Framework Programmable Platform for the Advanced Software Development Workstation

Richard J. Mayer
Thomas M. Blinn
Paula S. deWitte
John W. Crump
Keith A. Ackley

Knowledge Based Systems, Inc.

April 16, 1992

Cooperative Agreement NCC 9-16
Research Activity No. SE.37

NASA Johnson Space Center
Information Systems Directorate
Information Technology Division

Research Institute for Computing and Information Systems
University of Houston-Clear Lake

TECHNICAL REPORT
Framework Programmable Platform
for the Advanced Software Development Workstation

Demonstration Framework
Document Volume II:
Framework Process Description
RICIS Preface

This research was conducted under auspices of the Research Institute for Computing and Information Systems by Dr. Richard J. Mayer, Thomas M. Blinn, Dr. Paula S. deWitte, John W. Crump and Keith A. Ackley of Knowledge Based Systems, Inc. Dr. Charles McKay served as RICIS research coordinator.

Funding was provided by the Information Technology Division, Information Systems Directorate, NASA/JSC through Cooperative Agreement NCC 9-16 between the NASA Johnson Space Center and the University of Houston-Clear Lake. The NASA technical monitor for this activity was Ernest M. Fridge, of the Software Technology Branch, Information Technology Division, Information Systems Directorate, NASA/JSC.

The views and conclusions contained in this report are those of the authors and should not be interpreted as representative of the official policies, either express or implied, of UHCL, RICIS, NASA or the United States Government.
Framework Programmable Platform for the Advanced Software Development Workstation

Demonstration Framework Document
Volume II: Framework Process Description

Produced For:
Software Technology Branch
NASA Johnson Space Center
Houston, TX 77058

Produced By:
Knowledge Based Systems, Inc.
2746 Longmire Drive
College Station, TX 77845-5424
(409) 696-7979

Dr. Paula S. deWitte, Thomas M. Blinn
Co-Principal Investigators

Under Subcontract to:
RICIS Program
University of Houston - Clear Lake
Houston, Texas 77058-1096
Subcontract Number 077:
Cooperative Agreement Number: NCC 9-16

December 14, 1991 - April 16, 1992
Framework Programmable Platform for the
Advanced Software Development Workstation (FPP/ASDW)

Demonstration Framework Document
Volume II: Framework Process Description

Produced For:
Software Technology Branch
NASA Johnson Space Center
Houston, TX 77058

Authors:
Dr. Richard J. Mayer
Thomas M. Blinn
Dr. Paula S. deWitte
John W. Crump
Keith A. Ackley

Knowledge Based Systems, Inc.
2746 Longmire Drive
College Station, TX 77845-5424
(409) 696-7979

April 16, 1992
Introduction to Volume II

In this second volume of the Demonstration Framework Document, the graphical representation of the demonstration framework is given. This second document was created to facilitate the reading and comprehension of the demonstration framework. It is designed to be viewed in parallel with Section 4.2 of the first volume to help give a picture of the relationships between the UOBs of the model. The model is quite large and the design team felt that this form of presentation would make it easier for the reader to get a feel for the processes described in this document. The following pages contain the IDEF3 diagrams of the processes of an Information System Development. Volume I describes the processes and the agents involved with each process, while this volume graphically shows the precedence relationships among the processes. Figure 1 illustrates the parts of an IDEF3 Description.

![Figure 1 Reading an IDEF3 Diagram.](image)

One of the primary mechanisms used for communicating information about a situation is to describe an ordered sequence of events or activities. The IDEF3 Process Flow Description Capture Method was developed to provide a mechanism for collecting and documenting processes. IDEF3 captures precedence and causality relations between situations and events in a form that is natural to domain experts.

The basic syntactic unit of IDEF3 is the unit of behavior (UOB). A UOB can be a function, activity, action, act, process, operation, event, scenario, decision, or procedure. UOBs can have decompositions and elaborations. Decompositions are associated descriptions in terms of other UOBs. As shown in Figure 1, a UOB which has a decomposition is drawn with a shadow box. Those UOBs that are drawn without a shadow have no decomposition.

UOBs are connected through the use of junctions and links. Junctions provide semantic mechanisms for representing the convergence and
divergence of process flows within a network of UOBs. The types of junctions are 'and', 'or', and 'exclusive or', after the logical operators. Junctions can be synchronous or asynchronous, which is delineated by the number of vertical bars. Synchronous junctions have two vertical bars, whereas, asynchronous junctions have one. Fan in and fan out junctions are indicated by the location of the dot.

UOBs are numbered according to their position, reading from left to right, top to bottom. As one goes down into decompositions, the parent's numbers are retained and the children's numbers are appended separated by a period. Thus, the numbering process is recursive.

This document is arranged with the diagrams ordered depth first. That is, the top level diagram is followed by the first UOBs decomposition. This then is followed by it's first UOBs decomposition, and so on until no more decompositions. As with the numbering scheme, the arrangement of the UOBs in a single decomposition is done left to right, top to bottom. After exploring the diagrams in the following pages, the pattern should be recognized easily.
Decomposition of Perform IS Concept & Initiation
Decomposition of Conduct Verification Activities
Initiate Identification Process

Initiate Evaluation Process

Initiate Selection Process

3.1.4.1

3.1.4.2

3.1.4.3
Decomposition of Conduct Engineering Design

- Conduct V&V Activities
- Allocate Requirements To Subsystems
- Define System Architecture
 - Define Interface
Develop Requirements Traceability

Document Requirements Traceability

Partition Design into Increments

Initiate Integration Test Procedures

Document Integration Tests

Decomposition of Allocate Requirements To Subsystems
Decomposition of Decide Whether To Proceed

1. Conduct Reviews (3.4.1)
2. Evaluate Status Report (3.4.2)
3. Evaluate Reviews (3.4.3)
4. Complete Design Review (3.4.4)
Decomposition of Manage Coordination Phase

Evaluate Metric Information
 4.2.1

Re-evaluate Risk Areas
 4.2.2

Modify & Update Plans
 4.2.3

Conduct Final Procurement & Selection
 4.2.4
Decomposition of Prepare for Integration Test Activities:

- Document Integration Test Procedures, Criteria, & Cases
 - 4.3.4
- Develop Test Cases
 - 4.3.1
- Develop Test Criteria
 - 4.3.2
- Develop Test Procedures
 - 4.3.3
Review Designs for Subsystems & Components

Review Requirements for Subsystems & Components

Review Interface Specifications

Document Review Findings

Decomposition of Coordinate Interaction & Implementation of Components
Decomposition of Integrate & Test IS Components

1. Manage Integrate & Test Phase
2. Conduct Risk & Management Control Activities
3. Integrate Subsystems & Components
4. Conduct Integration Tests & Reviews
Evaluate Metric Information
5.1.1

Re-evaluate Metric Information
5.1.2

Document Changes to Plans
5.1.3

Modify & Update Plans
5.1.4

Decomposition of Manage Integrate & Test Phase
Decomposition of Conduct Risk & Management Control Activities
Collect Metric Information

Document Metric Information

Evaluate Metric Information

Re-evaluate Risk Areas

Document Changes to Plans

Decomposition of Manage Deliver IS Phase