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The 
United 
States 
M icrogravity 
Laboratory 
Program 

A

n enduring legend in popular 
science concerns Isaac 
Newton's discovery of gravity. 

Myth has it that the theory of gravity 
was developed after Sir Isaac was 
hit on the head by an apple while 
sleeping beneath a tree. However 
the idea hit him, Newton did theo-
rize that the mass of Earth attracts 
other masses, from apples to celes-
tial bodies like the Moon. But it took 
a giant in the field of physics to make 
this apparently simple connection. 

Gravity is so much a part of our 
lives that we take its influence for 
granted. Apples fall from trees, milk 
pours from a jug, and our feet stay 
firmly on the ground because of 
gravity. Given the pervasiveness of 
gravity, it was a brilliant insight to 
see a falling apple as a body reacting 
to the pull of a planet. 

Newton's discovery began 3 
centuries of scientific research and 
technological development shaped 
by the recognition of Earth's gravity. 
Until the mid-20th century, gravity

was a largely unavoidable aspect 
of research and technology. Aircraft, 
drop towers, and other facilities 
could provide only extremely short 
periods of microgravity. 

Conducting research that was 
not influenced by gravity was not 
possible until rockets that could 
leave the lower atmosphere were 
developed. The contents of these 
rockets experienced extended peri-
ods of freefall, or 
weightlessness, 
after the rocket 
motors shut off. 
These payloads 
were not truly 
weightless but 
were simply falling with the same 
acceleration as the rocket. This 
allowed the payloads to float within 
the rocket as if they had no weight. 

The implications of weightless-
ness, or microgravity, were first 
seen as technical challenges. When 
the effects of gravity have been 
either reduced or eliminated, how 
do you get the proper amount of 
fuel to an engine or water to an 
astronaut? The brief periods of 
microgravity available in drop towers 
at the Lewis Research Center and 
Marshall Space Flight Center were

sufficient to answer these basic 
questions and helped researchers 
develop pressurized systems and 
other new technologies needed to 
cope with the microgravity environ-
ment. More time was required, 
however, to investigate a host of 
other questions. 

The first real opportunity to 
explore the microgravity environ-
ment and conduct research rela-

tively free of the 
effects of gravity 
came during the final 
third of NASA's first 
great era of 
discovery. While 
Mercury and Gemini 

missions helped answer many tech-
nical questions relating to space-
flight, the Apollo missions presented 
scientists the chance to test ways 
to use the space environment for



research in materials and fluid sci-
ences. Using the microgravity envi-
ronment for unique research was a 
focus of the later Apollo flights, and 
the current NASA microgravity pro-
gram traces its beginning to these 
and other experiments conducted 
on the Apollo-Soyuz Test Project and 
Skylab, America's first space station. 

These early experiments often 
stimulated new insights into the 
roles of fluid and heat flows in mate-
rials processing. Much of our under-
standing of the physics underlying 
semiconductor crystal growth, for 
example, comes from research initi-
ated with Skylab. 

Since the early 1980s, NASA has 
sent crews and payloads into orbit 
on a regular basis aboard the Space 
Shuttle. The Shuttle introduced sig-
nificant new capabilities for micro-
gravity research: a major increase in 
payload power, volume, and mass; 
the return of all instruments, sam-
ples, and data; and accommodations 
for more crewmembers, including 
scientists. Using the European 
Space Agency-built Spacelab, a 
series of pressurized modules and 
open pallets that can be arranged in 
different combinations, crews can 
perform a variety of investigations, 
many within a laboratory that pro-
vides a shirt-sleeve environment.

Microgravity research on the 
Shuttle began on its third flight, 
STS-3, in 1982 and continues today 
on many missions. In fact, most 
Shuttle missions carry microgravity 
experiments as secondary payloads. 
As capable as the Shuttle is, how-
ever, reaching its full potential for 
microgravity research depends on 
an integrated, coherent program 
with adequate resources and 
national support. 

From the early missions, NASA 
learned that more capable instru-
ments and a greater investment 
in ground-based basic research were 
needed. Congress has given strong 
support to this conclusion, and 
the United States Microgravity 
Laboratory Program is the first step 
of a long-term commitment to build 
a vital microgravity program linking 
NASA, researchers in fundamental 
and engineering sciences, and pri-
vate industry. 

The United States Microgravity 
Laboratory is one part of a science 
and technology program that will 
open NASA's next great era of dis-
covery and establish the United 
States' leadership in space. Built on 
the pillars of NASA's Space Station 
Freedom, Mission to Planet Earth, 
and Mission from Planet Earth, this 
new era is certain to revolutionize 
the way we think about space and 
our world as dramatically as did the 
Apollo lunar missions. 

A key component in the prepara-
tion for this new age of exploration, 
the United States Microgravity 
Laboratory will fly in orbit for 
extended periods, providing greater 
opportunities for research in materi-
als science, fluid dynamics, biotech-
nology, and combustion science.

The scientific data gained on 
the United States Microgravity 
Laboratory missions will constitute a 
landmark in space science, pioneer-
ing investigations into the role of 
gravity in a wide array of important 
processes and phenomena. In addi-
tion, the missions will also provide 
much of the experience in perform-
ing research in space and in the 
design of instruments needed for 
Space Station Freedom and the pro-
grams to follow in the 21st century. 

Coming at the juncture of 
2 centuries, the United States 
Microgravity Laboratory Program is 
also the connection between 2 great 
eras in America's space program. 
They are missions that will help take 
microgravity research in space from 
its infancy in the Apollo era to its 
maturity on Space Station Freedom. 
0 
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The Fluid State 

Everyone has practical experience with fluids—liquids and gases—and we know intuitively 
how a fluid will behave under "normal" circumstances. Hot air rises, lifting hot air balloons 
into the sky; water spilled on a tabletop will run over, and even off, the surface; and in any 
container, whether a glass or a pond, a liquid will seek the lowest possible level. Gravity 

.	 is ultimately responsible for many of the aspects of fluid behavior we are accustomed to 
on Earth. 

Many of our intuitive expectations do not hold up in microgravity, however, because other 
forces, such as surface tension, control fluid behavior. While this fact often presents engi-
neers and astronauts with practical problems, space also offers scientists unique opportu-
nities to explore different aspects of the physics of fluids. 

The knowledge of fluid behavior gained in space is not only important to basic science but Is 
also the key to new technologies. The behavior of fluids is at the head of many phenomena 
in materials processing, biotechnology, and combustion science. Surface tension driven 
flows, for example, affect semiconductor crystal growth, welding, and the spread of flames 
on liquids. Drop dynamics is an important aspect of chemical process technologies and in 
meteorology. Research conducted in microgravity, such as that being conducted on the 
United States Microgravity Laboratory missions, will increase our understanding of fluid 
physics and provide a foundation for predicting, controlling, and improving a vast range of 
technological processes. 
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The Crystalline State 

Everyday experience with materials, both natural and artificial, brings us in contact with 
a number of different material forms, such as solids and fluids. Just as fluids can be sub-
divided into liquids and gases, solids can be subdivided into crystalline or non-crystalline 
(amorphous) forms based on the internal arrangement of their atoms or molecules. 

The most common form of solids is crystalline. Examples are minerals, such as quartz crys-
tals or geodes; metals, such as steel, Iron, or lead; ceramics, such as a dinner plate or floor 
tile; and semiconductors, such as the ones in televisions or radios. Crystalline solids have a 
consistent, three-dimensional order to their internal structure: the atoms line up on planes 
that are stacked upon each other. Non-crystalline solids, such as plastics, glasses, and 
wood, have only a local order to their atoms. 

Different regions of the crystals typically have the planes lined up in different directions. 
Crystals with this type of structure are known as polycrystalline materials, and the indi-
vidual elements are known as grains. The size and orientation of these grains help to 
determine the strength of metals or the brittleness of a ceramic. Some materials, such as 
semiconductors, can benefit from the elimination of all grains but one, producing a single 
crystal with the constituent atoms lining up on a single set of geometric planes. 

Crystals can form in many ways: they can result from freezing liquids, the way icecubes 
form; they can precipitate from solution, the way rock candy is made from a sugar solution; 
and they can condense from vapor, the way frost forms In your freezer. In all of these cases, 
gravity affects how the crystals grow. By conducting experiments on crystal growth In micro-
gravity, scientists can learn how gravity influences this process and how crystals grown in 
mlcrogravity differ from those grown on Earth.



The First 
United States 
M icrogravity 
Laboratory 
(USML-1)

T

he first United States 
Microgravity Laboratory mis-
sion (USML-1) launches this 

important initiative. From investiga-
tions designed to gather fundamen-
tal knowledge in a variety of areas to 
demonstrations of new equipment, 
USML-1 forges the way for future 
USML missions and helps prepare 
for advanced microgravity research 
and processing aboard Space Station 
Freedom and other platforms. 
Lasting 13 days, it will be the longest 
Shuttle flight to date. USML-1 is 
a cooperative venture between 
NASA's Office of Space Science 
and Applications, which manages 
the mission, and its Office of 
Commercial Programs. 

Thirty-one investigations com-
prise the payload of this first USML 
mission. The experiments cover five 
basic areas: fluid dynamics (the 
study of how liquids and gases 
respond to the application or 
absence of differing forces), crystal 
growth (the production of inorganic 
and organic crystals), combustion 
science (the study of the processes 
and phenomena of burning), biologi-
cal science (the study of plant and 
animal life), and technology demon-
strations. Experiments will take 
place around-the-clock to make maxi-
mum use of the time in microgravity.

This series of photo-
graphs shows a 1-cm 
diameter drop of sili-
cone oil being deployed 
using modified nozzle 
tips during the brief 
period of microgravity 
possible on a KC-135 
aircraft. Microgravity 
space research allows 
scientists to explore 
hidden areas of drop 
physics and poses new 

,	

challenges as well. One 
such challenge is to cre-
ate drops of a precise 
size and volume in the 
microgravity environ-
ment. Experiments on 
USML-1 will pursue 
both the scientific and 
technical challenges of 
this research. 
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The fluid dynamics experiments 
examine basic fluid phenomena, 
from movement caused by heating 
to the dynamics of individual liquid 
drops. Scientists will study several 
phenomena that are impossible to 
study on Earth because of gravity's 
masking effects. A thorough knowl-
edge of both how and why these 
phenomena occur is needed to 
understand what influences they 
have on materials science pro-
cesses, to develop methods to 
reduce or eliminate their undesirable 
effects in Earth-based experiments 
and processing, and to improve 
future microgravity research. 

Crystals are an integral part of 
our lives: they help define the basic 
forms of the proteins that make up 
our bodies, and they are the basis 
of the semiconductors that control 
common home appliances. A crys-
tal's form determines its function. 
To study both crystals and their 
uses, scientists need to have crys-
tals that are as perfect as possible. 
In microgravity, nearly perfect crys-
tals can be grown because the 
gravity-induced phenomena that 
cause flaws are reduced or elimi-
nated. The crystal growth experi-
ments on USML-1 will grow a 
variety of inorganic and organic crys-
tals. The samples will be studied, as 
well as the methods of producing 
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them. From the data, scientists will 
learn more about growing crystals in 
microgravity and about the crystals 
themselves. 

The combustion science experi-
ments examine areas that are nor-
mally masked by the effects of 
Earth's gravity. USML-1 scientists 

In some cases, larger and more perfect 
crystals of proteins - the basic building 
blocks of life - can be grown in the micro-
gravity environment. These crystals, when 
examined using X-ray diffraction on the 
ground, can reveal the structure of the pro-
tein. Using this information, scientists can 
develop new or improved drugs. One way 
this is done is to design a drug that binds 
to a particular protein. Computer models 
of the crystalline structure show where the 
structure is most flexible, the site where 
the protein will bind to other compounds. 
In this computer model of the protein 
Ubiquitin, which binds to other proteins and 
targets them for breaking down, the color-
coded temperature factors (B-factors) of the 
atoms correspond to the level of flexibility. 
The interior of the protein is essentially 
"frozen," while the flexible binding site is 
the pinkish tail in the upper right corner.

will examine the differences in the 
shapes of flames and how these 
spread in microgravity versus 
gravity. The information gained 
from these experiments will help 
scientists better understand the 
combustion process. 

The USML-1 biological experi-
ments will explore the production 
of various products and monitor 
changes to human physiology as a 
result of extended exposure to 
microgravity. These experiments 
could lead to the development of 
advanced biomedical implants; a 
method to help astronauts readjust 
to normal gravity for landing; and to 
improved crew health aboard Space 
Station Freedom. 

The technology demonstrations 
seek to prove experimental con-
cepts and facilities for use on future 
missions. These demonstrations 
allow scientists to try new ideas for 
procedures and facilities at much 
less cost than full-scale develop-
ment would require. 

Four new experiment facilities 

will fly on USML-1. Developed at the 

recommendation of the M icrogravity



Materials Science Assessment Task 
Force, these facilities are designed 
for both multiple users and multiple 
flights. 

They are the: 
• Crystal Growth Furnace 
• Glovebox 
• Surface Tension Driven 

Convection Experiment 
apparatus 

• Drop Physics Module

The Crystal Growth Furnace will 
house four investigations that will 
attempt to grow high-quality semi-
conductor and infrared-detector 

manipulation of experiments while 
isolating the crew from the liquids, 
gases, or solids involved. On USML-1, 
it will accommodate 16 technology

development and science investiga-
tions. The Surface Tension Driven 
Convection Experiment apparatus 
will be used to conduct studies 

tic force) to position and manipulate 
samples for three investigations into 
the physical and chemical properties 
and dynamics of liquid drops. 

crystals, using both directional solidi- of fluid mechanics and heat transfer 
fication and vapor growth techniques. in low-gravity. The Drop Physics 
The Glovebox allows "hands on" 	 Module will use sound waves (acous-

Inorganic crystals play a large role in our 
everyday lives. Computers, televisions, 
remote controls, stereos, microwave ovens, 
and a host of other products depend on 
crystals as the basis of the various chips 
that make them and almost all modern elec-
tronics possible. Crystals are at the heart of 
integrated circuit semiconductors, like those 
above, that perform calculations and other 
functions that allow devices to operate. 
Other crystals act as detectors, and are used 
in medical diagnostic instruments, security 
and safety systems, and space-based imag-
ing systems. Research performed in micro-
gravity, such as the four experiments being 
conducted in the Crystal Growth Facility 
on USML-1, can teach scientists more about 
these crystals and the methods used to 
produce them.

On Earth, gravity plays an important role 
in the combustion process, from helping to 
determine the shape of a flame to how that 
flame spreads over an object. In micro-
gravity, processes masked by gravity may 
be revealed to investigators. Such studies 
will not only help with future research but 
also could have direct applications to a 
number of terrestrial areas. USML-1 investi-
gations will explore phenomena ranging 
from a single candle flame, similar to this 
flame obtained in a drop tower test, to the 
combustion properties of insulation cover-
ing electrical wires.

By trying new 
ideas and basic 
designs on small-
scale experiments, 
scientists are able 

•	 to develop hard-
ware at much less 
cost than full-scale 
development 
would entail. The 

• information on 
hardware perfor-
mance gathered 
during these 

smaller experiments allows the design of 
future hardware or facilities to be refined, 
while providing useful basic science data. 
USML-1 will test many new pieces of hard-
ware in the Glovebox, such as these devel-
oped for the Glovebox Protein Crystal 
Growth experiment.



Much of the technology for these 
facilities builds on experience from 
previous Shuttle missions, which 
allowed not only the development 
of new hardware but also the refine-
ment of the procedures to be used 
in them. USML-1 will continue this 
evolutionary process, so America 
will be assured of having the meth-
ods and equipment necessary to 
lead microgravity research into the 
next century. 

To fully prepare for long-term 
microgravity research aboard the 
space station, scientists will require 
progressively longer times on orbit 
for their experiments. The USML-1 
mission will be the longest Shuttle 
flight to date, thanks to the 
Extended Duration Orbiter kit, which 
enables the Shuttle to prolong the 
time it remains aloft. The Shuttle 
Columbia has been modified with 
extra hydrogen and oxygen tanks 
for power production, extra middeck 
locker space, extra nitrogen tanks 
for the cabin atmosphere, and a 
regeneration system that will 
remove carbon dioxide from the 
cabin air. The Extended Duration 
Orbiter program could eventually 
allow the Shuttle to stay on orbit 
approximately 30 days. 0 
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Microgravity In Gravity 

When viewing astronaut boating around 

ing a perfectly round drop of liquid spi 

few people realize that these event 

taking place in almost Earth-norma 

gravity. In fact, Earth's gravitationa 

extends far beyond the Shuttle into space 

Given this, what allows the astronauts an 

contents of the Shuttle to operate as if th 

were no gravity? 

The answer is that the Shuttle is falling around Earth in such wa\ at it 

stays the same height above ground. This condition, known as freetall, pro-

vides the microgravity environment for the occupants of a spacecraft. 

When a Shuttle or any spacecraft going into orbit is launched, it does not 

fly straight up. Instead, it gradually curves away from a vertical path until 

it is flying parallel to the ground. It can stay in this path, known as an orbit, 

without using its engines because of a complex balance of forces. The 

combination of velocity and direction is referred to in physics as a velocity 

vector. An orbit is achieved when the velocity vectors affecting a rocket are 

balanced in such a way that they balance out each other. 

Because it has come "up" from Earth, part of the rocket's velocity is 

directed in a line away from the ground. However, because the rocket did 

not fly straight up, part of its velocity is directed in a line "ahead" of it. 

Since it is still within the gravity field of Earth, there is a force pulling the 

rocket "down." The two velocity vectors, "up" and "ahead," balance out 

approximately halfway between each other, and if there were no gravity 

from Earth, the rocket would fly in this path. 

Gravity is pulling "down" on the rocket, causing it to "fall." Rather than 

coming straight down, the forward velocity of the rocket causes it to fall in 

a curved path: an orbit. As long as the forward velocity vector remains con-

stant, the rocket will remain in orbit. 

Microgravity occurs because the objects in a vehicle in orbit are "falling" 

at the same velocity as the spacecraft. This is similar to what happens 

when an elevator drops suddenly; the elevator and the people in it are 

"falling" together, and for a very brief period of time, the occupants may 

feel lighter, or even weightless. Unlike an elevator, a spacecraft in orbit 

provides almost continuous freefall. In a perfect situation, this would result 

in no gravity. Other forces, however, such as the drag created by the atmo-

sphere and thruster firings, provide minute effects that mimic gravity. 

These factors produce microgravity, which is approximately one millionth 

the gravity experienced on Earth.
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USML-1 
Science 

The 31 investigations of the USML-1 mission cover the areas of fluid 
dynamics, crystal growth, combustion science, biological science, and 
technology demonstration. The data gathered from these experiments 
will not only help refine the experiments on the next USML mission but 
also could have important implications for terrestrial applications. 

The experiment descriptions in this section consist of three parts: 
a statement of purpose, the importance of the research, and the method 
used to conduct the research. The importance section of each description 
provides a general introduction to the topic, while the method section 
provides more specific and detailed information about the experiment. 
Information is also provided on the new facilities that debut on USML-1. 
The Crystal Growth Furnace, the Surface Tension Driven Convection 
Experiment Apparatus, and the Drop Physics Module, along with the 
investigations to be performed in them, lead the section. 

Crystal Growth 
Furnace 

P
ocket calculators, microwave ovens, 
sensitive heat detectors, computers, 

portable and home stereos, portable 
phones, hand-held radios, VCRs, televi-
sions, precise clocks and watches, med-
ical diagnostic instruments, and a host 
of other products that we use either 
directly or indirectly everyday have one 
thing in common: they depend on crys-
tals to operate. From the integrated cir-
cuits that control them to the detection 
elements that sense heat or light, crys-
tals are an integral part of these devices 
and, therefore, our lives. 

Scientists study crystals to learn 
about the fundamental nature of mate-
rials and to develop new applications 
or improve existing ones. To do this, 
scientists require crystals as perfect as 
possible, since the properties of crystals 
that make them useful are related to 
the inherent ordering of the atoms and 
molecules within the crystalline struc-
ture. Defects in this ordering can inter-
fere with the properties required for a 
given application. Gravity contributes to 
the formation of defects during the pro-
duction of crystals through convection, 
sedimentation, and buoyancy effects. 
These gravity-induced complications

result in problems ranging from struc-
tural imperfections to chemical inhomo-
geneity. (Structural imperfections are 
physical flaws in the internal structure of 
the crystal. Chemical inhomogeneity is 
the uneven distribution of the compo-
nent atoms of the crystal.) Both prob-
lems limit the performance of the crystal 
and, thus, limit the devices in which 
they are used. 

The microgravity environment 
aboard orbiting spacecraft like the 
Shuttle and the space station, however, 
reduces most or all of these complica-
tions. By conducting crystal growth 
research in microgravity, scientists can 
investigate the different factors affect-
ing crystal growth and determine the 
best methods to produce various types 
of crystals. 

The Crystal Growth Furnace is a 
reusable facility for investigating crystal 
growth on USML missions and is one 
of the first furnaces ever developed by 
the U.S. that can process multiple large 
samples at temperatures above 1,000 °C. 
The furnace can produce crystals by 
either directional solidification or vapor 
crystal growth methods, making it use-
ful to a variety of investigations. 

Directional solidification is a method 
of crystal growth in which solidification 
proceeds in a particular direction. Three 
of the Crystal Growth Furnace experi-
ments on USML-1 will be using this 
method. For these experiments, the 
Crystal Growth Facility will melt all but 
one end of the sample, which contains 
a seed crystal. The furnace will then 
move, causing the sample to resolidify 
from the seed. As this occurs, a single 
crystal is formed. 

In vapor crystal growth, or vapor 
deposition as it is sometimes known, 
the sample is heated until it begins to 
vaporize. Then, like steam coming off 
hot water, the vaporized material flows 
into a cooler section where it is 
deposited on the substrate (the base") 
for the crystal. A single crystal is formed 
as additional material is deposited on 
the substrate and cools. Both methods 
have advantages for growing certain 
types of crystals.



The Reconfigurable Furnace Module 

System Capabilities 

• Reconfigurable Furnace Module 

Hot Zone Temperature 200 to 1,600°C 

Cold Zone Temperature 200 to 1,300 °C 

Booster Heater Temperature 200 to 1,700 °C 

Gradient Zone Length 0.5 to 7.0 cm 

Control Setpoint Accuracy ±4 to ±9 °C 
(dependent on temperature range selected) 

Control Setpolnt Stability ±0.5 °C 

• Furnace Translation Rate 

Directional Solidification 0.0025 to 8.30 mm/mm 

Rapid Translation 1,200.0 mm/mm 

• Processing Atmosphere argon 

• Sample Size 

Diameter up to 2.0 cm 

Length up to 20.0 cm

Sample Exchange Mechanism Capacity 6

The Crystal Growth Furnace can 
automatically process multiple samples. 
If needed, however, investigators in 
Spacelab Mission Operations Control 
can modify the processing through com-
mands transmitted from the ground to 
the control computer. 

The Crystal Growth Furnace system 
consists of three major elements: 
The Integrated Furnace Experiment 
Assembly, the Avionics Subsystem, 
and the Environmental Control System. 
The Integrated Furnace Experiment 
Assembly includes the Experiment 
Apparatus Container. 

The Integrated Furnace Experiment 
Assembly is where the Crystal Growth 
Furnace is mounted. The assembly 
consists of the Reconfigurable Furnace 
Module, the Sample Exchange 
Mechanism, the Furnace Translation 
System that moves the furnace over 
the sample being processed, and the 
Internal Support Structure. The parts 
of the Integrated Furnace Experiment 
Assembly are connected to an internal 
support structure, which provides the 
support necessary to ensure proper, 
accurate operations of the furnace. 

The heart of the Integrated 
Furnace Experiment Assembly is the 
Reconfigurable Furnace Module, which 
has five controlled heating zones that 
move over the experiment samples to 
provide controlled melting (thermal gra-
dient) and optimal crystal growth condi-
tions. Three zones form the hot portion 
of the module, and two zones form the 
cold portion. The hot and cold zones are 
separated by insulation. Moving the fur-
nace over the sample reduces the prob-
ability that the crystal will have defects 
caused by movement-induced accelera-
tions. The module can be modified to 
provide different heating levels and gra-
dients for use on different missions. 
This allows the furnace to process a 
variety of different types of crystals over 
several missions. 

The Furnace Translation System 
moves the furnace over the sample 
being processed. It allows precise con-
trol of that movement, so optimal 
growth conditions are obtained.

The Sample Exchange Mechanism 
makes it possible to process up to six 
samples automatically. The mechanism 
consists of a rotary carousel that holds 
the sample cartridges and will position 
the appropriate cartridge so that the 
furnace unit can move over it. 

Once on orbit, a crewmember 
will open the Experiment Apparatus 
Container, load six experiment samples 
into the Sample Exchange Mechanism, 
and close the container. The 
Environmental Control System controls 
the atmosphere inside the Integrated 
Furnace Experiment Assembly and 
provides cooling to the outer shell of 
the furnace through connections to 
Spacelab systems. The samples are pro-
cessed under computer control, using 
instructions contained in the flight soft-
ware. An investigator can transmit new 
instructions to the computer to change 
operations if needed. On USML-1, the 
Crystal Growth Furnace is not scheduled 
to be opened again until the Shuttle has 
returned to Earth; however, the crew 
can gain access through the use of a 
flexible glovebox if needed. 0
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engineering model of the Crystal Growth 
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Orbital Processing of High-Quality CdTe Compound Semiconductors 
Principal Investigator: Dr. David J. Larson, Jr. 
Grumman Corporate Research Center 

This electronic module is 
the basic building block of an 
infrared detector array. The 
chips running down both sides 
of the module (up to 32 loca-
tions) provide signal processing, 
while the mercury cadmium 
telluride infrared detectors are 
located along the left end of 
the module. There are 2,048 
mercury cadmium telluride 
detectors located in 8 rows of 
256 columns on this edge. The 
right end of the module con-
nects to the host unit using the 
module. Experiments on USML-1 
could help improve this and 
other detector systems.

Purpose: This experiment investi-

gates quantitatively the influences 

of gravitationally dependent phe-

nomena on the growth and quality 

of alloyed compound semiconductors. 

Importance: Cadmium zinc tel-

luride (CdZnTe) crystals are used in 

a variety of mercury cadmium tel-

luride (HgCdTe) infrared detectors, 

as lattice-matched substrates. The 

alloying element, zinc, is used to 

alter the lattice parameter of the 

cadmium telluride (CdTe), so there 

is a perfect lattice match between 

the substrate and the active HgCdTe 

detector layer. Lattice matching 

lowers the generation of defects in 

the HgCdTe crystal grown on the 

substrate by minimizing strain 

where the two layers join. Further-

more, the zinc alloying strengthens 

the cadmium telluride lattice during 

growth, reducing the number of 

native defects in the bulk CdZnTe 

crystal and the resultant wafers 

machined from the crystal to be 

used as substrates. Reducing 

defects in the substrate minimizes 

the propagation of defects into the

active layer during its growth. 

Processing the CdZnTe crystals in 

microgravity could significantly 

improve the chemical homogeneity 

of the substrates, thus minimizing 

interface strain and reducing the 

defects that result from gravitation-

ally dependent phenomena. This 

improvement in substrate quality 

should enhance the quality and 

performance of the HgCdTe active 

detector. 

Method: The samples on USML-1 

will be processed in the Crystal 

Growth Furnace, using the seeded 

Bridgman-Stockbarger method 

of crystal growth. Bridgman-

Stockbarger crystal growth is 

accomplished by establishing 

isothermal hot-zone and cold-zone 

temperatures with a uniform tem-

perature gradient between. The 

thermal gradient spans the melting 

point of the material (1,095 °C). 

After sample insertion, the fur-

nace's hot and cold zones are 

ramped to temperature (1,175°C 

and 980 °C, respectively) establish-

ing a thermal gradient of 25 °C/cm

between and melting the bulk of 

the sample. The furnace is then 

programmed to move farther back 

on the sample, causing the bulk 

melt to come into contact with the 

high-quality seed crystal, thus 

"seeding" the melt. The seed crys-

tal prescribes the growth orienta-

tion of the crystal grown. Having 

seeded the melt, the furnace trans-

lation is reversed and the sample is 

directionally solidified at a uniform 

velocity of 1.6 mm/h by moving the 

furnace and the thermal gradient 

over the stationary sample. 

The crystal of CdZnTe will be exam-

ined after the mission using infrared 

and optical microscopy; micro-

chemical analysis; X-ray precision 

lattice parameter mapping and 

synchrotron topography; infrared 

transmission, optical reflectance, 

photoconductance, and photolumi-

nescence spectroscopy. These 

characterization techniques will 

quantitatively map the chemical, 

physical, mechanical, and electrical 

properties of the Crystal Growth 

Furnace flight crystal for compari-

son with identically processed 

Crystal Growth Furnace ground-

processed samples. These results 

will be compared quantitatively 

with the best results accomplished 

terrestrially using the same growth 

method. Thermal, compositional, 

and stress models will be quantita-

tively compared to the experimental 

1-g and microgravity results. 0 

Stacking the detector modules together 
can provide for larger images, more 
detailed images, or multiple wavebands. 
Such systems, like the 30-module 
bundle shown here, could be useful 
in Earth imaging.
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by Directional Solidification 
Principal Investigator: Dr. Sandor L. Lehoczky 
NASA Marshall Space Flight Center 

Purpose: This experiment 

N determines how the structural, 

electrical, and optical proper-

ties of selected 11-VI semi-
AU\ 
A	 conducting crystals 

A • •\ are affected by growth 

A A • \ in a low-gravity 

A • •	 environment. 
£ A A .1 
• • • 

0

1 Importance: The alloy 

• • • being investigated is 

• . ./ mercury zinc telluride 

• •/ (HgZnTe), with particular 

emphasis on compositions 

appropriate for infrared radiation 

detection and imaging in the 8- to 

12-micrometer (gm) wavelength 

region. Infrared detection and imag-

ing systems at those wavelengths 

have the potential for use in appli-

cations ranging from resource 

detection and management on Earth 

to deep-space imaging systems. 

HgZnTe crystals are classified as 

members of the 11-VI crystal type 

because of the position of the con-

stituent atoms in the vertical 

columns of the periodic table. 

This experiment has three major 

goals: to evaluate the effect of 

gravitationally driven fluid flows 

on crystal composition and micro-

structure, to determine the potential 

role of irregular fluid flows and 

hydrostatic pressure effects in 

causing crystal defects, and to 

produce a sufficient quantity of 

high-quality crystals, so scientists 

can perform bulk crystal property 

characterizations and fabricate 

detectors to establish ultimate 

material performance limits. On 

Earth, gravity-induced fluid flows 

and compositional segregation 

make it nearly impossible to pro-

duce homogenous, high-quality bulk 

crystals of the alloy. 

Method: The samples will be 

processed in the Crystal Growth 

Furnace using the directional solidi-

fication crystal growth method. 

The liquidus temperature of mercury 

zinc telluride is 695 °C for the 

selected composition. The hot zone 

A a A A A A-
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Analysis of 
an Earth-grown crystal produces 
this graphical representation 
that reveals the elements 
making up the crystal have not 
mixed together well, a condition 
known as inhomogeneity. By 
growing crystals in microgravity 
on USML-1, a more even mixing 
of the components should be 
obtained. 
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Crystal Growth of Selected li-VI Semiconducting Alloys 

of the furnace will be 800 °C for 

melting, and the cold zone will be 

350 °C. A portion of the sample 

will be melted in the hot zone, and 

crystal growth will occur in the 

resulting temperature gradient. The 

furnace and, thus, the temperature 

gradient, will be moved slowly 

across the sample at a rate of 

approximately 3.5 mm per day. 

The slow rate is required to prevent 

constitutional supercooling ahead 

of the solidification interface. This 

rate is the maximum theoretical 

growth speed allowed by the con-

stitutional supercooling criteria 

relating to interface breakdown. 

The samples produced on USML-1 

will be examined after the mission 

for chemical homogeneity and 

microstructural perfection by using 

a wide array of characterization 

techniques, including optical and 

electron microscopy, X-ray diffrac-

tion, X-ray topography and X-ray 

energy dispersion, infrared trans-

mission spectroscopy, and galvano-

magnetic measurements as a 

function of temperature and mag-

netic field. Selected slices from 

the crystal will be used to fabricate 

device structures (detectors) for 

further evaluation. 0

This color elec-
tron photomicro-
graph shows 
such common 
structural 
defects as a 
grain boundary 
(A), twin bound-
aries (B), and 
triangular-
shaped disloca-
tion etch pits IC). 
These defects 
were revealed 
by chemical 

etching of a wafer cut from a 
crystal of a 11-VI semiconducting 
alloy, which was produced by 
directional solidification. 

A typical 
ground-grown 
mercury zinc 
telluride alloy 
crystal



The Study of Dopant Segregation Behavior 
During the Growth of GaAs in Microgravity 
Principal Investigator: Dr. David Matthiesen 
GTE Laboratories 

This computer 
chip is made	 r 
with gallium 
arsenide. 
Because of its 
variety of elec-
tronic properties, many people 
believe that gallium arsenide 
may one day replace silicon as 
the most popular material for 
building semiconductors. 
Experimentation on USML.1 
will allow scientists to better 
understand this important sub-
stance and its potential.

Purpose: This experiment investi-

gates techniques for obtaining 

complete axial and radial dopant 

uniformity during crystal growth of 

selenium-doped gallium arsenide 

(GaAs). 

Importance: Gallium arsenide is a 

technologically important semi-

conductor used in a variety of appli-

cations, such as high-speed digital 

integrated circuits, optoelectronic 

integrated circuits, and solid-state 

lasers. Typically, semiconductors 

have a very small amount of impu-

rity added to them to precisely 

engineer their material properties. 

These impurities, called dopants, 

are usually added at a level of 

10 parts per million. This means, 

in this experiment, that for every 

million semiconductor atoms in 

the crystal, 10 atoms of dopant are 

added. Because of convection in 

the melt on Earth, it is very difficult 

to precisely control where these 

dopant atoms end up in the crystal. 

Too many in one part versus 

another, a condition known as inho-

mogeneity, leads to widely varying 

material properties throughout the 

crystal. This experiment will use 

GaAs doped with selenium to inves-

tigate the potential of the unique 

microgravity environment to achieve 

uniform dispersal of the dopant 

during crystal growth.

Method: Only one experiment 

sample will be processed on 

USML-1 because of time constraints. 

This sample has been uniquely 

designed to eliminate other forms 

of convection, such as surface ten-

sion driven convection. The hot zone 

(1,255 °C) and the cold zone (1,225 

°C) temperatures are chosen to 

locate the 1,238 °C melting point of 

GaAs in the center of the gradient 

zone. After the mission, scientists 

will use an extensive array of char-

acterization techniques to analyze 

this material. This will include elec-

trical measurements by Hall effect 

and capacitance-voltage tech-

niques, chemical measurements by 

glow discharge mass spectroscopy, 

and optical measurements by 

advanced quantitative infrared 

microscopy and Fourier transform 

infrared spectroscopy. These data 

will be compared to current analyti-

cal and computer model based the-

ories of crystal growth. 0 

flr-

An Earth-grown gallium 
arsenide crystal seen next to a 
pencil for comparison 

12
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A vapor transport crystal growth 
sample/ampoule assembly for use on USML.1 

Vapor Transport Crystal Growth 
of Mercury Cadmium Telluride in Microgravity 
Principal Investigator: Dr. Heribert Wiedemeier 
Rensselaer Polytechnic Institute 

This photograph shows an 
epilayer of mercury cadmium 
telluride grown on a cadmium 
telluride substrate during 
a ground-based experiment 
before USML-1. The ruler 
markings are refracted images 
from the ruler placed beside 
the crystal.

Purpose: This experiment estab-

lishes the relationship between 

convective flow, mass flux, and 

crystal morphology and identifies 

the effects of microgravity on crys-

tal properties of Hg0 8Cd0 2Te. 

Importance: Mercury cadmium 

telluride crystals are very effective 

in infrared detectors used for a vari-

ety of purposes, such as defense, 

space, medical, and industrial sys-

tems. Crystals free of large struc-

tural defects and with a more even 

dispersion of the constituent ele-

ments will improve detector perfor-

mance. To better understand the 

factors that influence HgCdTe 

crystal growth, this experiment will 

examine phenomena ranging from 

temperature profiles to how the 

aspect ratio (shape) of the sample 

ampoule affects mass transport and 

crystal growth. 

Method: The samples will be 

processed in the Crystal Growth 

Furnace using vapor transport crys-

tal growth techniques, which do not 

require temperatures as high as the 

directional solidification process 

used on other samples. For this 

experiment, the hot zone of the 

furnace will be 590 °C, and the cold 

zone will be 540 °C for deposition. 

This temperature gradient will be 

held steady over the sample. After 

the mission, the crystals produced 

will be examined using X-ray 

diffraction, optical microscopy, 

scanning electron microscope/ 

wavelength dispersive spec-

troscopy, chemical etching, Hall 

measurement and other techniques 

for evaluation of morphology, struc-

tural perfection and properties of 

the crystals. The crystals produced 

may be used to fabricate an infrared 

detector for further examination of 

their device performance. 0

OR'IGINAL PAGE
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Temperature differences 10 to 65 °C 

Surface Tension Driven Convection 
Experiment (STDCE) Apparatus 

M
ost high-tech crystals, metals, and 
alloys are produced from liquids or 

gases that are heated and then solidified. 
Unfortunately, unwanted flows in the 
liquids and gases often cause defects 
that keep these materials from reaching 
their potential as computer chips, turbine 
engine blades, and other advanced prod-
ucts. On Earth, buoyancy-driven flows 
and convection impede attempts to grow 
better crystals and solidify new metals 
and alloys. In space, these flows are 
eliminated, but other fluid movements 
that are overshadowed on Earth take on 
new importance. 

Ground-based and preliminary space 
experiments have shown that thermocap-
illary flows—fluid motions generated by 
temperature variations along the free 
surfaces of liquids—can be an important 
factor in the low-gravity environment. 

This streak photograph shows the steady-
state flow pattern produced in 1-g with lab-
oratory hardware. The thermal stratification 
of the flow can clearly be seen.

These flows are of inherent scientific 
interest and can also occur in many indus-
trial and materials processing techniques. 

Investigators have attempted to 
model these flows; however, they lack 
critical data because the flows are so 
difficult to detect in Earth-based experi-
ments where buoyancy-driven flows 
dominate. In low-gravity, buoyancy-driven 
flows are minimized, and other flows, 
such as thermocapillary flows, become 
dominant. Also, in low- gravity, the shape 
of the liquid's free surface and the way 
the surface responds to imposed flows 
and forces (e.g. impulses) are different. 
These conditions cannot be simulated 
in Earth-based experiments, since the 
gravity effect is dominant and keeps the 
surface of a liquid flat. In space, investiga-
tors will be able to examine how various 
controllable factors, such as different 
imposed surface temperature distribu-
tions (thermal signatures) and interface 
shapes, influence thermocapillary flows. 

This apparatus consists of the experi-
ment package and an electronics package 
located in a double Spacelab rack. The 
experiment package includes the test 
chamber, made of copper to assure good 
thermal conductivity along the walls, and 
the silicone oil system consisting of a 
storage reservoir and a fluid management 
system for filling and emptying the test

chamber. A lightweight (10 cSt) silicone 
oil is used because it is not susceptible 
to surface contamination, which can ruin 
surface tension experiments. 

Two heating systems, which consti-
tute the different thermal signatures, are 
part of the test chamber. A submerged 
heater system will be used to study 
thermocapillary flows over a range of 
imposed temperature differences. A 
surface heating system will be used to 
investigate fluid flows generated by vari-
ous heat fluxes distributed across the 
surface of the liquid; this heating system 
consists of a CO 2 laser and various opti-
cal elements that direct the laser beam to 
the test chamber and vary the imposed 
heat flux and its distribution. Analysis of 
the flows resulting from the diverse 
imposed thermal signatures will provide 
options for properly tailoring the fluxes. 

To visualize the flows, a laser diode 
and associated optical elements will 
illuminate aluminum oxide particles 
suspended in the silicone oil, and a video 
camera attached to a chamber viewport 
will record the particle motion. An 
infrared imaging system records oil sur-
face temperature. The crew can use a 
Spacelab camera mounted to the front 
of the chamber to monitor oil filling and 
draining, submerged heater positions, 
and oil surface shapes and motions. 0 

A schematic view of the test cell and associated hardware shows 
how the CCD camera images light scattered from aluminum oxide 
particles in the 
silicone oil when	 Diode	

Light Sheet	 IR Imager 
the oil is illumi-	 -.--.__	 Optics 
nated by the 
laser diode light 
sheet. The CO2 
laser imposes a 
Gaussian-shapec 
heat flux on the	 Focusing 
surface of the oil 	 Optics 
while theinfrared 
imager detects	 -':	 Copper 
thermal energy	 Test Cell 

radiated from 
the free surface, CO2 Laser 
thus providing a 
two-dimensional 
surface tempera-	 Plexiglass® 
ture map.	 View Port

System Capabilities 
• Sample Summary 

Sample liquid:	 10 cSt silicone oil 

Volume:	 400 ml with adequate concentration 
of tracer particles 

Initial temperature:	 25 °C 

• Instrument Equipment 
Test chamber dimensions: 5 cm high x 10 cm diameter 

Video camera 

Infrared imager:	 8 to 12 microns, scanning type 

Thermistors 

• Heating Parameters 
Constant flux heating CO2 laser heating; zone: 51030mm, flat & curved surfaces: 

0.5 W (60 mm, thermal equilibrium) 

0.2 to 3.0W (10 mm, velocity equilibrium) 

Constant temperature heating cartridge heating, flat & curved surfaces: 

1.5W (60 mm, thermal equilibrium) 

1.0 to 17.0W (10 mm, velocity equilibrium) 

14



Principal Investigator: Dr. Simon Ostrach 
Case Western Reserve University 
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These three diagrams 
show processed flow 
visualization data 
from a ground-based 
test. The data are 
processed using an 
electronic Particle 
Image Velocimetry 
system. (A) shows 
the raw velocity vec-
tors, while (B) shows 
that data interpo-
lated on a regular 
grid, and (C) shows 
the stream function 
calculated from the 
interpolated data. 
Because the data 
were acquired very 
early during the test, 
the flow is not yet 
thermally stratified. 
The distortion 
caused by viewing 
from the bottom of 
the test cell is cor-
rected during data 
reduction.

Surface Tension Driven Convection Experiment 

This thermogram, or two-
dimensional surface tempera-
ture map, was created by an 
infrared imager during a ground 
test. The outer edge of the blue 
circle is the boundary of the test 
cell. The surface temperature of 
the liquid is indicated by the 
scale on the left. 

use state-of-the-art instruments to 

obtain quantitative data on thermo-

capillary flows over a wide range of 

parameters in experiments that vary 

the thermal signatures and the con-

figuration of the liquid's free sur-

face. Under certain conditions, the 

flows will oscillate, and scientists 

will examine what conditions cause 

these oscillations. These data will 

help scientists understand the oscil-

lations and provide a database for 

developing numerical models that 

are used to predict thermocapillary 

flows. This information has prac-

tical applications, because thermo-

capillary flows can disturb the 

production of materials, such as 

molten glass produced by container-

less processing, and affect fluids in 

spacecraft life- and flight-support 

systems, such as water purification 

systems and fuel management and 

storage systems. 

Method: For USML-1, both steady 

flows (those that do not change 

over time) and transient flows 

(those that do change over time) 

will be studied. A variety of condi-

tions and experiment configurations 

will be used, and an attempt will be 

made to identify the conditions for 

the onset of oscillations. 

In the first series of experiments, a 

cylindrical container (10 cm in diam-

eter and 5 c high) will be filled 

with silicone oil. Two heater sys-

tems will be used to heat the free 

surface to various temperatures to 

generate thermocapillary flows. A 

centrally located submerged heater 

will impose a constant temperature 

difference between the heater and 

container walls, and a CO 2 laser 

will impose a heat flux on the liquid

OThNAL 
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surface to produce various tempera-

ture distributions along the liquid's 

surface. For both heater systems, 

the container will be filled to differ-

ent oil levels to create both flat and 

curved surfaces. Investigators will 

obtain detailed data on flow veloc-

ity, temperature fields, and surface 

temperatures induced by the two 

different thermal signatures at vari-

ous thermal differences, heat flux 

levels and distributions, and free 

surface shapes. Using this informa-

tion, they will define the nature 

and extent of thermocapillary flows 

in low-gravity. 

The container will be connected 

to a sophisticated data acquisition 

system that provides temperature 

and flow field measurements. 

A laser-light sheet, reflected by 

aluminum oxide particles mixed 

with the oil, will allow observation 

of fluid flows. A video camera 

attached to a viewport below 

the test chamber records the fluid 

flows. A scanning infrared imager 

will measure oil surface tempera-

ture, an important measurement 

because it determines the driving 

force of the flow. Thermistors inside 

the test chamber will measure bulk 

oil temperatures. These data will 

be downlinked to the Spacelab 

Mission Operations Control Center 

at the Marshall Space Flight Center. 

Investigators at the Spacelab 

Mission Operations Control Center 

will reduce and analyze the data. 

Based on the analysis of the data, 

a new set of test parameters for the 

next series of experiments will be 

uplinked to the experiment com-

puter in the Spacelab. From the 

data obtained, scientists can corre-

late velocity and temperature distri-

butions with imposed thermal 

conditions to complete mathe-

matical models of thermocapillary 

flow. Research to date indicates 

that these flows are caused by a 

complex three-way interaction 

among the driving force, the fluid 

flow, and the surface shape. 0

Purpose: This investigation studies 

the basic fluid mechanics and heat 

transfer of thermocapillary flows in 

low-gravity. 

Importance: Variations in surface 

tension, caused by temperature 

differences along a liquid's free sur-

face, generate thermocapillary fluid 

flows. Although such flows exist on 

Earth, buoyancy-driven flows are 

usually stronger, making it difficult

to observe thermocapillary flows. In 

low-gravity, buoyancy-driven flows 

are reduced, making it easier to 

examine thermocapillary flows. 

In addition, the shape of the liquid's 

free surface and the damping char-

acteristics will be different in 

space; therefore, these flows are 

impossible to simulate on Earth. 

The USML-1 Surface Tension Driven 

Convection Experiment is the first to 
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Drop Physics 
Module 

T
he Drop Physics Module gives 
scientists the opportunity to test 

theories of classical fluid physics. These 
long-standing theories have not been 
confirmed by experiments conducted on 
Earth because, to overcome the force 
of gravity, very strong sound waves 
have to be used to levitate even tiny 
drops. These strong sound waves intro-
duce forces that distort the shape of the 
drops and mask the subtle phenomena 
being studied. In microgravity, relatively 
weak sound waves, such as the ones 
being used in the Drop Physics Module, 
can be used to suspend and manipulate 
drops and even solid materials. 

By studying free drops (drops of 
material untouched by any solid surface) 
suspended in microgravity, scientists 
have the opportunity to test basic fluid 
physics theories that have applications 
in other fields of physics. For example, 
by studying how one drop splits into 
two drops, scientists can learn more

about the process of nuclear fission, 
the splitting apart of atoms. The insights 
gained from studies in the Drop Physics 
Module can be applied to phenomena 
ranging from the splitting of atoms in 
nuclear reactors to distant, massive 
rotating stars. 

The Drop Physics Module is dedi-
cated to the detailed study of the 
dynamics of drops in microgravity: their 
equilibrium shapes, the dynamics of 
their flows, and their stable and chaotic 
behavior. It also demonstrates a poten-
tially valuable processing technique 
known as containerless processing. 
The Drop Physics Module and micro-
gravity combine to remove the effects 
of the container, such as chemical con-
tamination and shape, on the sample 
being studied. Sound waves, generating 
acoustic forces, are used to hold a sam-
ple away from the walls of the experi-
ment chamber, which isolates the 
sample from potentially harmful external

influences. On future missions, a 
high-temperature positioner, using either 
acoustic, electromagnetic, or electro-
static forces for positioning, can be 
installed in the second Drop Physics 
Module experiment bay to melt samples 
that are solids at room temperature, 
so they can be studied as fluids at high 
temperatures and then resolidified. All 
of this can be done without any physical 
contact with the sample. 

A crewmember conducts an experi-
ment by directly selecting commands 
from menus displayed on one of two 
video displays or by selecting an experi-
ment identification label and executing 
a sequence of preprogrammed com-
mands. The operator can monitor the 
response of the drop on a second 
adjacent video display, choosing one 
of two views of the drop. All selections 
are made through a novel integrated 
video menu display/infrared touch grid. 

Liquid samples deployed into the 
rectangular experiment chamber are 
positioned by the sound waves so that 
film and video cameras can record the 
liquid's behavior. Small particles have 
been mixed with most of the fluids to 
make the fluid motion inside the drop 

A liquid drop is manipulated in the Drop 
Dynamics Module on Spacelab 3. The scien-
tific and engineering data collected in this 
and other experiments resulted in the devel-
opment of the more advanced Drop Physics 
Module for the USML missions. 
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System Capabilities 

• Sample Summary 

Samples	 Liquid drops, liquid shells, solid samples 
(For USML-1, only liquid drops will be used.) 

Diameter	 0.5 to 2.7 cm drops

Temperature Range Ambient 

• Acoustic Drive 

Carrier Frequencies 1 t 8 kHz 

Force Modulation 1 t 30 Hz 

Sound Pressure Level 130 to 155 dB 

Torque 0 to 1.0 dyne/cm (maximum) 

• Instrumentation 

Video Imaging 30 frames/sec with 1/60 to 1/1,000 sec shuttering 
resolution: 120 lam with 4.7-mm field of view 

Cinefilm Imaging 16-mm monochrome or color 
variable frame rate: 10 to 400 frames/sec 

Thermocouples ±1 °C accuracy 

Hydrostatic pressure, humidity, and temperature sensors 

Laser-sheet lighting Illumination 

Cathode-ray tube and system parameter displays 

Process Control and Data Acquisition microprocessor

visible. During an experiment, a crew-
member can modulate the sound wave 
to rotate, oscillate, or move the sample 
inside the chamber. After each experi-
ment, the fluid will be retrieved and, 
if necessary, the interior of the chamber 
cleaned. 

A variety of fluids have been 
selected to fly on USML-1. Very pure 
water, water with tiny amounts of con-
taminants (surface-active materials), 
water with various amounts of glycerin 
to make it more viscous, like molten 
glasses, and silicone oils are some of 
these fluids. Some will be used in pairs 
to form drops within other drops. 

Scientists on the ground can some-
times observe real-time video from the 
module. This will allow them to discuss 
the experiment with the operator, do 
quick analysis of the images and make 
suggestions to the operator to maximize 
the scientific return. 0
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Drop Dynamics Experiment 
Principle Investigator: Dr. Taylor Wang 
Vanderbilt University 

Purpose: This experiment gathers 

data on the behavior of drops and 

shells in low-gravity to compare 

with theoretical predictions and to 

provide insight for the development 

of new fields, such as containerless 

materials processing in space. 

Importance: Preliminary experi-

ments using acoustic levitation to 

suspend drops were first completed 

in the Drop Dynamics Module flown 

on the Spacelab 3 mission in 1985. 

These experiments not only con-

firmed some theories about drop 

behavior but also provided unex-

pected results. For example, the 

Studies on USML-1 could lead 
to the development of an opti-
mal method of centering living 
cells for encapsulation. Properly 
centered cells, such as this islet 
cell, may prove to be of medical 
benefit.

bifurcation point, when a spinning 

drop takes a dog-bone shape to 

hold itself together, came earlier 

than predicted under certain circum-

stances. This experiment, con-

ducted in the more advanced Drop 

Physics Module, gives investigators 

a chance to resolve the differences 

between experiment and theory. 

Investigators will also study large-

amplitude oscillations in drop shape 

and the process of drop fission. 

Ground-based research conducted 

after Spacelab 3 revealed another 

important effect: the centering 

mechanism of an oscillating com-

pound drop. Studied experimentally 

Mai'

for the first time on USML-1, this 

not only has fundamental scientific 

interest but, more importantly, 

can contribute to a new field of 

research that uses cell transplanta-

tion to cure hormone deficiency 

states in humans, such as diabetes. 

This treatment would encapsulate 

living cells with a semi-permeable 

membrane to protect them from 

a hostile environment. Experimen-

tation on USML-1 will contribute 

to understanding how to keep the 

living cells at the center of such 

a drop (encapsulation) and away 

from harmful chemicals during the 

formation process. 

E-A03-

Method: Film (cine) and video 

records will be made of the experi-

ment for analysis on the ground. 

These data will allow the equilib-

rium shapes and frequency spec-

trum of both simple and compound 

liquid drops, undergoing different 

types of rotation and oscillation, 

to be determined. 

To determine the equilibrium 

shapes of rotating drops, the rela-

tive phase between the orthogonal 

acoustic waves used to position 

each drop will be shifted by 90 

degrees. This phase shift will create 

an acoustic rotational torque on the 

drop. The procedure will be done 

with drops of water, water and 

glycerin, and silicone oil. 

To determine the shape oscillation 

frequency of both simple and com-

pound drops, the acoustic field 

will undergo carrier modulation 

to stimulate drop shape oscillation. 

The amplitude of the oscillation as 

a function of the modulation fre-

quency will be studied to determine 

the non-linear behavior of the drop. 

The encapsulation study will use 

sodium alginate and calcium chlo-

ride to study methods for centering 

one component of a compound 

drop. In this experiment, sodium 

alginate droplets will be injected 

into a calcium chloride drop. The 

resulting compound drop will be 

subjected to various acoustic condi-

tions to try to determine an optimal 

method of forming uniform concen-

tric spherical membranes. 0 

As part of the Drop Dynamics Experiment, 
water drops will be "squeezed" by intense 
acoustic fields. By studying the dynamic 
behavior of drops as they are gradually 
flattened and destroyed, as seen in this 
sequence of an Earth-based experiment, 
scientists can learn about drop stability and 
the dynamic behavior of drop shapes as a 
function of acoustic force. 18 ORIGINAL PAGE 
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Science and Technology of Surface Controlled Phenomena 
Principle Investigator: Dr. Robert E. Aptel 
Yale University 

A 2.5-mm diameter water 
droplet undergoes quadrupole 
shape oscillations. 

This photograph shows two 
surf acant-coated hexane drops 
starting to combine (coalesce). 
This portion of the process of 
combining is known as the 
inception of coalescence. 

iNAL 'AGE 
COLOR HOTOCRAh1

Purpose: This experiment deter-

mines the surface properties 

of liquid drops in the presence of 

surfactants (materials that migrate 

toward free surfaces or toward the 

interface between two liquids) and 

investigates the coalescence of 

droplets with surfactants, using a 

variety of techniques that disturb 

the interface between drops. 

Importance: Surfactants play an 

important role in countless indus-

trial processes, from the production 

of cosmetics to the dissolution of 

proteins in synthetic drug produc-

tion to enhanced oil recovery. This 

set of USML-1 experiments, cou-

pled with the current theoretical 

work of the science team, should 

give a better understanding of the 

molecular-level forces acting in the 

surface layer of simple water drops 

and provide a better basis for indus-

trial applications than earlier empir-

ical results. In microgravity, where 

drops can be studied through con-

tainerless techniques, levitated 

drops have well-characterized sur-

faces, and interfacial forces domi-

nate gravitational forces. Through 

experiments that cause single, 

spherical drops to oscillate and 

change shape, scientists will 

observe the decay of the oscilla-

tions, allowing them to measure 

surface viscosities and elasticities 

of the drops. The dual-drop 

coalescence experiment will give 

scientists insight into the role of 

surfactants as "barriers" to coales-

cence, perhaps allowing them to 

determine optimal methods for 

overcoming barriers that keep drops 

from combining. 

Method: In the first set of experi-

ments, single water drops contain-

ing varying concentrations of 

surfactants will be positioned stably 

by the acoustic field of the Drop 

Physics Module. The drop will be 

squeezed acoustically and then 

released, exciting it so that it 

oscillates in a quadrupole shape.

The frequency and damping of the 

resulting free oscillations will be 

measured. These results will be 

analyzed with the help of theo-

retical expressions that relate the 

measured quantities to surface 

properties (for example, shear and 

dilatational viscosities). The pro-

cess will be repeated both for vary-

ing surfactant concentrations and 

for different surfactants. 

In the second group of experiments, 

two water drops containing varying 

concentrations of surfactants will 

first be positioned stably at sepa-

rate nodes of the Drop Physics 

Module acoustic field. They will 

then be brought slowly into contact 

by carefully mixing acoustic modes 
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to force the drops toward each 

other. If the drops do not coalesce 

spontaneously (which will be the 

case as surfactant concentrations 

increase), a combination of static 

squeezing and then forced oscilla-

tion will be applied to the contact-

ing drops with increasing strength, 

inducing them to combine. Both 

the parameters of the induction 

techniques and the interface 

between the drops will be mea-

sured during this process in an 

attempt to characterize critical 

parameters that force the drops 

to rupture and coalesce. These 

experiments will be repeated for 

varying drop sizes and surfactant 

concentrations. Q 
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Droplet shape oscillation
This graph shows 
the time history of 
the damped 
quadrupole shape 
oscillations of a 
water droplet that 
has a small concen-
tration of surfacant. 

This graph shows 
the quadrupole res-
onance frequency of 
water droplets as a 
function of droplet 
diameter and surfac-
tant concentration, 
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Measurement of Liquid-Liquid Interfacial Tension 
and the Role of Gravity in Phase Separation Kinetics 
of Fluid Glass Melts 
Principal Investigator: Dr. Michael C. Weinberg 
University of Arizona 

By measuring the lengi 
of the semi-axes of the 
drop (a, b) and combini 
information with other 
gathered during the ex 
investigators can deter 
interfacial tension of the drop. Purpose: This experiment 

assesses how gravity affects phase 

separation kinetics and the geomet-

rical structure of a two-phase glass 

and explores a unique method for 

measuring an important surface 

parameter—the tension between 

interfaces of drops and other 

materials. 

Importance: There are many liquid 

solutions that tend to separate into 

several liquid phases when held in 

an appropriate temperature range. 

This same process occurs in many 

glass systems, where it is referred 

to as glass-in-glass or liquid-liquid 

phase separation, or amorphous 

immiscibility. In both liquids and 

glasses, the rates at which these 

phase separation processes occur 

depend upon several factors, such 

as the temperature and the charac-

teristics of the surface at the 

boundary between phases. The 

measurement of the liquid-liquid 

interfacial tension will provide one 

of the key quantities that governs 

the rate of such a process. This 

experiment will use the spinning 

drop measurement technique in 

the Drop Physics Module to mea-

sure the interfacial tension and to 

validate the use of this method in 

the microgravity environment. 

If successful, it could be used to 

measure the interfacial tension in 

high-temperature glasses, some-

thing that cannot be done on Earth. 

Method: This experiment will mea-

sure the liquid-liquid surface ten-

sion of a compound drop consisting

of two liquids that do not mix. This 

compound drop will be rotated in 

the Drop Physics Module at speci-

fied angular velocities, and the 

shapes of both the inner and outer 

drops will be distorted. Photographs 

will provide a precise record of both 

drops' new geometries. Scientists 

will analyze the photographs to 

determine the drop distortions and 

will use theoretical models to calcu-

late the liquid-liquid surface tension 

between the substances that make 

up each drop. Measurements will 

be made of several drop pairs with 

different properties and surface 

interactions. 0

The remainder of the 
USML-1 investigations 
are conducted in 
smaller individual 
new facilities or in 
previously developed 
and flown hardware. 
These investigations 
are listed alphabetically 
for ease of reference. 
The science section 
concludes with a 
description of the 
new Glovebox and 
the experiments to be 
performed in it. 
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AstrocuIture 
Principal Investigator: Dr. Theodore W. Tibbitts 
Wisconsin Center for Space Automation and Robotics, University of Wisconsin 

The Astroculture' flight unit 

-
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fill 

As part of the preparation for 
USML-1, crops were raised in 
the engineering model of the 
Astroculture' unit. 

The Astroculture" hardware 
consists of fluid pumps, fluid 
delivery and recovery tubes, 
and rooting matrixes. While 
several experiments have been 
performed on growing plants, 
Astroculture' is the first 
attempt to develop a system 
for the precise watering and 
nutrient feeding of plants in 
the microgravity environment, 
where normal methods do not 
work effectively.

Purpose: This experiment evalu-

ates a water delivery system to 

support the growth of plants in 

microgravity. 

Importance: As our stays in space 

last for longer periods, it will be 

necessary to grow plants to mini-

mize the costs of life support in 

space. Plants can reduce the costs 

of providing food, oxygen and pure 

water and also lower the costs of 

removing carbon dioxide in human 

space habitats. An important step 

toward designing a system to sup-

port plant growth is to find effective 

ways to supply nutrient solutions 

for optimizing plant growth and to 

avoid releasing solutions into the 

crew quarters. Since fluids behave 

differently in microgravity, plant 

watering systems that operate well 

on Earth do not function effectively 

in space. This experiment tests a 

novel nutrient delivery system that 

will operate under weightlessness 

or under partial gravity on lunar or 

Mars bases. 

Method: A nutrient delivery system 

containing a porous tube that circu-

lates nutrient solution under nega-

tive pressures will be tested under 

various conditions. Porous stainless 

steel tubes are embedded in a par-

ticulate medium (baked montmo-

rillinitic clay) that serves as the 

rooting matrix. Capillary forces will 

move the solution through the walls 

of the porous tube. A second porous 

tube in the matrix simulates the 

removal of water by the plant root. 

This second tube will be operated 

at a greater negative pressure than 

the first tube. This pressure differ-

ential should result in movement of 

the solution from the supply tube to 

the recovery tube. Both the supply 

and recovery tubes will be cycled 

through various combinations of 

pressure levels, and scientists will 

determine the rates at which the 

solution moves through the root 

matrix. A computer system will 

monitor the amount of solution that

leaves the reservoir connected to 

the supply tube and the amount that 

is pumped into a second reservoir 

connected to the recovery tube. This 

will allow data to be collected on 

the overall capacity of the nutrient 

solution supply system to replace 

water and nutrients removed by 

growing plants in microgravity.

This experiment is the first of a 

series of tests to evaluate each of 

the critical subsystems needed for 

the construction of a reliable plant 

growth unit. Future experiments 

will incorporate lighting and atmo-

spheric control subsystems before 

plants are grown in microgravity 

using the Astroculture' unit. 0 

I tie Astrocuture experirneit 
is important to all long-term 
space efforts, such as space 
stations, lunar bases, and 
trips to other planets. Plants 
will be needed for food, air 
recycling and for the psycho-
logical benefits to the people 
on these missions. 

COLOR PHOTOCRAP$
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Generic Bioprocessing Apparatus 
Principal Investigator: Dr. Michael C. Robinson 
Center for Bioserve Space Technologies, University of Colorado 

Purpose: This generic research 

tool allows a variety of relatively 

sophisticated bioprocessing 

experiments in microgravity to 

be performed in one apparatus. 

Importance: The Generic 

Bioprocessing Apparatus is a multi-

purpose facility that can help us 

answer important questions about 

the relationship between gravity 

and biology. This unique facility 

allows scientists to study biological 

processes in samples ranging from 
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Bioprocessing 
Apparatus Flight 
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molecules to small organisms. 

The facility supports up to 132 
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milliliters volume each. Some spe-

cific experiments have already been 
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other experiments can best take 
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behavior of macromolecules. For 

example, scientists will examine 

how collagen—a protein substance 

found in connective tissue, bones, 

and cartilage—forms fibers. In 

microgravity, it might be possible 

to alter collagen fiber assembly so 

that this material could be used 

more effectively as artificial skin, 

blood vessels, and other parts of 

the body. 

At the level of complete microstruc-

tures, investigators will study the 

assembly of liposomes and virus 

capsids, two types of spherical 

structures that could be used to 

encapsulate pharmaceuticals. If 

these biological products can be 

formed properly, they could be used 

to target a drug to specific tissues 

in the body, such as a tumor. 

Another experiment examines 

how mineralization occurs and influ-

ences the embryonic bone tissue 

of rodents. This will help scientists 

understand how gravity alters tis-

sue development and help explain 

what causes bone material loss in 

astronauts exposed to microgravity. 

These studies relate to Earth 

biomedical problems such as 

osteoporosis. Yet another group of 

experiments will focus upon lym-

phocytes and macrophages to study 

microgravity's effects on the 

immune system. 

Experiments with microorganisms 

will help with the design of ecologi-

cal waste treatment and water 

recovery systems needed for long-

term stays in space. These experi-

ments will also help scientists learn 

more about gravity's role on the cel-

lular level and help them identify 

alterations in bacteria and other 

microorganisms, which might create 

health problems for crewmembers 

living in space during long trips to 

Mars and other extended duration 

space missions. 

One set of experiments with whole 

organisms examines the develop-

ment of brine shrimp and wasp

eggs exposed to space. Both organ-

isms will develop significantly 

during the 13-day mission. Even 

though the brine shrimp and wasps 

are simple organisms compared 

to humans, their development may 

shed light on the importance 

of gravity in human development 

and aging. 

Another experiment will evaluate 

seed germination and development. 

This will help develop the tech-

nology to grow plants in space and 

provide knowledge for use in agri-

culture on Earth. 

Method: Bioprocessing reactions 

can be initiated using both specific 

mixing and heating protocols. 

Multiple-step reactions involving 

sequential mixing of fluids will be 

possible for phased processing. 

Simple optical monitoring of turb-

idity changes are possible. This new 

capability is a major innovation in 

the study of biological processes. 

A crewmember will insert a batch 

of 12 samples into the self-

contained Generic Bioprocessing 

Apparatus module and then initiate 

fluid mixing and incubation. A com-

puter will take data and terminate 

the incubation automatically after 

a preprogrammed duration. 

A crewmember will remove the 

samples, store them in the refriger-

ator, and load another batch of sam-

ples for incubation. Some samples 

may be monitored for brief periods 

repeatedly throughout the mission. 

Samples are based in either the 

refrigerator/incubator module or an 

ambient temperature storage locker 

when they are not in the biopro-

cessing unit. Both data taken on 

orbit and returned samples provide 

the basis for analysis. 0 The Generic Bioprocessing Apparatus 
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Extended Duration Orbiter Medical Project 
Project Manager: Mr. J. Travis Brown 
NASA Johnson Space Center 

Payload Commander Dr. Bonnie 
Dunbar, seen here on a previous 
mission, will be one of the sub-
jects using Lower Body 
Negative Pressure on USML-1. 

Using the Automatic Blood 
Pressure Monitor and other 
equipment, scientists hope to 
determine if heart rate and 
blood pressure exhibit more or 
less variability in microgravity 
than on Earth. 

COLOR PHOTO- 1 -

Purpose: The purpose of the 

Extended Duration Orbiter Medical 

Project is to protect crew health and 

safety during 13- to 16-day mis-

sions. On USML-1, the Extended 

Duration Orbiter Medical Project 

will have Spacelab, middeck, and 

pre- and postflight investigations to 

assess the medical status of the 

crew. The experiments selected for 

Spacelab are Lower Body Negative 

Pressure, Variability of Heart Rate 

and Blood Pressure, and Microbial 

Air Sampler. 

Importance: The human body 

undergoes many adaptations to the 

microgravity environment, including 

fluid shifts and changes in cardiac 

function. Some of these changes, 

which are normal responses to the 

absence of gravity, may cause prob-

lems for the crewmembers upon 

return to Earth. 

Lower Body Negative Pressure: 
During early phases of a mission, 

observers may notice that some 

crewmembers' faces become puffy. 

This is because fluid shifts from 

the lower body toward the head 

and chest in the absence of gravity. 

While it is not a problem on orbit, 

the fluid shift and accompanying 

fluid loss can pose potential

problems upon return to Earth. For 

instance, crewmembers may experi-

ence reduced blood flow to the 

brain when standing up. This could 

lead to fainting or near-fainting 

episodes. The investigators hypoth-

esize that redistributing body fluids 

through exposure to Lower Body 

Negative Pressure in conjunction 

with fluid loading and salt tablet 

consumption will improve this 

situation and help prevent fainting. 

The 4-hour treatment, called a 

"soak," is believed to be effective 

for 24 hours. 

The Lower Body Negative Pressure 

experiment uses a three-layer col-

lapsible cylinder that seals around 

the crewmember's waist. The 

device is tethered to the floor of the 

Spacelab and stands approximately 

5 feet tall. A vent to the vacuum of 

space is used to create a negative 

pressure within the device after the 

crewmember is inside. A controller 

is used to automatically reduce and 

increase the pressure according to 

a preset protocol. Measurements 

of heart dimensions and function, 

heart rate and blood pressure will 

be recorded. Leg volume measure-

ments will be performed before and 

after each protocol. The data col-

lected will be analyzed to determine 

physiological changes in the crew-

members and effectiveness of the 

treatment 

Variability of Heart Rate and 
Blood Pressure: On Earth, many 

factors affect heart rate and blood 

pressure. These include job stress, 

specific activity, diet, and changes 

related to sleeping and waking 

states. While activities and body 

cycles cause a majority of these 

fluctuations, gravity also plays a 

role. This study will determine if 

blood pressure and heart rate 

exhibit more or less variability in 

microgravity than on Earth. The 

study will also determine whether 

a change, if any, correlates with the 

microgravity-induced reduction in

sensitivity of baroreceptors in the 

carotid artery located in the neck. 

Baroreceptors are one of the body's 

sensors used to regulate blood 

pressure and heart rate. 

Crewmembers will wear a portable 

Automatic Blood Pressure Monitor 

and a Holter Recorder system that 

continuously records heart activity 

while periodically monitoring blood 

pressure in the arm. The data 

collected are analyzed after the 

mission. 

Microbial Air Sampler: Although 

all materials that go into the 

Shuttle are as clean as possible, 

bacterial and fungal growth have 

been detected in missions of 6-to 

10-days. The growths were minimal 

and posed no health risk to the 

crew; however, as missions 

increase in length, the potential for 

microbial contamination increases 

and could affect crew health. 

The Microbial Air Sampler is a 

device that will be used in several 

areas of the Spacelab. After agar 

strips are inserted into the device, 

a small fan pulls air across the agar 

surface. Postflight analysis of the 

strips will quantify the fungal and 

bacterial growth from this 13-day 

mission. 0 

The Microbial Air Sampler 
will be used to determine the 
growth of fungi and bacteria 
over the course of USML-l's 
13-day mission.
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Protein Crystal Growth 
Principal Investigator: Dr. Charles E. Bugg 
Center for Macromolecular Crystallography, The University of Alabama at Birmingham 

Twenty crystal growth cham-
bers are contained in a Vapor 
Diffusion Apparatus like this 
one, and three such apparatus 
are contained in a refrigerator/ 
incubator module. Protein 
Crystal Growth experiments 
on USML-1 will use three refrig-
erator/incubator modules: 
The main experiment will use 
two (for 120 individual growth 
chambers), while the Glovebox 
Protein Crystal Growth 
Experiment will use one. 

Protein crystals are grown 
in chambers like this one. 
Differences in vapor pressure 
cause water to leave the protein 
solution drop, causing it to 
become more concentrated. 
As the concentration increases, 
crystals begin to grow. In micro-
gravity, scientists have been 
able to grow larger and more 
nearly perfect crystals than can 
be grown on Earth.

COk

Purpose: This experiment grows 

crystals of various proteins for 

study and investigates the kinetics 

of crystal growth and the way 

fluid disturbances cause defects 

in crystals. 

Importance: Proteins play impor-

tant roles in everyday life, from pro-

viding nourishment to fighting 

disease. Scientists want to explore 

what each protein does and how its 

structure determines its function. 

X-ray crystallography is the most 

widely used method for determining 

the three-dimensional structures 

of proteins, but it requires large, 

single protein crystals for analysis. 

(It should be noted, however, that 

even large protein crystals (1 mm) 

are miniscule compared to the inor-

ganic crystals being grown in the 

Crystal Growth Facility.) For pro-

teins, a large crystal is about the 

size of a grain of table salt. Earth-

grown crystals large enough to 

study often have numerous flaws 

caused by gravity. Gravity-induced 

sedimentation and convection ham-

per efforts to produce flawless crys-

tals that are large enough to study. 

Crystals grown in microgravity tend 

to be larger and have more uniform 

internal structures, allowing much 

better X-ray diffraction studies of

those structures. Studies of such 

crystals not only provide informa-

tion on basic biological processes 

but also could lead to the develop-

ment of foods with higher protein 

content, highly resistant crops, and 

more effective drugs. 

By also studying the kinetics, or 

growth rates under differing condi-

tions, investigators can find ways 

to improve the growth of protein 

crystals in microgravity. This will 

lead to higher quality crystals for 

study and to the ability to produce 

large crystals of hard-to-grow 

proteins. 

For these reasons, the Protein 

Crystal Growth experiment has 

flown on several previous missions. 

Of the 32 candidate proteins for 

USML-1, one-third have flown on 

previous flights. Examples of two 

candidate proteins and their impor-

tance are Neuramiriidase, an 

enzyme on the surface of the 

influenza virus that enables the 

virus to spread in the body, and 

reverse transcriptase, an enzyme 

that is a chemical key to the repli-

cation of the AIDS virus. The crys-

talline structure of these proteins 

will be used to gain a better under-

standing of their biological func-

tions and may be of value in the 

design of drugs used as specific 

treatments for the diseases associ-

ated with these proteins. Other can-

didate proteins may lead to a better 

understanding of the immune sys-

tem, diseases, protein processing in 

the body, and the activation/deacti-

vation of individual genes. The pro-

teins that will be flown are selected 

a few months before launch. 

Method: The USML-1 Protein 

Crystal Growth experiment consists 

of three middeck refrigerator/ 

incubator modules, which provide 

constant temperatures for crystal 

growth. One will provide a tempera-

ture of 4 °C, and the other two will 

maintain a temperature of 22 °C. 

Experiments to be activated in the

Spacelab Glovebox will be con-

tained in one of the 22 °C modules. 

Each of the two remaining modules 

for the Protein Crystal Growth 

experiment holds three Vapor 

Diffusion Apparatuses, containing 

20 individual crystal growth cham-

bers each. One side of each Vapor 

Diffusion Apparatus holds 20 dou-

ble-barrelled syringes, one per 

chamber, while the other side con-

sists of ganged plugs that extend 

into the tips of the syringes. 

One barrel of each syringe contains 

a buffered protein solution; the 

other houses a precipitant solution 

that causes the crystals to grow. 

A reservoir of concentrated precipi-

tant solution surrounds each 

growth chamber. 

To activate the experiment, a 

crewmember will attach a hand-

wheel to the plug side of a Vapor 

Diffusion Apparatus and turn it to 

retract the plugs from the syringe 

tips. The handwheel will then be 

moved to the syringe side, where 

it is turned back and forth several 

times to mix the two solutions. 

The crewmember will then turn the 

handwheel to extrude a drop on the 

tip of each syringe. Vapor pressure 

differential within each chamber, 

caused by the difference in precipi-

tant concentration, will cause water 

to migrate from the drop on the 

syringe tip to the solution in the 

reservoir. As the concentration of 

the precipitant solution increases in 

the drop, crystal growth will begin. 

Crewmembers will photograph 

crystal growth in the 22 °C refrig-

erator/incubator Vapor Diffusion 

Apparatuses at various times during 

the mission. When the experiment 

is complete, the drops containing 

the crystals will be withdrawn 

into the syringes for postflight 

examination. 0 
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Space Acceleration Measurement System 
Project Manager: Mr. Richard DeLombard 
NASA Lewis Research Center 

Three triaxial sensor heads, 
like this one, will be located in 
different parts of the Spacelab 
module during USML-1. Each 
head sends data back to 
the central processing unit, 
mounted in the center aisle of 
the module.

Purpose: This facility measures 

the acceleration environment of 

Spacelab using remote triaxial 

sensor heads. 

Importance: Microgravity is an 

ideal environment in which to 

conduct many different types of 

research. Away from the effects of 

Earth's gravity and vibrations, scien-

tists can produce purer products, 

more uniform mixtures—including 

some not possible on Earth because 

of differences in the weights of the 

component materials—and larger, 

more nearly perfect crystals. 

Microgravity, however, as its name 

suggests, is not the absence of 

gravity. Although the effects of 

Earth's gravity are significantly 

reduced, they are not eliminated. 

Crew movements, equipment opera-

tions, and Shuttle maneuvers can 

produce vibrations that mimic the 

effects of gravity. To help scientists 

conducting experiments on USML-1 

know the strength and frequency 

of the vibrations that may have 

affected their experiments, the 

Space Acceleration Measurement 

System is making its fourth flight 

on USML-1.

The Space Acceleration 

Measurement System records 

acceleration forces in three loca-

tions within the Spacelab module. 

Sensors will be on or near experi-

ments that require precise mea-

surements of the microgravity 

environment during operations. 

These sensor heads, located around 

the module, will help to "map" the 

module. The data not only benefit 

the scientists taking part in USML-1 

but also serve to further character-

ize the Spacelab acceleration 

environment. This characterization, 

conducted as part of the 

Acceleration Characterization and 

Analysis Project, assists in planning 

future missions by identifying the 

most advantageous location to 

place experiments that are 

extremely sensitive to vibrations 

and accelerations and by providing 

guidance to scientists and engineers 

who design experiments and equip-

ment for Spacelab. 

Method: The Space Acceleration 

Measurement System has three tn-

axial sensor heads that measure 

accelerations along three orthogo-

nal axes at separate locations in the 

Spacelab module. Each sensor head 

has three inertial sensors that mea-

sure both positive and negative 

accelerations over a specific range 

of frequencies. The Space 

Acceleration Measurement System 

team has worked with other USML-1 

investigators before the mission 

to select the frequencies to be mea-

sured and the location of the sensor 

heads. Each head also measures 

local temperature and contains the 

necessary electronics to filter and 

amplify the signals from the sensors.

The USML-1 Space Acceleration 

Measurement System sensor heads 

are placed on the internal support 

structures of the Surface Tension 

Driven Convection experiment and 

the Crystal Growth Furnace and on 

the Glovebox below the work space. 

Data collected at each location will 

be transmitted to a central unit, 

where it is converted to a digital 

signal and stored on optical disks. 

This unit will be located in the cen-

ter of the Spacelab aisle on USML-1 

and uses a microprocessor to con-

trol its operations. The optical disks 

can hold 400 megabytes of data 

each, and approximately 2 giga-

bytes of raw data are expected to 

be acquired on the mission. 

These raw data will be processed 

for bias and temperature effects 

and provided to interested scien-

tists and investigators after the 

mission. Investigators not involved 

with the experiments where the 

sensor heads are located can use 

data from either the sensor head 

closest to their experiment or the 

combined data from all three sensor 

heads. 

While not a part of the USML-1 

payload but a part of the ongoing 

Orbiter Experiments Program, the 

Orbital Acceleration Research 

Experiment will measure the other 

area of concern to scientists and 

equipment designers: quasi-steady 

accelerations caused by drag and 

vehicle rotation. By gathering data 

on these two types of accelerations, 

scientists can better understand the 

results obtained on USML-1 and 

improve the designs of future exper-

iments and space structures. 0 

This typical Space Acceleration Measurement System data plot, 
obtained on the Spacelab Life Sciences-1 mission (STS-40), shows a 
portion of the x-axis acceleration data from a triaxial sensor head 
that was mounted to the Solid Surface Combustion Experiment. 
Scientists conducting experiments can obtain data from one or all 
three remote sensor heads to determine the acceleration environ-
ment to which the experiment was exposed during the mission.
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The Solid Surface Combustion 
Experiment hardware consists of 
a combustion vessel and the equip-
ment to control the experiment and 
record data. Two cameras record the 
actual combustion, providing both 
front and top views. Other data are 
gathered electronically.

Solid Surface Combustion Experiment 
Principal Investigator: Dr. Robert A. Altenkirch 
Mississippi State University

Purpose: This experiment studies 

the way flames spread over solid 

fuels in an environment where 

gravity-driven buoyant and exter-

nally imposed air flows are absent. 

Importance: The physical and 

chemical mechanisms that cause 

flames to spread on Earth are differ-

ent in the low-gravity of an orbiting 

spacecraft. It is well known that 

material flammability and flame 

spread rates are strongly affected 

by the environment, including oxy-

gen content, pressure, and convec-

tive air flow. However, the effects 

of these conditions in the micro-

gravity environment are unknown. 

Scientists must understand what 

might evoke flames in microgravity 

and use this knowledge to evaluate 

fire hazards aboard spacecraft. 

Method: A sample of ashless filter 

paper will be sealed in a chamber 

with an atmosphere that supports 

combustion. A hot filament wire

coated with nitrocellulose will 

ignite the sample. Two windows in 

the chamber will allow two 16-mm 

cameras to film an edge (side) and a 

surface (top) view of the sample, so 

the flame spread rate can be deter-

mined. A temperature sensor and 

a pressure transducer will measure 

the internal chamber temperature 

and pressure. Thermocouples 

located on and near the sample will 

measure the solid- and gas-phase 

temperatures. These temperatures 

and the spread rate will be used to 

determine the heat transfer rates 

from the flame to the fuel, which 

will provide information on the 

mechanisms of flame spreading at 

near zero gravity. From this, scien-

tists hope to determine why these 

flames propagate. 0 

This photograph comes from 
camera images obtained during 
a test on a previous mission. 
The film record shows the igni-
tion and spread of flames over 
the surface of the flammable 
material. 
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A photomicrograph of a zeolite 
crystal 

A drawing of a typical zeolite 
crystal

4 'a 

Zeolite Crystal Growth 
Principal Investigator: Dr. Albert Sacco, Jr. (Worcester Polytechnic Institute) 
Battelle Advanced Materials Center, Clarkson Center for Commercial Crystal Growth in Space 

Purpose: This experiment evalu-

ates the synthesis of large zeolite 

crystals in microgravity. 

Importance: Zeolite crystals 

currently are used in the chemical 

process industry as catalysts and 

adsorbents (filters). Their three-

dimensional crystal structure is 

capable of selective adsorption 

(filtration), so zeolite crystals are 

often used as molecular "sieves." 

If large zeolite crystals, 500 to 1,000 

times the size grown on Earth, can 

be grown in microgravity, scientists 

will better understand their crys-

talline structure. This knowledge 

could help improve existing cat-

alytic and adsorbent processes. In 

addition, if the microgravity-grown 

crystals are large enough and have 

nearly perfect crystalline structures, 

they could be used as industrial 

membranes. Zeolite membranes 

could result in major advantages 

over current separation and cat-

alytic processes. 

Because of the potential for zeolite 

crystals, this experiment is the com-

bined effort of two Centers for the 

Commercial Development of Space,

Battelle Advanced Materials Center 

and Clarkson Center for Commercial 

Crystal Growth in Space, and their 

industry partners. 

Method: The Zeolite Crystal 

Growth experiment fits in the space 

of two middeck lockers and consists 

of 38 autoclaves that will be acti-

vated and loaded into the cylindrical 

Zeolite Crystal Growth furnace 

assembly. Because zeolite synthesis 

begins with the initial mixing of the 

two source solutions, one alu-

minum-based and the other silicon-

based, the autoclaves were 

designed to be loaded on Earth 

for mixing in orbit. They were also 

designed for ease of installation 

into and removal from the furnace. 

Each metal autoclave contains two 

chambers and a screw assembly. By 

turning the screw assembly with a 

powered screwdriver, the solution 

in one chamber is pressurized and 

forced into the main chamber. 

Turning the screw in the opposite 

direction pulls fluid back into the 

emptied chamber. By repeating this 

process several times, proper mix-

ing of the two solutions can be 

obtained. On USML-1, several dif-

ferent nozzle designs and mixing 

aids are being used. Experiments 

conducted in the Glovebox using 

clear autoclaves will determine the 

proper number of times the fluids 

should be worked to ensure proper 

mixing for each design. 

The furnace assembly consists of 

19 heater tubes/support structures, 

each holding two autoclaves, sur-

rounded by insulation and an outer

shell. The furnace automatically 

processes the multiple samples in 

three independently controlled tem-

perature zones of 175 °C, 105 °C, 

and 95°C. 

Once all the autoclaves have been 

activated and loaded into the fur-

nace assembly, a cover is secured 

over the front of the furnace assem-

bly and the furnace activated. Every 

2 hours during the experiment, the 

furnace is checked for proper opera-

tions. Once the experiment has 

been completed, the autoclaves will 

be removed and stored for landing. 

After the mission, scientists will 

determine which hardware and 

growth conditions were optimum 

and examine the crystals produced. 

0 

On USML-1, the zeolite crystals 
will be grown in 38 individual 
autoclaves similar to these engi-
neering models. Two autoclaves 
are joined together before being 
placed in the furnace. While 
externally the same, there are 
several types of internal 
arrangements that will be 
tested to determine which one 
provides the best mixing of the 
component solutions. 

Once activated and assembled, 
the autoclaves are placed in the 
Zeolite Crystal Growth Furnace, 
the front cover is secured, and 
the furnace is activated. The 
entire assembly fits in the space 
of two middeck stowage lockers.

L
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Glovebox

CCLO	 ;: 

Payload Specialist Dr. Lawrence DeLucas 
tests a microscope for USML-1 on the 
engineering mockup of the Glovebox 

F:

T
he Spacelab Glovebox, provided by 
the European Space Agency, offers 

experimenters a new capability to test 
and develop science procedures and 
technologies in microgravity. It enables 
crewmembers to handle, transfer, and 
otherwise manipulate materials in ways 
that are impractical in the open Spacelab 
The facility is equipped with photo-
graphic equipment that allows a visual 
record to be made of experiment opera-
tions. Many investigations will benefit 
from the increased crew involvement 
and photographic/video capabilities that 
the facility permits. 

The Glovebox has an enclosed com-
partment that offers a clean working 
space and minimizes the contamination 
risks to both Spacelab and experiment 
samples. It provides two types of con-
tainment for small quantities of materi-
als: physical isolation and negative air 
pressure differential between the enclo-
sure and the rest of the Spacelab work-
ing area. An air-filtering system also 
protects the Spacelab environment 
from experiment products that could 
be harmful to the crew. 

3

Although fluid containment and ease 
of cleanup are major benefits provided 
by the facility, it can also contain pow-
ders, bioparticles, and other debris 
produced during experiment operations. 
Even toxic, irritating, or potentially infec-
tious materials can be prevented from 
entering the Spacelab environment. 
While this "safety cabinet" prevents 
leaks or spills into Spacelab, it also 
protects samples from contamination 
when experiment procedures call for 
containers to be opened. 

The facility provides the following 
services to microgravity experiments: a 
large viewing window atop the cabinet, 
experiment mounting and positioning 
equipment, real-time downlink of experi-
ment video and housekeeping data, 
electrical power, partial temperature 
control, a time-temperature display, 
lighting, and cleaning supplies. It has six 
video camera heads (three black-and-
white and three color) to record experi-
ment operations and the behavior of 
specimens, a backlight panel, a 35-mm 
camera, and a stereomicroscope that 
offers high-magnification viewing and 

4 

Passive Accelerometer System 

Dr. J. Iwan D. Alexander 
The University of Alabama 
in Huntsville 

Purpose: To measure the 
low-level accelerations caused by 
atmospheric drag and the Shuttles 
gravity-gradient attitude 

Importance: Because many micro-
gravity experiments and processes 
are sensitive to accelerations, even 
low-level motions that are difficult 
to measure, it is important to mea-
sure these accelerations to improve 
the design of future experiments 
and facilities.

Interface Configuration 
Experiment 

Dr. Paul Concus 
University of California, 
Berkeley, and Lawrence 
Berkeley Laboratory 

Purpose: To investigate the shape 
that fluid surfaces may assume for 
specific containers in microgravity 

Importance: Free liquid/vapor 
interfaces in microgravity cannot 
yet be predicted satisfactorily. 
Because many on orbit operations 
involve fluids and depend on their 
behaviors, it is important to test 
and refine models used to deter-
mine how container geometry and 
motion affect the location and 
shape of fluid surfaces.

Protein Crystal Growth 
Glovebox Experiment 

Dr. Lawrence J. DeLucas 
The University of Alabama 
at Birmingham 

Purpose: To identify optimal condi-
tions for nucleating and growing 
protein crystals from solution in 
space 

Importance: By analyzing protein 
crystals, scientists may be able to 
develop dramatically better medical 
and agricultural products. To 
improve the quality of protein crys-
tals grown in space, more informa-
tion is needed about optimum 
mixing times, solution concentra-
tions, and other growth parameters.

Solid Surface Wetting 
Experiment 

Dr. Eugene H. Trinh 
NASA Jet Propulsion Laboratory 

Purpose: To determine the best 
tip shape for injectors that deploy 
drops in the Drop Physics Module; 
to identify the optimal surface 
treatment for such tips 

Importance: Complex experiments 
in the Drop Physics Module depend 
on proper samples and the effi-
ciency and accuracy with which 
investigators can deploy, manipu-
late, and measure drop volume 
and shape. 
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the capability to record images when 
used in concert with the video or 
still cameras. 

The crew manipulates samples or 
experiment equipment through three 
doors: a central port through which 
experiments are placed in the Glovebox 
and two glovedoors. The glovedoors are 
located on each side of the central port 
and serve three functions. When an 
airtight seal is required, the crew inserts 
their hands into rugged gloves attached 
to the glovedoors, and no airflow occurs 
between the enclosure and the 
Spacelab. If the experiment requires 
more sensitive handling than allowed 
by the rugged gloves, the crew may 
don surgical gloves and insert their arms 
through a set of adjustable cuffs. Each 
of the glovedoors also provides a view-
port for the facility's charge-coupled 
device cameras. 

General operations require the crew 
to unstow experiment modules and 
specimens, move these to the enclo-
sure, and place these inside. Most of 
the experiment modules have magnetic 
bases or strips that hold them to the

steel floor of the enclosure, while others 
attach to a laboratory jack in the enclo-
sure that can position the module at a 
chosen height above the cabinet floor. 
Experiment equipment may also be 
bolted to the left wall of the working 
space or attached outside the facility 
with Velcro. 

Once the experiment equipment is 
secured, the crew will proceed with 
operations specific to a particular investi-
gation. Following the experiment, the 
crew will clean up any spills or leaks in 
the workspace, reassemble the hard-
ware if necessary, and move it back into 
stowage. They will also store any sam-
ples that must be preserved for post-
flight analysis. 

For the USML-1 mission, the 
Glovebox experiments fall into four 
basic categories: fluid dynamics, com-
bustion science, crystal growth, and 
technology demonstration. Crew-
members will conduct 16 experiments 
that test or demonstrate microgravity 
science theories, procedures, and 
hardware related to this broad range 
of materials science activities. Some of

An experimenter practices loading equip-
ment through the front entrance of the engi-
neering mockup of the Glovebox during 
testing for USML-1. 
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Marangoni Convection 

in Closed Containers 

Dr. Robert J. Naumann 

The University of Alabama 

in Huntsville 

Purpose: To determine whether 
surface tension driven convection 
can occur in closed containers 
in microgravity and under what 
conditions 

Importance: A liquid in space may 
not conform to the shape of its con-
tainer; therefore, it may be possible 
for Marangoni convection to occur 
along all free surfaces of a liquid. If 
so, models of Marangoni convection 
effects on heat transfer and fluid 
motion in space must be refined.

6 

Smoldering Combustion 

in Microgravity 

Dr. A. Carlos Fernandez-PeIIo 

University of California, 

Berkeley 

Purpose: To observe the smolder-
ing characteristics of polyurethane 
in microgravity 

Importance: Smoldering fires are 
especially dangerous because the 
inside of a material can smolder 
undetected at a low intensity for 
long periods before bursting into 
flames. Information about smolder-
ing combustion in space will help to 
develop ways of preventing, detect-
ing, and extinguishing smoldering 
fires in spacecraft and on Earth.

Wire Insulation 

Flammability Experiment 

Mr. Paul S. Greenberg 

NASA Lewis Research Center 

Purpose: To examine the ignition 
and combustion of electrical wire 
insulation in microgravity 

Importance: One of the principal 
potential sources of fire aboard a 
spacecraft is the overheating of 
electrical systems. For improved 
safety, it is necessary to understand 
how fires originating in electrical 
wiring might occur in space and 
how the offgassing and combustion 
behave. Results have implications 
for the detection and extinguish-
ment of fires in space and provide 
insight into material flammability 
testing for space applications

8 

Candle Flames in Microgravity 

Dr. Howard D. Ross 

NASA Lewis Research Center 

Purpose: To examine whether 
candle flames can be sustained in 
space; to study the interaction and 
physical properties of diffusion 
flames 

Importance: In space, where buoy-
ancy-driven convection is reduced, 
the role diffusion plays in sustaining 
candle flames can be isolated. 
Results have implications for other 
diffusion flame studies. Diffusion 
flames are the most common type 
of flame on Earth.
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The Glovebox

A 

these experiments will also 
provide information that other 
USML-1 investigations will 
use immediately during the 
mission to refine their experi-
ment operations.

Seven fluid dynamics 
experiments focus both on 
basic fluid phenomena and 
how these affect materials 
processing and on the devel-
opment of technologies that 
may enhance the study of 
fluid behavior in space. The 
investigations examine fac-
tors influencing the behavior 
of liquids in the absence of 
gravity: causes of surface 
movement in free liquids, the 
degree of contact between a 
liquid and its container, bub-
ble formation and movement, 
and the comparative strength 
of subtle forces during fluid 
processing. They also 
demonstrate techniques for 
deploying liquid drops in 
microgravity. 

Three combustion sci-
ence experiments examine 
the important role of subtle 
forces that are usually 
masked by Earth's gravity. 
These studies seek to

increase knowledge of how 
combustion—whether it 
results in smoldering or open 
flames—occurs in space. 
Findings may be applicable to 
operations that produce 
flames and to improved 
safety features in spacecraft. 

The Glovebox will also 
support three experiments 
that grow zeolite and protein 
crystals. These activities will 
test and refine techniques for 
growing crystals in space. 

In the realm of technology 
demonstration, one experi-
ment will assess whether 
a material representing a 
potential breakthrough for 
medical implantation can 
be produced effectively in 
space. Another will demon-
strate a new means of 
gathering microgravity 
accelerometer data, while 
a third will test a method for 
creating fine particle clouds. 
0 
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Fiber Pulling in Microgravity 

Dr. Robert J. Naumann 
The University of Alabama 
in Huntsville 

Purpose: To investigate the 
advantages of pulling optical fibers 
in space 

Importance: On Earth, gravity 
drainage and Rayleigh-Taylor insta-
bilities cause thin columns of 
low-viscosity liquids to break apart 
or form beads. In space, it should be 
possible to determine which of the 
two influences is the limiting factor 
in fiber pulling and whether certain 
low-viscosity materials could 
be more efficiently processed in 
microgravity.

10 
Nucleation of Crystals from 
Solutions in a Low-g 
Environment 

Dr. Roger L. Kroes 
NASA Marshall 
Space Flight Center 

Purpose: To demonstrate and eval-
uate a new technique for initiating 
and controlling the nucleation of 
crystals in a solution 

Importance: An improved ability 
to control the location and time of 
the onset of nucleation of crystals 
in a solution has the potential to 
increase the flexibility of all space 
experiments involving solution 
crystal growth.

11 

Oscillatory Dynamics of Single 
Bubbles and Agglomeration in 
an Ultrasonic Sound Field in 
Microgravity 

Dr. Philip L. Marston 
Washington State University 

Purpose: To explore how large and 
small bubbles behave in space in 
response to an ultrasound stimulus 

Importance: The oscillations and 
dynamics of large bubbles should 
be more easily observed in space 
than on Earth. By understanding 
how the shape and behavior of bub-
bles change in response to ultra-
sound in a liquid, it may be possible 
to develop techniques that elimi-
nate or counteract the complica-
tions that small bubbles cause 
during materials processing.

12 
Stability of a Double Float Zone 

Dr. Robert J. Naumann 
The University of Alabama 
in Huntsville 

Purpose: To determine if a solid 
cylinder can be supported by two 
liquid columns and remain stable 
in space 

Importance: It may be possible 
to increase the purity and efficiency 
of glass materials with a newly 
patented technique that relies on a 
solid column of material supported 
by two liquid columns of its own 
melt. If this arrangement can be 
maintained in microgravity, space 
may be a suitable laboratory for 
such processing. 
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Mission Planning 
and Operations
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The USML-1 Investigator Working Group 

O

rganizing the unique blend of 
scientific talent and systems 
required for a vanguard mission 

like USML-1 is a challenge. Overall man-
agement responsibility for the mission 
resides with the program manager, 
while the program scientist supervises 
science development. The mission man-
ager is responsible for payload integra-
tion, crew training, planning the mission, 
managing the payload and its operations 
during the mission, associated schedul-
ing, and day-to-day operations. The 
mission scientist oversees day-to-day 
science activities and serves as the 
interface between the principal investi-
gators for the experiments and the 
mission manager. 

Planning for the mission began 
more than 5 years ago when the USML 
program was initiated in 1987. Since 
that time, 31 experiments have been 
selected for this first flight of USML. 
The principal investigators form the core 
of the USML-1 Investigator Working 
Group. The Investigator Working Group 
meets to review the development of 
experiments and hardware, modifica-
tions, and the addition of new experi-
ments. They coordinate the experiments 
to match Spacelab power, data collec-
tion, and space capabilities so that 
the maximum scientific return can be 
obtained for the mission. The group also 
recommends selection of the payload 
specialists who will fly on the mission. 
Through the mission scientist, who 
chairs the Investigator Working Group, 
they advise the mission management 
team on science issues.

Slightly more than 2 years before 
launch, the teamwork that is necessary 
for the mission begins to develop. The 
teams for each experiment, the hard-
ware developers, the crew, and teams 
at various ground facilities come 
together to form a single cadre for the 
mission. 

This process begins with crew 
training. The payload crew (two mission 
specialists and two payload specialists) 
travel to laboratories around the country 
to learn the basic science behind each 
experiment and the procedures to be 
used and to gain the skills necessary 
to perform the different experiments. 
They simulate both individual experi-
ments and combined operations at the 
Payload Crew Training Complex at the 
Marshall Space Flight Center in 
Huntsville, Alabama. The combined 
operations training involves practicing 
the activities that will occur during sec-
tions of the mission timeline, which is a 
schedule detailing all the activities to be 
performed during the mission. The time-
line is developed by a team of engineers 
who works with the Investigator 

U$ML-1 Mission Management Team

Working Group and mission manage-
ment to provide balanced use of limited 
resources, such as power and crew 
time, for all experiments. 

While the payload crew is training in 
both the principal investigators' laborato-
ries and the Payload Crew Training 
Complex, the flight crew (the comman-
der, pilot, and one mission specialist) is 
practicing their portion of the mission in 
simulators at the Johnson Space Center 
in Houston, Texas. Also at Johnson, 
the flight director and his team practice 
controlling the flight in the Mission 
Control Center. 

As the year progresses, all the differ-
ent elements of the USML-1 mission are 
brought together in Joint Integrated Sim-
ulations. These simulations tie together 
mission control, the flight crew, the 
payload crew, investigator teams, and 
support crews to form the mission cadre. 
During these simulations, the cadre prepares 
for both routine operations and those 
required should equipment or systems 
fail to operate as planned. 

Also during this time, the hardware 
developed for the mission is shipped 

Mission Scientist 

Dr. Donald Frazier 
MSFC 

Asst. Mission Scientist 

Ms. Barbara Facemire 
MSFC 

Mission Manager 

Mr. Charles Sprinkle 
MSFC	 Program Manager	 Program Scientist 

Mr. Jim McGuire	 Dr. Roger Crouch 
Asst. Mission Manager NASA Headquarters NASA Headquarters 
Mr. Paul Gilbert 
MSFC 

32



System Capabilities 

• Equipment 

Color video monitor 

Stereomicroscope 

35-mm camera 

Black-and-white video heads (3) 

Color video heads (3) 

Laboratory jack 

Back light panel 

Wall lights 

Stray light covers 

Scavenge pump 

Time-temperature display 

'Capabilities 

Gloveports (2) with attachments for gloves or adjustable cuffs and adapters for cameras 

Filtration system 

Heat exchanger 

Electrical outlets: +24 V. +12 V. -12 V. +5 V 

Gas sensors 

Temperature sensors 

Pressure sensors 

Humidity sensors 

Working and stowage volume: 25 liters 

Stowage: 75 kg 
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Oscillatory Ttiermocapillary 

Flow Experiment 

Dr. Simon Ostrach 

Case Western Reserve 

University 

Purpose: To determine the condi-

tions for the onset of oscillations in 

thermocapillary flows in silicone oils 

Importance: Temperature varia-

tions along a free liquid surface 

generate thermocapillary flows in 

the bulk fluid. On Earth, the flows 

become oscillatory under certain 

conditions. By determining the con-

ditions present when oscillations 

begin in microgravity and comparing 

them to oscillatory onset conditions 

on Earth, scientists will gain insight 

into the cause of the oscillations.

14 

Particle Dispersion Experiment 

Dr. John A. Marshall 

NASA Ames Research Center 

Purpose: To investigate how fine 

particles aggregate in air; to evalu-

ate a technique for dispersing parti-

cles uniformly as a starting point for 

aggregation experiments 

Importance: By understanding 

how dust particles in an atmo-

sphere form aggregates and by 

developing a concept of the natural 

end-product of aggregation, scien-

tists can better assess how plane-

tary atmospheres are cleansed 

of dust.

15 
Directed Orientation of 

Polymerizing Collagen Fibers 

Dr. Louis S. Stodieck 

Center for Bioserve Space 

Technologies 

Purpose: To demonstrate that the 

orientation of collagen fiber poly-

mers can be directed in microgravity 

in the absence of fluid mixing effects 

Importance: Collagen polymers 

have potential uses as synthetic 

implant materials; they are readily 

available, compatible with the 

immune system, and made of bio-

logical components. The orientation 

of collagen fiber polymers is critical 

to their functions, and gravity-driven 

mixing on Earth interferes with the 

ability to direct the required orien-

tation of these fibers on Earth.

16 
Zeolite Glovebox Experiment 

Dr. Albert Sacco, Jr. 

Worcester Polytechnic Institute 

Purpose: To examine and evaluate 

mixing procedures and nozzle 

designs that will enhance the mid-

deck Zeolite Crystal Growth experi-

ment; to observe when and where 

crystal nucleation occurs 

Importance: Zeolite crystals are 

used as catalysts and filters. To 

grow useable crystals, the growth 

solutions must be mixed precisely. 

A middeck zeolite growth experi-

ment relies on this investigation to 

provide information that will result 

in the most efficient procedures and 

equipment to produce good quality 

crystals.
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Launch 

to the Kennedy Space Center in Florida, 
tested, and installed into equipment 
racks and the racks placed into a 
Spacelab long module. Testing through-
out this process helps ensure that the 
hardware works on an individual basis 
and as an integrated whole. The com-
pleted module is then loaded into the 
cargo bay of the orbiter, and further tests 
are conducted to check the combined 
operations of both Shuttle and Spacelab 
systems. 

Though the flight of the orbiter is 
controlled from the Mission Control 
Center at Johnson, the science portion 
of the mission—the operation of the sci-
entific experiments—is controlled from 
Spacelab Mission Operations Control at 
the Marshall Space Flight Center. This 

Activation 

facility is the nerve center for USML-1 
science operations. 

At Spacelab Mission Operations 
Control, the mission manager and his 
team oversee the operation of the 
Spacelab payload and monitor the 
progress of the mission. In the Science 
Operations Area, the individual experi-
ment teams monitor their experiments, 
receive data, and formulate changes 
to procedures as needed. If necessary, 
they can even talk directly with the 
crewmembers working on their experi-

ments, providing a level of interaction 
that will help maximize scientific return 
from the mission. 

Mission management and the sci-
ence teams are supported by hardware, 
systems, replanning, and communica-
tions teams also located at Spacelab 
Mission Operations Control. The hard-
ware teams monitor individual facilities, 
such as the Crystal Growth Furnace; 
systems teams monitor larger items, 
such as Spacelab thermal control, 
power, and environmental control 
systems; the replan teams create new 
timelines as changes occur during the 
mission; and the communications 
teams oversee both interfacility commu-
nications and communications with 
the orbiter. 

The mission cadre works together to 
ensure the maximum return for USML-1. 
Potential problems are identified and 
steps taken to prevent them. If prob-
lems develop, they are identified and 
evaluated, and the best possible solu-
tion is implemented. The progress 
of USML-1 is reflected in the people 
making up the cadre, from the frustra-
tion in a voice when something does 
not go as planned to the elation of 
a scientist when the first data appears 
on the screen. 

Upon reaching orbit, the crew oper-
ates in two shifts. One shift prepares 
the Spacelab module and begins work. 
The other shift goes to sleep as soon as 
possible. These two shifts will work 
opposite each other during the mission 
so that experimentation continues 24 

Lower Body Negative Pressure Operations
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hours a day. The Shuttle is placed in a 
special nose-up attitude that will orient 
the Crystal Growth Furnace to the 
direction of flight and minimize thruster 
firings. This helps ensure that any 
residual gravity and acceleration forces 
from attitude corrections interfere with 
crystal growth as little as possible. 

The Investigator Working Group 
meets each day as the Science 
Operations Planning Group to discuss 
the events that have occurred since the 
last meeting. The scientists decide how 
best to take advantage of these events 
or meet the challenges they pose, and 
what—if any—changes are needed in 
the sequence of upcoming events. With 
the support of the diverse elements 
of the cadre, they work to ensure that 
changes to one experiment do not 
affect any of the others adversely and 
that critical resources are shared to the 
benefit of all. 

On the twelfth day of the mission, 
the crew deactivates Spacelab. They 
finish experiments, store products—
such as crystals and data—generated 
over the course of the mission, and 
power down the various systems. 
The sleep cycles of the two shifts are 
merged again, and the crew spends the 
last day preparing for landing at Dryden 
Flight Research Facility in California. 0
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The experiments carried on USML-1 
are at the forefront of efforts to 
advance microgravity materials 
processing research. A research 
effort such as this requires far more 
than just a team of scientists and 
engineers to put the hardware and 
procedures in place. It requires 
knowledgeable control of and inter-
action with the experiments as they 
take place by crewmembers who are 
an integral part of the science team. 
The USML-1 crew consists of five 
career NASA astronauts and two 
payload specialists, scientists who 
have trained specifically for this 
mission. Two other payload special-
ists are alternates and will work 
in Spacelab Mission Operations 
Control during the mission. Should 
one of the flight payload specialists 
be unable to fly, the appropriate 
alternate would fly instead. 

Mission 
(	 .	 Commander 

Richard (Dick) 
N. Richards will 
be on his third 

	

-	 ..	 spaceflight. He 
isaU.S. Navy 
Captain and has 
a B.S. in chemi-
cal engineering 
from the 

University of Missouri and an M.S. 
in aeronautical systems from the 
University of West Florida. He began his 
career flying support missions in A-4 
Skyhawks and F-4 Phantoms and later 
served aboard the USS America and 
USS Saratoga. Following training at the 
U.S. Naval Test Pilot School, Richards 
had a tour at the Strike Aircraft Test 
Directorate. He then served as a project 
test pilot for automatic carrier landing 
systems and accomplished the first 
shipboard catapult and arrested landings 
of F/A-i 8As aboard the USS America. 
Richards became an astronaut in 1980, 
and his first assignment was as a pilot 
on STS-28, a Department of Defense 
(DoD) mission. He then served as 
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commander on STS-41, which success-
fully deployed the Ulysses spacecraft. 
He also performed a materials science 
experiment, the Solid Surface Combus-
tion Experiment, as well as other mid-
deck experiments during this mission. 

Pilot Kenneth 
D. Bowersox 
will be on his 
first flight. He 
is a U.S. Navy 

-	 Lieutenant 
Commander 
and has a B.S. 
n aerospace 
engineering 
'from the U.S. 

Naval Academy and an M.S. in mechani-
cal engineering from Columbia 
University. He began flying as a naval 
aviator assigned to an attack squadron 
aboard the USS Enterprise where he 
flew A-7Es. After completion of the 
U.S. Air Force Test Pilot School, which 
he attended as part of an interservice 
exchange program, he served as a test 
pilot at the China Lake Naval Weapons 
Center. Since joining the astronaut corps 
in 1987, Bowersox has served in a vari-
ety of technical assignments, including 
Technical Assistant to the Director of 
Flight Crew Operations, testing flight 
software in the Shuttle Avionics 
Integration Laboratory, and as CAPCOM, 
or capsule communicator, during several 
missions. 

the University of Washington and a 
Ph.D. in biomedical engineering from 
the University of Houston where she is 
an adjunct professor in mechanical engi-
neering. She has conducted research on 
ionic diffusion in sodium beta-alumina 
and on wetting behavior of liquids on

solid substrates and has examined the 
effects of simulated spaceflight on bone 
strength and fracture toughness. 
Dr. Dunbar has also worked on the 
Space Shuttle thermal protection sys-
tem and evaluated prospective space 
industrialization concepts for Rockwell 
International. In addition, she is a private 
pilot and has co-pilot experience in 
T-38s. Dunbar started at NASA in 1978 
as a payload officer/flight controller, 
served as guidance and navigation offi-
cer for Skylab re-entry, and became an 
astronaut in 1981. During her first mis-
sion, STS-61A, the West German D-1 
Spacelab mission, she performed 
materials science and physiology 
experiments. On her second mission, 
STS-32, she retrieved the Long-Duration 
Exposure Facility using the Shuttle's 
robot arm, was principal investigator 
on the Microgravity Disturbance 
Experiment, and performed medical 
tests evaluating human adaptation to 
extended duration missions. Dr. Dunbar 
will be responsible for Spacelab opera-
tions on the Red shift.

Mission 
Specialist 
Dr. Ellen S. 
Baker, M.D., 
Mission 

Specialist 2 
MS-2)] will be 

on her second 
-	 night. She has a 

B.A. in geology 
from the State 

University of New York at Buffalo and 
a M.D. from Cornell University. She 
served a 3-year residency in internal 
medicine at the University of Texas 
Health Science Center in San Antonio 
and was certified by the American Board 
of Internal Medicine. She joined NASA 
in 1981 as a medical officer following 
her residency and graduated from the 
U.S. Air Force Aerospace Medicine 
Primary Course at Brooks Air Force 
Base that same year. She was selected 
as an astronaut candidate in 1984 and 
completed her training a year later. She 
has been involved in flight crew proce-
dures, flight software verification, opera-

Payload 
Commander 
Bonnie J. 
Dunbar [Mission 
Specialist 1 
(MS-1)] will be 
on her third mis-
sion. She has a 
B.S. and an M.S. 
in ceramic engi-
neering from
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tions and engineering support activities, 
and space station support activities. She 
served as a mission specialist on STS-
34, which deployed the Galileo space-
craft and conducted other research. 

Mission 
Specialist 
Carl J. Meade 
[Mission 
Specialist 3 
MS-3)] will be on 
is second flight. 
He is a U.S. Air 
Force Colonel 
and has a B.S. in 
electronics engi-

neering from the University of Texas and 
an M.S. in electronics engineering from 
the California Institute of Technology. 
Following his time as a Hughes Fellow 
at the California Institute of Technology 
and as an electronics engineer at 
Hughes Aircraft, he entered the Air 
Force and completed Undergraduate 
Pilot Training. After serving as a pilot in a 
tactical wing, he attended the U.S. Air 
Force Test Pilot School and later con-
ducted test and evaluation of various 
fighter aircraft, weapons systems, and 
cruise missiles. Meade later returned to 
the Test Pilot School as an instructor. He 
was selected to become an astronaut in 
1985 and has been involved in verifica-
tion testing of flight software in the 
Shuttle Avionics Integration Laboratory, 
crew escape flight tests, orbiter ground 
egress tests, and launch support duties. 
He also served as a representative to 
the Solid Rocket Booster and the Space 
Shuttle Main Engine programs. Meade 
first flew as mission specialist on 
STS-38, a DoD mission. Col. Meade will 
be responsible for Spacelab operations 
on the Blue shift.

director of the Purification and 
Crystallization Laboratory, and associate 
director of the Center for 
Macromolecular Crystallography at The 
University of Alabama at Birmingham 
(UAB). He holds a B.S. and an M.S. in 
chemistry, a B.S. in physiological optics, 
an O.D. in optometry and a Ph.D. 
Biochemistry, all from UAB. He ha 
authored more than 30 publicatior 
the areas of biology, biochemical and 
X-ray diffraction of visually relevant pro-
teins and microgravity effects on macro-
molecular crystal growth. He is currently 
an adjunct professor in materials science 
at UAB, The University of Alabama in 
Huntsville, and The University of 
Alabama in Tuscaloosa and a scientist 
in the Comprehensive Cancer Center 
and the Vision Research Center at UAB. 
DeLucas also serves on the NASA 
Science Advisory Committee for 
Advanced Protein Crystal Growth and 
holds two patents in protein crystal 
growth.

'esearch scien-
:1st at NASA's 

-	 Jet Propulsio 
Laboratory. 

He has a B.S. in mechanical engineering 
- applied physics from Columbia 
University and an M.S. and Ph.D. in 
applied physics from Yale University and 
has more than 40 research publications. 
His research has been in the areas of 
fluid mechanics, materials science and 
acoustics, and he has studied the behav-
ior of free drops using levitation tech-
niques. He holds six patents for 
levitation and measurement devices 
and has more than 20 hours of low-
gravity time aboard the NASA KC-135 
airplane. Trinh served as co-investigator 
for the Drop Dynamics Module, an 
experiment on the Spacelab 3 mission, 
and was an alternate payload specialist 
for that flight.

Alternate 
Payload 
Specialist 
(Fluid Dynamics) 
Joseph M. Prahl 
is professor of 
engineering at 
Case Western 
Reserve 
University and 
a registered pro-

fessional engineer in Ohio. He earned 
both a B.A. and a Ph.D. in engineering 
from Harvard University. He consults for 
numerous companies and has published 
more than 20 papers on fluid mechanics, 
thermodynamics, buoyancy-driven 
flows, tribology (the study of friction, 
lubricants, and lubrication), and combus-
tion. Prahl provides research support to 
NASA Lewis Research Center in abso-
lute ignition delay times, studies in tribol-
ogy, and on the USML-1 experiments on 
Surface Tension Driven Convection and 
Oscillatory Thermocapillary Flow. 

._-!'	 Alternate 

Polytechnic 
Institute. Sacco also serves on the 
American Institute of Aeronautics and 
Astronautics Technical Committee on 
Space Processing. He holds a B.S. in 
chemical engineering from Northeastern 
University and a Ph.D. in chemical 
engineering from the Massachusetts 
Institute of Technology. He has authored 
more than 50 publications on carbon 
filament initiation and growth, catalyst 
deactivation, and zeolite synthesis and 
has consulted for several companies in 
the areas of catalysis, solid/gas contact-
ing and equipment design for space 
applications. Sacco's expertise enabled 
him to take part in a joint U.S./European 
NATO Advanced Study Institute on 
carbon fibers and filaments. 0 

Payload 
Specialist 
(Crystal 
Growth) 
Lawrence J. 
DeLucas 
Payload 
pecialist 1 

PS-1)I is profes-
sor of optometry,

Payload 
Specialist (Fluid 
Dynamics) 
Eugene H. Trinh 
Payload 

Specialist 2 
PS-2)I is a

Payload 
Specialist 
(Crystal Growth) 
Albert Sacco, 
Jr., is head of 
the Chemical 
Engineering 
Department 
at Worcester
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A Foundation 
for the Future

W

hile scientists have long 
theorized about what 
would occur in an envi-

ronment free of gravity, it has only 
been in the last half of this century 
that research to test these theories 
has been possible. The microgravity 
environment of space has allowed 
the effects of gravity to be stripped 
away, granting access to phenom-
ena previously impossible to study. 
As a result, investigators are learn-
ing that many processes important 
for materials and fluid sciences—
and our lives—are coupled to gravity 
in ways that we are just beginning 
to understand. 

The use of microgravity as a tool 
for science and technology is rela-
tively new. Only since the inaugura-
tion of the Space Shuttle/Spacelab 
system has it been possible to test 
and improve ideas over several 
missions. These first steps in an 
infant research program have 
allowed scientists and engineers to 
refine existing procedures and hard-
ware, to design new experiments 
and facilities, and to begin exploring 
in new directions.

With USML-1, microgravity 
research moves firmly toward matu-
rity on Space Station Freedom. 
Major new instruments, such as 
the Crystal Growth Furnace, the 
Drop Physics Module, and the 
Surface Tension Driven Convection 
Experiment Apparatus, will be flying 
for the first time. Concepts for 
growing zeolite, protein, and semi-
conductor crystals will be tested; 
ranges of fluid behavior never 
before observed will be studied; 
and astronaut interaction with 
experiments will reach a new level 
of sophistication and diversity with 
the Glovebox. The experiments on 
USML-1 will contribute significantly 
to knowledge of basic science 
and the technology of materials 
processing. Equally as important 
as this information are the new 
avenues identified for future 
research on Freedom and other 
advanced platforms. 

Every age of human existence 
has built on the knowledge gained 
in previous times. The space age 
is no exception, with each part of 
NASA's first era of discovery, 
Mercury, Gemini, Apollo, and the 
Shuttle, based on all that had come 
before. NASA's next great era of 
discovery will rise on the foundation 
laid by the first. USML-1 is an inte-
gral part of this process, and its 
results will not only link these two 
eras, but will create a path into the 
future for microgravity research and 
commercial applications. 0

Space Station Freedom 
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Experiment Co-Investigator Affiliation 
Orbital Processing of High Quality Or J. Iwan D. Alexander University of Alabama in Huntsville 
CdTe Compound Semiconductors Dr. Gary Bostwp Rockwell International Science Center 
(Crystal Growth Furnace) Dr. Frederick M. Carlson Clarkson University 

Dr. Donald C. Gillies NASAJMSFC 
Dr. Daniel F. Jankowski Arizona State University 
Dr. G. Paul Neitzel Arizona State University 
Dr. R. R. Neugaonkar Rockwell International Science Center 
Dr. Bruce Steiner National Institute of Standards and Technology 
Dr. William R. Wilcox Clarkson University 

Crystal Growth of Il-IV Semiconducting Alloys Dr. Rosalia N. Andrews University of Alabama in Birmingham 
by Directional Solidification Dr. Lucia N. Bubulac Rockwell International Science Center 
(Crystal Growth Furnace) Dr. Ching-Hua Su USRA Visiting Scientist/NASAJMSFC 

Dr. Frank R. Szofran NASAJMSFC 

Study of Dopant Segregation Behavior Mr. James Kafalas NASA Consultant 
During Growth of GaAs in Microgravity Dr. Shayhar Motakef Massachusetts Institute of Technology 
(Crystal Growth Furnace)  

Surface Tension Driven Convection Experiment Dr. Yasuhiro Kamotani Case Western Reserve University 
(Surface Tension Driven Convection Exp. Apparatus) 

Drop Dynamics Experiment Dr. Martin Barmatz NASAJJPL 
(Drop Physics Module) Dr. Eugene H. Trinh NASAJJPL 

Science and Technology of Surface Controlled Dr. Dan Elleman NASA/JPL (deceased) 
Phenomena (Drop Physics Module) Dr. R. Glynn Holt Yale University 

Measurement of Liquid- Dr. George F. Neilson University of Arizona 
Liquid Interfacial Tension Dr. R. Shankar Subramanian Clarkson University 
(Drop Physics Module) Dr. Eugene H. Trinh NASAJJPL 

Astroculture' Dr. Raymond J. Bula Wisconsin Center for Space Automation & Robotics 
Mr. William H. Dinauer Wisconsin Center for Space Automation & Robotics 
Dr. Neil Duffie Wisconsin Center for Space Automation & Robotics 
Dr. Robert C. Morrow Wisconsin Center for Space Automation & Robotics 

Generic Bioprocessing Apparatus 	 Dr. Marvin W. Luttges University of Colorado 
Dr. Steve Simske University of Colorado 
Dr. Louis Stodieck University of Colorado 

Protein Crystal Growth	 Dr. Shigeo Aibara Kyoto University, Japan 
Dr. Wayne F. Anderson Vanderbilt University 
Dr. V. S. Babu BioCryst, Inc. 
Dr. George I. Birnbaum National Research Council of Canada 
Dr. Charles William Carter, Jr. University of North Carolina 
Dr. Daniel Carter NASWMSFC 
Dr. William J. Cook University of Alabama at Birmingham 
Dr. Edmund Czerwinski University of Texas Medical Branch 
Dr. Larry J DeLucas University of Alabama at Birmingham 
Professor Guy G. Dodson University of York, England 
Dr. Jan Drenth University of Groningen, The Netherlands 
Dr. David J. Duchamp The Upjohn Company 
Dr. Steven E. Ealick University of Alabama at Birmingham 
Or Drake S. Eggleston Smith, Kline & French Laboratories 
Dr. Howard M. Einspahr The Upjohn Company 
Dr. Gregory K. Farber Pennsylvania State University 
Dr. Barry C. Finzel The Upjohn Company 
Dr. Juan Fontecifa Camps Laboratoire de Cristallographie de Macromoles Biologiques, France 
Dr. Arthur Frankel Florida Hospital Cancer & Leukemia Research Center 
Dr. Noel Jones Eli Lilly & Company 
Dr. Yesook Kim Eli Lilly & Company 
Dr. A. Kossiakoff Genentech, Inc. 
Dr. James R. Knox University of Connecticut 
Dr. Thomas A. Krenitsky Burroughs-Wellcome Company 
Dr. W. Graeme La yer The Australian National University, Australia 
Dr. Ponzy Lu University of Pennsylvania 
Dr. Alexander McPherson University of California, Riverside 
Dr. Edward J. Meehan University of Alabama in Huntsville 
Dr. Edgar F. Meyer Texas A&M University 
Dr. T L Nagabhushan Schering Corporation 
Dr. Robert J. Naumann University of Alabama in Huntsville 
Dr. Manuel Navia Vertex Pharmaceutical 
Or P. G. Righetti University of Milan, Italy 
Dr. William M. Rosenblum University of Alabama at Birmingham 
Or Byron H. Rubin Eastman Kodak Company 
Dr. F. R. Salemme Sterling Research Group 
Dr. Benno Schoenborn Brookhaven National Laboratory 
Dr. Vijay-Kumar Senadhi University of Alabama at Birmingham 
Dr. Larry Sieker University of Washington 
Dr. Paul B. Sigler Yale University 
Dr. Robert S Snyder NASAfMSFC 
Dr. Fred L. Suddath Georgia Institute of Technology 
Dr. M. Sundaralingam Ohio State University 
Dr. Robert M. Sweet Brookhaven National Laboratory 
Dr. Paul Trotta Schering Corporation 
Dr. Donald Voet University of Pennsylvania 
Or Keith Ward Naval Research Laboratory 
Dr. Keith D. Watenpaugh The Upjohn Company 
Dr. Patricia Weber DuPont Merk Pharmaceutical Company 
Dr. Ada Yonath DESY/MPG, Germany

Zeolite Crystal Growth 	 Dr. Anthony G. Dixon	 Worcester Polytechnic Institute 
Dr. Robert W. Thompson	 Worcester Polytechnic Institute 

Co-Investigators 
The investigations conducted 
on USML-1 not only bring 
together government, 
academia, and private industry 
but also teams of scientists 
who work with the principal 
investigators in a cooperative 
effort. These co-investigators 
are an integral part of all 
space-based research and 
help ensure both experiment 
success and the maximum 
science return for each 
investigation.
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Glove box Experiment Co-Investigator Affiliation 

Passive Accelerometer System Dr. Charles R Baugher NASA/MSFC Co-Experimenters Dr. Robert J. Naumann University of Alabama in Huntsville 

Just as the major experi- Interfacial Configuration Experiment Dr. Robert Finn 
Mr. Mark M. Weislogel

Stanford University 
NASNLeFtC 

ments on USML-1 have other Solid Surface Wetting Experiment Mr. John Depew NASWJPL 
investigators working with Smoldering Combustion in Microgravity Ms Sandra L. Olson NASA/LeRC 
the principal investigators, Mr. Dennis P Stocker NASA/LeFIC 

so do the experiments con- Wire Insulation Flammability Experiment Dr. Takashi Kashiwagi National Institute of Standards and Technology 

ducted in the Glovebox. Mr. Kurt R Sacksteder NASA/LeFIC 

These co-experimenters are Nucleation of Crystals from 
Solutions in a Low-g Environment

Dr. Sandor L. Lehoczky 
Dr. Donald A. Reiss

NASA/MSFC 
NASA/MSFC 

also an integral part of the Oscillatory Dynamics of Single Bubbles Dr. Eugene H. Trinh NASA/JPL 
research being conducted on Mr. John Depew NASA/JPL 

the mission and help ensure Oscillatory Thermocapillary Flow Dr. Yasuhiro Kamotani Case Western Reserve University 

the maximum scientific return. Mr. Alexander D. Pline NASA/LeRC 

Candle Flames in Microgravity Dr. Daniel L Dietrich Sverdrup 
Dr. James S. T'ien Case Western Reserve University 

Fiber Pulling in Microgravity Dr. Bonnie Dunbar NASA/JSC 
Dr. David Nover NASA/MSFC 

Stability of a Double Float Zone Dr. Narayana Ramachandran USRA 

Directed Orientation of Dr. Todd Bergren University of Colorado 
Polymerizing Collagen Fibers Dr. Marvin W. Luttges University of Colorado 

Dr. Michael C. Robinson University of Colorado 

Hardware Facility Project Manager Location 

Developers
Crystal Growth Furnace 

Surface Tension Driven

Mr. David A. Schaefer 

Mr. Thomas P Jacobson

NASA/MSFC 

Convection Experiment Apparatus 
Much of the attention of

Drop Physics Module Mr. Joe A Hanson NASA/JPL 
the media and public to any

Astroculture' Facility Dr. Robert Morrow Wisconsin Center for Space Automation & Robotics 
mission is focused on the

Generic Bioprocessing Apparatus Dr. Michael C. Robinson Center for Bioserve Space Technologies, University of Colorado 
scientific experiments being Extended Duration Orbiter Medical Program Mr. J. Travis Brown NASA/JSC 
performed. Just as important

Protein Crystal Growth Apparatus Mr. Ronald C Darty NASA/MSFC 
to the success of a mission Space Acceleration Measurement System Mr. Richard DeLombard NASA/LeRC 
as the scientists are the hard- Solid Surface Combustion Experiment Apparatus Mr. John M. Koudelka NASA/LeRC 
ware development teams Zeolite Crystal Growth Facility Ms. Lisa A. McCauley Battelle Advanced Materials Center 
that develop the equipment for the Commercial Development of Space 

needed to perform the van- Glovebou Mr. Roger P Chassay NASA/MSFC 

ous investigations. Often 
overlooked, these groups of 
NASA and private industry 
personnel work tirelessly to 
convert ideas into mechanical 
reality and deserve recogni-
tion for their contributions 
to mission success.
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