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CHAPTER |
INTRODUCTION

In his Treatise on the Mathematical Thecry of Elastieity,
Love* observed that 'When the general equations had been obtained,
all questions of the small strain of elastic bodies were reduced to
a matter of mathematical calculation.'" To this day, that 'matter of
mathematical calculation' figures prominently in applied mechanics.

The early mecanicians realized that the general equations of
elasticity were too difficult to solve except in a few special cases,
so a large part of their effort was focused on methods for finding
approximate solutions to problems of technological interest. Some of
the techniques they used in deriving approximate theories for rods,
plates, and shells are, in fundamental ways, very'similar to the
finite element technique.

Today it is well understood that the classical theories of
rods, plates, and shells may all be systematically derived from
elasticity theory by introduction of approximations for the displace-
ment to the crinciple of virtual work. Kirchhoff fs the first person
mentioned by Love [1] as having used this methodology,** and in using

it Kirchhoff managed to give a clear interpretation of the boundary

hLove (1], p. 2.

oLt
I3

“to derive a thecry of elastic rods; later, elastic plates.

1
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conditions in the plate theory with which his name is now associated.
In two respects Kirchhoff's methodology is the same as the finite
element methodology. First of all, he made kinematic approximations,
and secondly, he used an energy principie to maintain consistency
between his generalized stresses and strains, and to arrive at the
correct boundary conditions. The principal difference between Kirch-
hoff's mefﬁédsiggy éna the finite elémég;mﬁethodology lies in the
degree to thch the kinematic field is approximated. Because of the
similarities in the construction of the classical rod, plate, and
shell theories to the construction of finite element equations, the

successes and failures of the classical structural theories reflect,

at least qualitatively, upon the performance of the finite element
me thod.

No special theory in the realm of solid mechanics has enjoyed
greater success than that of elastic beams, for thgrg the general
equations of elasticity are effectively replaced by a single ordinary
differential equation. The theory is not only reasonably accurate,
but extremely easy to understahd because of it$ displacement based

derivation. The classical plate and shell theories provide equations

less easy to understand and less easy to solve than the beam equations,

but still regarded as simpler than the general equations of elasticity.

A major failing of the classical theories of beams, plates,
and shells is their inability to account for the effects of 'trdns-
V§r§§ §hg§r stress'; that is, the shear stress acting on plane

sections through the thickness of the structure. As a direct con-

quence, those theories always give a higher estimate of the stiffness

2
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of a structure than does the general theory. Secondly, the twisting
moment and shear force are coupled on the edge of such a plate or
shell. }n spite of these shortcomings, it was not until after
Reissner's [2] investigation into the effect of shear stress on the
bending of plates that satisfactory alternatives to the classical
theories became available., But Reissner's methodology has had a
greater impact on the methods used in applied mechanics than did his
plate theory of itself. In its derivation his theory is distinguished
from the classical theories by the fact that both assumed stresses and
displacements are used. Since that time the use of ascumed stresses
in the derivation of plate and shell theories has become common.

It is not surprising that the finite element method has evolved
along similar lines. The motive--finding approximate solutions for
problems of technological interest--was the same for the early finite
element researchers as it had been for the early plate and shell
theorists., The finite element method in which one introduces kinematic
approximations to the virtual work principle is the direct counterpart
of Kirchhoff's rod and plate theories. The same types of advantages
and defects are inherent.

The principal advantage of the displacement based finite
"element methods is their conceptual simplicity. For application to
beams, the simplicity rivals the simplicity of the beam theory itself.
In the cases of plates and shells though, it proves difficult to con-
struct 'compatible' shape functions for the displacement. Finite
elements for thin plates based on kinematic approximations sometimes

overestimate the stiffness of the plate so badly that they are
3
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described as 'locking.' As a means of avoiding locking, and just for
simpler construction of shape functions, some researchers have pre-
sented ‘iﬁéompétfb!e' plate bendfng elements, elements which do not
satisfy slope continuity at element interfaces. A second problem with
displacement based finlte element methods (in general) is their ability
only to satisfy traction boundary conditions In an average sense. One
of the principal advantages of the finite element method over the
method of finite differences is its ability to satisfy higher order
boundary conditions accurately; but this potential is not fully
realized in a purely kinematic formulation.

It was Pian's [3] investigation into the derivation of element
stiffness matrices that brought widéspread attention to the potential
advantages of introducing the stress as an independent variable. By
his formulation, which was based on the complementary energy principle
of linear elasticity, an energy-consistent alternative to incompatible
elements was made available. Also, as was the case In Reissner's
plate theory, the stress formulation made possible considerably more
accurate satisfaction of traction type boundary conditions. Finally,
Pian observed a marked acceleration in the convergence of the
cdmponéntg 6?7f6é7;f{%fﬁé§s hatéix when the stréss method was used.
Since that time, the szdy of finite element methods related to
Pian's (whfcﬁ have come to:beWknoWn as ’hyb?f&réffess methodé;s Has
produced a humberréfrspeéfai methods which may be applied where con-
ventional displacement based finite elements fail.

N ~The failure‘6fv£g;4263yént}oﬁéi éfﬁ?ié’%fé&?ﬁi method seems
always to be attributable to the presence 6? kiﬁémﬁtic éénstraiﬁtﬁ

4
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which cannot be satisfied by approximated displacement fields. In the
case of plates and shells, that constraint is interelement slope
continuity. When the algorithm is based on an-energy principle, it is
always possible to 'relax' the constraint by the introduction of a
Lagrange multiplier. That multiplier always will be a generalized
stress, the 'energy-conjugate' of the kinematic constraint.

One particular class of problems in which the conventionaf
displacement-based finite element method fails is composed of problems
involving incompressible or nearly incompressible bodies. The
constitutive equation for such bodies is nearly or precisely singular
for the mode of dilitation. The shape functions for the displacement
used in the conventional finite element method are incapable of pro-
ducing any motion other than pure shearing which does not contain
(loosely speaking) 'excessive' dilitation. As a consequence, the con-
ventional finite element method drastically overestimates the
resistance to deformation of nearly and precisely incompressible
bodies. In a key paper by Herrmann [4], it was shown that the dif-
ficulty could be avoided if only the mean stress were introduced as
an independent variable. |In this case the kinematic constraint was
incompressibiiity and the energy-conjugate stress was the pressure.
His assuimed pressure formulatioh of finite elements for such bodies
is now a standzrd practice.

Problems involving finite deformations of strain~softening
bodies resermble problems involving nearly incompressible bodies in the
sense that the body's shear compliance is much greater than its bulk

compliance. For the moct part, finite element analyses of such

5




deformations have been accompliéhed only at considerable expense, even

when the pressure is introduced as an independent variable.. No finite

deformation counterpart to the complementary energy principle of linear

elasticity was known, so no pure stress or hybrid stress finite element
algorithm was found.

The door to stress based finiterelehent analysis of finite
deformation problems was opened in 1972 by Fraeijs de Veubeke [5] with
his presentation of a complementary energy principle for finite defor-
mation elasticity.® The stationary conditions of this principle are
both thé equations of compatibility and angular momentum balance. To
date, variants of the principle have been used by de Veubeke and
Millard [6], Sander and ﬁarnd{ (71, Kgitgf [8], Wunderlich and
Obrecht [9], Murakawa [10], Murakawa aﬁd Atluri [117, [12], Murakawa
et al. [13], and Atluri and Murakawa [14], in problems ranging from
elastic membrane theory to beam, plate, and shell theories.

A considerable generalization of de Veubeke's principle was
given by Atluri [15]. His formulation of the complementary principle

for stress rates and spin opened the way for the current work, that

of developing a stress-rate based finite element algorithm for analysis

of large deformations of inelastic bodies. It appears that the sole
other analyslis of iarge deformations of inelastic bodies by any

similar algorithm is that presented by Atluri and Murakawa [14], in

*an invalid principle was presented by Levinson [16], and again -

by Zubov [17). The failure of that principle is discussed by Dill
[18].
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which necking of an elastic-plastic bar and postbifurcation analysis
of a thin elastic-plastic plate was performed. The finite element
algorithm used by those researchers was based on stress increments,
rather than stress rates, and the motion of the elastic-plastic body
was found by summation of increments. It was assumed that the
accumulated error in this procedure could be kept small by minimizing
'residual loads,' as may be done in elasticity. This procedure has a
firm foundation for problems involving elastic bodies (whose deforma-
tions were the subject of Murakawa's earlier research), but is of
questionable validity when the body is not elastic; In their assess-
ment of incremental solution methods for inelastic rate problems,
Argyris et al. [19] conclude that
Inelastic rate processes are in general path-dependent; therefore,
the drift (i.e. the accumulation of numerical integration errors)
cannot be eliminated by residual load iteration, e.g. at the end
of each time step.
Moreover, when the body exhibits relaxation effects, this sothion
technique's numerical stability becomes extremely sensitive to the
time step size. Hughes and Taylor [20] observe that the time steps
required for stability in the explicit time stepping technique are
much smaller than required for accuracy when only quasistat?c deforma-
tions are to be ;nalyzed.

A finzl cbjection to 'incremental' finite element formulations
may be raised on the grounds that there always results an artificial
coupling between the boundary value problem and the initial value
problem. When dealing with 'flow law' type solids it is possible to
treat the hou~dary value problem (for the rates) and the initial value

7
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problem (for the total stress and deformation) separately. Typically
the boundary value problem for the rates is either precisely linear,

or equivalent to a linear problem (without approximation). All of the
nonlinearity falls into the initial value problem. Nonlinear initial
value problems are perhaps the single type of nonlinear problem which
we are best equipped to deal with numerically. |In any case, we are
better equipped to handle them than we are nonlinear boundary value
'problems. The incremental approach has the effect of actually trans-
ferring that nonlinearity to the boundary value problem, where it is
dealt with by residual locad iterations,.

The objective of the present work is to develop a stress (-rate)

based finite element algorathm for analysis of large quasistatic

deformatlons of |nelast|c bodies. In doing so, we discard the notion
of 'increments' entirely. As a direct result, the boundary value

probiem and the initial va!ue problem may be dealt with separately.

The algornthm which results fis applsed to analyze large deformations

of hypoelastnc, hypoelastnc/plast»c, and hypoelast:c/vasc0p1astqc

bodtes

As is true in large deformatnon prob]ems in general, the

formulation of the boundary va1ue prob]em and inlttal value problem

is more complicated than in an infinitesimal deformatlon problem.

The first part of this work,is'devoted”;o”presenting, with reasonable

completeness, the development of the problem. The finite element
algorithm is not presented until Chapter Vil. The initial value

problem is presented in Chapter VIll. Example problems are presented

in Chapter IX. we note from the outset that the finite element

8
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algorithm is considerably more complicated, and involves more
computation, than velocity based algorithms. However from the results
it is clear that the improvement in accuracy over velocity based
methods is substantial; so much so, that in view of the difficulties
encountered in the application of velocity based methods to finite
deformation problems, the present stress based approach appears to be

the more efficient of the two.
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CHAPTER 11
KINEMATICS

Kinematics is the study of deformations of bodies in space,
without regard forrthe forces which cause Ehem. rﬂathgm§§jgally we
represent natural space as a three dimensional Euclidean space E.
Consider the motion of a body through space. The image of the body
in E at the time t is the configuration C(t). As time passes, the
configuration changes, and we say that the body deforms. In order to
study aspects of deformations, we must be equipped to compare configu-
rations assumed by the bbdy at different times. We set out to equip
ourselves thus. Let X be the position in E that was occupied by the
material poiht X at the time T, and let x be the position of that same
material point at the present time t. To indicate the dependence of

X upon X, T, and t, we write

x = ¥ (X,1) - (2.1)
The function XT describes the deformation of the body relative to the
configuration C(T) by 'tracking' each material point from its position

in C(1). It is easily seen that at the time t= T

(%,t) =X . (2.2)

10 ORIGINAL FAGE IS
OF POOR QUALITY



The gradient of XT with respect to X
F(X,t) = [9,X (x,0)]7 (2.3)%
S Xs1's? ’

is called the deformation gradient, and JT is written for the

determinant of ET:

Jo (X, 1) = det F_(X,t) . ' (2.4)
In view of (2.2), it is clear that

F(X,t) - (2.5)
and

J_ (X, t) = +1 . (2.6)
The time derivative of XT is the velocity function vt

v (X,0) = S X () (2.7)

-~
3

The spatia! velocity distribution is obtained by putting X;‘(x,t)

for X in (2.7):

“for an explanation of the special notations used in this work,
see Appendix A.

11
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vOt) =y (0 (n,0),0) (2.8)

It Is clear that at the time t=T

We caution the reader by pointing out that v(x,t) and gr(g,t)'are
entirely different functions.

The velocity gradiént L is defined by

Lix,t) = [Tv(x, 017, (2.9)
and it is clear that when t=T,
| =Ll
- t=T

The symmetric and skew-symmetric parts of L

im

= 3L+ L) (2.10)

~and

w= (L - L") (2.11)

~

have the physical sigdificance of strétching and spin, and are thus

12
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named. The trace of L has the physical significance of dilitation
tr L=Vev , (2.12)
The equation

Jo= 4 (Vey) (2.13)
is called Euler's expansion formula* in fluid mechanics. In view of -

(2.6), when t=r1,

J_(x,t) = Vevix,1) .
T - - -
t=T
We shall frequently write J for (Ve v).
0f course not any tensor field L is the gradient of a velocity
field. The integrability condition (henceforth called compatibility

equation) is
VE:(LT) =0. ' (2.14)

The geierel sniution of the partial differential equation (2.14) is

-
[}

L' = Tvix.t) . (2.15)

X
. Marris, lectures on fluid mechanics, Georgia Institute of
Technclog,, Fall 1978, :

13
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Likewise, if ¢ is a symmetric tensor field and  is a skew-symmetric

tensor field, and (c-w) satisfies the compatib_ﬂity equation

Vx(e-w) =0, (2.16)
then there is a twice differentiable vector field v for which
£ = §(Ty' +7y) C@2an
and -
(2.18)

o= 37y - Ty) o

14
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CHAPTER 11
DYNAMICS

Dynamics is '"that branch of . . . mechanics which deals
with the action of forces on bodies in motion or at rest."* The
fundamental laws of dynamics are called talance ¢f linear mcmerntwr and

balance cf angular momentwn. They are expressed by the equations

d -

dt ﬂ- E-Q (3'])
and

d -

STL-t=0 (3.2)

where H is the linear momentum of the body, L is the angular momentum,
F is the aggregate force, and M is the aggregate moment. |If no con-
centrated or distributed couples are present, and if the reference
frame is inertial, then H, L, F, and M are given in their classical

forms by

H=f vix,t)olx,t)av (3.3
f _

% .
American College Dictionary, Random House, 1970.

%k
V is the reqion in E occupied by the body at the present time.

15
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xv(x,t)p(x,t)dv ' (3.4)

"
#

<
1%

F=f blx.t)plx,t)av + f Tas (3.5)%
vV S :

M =f xxb(x,t)p(x,t)dv +f xxTdsS (3.6)
v S

where p is the spatial mass density, b is the spatial body force

intensity, and T is the true traction acting on the surface of the

body. We now introduce XT(g,t) for x in (3.3) through (3.6), thus

obtaining

T .

'.-'.(, X (X t) x v (X, t)p (X)aV (3.8)
T

E=f b 0o e+ f T.ds (3.9) w
T T

-T-

U=J:’ X (X,t) x (X,t)oT(z()dV +J; X (X,e) x T _ds. (3.10)
T T

S is the surface of V, e e

k% ,
VT is the region in E occupied by the body at time T.
k%

sT is the surface of V11

. ORIGINAL F20F i3
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The terms p (X), b (X,t), and T_ are defined by

T

p.(X) = p(X,T)

b (X,t) = b(x_(X,t),t)
and

T, = 1(ds /ds))

We shall consistently refer to QT as the nominal body force
and to IT as the nominal traction. Inserting (3.7) through (3.10)
into the dynamical equations {3.1) and (3.2), one may deduce by the

usual arguments that

+ - t

-T' + IT = 9 (3-]])' .
= . *%

Ir =00t (3.12)
Vyrto *oebo = ey, (3.13)
- T
Footo (F_+t_ ) =0 (3.14)

*

the + and - indicates that the two tractions act on opposing

sides of a surface with a well defined normal,.

#*ET(Z) = E(x’f)

17



called traction reciprocity, the stress principle, and the local forms
of linear momentum balance and angular momentum balance, respectively.
The stress t. Is called the nominal stress.* If the reference con-
figuration and present configurations coincide (t=1), then it is

easily seen that

and

: t_(X,t) = 1(X,1) .
H t=T -

The familiar dynamic equations are thus recovered:

I+ +T =0 (3.15)
: T=net | ' (3.16)
Vet +pb = oV (3.17)
: I'IT"Q 7 (3.18)

[EER RN T A

“called the Lagrange stress by Prager [21], the First Piola-
. : Kirchhoff stress by Truesdell and Noll [22]; other definitions result
if ITS tocn. instead of (3.12).

18
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where T Is the true stress.*

According to their definitions, the nominal tractions IT and

T dST = T.dS, . (3.19)
Using the stress principle (3.12) and the kinematical relation

-1
n.ds, = J (B)n_<F. (t)as. (3.20)
we obtain from (3.19) the relation between the nominal stresses tT

and t_:
nd g

~

e (6) = 3 R (@) -t () (3.21)

When one of the configurations C(T) or C(Z) coincides with the present

configuration, say {=+t, then we obtain
-1
ET('t) = J ()F (1) - 1(e) , (3.22)
relatir; ths true stress T to the nominal stress te- Of course,

equations (3.19) through (3.22) are for application at a material

point (as opposed to a spatial point).

“also called the Cauchy stress.
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We now set (3.11) through (3.14) for traction rates and stress
rates.* By stress rate we mean the actual time derivative of stress.
This distinction is necessary because in some instances (not in this
work) the word 'rate' is used inte;changeably with the word
'increment.' In this work a superposed dot indicates a material
derivative; that is, the time rate at a material point (as opposed to

a spatial poin{3i

The rate forms of (3;11)'£hrBB§H (3.14) are g&ﬁhéfﬁy’draiﬁg?y

dffferentiation. We thus 6bfain
=0 , (3.23)

=0 (3-21‘)

; VX Tt DTET = PrYe (3.25)
. . . , . T . o e Tt
(Foety #F st ) - (F -t +F -t) =0. (3.26)

<7 ~T =T ~T ~1

From equations (3.21) and (3.22) we obtain

=1

to=aFlet (3.27)

fli 1

% — R ,

this discussion is unrelated to the controversy surrounding
the definition of an 'appropriate stress rate' for constitutive
theory.
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and
i--%g+w)~T+Jr+%. (3.28)

For the stress rate t, equations (3.23) through (3.26) become

-~

T+ii=0 (3.29)
fo=n-t (3.30)
V- E +pb = pv (3.31)
(+w) e Tei-iT-10(c-a) = 0. (3.32)

Equation (3.27) will prove essential in the eventual integration of
the stress rate. Equation (3.28) is important in the reformulation

of the constitutive equations. It is clear that at the time t=1T
ET(eq)' = t(X,T)
< t=t ~

We now discuss the difference between the nominal traction

rate it and the true traction rate i.”,Differentiation of (3.16) yields

(e
H
| b Y
*
[ Xa ]
+
12
.
tde

(3.33)

The rate of change of the normal vector n is

21



okl bl

=nc[-(e+w) + (n-gen)Il. | (3.34)

[ B 1Y

Elimination offa from (3.33) yields

14

ED.[-(E.’.E)'I-@ (DQEOD)Z'FEJ . ) (73-35)

-

From (3.28) ['(€+(£) T 4+ 1] = [E-’f:h'], and since n» i'ii' and

n*Tt=T, we finally arrive at

-~

[ 1]
L}
1 -~fe

- (J-0 ce )T, (3.36)

Though (3.36) was arrived at by manipulation, its physical significance
is easily found out. Consider a force P acting uniformly over a flat

surface S of area A. Then the nominal traction rate j’ is given by

t

jt = (E/A) ’

and the true traction rate T by

T = (B/A) - (A7A)(P/A) .

However, since (P/A) = it and (P/A) = T, this last equation may be

written as

22
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Glancing back at (3.36), it is now clear that the difference between
the true traction rate and the nominal traction rate is due to strain-
ing of the surface. In applications a hydrostatic pressure may be
prescribed on a straining surface. In such a case the formula (3.36)
must be used to relate the nominal traction rate to the true traction
rate.

Some other practical information can be drawn from equation
(3.36). Suppose part of the surface of a body is to be traction-free
during a deformation; that is, T(t)=0. Then i’t=9 is the appropriate
boundary condition for tHe nominal traction rate. The boundzry con-

dition it==g and equation (3.36) yield

T+ (J-n reen)T=0; T(0) =0 . . (3.37)

This is an initial value problem for T(t). The solution is T(t)=0.
However, in a numerical integration of the boundary value problem we
should expect errors in T to be amplified or attenuated as the surface
contracts or expands* (that is, as the coefficient of T above is
negative or positive). Thfs example is simple, yet suggestive of the
types of problems associated with traction boundary conditions on

surfaces which experience large strains.

For notational convenience we define the Kirchhoff stress OT as

“the stability of solutions of the traction reciprocity
equaticn {2.29) depends on the surface stretching in the same
manner. ’ :
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O = J.T. (3.38)
It is clear that at the time t=TT

ngg.t)l = 1(X,T) . (3.39)
teT

The rate of the Kirchhoff stress Is related to the rate of the true

stress by
=T+ JT, (3.40)

and it is clear that when the reference configuration and present

configuration coincide

(3.41)

{Qe
[ ]
.o

t
+

tle

From the last two equations and Euler's expansion formula we find the

relation between 6T and 5 to be
o.=Jo, (3.42)
and it is clear that when t=7T

o t)| =D . (3.43)
=71
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The relationship between the Kirchhoff stress rate and the nominal

stress rate may be drawn from (3.28) and (3.41) as
t=o(etw) T4 (3.44)

This equation shall be used in the reformulation of the constitutive
equations.

The final topic in this chapter is construction of the general
solution of the linear momentum balance (3.25). That equation is of

the form

D,f, +0,f, =0 (3.45)

trte

poand fo=p (b -v.). Just as

= ] = d— =
where DI--Vx . 02 a7 " f] T

for differentials in'the plane, the general solution of (3.45) is

(formally)

f (3.46)

Fy=D0 +ky s 2 = Dotk

where ¢ is arbitrary and ki is any function which satisfies
D.k. =0 (no sum) .

It follows immediately that the general solution of the rate form of

the linear momentum balance is
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. d ) .
tr(X,t) = o= ¢ (X,t) + Uy x ¢_(X,t) (3.47)

DT(Z)(QT(Z,t) - QT(Z.t)) = -on ?T(E’t) + YT(Z) (3.48)

where ?T, ?T. and Y, are arbitrary functions of the indicated arguments.
From our experience with natural bodies, we often expect a
gradually applied statically balanced load to produce a 'gradual’
deformation of a solid body. The obvious counterexamples are snap-
through phenomena, but it is the very failure of the gradually applied
load to produce a gradual deformation which leads us to call such
behavior 'unstable.' The general mathematical model for the motion
and deformation of bodies is not so well understood that one can
ascertain the stability of the motion of a body (subjected to gradually
applied loads) without actually determining that motion and 'inspecting'
it. Of course this is not practical, so it has become common to
anticipate stability (for gradually applied loads).
If we assume that, for sufficiently gradual application of
loads, the ensuing motion of a body is stable, then it is reasonable
to ignore the inertial terms E andri in the dynamical principles (3.1)
and (3.2). This is known as the quasistatic assumption (or less
accurately, the quasistatic approximation). In such a case the

general solution of the linear momentum balance may be simplified.*

We write t as the sum of a homogeneous and a particular solution

N ,
only the quasistatic solution of (3.31) is recorded here.
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t=1t%4+¢° (3.49)
where io is the solution of the homogeneous equation Ve t=0,

*0

t(x,t) = Vxd(x,t) (3.50)

and fb Is any particular solution of
bx,t) + v(x,t) ~Vt_>(g<.t)] . (3.51)

. . *b . X .
A particular solution t~ may be constructed in cartesian coordinates
using indefinite integrals

b 3 '
t.j = -6ijf{p[8_‘tbi + Y.Vbi]} dxi (no sum) . (3.52)

Notice that ib will depend upon v unless v-Vb=0. If the only body
force is due to gravity then one sets V§=9. However, if D'Alembert's
principle is used, then Eb will depend upon _\!‘Vs/.*

The angular momentum balance for E (3.32) involves the stretch-
ing and spin, as well as é For this reason we cannot form the general
solution of that equation by judicious choice of stress functions, as
may be done in the case of the true stress. The function 9 is there-

fore called a first order stress function,

* .
in a steadily spinning disk v*Vv=0, since the radial velocity
vanishes and the acceleration is entirely radial.
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CHAPTER 1V

CONSTITUTIVE EQUATIONS

Introduction

A material is characterized by its response to loads and
deformations. The mathematical model for the load-response behavior
of a material is called its constitutive equation. A constitutive

equation of the form

L = B(t,T) (4.1)
would enable us to set a boundary value problem involving the stress
rate t alone.* The possibility of finding such a constitutive
equation is now discussed. Consider a deformation for which L, E, and
T are the observed velocity gradient, nominal stress rate, and true

stress. If a rigid motion

x' = Q) ¢ (x=x) + x(t) (4.2)

is superposed upon this deformation, then the apparent velocity

gradient, nominal stress rate, and true stress are L', t', and T'

* : S . , L
this form has appeared in the literature; see Hill [23].
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(distinguished by a prime). The tensors L', t', and T' are related to

the tensors L, E, and T by the formulas

t=geLegt+4e (4.3)
tgeitgiegere (1.4)
I'=9.I.9T' (l“S)

The principle of material frame indifference states tiat the mechanical
behavior of the material is indifferent to rigid motions such as

(4.2). Therefore, the constitutive function B must satisfy
L' = B(t',T') . (L.6)

for the same function B. To establish whether or not B satisfies
frame indifference, we use (4.3) through (4L.5) to eliminate the primed

quantities from (4.6), thus obtaining

(4.7)

which must be satisfied by all orthogonal Q and all skew symmetric
6° QT at everv moment of time. In particular, it must be satisfied

- ~

when
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Q=1 T. (4.8)

1O
L]
1

¥ el]

Then (4.7) serves to restrict the form of B:

B, = 8(ier- 4N - § ()

-

for arbitrary skew symmetric é. The right hand side of (4.9) depends
upon é but the left does not. Thus (h.§j%?c;n be satisfied (for
arbitrary é) only if é cancels out on the right hand side of (4.9).
This is not possfbié in general; that is,’no functional form for g
assures that é cancels.*

- This difficulty may be overcome by postulating a new constitu-
tive function ? which depends not only upon E and T, but also upon

w.**  Then we easily replace (4.9) by

~

B, = B(E+1-8onerd - 4, (4.10)

to be satisfied for arbitrary skew symmetric 6. Again, this is only

possible if Q cancels out on the right hand side. Therefore B must

-~

be of the form

8(a,b,c) = F(g-+§ 'E,E) +c; (4.11)

*further light is shed on this problem by Ogden [24].

*E '
or for that matter, any tensor T which transforms by the rule
T'.QCT.QT+Q.QT. i
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in other words,

L=FlistrwD) +u (h.12)
Defining a stress rate é as

p =4Ity (4.13)
and recalling that L-w=¢, we replace (4.12) by

€= f(é,z) . . (4.14)

The stress rate p is called the Luré stress rate in this worz * Frame
indifference requires that F satisfy, for all orthogonal Q,

). Q'

AR RS S D (4.15)

O

Q- Flp,1

A tensor function possessing this property is called isotropic. From
the theory of matrix polynomials [25], we know that if F is a sym-

metric isotropic function, at most affine** with respect to 5, then F

X
p has the physical significance of a 'corotational nominal
stress; 1t has been used by Wunderlich and Obrecht [9] for beams.
ke
an affine function is composed of linear and inhomogeneous
parts; for example, if f(x)=ax+b, then f is affine w.r.t. x so long
as @ and b are independent of x.
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may be represented as a linear combination of the six tensors

-
tn

i e

. * . o -
Irext+1'or) i(res+ser) ,

77”- . oT '
where r=%(p+p' ) and s=T1' »1'. However a more useful representation

of ¥ can be found which depends upon the traditional form of the

constitutive equation. Thus, we defer further discussion of F unti)

after the traditional form has been presented.

Traditionally one assumes a constitutive equation of the form

Qe

= E(e,0,1)

(L.16)

It is a simple application of the frame indifference principle to show

that E must be of the form

Elabic) = Lla,c) +bre-crb

50 we febiéce (4.16) by

tQe
]
tE
L]
t -
+
e
L ]
tg
fl
[} -

where £ is a2 symmetric isotropic function,
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the corotational stress rate O* by

(b.19)=*

1Qe
+
H
Qe
]
tg
.
A
+
e
tE

If £ is at most affine with respect to €, then the general form for

(4.18) is

(4.20)

tQe
*
[ ]
g
™
+
1

where the fourth order tensor V and the second order symmetric tensor
[ )

L depend upon the stress. The components of V and I, in cartesian

z ~ <

coordinates may be set in the forms

_ N 12,0 13
Vijkl A (éijskl) + A (éikal) + A (Gijsk]) (4.21)

Ti %0 )

22, ! 23,
+ 25 Y + A (Tikal) + A (Tijsk]

31 32 33
+ A (Sijdkl) + A (Sikal) + ) (Sijskl)

)+ (s 5. )

i 2 ¢
2 (8 85)) T8, T T &y DEETRRIPUT

*the essential property of this stress rate, or any other stress
rate described as ‘corotational' in this work, is that it is absolutely
insensitive to rigid spin of the body. In frames in which the spin
vanishes, such stress rates always reduce to ordinary time derivatives

of stress,
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and

el 2. . 3 R
zij n éij_+ n Tij +n sU . (4.22)

In (4.21) and (4.22) T;j,is the stress déviater, ¢, fr;;fgj, and

if At e adt

Y, e

A, uir,, and ni,are functions of the FAvariants of
through (4.22) include, as specidl casés, thé theoFies of Kypoelastic
and Rypoelastic/viscoplastic éoaféé. and with sTight aoafffcaffon,
plastic bodies. These shall bé diséussed individually at the end of
this chapter.

We now con‘sfruct' from (4.20) & réprésentation for F (5.14).
Recalling from (3.44) that the nominal stress rate and the Kirchhoff

stress rate are related af
t=[c_ (€+w)'Tj !7

it is easily seen that the relationship bétween the Lurée stréss rate

and the Kirchhoff stress rate is

Trw=(0- (e+w) Tl + 1w .

-

[a el ]
t.
r~e
+

This yields. using the definition of the corotational stress rate,

(4.23)

1y e,

"

qQ

* |
. |
|

M

.

¢t
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The symmetric and skew symmetric parts of 6 are given by
\ . oT . .
ilp+p ) =o% - y(ecT1+T1¢) : (4.24)
and
. -T .
$lp-p ) =-tlect-1-¢) . (4.25)

According to angular momentum balance, the latter of these (4.25) must

be an identity. Using (4.20) to eliminate 0* from (h.2L) yields

(4.26)

1.
n
nE
1M
+
tt1

where W is defined by

[ ! ¥ _ 1
wijkl = Vijkl - ’(GikT1j+Tik51j) ?Tmm(sikélj) . (b.27)

Note that if V is symmetric then W is symmetric also.
=~ L]

The stress rate ;
. 10 oT "l -T
r=3i{p+p ) = Hlt+Tew-wT+t ) (4.28)

is called the symmetrized Luré stress rate in this work. It is the
time rate of 3 symmetric nominal stress used recently by de Veubeke

[26]), and cazlled by him the Jaumann stress. Since the corotational

stress rate (%) i3 nften called the Zaremba-Jaumann rigid-body stress

-
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rate, different from the rate of the stress used by de Veubeke (E), it
would be likely to cause confusion if the name Jaumann were assigned to
any stress rate in this work.#* L __

| f ¥ is invertible, then thé cdnstitutive equaf!on (4.26) may be

written
€ =W :(F-1) ©(4.29)

and we see that the function F (L.14) corresponding to (4.20) is

represented by

Fo1) =W iG] - I, | (4.30)
where W is defined by (4.27).

in applications one is usually given the constitutive equation
in the traditional form (4.20), (4.21), and (4.22). To obtain the
form (4.30), one must construct ! according to (L4.27) and then invert
E, if possible. This is a major undertaking from a computational point
of view, for ! will generaffy be different at each point of a stressed
boﬂy,ieven when y'is conéf;ht. rTherefore speéial:;;féﬁtion is giQen to
practical methods for construction of S-]. For plane problems E-‘ can
be found in closed form. For general problems in which !" is known

. -1, 3
a truncated power series for W is often of acceptable accuracy. The
~ : , ST

details of these two special cases are discussed in Appendix B.

*
see Atluri [15]. -

36 ORIGINAL PAGE IS

OF POOR QUALITY

n

(ARG

1

[T

!

Lom



Hypoelastic Bodies

If §==9 in equation (4.20), and the coefficients Aij and u‘ are
analytic functions of the stress Invariants, at least in some open
region of stress space (containing the origin), then the body is said
to behave hypoelastically in that region [26]. No relaxation phenomena
will be exhibited by the body so long as §==Q. The state of stress at
a material point will depend upon the deformation history, but not upon
the speed of the deformation. This makes it possible for us to use any
monotonically increasing parameter, such as a characteristic displace-
ment, in place of natural! time when studying the deformaticins of
hypoelastic bodies.

The first approximation to the behavior of any hypoelastic body
for small deformations from the stress-free state is obtained by setting

T=0 in (4.21). Then V may be written as

Vijkl = k(éijék]) + zu(éikalj) , (4.31)

where A (Lame's constant) and u (the shear modulus) are defined

M=
=0 =0

e

Referring to (4.27), we construct W as

W..

]
ke x(éijsk]) + (2“"3'Tmm)(5ak5|j) (4.32)

- 8 T T 6))
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The constitutive equation given by (4.31) must be regarded as

the simplest possible model of solid behavior. It is doubtful that any

real material behaves as predicted by (4.31) when deformations are
finite. Its popularity stems not only from its simplicity, but from

the success it has enjoyed in infinitesimal strain theories, and the

lack of physical data needed to use more sophisticated models. Never-

theless, there is a point beyond which any semblance of real material
behavior vanishes from (4.31). Consider rectilinear shearing from a

stress-free state:

The constitutive equation (4.31) predicts the following stresses [27]:

T,, = usin(kt) ; Ty ™ "Tp ™ u(l - cos(kt)) .

12

Until the time that kt= 3m, the shear stress le Increases, After

that time T‘z decreases, even though the shear strain continues to

increase. In this particular problem we may take (kt) to be a measure

of the strain; beyond the strain kt=43m, (4.31) fails to provide an

'acceptable model of aﬁyrhéterla!'s behavior.

The rectilinear shearing example above is such a simple
deformation that we were able to rely on intuition alone in deciding

the limit of applicability of the equation (4.31). For more compli-

‘cated deformations (and/or more complicated materials) our intuition
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is not so strong. The notion of 'realistic material behavior' needs
to be set down in a form which (minimally) allows us to distinguish
between 'realistic' and 'unrealistic' deformation processes. This is

the role played by thermodynamics in modern continuum mechanics [28].

Yield Surfaces

ft is well known that metals exhibit behavior which is more or
less elastic so long as strains are small. In other words, when
moderate loads are imposed, then removed, the elastic body returns to
its original shape. |f more severe loads are applied to the body, theﬁ
removed, some permanent distortion of the material may occur. The
mechanisms of inelastic behavior may become active very suddenly, as in
mild steel, or only gradually, as for lead or copper [29]. In any
case, one way of idealizing the transition is to introduce a yield
surface to stress space, inside of which the mechanism of inelasticity
is dormant, on or outside of which the mechanism is active. The yield
surface may change during the deformation as dictated by the change in
the yield behavior of the real material being modeled. After the
initial yield of the material, the surface is usually call?d the load-
ing surface.

The voB Mises' yield criterion is the most common of those found
in the engineering literature. The equation of von Mises' surface is

expressed by either of
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JOJ-;- 1. olz(k) -0 ; (4.33)

where 0“ and 012
e e

are material functions called the effective uniaxial
stress and effective shear stress, rgspectively. The parémeter k is a
monoéonfcal!y increasing invariant dfrthe local plé;glg deformation
history. The function c;](k) must be determined from uniaxial test
data, and the function olz(k) must be determined from plane stress or
§train rectilinear shearing test data. The scalar Jo is the volumetric
strain relative to the stress-Free state. It must be included in the
first of (4.33) because in uniaxial tests, the total loéd P and length
1 are measurable. The initial dimensions of the specimen are known,

so the measurable stress Is 0]]-

0’

11 1 -
o, =J,T = (Al/Aolo)(P/A) P(I/AOIO) . (4.34)
Similar arguments may be given for Inclusion &f Jo in :hé second of
(4.33). The usual Mises' criterion is recovered by dividing (4.33)
through by Jo. In practice Jo would usually be expressed as a

function of the mean stress:

Jy= 3A+ Zu)/ (32 + 2 - T 1) (4.35)
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Of course o;]and o,  cannot be independent; in view of (4.33)

they must be related as

1" 12
o, (k) = V3 g *(k) . (b.36)

If physical data cannot be reconciled to this condition, then the
body in question does not admit von Mises' representation of the load-
ing surface. e -

One might suspect that von Mises' criterion Is no more than an
extreme idealization. However, according to Hill:*

experimental data for mild steel . . . suggests that the yield
locus changes over from a hexagon to a circle with progressive

cold work. However, for other steels, and for copper and aluminum,
von Mises' criterion appears to fit the data equally wel! no mat-
ter what degree of prestrain.

So, while it is indeed an idealization, its agreement with physical
data for some metals }s quite gooa; Nevertheless, the small dif-
ferences may be important. According to Christoffersen and Hutchinson
[31], who have proposed a class of 'corner theories' of plasticity,

it Is generally agreed that the simplest flow theory built upon
the assumption of isotropic hardening using the Mises yield sur-
face underestimates certain crucial plastic strain components in
a non-proportional stress history such as encountered in buckling
or necking.

In contrast to a smooth yield surface characterization, a corner
theury wiii mosL iikely overestimate certain components of the
plastic strain increments in the vicinity of an abrupt change from
proportional loading.

X
Hi1l [30], p. 2&.
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As a consequence, ''calculations based on a flow theory with a smooth
yield surface give necking-type bifurcations at strain levels which
far exceed realistic values' [31], while calculations based on corner
theory can be expected to provide conservative es;jmates of the
bifurcation strain. Finally, according to Tvergaard et al. [32], who
have presented a numerical study of flow localization in the plane
tensile test,

Analyses carried out within a theoretical framework . . . reveal

that the classical elastic-plastic solid with a smooth vield sur- .

face is quite resistant to the localization of deformation into a
shear band.

The resistance of the classical elastic-plastic body to intense local

deformation may even be sensitive to the yield criterion's independence

from thermean stress (such asithét 3nduced by ﬁ disfr{butionrof voids).
Thus, the circumstances under which von Mises' critefién E;nrbe
expecteﬂiééﬁpfovide reasonable results have not been resolved.

We observe that, as a rule, smooth deformations are found when
a smooth yfeldi;f}tergbn is uséa. This mayrbe an over-simplification;
but it is borne out by the weight of solved problems in the literature,.
Regarding finite elemenis,rénd the goals of the present work, this is
important béﬁgu;é”we may be reaséﬁaﬁlyﬁcqnfidgn; thatrintéhgé local
deformations, which woula require a much finer finite element mesh
thaqﬂhgs been 9599'”¢9 qqtﬁp;ﬁgr. In view of the discussions of
Tvergaard et al. [32], it would seem less safe to make such an
assumption if the most common alternative to von Mises' criterion, the
Tresca 'maxi;;ﬁrsﬁear stress criterion,' were used,Agince thatwsurface‘

has vertices. |In this work, von Mises' criterion Is used exclusively.
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The parameter k Is usually chosen as either the 'plastic work'
WP or some variant of Odquist's 'plastic straln' q, defined by

Kachanov [29] as

. ‘
wP -f 7:ePdt ; q, 'ft Jasp : P de . (4.37)
0 ~ ~ 0 < =

Notice that both of these Increase monotonically during plastic

deformation. In uniaxial extension
el Mp '.‘/gp.p,p.
Wh=ToEy s 9 7E € ST
3

or in rectilinear shear (plane strain)

P, 12p ',‘,p.p_p
W 27T 512 H q2 25 : € 25]2 .

In any case we can find a functional dependence between WP and 9,

since
dwp/dqa = (1: gp)/(agp: gp)ir >0,

so the choice of parameter is largely a matter of convenience.

Hypoelastic/Plastic Bodies

We give a brief sketch of the theory of hypoelastic/plastic
bodies. The reader is referred to Hill [30], Prager [33], and

Kachanov [29] for extendad treatments of the theory.

43



As was discussed in the main text of this chapter, the
mechanical behavior of an isotropic body is completely known once
material functions A‘j, ui, and ni are known (see eguations 4.20
through 4.22). However, no sérles of physical tests can be devised that
would determine these material functions completely. In the face of

‘, and n' which

such indeterminancy, it is customary to choose Aij, u
produce the simpiest constitutive equaticnrcapab!e of explaining the
behavior which has been observed.* The classical theory of plasticity
for polycrystalline metals is Just such a theory.

Suppose the plastic stretching Ep depends upon the stress and

stress rate as

where !' and I' are of the forms (4.21) and (4.22). Then from the
apparent absence of relaxétion phenomena, at least for quasistatic
cold-working of the material, one concludes that §' must vanish., The
physicélly observed incompressibi]ity of plastic deformation places

the following restriction on !':

l:v' =0 . (L4.38)

*
It is entirely possible that (4.20)-(4.22) and the physical
data cannot be reconciled; in such a case one must discard (4.20)-

(4.22). - :
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From a series of uniaxial tests in which the Kirchhoff stress 0;, is

found as a function of the logarithmic strain

t
j; €, 4t = 1n(1/1 )

we establish the following relation between &gl and ITE
=11 - n _ N
9 /€11 {JoEt(k)} when o ' =0, (x)

1 '
and o 'e, > 0 (4.39)

1]
9, /e]' {JOE(k)} otherwise

which is used to further restrict V'. The material functiore in the

-~

general representation for V' cannot be determined uniquely from the

-

restrictions (4.38) and (4.39). However, a very simple solution may

be found as follows: we assume that
V o= A“t'7 . (4.b0)

This form satisfies (4.38). Now we define A22 so that (4.39) Iis

satisfied. The plastic stretching is given by

M2 (1! 1 6%) = P (b.41)

-

The scalar product T': eP is therefore

~
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AZZ(T t 1 "Y' :or) = 7' i eP .

Putting 1’ = (1

equation we find that
22 ' P t y
ASC = (2717 ) (awP /1)) (4.42)

The function (dwp/dl;:) may be determined from the unlaxial test data

(4.39) as follows:

P o1 p g . S T | E1 DY
dw T e”dt ; d't 3 c dt :
SO
(awPrart) = 3 (P /6™ . (4.43)

Recalling that éo-"oé’ we get from the test data

(576" = o, [e-€%/5)"1 = e 01! - {00 ")

. = (1/h) . (k. 4b)

On replacing c;‘ by JOJ% 1' , and recalling (4.42) and (4.43), we

finally obtain AZZ’ as

46

eim |

O A o i e 1 |



2= (20)7 (@)]ee 0017 - (€] for Toading

. . 1 ,
(nf Js z o, (k) and T:E > O)

=0 otherwise (b.45)

or, in terms of the function h, defined in (4.44) above,

A2 - (%-I'h)-] (%) for loading (4.46)

= 0 otherwise.

Values of the function Et(°) are called the tangent mndulus.
Values of E(°) are the instantaneous Young's modulus. The function A22
is multivalued on the load}ng surface; this is the sole source of non-
linearity in plasticity theory. |If the dependence of A22 upon k were
removed then A22 would be single valued on the yield surface. The
resulting hypothetical material is encountered in the context of
uniqueness theory, and is called the 'linear comparison solid' there.

The complete constitutive equation is obtained when we consider

the total stretching® to be the sum of elastic and plastic parts:

c=ef+ P =y o (4.47)

i.e., Lhe svameiric part of the velocity gradient.
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Notice that V ! thus defined is symmetric; that is
~

-1 -1

Vijkt = Vi

Since AZZ is multivalued on the yield surface (4.47) is not linear.
We note the agreement between the present equations and those of

McMeeking and Rice [34].

Hypoelastic/Viscoplastic Bodies

The theory of viscoplasticity is similar to classical
plasticity theory in the sense that it provides the simplest constitu-

tive equation capable of explaining the uniaxial test data of certain

matgrials. The differénce is that the materials being modeled exhibit

creep and relaxation. The viscoplastic model common In the literature

1s compatible with
isotropic yield behavior
h];§1ic fhcémb}ééségfﬁ?i;f""
uniaxial creep and rela;atién tests.

The representation of the viscoplastic stretching e¥P found in the

monograph of Perzyna [35] is of the form

e =y’ (4.48)

where y is a function of the stress invafféq;; and perhaps the

deformation history. It may be determined from uniaxial test data in

basically the same manner as AZZ was determined for a plastic body.
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Suppose that from uniaxial tests we establish

vp _ 1 11 11
€11 ¢(Uo yk) when o > o, (k)
(4.49)
= Q otherwise.
For uniaxial tests, the general equation (4.48) reduces to
v o2 11 n
€13 3 Yo, /Jp when 1> o, (k) . (4.50)
Using the result of the uniaxial tests, we find v as
VP
Y =-g-J ” -g-Jocb(c];.k)/cl] when , '?c”( k)
%
(4.51)
= ( otherwise .

The complete constitutive equation is obtained when we consider the

total stretching to be the sum of elastic and viscoplastic parts:
eme®+ePav! ons yt' (4.52)

where

Vukl (S22) (88090 - F (558, - (h.53)
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and y is defined In (4.51). Notice that V' | is symmetric. Only this
simple model of viscoplasticity is used in the examples accompanying

this work.

[/ |
I

[

[ P

| Ll
[T A

30



CHAPTER V
BOUNDARY VALUE PROBLEMS

In the preceding sections we have treated kinematics, dynamics,
and material behavior as distinct subjects. We obtained equations of
compatibility (2.16), linear momentum balance (3.31), angular momentum
balance (3.32), and the constitutive equations (4.20) and (4.26).
Presently we regard these equations as a system of coupled partial
differential equations. It is worthy of special note that all of
these equations are linear, with the exception of the constitutive
equation in the case of a plastic body. For ease of referen~e we col-

lect these equations below:

Vx(e-w) =0 in V; §-GE+9+Vy =Q0ons ; (5.1)
Ve §+-p§ =0 in V; ne é = it on S ; (5.2)
Hle+w)er+t -1 "Ttlemwl=0 e v (5.3)
teVig-erT-Trusl; (5.4)
§=\;l'l.: [i(§_+3°9.-9'3+§‘r)-§]; (5.5)
v = § on Sv H (5.6)
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Hill

DL

=T, on s, (5.7)

These equations have been discussed Individually In the preceding
chapters, with the exception of the second of (5.1), and (5.4). The

constitutive equation (5.4) follows directly from (4.20) and

In the second of (5.1) s is an arbitrary surface tangent; the equation
is essentially a counterpart to the stress principle, as it relates the
(two-dimensional) surface-velocity gradient to the (three-dimensional)

velocity gradient. We shall imply only symmetric tensors by writing

£: € - ET -0 (5.8)

w: W+w =0, (5.9)

This is rather trivial, but nonetheless necessary to complete the
system of equ&tions (5.1) throQgHV(5Q7). For the sak? of clarity we
shall often refer to (5.1) as 'compatibility,' (5.2) and 'LMB' (linear
momentum balance), (5.3) as QAMB' (angular momentum b;lapce), (5.6) as
;VBijjiéiécity boundary conditipp); éﬁ;7(5.7) as 'TBC' (tractiéh

boundary condition). We call the system of equations (5.1) through
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(5.9) 'the general boundary value problem.'
As discussed, the general solutions of compatibility (5.1) and

LMB (5.2) are given by

€ = i(V!T + Vy)
(5.10)

w = 4(Vy - Vy)

and

(5.11)

respectively. The remaining equations of the general boundary value
problem (5.3) through (5.9) are algebraic in character. Derived
boundary value problems are those obtained from the general boundary
value problem through use of (5.10) or (5.11). Usually one uses (5.10)
to eliminate € and w as varfables from the constitutive equation (5.4),
so that €, W, and i are all determined by v. Owing to the special
structure of the constitutive equation (5.4), AMB Is satisfied
implicitly for all such €, W, and E. Upon elimination of i from LMB,
one obtains a single second order partial differential equation in v.
We call this the First boundary value problem. Alternatively, one may
use (5.11) to eliminate é from the constitutive equation (5.5), so that
€ is detérmined By 9 and w. Subsequent introduction of g (via i and E)
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and w to compatibility (5.1) and AMB (5.3) yields a first order and a
second order partial differential equation for 9 and w. We call this
the Second boundary value problem. - |

The First boundary value problem {s appealing to the practitioner
because of the clear physical significance of the principal variable,
the velocity field, and the simplicity of'thg boundary conditions. The
Second boundary value problem is unattractive becauge the stress
functions lack physical appeal, the boundary conditions are complicated,
and because it involves two coupled equations in two unknowns. In
either case, construction of closed form solutions is virtually
Impossible. It is this intractability which leads us to search for
and study methods by which the solutions of these two boundary value
problems may be approximated.

Two approximation methods for boundary value problems of solid
mechanics dominate the current fiterature, namely, the method of
finite differences and the finite element method. The finite dif-
ference method is, for the most part, reserved for dynamic (i.e. wave
propagation) problems. Only rarely is it used for analysis of quasi-
static deformation problems. In using the finite difference method,
one attacks the partial differential equationsras th;y stand. However
the finite element method requires that one first gemeralize the
equations (5.1) through (5.9). In the engineering literature thi$
generalization Is accomplished by finding a variational problem which
is 'eqqiva]gptf to the original problem. Perhaps nowhete can a more
lucid exposition of the fundamental variational principles of solid
mechanics be found than in the monograph of Washizu [36]. His modus
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6perandi Is adopted here.

The es§ence of Washizu's method Is to use Lagrange multipliers
to 'enforce' the equations (5.1) through (5.9) of the general boundary
value problem. These multipliers turn out to be the displacement,
stress, traction, etc. After discussing two 'virtual work' principles,
he supposes the existence of a potential for the stress (the strain
energy), and shows that all the variational principles of classical
linear elasticity may be systematically derived from the ''generalized
potential energy principle' now known as the 'Hu-Washizu' principle.
The principles discussed in this work are named 'virtual wcik,'
'potential energy,' 'Hellinger-Reissner,' etc., in analogy to the
principles of linear elastostatics.

We begin with the generalization of the linear momentum balance
(5.2). Let us momentarily regard Sv as a Lagrange multiplier. Then a
stress rate i and a traction rate it satisfy LMB (5.2) and the stress
principle if |

Jr-vet-ob1-oyav - f (F -n-tlevds =0 (5.13)
v S
for arbitrary §v. In (5.13), as in (5.2), E apparently must be dif-
ferentiable. but Sv need not even be continuous. Now, by formal

integration by parts,* (5.13) may be transformed to

*
throughout this chapter, integration by parts is formal.
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Jri:vsy-cb-oylav- f T -svdas=0 (5.14)
v - T T T s "t T |

tb be satisfieérfd; ;rg;tf;ry Gg. ’|$1(511L) ;pﬁérentfyzgrnegdfﬁot be
continuous, but Sy must be once differentiable. Any stress rate é
admisgible trpltrhierﬂcrlas;slrcv;alr éﬁbr;ﬁfaﬁ»’filr.ﬁisw(s.é)wis also admitted by
(5.14), but the converse is not true.* Therefore we call (5.14) the
generalszed' linear momentum balance, and write LMB (5.14). Any i

and f huch satlsfy the stress prtnc:ple and LMB (S 2) necessaraly
satisfy (5.14). | ’

Consider the modified general boundary value problem composed by

replacing LMB (5.2) by generalized LMB (5.14) and elimfnating compat-

ibility through use of (5.10):

£ = %(VyT + Vv) ; w = &(VyT - V) ;
S 1898y - ob csvlav - f f - 6yds =0 (5.15)
v "~ S
for arbitrary v ;
t=6le,w1) Te=Tp on Sgs
v=y on S . 7 (5.16)

Every solution of the gemeral boundary value problem (5.1) through

*In particular, (5.14) admits piecew:se continuous stress rates,
whereas (5.2) does not. -~ R
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(5.9) is a solution of (5.15) and (5.16). If we admit only y=y on

S,» Sy=0on s , and it'i on S, , then one easily reduces (5.15) to
a functional of the velocity field alone. This comprises the prineiple
of virtual work. The virtual work principle is the most common basis
for finite element algorithms used in engineering today. Its strong
appeal stems from its overall simplicity. In arriving at (5.15) no
assumption was made which restricts the from of the constitutive
function G, except that all E"G(E’Q’I) satisfies AMB (5.3). As an
alternative to retaining VBC (5.16) as a subsidiary condition, we may .
'enforce' it by introduction of the Lagrange multiplier Git on Sv'

We replace (5.16) by

J i, « (¥-yds =0 for arbitrary 6f, . (5.17)

S
v

If we admit only jt"f; on SU , then one easily reduces (5.15) through
(5.17) to a functional of only v and jt (on S ). We call this the
Second virtual work principle. |t is not used as a basis for finite
element algorithms in engineering because the velocity boundary con-

dition is so easily enforced; that is to say, introduction of the

extra variable f Is a greater effort than a priori satisfaction of

t
VBC and év=0 on Sv'

By a procedure similar to the one above we may obtain the
generaiization of the compatibility equation. Let us momentarily
regard the stress function & and the surface tangents ng as

Lagrange multipliers. We write (Gngj) as (g"&?). If € and w (in V),
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and v (on S) satisfy compatibility (5.1), then they necessarily satisfy

J 9x(- w6000 + f (0x80): (-c+w+Ty)ds = 0
v’ L. -~ ~ S - -~ -~
(5.18)

for arbitrary 6§i Just as for LMB, we formally integrate by parts in

J -+l (Fxs0)av + f (ax88) : (Vy)ds = 0 (5.19)
v s

for arbitrary 89. 7Forrthe same reasons that we called (5.14) a
generalization of LMB, we call (5.19) a generalization of compatibility.
In this form it is easily seen that only the in-surface components of
(Vg) influence the value o¢f the functional. |If §r w, and v are found
~which satisfy (5.19) identically for all 89, It Is incorrect to con-
cludéwghéii(g- 9)-V! anywhere in V;Vor evén on §5; only the in-sufface
compdnents off(Vifrhiffﬁéﬁféé with (E-'gf on . 76%?6ffu63tely this
rrfaéé isrnéirs;édght out fg ﬁhe:TiE;réfure, andris'obgé;réa?syrthe
conventiqééjiégfm of (5.19); whiéHer;géw give. Usfnérthér%a}mufa

(integration by parts)

S (ax68) 1 vyds = f 0 (7x50) « yas (5.20)
s - S -

and identifying (Vx §9) as éé (in agreement with 5.11), equation

(5.19) becomes
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Jl-e+ur:siav+ [ nesioyas=o0. (5.21)
v - T S N

it is clear from the present derivation that 8t (in 5.21) is subject to

no constraint except
8t = Tx 45 .

Consider the modified general boundary value problem obtained by
replacing compatibility (5.1) by generalized compatibility (5.21),

and using (5.11) to eliminate LMB:

f[-e+w]: 6Edv+fg'65'gd5-0
v . b S -

for all 6t = VX &0 ;

1‘:=Vx<!>+£b; r_x*E-j't; u)-l-wT-Q;
(5.22)
. «T
(e+w)eT+t-t =-71°(e-w) =0 ;
", . . T
=G (r,1); r=i(t+Tew-weT4e) ;
v=y on §,
(5.23)

Every solution of the general boundary value problem (5.1) through
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(5.9) is a solution of (5.22) and (5.23). |If we admit to (5.22) only

2 . . o
-It on S, n* 65-0 on Sc’ and (_E,g_)) which satisfy

lerve

y=ions, 0
AMB, then we can reduce (5.22) and (5.23) to a single Functional. This
functional, when we are able to construct such i and w, comprises the
yrinciple of complementary virtual work. Except for pathological
ctases, construction of those i and w I's Impracticable. The problems
associated with the use of the cbmpleméntary vfréué? wﬁ%kxpfinchWe in
its 'pure' form (5.22 and 5.23) may be avoided if AMB (5.3) and TBC
(5.7) are incorporated into the principle by introduction of the
Lagrange mult’irp’lriersr thand Sv: - |

f[(€+w)"r+{]:5de=0 (5.24)
v -~~~ s , ,

for all Sw: 5&) + 59T =0

e

-F1eeyas =0 | (5.25)

lrve

J -
S

g
: for arbitrary Sy (on 5.).

We call (5.22) and (5.23) thus modified the Second complementary
virtual work prineciple.

For easy reference we collect the equations of the Second

complementary virtual work principle below:
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<™

[-e+uw]: GEdV+IQ°GE'gdS=O
S -~

for all 8t: 6t = Vx 60 ;

f [(e+w) eT + t]:6wdV =0
V ~ - ~ -~ ~

for all Sw: 6w + 6w = 0 ; (5.26)
] . . 'T
e=6 (r,1); r=3(t+Ttew-weT+t) ;

It is a simple exercise to reduce (5.26) to three functionals
involving é and w in V and 'g on So' The second complementary virtual
work principle used In this manner is the basis for the finite element
algorithm presentad in this work. In deriving (5.26) no assumption
has been made which restricts the form of E'. except that E-E'(E.I)
mqst be symmetric.

The most important feature of the virtual work principles is

that they admit functions v, €, W, and t less smooth than did their
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partial differential equation counterparts. A second property worthy
.of special note is that they were derived without restricting the forms
of the constitutive functions E and E'. The various energy principles
we are about to derive require such restrictions. Specifically, we

require that a stress-rate potential W for r exist such that

r ='aw(g,3)/ag ) -  (5.27)

e

Moreover, we consider only cases in which the nominal traction rate

it is prescribed on S .* For solids of the type (4.20) such a

[INARIRLE

potential exists if and only If V (and hence W) is symmetric. We
= =

remark that the constitutive equations for solids common in the

engineering literature all satisfy this symmetry.**

I f therconditions above are satisfied, then the first energy

oo

principle is found by introduction of the potential (5.27) for the

stress rate to the virtual work principle (5.17) and (5.18). But

Wil

since that principle involves the stress rate t, we need a potential

U for E sﬁéﬂﬁthai

FPHEEIEE e

i = au(L,m)/oL .

Recalling the definition of t and ;, we get

*
this is actually over-restrictive; see Hill [37], and
references to Sewell, therein,

*ok :
“including all the materials in examples accompanying this work.
Some exceptions are noted by McMeeking and Rice [34].
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HE+E) = F-g(trw- 0o (5.28)
and recalling AMB (5.3) we get

i(ﬁ-éT) =-3f(e+w)rT -1 (e-w)] . (5.29)
Putting SL' = 8c- 8w, we get from (5.28) and (5.29)

t: BLT =

1“1

:8e - (Se:Tew +€: 7+ 8w

- 3T (@° dg + 69‘ 9) . (5.30)

It is easily seen by inspection of (5.30) that f: 5LT is a perfect

differential if and only if r:8c is a perfect di+ferential. When

:GE = (aw/as): 65

t™e

then

;L = (au/aL) s 6Ll

terte

where W is defined by (T is suppressed)

N(E) =} E:W:e+ € E (5.31)

0

and U is defined through W as
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U(e,w) = We) ~e:Tew= 31: (0ow). (5.32)

~ -~

Now we introduce the potential (5.32) for t to the Second

virtual work principle (5.15-5.17) to obtain

E= 4Ty + W) 5w =W - W) ; (5.33)

smlv,e,w,i) = 0; (5.34) S

n(y.g.g,‘_'rt) - J\" [u(e,w) - pb + v1dv -"s. ']"t - vd$S -
) o}

-I%'(v--v-)ds.
s v T
v

T

There are two ways to deal with the subsidiary condfﬁionsr}5.33). It

is an easy exercise to reduce (5.33) and (5.34) to a functional of

the velocity field and traction rate. Alternatively we may 'enforce!

(5.33) by use of Lagrange multipliers.

The first course of action leads us to the principle of

stationary potential energy

ey

Gﬂp(y,ft) =0 (5.35)

ﬂp(y.i’t) - W(y.i(VyT + Vy).ir(V\_lT - Vy).ft) . -

Any solution of the general boundary value problem is a solution of
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(5.35). In practice one usually satisfies the velocity boundary
~condition a priori, thereby eliminating it from (5.35).

The alternative course of action leads us to a Hu-Fashizu
energy principle. Let é be regarded momentarily as a Lagrange

multiplier. Then (5.33) and (5.44) may be set as
&m (g,s,g,ft,i) =0 ; (5.36)
ﬂHw(y,s,@,ft,g) = n(!'f’f'jt) + JC é: (Vv - (e-w))av
g-e =g wrw =0,

It is possible to enforce both of the conditions (5.33) with the single

multiplier so long as only symmetric € and skew symmetric w are

admitted to LIPVE There are no other subsidiary conditions. Any

solution of the general boundary problem (5.1 through 5.9) necessarily
satisfies (5.36). We write out the stationary conditions for future

references: i

LMB:

*6vds = 0 (5.37)
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CONSTITUTIVE EQUATION:

j;[(aw/ag) - #(i+Trw-wet+i)]: Gedv = 0 (5.38)
AMB :

{[}((E+9)-I+§-§T-I-(5-9)):5(:)]d\l=0 (5.39)
VBC:

Jof - (T-yes=o0 (5. 40)

SV

COMPATIBILITY:

J oy -(e-w)):8tav=0. |  (5.41)
LA t

Notice that the stationary condition for 8y (5.37) is the generalized
ean |

The main detraction of the Hu-Washizu principle is the large
number of unknowns (five). Although a finite element algorithm could
be based upon this principle, it is unlikely that it could be made
very efficient, and thus would be of diminished practical interest.

We note th;t solely by rearrangement of terms, (5.26) may be
rendered in the form [15]
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(5.42)

(o End b -
I:[N(E)-i(t-i-'t W-weT+E ) el - ¥Trweow 4t widy
v -~ - - -~ ~ -~ -~ ~ d
{ v-pb-v} -f T,evds-f T -vds
SO' SV

f i, -
If the constitutive equation (5.5) is used to eliminate € as a variable
from (5.42), then, defining

-R(t,w) = W(elt,w)) - $(t+1

M p (vow, T 0t) = 0 (5.43)
et = f R - 41 (@ew) + E:dlav
+fs '_rt-\_/dS
v
Tv - pb s vldV -j; T,ovas -f 1 cvas;
o SV
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Any solution of the general boundary value problem is also a solution
of (5.43). The stationary conditions are LMB (5.37), AMB (5.39), VBC
(5.40), and compatibility (5.41). In the stationary conditionsvg only
appears as a function ofé and w.

If we admit to 7, (5.43) only stress rates t and traction rates

HR -~
which satisfy the generalized LMB (5.14) for assigned 'Tt’ we obtain

[T ]
e

the complementary energy principle of Atluri [15]:
énc(&).i) =0 ; (5.44)

*vd

fr"l

N(wt)-I{R(tw)-}‘r (w°w)+t w}dv-ff .
S

£=Vx¢>+{b; m+T-o;
net=T on S . (5.45)

Any solution of the general boundary value problem is a solution of
(5.44) and (5.45). The stationary conditions are AMB (5.39), VBC
(5.40), and compatibility (5.41). In the stationary conditions € only
appears as a function of é and w. It is not a simple matter to reduce
(5.44) and (5.45) to a single function;l ofﬁé and W since this would
require construction of stress functions satisfying

ne (ng+§b) -Tt on 5.
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Therefore (5.44) and (5.45) are nof sultable as a basis for a finite
element algorfthm.

The problems associated with the use of the complementary energy
principle in its 'pure' form (above) may be avoided if the traction
boundary condition is incorporated into the principle. Let v be a

Lagrange multiplier on So' Then we replace (5.44) and (5.45) by
* .
Bnc(y,g.E) =0 ; (5.46)

* . . . -—
m(v,w,) = T _(w,1) +fs (p+£-T,) - vds
s .
t=Ux0+t°;  w+w =0.
Any solution of the general boundary value problem is a solution of
(5.46). The stationary conditions are the same as those of the 'pure'
complementary energy principle, except that the traction boundary con-
*
dition follows from Gﬂc/éy = 0. It is a simple exercise to reduce
(5.46) to a single functional of v, w, and t. The complementary energy

principle thus modified serves as the basis for the finite element

algorithm presented in this work.
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CHAPTER VI

UNIQUENESS OF SOLUTIONS OF BOUNDARY

VALUE PROBLEMS

Introduction

Once a solution of a boundary value problem h;s been found, one
may inquire as to the uniqueness of that solution. In therevent that
multiple solutions exist, a stability criterion is required to dis-
tinguish stable solutions from those which are unstable.

Hill [38] has published a number of papers on the subject of
uniqueness. For materials of the typé (h;ZO) through (h;22), his
criterion is necessary and sufficient for uniqueness. He has also
given a practical method for testing the uniqueness of deformations of

hypoelastic/plastic bodies (which are nonlinear in a certain way). For

extended treatments of the theory, see Hill [38].

in this work we establish (quasistatic) stability of a configura-

tfghfg?réﬁbéd;WSQViﬁépectioq of the f;égfb;fhéifbrce' that resdlfsrhh;n
the coﬁf{éuration is s‘iggtly pertﬁrbed;r I f tﬁe forces arising from an
admissible* perturbation tend to attenuate the disturbance, then we say
the given configuration Is stable. The principal shortcoming of this

stability criterion is apparent when uniqueness is lost; it provides no

means of distinguishing stable solutions from unstable solutions. The

* e
not violating kinematic constraints.
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criterion tests configurations of bodies, not solutions of the boundary
value problem. This shortcoming is probably unavoidable when one Is
using a purely mechanical! material mode! such as (4.20), or the
hypoelastic/plastic model.

We construct two uniqueness criteria, one from the virtual work
principle, and the other from the Second complementary virtual work

principle. These are equivalent to the criteria proposed by Hill [38].

A Uniqueness Criterion Based on the

Virtual Work Principle

Let (g], el, wl, E') and (yz, 62, wz, Ez) be two solutions of

~

the general boundary value problem. The same traction boundary con-
dition and velocfty boundary condition are satisfied by eacl of the
two solutions above. By the virtual work principle, any solution of
the general boundary value problem is also a solution of (5.15) and

(5.16), so (yi, 5', 9', E‘) each satisfy (5.15) and (5.16). Therefore

-~

the difference of the two solutions

(by,8e,00,88) = (P -y e?-¢' wl-ul 24 1) (6.1)

~ ~

necessarily satisfies®

LE = i(VA!T + VAy) bw = i(VAyT - Vay) ;

*
the first of (6.2) applies when nominal tractions are prescribed
on So; the second applies when true tractions are prescribed.
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IIAE: Véy - pA\_HVé'S\_I]dV-O :
v -
or - ' - (6.2)

S, 108 s oy - pay - W5 « sylav -J, 13- e )T syles = 0
' o

At = G(e ,wz,r) - G(s‘,m],r)

A sufficient condition for uniqueness is therefore that (6.2) have no

solution among all pairs {v],vz} taking the prescribed value §'on Sv'

Generally we are unable to reduce the expression above to a functional
2

. . . . ) S
of Av alone since the constitutive equation involves €', w, €, and

wz distinctly. However, if G has the distributive property (modulo

6(0,0,1))
2 2 PR B T . T
Glac,bw,1) = (%0, 1) - 8(e,u',1) +6(0,0,1) (6.3)

then it is an easy exercise to reduce (6.2) to a functional of the

velocity field alone, and that functional is independent of the

—

particular boundary values v. This is important in practice because it
means that searching for solutions of (6.2) is precisely equivalent to
searching for solutions of virtual work {5.15 and 5.16) with homogeneous
boundar/ conditions and no relaxation.

The cond:tcon (6 3) is satlsfued by hypoelastic and hypoelastic/

viscoplastn Patersa!s, but not by hypoelastlc/plastic materials.
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Hi1l {38] has shown that if the 'linear comparison solid' associated
with a particular plastic body is used in (6.2), then uniqueness of
solutions for the linear comparison solid is sufficient for uniqueness

of solutions for the plastic body.

A Uniqueness Criterion Based on the Second

Complementary Virtual Work Principle

In this section we use the same difference notation as in the
previous section. Any two solutions of the general boundary value
problem necessarily satisfy the Second complementary virtual work

principle. Therefore, their difference satisfies

J sevnul:siav + f posicayds =0
voo-oc e s - -
g

for all St = Ux 30 ;

B = UXB0 3% Aw+ M =0 ;

-~

f [(Ae+Aw) » T+t]: SwdV = 0
v T (6.4)

for all Suw: <5w+6mT=0 ;

* L]
for converience, we have assumed that Av+ Vb = 0.
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J (heat-evas =0
SU
or

J heat- (a3-neteen)Tl bvds =0 .
A t n + A€ * n)T] - Oy
o]

A sufficient condition for uniqueness is therefore that (6.4) has no

solution among all pairs (E], w‘. y‘), (tz, wz, gz) in which the v'

take the prescribed value v on S, We are unable to reduce (6.4) to a
functional of (AE,Aw;AgyﬁEISHe except in the case that the constitutive
function G' has a distributive property

8" (of,1) = 6" (751 - 6 () v Tl (6.5)

In this case searching for solutions of (6.4) is precisely equivalent to

searching for solutions of complementary virtual work (5.26) with
homogeneous boundary conditions and no relaxation. Of course, the

same materials satisfy the condition (6.5) which satisfied the con-
dition (6.3). In the case pf hypoelastic/plastic materials, (6.5) is
no£ satisfied, but we note that the constitutive function of the
associated linear comparison solid for a particular hypoelastic/plastic
solid does satisfy (6.5). |In view of the fact that uniqueness for the
linear éomparison sélid is sufficient for uniqueness for the
hypoelastic/plastic solid (and no restrictions are placed on the
method by which we establish uniqueness for the linear comparison

solid), we may use the constitutive equation of the linear comparison
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solid in (6.4) to establish uniqueness for the hypoelastic/plastic

solid. A proof of this sufficiency would be difficult if one started
from (GTA)’ since plasticity theory is not formulated in terms of the
stress rate E. In the bifurcation study accompanying this work, the
criterion (6.4) is used in conjunction with the constitutive equation

of the linear comparison solid.
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CHAPTER V11

A FINITE ELEMENT ALGORITHM -

Introduction

The finite element method had its beginnings In structural
analysis, but spread quickly and with great success to other areas of
applied science. The underlying mathematical theory of ffnite elements
resulted from the study of the method as applied by engineers, and is
stil] being developed at this date. Extended introductions to the
finite element method, both from the practitioner's point of view [39],
[40], and from the mathematician's point of view [41], [42], are widely
available, and therefore omitted from this work. For the discussion
that follows, the finite element method may be regarded as a generaliza-
tion of the approximate methods based on energy principles of linear
elastostatics.*

The finite element aigorithh described in this chapter is based
upon the Second complementary virtual work principle (5.26). The
advantage of starting from the 'work' principle, as opposed to starting
from the 'energy' principle (5.46), is not only greater generality with
regard to constitutive equations and boundary conditions, but greater
clarity, since each of the equations of (5.26) corresponds to an

equation of the general boundary value problem (5.1) through (5.9).

* N o , , .
see Washizu [3€], especially sections 1.5 and 1.7 therein.
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When the constitutive equation and boundary conditions are such that a
complementary energy principle exists, the distinction between the
'work' and 'energy' formulations vanishes entirely. We do assume that
the constitutive equation may be set in the form (5.5), and the traction
boundary conditions are dealt with as if nominal traction rates were
prescribed, but generalization to treat other materials and types of
boundary conditions should present no difficulty for the reader

" familiar with finite element methods.

A Finite Element Algorithm

According to the Second complementary virtual work principle
(5.26), the stress rate E. spin w, and boundary velocity v of a body

are solutions of the following boundary value problem:

f“(\:":(i-g)+9)-I+§]:59}dv.o \
v

f {[‘!-]’(E‘E)*‘3]“55}d"+_/;9'65-yds-o (7.1).

v

for all  Sw: dw+ Suw' = 0 ;

St: Ot = Ux& ;

o ' (7.2)

for all  Gv: f Sv » 6vdS # 0
S
o
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with the subsidiary conditions:

é-éo-!-ib; Eglvx¢' v-Eb--pé’
E - i(i +Tew-weT + b)) ; wtw =0 ;

In formulation of a finite element algorithm we regard the body
as an assembly of sub-bodies called eléments. We wish to represent the
functions i and w independently on each element. The stress rate E will
be represented as indicated in the subsidiary conditions above on
each element, but between elements Eo will generally be discontinuous.
Such i is still admissible to the complémentary virtual work principle
providing it satisfies the generalized LMB (S;Ib).* Indicating by
NELM the number of elements into which the body has been partitioned,

we write LMB (5.14) as

NELM
E {[ [t: P8y - pb 6yldv -fﬁ e dvds =0
N1 * VN S

for arbitrary 8y (continuous across interelement boundaries)

Integration by parts yields

* .
note that the original form of LMB (5.2) does not admit such t.
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where VN and SN are the element domain and boundary, respectively.

Finally, setting it to T; on S0 and 8v to zero on Sv’ we obtain

NELM .
Z{f(g'i'ﬁy)ds-f Tt'S\_/dS}=O. (7.3)
N=1

g

We replace the traction boundary condition (7.2) by this last equation
(7.3), which is easily seen to be no more than a statement of traction
reciprocity. In the context of finite element terminology, it is
called 'interelement traction reciprocity.' One should take special
note that in (7.3) &v is required to be single valued on the inter-
element boundaries, since 8v is required to possess a (generalized)
gradient everywhere in V.

Since i. w, Gi, and 69 are now independent on each element,
(7.1) must be satisfied independently on each element. Thus, we

replace the boundary value problem (7.1) and (7.2) by

f {(w'i:Q-§)+9)-I+y:69}dv-o

vV
N

f ;f-w.‘:(;-i)-bw]:éi}dv +I nedtevds =0 ) (7.4)
v = - - - Sn -
N
for all Sw: 6w + SQT =0;

for all St: 6t = V X 63
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NELM .
E{f (g'i'ég)ds - fft-agds} = 0 (7.5)

2ete
n
(ad
+
e
(ad

0O Ob. ’O-vx¢; V'Eb"pé;i
N

L] L
w+w =0 Fra3(t+ Tow=-weT+t

on each element, and globally

<
[}

<

o

= |

w
(o]
<
]
o
o
3

v

and dy single valued along interelement boundaries.

1<

To construct a finite element algorithm based on (7.4) and (7.5)
we must be able to find representations for v, dv, w, E. Sw, 6{, and

f which satisfy all of the subsidiary conditions explicity. In the

next few paragraphs such fepresentations are discussed.
h

Let us represent the velocity on the surface of the Nt element
by
N i q on SNﬂSv
v(x) = ) N (x)d g= (7.6)
=] q elsewhere
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where the yi are (véctor valued) isoparametric shape functions* and qi
are nodal velocity parameters. The shape functions are NQ in number.
Those parameters determined by the velocity boundary conditlon are
distinguished from the undetermined parameters by an overbar. The

variation dv may be found from (7.6) as**

NQ .
Sv(x) -Z yi(g)éq;‘| . (7.7)

(=]

Note that y=V and 8y=0 on S according to (7.6) and (7.7). Further-
more, when using the isoparametric shape functions, we can assure that
v and Jv are single valued along any interelement boundary simply by
'connecting' the nodes of the elements adjacent to that boundary. The
easiest way to deal with this connectivity in practice is to index the
velocity parameters node by node, for the whole body, instead of having
indices which are independent on each element. The relation between
the parameters with element-level indices (qL) and those with global
indices (Ql) is formalized by the introduction of an 'assembly matrix’

[AN] for each element such that

*see Ergatoudis et al. [43].

lt is unnecessary for v and Sv to be so related when starting
from a 'work' principle; similar statements may be made for  and Suw,
; and Gt We relate the total quantities to their variations so that
'‘work' and 'energy' formulations will coincide when an energy formula-
tion exists.

81



ﬁ on Sv
{3} = 1A, ; q=

Q elsewhere
and (7.8)

{6q,} = [A,1{8Q.

It turns out to be more natural to deal with the §e§ocity boundary con-
dition by constraining Q than b? constralining EN,rso the q, and the EN
(see 7.6) never need to be distinguished explicitly in practice. The
total number of parameters ﬁ‘ is called the 'number of degrees of free-
domf of the finite element mesh, abbreviated NDOF.

We represent the spin w and the stress function ¢ in the Nth

element's Interior by

NW ' - ' '
wlx) = 25 @, (x)ay (7.9)

i=1

and
NT ,
i
¢(x) = E ¢, (x)8y »
i=1
933 and girbging tensor valued shape functions. The actual functions

used in the particular examples accompanying this work are detalled in

Appendix C. The shape functions for the spin are chosen so that each

-

satisfies . T

Q. + qyf =0 . (7.10)
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The stress rate Is represented in each element by

NT . .
g(:_s)# Zgi(5)8é+§_ (x) (7.11)
i=1
where
QT (%) = V X & (x) (7.12)

for each parameter B&. From (7.9) and (7.11) we obtain representations

for Sw and 8t as

NW _
sulx) = 2, Q, (x)8e

i=]

A
. (7.13)

stix) = Z jS(gt)‘SB:‘

i=1

Finally we form ;=&(£+T°w-w°T+ET) as

-~

NT NW
r(x) -Ei(gjpbﬂ)e,h Zi(g-gyi-q_yi -I)a; . (708)
(=1 i=1

The functions v, dv, w, i, 69, 6§, and f, when represented in the forms
(7.6), (7.7), (7.8), (7.9), (7.11), (7.13), and (7.1h4), satisfy all of
the subsidiary conditions previously mentioned, and are therefore
admissible to the boundary value problem as stated by (7.4) and (7.5).

Putting the representations for v, dv, w, E, Sw, GE, and r into
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the functionals (7.4) and (7.5) and carrying out the assigned

Integrations yields the following finite element equations (in which

the index 'N' Is suppressed on the stress and spin parameters):

{aa}T{ -u!! H'ZJ{:} + (P%P) 4 {p"'z}}- 0

a

NELM

3 {{SqN}T (0

N=1

Henceforth we

refer to

to (7.17) as TBC. The

oy
)

12
HU

21
Hij

w2
ij

= J; {(z

N

=J {(t-Q.):
J, (o

= JE {(jS):

N

= ];N{(jS):

- j; N @i)',(;‘i)ds, o

N

+ 161G )= 0

MIERCRUCRIEES

(7.15)

(7.16)

(7.17)

(7.15) as AMB, to (7.16) as compatibmt'y, and

individual matrices are defined below:

")

o

Ho

D: (= Q) + T+ (Qw, - Q;)}dv

: (QIJ) - . “.{rj}dvr—:

o

PTeQ;) - QT s @ dav

: (ij)}dv
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(7.19)

(7.20)

(7.21)

(7.22)
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Fi = f f't » (N,)ds (7.23)

(syNs,)
N
P?'b = J;N ‘(jS): (-g:{ib)}dv (7.25)
P?’z -Jf {(3- Qyi): D: gidv (7.26)
v =
N
P?,z =fv {(Q.Ti) :g:gldv (7.27)

N

and D is obtained from w" by symmetrization:
~ L

=

-1 -1 -1 -1
D = (W + W Wt Y ) . - (7.28)

ijkl ikl T ikl jilk

This symmetrization is easily done after E-‘ {s computed, and serves

to reduce by a factor of four the number of multiplications required

to compute the H matrices (7.18) through (7.21), and other matrices
Involving y-‘. The integrations must be performed numerically since
the integrands and the domain of the element cﬁange during the deforma-
tion. in the eaampies accompanying this work only quadrilateral
elements were used, so symmetric Saussian quadrature rules were used

for the inteqration.**

"the last term in the Integrand is a residual whose significance
Is explained in the next chapter. .

*%
szc Teng and Poscettos [33], especially chapter six.
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The procedure which leads one from equations (7.15) and (7.16)
to the element stiffness matrix is virtually identical to that of Pian

[3]. We define the element 'H-matrix' as

AR}
[H] = (7.29)
Lu sz]

and loads PP} and {PZ}, due to body force and fluidity, respectively, as

a,b a,z
{P}l = ; P’} = . 7.30
PB,b Pe,):

Then (7.15) and (7.16) may be collected into a single equation as

Ol } ] @)+ (o + PF). (7.31)
If 2 is symmetric, that is, if w;}kl ;;lJ, then from (7.18) through

(7.21) we easily determine that [H] is symmetric.

If the H-matrix is not singular, then we solve the matrix

equation (NQ+ 1 right hand sides)
0 . : i
ORI G} PP+ P (7.32)

on each element. Explicit calculation of the inverse of [H] is not
only unnecessary, but substantially increases the time required to

generate the element stiffness matrix. According to (7.31), the spin
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and stress parameters on each element are given by

(5} = e + w7, (7.33)

Using (7.33) to eliminate {a/B8} from TBC (7.17) leads to

NELM
2 {tsag Tk Mag} + 5a1T [0 G TR )
N=1

- {sq 1 (F} =0 (7.34)

in which the element stiffness matrix has been identified as
kJ= [0 67 (H s ] (7.35)
N N N ? :
and the resultant nodal 'forces' are given by
-0 ol e} + (R (7.36)
N N NT ° :

It is easily verified that the element stiffness matrix [K] is symmetric
if [H] is, and so the symmetry of [K] ultimately depends upon the

symmetry of the constitutive matrix W.
E 3

To this point all of the finite element equations are indepen-

dent on each element. The formal assembly of the global stiffness

matrix and loads is accomplished by introduction of the assembly
matrices (see 7.8) to (7.34) so that the element level velocity

parameters may be expressed as functions of the global velocity
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parameters. For {q} and {8q} we write
{q} = ;A;]{Q +Q {8q,} = [A&]{GQ}';
and from (7.34) thus obtain
{6} Ik Q) = {SQ}T{PG} - 8Tk . | (7.37)

In equation (7.37) the global stiffness matrix [KG] and the loads

{P;} are defined by

NELM T
(K] = 2 (A [K,ITA] (7.38)
N=1
and
T Tory~)
tpgd = 1837 {17y} - 10 clitn e (7.39)

The load matrix {PG} contains contributions from the prescribed

body for rater,rl_r;;,rwtrl'\e relaxation E, and th,é traction boundary con-
dition f;. The global stiffness matrix, as defined by (7.38), will

be singular for rigid translations, but no,tf for rigid spin (except .in
the case that there is an 'axis of equilibrium' [44]). In order to-
solve the equation (7.37) we define a modified global stiffness matrix

[K*] and a modified load {P*} as follows:
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. {6” if (q, =Q,) or (Q, = q,)

Kig (7.40)
K'J otherwise
Q, if (q =4q,)
*
P ’{ NELM (7.41)
J=1
Then (7.37) may be replaced by
[k*]1{Q} = {P#} . o (7.82)
If [K*] is not singular, then we solve (7.42) for {a},
{Q} = [(k*1"(p#) . (7.43)

By backsubstitution we obtain the velocity (on the boundary of each

element), the spin and the stress rate on each element:

Gy} = (AT k%17 (P3) (7.44)

N I e 1A Tk (px) + (TR ) (7.45)

BN N-ON N )

v(x)= [N 1A IIK*]T (P4} (7.46)
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w(x) Qw(x) 0 - - -1
=" (6 JIAIIKETT {P*} + {H P}

x) 0 QT(x)

(7.47)

Equations (7.46) and (7.47) comprise the approximate solution of the
boundary value problem.

The velocity v(x) is determined by (7.46) on the element
boundary only. On an element's interior we may construct 5(5) from
i(;) and w(x) according to the constitutive equation (5.5). If our
computations have produced an exact solution, then we can find the
velocity field on the interior of an element by integration:

X
y<5)-g(5o)+L-(g+g>-d5 :

<o
where Xy is some point on the element's boundary. However the finite
element algorithm generally will not produce exact solutions, so the
integral expression above Is of no use in defining the velocity on the
interior of the element. Previous researchers using complementary
work and energy based finite elements do not mention this problem, and

it is left for the reader to assume that they found the velocity on

the interior of the element by interpolation of the boundary velocities

r(byiuse of the isoparametric shépe‘}uncffbns). tf the reader will
recall the discussion surrounding the derivation of the generalized
compatibility (5.21), it is evident that there is reason to doubt the
Wvélidity of this proceduré.r In the absence of sﬁéporting arguments,

it amounts to assigning the velocity on the interior of the element in
90

mnom

R



an arbitrary manner.

A little light is shed on this problem by the following
heuristic argument. In preparation, we consider rules by which fields
v, W, and g may be judged 'admiss'ible' or 'inadmissible' on a single

element. Admissible velocity fields are those which satisfy

f {vey + (Uy) : (W)ldV <= ' (7.48)
vV

and the admissible velocity fields comprise an inner product space Rv‘
Each velocity field in Rv takes on certain values on the boundary of

the element, and the space made up of those boundary values we denote

Rg. In a similar manner we define the space Rw as the space of all

tensors which satisfy

f (w:w)dv < = f (w+wT):(w+wT)dV =0 ; (7.49)
v © 7 v ~ 7 R

and the space Rt to be the space of all tensors which satisfy

fa:baw<o; f(E:vsdv=o0 (7.50)
PRS- -

for arbitrary Sy, 6y='g on S. An inner product on waRt is given by

= f wiwt 4t (7.51)

(uwlg x = d t
w 9

where u and ware the ordered pairs of tensors
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= . R X » = be
u 4:),5>.€Rm Rt' w <(3,£ >ERw X Rt .
b 3 - o -
Now we define a linear map fror? Rv x Rw x Rt to R X Rt by
w = B(u) | (7.52)

' . 70 X 7 x .
> is any element of Rv Rw Rt’ and

1eve

where u =<v,u,

W= <iH§+9)'z+§‘-§T-I-(§-9H,-§+9+Vy> (7.53)

is an element of waRt determined uniquely by u. In (7.53) we have
written € for the constitutive function (5.5). The variational

problem (7.4) may now be stated compactly as

[ o x x
find u ERV Rw Rt such that for all SWERw X Rt

(Sw,B(u))p xg =0 (7.54)
w t

(that is, 7.54 is equlvaleh£'£6’7.h). The problem in (7.52) of
defining w uniquely for assigned u Is solved if we can show there is

a unique v In R, such that (-5494\73) belongs to R .. We note in pass-
Ing that this problem is identical to the problem in the finite element
algorithm of defining v on the interior of an element. The criterion
that (-5 +uw+ Vv) must satisfy to be an element of Ry is given by
(7.50): -
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J (evw+ o) 1 vsydav = 0 | (7.55)
et

for arbitrary-ég, Sv=0 on S. Equation (7.55), alopg with the boundary
values of v (the first component of the argument of B), and the values
of £ and w (from the second and third components of the argument of
B) constitute a generalized Dirichlet problem, whose solution we pre-
sume to exist and be unique, and to depend linearly upon the argument
of B. We conclude by remarking that the variational problem (7.54)
would not make sense if v were assigned in an arbitrary manner.

The finite element counterpart of equation (7.55), inciuding
inhomogeneities from ib and §, is given by

o .
[EN]{G} = [LL Li] {BN} - [CN]{aN} + {LP} s (7.56)
N

where the individual matrices are defined below:

G -f W.: W, dv : (7.57)
N

ey =S VR e (7.58)
N

1 & |

L -[V N s D (TeQu,) + QU lav (7.59)

N
2 g

L% -j\” WA, £ [0 (QT)]av (7.60)
N

L o= f N :Ip: (20 - D)lav . (7.61)

i v, B AN <
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In equations (7.57) through (7.61) the ﬁi are polynomial shape functions
which vanish on SN; that is, shape functions for 'internal' nodes, and
the E;’ Qgi, and QI: are the shape functions for boundary velocity,
spin, and stress rate which have been previously discussed. Using

(7.45) to eliminate {aN/BN) from (7.56) leads to

@) =g {[L; 2w’ 6 - chl][AN]{a} (7.62)

+ 127 {{L; EAICHE P {L:}} :
Equation (7.62) expresses the velocities of the internal nodes of an
element as a function of the velocitlies of the boundary nodes. In the
sense that the problem of determining the velocities of interior nodes
is the inverse of the 'condensation’ probiem encountered in ordinary
velocity-based finite element algorithms, we might call the procedure
above 'inverse condensation.'

In view of the fact that use of the inverse condensation is
potentially costly (because of the extra computation), an element for
which interpolation of the boundary velocity to the interior is con-
sistent with Inverse condensation would be highly desfrable. Consider
therfollowing examples in which result of inverse cohdensation Is
illustrated.

in the application of a stress-based finite element algorithm

to beam problems,* usually one can only find a piecewise linear

* .
sez Murakawa et al. [13], particularly Figure 2 therein,
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approximation for the elastic curve, an approximation with 'corners' at
the Interelement boundaries. The only way to improve the approximation
is to increase the number of elements per unit length of beam. Appli-
cation of the inverse condensation procedure leads to (ignoring the

length change of the beam)

2 - ot
v M/EI

a familiar formula from beam theory. If the moment M is piecewise
linear and continuous at the interelement boundaries, then oi.e may find
a cubic spline for the elastic curve without any increase in the num-
ber of elements.

In the application of a stress-based finite element algorithm
to two-dimensional problems, one typically ‘uses four or eight noded
quadrilateral elements. A simple example such as provided by beams
is not available in this case, but we note that the lowest order
polynomial function which vanishes on the boundary of a quadrilateral

is four; being of the form
(<2 - Dy = 1) . (7.63)

The immediate conclusion is that the highest order complete polynomial
which may be represented exactly on a quadrilateral with boundary nodes
only is'three. The shape functions for four and eight noded quadri-
laterals involve no fourth order terms, so one could expect to gain
nothing-in accu?aCy by adding an extra degree of freedom for the shape
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(7.63). On the other hand, the shape functions for a 12 (or higher)
noded quadrilateral do contain fourth order terms, so if terms of the
form (7.63) are Ignored, Tt amounts to assigning the velocity on the
interior of the element in an arbitrary manner. Thus, the 'inverse
condensation' is not necessary for the 'low order' four and eight
noded elements, but should be used if '‘higher order' elements are used.
Similar arguments may be given for triangular elements and three
dimensional elements. In the examples accompanying this work, only

four and eight noded elemants were used,

Numerical Stability Critgfig

The finite element algorithm just described does not necessarily
yield an approximation to the solution of the boundary value problem.
In reviewing the development, we surmise that the algorithm may be

carried through to obtain the approximate solution (7.46) and (7.47) if

W Is nonsingular In V (see 5.5) (7.64)
[Hy] s nonsingular on each element (see 7.32) (7.65)
[GN]{EN} = {0} only for rigid translations (7.66)
[K*] is nonsingular (see 7.42) . (7.67)

The first of these is satisfied by material models found in the

engineering literature except for isolated states of stress. The last
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of these is equivalent to the uniqueness criterion based on the Second
complementary virtual work principle, presented in Chapter VI.
Satisfaction of the second and third conditions above depends
strongly upon the particular functions yi. Qyi. and QII of th;
representations (7.6), (7.9), and (7.11). In this section we discuss
criteria whose fulfillment is necessary for the satisfaction of (7.65)
and (7.66). Such criteria are called 'numerical stability criteria.’
An analogue of the condition (7.66) arises in stress-based
finite element algorithms in linear elastostatics. The analysis of
Tong and Pian [U45], with a minor modification, applies in the present

case. The rank of the matrix [G] is usually
min{NT,NQ-T) (7.68)

where NT is the number of stress rate parameters, NQ the number of
velocity parameters, and T the number of translational degrees of
freedom of an element. It is well known that if NT<NQ- T, then
'kinematic modes' (deformations to which the element offers no
resistance) will océur. The rank condition which is necessary (and

usually sufficient) for the satisfaction of (7.66) is
NT 2NQ-T . . (7.69)

In the examnles accompanving this work, the number of stress rate

parameters always equalled or exceeded the number of velocity parameters,
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and no kinematic mode was encountered.

A second type of kinematic mode can occur when the finite
element algorithm is set up In a coordinate system which has
singularities, such as cylinderical ctoordinates. This second type of

mode occurs when

yde = 0 everywhere on SN v (7.70)

for some particular velocity shape function. An example is provided
by an eight noded quadralateral element in cylinderical coordinates,
with one edge along the z axis (r=0). The shape function for the
middle node on that edge vanishes everywhere on S except on the edge
where dS is zero. Thus, the column in [G] corresponding to that node
coﬁsists entirely of zeros. In such a case the kinematic mode may be
avoided by eliminating the offending node entirely, or its value may
'be found by the inverse condensation procedure.

The condition (7.65) turns out to be the source of most of the
difficulty of using the present stress-based finite element algorithm.
‘Even when [H] is not slngular,rit may be so i11 conditioned that an
accurate solution of the matrix equation (7.32) can only be found by
scaling.* In any case, the problem may be overcome by replacing QEs

and gJi in a trial and error process until nonsingular [H] is found.

that is, adjusting the magnitude of the stress and spin
functions to improve the condition of [H].
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Murakawa [lO]rgave the necessary (but not sufficient) rank condition
that the number of stress functions exceed the number of spin functions.
After a number of trials, it became ;pparent that when [H] was
singular, the spurious eigenmode consisted of a pure {but inhomogeneous)
spin. Moreover, if a combination of functions [QH] and IQI] was found
to be acgéptable in the stress-free state, it remained so as the
deformation progressed. Setting the initial stress to zero, the cri-

terion sufficient for no spin mode to occur follows as

21 21 ,
[H) 1{sa} # 0 ; [H ]ij -fv (q, .gyj)dv ) (7.71)
N

A criterion similar to (7.71), but for a finite element algorithm of
elastic membrane theory, was given by de Veubeke and Millard [6], but
their conclusions differ slightly from our own. A necessary condition

for the satisfaction of (7.71) is that
NT* 2 NW (7.72)

where NT* is the number of stress shape functions QTE whose skew parts
do not vanish, and NW is the number of spin functions Qwi. In [6],
the authors suggest that the polynomial degree of the spin field m be

related to the polynomial degree of the stress field n as

m=n-=-1 , (7.73)
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calling the case m=n the ''classical equilibrium model." In numerical
experience with the present finite element algorithm we find that if m
is less than n, then the angular momentum balance is not satisfied
with reasonable (pointwlise) accuracy. The degree of the spin field
and the degree of the stress rate field were always the same In the
examples accompanying this work. This amounts to the condition

H2'17¢68) = 0 (7.74)

only for {88} which prodhce symmetric stress rate fields.
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CHAPTER V111

INTEGRATION OF THE MOTION OF THE BODY

Introduction

Consider a body in a configuration C(t). We suppose that a
particular finite element subdivision of the body has been defined,
and that the stress T is known at each quadrature point on each

element of the body. Then for assigned body force rate b, nominal

v? the finite element

traction rate T} on Sc’ and velocity 9 on S
algorithm presented in the previous chapter enables us to compute the
(instantaneous) velocity v(x,t) and stress rate §(§,t). To “e more
explicit, the information above suffices to compute the matrices [H],
[G], {F}, and {P} on each elément,* and hence, the velocity and stress
rate throughout the body (see 7.46 and 7.47, and development thereof).
The matrices [H] and {P} each depend upon the constitutive matrix W
(through B), and hence upon the gquadrature point values of the stress,
but in an inexplicit way.**

We formally indicate the dependence of the nodal values of the

2

velocity {v} = {g‘,y ,...,yND}(ND being the number of nodes) and the

quadrature point values of the stress rate {g} = {él.iz,....ic} (6

*and if need be, the matrices [C], [C], [L], and {LP}.

* %k ,
- when the constitutive matrix ¥ is a constant, the dependence
of W on T is approximately affine; see Appendix B.
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being the number of quadrature points) upon the nodal positions

]
{x} = {x ,52....,§ND}, the quadrature point values of the stress

{1} = {I',Iz,...,zs}. and the time dependent prescribed loads by
writing*
{v} = fl{x},{1},t] (8.1)
{t} = g[{x},{z},e] . - (8.2)

Since each element node is associated with the same material point
throughout a deformation, and likewise for each quadrature point, we
may write each component of {x}, {v}, {t}, and {t} as
=y (x0) ;

et o ’
v -)'((Xl t) ;
- -T_’ ?

Iy ! l .
I = (I/JT)ET ET(§ at) H

el o0 gyl
(/4 )F =t (X7,t) .

trte
[}

The quadrature point values of the deformation gradient

*The functions f and g are introduced specifically as a 'short-
hand' for the solutions of the finite element equations, as given by
(7.46) and (7.47). From (7.46) and (7.47) it is clear that integrations
may be carried out on one element at a time.
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u T
Fr (VXXT(Z,t)) -

and its determinant

! I
JT = det ET

depend on the nodal positions through the isoparametric shape functions.
The reference configuration indicated by the subscript T is absolutely
arbitrary and may be changed as frequently as desired. Typically it
would be chosen on the basis of economy (e.g., to minimize storage

requirements).

The equations (8.1) and (8.2) may now be written as
%} = fHx 2 {e Le) (8.3)

{1} = g Hx b {t 1ht] (8.4)

where fT and g, are defined by

. | 1
f‘r[.’{.t.'r}"] = f['r{j: ET.ET},.] (8-5)
PCIR O IO PR P OO S S J I (8.6)
T

Equations (8.3) ana (5.4) represent a system of nonlinear ordinary

differential cquations. On account of the complicated way In which
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the finite element equations depend upon the stress, the functions fT
and 9. (or even f and g) cannot be written explicitly. This fact makes
stability analyses such as those of Cormeau [46] and Hughes and Taylor
[20] impossible for the equations (8.3) ané (8.4).

An initial value problem may be set if initial values of X1
and to the constitutive equation, and a program of loads are given.
It is assumed that solutions of the initial value problem exist for

sufficiently smooth and physically tenable Initial data, at least for

some range of deformation from the Initial configuration.

Numerical Integration of the Initial

Value Proble@

The initial value problem posed by (8.3), (8.4) and appropriate
initial data is dependent upon the finite element equations as dis-
cussed in the first section. From that same discussion, and from the
presentation of the finite element equations (Chapter VIiI), it Is also
clear that the finite element-initial value problem is predispoged to
numerical integration. In this section we Indicate the types of
numerical integration schemes suitable for the present problem, and
mention a few important differences between the various types.

The finite element-initial value problem may be integrated by
single step explicit schemes, mulfistep explicit schemes, or (generally
mufti§tep) predictor-c&rréctor schemes. A number of these schemes are
discussed in the textbook of Conte and de Boor [47]. Three important
facts to be kept in mind when choosing a particular scheme are

(1) the solution vector <{)_(T(tN)}.{ET(tN)}> at the time t=t,
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is of scalar dimension NDOF +9 * G, where NDOF is the number
of kinematic degrees of freedom of the mesh and G is the
total number of quadrature points. Storage required for
implementation of different integration schemes can vary
appreciably.

(2) evaluation of <(fT,gT> is expensive on account of the com-

plexity of the finite element equations.

(3) the fﬁnctions fT and g, are generally discontinuous at points

<{3T}’{ET}> which correspond to material yield surfaces.

The multistep methods (explicit and predictor-corrector) require
relatively few evaluations of <:fT,gT>' per step; this is an attractive
feature, However, multistep methods are not self starting, the time
step is not easily changed, they have relatively large storage require-
ments (since several past values of <f‘r’gt> must be carried along),
and moreover, they cannot be expected to be accurate when the solution
crosses a yield surface (since they are based on smooth polynomial
interpolation of the solution over several time steps).

On the other hand, the single step methods (explicit and
predictor-corrector) are easily started, the time sfep size is easlly
adjusted, and they have relatively small storage requirements. They
can be expected to perform more favorably than the multistep methods
when the solution crosses a yield surface since smoothing over several
time steps is not built in. The disadvantage of the single step
methods is that a relatively larger number of evaluations of <f&,gT>
are requjred per step to achieve a given accuracy when a yield surface

Is not crossed. However, the advantages of single step methods seem
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to far outweigh the disadvantages.

In the examples accompanying this work the Euler and classical
second and fourth order Runge-Kutta methods were used. Detalls of
these methods may be found in the textbook of Conte and de Boor [47].
We note that the second order Runge Kutta method is equivalent to an
Euler predictor and a single application of the trapezoid rule as a
‘corrector. Errors of the Euler method were gauged (qualitatively) by
step-halving and by comparison to results of second order integration
for randomly selected time steps. Errors of the second order Runge-
Kutta method were gauged in like manner; by step halving and comparison
to results obtained by fourth order integration. The integration
schemes used in the examples accompénying this work varied from problem
to problem, and sometimes within a problem. Full details are given in
the description of the individual problems, in the chapter following
this one.

We assert that the stress t_ (and hence z) integrated
numerically satisfies LMB. As an éxample, consider the Euler-Trapezoid
predictor-corrector pair for the stress at time (tN-bh):

predictor (Euler rule):

0 (e + W)} = I (e + hIx (2,)
(8.7)

(o) :
{e 7 (e + h)}:- {t (t,)} +,h{E,T,(tN)}

corrector (trapezoid rule):
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0D (e o) = 1y (e + nig (e + 3 (e o h))
N (e e md = (e (60} + niE () + 1M e} (8.8)
To verify the satisfaction of LMB, we check to see that

f t(K+]) :Vx5dV = 0 (8.9)
V-

for all x(X) which vanishes on S (body force has been presumed to
vanish, for simplicity). Elimination of tiK+])(tN-+h) from (3.9) by
use of the corrector (8.8), and assuming that tiK)(tN) is balanced,

yields

f lt (t,) + .ﬁK)(tN+h)] 0 Vxdv =0 (7) (8.10)

Since the stress rate is of the form

i = 7 x(t) , (8.11)

e (K)

the stress rates tr and t,r are of the forms

toenxo (e 0 aw x o an) (8.12)

-~

(K)

where gt and 91 are defined by
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gT(tN) = (Vxl(t(tu)) °9(tN) ;

(K) - (K) .
O (e +h) = (Vy xp (e +h)) = Sley+h) .
Elimination of ET and EiK) from (8.10), and integration by parts

affirms the satisfaction of (8.10). It is worthy of special note that

the complementary work and energy principles provide no means whatever
for checking the satisfaction of linear momentum balance by the stress,
so it is of crucial importance that the numerical integration of the

stress not introduce errors which lead to an unbalanced stress. This

maintenance of balanced stress, necessary In stress-based finite element

algorithms, is the counterpart of maintenance of compatible deforma-
tion, necessary in velocity-based finite element algarithms.
The true stress is found, after tT(tN-bh) and XT(tN*-h) are

integrated, by the formula
I(tN+h5 - (I/JT)(V,(>_<T(1:N +h)) st (ty+h) . (8.13)

The true stress given by (8.13) necessarily satisfies LMB since
tT(tﬁQ#Hj does. It does not appear to be posSfEierto integrate ;hg
true stress explicitly with out causing it to become unbalanced, so

no further consideration is given to that alternative.

Angular momentum balance is satisfied only approximately by
stresses computed in the present method. To keep the accumulated

error small we embed the angular momentum balance as the stable
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solution QT(t)=-O of the following initial! value problem:
91 + AQT =0 91(0) = 9 : (8.14)

where the tensorSlris defined by

- ! R R T]
O I[Er Fr Fr "4 (8.15)
and A>0. In the course of numerical integration we adjust A at the
beginning of the time step from ty to ty.y @s

A=1/h = 1/(t t,) . (8.16)

N+#1 ~ °N

The optimality of this choice is seen if (8.14) is replaced by the

difference equation
2 (ty+h) = Q1 -Ah)QT(tN) . (8.17)

Equation (8.14) accounts for the 'AMB residual' term in the finite
element equation (7.2&).

Finally we note that frame indifference can be satisfied only
in an approximate sense when one integrates the stress numerically.
As an il!ugtration consider the Euler method as applied by observers
in frames which spin relative to each other. The ffrst observer
obtains
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[t (ty+h)] = £ (r,) + ht (t,) (8.18)

and the second observer obtains (for the same material point and the
same time step) -
] ] LI <
[t (ty+h)] = ¢t (t)) +ht (t) . (8.19)
. ' v, . .
We assume that ET(tN)’ ET(tN)' ET(tN)’ ET(tN)' and g(t) {the rotation

between the two frames) are known exactly. According to the transfor-

mation rules, the exact tT and t; satisfy, at each moment of time,

' T sy s T s T
ET = ET ~ ET Er I ET 9 (8.20)

for arbitrary time dependent orthogonal Q. But at time (tN-+h)

equations (8.18) and (8.19) yield
! ' T
[t (ty+h)] = [t (ty+h)]-Q (ty+h) = (8.21)
T o7 T
[Er(tN)] - [(Q (tN) +hQ (tN)) -Q (tNV+ h)]
+hi (t) 19 (1) - QT (e +h)] .

Since the right hand side of (8.21) does not vanish for all admissible
Q and 6, the stress integrated by Euler's method will depend upon the

frame of the observer.
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Two courses of action are available. We might attempt to
reformulate the initial value problem so that a frame Indifferent
stress is Integrated, or we could attempt to integrate the stress in
some special manner so as to remove the frame dependence. As pre-
viously discussed, integration of another stress besides ET leaves us
with no way to ascertain the satisfaction of IMB, so we disregard the
first option above.

For insight to the second option, let us consider integration
of the stress when the deformation is homogeneous. Suppose that the
spins w and 9' Qanish in the frames of the two observers of ithe

previous example. According to the transformation rule for spin

te
[}

1=
L]

tLE
-

¥ =)
+

O

O

and since both w and w' vanish,

1O
[}
1o

Q= Q,o = constant .

In words, all the frames in which the spin vanishes rotate as one with
the principal axes of the deformation. Keeping in mind that the
deformation is homogeneous, suppose we permit Euler's method to be

applied only in frames in which the spin vanishes. Then (8.21) is

reduced to ) B

' T
[t (ty+h)] - [t (ty+h)1-Q, =0. (8.2;)
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From this equation we surmise that a frame lﬁdifferent stress may be
found in any frame if the classical Euler's method is used only in
those frames in which the spin vanishes.
Let ET(tN-bh) be the stress integrated in the frame of the
principal axes of the stretching (of the homogeneous deformation), and -

let t;(tN+h) and t"(t +h) be the stress In two arbitrary frames,

wi oy

determined from t (tN+h) as

f

tolty+h) =t (ty+h) - Q' (ty +h) ' .

(8.23)
telty+h) = t (ty+h) - Q%(ey +h)
Then the stresses to (t +h) and t (t +h) are related as
1 1" ||T R =
Er(tN+h) = Er(tu”‘) Q (t +h) Q (t +h) . (8.24)

Thus, the stresses t_ (t +h) and t"(t +h) are frame independent.

mer

Equation (8.23) gives a clue as to how the stress may be

integrated in a general frame (when the deformation is homogeneous).

In (8.23) tT(tN+h),- the stress integrated in the frame of the

principal axes of stretching, is glven by
tley+h) = to(ry) +ht (e,

which may be used along with the formulas (8.20) to write the first of
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(8.23) fn the form

tolty+h) = [el(t) + h(E(e) + thle) » )1+ Q' (£,)Q" (t +h)

~T N
(8.25)
In (8.25) ‘i’r'q is the spin at the time ty
t [}
oy = @ (ey)
and Q '(t) is the solution of the initial value problem
T =w g T 5 Qi) =1 (8.26) %

The prime is dropped in the equations below, but the discussion is for
general frames.

In a paper of related interest Rubinstein and Atluri [48] dis-
cuss approximate solutions of the initial value problem posed by
(8.26) for orthogonal g(t). In practice usually only g(tN) is known.

Then the best approximation for Q,T(tN) . Q(.tN+h) is given by

Q')+ Qlt +h) = | - L sin(ah)u, (8.27)

+ 1 O - cos(Qh))tgﬁ

s.22

since only Q ( ) Q (t +h) appears in (8 25), the initial
value of Q only needs to be orthogonal hence, Q (t )= 1.
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where

Ql =} Wty - (8.28)

Since only an approximation for gT(tN)' g(tN-bh) is available, applica-
tion of (8.25) through (8.28) as an integration scheme has the effect
of integrating the stress in a frame in which the spin nearly vanishes.
However LMB is precisely satisfied since the apﬁrbxihétion for

gT(tN)' g(tN-+h) is precisely orthogonal,

For use in the finite element method one would replace Wy by

the mean spin (on each element)
5= o -‘\'1 wav . (8.29)
~ Vv x
N N

‘Then we call the equations (8.25), (8.27), and (8.29) the 'modified

Euler method'; they are summarized below:

to(ty+h) = [t (t)) + h(ér(tN) + et )w)] -gT(tN)- g(tN4-h)

Q' (1) * Qlty +h) = | = Zsin(@R)a + = (1= cos(2h))a>
$led ol U Q*z @

5 = 3 (8.30)

e
tE!

As long as the spatial mesh is fine enough to render the spin nearly
constant on each element, this scheme is equivalent to application of

the classical Euler's method in a frame In which the spin nearly
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vanishes.
By similar arguments we can establish frame indifferent Euler

schemes for the true stress and Kirchhoff stress as

I(tN+h) = QT(tN"‘h) . g(tN)-[z(tN) +hi*(tN)] . gT(tN) . g(tN+h)

L 2
where ™=

I XL

+ Tew=WwW*T
and

0 (g +h) = 0T(Ey +h) = Qe+ Lo (ey) +h G35 )T+ QT(e) - Qley+h)

where 0* = GT + C

*tWwe- wego
~T ~ ~ =T

T

0f course QT(t

N). Q(tN-kh) is computed approximately according to

equation (8.30).
To Tllustrate the advantage of using the modified Euler method,
'consider the integration of the stress in a body which spins rigidly;

that is
t (1) =t - at); Qo) =1

ET(t) =t é(t);

where to is a constant. An initial value problem for the stress tT(t)

(in the frame in which body appears to spin) may be set as

ir(t) = -Et(t) T W Er(o) = Eo i

where w = -QT(t)' Q(t) = constant. Euler's method applied to this

initial value prcblem gives the result:
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N
Er(Nh) =ty s (1 - hog) ™

The accumulated error grows without bound. On the other hand, the

modified Euler method gives the exact answer:

t (Nh) = t - Q(Nh)

since g(t)-l-% Si"(gt)‘l’o+—]2' (1- cos(Qt))tfg. and, for constant

N ¥
Wy Q(Nh) = [Q(h)] .
In the integration of the examples accompanying this work the
term (hé) was always so small as to make the classical and modified
Euler methods indistinguishable. However, in the general case one

must take special precautions in the integration of tensors to insure

that a frame dependence is not induced by the integration scheme.

Stability of Numerical Inteqration of

the Initial Value Problem

It is possible that the difference between two supposed
numerical solutions of a given initial value problem is much larger
than would be expected to arise from discretization error alone. As
an example, consider Integration of the stress in a material of the
type (4.20) by the Euler method. We suppose, for the sake of
simplicity, that €(t) is given and I(1) = ‘ZU(%YE'). so that the

’

difference between two solutions satisfies

ag* = iv(: +81) - V(D)) e(t) - (3uy)at' . (8.31)
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If the elastic matrix and stretching are such that, in the Euclidean

norm,
vz + 81) - V(D1 : ()7 lazl > 0 (8.32)

as "AI||* 0, then for sufficiently small JAT], equation (8.31) may be

replaced by
Ac* = -(3uy)at’ . (8.33)

Defining Ao as Ac-JOQ% AT' : AT' , we may reduce (8.33) to a scalar

equation in the Invariant Ac:
& (80) = -(3uy)ao . (8.34)

For an initial value Ac(0) (small), the closed form solution of (8.34)

is

so(t) = ao(0)e” (VI (8.35)
Euler?s method yields

so,, = 40(0) (1 - 3uym)" . (8.36)

It is clear from (8.35) that Ao decays to zero as time passes. This
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means that the closed form solution of the equation
é* =V:e(t) +2; 1(0) = T, (8.37)

is stable with respect to sufficiently small perturbations of the
deviatoric part of T. On the other hand, the numerical solution (8.36)

attenuates as time passes only if
[(1 - 3uyh)] <1 . (8.38)

This means that the numerical solution of (8.37) is stable with respect
to small perturbations of the deviatoric part of T' only so long as

the time step h is bounded above as
Ih| <2/(3uy) . (8.39)

This bound is identical to the bound given by Cormeau [46] (see
equations 16 and 54 in this referen;e). It is not surprising that
time steps such as (8.39) are found to be necessary for stability of
numerical solutions of the finite element-initial value problem pre-
sented in this work. According to Hughes and Taylor [20]:

The time step restriction of the Zienkiewicz-Cormeau algorithm
.. . 1s a stringent one in practice. For slowly varying loads,
or when eguilibrium response is of prime interest, stability

requires that time steps be selected which are much smaller than
those necessary for accuracy.

Argyris et al. [19] remark that this time step restriction amounts to
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limiting the inelastic strain increment to be smaller than the elastic
strain. Since the elastic strain is usually very small in metals such
as those used in structures, this implies that a finite deformation
analysis would entail an impractically large number of steps.

The work of Kanchi et al. [49] and Atluri and Murakawa [14]
suggests the modification we now describe. To improve the estimate of
the inelastic strain increment in a time step, we replace EP(IN) by an
estimate of the mean value of the inelastic stretching in that time

step:
P « P d& ]
E (I(tN+ Bh)) = € (I(tN)) +96h Ff— : g% (8.40)

where the parameter 8, 0<6<X1, serves to locate the time at which the
mean value is achieved. As 8 goes from zero to one, the estimate of

the creep-stretch becomes increasingly more conservative.
Equation (8.40) may be introduced to the finite element

algorithm through the constitutive equation; (4.20) becomes

0*- .
g !e. €+ I (8.41)
where
PL-1
-1 dg P
= nt— . = - oe
Ve [g +eth p Lgo=-Vg:E .

From Ve (8.41) we derive Wg just as we derived W from V:
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s Vi€ =g+ D e . (8.42)

When a material which exhibits relaxation is to be analyzed, ! and E
are introduced to the finite element algorithm for Efahd z.

If Euler's method is used to integrate the Initial value problem
which results from the modification described above, then, in the
terminology of Argyris et al. [19], an explicit 'forward gradient
scheme' Is recovered. If the 'gradient' (dEP/dE) Is evaluated at
T*Tg" (1- e)IN+eIN+1' then an implicit forward gradient scheme,
counterpart to that proposed by Hughes and Taylor [20] is recovered.
Finally, if the 'gradient' (dEP/dz) is replaced altogether by a

function ge, defined through
N
e (D) =gl i1 5 gy = glTy) (8.43)
- -~ N ~ hd - ® -

then an implicit 'f!nite approximation technique,' counterpart to that
proposed by Argyris et al. [19] Is recovered. The implicit schemes
must be solved by iterating on each time step, keeping 0 fixed. The
iterative schemes amount to special predictor-corrector techniques.

An Important fact that is exploited in our numerical studies Is that
for the material (8.31), with uy constant, all of these schemes are

equivalent.
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CHAPTER IX

EXAMPLES: FINITE DEFORMATION PROBLEMS

Introduction

In this chapter we present several examples as demonstrations
of the feasibility and performance of the finite element algorithm.
All of the examples may be described either as plane or axisymmetric,
so we begin by discussing specializations of the algorithm for such
problems.

The examples fall into two categories--homogeneous deformations
and inhomogeneous deformations. By treatment of homogeneous deforma-
tions (for which closed form solutions are known), several important
aspects of the performancé of the finite element algorithm can £e
clearly identified and studied. The studies of inhomogeneous deforma-
tions, the results of which are compared to both analytical and other
numerical results, indicate the potential of the algorithm for treat-
ment of problems of technological interest.

In the discussions of the examples the time integration scheme
used is indicated as Euler, Runge-Kutta second order (RK2), or Runge-
Kutta fourtn orager (RK4). In all cases the classical schemes (i.e.,
those described in [47]) have been used.

Plane Strain

A1l but one of the deformations studied In this chapter are

plane strain in character. Just as for formulations using ordinary
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stresses, a number of the components of the velocity, spin, and stress
rate vanish if a Cartesian coordinate system is chosen with one axis
normal to the plane of deformation. We have chosen the xz coordinate
line to be normal to the plane of deformation, so that the velocity,

spin, stress rate, and stress are of the forms

(o X
L}
(s

31 i3

§+‘tee.

1 =373

None of the components depends upon xz. The velocity is represented

on each element as
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The shape functions !i are described in Appendix C. Similarly the spin
and stress rate are represented as

NT .
qr.8'

-~ |

{rre
L}

NW
i
‘.‘."29.‘:’;“ ;
fe]

i=]

and those shape functions are given In Appendix C also.
We note that this approach requires minimal specialization in
programming for the particular case of plane strain. The plane strain

condition is not satisfied a priori; that is,
-'I .

for arbitrary 8r. Rather, €,,=0 follows from the stationary con-

22

dition (a component of 7.1):
[ [epntiw] 6t av=o .
V ES )

In using the finite element algorithm t@e plane strain condition is
only satisfied approximately. In practice a qualitative check for
satisfaction of the plane strain condition can be made by seeing that
the stress component 122 and the mean stress are nearly equal. This

method for checking €,.,=0 works so long as the inelastic stretching

22
is proportional to the stress deviator (in the constitutive equation).
As an aiternative to approximate satisfaction of the plane

strain condition, it is possible to 'split' the constitutive equation
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into two equations. The flrst involves only the in-plane components of

the stretching and stress rate, all that Is actually required for the

finite element algorithm for plane strain problems. After in-plane

components of the stress rate and spin have been found, the stress rate
component 222 can be assigned so as to give precisg satisfaction of the
plane strain condition. This alternative is attractive from the point
of view of efficiency, for storage could be reduced and the analytic
inverse for the constitutive equation could be used, but it requires
considerable specialization In programming. Because of the inflex-
ibility of this approach, it was not pursued in pProgramming.

Axisymmetric Deformations

One of the deformations studied in this chapfer is axisymmetric
in character, that of creep of a pipe from Internal pressure. We have
used é right circular cylindrical coordinate system to describe the
problem, indexing the coordinates as xI =r, x2-6, and x3=z. of
course the z axis is along the centerline of the pipe, and r is a
constant on the interior and exterior surfaces of the pipe at any
particular time. The velocity, spin, stress rate, and stress are of

the same forms as for plane strain; that is

'l

ey

‘T
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None of the components above depends upon xz-e. The representations
for the velocity, spin, and stress rate are of the same forms as for

plane strain; the shape functions are described in Appendix C.

Homogeneous Deformations

Through the study of homogeneous deformations various important
‘aspects of the performance of the finite element algorithm can be
identified and studied. Since closed form solutions to problems of
homogeneous deformation are widely available, questions of the accuracy
of the finite element solutions can be resolved quickly and absolutely.
If we immediately engaged problems complicated by inhomogeneous
deformation, the accuracy of any solution we obtained would be no
more than a subject for speculation. It was demonstrated by the
example in Chapter VIII that homogeneous deformations are as difficult
to integrate from the point of view of time step stability as
inhomogeneous deformations (since the same time step bound was found).
Thus, homogeneous deformations are convenient subjects for studies of
time step stability, and in the present case, for studies of the
effect of the forward gradient scheme on accuracy. Finally, the results
of this study serve to underscore the fact that the material models
themselves are too idealized to be used in problems of technological
interest when strains are very large.

Finite Plane Extension

We begin our study of homogeneous deformations by considering
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finite plane extension of (i) the hypoelastic material (4.31),

(ii) a hypoelastiglplastic material, and (1ii) a creeping viscoplastic
material. The geometry of the specimen for these examples Is glven

in Figure T. These examples serve to demonstrate the relative
efficiencies (accuracy/cost) of the Euler, RK2, and RK4 time integra-
tion schemes, the performance of those schemes when the loading path

crosses a material yield sdfféce;rénd the effect on accurécy of the

forward gradient scheme.

Hypoelastic Material. For the first problem we consider the

hypoelastic material defined by the constitutive equation (4.31):

&*sk(1:§)1+2u§ . (9.1)

~

It is convenient to introduce the normalized stress s, defined as

s=T1/2u. Then (9.1) may be written

(ﬁv) (1:e)l+¢e. (9.2)

For homogeneous plane extension of this material from a stress free

state, the stresses are given by
s“(l) =0
s22(1) = vs33(1) (9.3)

B = (725) 0 -1
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where V= (1-2v)/(1-V). In Figures 2, 3, and 4 the stresses found

by application of the finite element algorithm are compared to the
closed form solution (9.3) for v=1/3. Euler, RK2, and RK4 time stepping
algorithms are used. The Euler algorithm underestimates the strain-
softening of the material slightly, but the RK2 and RKk4 algorithms pro-
vide data indistinguishable from the closed form solution. The reader
should note that the stretch increment for each time step is (0.01),
(0.02), and (0.04), for the Euler, RK2, and RK4 algorithms, respectively.
Thus, the computational effort is the same in each of these three

cases (1 element stiffness matrix evaluation per stretch Increment of
0.01). In view of the differences In accuracy, we rank the RKA4
algorithm as most efficient, followed by RK2 and Euler.

One of the methods used to get qualitative estimates of the
local error of the Euler and RK2 algorithms is based on the assumption
that greaker accuracy will always be achieved by the next higher order
time stepping algorithm when the solution is smooth. To check the
error of the Euler algorithm on a given time step, we intggrate the
time step a second time using the RK2 algorithm. The local error is
then assumed to be of the same order of magnitude as the difference
between those two solution;. The error of the RK2 algoriihm may be
checked in a similar manner using the RK4 algorithm as a ‘reference.’

Plastic Material. As a second example we consider plane

extension of a hypoelastic/plastic material from a stress free state.
The specimen geometry Is identical to that of the previous example

(see Figure 1). The material is characterized by uniaxfal test data

as
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11 11
O, /e, = I E (t <« 'ry)

(9.4)
T1\N-1) -1
- 11 - T ) "
% /En JoEt - JOE{N (-1:— } (" =2 Ty)
The associated constitutive equation is
e=e® +e =y :o" (9.5)
< < ~ x o~
]
e L (1) on (v 3
€ ( E )9 (E) (1:0%]
(906)

1 N-1 £
1/h =1/ - V/E = (1/E) {N(E) - 1}; (3.7) :

where |'=7' : T', and a=0 or a=1 as the material is elastic or -

-~

plastic. It is convenient in this case to normalize the stress by its

yield value in plane extension:
s = v"i"*f./ZTy . | (9.8)

The stress accompanying plane extension from a stress free state of

the material '(97.5) are easily found when v=1}as

132 o=



s 11) =0 ; s22(1) = $s33(1)

$33(1) = (/1001 )] s < 1 (9.9)

1
s33(1) = [1n(l)/1n(ly)]N $> |

where ly is the nominal strain at the initial yield of the incompres-

sible material in plane extension:
ln(ly) = /3 rym—: . (9.10)

In the examples we take (E/Ty)==200, N=4, and v=(1/3). In Figures
5, 6, and 7 the stresses found by application of the finite element
algorithm are compared to the stresses in the incompressible material
with the same Young's modulus (E/Ty) and hardening exponent N. The
discrepancy in the elastic range is due entirely to the difference in
the Poisson ratio; for both v = (i) and v = (%J the stress 122='v133,
as we have determined it should in the previous example (see 9.3). We
note that the numerical solution 'overshoots' the yield surface for
Euler, RK2, and RKL4 algorithms, but the error appears to be least for
the higher order methods. As plastic deformation progresses, the
stress in the compressible body falls slightly below the stress in the
incompressible body. This is to be expected, for the compressible

body is more compliant. One other point made by this example is that

the deformation in the plastic range (beyond about 2% stretch) is
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essentially isochorié. This is not because the material is any less
compressible in the plastic range; rather, it occurs because of the
drastic lowering of the shear rigidity of the material by the plasticity
mechanism. The condition number of the constitutive matrix ! can be
used as an indicator of the relative shear rigidity; as that number
decreases, an unconstrained deformation becomes more and more like the
deformation of an incompressible body.

In Figure 8 of the stress accompanying the deformation out to a
stretch of 1.92 is plotted for the same materials as above. The RK&
algorithm was used for this integration, with a stretch increment of

(0.04).

Creeping Viscoplastic Material. As final examples of plane

extension we consider a viscoplastic material which creeps (i) from an
initially stfessad state, and (ii) from a stress free state. The
specimen geometry is the same as that of the previous two examples.
The material behavior is governed by

e = é* - (l:\))(l :é*)l + %-(i - %'(E: l)l) (9.11)

where s =1/2y, §*=5"‘/2u, and T=1/3uy. When the material is incom-

pressible, the stress accompanying plane extension are easily found as
s'(t) =0

szz(t) = 3 533(t)
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t
s33(t) = 533(0)e“t/T + 2 f 533(c)e'(t-5)” dz . (9.12)
o]

For the stretch history 1(t)=1+Vt, the stretching 633(t) is

e33(t) = v/ + V) . (9.13)
The stresses for this stretch history take the form

s =0

$22(1) = 1sB3(1)

3 = 3B T L e e/ -0l 901w
where L=VT, and Ei(*) is the exponential integral, defined

Ei(x) = fx (e?/2)dz .
-
Values of Ei may be found in tables [53]. In the present case Ei was
evaluated by a subroutine in the IMSL Mathematical and Statistical
Library (FORTRAN). The subroutinev (MMDEI) returns a value to the call-
ing program which Is based on interpolation of tables.

In both of the cases which follow we take V= lO-M sec-‘

56 12

(nominal stretch rate) and T=3 (-9—0- x 10~ sec. Cormeau's [U46] time

step bound is h<hc-2T.

139



In the first case we assign the Initial stress as if it arose

from viscosity alone:
s''0) =0 ; s22(0) = $s2%(0) = vT .

We take time steps h= (90/56)hc, 2(90/56)hc. and h(90/56)hg (for
stretch Increments of 0.01, 0.02, and 0.0k, respectively), applying
Euler, RK2, and RK4 algorithms, respectively. The stability parameter
@ is set as 8=}. The stresses found by application of the finite
element algorithm are compared to the closed form solution (9.14) for
the incompressible body with the same characteristic time T In Figures

9, 10, and 11. [t s apparent from these figures that the numerically

:iptg:grated stress irs srlrightly greater than the stress in the incom-
;;r?ets‘sible, material, whi-cfar.is surprising. One would expect the more .
compllant material to have the lower stress.

We note that the introduction of the stability parameter 6 has

the net effect of replacing (9.11) by

8h b \ 1 6h Lk
£® (' * 7)3 (r ravi ET) (1:571

1 1
+;(§'-3-(1.§)1).

Qividing through this equation by (l +%h—) s setting v=%, and

defining TSS,T + #h gives
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But this equation has already been integrated for plane extension.

From (9.12) we can immediately write

11(:) =0 sii(t) - i,sji(t)

t/T -(t- ;)/'re

s33(t) = s33(0)e ?’-j‘ e3(@)e dz . (9.16)
0

Now we consider the special case that 533(t) is a constant. Integra-

tion of (9.12) gives
$3(0) = 33(0)e™ T 4+ 2130 (1 - VT . (9.17)

At times t much later than t=T the stress'attains é steady state

value of 2233(0)T. Integration of (9.16) yields

-t/T -t/T
s (t) = s3B3e %4 21’533(0)(1 -e 9). (9.18)

and at late times 533(t) + 2 533(0)T. Thus. the steady state value
of the stress in plane extension is unaffected by the introduction of
the stabsluty parameter 8. The Importantvdofference between (9.17)
and (9.18) is the rate at which the stress approaches the steady state

value. It is clear that 533(t) and sgB(t) are related as
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533(t) = 533 (t (l + -e.rﬂ)) .

Simply put, the stress 533 'lags' the correct stress. This is exactly
what is observed in Figures 9, 10, and 11, That lag becomes increas-
ingly apparent as the order of the integration scheme is increased,
since the numerical solution tends towards 533(t), not 533(t). We
conclude the discussion of this example by remarking that this lagging
of the stress must be expected any time the stability parameter 8#0,
and the lag increases with (8h/T).

In the second case of plane stretching of a creeping viscoplas-
tic material we set the initial stresses to zero. As before,

usec-] (nominal stretch rate),'T=§(56/90)10'25ec(characteristic

V=10
time), and Cormeau's [46] time step bound is h <hc-=2T. The stress in
this example differs from the s @2ss in the previous example solely
because of the different initial stress, and that difference

t/T. For times t much later than t=T, the stress

attenuates like e
in this example is indistinguishable from that of the previous example.
We use Euler's method for integration, taking time steps of
Px-i(90/56)hc, (90/56)hc. and 2(90/56)h; (for stretch increments of
0.005, 0.01, and 0.02, respectively). We set the stability parameter
B tounity, 2=1 ‘gi irg (BR/T=(90/56), 2(90/56), and 4(90/56),
respectively). In Figures 12, 13, and 14 the stresses found by
application of the finite element algorithm are compared to the

closed form sulution {§.12) for the incompressible body with the same

characteristic time T, and also to the closed form solution for the
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incompressible body with the 6~modified characteristic time TG' it is
clear from these figures that only a qualitative estimate of the
transient stress response is given by the finite element algorithm;
and that estimate is degraded as (8h/T) increases. More important
though is the fact that use of a higher order time stepping algorithm
(for the same (6h/T)) cannot improve the accuracy of the numerical
solution, since that solution would be drawn closer to So° not s. it
is therefore senseless to use methods other than Euler's when 6h is of
the same order of magnitude as the characteristic time T.

Finite Rectilinear Shear

We continue our study of homogeneous deformations by considering
finite rectilinear shear of (i) the hypoelastic material (9.2), (ii) a
second hypoelastic material which resembles an elastig-perfectly plas-
tic material, and (iii) a creeping viscoplastic material. The geometry
of the specimen is given in Figure 15, These examples serve not only
to further demonstrate the performance of the finite element algorithm,
but also to portray aspects of the finite deformation behavior of the
materials themselves. Consistent with the conclusions of the pre-
vious section, we use only higher order integration schemes for the
two hypéelastic materials (on the basis of efficiency). It happens
that for this completely constrained deformation stable integration of
the stress in the viscoplastic matcrial may be achieved without
relying on the forward gradient technique. We take advantage of this
situation by comparing the accuracy of the finite element algorithm
with and without the forward gradient scheme for the same deformation.

From the results one can only conclude that further research is needed.
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Hypoelasf‘c Material. We consider for a second time the

hypoelastic material defined by (9.2). For homogeneous rectilinear

2

shearing of this material from a stress free state, V"\I =0,

3

o 1
vimex , the normalized stress s is given by

533(e) - -sl](e) = 1(1-cos(e))
" (9.19)
s'3(e) = ysinfe) .

We compare the stresses found by application of the finite el2ament
algorithm to the closed form solution in Figure 16. The RK2
algorithm was used, with time steps corresponding to (nominal) shear
increments of (0.16). As discussed in Chapter IV, °~ constitutive
equation (9.2) is invalid beyond the nominal shear strain e=3}m,

This is of little consequence if one is interested only in metals such
as used in structures, because some mechanism of inelasticity always
sets in long before such a large shear strain as e=31 7T |s reached.
However, since (9.2) 1Is typjcally used to ﬁ;del the elastic part of
the stretching in constitutive equations for inelasticity, one must
ask whether or not similar periodic behavior will be observed when a
hypoelastic/plastic or hypoelastic/viscoplastic material is subjected
to such large shear strains.

A Second Hvpoelastic Material. We consider a second hypo-

elastic material whose constitutive equation resembles that of an

elastic-perfectly plastic material. This material is studied in
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place of a truly plgstic material because of the availability of a
closed form solution [27]. It would have been possible to 'splice'
solutions for an elastic material and the present material at the
yield surface to obtain a closed form solution for a truly elastic~-
plastic material, but there would have been little to gain in the way

of illustration. The new hypoelastic material is defined by

2u

g* = 2ue + A(1:€)] - 7= (T:e)T' . (9.20)
~ -~ ~TSe 2 ~ "'
3y
. 2 _ 2 2 . . .
By defining K™ = 3'(Ty/ZU) , introducing the normalized stress

s =1/2u, and prescribing rectilinear shearing, we deduce

s*=¢ - -%-S(S 1 E) . (9.21)
T T KT - :

For materials such as those used in structures the parameter K is
typically of the order of (0.01). The stresses accompanying rectilinear

shearing from a stress free state were found in [27] as

s'3(g) = iKsin(Cb)/(ir'*Kz)&
(9.22)
$33(¢) = -s'"(¢) = $ K2(1 - cos(¢))/ (4 + &)

where

2 2K

2,3 2, %
tan(i¢) = (i;ili_) tanh (Li;;i—l— e) : K2 <3
, $-K
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In Figure 17 we compare the stresses found by application of the finite
element algorithm to the closed form solution (9.22) or the special
value K= (0.10). The RK2 time stepping algorithm was used for the

computation. The closed form solution has a peak at [27]

3
. K T P
ec 2 ! In K2-~:~ 0.65693‘

but this Is completely lost in the numerical solution. At shear strains
13

larger than e. above, the shear stress s is a decreasing function of
e; one must conclude that the model (9.20) is unacceptable beyond that
level of strain.

Creeping Viscoplastic Material. As final examples of recti-

linear shear we consider a viscoplastic material wh’ creeps from a

stress free state at several different rates. For a second time we
use the material defined by (9.11). The specimen geometry is the same
as in the previous two examples. The stress accompanying the deforma-

tion is
s33(e) = -s‘](e) - 513‘ E-exp (%?)[sin(e) + Ecos(e)]x

s'3(e) = 5;3{1 - exp (IEE-)[cos(e) - Esin(e)]} (9.23)

where E=eT, and 513-7&7;5”/(! 7+7E72).H=The characteristic time T is the
same in this case as in the plane extension examples. We took values
of E as (0.5), (1.0), and (2.0), corresponding to nominal shear strain
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,2, and (45/7) xlo‘lz, respectively.

rates of (45/28) x107'2, (45/14) x 107
The reader should note that these strain rates are indeed very slow.

The stresses found by application of the finite element algorithm are
compared to the closed form solution in Figures 18, 19, and 20. The RK2
algorithm was used for time integration, with time steps corresponding

to nominal shear strain increments of (0.2). The first stress peak

is at e=4m, and the final shear strain is (B.0). The reader should

note that the behavior Is (qualitatively) similar to the purely

hypoelastic behavior (period) and to rigid-viscoplastic (or viscous

fluid) behavior at late times.

In the three cases above it was not necessary to use the forward
gradient scheme since the deformation was completely constrained. How-
ever wé can still introduce the stability parameter for the pu~oose of
finding out what error it leads to. Just as for the examples of plane
extension, if is possible to integrate the modified eguations in
closed form. The solution of the 8-modified problem is found by
replacing E by E(1+6h/T) in (9.23) everywhere except in the numerator
of 5;3. The stresses found by application of the finite element
algorithm, with 6= 1, are plotted in Figure Zl,rglong with the
solutions ofvzbg true and modified‘praglems,'?or the case E=2. All
the other data ig unchapged. Tﬁég}éader should note that at late

times the two solutions do not coincide; rather, we get the ratios

sg/s' 3 (1 + E)/(1 + €2)
A (9.24)
s“/sl‘ *-(EB/E)(sé3Js]3), . '
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From (9.15) it is easily seen that the influence of the parameter 6
will vanish at late times (for any deformation) only so long as é*
vanishes at late times. In other words, the forward gradient scheme
presented here will only give correct steady state values of the stress
for deformations in which the spin or the total stress vanishes at late
times. Rectilinear shearing does not meet either of these conditions.
Further research is needed to determine whether or not this defect in
the forward gradient scheme, which is probably only important for large

deformations, can be overcome.

Inhomogeneous Deformations

We conclude this chapter with three studies of inhomogeneous
deformations. In the first, a study of creep in a pipe due to internal
pressure, the numerical solution is compared to closed form solutions
for elastic and rigid-plastic bodies (at different stages of the
deformation), as well as to other numerical results. In the second
problem, a study of the onset of necking in the plane tensile test,
results are compared to closed form results for an incompressible body
as well as to other numerical results. In the third problém, a study
of plane void growth in a creeping viscoplastic medium, comparison is
made to other numerical results. As shall be seen, the stress-rate
based finite element algorithm compares very well In every case.

Creep of a Pipe from Internal Pressure

The problem geometry and boundary conditions are given in
Figure 22. The problem may be analyzed in three stages: (1) rapid

elastic inflation, (2) transient stress stage, and (3) large strain
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creep stage. The first two parts of this problem have been studied by
Greenbaum and Rubenstein [54], and Pian and Lee [55]. The creep

behavior is characterized by the uniaxial relation

efy = (') (9.25)*

8

where Y=2.073x 10 (hr)-‘(N/mmz)-N, N=U4.4, and M=0.7. The elastic

and inelastic¢ components of the stretchi'ng are

§e=(1+\})é*-(%) (1:(3*)1 (9.26)

As in [55], time integration is carried out with respect to the

parameter Ath. Real time is recovered after integration as tu)\”M.

In the example we take E= l.379xlO”Pa, v=0.45, 8=14%, andi use Euler

integration exclusively.

Rapid Elastic Inflation. The pipe is taken from a stress free

state to an elastically strained state in a single Euler step by
imposing a nominal pressure rate on the inside wall of the pipe of
"r] = 2517 (N/mm2 . SeLM}' for a A~time step of 0.001 (sec)". The pres-
sure in the pipe at the end of elastic inflation is 2,517 (N/mmz).

In Figure 23 the stresses found by ‘application of the finite element

*
when the parameter M< 1, the material age-hardens.
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algorithm are compared to those predicted by the Infinitesimal
displacement theory of elasticity. As is evident, the two solutions
are virtually indistinguishable,

Transient Stress Stage. In this stage the creep mechanism

causes the stresses to redistribute themselves through the thickness
of the pipe, and the pipe itself to expand slightly. In this sfage
the nominal traction rate on the inner wall was set to zero, and the
A-time step was set as AA=0.5 (sec)H. In Figure 23 the new distribu-
tion of stresses is compared to the stresses that would be obtained if
the material were rigid plastic. These latter stress distrioutions
are given by Hult [56]. Again, the two solutions are virtually
indistinguishable. In Figure 24 the small deformation displacement
history of the inner wall of the pipe Is plotted against the result of
Pian and Lee [55].

Large Strain Creep Stage. This stage is a continuation of the

relatively steady creep that characterized the latter part of the
previous stage. The only difference In the computation was the A-time
step was set to 400. In Figure 25 the maximum hoop stress history

(at the outside wall) is plotted against the history for the rigid-
plastic material. In this stage it is important to note that the
traction boundary condition on the inside wall, fl-ro does not corres-
pond to constant pressure; rather from the equation (3.36) we find that

the pressure rate is
p = -(a/alp (9.27)
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whé?e*a'is'the instantaneous inner radius of the pipe. Integration

gives™
pt-"(ébpo)/a . (9.28)

This traction boundary condition was chosen simply for convenience.
For constant pressure, the nominal traction rate and velocity on the

inner wall would have to satisfy
(é/a)p0 =0 (9.29)

This boundary condition could be dealt with by iteration, using (9.29)
to form 'residual loads,' or by recasting the traction boundary con-
dition (7.2) as

fs [i‘l - (5/8)9]5; ds =0 . (9.30)

e}

The Onset of Necklng in Plane Extension

It ls wel! known that in tensile tests of metals (plane or

uniaxuafjjiﬁe deformation prtor to the attafinment of the maximum load

is essent;;i]y homggenasous. At some po:nt after the maxfmum load
point a 'neck' forms and the specimen fails almost |mmednately In
experlment, the point at which nécking begins is senslttve to the
slenderne;s of the spec{;;;; the rate of strain hardening of the
material, and the présence of geometric imperfections or inclusions.
Mathematically It is possible td6 tonsider specimens absolutely
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free from geometric imperfections, and throughout which material
properties are perfectly homogeneous. For such a 'perfect' specimen
homogeneous stretching (such as discussed ea;lier in this chapter) to
any extension is a solution of the general boundary value problem.
However, to reach configurations of pure extension far beyond the
maximum load point, the perfect specimen must pass through a (possibly
infinite) number of configurations from which bifurcation is possible.
For the classical elastic/plastic solid with a smooth yield surface
the first possible mode of bifurcation is that of necking.

Within the past few years mathematical analyses of bivurcation
from configurations of pure extension have been presented by Hutchinson
and Miles [57], Miles [58], and Hill and Hutchinson [59]. The first
two of these are concerned with the onset of necking in cylinderical
and rectangular specimens of an incompressible elastic-p]astic material.
In the third an extensive study of general bifurcation phenomena of
incompressible materials in the plane tension test is presented. For
the classical elastic/plastic solid this study indicates that the
first possible mode of bifurca;ion is that of necking.

Here we present a hﬁmerical study of the onset of necking of
(hypo-) elastic/plastic solids in the plane tension test. To aid
in the comparison of our results to those of Hill and Hutchinson {591,
certain of their notations are adcpted; these are explained as they

are presented. The material we consider is slightly compressible%;

*
- the loading surface does not depend upon the pressure.
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in order to compare our results to those of Hill and Hutchinson we
must assume that the effect of this compressibility is slight, though
not necessarily ignorable. So that the performance of the present
finite element method may be contrasted to the performance of a
velocity-based finite element algorithm, we have chosen particular
materials identical to those used in the bifurcation study of Burke
and Nix [60]. This appears to be the only other numerical study of
bifurcation of classical elastic/plastic materials in plane extension
In the literature.

Finally, we investigate the sensitivity of our results to
variations in the number, shape, and type* of elements in the finite
element mesh. This latterrstudy serves not only to graphically
rdemonstrate the stability of the finite element algorithm, but also t§
help characterize the approximation thus obtained.

Bifurcation Analysis. As discussed in Chapter VI, a condition

sufficient for uniqueness of a deformation of an (hypo-) elastic/
plastic body is that the second complementary virtual work principle
have only the trivial solution for the 'linear comparison solid' when
homogeneous boundary conditions are imposed. In as much as the finite
element algorithm is based on that work principle, we equate the
uniqueness criterion with the condition that the finite element
equations have only the trivial solution for the linear comparison

solid when homqgeneoué boundary data is imposed. Searching for possible

*
the type is determined by the number of boundary nodes, the
number of spin parameters, and the number of stress parameters.
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bifurcation points amounts to looking for configurations of the body
in which the global stiffness matrix [KE] is singular. The subscript
L is to indicate that the stiffness matrix is formed as if loading
occurs throughéut the plastically stressed portions of the body; in
extension problems this condition can be satisfied a posteriori by

judicious superposition of the homogeneous and necking modes.

3
o

We consider a specimen of initial length 237 and thickness

Za;. We assume that the bifurcation mode will be symmetric in the
sense that the velocity field may be reflected across the x3 axis

(see Figure 26). This is consistent with usage of the adjeciive
‘symmetric' by Hill and Hutchinson. The finite element mesh is over
the area a] x2a3. The specimen is composed of the hypoelastic/plastic
material of equations (9.5) through (9.7), and the subsequent dis-
cussions pertain only to that material.

To ease the comparison of our results to those of Hill and

Hutchinson [59] we introduce the plane strain tangent modulus bu*,

defined by
3 |
J e = l’u‘ . (9'3‘)
0 33

Assumin; th=zt 29 th:z Yif,rcation point is approached the stresses

satisfy (approximately--see Figurz R)

.22 33 022 .33 . (9.32)

= 3177 o°" = 3077
the constitutive equations (9.5) through (8.7) yield (without further
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approximation)

33 | N=1
! -@l—-) ] . (3.33)

]
h—u;-ﬁ[“ - 2v) +3N( ZTY

In our calculations the stress 133 at the onset of necking was always
at a level of stretch at which (i) (9.32) was a very good approximation,
andv(ii) the influence of v on Lu™ was negligible.

The dimensionless stress (133/hu*) arises naturally in the
analysis of Hill and Hutchinson. When the material (9.5)-(9.7) is

incompressible, considering (9.9), we find

33 /3 Nt 33\ N
S Y ("3_T ) - 3N Tn (X/X ) (9.34) %

* = T 2E 2T
Ly y

where X = (a]/Za3) is the stubbiness, and X°==(a;/232).

It is well
known that the maximum lcad occurs when the tangent modulus (as defined
by 4.39 or 9.31) falls to equal the stress; (i.e. when (133/hu*)= 1) %%

No bifurcation can occur before this point [23].

The tangent modulus continues to decline after the maximum load,

33

<< s i m i
max load <SHs that is, the tangent modulus is much smaller

so buF<t
than the shear modulus in the neighborhood of the bifurcations points.
As such, the critical stress (133/hu*) may be found by the asymptotic

formula®h*

St .
note the latter equation is independent of any elasticity.

*%
this can be shown by computing P=0 in equation (4.34).

"*see Rill and Hutchinson [59], equation 6.8 therein.
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(1) -y s (9.35)

. A
sin 2y

2% vy \3 1 1 z)
M i {(sinZY) (1+cos 2v) - 3'-?%2_7(10-4'?7 }

where Y=mmX, m an integer. As (2u"/u)+0, this formula reduces to
that of Cowper and Onat [61] for a rigid-plastic solid. We could use
(9.34) to eliminate either (133/4u*) or X from (9.35) to get eigenvalue
equations for X or (1:33/10;.1*), respectively, but for clarity it is bet-

ter to plot (9.34) and (9.35) independently In the X- (T33/l¢u*) plane.

The critical configurations in plane extension are then identified as the

points at which the curves intersect. This is the approach we take,

marking the critical configurations found by application of the finite

element algorithm on the same plot.

v=(1/3), and Ty-BM'.?S MPa. Six individual cases are considered,
cbrresponding to values of the hardening exponent Nark and N=8, for
Initial slenderﬁéSses of 1/X,=2, 3, and 4. These same six cases were
studied by Burke and Nix [60]. The problem may be treated in two

parts: (i) generation of the solution for homogeneous extension, and

(i1) !ocatioh of the critical configurations through which the specimen.

passes in the course of homogeneous extension.
To generate the solution for homogeneous extension for all six

cases it Is only necessary to find the solutions for extensions of a
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unit cube of the two materials involved. These solutions consist of
a sequence of éonfigurations through which the specimen passes in the
course of plane extension. It is anticipated that the bifurcation
analysis will be sensitive to small variations of the stress and stub-
biness, so an accurate integration of the Homogeneous extension is
essential. We use one element. For the material whose hardening
exponent N equals four, a single RK2 step brings the material from the
stress free state to the yield surface. This is followed by 30 RK4
steps to'bring the specimen out to nominal stretch 1=1,04. Subsequent
steps are (all RK4) stretch increments Al =0.002 out to 1=1.19, fol-
lowed by Al1=0.01 out to 1=1.45. For the material whose hardening
exponent N is eight, 40 steps were taken from the yield surface to get
out to 1=1.05, followed by stretch increments Al =0.01 out to
1=1.25 (all RK4). For both N=L4 and N=8 post maximum load calcula-
tions were repeated using A1=0.002. This gave not only an accuracy
check, but also a refined sequence of configurations in the neighbor-
hood of the bifurcations points. One result of this increase in
accuracy (over the example among the homogeneous deformations) is that
the stress, as a function of the nominal stretch, is found to be
virtually indistinggishablé from the stress in the incompressible
material: onlv the thickness of the specimen varied appreciably, and
this diffarence is not distinguishahle on the figures which follow.

In the second part of the problem, location of the critical
configuratione, estimates for those locations were provided by the

results of Burke and Nix [60]. The global stiffness matrix {Kf]
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was formed using a uniform mesh of eight-noded elements, three elements
through the (half-) thickness a] and twelve elements along the length
2a3. Then the First eigenvalue (smallest in absqfhfeVQalue) was
found.* The first eigenvalue has the physical signlficance of force
required to produce 'unit' necking. The search for the critical con-
figuration was extended towards or away from the maximum load point as
this eigenvalue was negative or positive. The critical cgnfigurations
are given in Table 1. Linear interpolation was used to get configura-
tions intermediate to those found in part one of this problem. In
Figures 27 and 28 the present results are compared to the closed form
results of Hill and Hutchinson [59] and to the numerical results of
Burke and Nix [60], for N=4 and N=8, respectively.**

In each of Figures 27 and 28 the three nearly vertical lines
represent the closed form solutions (9.34) for X°==(l/2), (1/3), and
(1/4). The stubbiness X decreases and the stressr(T33/hu*)'rises as

extension progresses. Along the loading paths bifurcation is first

possible when the curve (9.35) (for m=1) is encountered.*** Special

this. *IMSL (FORTRAN) Library subroutines were used to accomplish
**BurkgfgggﬁN}x [60] do not report the critical configurations,
s0 it was necessary to reconstruct from information they do give. The
stubbiness X can be recovered from equations bb6a, 46b, and Table 2 (in
that paper). The stress (t33/4u®) is then assigned according to
(9.34)--in this paper. We remark that their results are considerably
more accurate than entries in (their) Table 2 would have the reader
believe; the error In that table results from mis-application of the
asymptotic formula (7.6) from the paper of Hill and Hutchinson [59].

RAK o ,
to show the proximity of the next bifurcation point, (9.35)

for m=2 has been plotted also.

176

[

I

"oy

T Ca T

oy

[N I‘\l!‘“‘” ([ ]

[ fneom poe



LI

1.66

STRESS
1.00 1.33

0.67

0.33

0.00

V Burke and Nix [60]

o present method

0.00 0.10 0.20 0.30 0.40
STUBBINLSS

0.50 0 60 0.70

Figure 27. Results of Necking Analysis--N = 4




811

1.66

V Burke and Nix [60]

o present method

0.00

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80
STUBBINLSS

Figure 28. Results of Necking Analysis--N = 8

POTTR e o Iy .

e (IR AT, TR TR



symbols have been placed on the plots to indicate the critical
configurations found by the present finite element method and by the
velocity-based finite element method used by Burke and Nix [60].
Perhaps the most striking feature of these figures Is that in
every case the present method indicates bifurcation at a stress below
the critical stress for an Incompressible body, while the results of
Burke and Nix indicate the'opposite. While the velocity-based method
is certainly providing an upper bound for the critical stress, it would
be imprudent to assume from this single result that the stress-based
method is leading to a lower bound. In fact, counterexamples to such
a supposition are abundant. As an experiment, the Poisson ratio was
varied between v=0.1 and v=0.49. It was found that as Vv increased,
bifurcation was delayed. This is certainly not proof, but it supports
the idea that the bifurcation stress of the incompressible Lody is an
upper bound for the bifurcation stress of compressible bodies. In
that light, the numerical results found by the present method must be
more accurate than Figures 27 and 28 indicate, and the question of
whether they lie above or below the correct critical stress (for
\V --;—) is still open. Moreover, the present result was obtained using
only 36 elements (239 unconstrained velocity parameters), whereas 75
elements (479 unconstrained velocity parameters) were required fn

the velocity-based analysis to obtain a result less accurate.*

*Since a precise account of the critical configurations is not
given by Burke and Nix [60], it is impossible to say whether or not
the difference in the results can be attributed to the accuracy with

which the extension was Integrated.
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One could ask whether or not the symmetry we imposed on the
veloci;x field (sgerfiggrgﬁ2§zq£e§glfgd in the suppression of an anti-
symme;ric bifurcatlon mode, su;hﬂg;ipng that formatianof a shear band
might give rise to. This Is unlikely, since the bifurcations all occur

at stress levels too low to support the formation of a shear band in

the incompressible material. That stress, for incompressible materials,

is (see [60])

() > W2 (2n) - (9.36)

Finally we note that the present bifurcation problems are well
conditioned in the senses that (i) no other bifurcation points are
cross at a large angle. The results of Hill and Hutchinson [539] pro-
vide a basis for evaluatjon of the perforpancerof a finite element
algorithm under much more demanding circumstances.

A Parameter Study. In this section we investigate the sensi-

variations of number, shape, and type of elements in the finite element
mesh. The 'type' of element is determined byrtﬁérnuwég[ of boundary
nodes, tﬁernuﬁber of spinrparamétgrs, and the numbgr ofistress rate
parameters. It Is desired that a 'small' change in the character of
the mesh result in a 'small' (or at least predictable) change In the
apbroximaters;iggiéﬁ. Moreover, if fé Hobéd that the accurécy of that
result will increase monotonically with the computational effort,
measured roughly by the number of unconstrained velocity parameters.
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Finally, it is very important in practice to know whether an
approximate load is an upper or lower bound for the actual load.

Four different types of elements are coﬁsidered. The first two
are eight and four-noded elements satisfying all of the rank conditions
given in Chapter VII. -Third, a four-noded element whose spin field is
of polynomial degree one less than the stress-rate field is considered.
Finally, a constant stress--constant spin element is considered. In
alIvof the cases that follow, the configuration and stress of the body
are fixed at values given in Table 2. The material is identical to
that considered in the previous section with hardening parameter N=8.
Though the precise eigenvalue of the configuration (Table 2) is not
known, it is believed to be small and positive.

In Figure 29 the smallest eigenvalue of the global stiffness
matrix [K'] is plotted as a function of the total! number of uncon-
strained velocity parameters. The finite element meshes were made up
of uniform eight-noded quadrilaterals with 21 stress parameters and
6 spin parameters. Complete data is given in Table 3. As can be seen
in the Figure, the eigenvalue is quite insensitive to the particular
arrangement of elements, depending almost exclusively upon the total
number of degrees of freedom in the mesh. Every estimate for the
eigenvalue was positive.

In Figure 30 the smallest eigenvalue of the global stiffness
matrix [K*] is plotted as a function of the total number of uncon-
strained velocity parameters. The finite element meshes were made up
of uniform four-noded quadrilaterals with 13 stress parameters and 3

spin parameters. Complete data is given in Table 4. In contrast to
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the eight-noded elements, the four-noded elements show a marked
sensitivity to mesh arrangement. They are also substantially stiffer.
In spite of.the existence of preferred meshes, the eigenvalue estimate
appears to improve as the degrees of freedom in the mesh increases.*
Every estimate for the eigenvalue was positive.

In Figure 31 the smallest eigenvalue of the global stiffness
matrix [K*] is plotted as a function of the total number of uncon-
strained velocity parameters. The finite element meshes were made up
of uniform four-noded quadrilaterals with 13 stress parameters and |
Spfn pérameter. Complete data Fé'given in Table 5. The stres;-rate
field on this element contained linear terms, while the spin field was
a constant. Thus, angular momentum balance is generally satisifed

only in the mean by this element. The reader should note the dramatic

increase in stiffness of this element, as well as the relative insensi-

tf?ityrto mesh arrangement. EQefyizstimate for the eigenvalue was
positive.

From these three examples it is readily seen that the compliance
increases with the number of kinematic degrees of freedom (velocity
and spin parameters), just Ss it would in a velocity-based finite
element algorithm. However the type of element makes a bigger dif-

fe(ence than dcas the number of elements in the mesh. This Is

Imﬁortant from the point of view of efficiency, since it means that

*

the reader should note that the angularity of the lines con-

necting meshes in a sequence would be reduced if a refined sequence
were used in the plot.
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it is better to go to a 'higher order' element than to refine the
finite element mesh to achieve greater accuracy. It is also clear from
these examples that the finite element algorithm is not providing a
lower bound for the eigenvalue.*

We would expect that decreaﬁfng the number of stress parameters
would have just the opposite effect that decreasing the number of
kinematic parameters had--decrease the stiffnesses (see Pian [3]).
However, we found no difference in the necking eigenvalue for four-
noded elements when 13 or 21 strésgfparameters were used, for either
1, 3, b, or 6 spin parameters. This result is summarized in Table 6.

As a final example we consider meshes of four-noded elements,

each with 5 stress-rate parameters and | spin parameter. Each

element has two kinematic modes, but when the global stiffness matrix

[K*]ris assembled and the kinematic boundary‘conditions enforced,
these modes disappear. The element is Interegting because the
equations of compatibility and angular momentum balance are satisifed
precisely on the interior of each element. As such, a velocity field

of the form
v=(a'x + biy)gi (9.37)

may be integrated on the interior of each element. However such a

velocity field is incapable of matching the boundary velocities of a

*
as might have been inferred from the results of the
bifurcation analysis.
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four-noded quadrilateral except in the mean sense (since they contain
an 'xy' term). Therefore, across element boundaries this velocity
field must generally be discontinuous.

According toVWashizu,* one of Rayleigh's principles states that
"if the prescribed boundary conditions are partly relaxed, all the
eigenvalues decrease.'" In using the elements above, the actual problem
has been replaced by a problem in which interelement velocity con-
tinuity has been partly relaxed. Thus, it is not surprising that for
some meshes the finite element algorithm overestimates the compliance
of the body. However, as the element mesh is refined, it can be
imagined that the disparity between the boundary velocity and interior
velocity diminishe; (how rapidly would depend upon the particular
sequence of meshes). In Table 7 two sequences of meshes are detailed.
Any smooth velocity field could be approximated to any degree of
accuracy by continuation of either of these sequences. In Figure 32
the sequences of eigenvalues corresponding to these two segquences are
plotted. These simple elements apparently are converging to the same
value as all the other elements at a rate matched only by the eight-
noded 'high-order’ elementQ. But the most striking feature is that
one of the sequences of approximate eigenvalues is converging from
above while the other from below.

The natural tendency would be to attribute this behavior to
the prescnce of kinematic modes on the element level. However, for

sufficiently distorted meches of other-wise well-behaved elements,

“washizu [36], p. bE.
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similar behavior can be observed.®™ This example supports the idea
that the present method does not necessarily lead to an upper or lower
bound.

Growth of a Void in a Viscoplastic Medium

In this final example we examine the growth of a void in a
hypoelastic/viscoplastic medium. This problem has been studied
(numerically) by Burke and Nix [62], who treated the material as
rigid/viscoplastic. We present the problem as a further demonstration
of the performance of the finite element algorithm. The material
exhibits stress relaxation, so the forward gradient scheme must be
used to stabilize the time integration. Thus, only a gqualitative
picture of the stress and deformation can be expected of our analysis.
Nevertheless, the present results agree quite closely with those of
Burke and Nix [62].

The motion is assumed to be plane strain, and throughout the
body is a doubly periodic array of cylinderical voids. Due to the
symmetry we need aﬁalyze only one quadrant of one rectangular cell of
the body. The finite element mesh and boundary conditions are
described in Figure 33. |

Burke and Nix motivate their study by explaining that certain

theories for the initiation of creep fracture suppose that the growth

*For a (1 x10) mesh of eight-noded elements an eigenvalue of
-30.3368 was found; it was not determined whether this value was
simply erratic (due to the irregular element shape), or whether
similar negative values could be found for ‘nearby' meshes (such as
1x9 or 1x11).
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of voids can be '"attributed to the inhomogeneous plastic deformation
of the surrounding grains.'' Furthermore, '"finite fracture strains can
be predicted oniy when a void lies in the neighborhood of another
void.'"" Such a Study necessarily involves a number of special cases.
For our purposes, that of demonstration, only one case is taken.

The problem has been analyzed in three parts, much as the pipe-
creep problem was. In the first part the cell is brought rapidly from
the virgin state (stress-free) to a state éf purely elastic strain,
This is accomplished by a single RK2 step. In the second part,
relatively small time steps are taken while the stress relaxes from
the elastic distribution to a nearly steady creep distribution. In
the third part, time steps are taken which produce 1% nominal
elongation of the cell in each step. To stabilize time integration
in the second and third parts the forward gradient scheme is used,
the stability parameter 8 set as 6=1/2 and 3/4, respectively. Con-
sistent with our earlier discussions regarding use of the forward
gradient scheme, only the Euler time stepping scheme has been used in
the second and third parts of the problem.

The material model is identical to (9.11):
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This model corresponds to that of Burke and Nix [sz with (their) creep
exponent n=1. The fluidity vy is set és Y= lxlO-19 (psi-sec)-]. The
velocity ratr‘ tﬁe top of the c;ilifs;er,-wFigure 33) was adjus;ed so that a
specimen with no void would experience a homogeneous constant stretching
EII . E!l -14 s =1

of =0.25x 10 ec . Since the material was treated as rigid/

viscoplastic in [62], our éﬁoiceﬁgf g}éstic éonstants,is somewhat
arbitrary. We have taken Young's modulus E=3x 107 psi and Poisson
ratio v= 0.4, so the material is like mild steel in its elastic response.

In Figures 34, 35, and 36 the contours of stress T“, mean stress,
and stress 133 have been plotted for L (the elongation of the cell)
L=1.0l. The stress concentration where the hole edge crosses the x3
axis is approximately 2.7.% This is quite reasonable since the
theoretical value for an isolated void in a purely elastic medium is
3.0 [63]. In Reference 62 an approximate value of 2.66 was found for
the rigid plastic material. |In Figure 37 the contours of effective
strain rate ‘J %-EP: EP aré'plotted for L=1.01. Qualitatively this
compares very well to Figure 7 in [62],

In Figure 38 the deformation is traced from L=1.0 to L=1.5.
These deformatf&ﬁs are phys%cal!y tenable. We remark that no indication

of any numerical instability was observed in the course of integrating

this deformation.

In Figures 39, 40, and 41 the contours of stress T]], mean

33

stress, and 7°° have been plotted for L=1.50. They compare very well

* ,
A stress concentration of approximately 2.59 was observed for
the elastically stressed medium.
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Figure 36. Contours of Stress 33t L=1.00
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Figure 37. Contours of Effective Strain Rate EP/: atLt 1.01

196

!

L

e

Ly WM’

(gt



L61

Figure 38. Deformation History of Cell
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Figure Lo. Contours of Mean Stress at L = 1.5
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to the stresses found in [62] (see Figure 8 there). We note that the
stress concentration has dropped to 1.71. The stress concentration
depends strongly on the geometry of the specimen; as such, it was
observed to decline steadily throughout the deformation. In Figure 42
tHe contours of effective strain rate are plotted for L=1.5, Again,
the qualitative agreement with the results of Burke and Nix [62] is
noted (see Figure 9 there).

The present calculation was terminated at L=1.5 because of the

* at x>=0.0 and the edge of the

unstable traction boundary condition
hole, and the general breakdown of (total) traction reciprocity con-
ditions on the interior of the cell. This problem is easily avoided
by incorporation of traction residuals.

We conclude by noting that in the present analysis only 56 four
"noded elements were used, as compared to 56 eight noded elements used
in the analysis of Burke énd Nix. Consideringvfhe agreement between
their results and our own, the present method appears to have performed

very well, in spite of the large disparity in the degrees of freedom

of the finite element mesh.

*
see discussion and footnote accompanying equation (3.37).
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.CHAPTER X
CONCLUSIONS AND RECOMMEMDATIONS

Conclusions

In this work a new hybrid stress finite element algorithm,
suitable for analyses of large quasistatic deformations of inelastic
solids, has been presented. The feasibility and performance of the
algorithm has been demonstrated in a number of example problems.

Principal variables in the formulation are the nominal stress
rate and spin. As such, consistent reformulation of the constitutive
equation is necessary. This is discussed at length, as are alterna-
tives to direct numerical inversion of constitutive matrices involved
in that reformulation.

The principal variables in most finite element algorithms for
solids are either displacement increments or stress increments (as
opposed to actuai time derivatives). |In problems involving elastic
bodies the accumulated error of such an algorithm may be kept small
by 'residual load' iterations; however, in problems involving inelastic
bodies, the accumulated error of the incremental approach is like that
of the Euler scheme for integration of ordinary differential equations.
In the present work the notion of 'inc;;ments' has been discarded
entirely. As a consequence, the finite element equations give rise
to an initial value problem (which may be treated independently).

Integration has been accomplished by Euler and Runge-Kutta schemes,
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and the superior accuracy of the higher order schemes Is noted.

It has been shown that there is an ambiguity inherent in finite
element methods based on complementary work and energy principles sur-
rounding the appropriate definitionrof the velocity (or displacement)
on the interior of the element. Heuristic arguments have been given as
justification for the method by;ﬁﬁffﬁﬁfhose velocities were found in
the présent work.r Thosergrguments ié&f&éééWgsat mathematfcal con-
sistency requires that special te;hﬁiqués be used to find the velocity
on the interior of 'high order' elements, but that the velocity on the
interfior of a {léhioéder' e!emenf méyVSe;found by interpolation of the
boundary velocities.

In thé éourse of integratiénmg;mgge stress (in time) it has been
demonstrated that classical schemes such as Eule?'g and Runge-Kutta may
lead to strong frame dependence. The problem can be traced to the
integration schemes themselves. As a remedy, modified integration
schemes have been prpposed. The potential of the new schemes for
suégfess}né frame73é§endence of ﬁumericallyhiﬁtegfated stréss Iﬁ
demonstrated by an example.

| Tfmé integration of ihei;gfggs in materials which exhibit stress
Vref;xét}on is complicated by the neéessity that one take very small
time steps In ordér to avoid numerical instability. The applicability
éfregéiicitrand ?mp!jc{t féf@%fa gradignt schemes fo fmprove stability
of Integration in large deformation probléms has been investigated.
These schemes are known to be both stable and accurate in problems

involving small deformations. It has been found that in large deforma-

tion problems the schemes are indeed stable, but potentially inaccurate.
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The capability of the stress-based finite element algorithm for
extremely accurate bifurcation analysis was demonstrated. Moreover, it
was shown that one could expect the result of such an analysis to be
stable with respect to variations of the finite element mesh, so long
as the same type of element was used in every mesh. |If the type of
element was varied, the result changed in a (qualitatively) predictable
manner. It was demonstrated that ;he method did not necessarily lead
to an upper or lower bound for the critical load.

Finally, it was made evident through examples that stresses
obtained by the present method were of exceptional accuracy; much more
than could be expected of a velocity-based algorithm. Traction
boundary conditions and the traction reciprocity conditions were met
with a correspondingly high accuracy, though their accuracy could have
been improved by incorporation of residuals (to keep the accumulated

error small).

Recommendations

The principal defect of the algorithm presented in this work is
its inability to accurately integrate the stress in bodies which exhibit
stress relaxation, unless of course, the time steps are kept inordi-
nately small. Evidently, this defect is present in the algorithm of
Kanchi et al [49], though no mention is made of it. This appears to be
the only other application of a 'forward gradient' technique to finite
deformation problems. In the context of small deformation problems,
the error of (generalized) gradient techniques was studied numerically

by Argyris et al. [19]. On that basis they concluded that 'midstep
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weighting techniques' (that Ts, 8= i) were accurate. However, the

present results indicate that the accuracy of generallzed gradient

technsques is hrghly problem dependent, and that no one choice of 6

assures optnmal accuracy A mnnima! requnrement to be made of any scheme

for stabilnzatnon of numersca! nntegratuon is that it give correct

results under steady, or nearly steady conditions; this requirement is

not met by the generalvzed gradlent technlques currently avaliable It

is recommended that an effort be made to develop schemes for stabiliza-

tion of numerical integration of stress for finite eTement-initia!

[l

value problems whose accuracy can be proved.
Secondly, it was demonstrated that the present method could not

be relied upon to give either an upper or lower bound for the critical

load in a bifurcation analysis. It is suspected that the character of
the approximate load obtained by the present method may be linked to

the rank conditions (7.695 and (7.73). Further research, both from the

i

mathematical point of view and numerical point of view is needed before
a practically applicable criteria for critical load characterization

can be given. A mathematically accurate discussion of the problem of

WL e |

assigning the velocity on the interior of an element (for hybrid stress

methods) might aid in this characterization.

(A

Firally, the materials considered in this work all have the com-

[

mon property that their constitutive equations are isotropic functions,.

_-—

Though the generalization of the present method to anisotropic material
behavfor is conceptuaiiy straightforward, there may be special problems

in an implementation. The performance and special problems of the pres-

ent method, when applied to anisotropic materials, should be investigated.
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APPEND IX A
DIRECT, DYADIC, AND INDEX NOTATIONS FOR TENSORS

Let r denote the position vector in E. We write x! for an
arbitrary (smooth) system §F coérdinates in E. Then a triad of vec-
tors e, called the 'natural base vectors' of the coordinate system,
are defined by the equation
g,'=-—37 (r) . (A.1)

aX

We assume that these vectors are linearly independent; that is,

Then a conjugate triad of base vectors Is defined by the equation

1 if I=J
= ) . (A.3)
0 otherwise

el-e

Any vector in E may be represented as a linear combination of

the base vecturs ¢

v=vle =y e . (A.4)

The cormponents v' arc called 'contravariant' and the components v, are
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called 'covariant.' They are defined by
vV =e v vV, =e v , (A.5)

To every triplet <v],v2,v3> there corresponds a unique vector in E,
and vice versa, for any linearly independent set of base vectors e,-
This important fact is the basis of the index notation for vectors
and tensors. |If a linearly independent set of base vectors is given
(for example by specffying a coordinate system), then no ambiguity
arises in writing <v],v2,v3>, or simply vl, for v. In continuum
mechanics one frequently is forced to work with more than one
coordinate system at a time; then the dyadic notation, indicated by
(A.4), is more convenient.

The relation between the contravariant and covariant components

is found by 'dotting' the representation (A.4):
J
v, = (e ~e v . (A.6)

Just as the triad ) constitutes a vector basis in E, the dyads
(gng) are a basis for second order tensors in E. Any second order
tensor may be represented as a linear combination of these dyads, for

example

T=tlee, s el Tl L )

Other components for T may be defined for the dyads (g'gJ), (g'gJ),
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. tensors

and (gng), and they are called ‘covariant,' ‘mixed,' and 'mixed,’
respectively. To every 3x 3 matrix there corrgsponds a unique second
order tensor in E, and vlcerverga, fo} any Iineé?fy independent set of
dyads. Therefore the index notation may be used for second order
_also. - .-

A fundamental tensor in E is the [dentity tensor, defined as

that tensor with the property . - - --

v=1y o (A.8)

for every vector in E. We may represent | as

- J
where GIJIS the matrix of components of | for the dyad (ee”). Accord-
ing to (A.5) we may represent v by v'gl, so (A.8) may be set in the

form

(' -8l =0 . (A.9)

For (A.9) to be satisfied for arbitrary vI it Is necessary that 5lJ be

defined as

| Vif I =J |
s J'{ = (e re) . , (A.10)
0 otherwise
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Components of | may be obtained for the other dyads in a similar manner

as

(A.11)

In some applications | Is called the 'metric tensor.'

The relation (A.6) between contravariant and covariant vector
components may be written as
v, = 6 v, (A.12)

Similarly, the relations between the various components of a second

order tensor may be written as

1 gKdq! VNSNS | (A.13)

= KL

KI
K § TK
The apparent rule for raising and lowering indices may be shown to be
valid for tensors of all orders.
When differentiating vectors along a coordinate line, one must

take into account not only the rate of change of the components, but

also the rate of change of the base vectors themselves:

3 3, K K 9
—r (y) = — (v)e, +v —(e) . (A.14)
ax! x| K ax! K .

The derivative of a base vector is a vector itself, and may be
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represented as a linear combination of the base vectors:

3 J '

— (e) =yl e, . (A.15)
ax| K IK =J

The components in the représentatlon (A.15) are called Christoffel

symbols (of the second kind); they are defined in the same manner as

components of any other vector, by use of (A.5). Using the representa-

tion (A.15), the derivative of the vector in (A,14) may be written

p 3 ,.J K_J
-—-—(y)-(—(V)+vY )g . (A.16)
ax aX KIJ =J

The coefficient in (A.16) is called the 'covariant derivative' of the
component vJ. Covariant derivatives of the components of second order
tensors may be defined in"a similar manner. It should be noted that
the Chriﬁtoffel ;ymbols are not comﬁéﬁents éf third order tensors.

The operators GRAD, DIV, and CURL may be represented as the

vector operators
GRAD v = Vv

(A.17)

<
[}

<.

o
i<

Div
CURL v = V X v

where V is the symbolic gradient operator:
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V=e = (A.18)

In dyad notation (A.17) may be written out as

GRAD v = Vv = (vJ), |§|§J

DIVy=Vey= (v), (A.19)
Iy, J K

CRLy = VX y=(v), e e

where ( ),| denotes the covariant derivative with respect to X', and

!
e

JK;S the alternating tensor, defined by

(A.20)

A convenient summary of formulas of vector analysis is given by
Spiegel [50]; an extensive treatment of the subject is given by
Phillips [51]. The remainder of this appendix is devoted to special
notations used in this work.

The special notations used in this work are summarized in the
formulas below. In accordance with (A.7) we write a second order
tensor I as ”

TeTee =Tl ee' =7

15y

The transpose Is given by

213



T_ L N N J
T = Tleey = Tyeey=Tlee =T, . (A.21)
A fourth order tensor E may be written out as
< may
HJKL
E=E €,8,8¢8, - (A.22)

The scalar product of two second order tensors S and T is

tw
1~
[
wn
-

o (A.23)

The product of a fourth order tensor E and a second order tensor T is

. 1JKL ]
5. T=E TKLQIEJ ; (A.24)
KLIJ
TeE=Tal egy -
The product:of two fourth order tensors D and E is
o = L
KLMN | _J
D:E= D E e eeyey - (A.25)
Finally, differentiation by a tensor is defined
' 1J
3R _ _3R 33 _ 3
T, iR ITTAT, SISk (A.26)
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APPENDIX B

ALTERNATIVES TO DIRECT NUMERICAL INVERSION

OF THE CONSTITUTIVE EQUATION

Formulation of the stiffness matrix involves inversion of the
(9 x39) constitutive matrix ! at each quadrature point in the body, each
time the stiffness matrix is evaluated. In practicé it is found that
these inversions figure significantly in the total computational
effort. In this appendix we investigate the possibility of (1) analytic
inversion of matrices of the form (4L.21), and (2) approximation of the
1

inverse of a matrix W=V -T when V_
-~ x E '}

and T are known. The reader is
N £

referred to the articles of Rivlin and Ericksen [25], and Rivlin [52]

for discussions of representations of symmetric isotropic matrix

functions.

Analytic Inversion of the Constitutive Equation

We begin by inverting the counterpart of (4.21) which arises in
plane stress and plane strain problems. We consider a symmetric

isotropic matrix function of the form

(B.1)

t Qe
*
"
n<
tMm
+
[ o]

where 0%, £, and T are (2x2) matrices, and

2

- 2 A”;IEJ + 2ul (8.2)

1,J=1

"<
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e=v'igt 4!
where
v - :i: Az 2+ oM
23 ~l~J -4
l,J=1
and
Z] - _v-l E

0f course V and V-‘ satisfy
8

so multiplication of (B.2) and (B.6) must yield

R R EFEP T LRy L PRPRER J A1) PR
~J K ~I<t 3 0=
(in which the summation convention is used). From the linear
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Iindependence of the basis z

z,, |, . we conclude that
SISL &

bum = 1 ; (B.10)
A'JAKL(ZJ: z) + 20t e 2m't -0, (8.11)
From (B.10) we get

2M = 1/(2u) . : (8.12)

I
Elimination of 2M for (B.11) leads to a (2x2) matrix equation for A'“

[ESISREM O] [ZS I Y (8.13)
where
X‘l A]Z - Al' A72
(] = . [A] = ;
XZI AZZ AZ] A22
and

= [ .
Ziy 7 (202

The soluticn of (B.12) ic easily found by Kramer's rule:
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Al [(All 22 _ 512521y (0 T )] 6733_

21

21 1 [,1,22 12,21 ] .2
A m .(X A A X )(tl“I)‘ - —A'—
A2 oL 22 L3132 (o, 7] - Az (8.14)
2u8 | Y '
22
22 _ _ A1522 _ 312,21 0] LA
A ZuA [ - AT )(z,] 7
a= 22 -2 2(erd?) - (ern)d)

+ 2u(2A11 + (A‘z + XZ')(trT) + Azz(trTz)) + huz_.

Thus 2M and A in the representation of V.I (B.6) are all explicitly

determined by yu, A'J, and the stress.

The problem of inverting V (4.21) for general problems may be

attacked in precisely the same way as for two dimensional problems.

For V and V™! we write
-] = N

1J | .
V = XYz zJ + 2u il H

~1

(B.15)

where

ey

n

NI

Form

TR

A

NE



and

9315560 = §ii8y;
(0,3 51 = 308y + 85,7y)

(0335 5y = 38y + Ssyy)

The equation V_‘: V=
-~ ~

Ul, AIJ

gives the following relation among the li,

|
|
, and M :

~

1 KL, | M, KL ,
[A A (E : EI)EKEJ + 2u A z (EL Abn) ‘ (B.16)

N, 1J

- NMo ]

*MAT(By 1z )z 4+ WM (fN'in)] I

It is tedious but straightforward to resolve the expressions (z': ¢J),
(6, :2z,), and (¢, :¢.) in the basis z,z,, ¢,. The formulas given by
zl ~J zl zJ ~|~J gl
Rivlin [52] (generalizations of the Hamilton-Cayley theorem) are
particularly useful.

Resolutions: (B.17)

Sz =z e =z P=123 .
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827237 2338y = (det Tzy + #(tr 5)z
937574872

i LT Ly

830237 23183 = (det Tzy + d{er 5)z
TR EE
8y 8y = ~¥gy - (tr 3)zyzy + 2,7

+3(z)z5 + 3351) + 3(tr s)

|
995 = 9319, = #(tr 51, + d(det T )1

* 32z, + zpzg) + et Tz

-~

3 J - 2
g3 :.23 = (tr _5_)23 - ¥(det T )22 3(tr :'._) 1
+ 42,2, - d(tr s)(z32) + 22)

+ 3(det T')(z)2, + 2,2)) + %‘t’ 2)25151 .

After resolution of the terms in (B.16) into the basis of the
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representation of V (i.e.

2,2, and Q'), the coefficient of | Is set to

one and the coefficients of the other terms are set to zero. The
coefficients of the ¢| involve the generalized shear moduli u' and MI
2 .

and stress only:

- -

1 ! uz(tr3)+u3(det3') -2u3(tr§)2+u2(det T) ! !
92: buz hu‘+p3(tr§) uz(tri)-2u3(det1') Mz = 0
¢3: lm3 -Zuz 'hu‘ + 3u3(trs) M3 0
DA - .

(8.18)

In general (B.18) could just as well be solved numerically as analyti-
cally. In a special case of great practical importance though, when
uz and u3 both vanish, it follows immediately that M = (l/Zu‘),
2M2=2M3=0. in any case, the remaining equations form a (3x3) matrix
equation for the A'J. When 2M‘= (1/211‘) and the other H' vanish, the

equation for the A is of the same form as (B.13):

[mm + 2u[l]][A] - - o D] (8.19)

where the matrices [A], [A]l, and [2Z] are the identical counterparts of
those in (B.13).

Though an analytic expression for [I was not found in the
general case, the numerical problem of inverting a (9x9) matrix was
replaced by the problem of solving (at most) two (3x3) matrix equa-
tions. Finally we remark that no assumption as to the symmetry of the
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[A] matrix was made.

Approklmafﬂon of W~

Suppose that we are given the constitutive equation for a body

In the form

* s ef  (B.20)

M
[
v<
‘..
Qe
M

and we wish to obtain the form '

- . v
E= W ]: r+ eP . (B.21)
Since O* ar+T:¢ , we can get the implicit equation
~ - = -
-1 p
e=V :(r+T:e) +¢ (B.22)

directly. |If we try to solve (B.22) for £ (when r is assigned) by

iteration,

Ml oy R (8.23)
-~ £l ~ z o~ X .

then we are led to define 5_] as
wlev ey loravle . sy (8.24)
~N = z 3 = - = »

and the first neglected term Is (!-1 :I)Nfl: €, where (N+1) is the

-
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number of terms in the series (B.24). If the eigenvalue of (V-l: T)
b

£

whose absolute value is greatest is of absolute value less than one,

then the remainder vanishes as N+®, so the series converges; that is

w"-»w". The eigenvalues of T coincide with those of the true stress,
>

=N =

and the eigenvalue of !-] whose absolute value is greatest is a shear
compliance. Thus, for metals in the elastic range !;] can be expected
to be. in error by less than 0.01%. We find that‘ln practice if mcre
than two terms in (B.24) are needed, it is more efficient to compute
g-] by some other means. The main appeal of (B.24) with two terms

taken is in large deformation--small strain analyses, such as in

structures.

Construction and Inversion of Constitutive

Equations for Plane Problems

We first indicate the class of problems which may be considered
'planar.' The class consists of those problems in which the true
stress T, the (general) stress rate é, and the stretching € are of the

forms

= < [oRR RO 5393 (8.25)

1L

o
"
™
1)
+
™
T )

where the Greck indices range from 1 to 2. Substitution of (B.25)
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into the constitutive equation

e
[ ]

n<

tm

yields the component equations

;GS

;33

|

Vasyﬁ

v3ys

vd

8

33

v

The tensors V' and I', defined as
M 2

ab R
V7ySe eqe e

vll

ZH-Z E

|

(B.26)

(8.27)

(B.28)

(B.29)

are necessarily of the forms (B.2) and (B.3) when V and L are of
- m’

the forms (b4.21) and (4.22), respectively. We define é", E”, and Zﬂ as

P af 1) o
= H E =
2 S &ufg* = €

For plane strsin [B.27) may be written
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For plane stress (B.27) becomes

ono_ 33
s - V34€

o y33.33 _ 33, v 33
V33e g TE O+ z .

It is apparent that if we can write v'' in the form (B.2) then

analytic inversion is possible. To find the necessary coefficients we

set the components so that

(eatg) < 1 loyeg) = (so2g) ¥ (eyeg) = 0

where V is written for (4.21) and V'' for (B.2). We let A'J and u' be

the coefficients in (4.21) and IIJ and m be the coefficients in (B.2).

Then (B.32) leads directly to

1

M. >‘H

12 12

21 _ 21

p(u3’ + u3) - gA

>
+

22

]
>
+

2m = 2n' + pul + (p2 - 2q)u3
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i

bl v Wi W

' 2
where P=Trn and q=3(p -'r;]e‘rr"e). The planar inverse Is found by
1J 1
putting 1'% for A J. m for u, p for trT, and (pz'-Zq) for tr(rz) in
(B.14). Though (B.33) and (B.14) are algebraically complicated, their
effect is to reduce the problem of construction and inversion of W'
k]

for planar problems to about ten lines of ordinary FORTRAN.
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APPENDIX C

SHAPE FUNCTIONS FOR VELOCITY, STRESS

RATE, AND SPIN

Shape Functions for Plane Strain

X = x 3 X’ =z
Velocity Shape Functions
Moo= Npig N e
Four Noded Element:
B +EE)(T+m)  1=1,2,3,4,
Nl P '
’ 0 i=5,6,7,8
0 i=1,2,3,4
N3 i = '
P +EE ) +m, ) 1=5,6,7,8
el <y,  In|<n,



Eight Noded Element

(H, i=1,2,...,8
N] , = 3
N ) 1=9,10,...,16
r 0 i=1,2,...,8
N, , = {
3,i Lo
[ H,_g {=9,10,...,16
2
3I(1-§ )(l+nni)
Hy =431 +£6) (1 -n?)

£(1+€E.) (1 +nn,) (EE, +1n, - 1)

Shape Functions for Spin

Wi = Ms,0 ey T gy 8

where
W31 ®
Wiy "G

If NW=3 add the F;ilowing shape functions
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Qw|3'2 = XC
3,3 = 2¢3
W3y,2 = 7%
31,3 7 773

If NW=L4 add the following shape functions
leB,h = Xvey,
W3y, 4 = ey

If NW=6 add the following shape functions
leB,S = xxc5

QVIB,G = 22¢¢

= XXC

W3y,5 = 5

Qw3].6 = -zzc6
The constants were used to improve the condition of [H].

Stress Shape Functions

QT = QTy;  gyey + O+ QT

-~ |

¢

13,1 5183

+ 0 1T

Tp2,i 25 YU

+0 + QT

31,1 £35 33,1 353

Ty, 4 =)

Q3,0

qT. =

229



QT}3,h = -]

Us33,5 ™
For NT= 13 add tﬁe following stress shape functions

yy,6 ™ %

QT}!,G - -2

QT3,’7 - =X

QT22,8 - x

QT13,9 - =X

z

33,9 *
33,10 =

Ty, =2,
i3,02 = 72
Ur2,13 = 2

For NT=21 add the following stress shape functions
My, ay = -5%x
Wiy, ™ %2
31,15
QT]B,\S = -, 5xx
QT35 16 = X2

QT33"7 " XX
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QT 18 = x2
QT3I,18 = -, 522
QT”"9 = 72

QTI3,20 = -XZ

QT33’20 = Gzz

QT]:‘;,21 = -7z

1 x 1 Gauss quadrature for 'constant' shapes;
3x 3 Gauss quadrature for 'linear' shapes;

L x4 Gauss quadrature for 'quadratic' shapes.

Shape Functions for Axisymmetric Deformation

F=x ; z = x
g, & €, ® & s €3 % &, 5

Components Nl P N2 i and N3 i are identical to plane strain shape
’ ’ ’

functions. Spin functions are identical except r replaces x, e,

replaces e

Stress Rate Shape Functions

;= QM0 &8 * 0+ Q55 &8

~

YO+ QT,; S8 * 0 Uy g 858 +0+ Wy5 5 g5y
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where

i3,y = c2/r

QT],’, = c/r .
QT31,2 = c/r .
QT13,3 = c/r .
QT33’h = c/r .

QT]'.§ =1,

Wyp5=1- | ,

Ty =1 -

QT13,7 = C 3

QT33’7 = -cz/? .

QT33,8 = cz/r .
yy,10* 2%

Q2,10 = 2 -

UV AR

QTyy g = (rec)/e.

QTZZ,]Z (2r-c)/c .

QT3]']3 = (r-c)/c . _

QTIB"hr-r(r-c)/c .

QT33 “; = -z{(2r-c)/rc .

QT33.15 = (r-c)/c

ORIGINAL pigE 5

OF POOR QUALITY
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where ¢ is chosen to Improve the condition of matrix [H]. (3x3)
Gaussian quadrature was used on this element. The constant ¢ was
assigned as the value of r at the center quadrature point on each

element.
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APPENDIX D

. TABLES

Table 1. Critical thfigurations in Plane Extension

N=

2a2/al al ZaZ ' Tiz Tz3
2 3.6191 13.9342 584,79 1173.34
3 ' 3.7800 20.0053 564.15 1132.54
L 3.8388 26.2625 556.25 1116.87

N=§
2 L.0714 12.3385 322.63 646.19
3 4.2852 17.5819 311.39 623.93
4 4.3533 23.0741 307.26 615.77

7'Tébié 2. Configuration for Parameter Study

ZaB/a' a‘ 2a3 122 133
o o0
2 4.0752 12.3271  © 322.44 645.83
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Table 3. Data for Figure 29 (8 Moded Element, NT = 21, NW = §)

rrrbégreesiofhr
Mesh Symbol Freedom Eigenvalue
1 x 2 o 15 0.534)
1 x 3 o 23 0.322]
1 x &4 o 31 0.2416
1 x6 o 47 0.1505
2 x4 a 55 0.1850
2 x 6 a 83 0.1253
2 x 8 a 11 0.0957
2 x 10 o 139 0.0772
3 x6 o} 119 0.0925
3 x 8 1] 159 0.0703
3 x 10 o 199 0.0568
I x 12 o 239 0.0476
L x9 ° 233 0.0495
Table 4. Data for Figure 30 (4 Noded Element, NT = 13, NW = 3)
Degrees of

Mesh Symbol Freedom Eigenvalue
2 x 6 o 29 0.3732
2 x8 n] 39 11.2843
2 x 10 8] 49 22.6500
I x 6 a L 27.1690
3 x9 a 62 0.1777
3 x 12 A 83 2.7302
3 x 15 Ky 104 5.4067
L x 8 o 71 9.5265
b x 12 o 107 0.1059
L x 20 o 179 1.8974
5x 10 < ) 109 L.1738
S x 15 ° 164 0.0706
5x20 7 ° 219 0.4415

235



Table 5. Data for Figure 31 (4 Noded Element, NT = 13, NW = 1)

Degrees of

Mesh Symbol Freedom Eigenvalue
Ix6 o Y 633.077
3x9 =] 62 316.414
3 x 12 o 83 228.714
3 x 15 o 104 197.089
3x 18 D 125 185.583
Lx8 a 71 237.617
4 x 12 a 107 117.908
b x 16 a 143 BO. L4k
4 x 20 a 179 68.967
5x10 o 109 107.518
5 x 15 o 164 b9 .623
5 x 20 ° 219 35.078
Table 6. Necking Eigenvalue=-(2 x 6 Mesh, 4 Noded Elements)
NT = 13 NT = 21
NW = | 1253.18 1253.19
NW =3 0.3732 0.3732
NW = 4 0.3732 0.3732
Nw = 6 0.3732 0.3732
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Table 7. Data for Figure 32 (4 Noded Element, NT = 5, NW = 1)
Degrees of
Mesh Symbol Freedom Eigenvalue
2 x & o 19 1.0948
3 x6 o Ly 0.L4043
L x 8 o 7 0.2074
S x 10 D 109 0.1269
6 x 12 o 155 0.0862
x 8 A 39 -1.2258
x 12 a 83 -0.2204
x 16 a 143 -0.0426
x 20 A 219 0.0003
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Corrections to

"Analysis of Large Quasistatic Deformationsof
Inelastic Solids by a New Stress Based Finite Element Method"

P 17, last llne.
replace "n (x,7)" by "n(X,T)".

p. 20, equation (3.26):
replace "0" by "Q".

p. 27, equation (3.52):

replace " o by 32“. .
Pp. 43, 8th line from page bottom:
replace "In any case" by "In the case of solids without a I
natural time"
5th line from page bottom
replace "so the choice" by "so then the choice".

p. 91, last line:
replace "v" by "w".

1ol

p. 225, 3rd line from bottom of page:

" 21n 31 2-1"

y and "y 31

replace " by " and "A""", respectively.
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