsystems.

JOHN F. KENNEDY
Space Center

America's spaceport, the Kennedy Space Center adjacent to Cape Canaveral, Florida, is NASA's primary launch facility and has been the lift-off site for every manned flight since Alan Shepard's historic 1961 journey in the Freedom 7 capsule.

The installation handles the launch, recovery, and refurbishment of the Space Shuttle and is involved in the test, checkout, and processing of the various payloads that are launched aboard the orbiters. Other Kennedy activities include the design and development of launch facilities, processes, and support equipment, and implementation of safety, reliability, and quality assurance functions.

LANGLEY RESEARCH CENTER

Langley Research Center in Hampton, Virginia, focuses primarily on aeronautics and space technology.
Our understanding of Earth's atmosphere and weather patterns is enhanced by the perspective from space. Here, thunderstorm systems boil over the Pacific Ocean.
I have a special interest in space life sciences, and I’ve been able to get involved in such projects as an experiment in which animals raised in zero gravity will be used to help determine characteristics of human development in outer space.

“I’ve also had a chance to pursue design issues related to developing a manned lunar station, where life-support resources will be recycled.

“Here at Ames, there’s a real diversity of work for an engineer, and you’re encouraged to express your creativity. There’s also the opportunity to move quickly into project management."

“Over 40 wind tunnels, computer modeling capabilities, and other state-of-the-art testing facilities give Langley researchers the capability to investigate the full range of flight, from low-speed general aviation craft to hypersonic vehicles.

Langley also specializes in studies for large space structures and systems, performs extensive research in atmospheric science, and is involved in design of Space Station Freedom.

Near Cleveland, Ohio, Lewis is NASA’s lead center for research and development in aircraft propulsion, space propulsion, space power, and satellite communication.

The installation’s involvement in the Space Station Freedom program includes developing the largest space power system ever designed to accommodate life support systems and research experiments in permanent orbit.

Among Lewis’ unique facilities are a Microgravity Materials Science Laboratory to qualify experiments for spaceflight and a zero-gravity drop tower that simulates weightlessness.

Long known for its leadership in developing NASA’s launch vehicles, the Marshall Space Flight Center at Huntsville, Alabama, also has a broad-based scientific and engineering program serving virtually all of the agency’s major projects.

Marshall provides the Space Shuttle’s solid rocket boosters and the orbiter’s engines and external fuel tank, and has lead responsibility for the Shuttle’s Space lab missions. The installation also has a major engineering role in the Space Station program and is developing a variety of new space vehicles and science projects.

The Stennis Space Center, located on Mississippi’s Gulf Coast, is NASA’s chief testing center for large rocket engines. All main engines used to power the Space Shuttle are approved for flight at Stennis before an actual mission.

The installation also conducts research programs in life and environmental sciences and land and oceanographic remote sensing, and is a leader in the study of the commercialization of space technology.
A static test of the Space Shuttle main engine under way at the Stennis Space Center, NASA’s chief rocket engine testing facility on the Mississippi Gulf Coast.
he world’s leader in space and aeronautics is always seeking outstanding scientists and engineers to carry forward the great discovery process that its mission demands. Creativity. Ambition. A sense of daring. And a probing mind. That’s what it takes to join the NASA team.

In turn, NASA offers truly outstanding career opportunities—a dynamic world where each day promises new professional challenges and rewards.

WORKING AT THE LEADING EDGE

There’s no faster track in the realm of high technology than the one you’ll find at NASA. The facilities, the work, and the people set the standard for the term “state of the art.” And at NASA you’ll quickly be making hands-on contributions to important projects. You’ll be working with some of America’s foremost engineers and scientists.

You’ll be part of the world’s most ambitious effort to extend the limits of knowledge—about our Earth and its environment, about our planetary neighbors and distant stars, and about the creation and nature of the universe itself.

PROFESSIONAL DEVELOPMENT

NASA offers unparalleled opportunities for professional development in the engineering and science fields. The pace of the agency’s programs and research needs puts newly hired employees rapidly into the on-the-job application of concepts and skills recently learned in the classroom. Under the accelerated training program, new hires are assigned to an experienced expert in their field for special, intense guidance. Successful candidates may be promoted after only six months of employment.

NASA encourages employees to continue learning and to work toward advanced degrees, and it offers attractive tuition reimbursement programs for graduate study. The field installations also sponsor regular educational conferences and professional symposia.

Several NASA career development programs allow mid- and senior-level
Science becomes art in this NASA study from space of wind patterns over the Pacific Ocean.
"I began my career here at Langley in the acoustics division with the jet noise group. This engineering team investigates methods to reduce jet engine noise by enhancing the mixing of the flow at the exit.

"NASA is unique in that engineers do the kind of research private industry cannot or will not perform because of the high investment needed to solve the noise reduction problems. Engineers are given a high degree of responsibility, from developing to running experiments. The data are analyzed and a technical paper is usually written.

"Each employee has the opportunity to pursue graduate degrees. The engineer can go to school full- or part-time, and NASA will pay for the tuition plus full salary. I'm currently pursuing my master's degree in mechanical engineering at George Washington University."

MARTHA C. BROWN
Aerospace Engineer
Langley Research Center
Purdue University
Joined NASA in 1988

professionals to broaden their experience through assignments at other NASA installations and Headquarters as they pursue advancement in their specialties or in management.

Federal pay reform in 1990 increased NASA's ability to offer recruits attractive compensation packages comparable with levels in private industry. Congress provided new flexibility in setting salaries and offering related employment incentives to NASA and other Federal agencies that must recruit highly educated and specialized people.

As a NASA employee, you'll receive regular salary increases, and can earn bonuses based on job performance. Employees participate in their own yearly performance appraisals and hold frequent discussions on goals, expectations, and performance with their supervisors.

You'll be covered by the comprehensive Federal Government medical and life insurance programs and one of the best retirement plans available anywhere.

NASA is dedicated to achieving excellence in its technical missions and recognizes that its most valuable resource is its people. The agency is also equally committed to achieving its goals with a representative workforce.

To this end, NASA's policy is to provide equal employment opportunity for all persons; to prohibit discrimination in employment because of race, color, religion, sex, age, national origin, or nondisqualifying disability; and to promote the full realization of equal employment opportunity on the basis of merit and fitness through a continuing affirmative action program throughout the agency.

Ordinary soda straws, 106,000 of them, help to straighten air flow through low-speed centrifugal compressor at Lewis Research Center. Purpose of the research facility is to improve performance of helicopter engines.
Shuttle Atlantis lifts off in mission to deploy the Galileo spacecraft.

For more information or to apply for employment, write to the installations that interest you at the addresses below. Send a letter outlining your interests, a copy of your transcript, and a Federal employment application (ask your college placement counselor where to get one).

Please send a separate form to each installation you’re considering.

Ames Research Center
Personnel Office
Attn: College Recruitment Manager
Moffett Field, CA 94035-1000
or, for Dryden facility:
Dryden Flight Research Facility
Personnel Office
Attn: College Recruitment Manager
Edwards, CA 93523-0273

Goddard Space Flight Center
Personnel Office
Attn: College Recruitment Manager
Greenbelt, MD 20771
or, for Wallops facility:
Wallops Flight Facility
Personnel Office
Attn: College Recruitment Manager
Wallops Island, VA 23337

Lyndon B. Johnson Space Center
Personnel Office
Attn: College Recruitment Manager
Houston, TX 77058

John F. Kennedy Space Center
Personnel Office
Attn: College Recruitment Manager
Kennedy Space Center, FL 32899

Langley Research Center
Personnel Office
Attn: College Recruitment Manager
Hampton, VA 23665-5225

Lewis Research Center
Personnel Office
Attn: College Recruitment Manager
21000 Brookpark Road
Cleveland, OH 44135

George C. Marshall Space Flight Center
Personnel Office
Attn: College Recruitment Manager
Huntsville, AL 35812

John C. Stennis Space Center
Personnel Office
Attn: College Recruitment Manager
Stennis Space Center, MS 39529

NASA Headquarters
Personnel Office
Attn: FPH/Recruitment
Washington, DC 20546

Office of Inspector General
Personnel Office
NASA Headquarters
Washington, DC 20546
Career Opportunities At A Glance

Work Locations

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Ames Research Center and Dryden Flight Research Facility</td>
<td>X</td>
</tr>
<tr>
<td>Goddard Space Flight Center and Wallops Flight Facility</td>
<td>X</td>
</tr>
<tr>
<td>Johnson Space Center</td>
<td>X</td>
</tr>
<tr>
<td>Kennedy Space Center</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Langley Research Center</td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Lewis Research Center</td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Marshall Space Flight Center</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Stennis Space Center</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>NASA Headquarters †</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

* Generally senior-level positions, not entry.
† Most science and engineering positions at the senior level; some entry and mid-level positions in administrative areas.