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CHAPTER I 

INTRODUCTION 

In his Treatise on the Mathemati~aZ Theory of EZastici~d~ 

Love* observed that '~hen the general equations had been obtained, 

all questions of the small strain of elastic bodies were reduced to 

a matter of mathematical calculation." To this day, that 'matter of 

mathematical calculation' figures prominently in applied mechanics. 

The early mecanicians reafized that the general equations of 

elasticity were too difficult to solve except in a few special cases, 

so a large part of their effort was focused on methods for finding 

approximate solutions to problems of technological interest. Some of 

the techniques they used in deriving approximate theories for rods, 

plates, and shells are. in fundamental ways, very similar to the 

finite element technique. 

Today it is well understood that the classical theories of 

rods, plates, and shells may all be systematically derived from 

elasticity theory by introduction of approximations for the displace-

ment to the pr:nc:ple of virtual work. Kirchhoff is the first person 

mentioned by Love [1] as having used this methodology,** and in using 

it Kirchhoff managed to give a clear Interpretation of the boundary 

.. 
.. Love [I], p. 2. 

-.,;.,', 
to d~rive a theory of elastic rods; later, elastic plates. 
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condition_s in the plate theory with which his name is npwassociated. 

In two respects Kirchhoff's methodology is the same as the finite 

elementrnethQdology. First of all, he made kinematic approximations, 

and secondly, he used an energy principle to maintain consistency 

between his generalized stresses and strains, and to arrive at the 

correct boundary conditions. The principal difference between Kirch-

hoff's methodology and the finite element methodology liesLn th~ 

degree to which the kinematic field is approximated. Because of the 

similarities in the construction of the classical rod, plate, and 

shell theories to the construction of finite element equations, the 

succes~es and failures of the classical structural theories reflect, - --~ ~_~ .::=-=--=:::-:----=-? - -:::, ~, ~-' _ -- :-" -- -.,--- _ .. -- - ~ - -: 0 :. ::: ~ - - • -: - - •• •• - -- - ----- --- - _ • -

at least qualitatively, upon the performance of the finite elel!lent 

method. 

No special theory in the realm of solid mechanics has enjoyed 

greater success than that of elastic beams. for there the general 

equations of elasticity are effectively replaced by a single ordinary 

The theory is not only reasonably accurate, 
- - -0;- -=- - ~ -~'_ c;;-~;,~_;, - ~ - -= 

but extremely easy to understand because of its displacement based 

derivation. The classical plate and shell theQries provide equations 

less easy to understand and less easy to solve than the beam equations. 

but still regarded as simpler than the general equatiQn~ of eljsticity. 

A major failing <;>f t~~_~lassical th~orj~s ~f ~~ilrT1s, pl~tes. 

and shells is their inability to ~~~Qunt for the ~ffe~ts Qf 'tr~n~-

verse shear stress'; that is. the shear stress acting on plane 

sections through the thickn~~~ Qf th~ ~tr~~tl.!r~. As a clir~c;tc()n-

quence, those theories always give a higher estimate of the stiffness 

2 



of a structure than does the general theory. Secondly, the twisting 

moment and shear force are coupled on the edge of such a plate or 

shell. In spite of these shortcomings, it was not until after 

Reissner's [2] investigation into the effect of shear stress on the 

bending of plates that satisfactory alternatives to the classical 

theories became available. But Reissner's methodology has had a 

greater impact on the methods used in applied mechanics than did his 

plate theory of. itself. In its derivation his theory is distinguished 

from the classical theories by the fact that both assumed stresses and 

displacements are used. Since that time the use of as~~~ed stresses 

in the derivation of plate and shell theories has become common. 

It is not surprising that the finite element method has evolved 

along similar lines. The motive--finding approximate solutions for 

problems of technological interest--was the same for the early finite 

element researchers as it had been for the early plate and shell 

theorists. The finite element method in which one introduces kinematic 

approximations to the virtual work principle is the direct counterpart 

of Kirchhoff's rod and plate theories. The same types of advantages 

and defects are inherent. 

The principal advantage of the displacement based finite 

"element ~ethods is their conceptual simplicity. For application to 

beams, the simplicity rivals the slmpl icity of the beam theory itself. 

In the cases of plates and shells though, it proves difficult to con­

struct 'compatible' shape functions for the displacement. Finite 

elements for thin plates based on kinematic approximations sometimes 

overestimate the stiffness of the plate so badly that they are 

3 



described as 'locking.' As a means of avoiding locking, and just for 

simpler construction of shape functions. some researchers have pre­

senteCl 'incompatible' plate bending elements, elements which do not 

satisfy slope continuity at element interfaces. A second problem with 

displacement 6ased finite element methods (in general) is their ability 

only to saCtisfy traction 60undary condition's In an average sense. One 

of the principal adva~tag~s of the finite elemen-i method over the 

method of finite differences is iti ibility to satisfy high~r order 

boundary conditions accurately; but this potential is not fully 

realized in a purely kinematic formulation. 

It was Pian1s [3] investigation Into the derivation of element 

stiffness matrices th~i brought widis~~iad attention to the potential 

advantages of introducing the stress as an independent variable. By 

his formulation, which was based on the complementary energy principle 

of 1 inear elasticity, an energy-consistent alternative tb incompatible 

elements was made available. Also, as was the case in Reissner's 

plate theory, the stress formulation maae poss;oTe considerably more 

accurate satisfaction of traction type boundary conditions. Finally, 

Pian observed a marked acceleration in the convergence of the 

components of the stiffness matrix when the stress method was used. 

Since that time, the study of finite element methods related to 

Pian1s (which have come to be known as 'hybrid stress methods') has 

produced a number of special methods which may be applied where con-

ventional displacement based finite elements fail. 
- -------...:----- --=- ~- - - , 

The failure of the conventional finite element method seems 

always to be attributable to the presence of kinematic constraints 

4 
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which cannot be satisfied by approximated displacement fields. In the 

case of plates and shells, that constraint is interelement slope 

continuity. When the algorithm is based on an energy principle, it is 

always possible to 'relax' the constraint by the introduction of a 

Lagrange multiplier. That multipl ier always will be a generalized 

stress, the 'energy-conjugate' of the kinematic constraint. 

One particular class of problems in which the conventional 

displacement-based finite element method fails is composed of problems 

involving incompressible or nearly incompressible bodies. The 

constitutive equation for such bodies is nearly or precisel~ singular 

for the mode of di I itation. The shape functions for the displacement 

used in the conventional finite element method are incapable of pro-

ducing any motion other than pure shearing which does not contain 

(loosely speaking) 'excessive' dilitation. As a consequence, the con-

ventional finite ele~ent method drastically overestimates the 

resistance to deformation of nearly and precisely incompressible 

bodies. In a key paper by Herrmann [4J, it was shown that the dif-

ficulty could be avoided if only the mean stress were Introduced as 

an indepe~dent variable. In this case the kinematic constraint was 

incompressibi iity and the energy-conjugate stress was the pressure. 

His assulocd pres~ure formulation of finite elements for such bodies 

is now J 5t~n:~rd ~r~ct!ce. 

Problems involving finite deformations of strain-softening 

bodies rese~ble problems involving nearly incompressible bodies In the 

sense that the body's shear compliance is much greater than its bulk 

compliJ~=e. ~~r t~c ~O~! part, finite element analyses of such 
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deformations ~ave been accompl ished only at considerable expense, even 

when the pressure Is Introduced as an independent variable. No finite 

deformation counterpart to the complementary energy principle of linear' 

elasticity was known, so no pure stress or hybrid stress finite element 

a Igor i thm was found. 

The door to stress based finite element analysis of fTrrrt~ 

deformation problems was opened in 1912" by F"raeijs de Veubeke L5] with 
- --

his presentation of a complementary energy principle for finite defor-

mation elasticity.* The stationary condition-s of this principle are 

both the equations of compatibility and angular momentum balance. To 

date, variants of the principle have been used by de Veubeke and 

Mi lIard [6], Sander and Carnoy [7L ~()i t~r [8], Wunderl i ch and" 

Obrecht [9]. Murakawa [10], Murakawa and Atlurl [11]. [12], Murakawa 

et a1. [13], and Atluri and Murakawa [11+], in problems rangrng from 

elastic membrane theory fO beam, plate, and shell theories. 

A considerable generalization of de Veubekiii prIncIple was 

given by Atluri [IS]. His formulation of the complementary principle 

for stress rates and spin opened the way for the current work, thqt 

of developing a stress-rate based finite element algorithm for analysiS 

of large deformations of inelastic bodies. It appears that the sole 

other analysis of large deformations of inelastic bodies by any 

similar algorithm is that presented by Atlurl and Hurakawa 114], in 

'* an invalid principle was presented by Levinson [16J, and again-
by Zubov [17]. The fai lure of that principle is discussed by Dill 
[ 18] . 
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which necking of an elastic-plastic bar and postbifurcation analysis 

of a thin elastic-plastic plate was performed. The finite element 

algorithm used by those researchers was based on stress Increments. 

rather than stress rates. and the motion of the elastic-plastic body 

was found by summation of increments. It was assumed that the 

accumulated error in this procedure could be kept small by minimizing 

'residual loads,' as may be done in elasticity. This procedure has a 

firm foundation for problems involving elastic bodies (whose deforma-

tions were the subject of Murakawa's earlier research). but is of 

questionable val idity when the body is not elastic. In th~;i assess-

ment of incremental solution methods for inelastic rate problems, 

Argyrls et al. [19] conclude that 

Inelastic rate processes are in general path-dependent; therefore, 
the drift (i.e. the accumulation of numerical integration errors) 
cannot be el ininated by residual load iteration, e.g. at the end 
of each time step. 

Moreover, when the body exhibits relaxation effects, this solution 

technique's numerical stability becomes extremely sensitive to the 

time step size. Hughes and Taylor [20] observe that the time steps 

required for stability in the expl icit time stepping technique are 

much smaller than required for accuracy when only quasistatic deforma-

tions are to be analyzed. 

A fin~l objection to 'incremental' finite element formulations 

may be raised on the grour.ds that there always results an artificial 

coupli~; between the boundary value problem and the initial value 

problem. When deal ing with 'flow law' type solids it is possible to 

treat !~e bou~d~ry vJ!ue problem (for the rates) and the initial value 
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problem (for the total stress and deformation) separately. Typically 

the boundary value problem for the rates Is either precisely linear, 

or equivalent to a linear problem (without approximation). All of the 

nonlinearity falls into the initial value problem. Nonlinear initial 

value problems are perhaps the single type of nonlinear prQblem which 

we are best equipped to deal with numerically. In any case, we are 

better equipped to handle them than we are nonlinear boundary value-

problems. The incremental approach has the effect of actually trans-

ferring that nonlinearity to the boundary value problem, where it is 

dealt with by residual load iterations. 

The objective of the present work is to develop a stress (-rate) 

based finite element algorithm for analysis of large quasistatic 

deformations of inelastic bodies. In doing so, we discard the notion 

of 'increments' entirely. As a direct result, the boundary value 

problem and the initial value problem may be dealt with separately. 

The algorithm which results is appl ied to analyze large deformations 

of hypoelastic, hypoelastic/plastic, and hypoelastic/viscoplastic 

bodies. 

As is true in large deformation problems in general, the 

formulation of the boundary value problem and initial value problem 

is more complicated than in an Infinitesimal deformation pn)plem. 

The first par_t _of this work is devoted t()presentin9, with reasonable 

completeness, thec:fE!ve I opment of the pr~~ 1 em. The f i ni te~dement 

algorithm is not presented until Chapter VI I. The initial value 

problem is presented in Chapter VI I I. Example problems are preJented 

in Chapter IX. We not_e from the out$et that the finite element 

8 
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algorithm is considerably more complicated, and involves more 

computation, thqn velocity based algorithms. However from the results 

it is clear that the improvement in accuracy over velocity based 

methods is substantial; so much so, that in view of the difficulties 

encountered in the appl ication of velocity based methods to finite 

deformation problems, the present stress based approach appears to be 

the more efficient of the two. 

9 



CHAPTER II 

KINEMATICS 

Kinematics is the study of deformations _of bodies in space, 

without regard for the forces which cause them. Mathematically we 

represent nat ura I space as a th ree d i mens i ona 1 Euc I i dean space E. 

Consider the motion of a body through space. The image of the body 

in E at the time t is the aonfi~~ration C(t). As time passes, the 

configuration changes, and we say that the body deforms. In order to 

study aspects of deformations, we must be equipped to compare configu-

rations assumed by the body at different times. We set out to equip 

ourselves thus. Let X be the position in E that was occupie~ _by the 

material point X at the time T, and let ~ be the position of that same 

material point at the present time t. To indicate the depend~nce of 

~ upon ~, T, and t, we write 

(2. J) 

The function X describes the deformation of the body relative to the 
-T 

configuration C(T) by 'tracking' each material point from i.ts po_si~ion 

in C(T). It is east Iy seen that at the t (me til T 

.. X 
~ 

10 
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The gradient of X with respect to X 
-T 

is called the deformation gradient, and J
1 

is written for the 

determinant of F : 
-1 

det F (X,t) . 
-1 -

In view of (2.2), it is clear that 

and 

J (X,t)1 
1 -

t=1 

= +1 . 

The time derivative of X is the velocity function v : 
-T -T 

The spatial v~locity distribution 

for X in (2.7): 

-1 
15 obtained by putting ~T (~,t) 

(2.4) 

(2.5) 

(2.6) 

(2.7) 

-,'c 
for a~ expla~ation of the special notations used in this work, 

see Appendix A. 
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(2.8) 

It is clear that at the time t· T 

~T(~·t) I • ~(~.T) . 
taT 

We caution the reader by pointing out that ~(~,t) and ~T(~.t) are 

entirely different functions. 

The velocity gradient L is defined by 

and it is clear that when t· T, 

. [T (~ , t) I • k (~, T) . 
taT 

The symnetric and ske\.,t-symmetric parts of b 

(2.10) 

(2. 11 ) 

have the phys i ca 1 sign i fi cance of 8tl'etC!hing and epi.n., and are thus 

12 
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named. The trace of k has the physical significance of diZitation 

trL-'V·v. (2. 12) 

The equat ion 

• 
JT=J ('V. v) (2.13) 

T -

is called Euler's expansion formula* in fluid mechanics. In view of -

(2.6), wh en t = T, 

\(~,t)1 ='V.y(~ .. r) 
t=T 

. 
We shall frequently write J for (7· y). 

Of course not any tensor field L is the gradient of a velocity 

field. The integrabi lity condition (henceforth cal led compatibiZit~ 

eqwltion) is 

(2.14) 

The ge'.ercil !)r")i\.ition uf the partial differential equation (2.14) is 

(2.15) 

.'f 
Marris, lectures on fluid mechanics, Georgia Institute of 

Technclo9)', ~all 1~73. 
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Likewise, if f is a symmetric tensor field and ~ is a skew-symmetric 

tensor field, and (e:-w) satisfies the compatibility equation .. ... 

(2.16) 

then there is a twice differentiable vector field v for which 

. (2.171 

and 

(2. 18) 

14 



CHAPTER II I 

DYNAMICS 

Dynamics is "that branch of .•. mechanics which deals. 

with the action of forces on bodies in motion or at rest.'''·c The 

fundamenta I I aws of dynami cs are ca lIed calc:r.c:e of lineal" mcr.e,;-;u""7 and 

balance of an.gular ,""1omentum. They are expressed by the equat ions 

d 
dt~-F=O (J.t) 

and 

(3.2) 

where ~ is the linear momentum of the body, h is the angular momentum, 

f is the aggregate force, and ~ is the aggregate moment. If no con-

centrated or distributed couples are present, and if the reference 

frame is inertial, then ~, h, E, and ~ are given in their classical 

forms by 

* 
~'t ~" 

American Co l lege Dictionar"d, Ran dom House, 1970. 

( )** 3.3 

V is the region In E occupied by the body at the present time. 
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(3.4) 

E -I ~ (~ , t) p (~ , t) dV + J ! d S 
V S 

0.6) 

wher~e p tsthe spatial mas_s~_ensity, _~ is the spatial body force 

intensity, and I is the true traction acting on the surface of the 

body. We now introduce X (X,t) for x in (3.3) through (3.6), thus -1' .. .. 

obtaining 

* S is the surface 

** reg I on V
1' 

is the 

*** surface S1' is the 

of V. 

in E occupied by the body 

of Vt ' 

16 

at time 

0.8) 

(3.9) *** 

<3. 10) 

t. 
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The terms p eX), b (X,t), and T are defined by 
T - -T - -1 

b (X,t) = b(X (X,t),t) 
-1 - - -1 -

and 

We shall consistently refer to b as the nominal body force 
-1 

and to T as the nominal traction. Inserting (3.7) through (3.10) 
-1 

into the dyna~ical equations (3.1) and (3.2), one may deduce by the 

usual argu~ents that 

* 

T+ +T =0 
-1 -1 

T = n • t 
-1 -T -1 

'7 • t 
X 

F • t 
- L ·.1 

+ 0 b -_ ... 

( T 
F • t) - 0 
""l -~ 

0.14) 

the + and - indicates that the two tractions act on opposing 
sides of a s~rface with a well defined normal . 

. \. .. ' .. 

.... ~_(~) '" r-(~,:) 
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called traction reciprocity, the stress principle, and the local forms 

of linear momentum balance and angular momentum balance, respectively. 

The stress t Is called the nominal stress.* If the reference con­
-t 

figuration and present configurations coincide (t-t), then It is 

easily seen that 

!t(~,t) I .. I(~,T} 
teT 

and 

t (~,t) I • T(X,T) 
-t t=t --

The fami liar dynamic equations are thus recovered: 

T+ - (3. 15) + T 11: 0 

T • net (3.16) 

tJet 
. C3. 17) + P~ .. P,! 

1 0.18) 

'" called the Lagrange stress by Prager [21], the Fi rst Piola-
Kirchhoff stress by Truesdell and Noll [22J~ Q~he--,"delJnitlons r~~ult 
if T at en instead of (3.12).- -- -----

-1 -t -t . 
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where T is the true stress.* -
According to their definitions, the nominal tractions T and 

-T 

Iz; obey 

T dS = TZ;dS,.. • 
-T T - ., 

Using the stress principle (3.12) and the kinematical relation 

~,..dSr = J (Z;)n • F-
l 

(Z;)dS 
.,., T -T -1 T 

(3.20 ) 

we obtain from (3.19) the relation between the nominal stresses t 
-T 

and :Z;: 

(3.21) 

When one of the configurations C(T) or C(Z;) coincides with the present 

configuration, say Z;-+t, then we obtain 

(3.22) 

T to the nominal stress t . 
, -T Of course, 

equations (3.19) through (3.22) are for application at a material 

point (as opposed to a spatial point). 

1': 
also called the Cauchy stress. 
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We now set (3.11) through (3.1~) for t~a~tlo~ rate~ and stress 

rates.* By stress rate we mean the actual time derivative- of stress. 

This distinction is necessary because in SOMe instances (not in this 

work) the word Irate' is used interchangeably with the word 

'increment. I In this work a superposed dot indicates a material 

derivative; that is, the time rate at a material poinf (as opposed- fa 
a spatial point). 

-0"- __ ~ :r- ~ _ 

The rate forms of (3.11) through 0.14) are f6-unl by orlirlcf'ry 

differentiation. We thus obtain 

.+ .-
T + T = 0 
-T -T 

. . 
T • n • t -T -T -T 

(F • t + F • t ) 
-T -T -T-T 

(F • t + F • t ) T • 0 
-T -T -T -T 

From equations (3.21) and (3.22) we obtaIn 

<3.23) 

O.2~) 

(3.25) 

(3.26)" 

D.2]} 

* - - -
this discussion is unrelated to the controversy surrounding 

the definition of an lappropriate stress rate' for constitutive 
theory. 
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and 

• • • 
t - - (e: + w) • T + JT + T 

• 
For the stress rate t. equations (3.23) through (3.26) become 

o 0 

T = n • t 
-t 

11 • t + P~ .. Py 

• oT 
(E + w) 0 T + t - t - T 0 (E - w) = 0 

0.28) 

0.29 ) 

C3. 30) 

0.32 ) 

Equation (3.27) wi 11 prove essential in the eventual integration of 

the stress rate. Equation (3.28) is important in the reformulation 

of the constitutive equations. It is clear that at the time t=T 

We now discuss the difference between the nominal traction 

rate it and the true traction rate j. Differentiation of ().16) yields 

The rate of change of the normal vector n is 

21 



-

" 

n ... n ' [-(£+w) + (n' e;' n)l] • - ~ .-
, 

Elimination of D from (3.33) ylel~J 

• 
T .. n' f-(£+w) 't + (n o£onh + TJ ' 

~ ~ ., ~ 8 
(J .35) 

From (3.28) [- (£ + w) • t + TJ . ~. , . 
= It -JtJ, and since n ,t· T .~nd .,. ~ ~ ..., -t 

n' TaT, we fin~lly arrive at - - -

C3. 36) 

Though 0.36) was arrived at by manipulation, its physical significance 

is easily found out. Consider a force ~ acting uniformly over a flat 

surface S of area A. Then the nominal traction rate It is given by 

o 
and the true traction rate! by 

O./A) (PIA) .. . 

However. since 
, 

(f/A ) T, this last equation may be ... 

wr i tten as 

t - t -t 

22 
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Glancing back at (3.36), it is now clear that the difference between 

the true traction rate and the nominal traction rate is due to strain-

ing of the surface. In applications a hydrostatic pressure may be 

prescribed on a straining surface. In such a case the formula (3.36) 

must be used to relate the nominal traction rate to the true traction 

rate. 

Some other practical information can be drawn from equation 

(3.36). Suppose part of the surface of a body is to be traction-free 

during a deformation; that is, I(t}=Q. Then f ... 0 is the appropriate 
-t -

boundary condition for the nominal traction rate. The boun~:~y con-

dition It = Q and equation (3.36) yield 

f + (j - ~ • e: • !:))I = 0 1(0) ... 0 

This is an initial value problem for J(t}. The solution is r(t} -Q. 

However, in a numerical integration of the boundary value problem we 

should expect errors in T to be amplified or attenuated as the surface 

contracts or expands* (that is, as the coefficient of T above is 

negative or positive). This example is simple, yet suggestive of the 

types of problems associated with traction boundary conditions on 

surfaces which experience large strains. 

For notational convenience we define the Kirchhoff stress 0 as 
-T 

"h. 
the stabi lity of solutions of the traction reciprocity 

equatic~ (3.29) depe~ds on the surface stretching in the same 
manne r. 
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(J • J T • 
-T T- 0.38) 

It Is clear that at the time t.~T 

~1~~·t) I • !(~.T) . 
t-T 

The rate_of the Kirchhoff stress ts related to the rate of the true 

stress by 

o -. j T + J T 
-1 T- T- -, C3. 40) 

and it is clear that when the re-ference con-figuration and p,esent 

configuration coincide 

• • • 
a - JT + T 0.41) 

From the last two equations and Euler's expansion formula we fina the 

relation between 0 and 0 to be 
-1' -

o • J 0 , -1' T- _ 
0.42) 

and it is clear that when t· l' 

0.43) 

24 



The relationship between the Kirchhoff stress rate and the nominal 

stress rate may be'drawn from 0.28) and 0.41) as 

• • t ... - (E + w) • l' + a • 0.44) 

This equation shall be used in the reformulation of the constitutive 

equations. 

The final topic in this chapter is construction of the general 

solution of the linear momentum balance (3.25). That equation is of 

the form 

(3.45 ) 

~oJh ere 0 I = v x· t D 2 ... ~ t t, f I "" ! T' and f 2 = P T (e T - Y T) • Jus t as 

for differentials in'the plane, the general solution of 0.45) is 

(forma II y) 

where ¢ is arbitrary and k. is any function which satisfies 
I 

O.k. = 0 
I I 

(no sum) . 

(3.46 ) 

It follo~s ;~~edl~tely that the general solution of the rate form of 

the linear mo~entum balance is 
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0.4]} 

where ~_T' ~ , and yare arbitrary functions of the indicated arguments. 
• -T -T 

From our experience with natural bodies, we often expect a 

gradually applied statically balanced load to produce a 'gradual I 

deformation of a sol id body. The obvious counterexamples are snap-

through phenomena, but it is the very failure of the gradually appl ied 

load to produce a gradual deformation which leads us to call such 

behavior 'unstable.' The general mathematical model for the motion 

and deformation of bodies is not so well understood that one can 

ascertain the stability of the motion of a body (subjected to gradually 

applied loads) without actually determining that motion and 'inspecting' 

it. Of course th is is not pract i cal, so it has become common to 

anticipate stabi lity (for gradually applied loads). 

If we assume that, for sufficiently gradual appl ication of 

loads, the ensuing motion of. a body is stable, then it is reasonable 

• • to ignore the inertial terms H and ~~ In the dynamical principles 0.1) 

and 0.2). This is known as thequaslstatic assumption {or less 

accurately, the quasistatic approximation). In such a case the 

general solution of the linear momentum balance may be simpllfied.* 

• We write t as the sum of a homogeneous and a particular solution 

* only thequaslstatic solution of (3.31) is recorded here. 
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·0 
where t is the so 1 ut i on of the homogeneous eq uat Ion 'i/. ! - Q. 

·0 
t (~.t) ... 'i/x ~(x.t) - - (3.50 ) 

-b and t is any particular solution of 

(3.51) 

A . 1 l' -b b d . . d' partlcu ar so utlon t may e constructe In carteSian coor Inates 

using indefinite integrals 

dx. 
I 

(no sum) . (3.52 ) 

-b Notice that t will depend upon v unless v -'i/b=O. If the only body -. - - -
force is due to gravity then one sets Vb=O. However. if D'Alembert's - -

-b • principle is used, then t wi 11 depend upon v· 'i/v.* - - -
The angular momentum balance for t (3.32) Involves the stretch-

. 
ing and spin. as well as t. For this reason we cannot 'orm the general 

solution of that equation by judicious choice of stress functions, as 

may be done in the case of the true stress. The function ~ is thcre-.. 
. fore called a first order stress function. 

*in a steadily spinning disk y.'i/y-Q. since the radial velocity 
vanishes and the acceleration is entirely radial. 

27 



CHAPTER IV 

CONSTITUTIVE EQUATIONS 

Introduction 

A material is characterized by its respo~~ Jo loads and 

deformations. The mathematical model for the load-response behavior 

of a material Is cal led its constitutive equ~tion. A constitutive 

equation of the form 

(4. 1) 

would enable us to set a boundary value problem irivol~rng the stress 

rate t alone.* The possibility of finding such a constitutive 
. 

equation is now discussed. Consider a deformation for which L, t, and 

T are the observed velocity -gradient, nominal stress rate, and true 

S t re s s . I far i g i d mot ion 

(4.21 

is superposed upon this deformation, then the apparent velocity 

• gradient, nominal stress rate, and true stress are ~'t !~, and T' 

*this form has appeared in the literature; see Hill [23]. 
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(distinguished by a prime). The tensors L', t', and T' are related to ... . 
the tensors L, t, and T by the formulas - ... 

L'.QoLoQT+QoQT -

(4.4) 

(4.5) 

The principle of material frame indifference states tll.3t the mechanical 

behavior of the material is indifferent to rigid motions such as 

(4.2). Therefore, the constitutive function B must satisfy 

for the same function B. To establish whether or not B satisfies 

frame indifference, we use (4.3) through (4.5) to eliminate the primed 

quantities from (4.6), thus obtaining 

(4.7) 

which must be satisfied by all orthogonal Q and all skew symmetric 

Q 0 QT at every moment of time. In particular, it must be satisfied - -
when 
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-i-

Q • (4.8) 

Then (4.7) serves to restrict the form of B: -
• -T • 

.. B( t + T • Q ,T) - Q - - - - .... 

for arbitrary skew symmetric Q. The right hand side of (4.9) depends i 

upon Q but the left does not. Thus (4.9) can be satisfied (for 

arbitrary Q) only if Q cancels out on the right hand side of (4.9). 

This is not possible in general; that is, no functional form for B 

assures that Q cancels.* 

.. ihis difficulty may be overcome by postulating a new constitu-
e 

tive fun~tT~n ! which depends ~oi only upon! and T, but also upon 

w.** Then we easily replace (4.9) by 

• e T .-.. 
B(t,T;W) • B(t + T e Q ,T,W+ Q) - Q (4.10) - - - - ~ ~ ~ 

• to be satisfied for arbitrary skew symmetric Q. Again, this is only 

• possible if S cancels out on the right hand side. Therefore B must 

be of the form 

B(a,b.c) • r(a +b • c,b) + c (4.11) 
~ ~ ~ - ~ ~ ~ ~ ~ ~ 

* further light is shed on this problem by Ogden [24]. 

** or for that matter, any tensor T which transforms by the rule 
T'.QeTeQT+QeQT. 
~ - - - ~ -
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in other words, 

l = f (i + T • W, T) + W (4.12) - ~ - -- -
Defining a stress rate e as 

• 
p = t+T'W (4. 13) 

and recall ing that ~- ~=':' we replace (4.12) by 

E = f(p,T) (4.14) 

• The stress rate p is called the Lure stress rate in this wor:~ * Frame 

indifference requires that f satisfy, for all orthogonal Q, 

Qa f(p,T)' QT _ f(Q • 
- - - - - (4. 15) 

A tensor function possessing this property is called isotropic. From 

the theory of matrix polynomials [25], we know that if ! is a sym-

metric isotropic function, at most affine** with respect to e, then f 

*. 
p has the physical significance of a 'corotational nominal 

stress; Tt has been used by Wunderlich and Obrecht [9] for beams. 

** an affine function is composed of linear and inhomogeneous 
parts; for example, if f(x}-ax+b, then f is affine w.r.t. x so long 
as a and b are independent of x. 
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may be represented as a linear combination of the six tensors 

I -r' s - ... -
• H;·-r' +T'.~) r - .... .... ~ 

• •• T where! = He + e ) and s .. ,.' • Tl. However a more useful representat ion 

of ! can be found which depends upon the traditional form of the 

constitutive equation. Thus, we defer further discussion of f unti I 

after the traditional form has been presented. 

Traditionally one assumes a constitutive equation of the form 

. 
o = E(C,W,T) (4.16) 

- -w '!roo ..... 

It is a simple application of the frame indifference principle to show 

that E must be of the form 

E(a,b,c) • C(atc) + b· c - c· b (4. '7) - - - - ..... 

so we replace (4.16) by 

(, - w· or + -r • w • C(c. or) (4.18) -- -

where' is a symmetric isotropic function. For convenience we define 
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the corotationaZ stress rate ~* by 

• • 
0'* = a - w • T + T • W (4.19)* 

If C is at most affine with respect to E, then the general form for -
(4.18) is 

• a* .. V: e: + r (4.20) .. -

where the fourth order tensor V and the second order symmetric tensor .. 
~ depend upon the stress. The components of V and r, in cartesian .. 
coordinates may be set in the forms 

Vi j k 1 
11 

.. A (6 i /\I) 
12 I + A (O

ij
T

k1
) 13 

+ A (oijSkl) (4.21 ) 

21 I ) 

+ A (Tij'\1 
22 I I 

+ A (T
ij

T
k1

) + ).2
3

(T;j Skl) 

31 
+). (5 i j Ok 1 ) 

32 I +). (s
jj

T
k1

) 33 ) 
+). (sij S kl 

'* the essential property of this stress rate, or any other stress 
rate described as 'corotational' in this work, is that it Is absolutely 
insensitive to rigid spin of the body. In frames in which the spin 
vanishes, such stress rates always reduce to ordinary time derivatives 
of stress. 
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and 

1 2'-J 
Lij • n lS iJ + n T 1j + n Slj (If. ii) 

In (~.21} and (4.22'f T;J is the streCss aivlcffof, 5iJ"'T;kT~j' and 

A
ij

, 1/, and ni are func:tiOnsQ( tfle [nVjrlan!S (if~. If Aij • Ajr 

fhen Vijk1 =Vk1 ij' and- we de'scri'6e' ~ j~ symmeir-fc. fquaifons_ [4.20) 

through (4.22) in~-lude-, as speda'l c-a-ses, ffi"e fheories of nypoelastic 

inlhypoel'a-s-tic/vfscopra"sifc 6olfes', and wffFl srigFif mooificati6n, 

IHas tic boor e s. These- shill be d"isCttS'secf lndividualTy af fhe end of 

ihi s chapte r . 

'vie now construct from (4.20) a represenfation for 'F (4.14). 

Recalling lrom 0.44,- tliat tfle nominal sfress rate and the I(irchhoff 

it is easily sjen f~at t~e feTiff6nship b~twe~~ the luri ~tt~ss rate 

a-na the IUrdih6ff stress rafe fs 

This yields. using the definition of ifle corofafionaf stress rate, 

-
--- ------ - - -- --- - - -

-
• • 
p = 0* - E:. T 
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• The symmetric and skew symmetric parts of p are given by 

• • T • i(e+e ) - c,..~ - t(E' T+T' E) (4.24) 

and 

• ° T 
t(e-e) - -HEoT-T°e:) (4.25) 

According to angular momentum balance, the latter of these (4.25) must 

be an identity. Using (4.20) to eliminate 0* from (4.24) yields 

r = \oJ: £ + r (4.26) 
:::: -

where \oJ is defined by .. 

(4.27) 

Note that if V is symmetric then \oJ is symmetric also. 

lhe stress rate r 

o • Too T 
r'" ~(D+p)'" +(t+ToW-woT+t ) (4.28) 

is called the symmetrized Lur" stress rate in this work. It is the 

time rat'!' of ;lj ~y"'r"lPtl"ic nOf'l1inal stress uSed recently by de Veubeke 

[26], and called by him the Jaumann stress. Since the corotational 

stress rat,:, (~:"\ i5 oftp:"l called the Zaremba-Jaumann rigid-body stress 
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rate, different from the rate of the stress used by de Veubeke (~), it -
would be likely to cause confusion if the name Jaumann were assigned to 

any stress rate in this work.* 

If W Is invertible. then the constitutive equation (4.26) may be 

wr it ten 

(4.29) 

and we see that the function F (4.14) corresponding to (4.20) is 

represented by 

• -1 --T 
F(p.'r) - W : r!(p + p ) - 1:], 
_ ....... _ .. .... ~ .-;,r- -

(4.30) 

where W is defined by (4.27). 

In applications one is usually given the constitutive equation 

in the traditional form (4.20) t (4.21). and (4.22). To obtain the 

form (4.30), one must construet W according to (4.27) and then Invert ... 
W, if possible. This is a major undertaking from a computational point 
'" 
of view, for W wi 11 generally be different at each point of a stressed 

OJ 
-

body, even when ~ is constant. Therefore special attention is given to 

practical methods 
-1 -1 for construction of W • For plane problems W can 

~ ~ 

be found in closed form. For general problems in which V-I Is known .. 
-1 .. 

a truncated power series for W is often of acceptable accuracy. The .. 
detai Is of these two special cases are discussed in Appendix B. 

* see Atluri [15J. 
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Hypoelastic Bodies 

. J i 
If ~.~ In equation (4.20), and the coefficients).1 and ~ are 

analytic functions of the stress Invariants, at least in some open 

region of stress space (containing the origin), then the body Is said 

to behave hypoelastically in that region [26]. No relaxation phenomena 

will be exhibited by the body so long as E-O. The state of stress at - -
a material point will depend upon the deformation history, but not upon 

the speed of the deformation. This makes it possible for us to use any 

monotonically increasing parameter, such as a characteristic displace-

ment, in place of natural time when studying the deformaticltj of 

hypoelastic bodies. 

The first approximation to the behavior of any hypoelastic body 

for small deformations from the stress-free state is obtained by setting 

T= 0 in (4.21). Then V may be written as .. 

(4.31 ) 

where). (Lame's constant) and ~ (the shear modulus) are defined 

Referring to (4.27), we construct W as 
== 

(4.32) 
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The constitutive equation given by (4.31) must be regarded as 

the simplest possible model of solid behavior. It is doubtful that any 

real material behaves as predicted by (4.31) when deformations are 

finite. Its popularity stems not only from Its simplicity, but from 

the success it has enjoyed in infinitesimal strain theories, and the 

lack of physical data needed to use more sophisticated models. Never-

theless, there is a point beyond which any semblance of real material 

behavior vanishes from (4.31). Consider rectilinear shearing from a 

stress-free state: 

The constitutive equation (4.31) predicts the following stresses [27): 

Tl2 .. lJ sin(kt} 

Until the time that kt-;7T, the shear stress Tl2 Increases. After 

that time Tl2 decreases, even though the shear strain continues to 

increase. In this particular problem we may take (kt) to be a measure 

of the strain; beyond the strain kt .. ;'!f, (4.)1) hi Is to provide an 

acceptable model of any m~terifl'$ behavior. 
-

The rectilinear shearing example above 1$ such a simple 

deformation that we were able to rely on Intuition alone in deciding 

the limit of applicability of the equation (4.31). For more compli-
- --- - - -- -~-~-

cated deformatIons (and/or more complicated materials) our intuition 
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is not so strong. The notion of 'realistic material behavior' needs 

to be set down In a form which (minimally) allows us to distinguish 

between 'realistic' and 'unrealistic' deformation processes. This Is 

the role played by thermodynamics in modern continuum mechanics [28]. 

Yield Surfaces 

It is well known that metals exhibit behavior which is more or 

less elastic so long as strains are small. In other words, when 

moderate loads are imposed, then removed, the elastic body returns to 

its original shape. If more severe loads are applied to the body, then 

removed, some permanent distortion of the material may occur. The 

mechanisms of inelastic behavior may become active very suddenly, as in 

mi Id steel, or only gradually, as for lead or copper [29]. In any 

case, one way of ideal izing the transition is to introduce a yieZd 

suro:ace to stress space, inside of which the mechanism of inelasticity 

is dormant, on or outside of which the mechanism is active. The yield 

surface may change during the deformation as dictated by the change in 

the yield behavior of the real material being modeled. After the 

initial yield of the material, trye surface is usually called the load-

ing surface. 

• 
The von toUses' yield criterion is the most common of those found 

in the engineering literature. The equation of von Mises' surface is 

expressed by either of 
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(II. TI TI) 

where all and 0
12 are material functions called the effective uniaxial e e .. . 

stress and effective shear stress, respectively. The parameter k is a 

monotonically increasing Invariant of the local Rlas.tic deform~tion 

history. The function all(k) must e be determined from uniaxial test 

data, and the function a I2 (k) e must be determined from plane stress or 
-

strain reet i linear shearing test data. The scalar Jo is the vol umetr i c 

strain relative to the stress-free state. It must be Included in the 

first of (4.33) because in uniaxial tests, the total load P and length 

1 are measurable. The initial dimensions of the specimen are known, 

so the measurable stress Is a~l 

all • J Tll • (AliA 1 )eP/A) • P(I/A I ) . 
o 0 00 00 

(4. 34) 

. 
Similar arguments may be given for inclusion 6f J in the second of 

o 

(4.33). The usual Mises l criterion is recovered by dividing (4.33) 

through by J. In practice J would usually be expressed as a o 0 

function of the mean stress: 

J = 01,+ Z~)/(3A + 2\.1 - T: I) 
o 

40 
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Of course alland a 12 cannot be independent; in view of (4.33) e e 

they must be related as 

(4.36) 

If physical da~ cannot be reconciled to this condition, then the 

body In question does not admit von Hises' representation of the 10ad-

i n g sur face. 

One might suspect that von Hises' criterion Is no more than an 

extreme idealization. However, according to Hill:* 

experimental data for mild steel .•• suggests that the yield 
locus changes over from a hexagon to a circle with progressive 
cold work. However, for other steels, and for copper and aluminum, 
von Hises' criterion appears to fit the data equally well no mat­
ter what degree of prestrain. 

So, while it is indeed an, idealization, its agreement with physical 

data for some metals is quite good. Nevertheless, the small dif-

ferences may be important. According to Christoffersen and Hutchinson 

[31J, who have proposed a class of 'corner theories' of plasticity, 

it is generally agreed that the simplest flow theory built upon 
the assumption of isotropic hardening using the Hises yield sur­
face underestimates certain crucial plastic strain components in 
a non-proportional stress history such as encountered in buckling 
or neck i ng. 

In contrast to a smooth yield surface characterization, a corner 
theufY ",iIi IlrO:.L likely overestimate certain components of the 
pla~tic strain increments in the vicinity of an abrupt change from 
proportlo~al loading. 

;Ie 

Hill [301, p. 24. 
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As a consequence, "calculations based on a flow theory with a smooth 

yield surface give necking-type bifurcations at strain levels which 

far exceed realistic values" [31], while calculations based on corner 

theory can be expected to provide conservative estimates of the 

bifurcation strain. Finally, according to Tvergaard et al. 132J, who 

have presented a numerical study of flow localization in ~e plane 

tensile test, 

Analyses carried out within a theoretical framework .•• reveal 
that the classical elastic-plastic solid with a smooth yield sur­
face is quite resistant to the localization of deformation Tnto a 
shear band. 

The resistance of the classical elastic-plastic body to intense local 

deformation may even be sensitive to the yield criterion's independence 

from the mean stress (such as that induced by a distribution of voids). 

Thus, the circumstances under which von Mises' criterion can be 

expected to provide reasonable results have not been resolved. 

We observe that, as a rule, smooth deformations are found when 

a smooth yield criterion is used. This may be an over-simplification, 

but it is borne out by the w~ight of solved problems in the literature. 

Regarding finite elements, and the goals of the present work, this Is 

important because we may be reasonably confiden~ that intense local 

deformations, which would require a much finer finite element mesh 

than has been used, do not occur. In view of the discussions of 

Tvergaard et al. [32], it would seem less safe to make such an 

assumption if the most common alternative to von Mises' criterion, the 

Tresca 'maximum shear stress criterion,' were used, since that surface 

has vertices. In this work, von Hlses' criterion Is used exclusively. 
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The parameter k Is usually chosen as either the 'plastic work' 

wP or some variant of Odqulst's 'plastic strain' q. defined by 

Kachanov [29] as 

wP - J t T : EP dt 
o - -

Notice that both of these Increase monotonically during plastic 

de format ion. I n un i ax i a 1 extens Ion 

W• p .. TIIEP 
11 

or in rectilinear shear (plane strain) 

.p 12 p 
W .. 2T El2 

In any case we can find a functional dependence between wP and q 
a 

since 

so the choice of parameter is largely a matter of convenience. 

Hypoelastic/Plastic Bodies 

(4.37) 

We give a brief sketch of the theory of hypoelastic/plastic 

bodies. The reader is referred to Hill [30], Prager [33], and 

Kachancv [29] for extended treatments of the theory. 
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As was discussed In the main text of this chapter, the 

mechanical behavior of an isotropic body Is completely known once 

• 1 f . , T J i d i k ( i I. 20 materia unctions h f ~ ,an n are nown see equat ons ~. 

through 4.22). However, no series of physical tests can be devised that 
- -

would determine these material functions completely. In the face of 

such indeterminancy, it is customary to choose Aij , ~i, and n1 which 

produce the simplest constitutive equation capable of explaining the 

behavior which has been observed.* The classical theory of p1asticity 

for polycrystalline metals is Just such a theory. 

Suppose the pla~tic stretching £P depends upon the stress and ... 
stress rate as 

where V' and t' are of the forms (4.21) and (4.22). Then from the 

apparent absence of relaxation phenomena, at least for quasTstatic 

cold-working of the material, one concludes that ~' must vanish. The 

physically observed incompressibility of plastic deformation places 

the following restriction on Vi: .. 

I : VI • 0 • (4.38) 
as 

* It Is entirely possible that (It.20)-(4.22) and the physical 
data cannot be reconciled; In such a case one must discard (4.20)­
(4.22). -
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From a series of uniaxial tests in which the Kirchhoff stress all Is 
o 

found as a function of the logarithmic strain 

we establish the following relation between cr~l and Ell: 

-11 = {JoEt(k)} 
11 = all (k) 0'0 1£11 when ° 0 e 

and 11 
°0 £11 > a (4.39) 

-11 
• {J E(k)} otherwise °0 1£11 0 

which is used to fur"ther restrict Vi. The material functior.~ in the 

general representation for Vi cannot be determined uniquely from the 
::: 

restrictions (4.38) and (4.39). However, a very simple solution may 

be found as follows: we assume that 

Vi • A22TITI (4.40) ... 

This form satisfies (4.38). Now we define A22 so that (4.39) Is 

satisfied. The plastic stretching .is given by 

(4.41) 

The scalar product TI : £P Is therefore -
45 



P • 1 (I I) I 2 I' P P uttlng I.! :! ' ''[. J'[I , and W .!:: ' from this last 

equation we find that 

(4.42) 

The function (dWP/dl~) may be determined from the uniaxial test data 

(4.39) as follows: 

so 

P I) 3 p ·'1) (dW Idl t • 4 (E,l/a . {4.43} 

• • Recalling that a.J a, we get from the test data 
-0 0 .. 

- (1 /h) • (4.44) 

On replacing all by J J-
2
3 II , ~~d-~~calling (4.42) and-{~~43), we 

o 0 

2l finally obtain A- as 
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• 0 otherwise (4.45) 

or, In terms of the function h, defined in (4.44) above, 

for loading (4.46) 

• 0 otherwise. 

Values of the function Et (·} are cal led the tangent ~ndulus. 

Values of E(o) are the instantaneous Young's modulus. The function 11.22 

is multivalued on the loading surface; this is the sole source of non­

linearity in plasticity theory. If the dependence of 11.22 upon k were 

removed then 11.22 would be single valued on the yield surface. The 

resulting hypothetical material is ,encountered in the context of 

uniqueness theory, and is called the 'linear comparison solid' there. 

The complete constitutive equation is obtained when we consider 

the total str::t.:.hiljg* to be the sum of elastic and plastic parts: 

'* 

e p -1· e: +e: -v :0* 
"II 

i .~., lh~ svnm~tl;c part of the velocity gradient. 
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-1 Notice that V thus defined is symmetric; that is .. 
-1 -1 

Vi Jk t - Vk 1 i j . 

Since ~22 is multivalued on the yield surface (4.47) is not linear_ 

We note the agreement between the present equations and those of 

McMeeking and Rice C34J. 

Hypoe 1 as t I c/V i s cop las tic Bod i es 

The theory of viscoplasticity is similar to classical 

plasticity theory in the sense that it provides the simplest constitu-

tive equation capable of explaining the uniaxial test data of certain 

materials. The difference is that the materials being modeled exhibit 

creep and relaxation. The vlscoplastic model common In the literature 

is compat i b fe w rtn 

isotropic yield behavior 

plastic incompressibility 

uniaxial creep and relaxation tests. 

The representation of the viscoplastic stretching EVP found in the-

monograph of Perzyna [35] is of the form 

~ --

(4.48) 

-

where y is a funct ion_of the stress Invariants an d -pe rhaps the 

deformation history. It may be determined from uniaxial test data In 

bas ically the same manner as A22 was determined for a plastic body. 
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Suppose that from uniaxial tests we establish 

- 0 

a!l ;> a! 1 (k) 1 
otherwise. 

when 

(4.49) 

For uniaxial tests, the general equation (4.48) reduces to 

vp 2 11 
e: - - ya / J 11 3 0 0 

(4.50) 

Using the result of the uniaxial tests, we find y as 

e:VP 
• 1 J -.!! _ 1 J <t>(a ll k)/all 

y 2 0 11 2 0 0' 0 
a 

when all ~all (k) 
o e 

o 
(4.51) 

- 0 otherwise • 

The complete constitutive equation is obtained when we consider the 

total stretching to be the sum of elastic and viscoplastic parts: 

e vp -1· I 
e: - e: + e: - V : a* + y't' (4.52) 
- =........." 

where 

• 
(4.53) 
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and y is defined in (4.51). -1 Notice that V is symmetric. Only this .. 
simple model of viscoplasticity is used in the examples accompanying 

this work. 

-

~ 
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CHAPTER V 

BOUNDARY VALUE PROBLEMS 

In the preceding sections we have treated kinematics, dynamics, 

and material behavior as distinct subjects. We obtained equations of 

compatibility (2.16), linear momentum balance (3.31), angular momentum 

balance (3.32), and the constitutive equations (4.20) and (4.26). 

Presently we regard these equations as a system of coupled partial 

differential equations. It is worthy of special note that all of 

these equations are linear, with the exception of the constitutive 

equation in the case of a plastic body. For ease of referen~~ we col-

lect these equations below: 

v x (e: - w) -= 0 in V s • (- e: + w + v't) ... 0 on S 

• • • • 
V • t + pb • 0 i n V - - - ~ • t ... It on S 

H(£+w)·-r+t-tT--r-(e:-w)]-O in V .. - -
• t-V:e:- e:--r- -r-w+r 

=:: 

v - v on Sv 
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(5.3) 

(5.4) 

(5.5) 

(5.6) 



(5.7) 

These equations have been discussed Individually In the preceding 

chapters, with the exception of the second of (5.1), and (5.4). The 

constitutive equation (5.4) follows directly from (4.20) and 

• • 
t .. 0* - e:. T - T· W 

In the second of (5. 1) ~ Is an arbitrary surface tangent; the equation 

is essentially a counterpart to the stress prInciple, as it relates the 

(two-dlmens lonal) surface-velocity gr~adient to the (three-dimens ional) 

velocity gradient. We shall imply only symmetric tensors by writing 

(5.8) 

and only skew symmetric tensors by writing 

T 
W: W + W - 0 • (S.9) 

This is rathe, trivial, but nonetheless necessary to complete the 

system of equations (5. I) through (5.7). For the sake of clarity we 

shall often refer to (5.1) as'c()mpatibility,' (S.2) and 'UtB' (linear 
• 

momentum balance), (5.3) as'AHB' (angular momentum balance), {5.6} as 

Ivec' (velocity boundary condition), and (5.7) as 'TBC ' (traction 

boundary condition). We call the system of equations (5.1) through 
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(5.9) 'the general boundary value problem. I 

As discussed, the general solutions of compatibility (5. I) and 

LMB (5.2) are given by 

(5.10) 

and 

• ·0 
+ i b 

I 
t - t 

(5. 11 ) 
. 

'V • i b • t -'VX41 . - P~ 

respectively. The remaining equations of the general boundary value 

problem (5.3) through (5.9) are algebraic in character. Derived 

boundary value problems are those obtained from the general boundary 

value problem through use of (5.10) or (5. II). Usually one uses (5.10) 

to eliminate: and ~ as variables from the constitutive equation (5.4), 

so that :, ~t and! are all determined by y. Owing to the special 

structure of the constitutive equation (5.4), AHB Is satisfied 

• • implicitly for all such £, w, and t. Upon elimination of t from LHB, ...... ... 
one obtains a single second order partial differential equation In v. 

We call this the First boundary value problem. Alternatively, one may 

use (5.11) to eliminate t from the constitutive equation (5.5), so that 

: is determined by ~ and ~. 
• Subsequent introduction of ~ (via t and £) -. ... ... 
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and ~ to compatibility (S.l) and AHB (5.3) yields a first order and a 

second order partiaf dTrferential equation for ~ and w. We call this .. -
the Second boundary value problem. 

the First boundary value problem Is appeaffng to the practitioner 

because of the clear physical significance of the principal variable, 

the velocity field, and the simplicity of t~e boundary conditions. The _ 

Second boundary value problem is unattractive because the stress 

functions lack physical appeal, the boundary conditions are complicated, 

and be-cause rt involves two coupled equatrons in two unknowns. In 

either case, construction of closed form solutions is virtually 

Impossible. It is this intractability which leads us to search for 

and study methods by which the solutions of these two boundary value 

problems may be approximated. 

Two approximation methods for boundary value problems of solid 

mechanics dominate the current literature, namely, the method of 

finite differences and the finite element method. The finite dif-

ference method is, for the most part, reserved for dynamic (i .e. wave 

propagation) problems. Only rarely is it used for analysis of quast-

static deformation problems. In using the finite difference method, 

one attacks the partial differential equations as they stand. However 

the finite element method requ-ires that one first generaZize the 

equations (5.1) through (S.9). In the engineering 1 iterat-ure this 

generalization Is accomplished by finding a variational problem which 

is 'equivalent' to the original problem. Perhaps nowhere can a more 

lucid exposition of the fundamental varfatfonal principles of solid 

mechanics be found than in the monograph of Washizu [36]. His modus 

54 ~ 



operandi is adopted here. 

The essence of Washlzu's method is to use Lagrange mUltipliers 

to 'enforce' the equations (5.1) through (5.9) of the general boundary 

value problem. These multipliers turn out to be the displacement, 

stress, traction, etc. After discussing two 'virtual work' principles, 

he supposes the existence of a potential for the stress (the strain 

energy), and shows that all the variational principles of classical 

linear elasticity may be systematically derived from the IIgeneralized 

potential energy principle ll now known as the 'Hu-Washizu' principle. 

The principles discussed in this work are named 'virtual wc.~,' 

'potential energy,' 'Hellinger-Reissner,' etc., in analogy to the 

principles of linear elastostatics. 

We begin with the generalization of the linear momentum balance 

(5. 2). Let us momentari ly. regard OV as a Lagrange mul tip 11 er. Then a 

stress rate i and a traction rate !t satisfy LMB (5.2) and the stress 

principle if 

(5.13) 

for arbitrary oy. In (5.13), as in (5.2), ! apparently must be dif-

ferentiable. but ~v need not even be continuous. Now, by formal 

Integration by parts,* (S.13) may b~ transformed to 

* throughout thls chapter, Integration by parts is formaZ. 
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(5.14) 

• to be satisfied for arbitrary ov. - In (5.14) apparently! need not be 

continuous, but oy must be once differentiable. Any stress rate t -
admissible to the classical form of LMB (5.2) is also admitted by 

(5.14), but the converse is not true.* Therefore we call (5.14) the . 
'generalized' linear momentum balance, and write LMB (5.14). Any ~ 

and t which satisfy the stress principle and LMB (5.2) necessari ly 
-t 

satisfy (S.l4). 

Consider the modified general boundary value problem composed by 

replacing LMB (5.2) by generalized LMB (S.14) and eliminating compat­

ibility through use of (5.10): 

E = HVvT + Vv) 
... - -

J [t : VO't, - P~ • ov] dV -1 t · ovdS • 0 
V ... - S -t -

(5. 15) 

for arbitrary oy 
. 
t • G(t,w,T) __ .. ov t • t on S~', -t -t OJ 

(5.16) 

Every solution of the general boundary value problem {S.l} through 

* In particular, (5.14) admits piecewise continuous stress rates, 
whereas (5.2) does not-. --
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-(5.9) is a solution of (5.15) and (5.16). I f we adm I t on 1 y yo. y on 
• • 

S , cSv· 0 on S , and Tt - Tt on S • then one eas i 1y reo duces (5.15) to 
v -- v - - a 

a functional of the velocity field alone. This comprises the pPinaipZe 

of.vir~~Z work. The virtual work principle is the most common basis 

for finite element algorithms used in engineering today. Its strong 

appeal stems from Its overall simplicity. In arriving at (5.15) no 

assumption was made which restricts the from of the constitutive 

function G, except that all t-C(e:,W,T) satisfies AMB (5.3). As an - - ........... 

alternative to retaining VBe (5.16) as a subsidiary condition, we may 

'enforce' it by introduction of the Lagrange multiplier cf ~,-; Sv' 
-t 

We replace (5.16) by 

~ 
v 

cf • -t <Y - y) dS - 0 for arbitrary cit (5.17) 

• . -
If we admit only It-It on Sa' then one easily reduces (5.15) through 

(5.17) to a functional of only y and it (on Sv)' We call this the 

Second virtual work principle. It is not used as a basis for finite 

element algorithms in engineering because the velocity boundary con-

dition is so easily enforced; that is to say, Introduction of the 
. 

extra variable !t Is a greater effort than a priori satisfaction of 

vae and ov - 0 on S • 
- - v . 

By a procedure similar to the one above we may obtain the 

generaiization of the compatibility equation. Let us momentarily 

regard the stress function ~ and the surface tangents cS!J as 

Lagrange multipliers. We wrt te (osj e.) as (n x o¢l) • 
- - J --

If £ and w (in V), ... 
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and v (on S) satisfy compatibility (5.1), then t~ey n~essarily satisfy 

I [V x (- £_ + w) 1 : o_~-dV + 1- (~x o ... ~) (- £ + W + 'iT v) dS • 0 .,.-.... ~ V -... S 
(5. 18) 

... Just astOr 0018, we TO-I"ma-rry rnr~9rat6" by parts in 

order to relax the smoothne-ss requlreme-n-r- orr £ a-"d 1.0, obtain-rrrg_ __ oW 

(Vv)d$ • a - (5.19) 

for arbitrary O~. For the same reasons that we cal red (S-.llfJ a ... 
general ization of LMB, we call (5-.19) a generalization ot compatibi lity. 

In this form it is easily se-en that only the in~surface components of 

(V~) influence the value of the fun~tional. If £, w, erna v are- round _.... -
which satisfy (5.19) identically for all o~, It rs rncorrect to con­

clude that (e:-w).Vv anywhere In V, or even on S; only the in-surface 
..w _ -

components of (Vy} wi 1l a-gree with (£ - wJ 6n S. Unfortunately this - ...... 
fact is not brought out in the literature, and is obscured by the 

conventional form of (5.19), which we- now gfve. Using tlie formula 

(integration by patts) 

f (!J x 641) : V~dS -I !!. (V x c5~) • :,dS 
S... S ..... 

(5.20) 

and identifying (VXO~) as ot ern agreement wfth 5.11), equation 

(S. 19) becomes-

58 ORIGINAL P I>'GE IS 
OF POOR QUALITY 

-

~ 

-
~ 



(5.21) 

It is clear from the present derivation that Ot (in 5.21) is subject to 

no constraint except 

". ot • IJ x O¢l • 

Consider the modified general boundary value problem obtained by 

replacing compatibility (5.1) by general ized compatibility (5.21), 

and using (5.11) to eliminate 1MB: 

J [- f; + w] • 
+ f ~ · ot • ~dS • 0 otdV 

V ... ... S -

• for all at = IJ x c5~ 

• ·b • e T 
t ·lJx~+ t n - t • T • W+W • 0 -t' 

(5.22) 

(f; + w) 
e -T 

!-(£- w) - T + t - t - • 0 

r. Ht+T·W - weT+tT) - -

v • v on Sv 

(5.23) 

- .:.. 
It • T -t on Sa . 

Every solution of the general boundary value problem (5.1) through 
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(5.9) Is a solution of (5.22) and (5.23). If we admit to (5.22) only 
• _ • .s. • • 

~--~ on Sy' !! • ! - It on Sa' -n • O! - 0 on Sa' and (!.~) wh ich satisfy 

AHB, then we can reduce (5.22) and (5.23) to a single functional. This 

.. 
functional. when we are able to construct such! and ~, comprise~ the 

'pr-incipZe of corrrpZementaPY virtuaZ 1I10rk. Except for pathological 

• cases, con-struetion of those t and w Is impl'acticable. The llTOblems - ~ 

associ ated wi th the use of the comp 1 ementa ry virtual work pTi ncrplei~ ~ 

its 'pure' form (5.22 and 5.23) may be avoided if AHB (5.3) and TBC 

(S.7) are incol"porated into the pTjndp~le 'by introduction 0'1= the 

Lagrange multi~liers ow and ov: 

Iv [{ ~ + ~) • ! + i) : ow dV - 0 _ 

fo r a 11 ow: ow + ow T • 0 ;' 

• 
[n • t - -

for arbitrary ov (on So) • 

We call (S.22) and (5.23) thus modified the Second CforrrpZe"!entary 

virtuaZ l.Jork principZe. 

For easy reference we collect the equations of the Second 

complementary vi rtual work principle below: 

(S.24) 

(S.2S) 
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J 1- f + ~]: 0 t dV + I ~ · o! · ~ d S ... 0 
v ~ S 

for a 11 ot: oi .. 'V x o¢! 

T w + W ... 0 

{ [( E + w) • T + ~] : owdV = 0 

for allow: Ow + owT = 0 (5.26) 

G
1 
(r,T) • Ht + tTl E .. r ... + T • W - w· T - --

J (~ · t • 
- T ) • ovdS ... 0 

S - -t -
a 

for all ov on So 

v .. v on Sv 

It is a simple exercise to reduce (5.26) to three functionals 

• involving t and W in V ~nd ~ on Sa. The second complementary virtual 

work principle used In this manner Is the basis for the finite element 

algorith~ rrp5ent~d in this work. In deriving (5.26) no assumption 

... b d h' h . h fo rm 0 f G I , h G ' ( • ) lias een rna e \'!, Ie restricts t e _ except t at £. ~,! 

must be symmetric. 

The ~cst i~portant feature of the virtual work principles is 

• 
that they admit functions y, E, W, and t less smooth than did their - - -
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partial differential equation counterparts. A second property worthy 

. of spec i a 1 note Is that t~e!Y we re de rived without res t r i ct i n9 the fo rms 

of the constitutive functions G and G'. The various ene~9Y principles 

we are about to derive require such restrictions. Specifically, we 

• require that a stress-rate potential W for r exist such that 

(5.27) 

Moreover, we consider only cases in which the nominal traction rate 
. 
!t is prescribed on Sa'* For solids of the type (4.20) such a 

potential exists if and only If V (and hence W) is symmetric. We 
=s =:: 

remark that the constitutive equations for solids common in the 

engineering literature all satisfy this symmetry.** 

If the conditions above are satisfied, then the first energy 

principle is found by introduction of the potential (5.27) for the 

stress rate to the virtual work principle (S.17) and fS.181. But 

• 
since that principle involves the stress rate t, we need a potential 

, .. _ ... 
U for t such that 

t - au ( L , T) / a L T 
.... - --- - -- .. __ IV 

• • 
Recalling the definition of t and !, we get 

* this is actually over-restrictive; see Hill [37], and 
references to Sewel" therein. 

** . including all the materials in examples accompanying this work. 
Some exceptions are noted by McMeeking and Rice 134]. 
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• 
• r - HT· W - W· T) (5.28) 

and recallinS AHB (5.3) we get 

H t - iT) • -H (e: + w) • T - T· (e: - w)] (5.29) - -
Putting o~T. 0:- O~t we get from (5.28) and (5.29) 

• T • t : 0 L • ~ : 0': - ( 0: : T • W + e: : T • ow) 

- :T : (w· ow + ow· w) (5.30) 

It is easily seen by inspection of (S.30) that t; 8LT is a perfect 

• differential if and only if ~: 0: is a perfect d;.rferentlal. When 

; : oe: • (aW!de:) : oe: - - --

then 

i: oLT • (aU/dLT) : oLT , - - --

where W is defined by (T is suppressed) 

w( e:) • i e: : W : e: + e: : 1: (S.3!) 
..... ...,::: - .., .., 

and U is defined through W as 
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• Now we introduce the potential (5.32) for t to the Second -
virtual work principle (5.15 - 5.17) to obtain 

T 
~ - i(V~ - V~) 

-/ t · (v - V) dS . -t - -
S v 

(5.32) 

(5.33) 

(5.34) 

There are two ways to deal with the subsidiary conditions (5.33). rt 

is an easy exercise to reduce (5.33) and (5.34) to a functional of 

the velocity field and traction rate. Alternatively we may 'enforce l 

(5.33) by use of lagrange multipliers. 

The first course of action leads us to the principZe of 

stationary potentiaZ energy 

• orr (v,Tt ) - 0 
p - -

(5.35) 

Any solution of the general boundary value problem is a solution of 
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(5.35). In practice one usually satisfies the velocity boundary 

• condition a priori, thereby eliminating !t from (5.35). 

The alternative course of action leads us to a Hu-Washizu 

energy prinaipZe. • Let! be regarded momentarily as a Lagrange 

multiplier. Then (5.33) and (5.44) may be set as 

T e:-e: -0 T 
w + w - 0 

(5.36) 

It is possible to enforce both of the conditions (5.33) with the single 

multipl ier so long as only symmetric: and skew symmetric ~ are 

admitted to ~HW' There are no other subsidiary conditions. Any 

solution of the general boundary problem (5.1 through 5.9) necessari Iy 

satisfies (5.36). We write out the stationary conditions for future 

references: ~ 

LHB: 

(5.37) 
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CONSTITUTIVE EQUATION: 

I [(aw/3e:) - i(t+'t'ew-weT+iT)]: oe:dV· 0 
V ... ..................... -

AHB: 

I · ·T [i ( (e: + w) • 't' + t - t - 't' • (e: - UJ}) : ow] dV .. 0 
V ....... --- - -- -

VBe: 

I oft· (y - y) d S - 0 

Sv 

c-OHPAT I B I L lTV: 

I [!J:t - (e:- w)] : O!dV • 0 
V 

(5.3a) 

(5.39 ) 

(5.40) 

. (5.41) 

Notice that the stationary condition for oy (5.37) is the generalized 

TIle main detraction of the Hu-Washlzu principle is the large 

number of unknowns (five). Although a finite element algorithm could 

be based upon this principle, it is unlikely that it could be made 

very efficient, and thus would be of diminished practical interest. 

We note that solely by rearrangement of terms, (5.26) may be 

rendered in the form [15] 
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(5.42) 

f { - . -T - } [We:} - H t + T • W - W • T + t ) : £] - t!: ~ - ~ + ! : ~ dV V _tlW ____ ..... 

+/ t -vdS. -t -S v 

If the constitutive equation (5.5) is used to eliminate £ as a variable 

from (5.42), then, defining 

- - - -T--R(t,w) = W(e:(t,w» - !(t+T-W-W-T+t): dt,w) -- .................. ........ -

we obta ina 3e :Z{,i2gt::l .... R~i8sn.er variationaZ principZe: 

(5.43) 

+ 1 t - vdS -t -
Sv 

+/ ri . ~v - pb. v]dV -I ;. -vdS -1 t · vdS L • v_ _ -t - -t _ 
V Sa Sv 

T 
W + W • 0 • 
~ 
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Any solutron of the general boundary value problem is also a solution 

of (S.43). The stationary conditions are LHB (S.37), AHB (S.39>, VBe 

(S.40), and compatibility {5.41}. In the stationary conditions E only 

appears as a function of i and w. - ... 
• If we admit to wHR (5.43) only stress rates t and traction rates 

it which satisfy the generalized LHB (5.14) for aSSigned!t' we obtain 

the complementary energy principle of Atluri [15]: 

• ow (w,t) I!!t 0 
C ... ... 

(5.44) 

1TC(~'~) -I I-R(!,~) - !!: (w·w) + i:d dV +1 
V 5 

n • t • v dS 

• 
n • i - T -t on 

v 

(5.45) 

Any solution of the general boundary value problem is a solution of 

(S.44) and (5.45). The stationary conditions are'AHB (5.39), vee 

(5.40), and compatibility (5.41). In the stationary conditions E only 

appears as a function of t and w. It is not a simple matter to reduce .. 
(S.44) and (5.45) to a single functional of t and w since this would 

require cons~ruction of stress functions satisfying 
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Therefore (5.~4) and (5.45) are not suitable as a basis for a finite 

element algorithm. 

The problems associated with the use of the complementary energy 

principle In Its 'pure' form (above) may be avoided if the traction 

boundary condition is incorporated into the principle. Let v be a 

Lagrange multiplier on So" Then we replace (5.44) and (5.45) by 

* . on (v,w,t) s 0 (5.46) c - _ -

*. . 
n (v,w,t) • n (w,t) 

c - _ - c - -

Any solution of the general boundary value problem is a solution of 

(5.46). The stationary conditions are the same as those of the 'pure' 

complementary energy principle, except that the traction boundary con­

* dition follows from on lov· o. It is a simple exercise to reduce 
c -

(5.46) to a single functional of ~, ~, and i. The complementary energy 

principle thus modified serves as the basis for the finite element 

algorithm presented in this work. 
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CHAPTER VI 

UNIQUENESS OF SOLUTIONS OF BOUNDARY 

VALUE PROBLEMS 

Once a solution of a boundary value problem has been found, one 

may inquire as to the uniqueness of that solution. In the event that 

multiple solutions exist, a stability criterion is required to dis-

tinguish stable solutions from those which are unstable. 

Hill [38] has published a number of papers on the subject of 

uniqueness. For materials of the type (~.20) through (~.22), his 

criterion is necessary and sufficient for uniqueness. He has also 

given a practical method for testing the uniqueness of deformations of 

hvpoelastic/plastic bodies (which are nonlinear in a certain way). For 
- -----------

extended treatments of the theory, see Hi 11 [38]. 

In this work we establish (quasistatic) stability of a configura-
--- -

tion of a body by inspection of the 'restoring force' that results when 

the configuration is slightly perturbed. If the forces arising from an 

admissible* perturbation tend to attenuate the disturbance, then we say 

the given configuration is stable. The principal shortcoming of this 

stability criterion is apparent when uniqueness is lost; It provides no 

means of distinguishing stable solutions from unstable solutIons. The 

*n~t vl61ating kinematicio~stra(nts. 
70 

~ 

-



criterion tests configurations of bodies. not solutions of the boundary 

value problem. This shortcoming Is probably unavoidable when one is 

using a purely mechanical material model such as (4.20), or the 

hypoelastic/plastic model. 

We construct two uniqueness criteria. one from the virtual work 

principle, and the other from the Second complementary virtual work 

principle. These are equivalent to the criteria proposed by Hill [38]. 

A Uniqueness Criterion Based on the 

Virtual Work Principle 

I I I -1 2 2 2 -2) Let (~ , = ' ~ , ! ) and (y , : ' ~ ,! be two solutions of 

the general boundary value problem. The same traction boundary con-

dition and velocity boundary condition are satisfied by eacl~ of the 

two solutions above. By the virtual wor~ principle, any solution of 

the general boundary value problem is also a solution of (5.15) and 

iii -i . (5.16), so (v , £ , W , t ) each satIsfy (5.15) and (5.16). Therefore - ....,. - """ 

the difference of the two solutions 

- 2 1 2 1 2 1 -2 -I (l:!v,l:!£,l:!w.~t) • (v - v ,£ - £ ,W - W .t - t ) - """ ....,. ~ . - - ~ - ~ - ~ 
(6.1) 

necessari ly sat isfles* 

* the first of (6.2) applies when nominal tractions are prescribed 
on So; the second applies when true tractions are preseribed. 
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or 

I ILlt: V6v" pLly· ~ • oy] dV .. ° 
V 

(6.2) 

/vIlli: Voy - pLly· v~ • 6y]dV -Is [(Llj .. !:!· 6~ · ~)!. 6y]ds .. ° ; 
a 

At-. G (2 2 ) L.1" e: ,W ,T ...... 

v .. ° on Sv 

1 1 G(e: ,W ,T) - - ~ ~ 

6v - ° on 5 v 

A sufficient condition for uniqueness is therefore that (6.2) have no 

solution among all pairs {v l ,v2} takinE the prescribed value von S . 
- v 

Generally we are unable to reduce the expression above to ~ functional 

f
A 1 •• 1 1 2 _ .. o uV a one since the constitutive equation Involves e: , W , e: , and ... ... ... 

2 d' • 1 ~ 1St I nct y. However, i.f G has the distributive property (modulo 

. 1 1 .--
G(e: ,W ,T) + G(O,O,T) 
~ - - - - -

then it is an easy exercise to reduce (6.2) to a functional of the 

velocity .field alone, and that functional Is independent of the 

partlculi!r boundary vC"lues y. This is important In practice because it 

means that searching for solutions of (6.2) Is precIsely equivalent to 

searching for solutions of virtual work (5.15 and 5.16) with homogeneous 

boundary conditions and no relaxation. 

The condition (6.3) is satisfied by hypoe 1astic: and hypoelastic/ 

viscoplastic li.aterials, but not by hypoelastic!plastic materials. 
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Hill [38] has shown that if the 'linear comparison solid' associated 

with a particular plastic body is used in (6.2), then uniqueness of 

solutions for the linear comparison solid is sufficient for uniqueness 

of solutions for the plastic body. 

A Uniqueness Criterion Based on the Second 

Complementary Virtual Work Principle 

In this section we use the same difference notation as In the 

previous section. Any two solutions of the general boundary value 

problem necessarily satisfy the Second complementary virtual work 

principle. Therefore, their difference satisfies 

J OtdV +/ . 
[-to£ + 6w] D • ot • 6~dS .. 0 

V Sa 
• for all Ot -'VxM) 

• 6w + 6wT .. 6t - 'V x 6¢ .* a t 

~ I (6£ + 6~) • ~ + !] : o~dV .. 0 
(6.4) 

fo raIl ow: ow + 0 w T .. a 

..... I I· 2 .' 

... i r ,. i I • 1 G (r ,t) - - - - -

~ .. ! (t + t • w - w • t + iT) 

* . fo!'" conven i ence, we have assumed that 6't· V2 • o. 
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or 

A sufficient condition for uniqueness is therefore that (6.4) has no 

solution arrong all pairs lei 1, ~1, ~l), (!2, ~2, y'
2)} in which the yi 

take the prescribed value y. on Sv' We are unable to reduce (6.4) to a 

functional of (lit,llw~liv)-alone except In tOhe case that the constitutive - - -
functIon G~ has a distributive property 

(6.5) 

In this case searching for solutions of (6.4) is precisely equivalent to _ 

searching for solutions of complementary virtual work (5.26) with 

homogeneous boundary conditions and no relaxation. Of course, the 

same materials satisfy the condition (6.5) which satisfied the con-

dition (6.3). In the case of hypoelastic/plastic materials, (6.5) is 

not satisfied, but we note that the constitutive function of the 

associated linear comparison solid for a particular hypoelastic/plastic 

solid does satisfy (6.5). In view of the fact that uniqueness for the 

linear comparison solid Is sufficient for uniqueness for the 

hypoelastic/plastic solid (and no restrIctions are placed on the 

method by which we establish uniqueness for the linear comparison 

solid), we may use the constitutive equation of the linear comparison 
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solid in (6.4) to establish uniqueness for the hypoelastic!plastic 

solid. A proof of this sufficiency would be difficult If one started 

from (6.4), since plasticity theory is not formulated in terms of the 

• stress rate r. In the bifurcation Hudy accompanying this work, the 

criterion (6.4) is used in conjunction with the constitutive equation 

of the linear comparison solid. 
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CHAPTER V II 

A FIN I TE ELEMENT ALGIDHTRM 

Introduction 

The finite element method had its beginnings in structural 

analysis, but spread quickly and with great success to other areas of 

applied science. The underlying mathematical theory of finite elements 

resulted from the study of the method as applied by engineers, and is 

still being developed at this date. Extended introduetions to the 

finite element method, both from the practitioner's point of view [39], 

[40], and from the mathematician's point of view [41], [42], are widely 

available, and therefore omitted from this work. For the discussion 

that follows, the finite element method may be regarded as a generaliza­

tion of the approximate methods based on energy principles of linear 

e I as tos ta tics. '* 
The finite element algorithm described in this chapter is based 

upon the Second complementary virtual work principle (5.26). The 

advantage of starting from the 'work' principle, as opposed to starting 

from the 'energy' principle (5.46), is not only greater generality with 

regard to constitutive equations and boundary conditions, but greater 

clarity, since each of the equations of (5.26) corresponds to an 

equation of the general boundary value problem (5.1) through (5.9). 

'* \.'ash!zu [36], especially sections 1.5 and 1.7 thereln. 
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When the constitutive equation and boundary conditions are such that a 

complementary energy principle exists. the distinction between the 

'work' and 'energy' formulations vanishes entirely. We do assume that 

the constitutive equation may be set in the form (5.5), and the traction 

boundary conditions are dealt with as if nominal traction rates were 

prescribed, but generalization to treat other materials and types of 

boundary conditions should present no difficulty for the reader 

familiar with finite element methods. 

A Finite Element Algorithm 

According to the Second complementary virtual work principle 

(5.26), the stress rate !, spin ~, and boundary velocity y of a body 

are solutions of the following boundary value problem: 

~ {! (~-I (~ - r) + ~) • ! + £J : ~~}V · a .... 

~ {I-~-I (;. -r) + d : ~!} dV + [ ~ • o! • ydS 
S 

fo raIl ow: ow+ owT 
• Q 

• ot 'if x o~ cSt: -

f (n • t - t ) · ovdS - 0 
5 - - -t -
a 

fo r all 
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a 

• 0 (7. 1) . 

(7.2) 



with the subsidiary conditions: 

In formulatfon of a finite element algorithm we regard the body 

as an assembly of sub-bodies called elements. We wish to represent the 

• functions! and ~ independently on each element. The stress rate t wi 11 

be represented as indicated In the subsidiary conditions above on 

each element, but between elements to will generally be discontinuous . ... 
Such! is still admissible to the complementary virtuaT work principle 

providing it satisfies the generalized LMB (S.14).* Indicating by 

HELM the number of elements into which the body has been partitioned, 

we write LMB (5.14) as 

HELM 

Elf [!:Vo'! - P~.o~JdVI-1 
H-l VH S 

• 
!t · o,!dS • 0 

for arbitrary O,! (continuous across intereTement boundaries) 

Integration by parts yields 

* • note that the original form of LHB (S.2) does not admit such t • ... 
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where VN and SN are the element domain and boundary. respectively. 

• • 
Finally, setting !t to !t on Sa and ov to zero on Sv' we obtain 

I:{ 
N=I 

J (~ · ! · o~) dS -

SN- (SN ns) 

We replace the traction boundary condition (7.2) by this la~~ equation 

(7.3), which is easily seen to be no more than a statement of traction 

reciprocity. In the context of finite element terminology, it Is 

called I interelement traction reciprocity.' One should take special 

note that in (7.3) o~ is ~equired to be single valued on the inter-

element boundaries, since O~ is required to possess a (generalized) 

gradient everywhere in V. 

Since t, w, ot, and ow are now independent on each element, - - - -
(7. I) must be satisfied independently on each element. Thus, we 

replace the boundary value problem (7.1) and (7.2) by 

(7.4) J I r -t ' (~-~) + '!!) , O!} dV + ~ ~. O! • ~dS • 0 
VN N 

for allow: Ow + owT • 0 

for al~ ot: at • v x o~ 
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with the subsidiary conditions 

• ·0 -b ·0 V. ib t - t + t t - V x ~ 

T • w + w -0 r - Hi + T • W - weT 

on each element, and globally 

v - v on S' v' QV • 0 on S v 

• . - P2 ,-

+ iT) 

y and ov single valued along Interelement boundaries. 

To construct a finite element algorithm based on (7.4) and (7.5) 

we must be able to find representations for ~, QV, w, i, ow, ott and .. - - .... 
• 
~ which satisfy all of the subsidiary conditions expllcity. In the 

next few paragraphs such representations are discussed. 

let us represent the velocity on the surface of the Nth element 

by 

1-1 I 
q on SN ns 

q • v 

q elsewhere 

(7.6) 
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i where the ~i are (vector valued) isoparametrlc shape functions* and q 

are nodal velocity parameters. The shape functions are NQ in number. 

Those parameters determined by the velocity boundary conditIon are 

distinguished from the undetermined parameters by an overbar. The 

variation oy may be found from (7.6) as** 

NQ 

oy (~) -:E ~i (~) Oq~ • (7.7) 
i -1 

Note that v=v and ov=O on S according to C7.6} and (7.7). Further-
- - - - v 

more, when using the isoparametrlc shape functions, we can assure that 

v and ov are single valued along any interelement boundary simply by 

'connecting' the nodes of the elements adjacent to that bounn~ry. The 

easiest way to deal with this connectivity in practice is to index the 

velocity parameters node by node, for the whole body, instead of having 

indices which are Independent on each element. The relation between 

the parameters with element-level indices (q~) and those with global 

indices (QI) is formalized by the introduction of an 'assembly matrix' 

[AN] for each element such that 

* see Ergatoudis et al. [43]. 

** It is unnecessary for y and oy to be so related when starting 
from a 'work' principle; similar statements may be made for W and o~, 
t and ot. We relate the total quantities to their variations so that 
'work' and 'energy' formulations will COincide when an energy formula­
tion exists. 
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and 

... {Q on SV 
Q-

Q elsewhere 

(].8) 

It turns out to be more natural to deal with the velocity boundary con­

dition by constraining Q than by constraining qN' so the qN and the qN 

(see 7.6) never need to be distinguished explicitly in practice. The 

tota I number of parameters ij' Is call ed the I number of degrees of free-

dom' of the finite element mesh, abbreviated NDOF. 

We represent the spin ~ and the stress function ~ in the Nth 

element's Interior by 

NW 

~(~) .. I; ~i (~)C1~ 
i -1 

and 

NT 

!(~) • ~ !i (~)B~ 
i-l 

~i and ~i being tensor valued shape functions. The actual functions 

used in the particular examples accompanying this work are detailed in 

Appendix C. The shape functions for the spin are chosen so that each 

satisfies 

, T Q . .t. + ow .... 0 
.... 1 ~I 

(7.10) 
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The stress rate Is represented in each element by 

(7.11) 

where 

(l.12) 

for each parameter i 
BN· From (7.9) and (7.11) we obtain representations 

for ow and 1St as - -
NW 

ow{~) -L QW. (x)O(li 
-I - N 

i=l 

NT 
(7. 13) 

o!(~) - l: QT. {x)oB i 
-I - N 

i = 1 

Finally we form 
•• -T 
r=Ht+T-W-W-T+t) as 
~ - ~ - - ~ ~ 

(7. (4) 

• • • 
The functions y, oy, ~, !, o~, O!, and :' when represented in the forms 

(7.6), (7.7), (7.8), (7.9), (7.11), (7.13), and (7.14), satisfy all of 

the subsidiary conditions previously mentioned, and are therefore 

admissible to the boundary value problem as stated by (7.4) and (7.5). 

Putting the representations for y, oy, ~, !, o~, O!. and ~ into 
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the functionals (7.4) and (7.5) and carrying out the assigned 

integrations yields the following finite element equations (in which 

the index 'N' Is suppressed on the stress and spin parameters): 

(7.15) 

(7.16) 

(7.17) 

, 
Henceforth we refer to (7.15) as AHB, to (7.16) as compatibility, and 

to (7.17) as TBC. The individual matrices are defined below: 

11 f H..... { (T • QW.) : 0 : (T· nw.) + T : (nw. • Ow.)} dV 
IJ V ....... 1 .. ... -"';;J ... ~I -J 

N __ _ 

(7. 18) 

12 I H • J" { (T • ow.) : 0: (nT .• ) - QW. : QT.} dV 
I V'" ~I ~ '\;J -I-J 

N 

(7.19) 

H2j Jl • J {( QT .) : 0 : (T- QW .) - nT., : QW. }dV 
V -I =:: ... -J ~ -J 

N 

(7.20) 

22 I H .• • {(OJ.) : 0: (O.T.)}dV 
IJ V -I :: -J 

N 

(7.21) 

G •• • 1 n· (QT.) • (N.)dS 
IJ ... - 1 ... J SN . ~~ 

(7.22) 
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J it· (~i )dS 

(SN n Sa) 

I { -b -b 1 l 
V ( O.!' i) : [~ + (2: ~ ) - !. + h l] J dV 

N 

p ~,b • 1 {( OT .) : (- 0 : i b) 1 dV 
I V -I ".- J 

N 

p~,~ • J 
I V 

N 

{ (or • ~.) : 0 : E l dV 
- I ::: - J 

PB,~ = J {(QT.): 0 : EldV 
i V

N 
- 1 ..-J 

and 0 is obtained from w- 1 by symmetrization: 

-1 -1 -1 -1 
OJ j k 1 • to (W i j k 1 .+ W j i k 1 + Wi j 1 k + W j ilk) 

(7.23) 

(7.25) 

(7.26) 

(7.27) 

(7.28) 

-1 This symmetrization is easily done after W is computed, and serves 
=: 

to reduce by a factor of four the number of multiplications required 

to compute the H matrices (7.18) through (7.21), and other matrices 

-1 involving ~ . The integrations must be performed numerically since 

the Integrands and the domain o~ the element change during the deforma-

tion. I ... ti)'; ~;"'ain~lc~ accompanying this work only quadrilateral 

elements were used, so symmetric G~u~sian quadrature rules were used 

for the inteoration.** 

*the last term in the integrand is a residual whose significance 
is explained In the next chapter. 

** s:c Ton; 3:"1:! ~os~ettos [39], especially chapter six. 
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The procedure which leads one from equations (7.15) and (7.16) 

to the element stiffness matrix is virtually identical to that of Pian 

I3]. We define the element 'H-matrix' as 

(7.29) 

and loads {pb} and {p!!, due to body force and fluidity, respectively, as 

(7.30 ) 

Then (7.15) and (7.16) may be collected into a single equation as 

(].31) 

-1 -1 
If ~ is symmetric, that is, jf Wjjkl-Wklij' then from (7.18) through 

(7.21) we easily determine that [H] is symmetric. 

If th~e H-matrix is not singular, then we sotv~~the matrix 

equation (NQ+ 1 right hand sides) 

(7.32) 

on each element. Explicit calculation of the inverse of [H] is not 

only unnecessary, but substantially increases the time required to 

generate the element stiffness matrix. According to (7.31), the spin 
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and stress parameters on each element are given by 

Using (7.33) to eliminate {alB} from TBe (7.17) leads to 

NELH 
~ {{OqN}T[KNJ{qN} + {OqN}T [0 
N-l 

(]. 34) 

in which the element stiffness matrix has been identified as 

{7.3S} 

and the resultant nodal 'forces' are given by 

(7.36) 

It is easily verified that the element stiffness matrix [K] is symmetric 

if [H] is, and so the symmetry of [K] ultimately depends upon the 

symmetry of the constitutive matrix W. 
lit 

To this point all of the finite element equatJons are indepen-

dent on each element. The formal assembly of the global stiffness 

matrix and loads is accompl ished by introduction of the assembly 

matrices (see 7.S) to (7.34) so that the element level velocity 

parameters may be expressed as functions of the glObal velocity 

87 



par~ameters. For {Cj} and {oq} w~ write 

and from (7.)4) thus obtain 

In equation (7.37) the global stiffness matrix [KG] and the loads 

{PG} are defined by 

and 

The load matrix {P
G

} contains contrib.utions from the prescribed 

. . 
.body for rateb, the re 1 axat ion 1:, and the tract ion .boundary ~~on-- . 

• 

(7.37) 

(7.38) 

(7.)9) 

dition T . The global stiffness matrix, as defined by (7.38),will 
-t 

be singular for rIgid _translations, but not for rigid spin (except In 

the case that there is an 'axis of equi 1 ibrium' [44]). In order to 

solve the equation (7.37) we define a modified glob.alstiffn~ss matrix 

[K*] and a modified lcta.d {p*} as follows: 
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otherwise 

if (QI • 0. 1) 

NELM 
- :E K~JQJ 

J=l 

Then (7.37) may be replaced by 

[ K*]{ oj = { p*} . 

othe rwl se • 

If [K*J is not singular, then we solve (7.42) for {Q}, 

(]. 40) 

(7.41) 

(]. 42) 

(7.43) 

By backsubstitution we obtain the velocity (on the boundary of each 

element), the spin and the stress rate on each element: 

(7.44) 

(7.45) 

(7.46) 
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Equations (7.46) and (7.47) comprise the approximate solution of the 

boundary value problem. 

The velocity ~(~) is determined by (7.46) on the element 

bou.ndary onZy. On an element's interior we may construct €(x) from - -
t(x) and w(x) according to the constitutive equation (5.5). If our - - - -
computations have produced an exact solution, then we can find the 

velocity field on the interior of an element by integration: 

~(~.) • ~(~o) + £.~ (~ + ~) • d~ 
-0 

where x is some point on the element's boundary. However the finite 
-0 

p.lement algorithm generally will not produce exact solutions, so the 

integral expression above f 5 of no use in defin ing the velocity on the 

interior of the element. Previ ous researchers us lng comp 1 ementa ry 

work and energy based finite elements do not mention th Is p rob I em, and 

it is left for the reader to assume that they found the velocity on 

the interior of the element by interpolation of the boundary velocities 

(by use of the isoparametric shape functions). If the reader will 

recall the discussion surrounding the derivation of the generalized 

compatibility (5.21), it is evident that there is reason to doubt the 

validity of this procedure. In the absence of supporting arguments, 

It amounts to assigning the velocity on the interior of the element in 
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an arbitrary manner. 

A little light is shed on this problem by the following 

heuristic argument. In preparation, we consider rules by which fields 

~, ~, and i may be judged 'admissible' or 'inadmissible' on a single 

element. Admissible velocity fields are those which satisfy 

J {~. ~ + ('V~) : ('V~) }dV < co 

V 
(7.48) 

and the admissible velocity fields comprise an inner product space R • 
v 

Each velocity field in Rv takes on certain values on the bo~~dary of 

the element, and the space made up of those boundary values we denote 

RO
• In a similar manner we define the space R as the space of all v w 

tensors which satisfy 

J {Ui:w)dV 
V 

< co • , 

and the space Rt to be the space of all tensors which satisfy 

< co J <i : 'Vo~)dV • 0 
V 

(7.49) 

(7.50) 

for arbitrary 8~. o~·Q on S. An Inner product on RwXRt Is given by 

1 ·· (U'W)R XR· (w: w' + t: t')dV 
wt v- ..... --

(7.51) 

where u and ware the ordered pa i fS of tensors 
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u • ~,t>ER x R • ... ... w t' 
I • W • <w,t'>ER x Rt • 

- ... w 

Now we define a linear map from RO x R x R
t 

to R x R
t 

by v w w 

w = B(u) (].52) 

where u -<v,w,i> is any element of RO 
x R x Rt' and - ... ... v w 

w'" <H(E:+w) ·t+ t ·r t - t • (E: - w}], - e: + w + 'iJ v> ..... 0IIi0II _ _ _ 

is an element of RwXRt determined uniquely by u. In 0.53) we have 

written E: for the constitutive function (5.5). The variational ... 
problem (7.4) may now be stated compactly as 

fj nd u E R~ x Rw x Rt such that for all oWERw x Rt 

(ow,B(u»R XR ... 0 
w t 

(that Is, 7.54 is equivalent to 7.4). The problem -In (7.52) of 

(7.54) 

defining w uniquely for assigned u Is solved if we can show there is 

a unique y in Rv such that (-~+~+'iJ~) belongs to Rt . We note in pass_­

Ing that this problem is Identical to the problem in the finite element 

algorithm of defining y on the Interior of an element. The criterion 

that (-e: +~+ 'iJ~) must satisfy to be an element of Rt is given by 

(7.50) : 
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J {(- :+~+ Vy) : Voy}dV - 0 
V 

(7.55) 

for arbitrary c5y, oy-Q on S. Equation (7.55), along with the boundary 

values of y (the first component of the argument of B), and the values 

of : and ~ (from the second and third components of the argument of 

B) constitute a generalized Dirichlet problem, whose solution we pre-

sume to exist and be unique, and to depend linearly upon the argument 

of B. We conclude by remarking that the variational problem (7.54) 

would not make sense if y were assigned in an arbitrary manner. 

The finite element counterpart of equation (7.55), inciuding 

-b inhomogeneities from ~ and E, is given by 

(7.56) 

where the individual matrices are defined below: 

,... · f VN. 
,... 

(].57) C .. VN. dV 
IJ -I -J 

VN 

C •• -/ VN. : VN. dV (7.58) 
IJ v

N 
-I -J 

1 - f VN. [0 : tr -~ .) + QW.] dV (7.59) L.. 
1 J -I :: - J -J VN 

2 • J VN. [0 : (QT.)] dV (7.60) L.. 
1 J -I :it: -J VN 

L~ -f VN. [0 : (ib - !)]dV (7.61) 
1 -I -VN -
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In equations (7.57) (7.61) " a re po I y nom i a I through the N. shape functions 
-I 

which vanish on SN; that is, shape functions for 'internal' nodes, and 

the ~i t QW. , 
-I 

and C!!i are the shape functions for boundary velocity, 

spin, and stress rate which have been previously discussed. Using 

(7.45) to eliminate {aN/BN} from (7.56) leads to 

(7.62) 

Equation (7.62) expresses the velocities of the internal nodes of an 

element as a function of the velocities of the boundary nodes. In the 

sense that the problem of determining the velocities of interior nodes 

is the inverse of the 'condensation' problem encountered in ordinary 

velocity-based finite element algorithms, we might call the proced~re 

above I inverse condensation.' 

In view of the fact that use of the inverse condensation is 

potentially costly (because of the extra computation), an element for 

which interpolation of the boundary velocity to the interior is con-

sistent ~dth ir;verse condensation would be highly desirable. Consider 

the following examples in which result of inverse condensation Is 

illustrated. 

III the application of a stress-based finite element algorithm 

to beam problems,* usually one can only find a piecewise linear 

'* see Murakal'J,J et al. [13], particularly Figure 2 therein. 
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approximation for the elastic curve, an approximation with 'corners' at 

the interelement boundaries. The only way to improve the approximation 

Is to increase the number of elements per unit length of beam. Appli-

cation of the inverse condensation procedure leads to (ignoring the 

length change of the beam) 

a familiar formula·from beam theory. • If the moment M is piecewise 

linear and continuous at the interelement boundaries, then Ol,e may find 

a cubic spline for the elastic curve without any increase in the num-

ber of elements. 

In the application of a stress-based finite element algorithm 

to two-dimensional problems, one typically ·uses four or eight noded 

quadrilateral elements. A simple example such as provided by beams 

is not available in this case, but we note that the lowest order 

polynomial function which vanishes on the boundary of a quadrilateral 

is four; being of the form 

2 2 (x - l)(y - 1) • (7.63) 

The immediate conclusion is that th~ highest order complete polynomial 

which may be represented exactly on a quadrilateral with boundary nodes 

only is'three. The shape functions for four and eight noded quadri-

laterals involve no fourth order terms. so one could expect to gain 

nothing in accuracy by adding an extra degree of freedom for the shape 
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(7.63). On the other hand, the shape functions for a 12 (or higher) 

noded quadrilateral do contain fourth order terms, so if terms of the 

torm (7.63) are Ignored, rt amounts to assigning the velocity on the 

interior of the element In an arbitrary manner. Thus, the 'inverse 

condensation' is not necessary for the 'low order' four and eight 

noded elements, but should be used if 'higher order' elements are used. 

Similar arguments may be given for triangular elements and three 

dimensional elements. In the examples accompanying this work, only 

four and eight noded elements were used. 

Numerical Stability Criteria 

The finite element algorithm Just described does not necessarily 

yield an approximation to the solution of the boundary value problem. 

In reviewing the development, we surmise that the algorithm may be 

carried through t9"obtain the approximate solution (7.46) and (7.47) if 

W is nonsingular In V (see 5.5) (7.64) 
• 

1HNJ is nonslnguJar on each element {see 7.32} (7.65) 

fGNJ{qN} = {a} only for rigid translations (7.66) 

[K*] is nonsingular (see 7.42) (7.67) 

The first of these is satisfied by material models found in the 

engineering literature except for isolated states of stress.- The last 
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of these is equivalent to the uniqueness criterion based on the Second 

comp lementaryvi rtua I work princi pIe, presented in Chapter V I. 

Satisfaction of the second and third conditions above depends 

strongly upon the particular functions ~i' QW., and QTi of the 
_I -

representations (7.6), (7.9), and (7.11). In this section we discuss 

criteria whose fulfillment is necessary for the satisfaction of (7.65) 

and (7.66). Such criteria are called 'numerical stability criteria.' 

An analogue of the condition (7.66) arises in stress-based 

finite element algorithms in linear elastostatics. The analysis of 

Tong and Pian [45], with a minor modification, applies in the present 

case. The rank of the matrix [G] is usually 

min(NT,NQ- T) (7.68) 

where NT is the number of stress rate parameters, NQ the number of 

velocity parameters, and T the number of translational degrees of 

freedom of an element. It j s we 11 known that I f NT < NQ - T, then 

'kinematic modes' (deformations to which the element offers no 

resistance) will occur. The rank condition which is necessary (and 

usually sufficient) for the satisfaction of (7.66) is 

NT ~ NQ - T (7.69) 

In the exa~ples acco~pa~y'ng this work, the number of stress rate 

parameters always equalled or exceeded the number of velocity parameters, 
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and no kinematic mode was encountered. 

A second type of kinematic mode can occur when the finite 

element algorithm is set up in a coordinate system which has 

singularities, such as cylinderlcal coordinates. This second type of 

mode occurs when 

N.dS - 0 -J everywhere on SN (7.70) 

for some particular velocity shape function. An example is provided 

by an eight noded quadralateral element In cylinderical coordinates, 

with one edge along the z axis (r-O). The shape function for the 

middle node on that edge vanishes everywhere on S except on the edge 

where dS is zero. Thus, the column in [G] corresponding to that node 

consists entirely of zeros. In such a case the kinematic mode may be 

avoided by eliminating the offending node entirely, or its value may 

be found by the inverse condensation procedure. 

The condition (7.65) turns out to be the source of most of the 

difficulty of using the present stress-based finite element algorithm. 

Even when [H] Is not singular, it may be so ill conditioned that an 

accurate solution of the matrix equation (7.32) can only be found by 

sca 1 i ng. * In any case, the problem may be overcome by replacing QW. 
_I 

and QT. in a trial and error process until nonsingular [H] is found. 
-I 

w 
that is, adjusting the magnitude of the stress and spin 

functions to Improve the condition of [H]. 
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Murakawa [10] gave the necessary (but not sufficient) rank condition 

that the number of stress functions exceed the number of spin functions. 

After a number of trials. it became apparent that when [H] was 

singular. the spurious eigenmode consisted of a pure (but inhomogeneous) 

spin. Moreover, if a combination of functions [QW] and [QT] was found - -
to be acceptable in the stress-free state, it remained so as the 

deformation progressed. Setting the initial stress to :ero, the cri-

terion sufficient for- no spin mode to occur follows as 

[ H2 1 ] •• • J ( QT. : QW.) dV 
o I J V - I -J 

N 

(].71) 

A criterion similar to (7.71), but for a finite element algorithm of 

elastic membrane theory, was given by de Veubeke and Millard [6], but 

their conclusions differ slightly from our own. A necessary condition 

for the sat I s fact i on of (7.71) I s that 

NT* ~ NW (7.72) 

where NT* is the number of stress shape functions QT. whose skew parts 
-I 

do not 'Janish, and NW is the number of spin functions QW.. In [6], 
-I 

the authors suggest that the polynomial degree of the spin field m be 

related to the polynomial degree of the stress field n as 

m II: n - I C7.73) 
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call ing the case m- n the "classJcal equi 1 ibrium mode1." In numerical 

experience with the present finite element algorithm we find that if m 

is less than n. then the angular momentum balance is not satisfied 

with reasonable (pointwise) accuracy. The degree of the spin field 

and the degree of the stress rate field were always the same in the 

examples accompanying this work. This amounts to the condition 

(7.74) 

only for {oS} which produce syrrmetric stress rate neTds. 
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CHAPTER V III 

INTEGRATION OF THE MOTION OF THE BODY 

I nt roduct i on 

Consider a body In a configuration C(t). We suppose that a 

particular finite element subdivision of the body has been defined, 

and that the stress ~ is known at each quadrature point on each 

-element of the body. Then for assigned body force rate ~, nominal 

traction rate tt on Sa' and velocity ~ on Sv' the finite element 

algorithm presented in the previous chapter enables us to compute the 

• (instantaneous) velocity y(~,t) and stress rate t(x,t). To ~e more - -
explicit, the information above suffices to compute the matrices [H], 

[G], {F}, and {p} on each element,* and hence, the velocity and stress 

rate throughout the body (see 7.46 and 7.47, and development thereof). 

The matrices [H] and {p} each depend upon the constitutive matrix W 
::: 

(through D), and hence upon the quadrature point values of the stress, ... 
but in an inexplicit way.** 

We formally Indicate the dependence of the nodal values of the 

velocity {~} - {~l ,~2, ... ,~ND}(ND being the number of nodes) and the 

- -1 -2 -G quadrature point values of the stress rate {t} • {t ,t , ••• ,t } (G ...... ... 

* and if need be, the matr ices Ie], [C], [l], and {lP}. 

** when the constitutive matrix ~ is a constant, the dependence 
of W- l on L is approximately affine; see Appendix B • .. 
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being the number of quadrature points) upon the nodal positions 

1 2 ND 
{~ ,~ t ••• ,~ }, the quadrature point values of the stress 

1 2 G 
{T ,T , ••• ,T }. and the time dependent prescribed loads by - - -

writing'" 

(3. I ) 

(S.2) 

Since each element node is associated with the same material point 

throughout a deformation, and likewise for each quadrature point, we 

may write each component of {x}, {v}, {T}, and {!} as 

I 
x • x (X',t) 

-T -

I 
v • 

The quadrature point value~ of the deformation gradient 

"'The functions f and 9 are introduced specifically as a 'short­
hand' for the solutions of the frnfte element equations, as given by 
(7.46) and (7.47). From (7.46) and (7.47) it is clear that integrations 
may be carried out on one element at a time. 
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and its determinant 

depend on the nodal positions through the isoparametric shape functions. 

The reference configuration indicated by the subscrIpt T is absolutely 

arbitrary and may be changed as frequently as desired. Typically it 

would be chosen on the basis of economy (e.g., to minimize storage 

requ i rements). 

The equations (8.1) and (8.2) may now be written as 

(8.3) 

(8.4) 

where fT and 9T are defined by 

I = f[o'{-J F et },o] ... T ... T 
T 

(8.5) 

(8.6) 

Equations (8.3) and (8.4) represent a system of nonlinear ordinary 

differential equations. On account of the complicated way In which 
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the finite element equations depend upon the stress, the functions f 
T 

and gT (or even f and 9) cannot be written explicitly. This fact makes 

stability analyses such as those of Cormeau [~6] and Hughes and Taylor 

[20] Impossible for the equations (8.3) and (8.4). 

An initial value problem may be set If initial values of X -'! 
and !'!' the constitutive equation, and a program of loads are given. 

It is ass~~ed that solutions of the I~itial value problem exist for 

sufficiently smooth and physically tenable initial data, at least for 

some range of deformation from the Initial configuration. 

Nume rica I I n t e 9 rat ion 0 f the In i t i a 1 

Value Problem 

The initial value problem posed by (8.3), (8.4) and appropriate 

initial data is dependent upon the finite element equations as dis-

cussed in the first section. From that same discussion, and from the 

presentation of the finite element equations (Chapter VI I), it Is also 

clear that the finite element-Initial value problem Is predisposed to 

numerical integration. In this section we Indicate the types of 

numerical fntegration schemes suitable for the present problem, and 

mention a few important differences between the various types. 

The finite element-initial value problem may be integrated by 

single step explicit schemes, multistep explicit schemes. or (generally 

multistep) predictor-corrector schemes. A number of these schemes are 

discussed in the textbook of Conte and de Boor [~7]. Three Important 

facts to be kept In mind when choosing a particular scheme are 
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is of scalar dimension NDOF+9· G, where NDOF is the number 

of kinematic degrees of freedom of the mesh and G is the 

total number of quadrature points. Storage required for 

implementation of different integration schemes can vary 

appreciably. 

(2) evaluation of <f ,g > is expensive on account of the com­
l' l' 

plexity of the finite element equations. 

(3) the functions f1' and g1' are generally discontinuous at points 

<{~t}'{!1'}> which correspond to material yield surfaces. 

The multistep methods (explicit and predictor-correct0r) require 

relatively few evaluations of <f1',91'> per step; this is an attractive 

feature. However, multistep methods are not self starting, the time 

step Is not easily changed, they have relatively large storage requlre-

ments (since several past values of <f1',g1'> must be carried along), 

and moreover, they cannot be expected to be accurate when the solution 

crosses a yield surface (since they are based on smooth polynomial 

interpolation of the solution over several time steps). 

On the other hand, the single step methods (explicit and 

predictor-corrector) are easily started, the time step size Is easily 

adjusted, and they have relatively small storage requirements. They 

can be expected to perform more favorably than the multistep methods 

when the solution crosses a yield su~face since smoothing over several 

time steps Is not built in. The disadvantage of the single step 

methods is that a relatively larger number of evaluations of <f1',g1'> 

are required per step to achieve a given accuracy when a yield surface 

Is not crossed. However, the advantages of single step methods seem 
105 



to far outweigh the disadvantages. 

In the examples accompanying this work the Euler and classical 

second and fourth order Runge-I(utta methods were used. Detar 15 of 

these methods may be found in the textbook of Conte and de Boor [47]. 

We note that the second order Runge Kutta method is equivalent to an 

Euler predictor and a single application of the trapezoid rule as a 

corrector. trrorsoTihe Eul er method were gauged (quaT itat i ve ly) by 

step-halving and by comparison to results of second order integration 

for randomly selected time steps. Errors of the second order Runge­

Kutta method were gauged in like manner; by step halving and comparison 

to results obtained by fourth order integration. The integration 

schemes used in the examples accompanying this work varied from problem 

to problem, and sometimes within a problem. Full details are given in 

the description of the individual problems, in the chapter following 

this one. 

We assert that the stress !T (and hence !) integrated 

numerically satisfies tHB. As an example. consider the Euler-Trapezoid 

predictor-corrector pair for the stress at time (tN+h): 

predictor {Euler rule}: 

(8.7) 

corrector (trapezoid rule): 
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To verify the satisfaction of 1MB, we check to see that 

/ t (K+ 1) : V xdV • 0 
V - x-

for all ~(~) which vanishes on S (body force has been presumed to 

vanish, for simplicity). Elimination of t(K+l)(t +h) from (3.9) by 
-T N 

use of the corrector (8.8), and assuming that !!K) (tN) is baJanced~ 

yields 

(8.10) 

Since the stress rate is of the form 

• t - V x cZl(t} (8. 11) 

the stress rates iT and i!K) are of the forms 

(8.12) 

where cZl and cZl(K) are defined by 
-T -T 
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El imination of !1' and !~K) from (8.10), and integration by parts 

affirms the 'satisfaction of (9.10). It is worthy of speelal note that 

thecomprementary work and energy prrnefpres"~pCrov-ic:fe no means whatever-

(or checKing the satisfaction of linear momentum balance by the stress, 

50 it is o( crucial importance that the numer-rcal integration of tne 

stresS" not introduce er-rors which read to an unbalanced stress. This 

maintel'lan-c-e of balanced stress, necessary In stress-based finite element 

algorithms, is the counterpart of maintenance of compatible deforma-

tion, necessary in verocity-based finite element algorithms. 

The true stress is found, after ~1'(tN+h) and ~1'(tN+h) are 

integrated, by tne formula 

(8. 13) 

The true stress given by (8.13) necessarily satisfies LMB since 

~1'(tN+h) does. It does not appear to be possible to integrate the 

true stress explicitly with out causing it to become unbalanced, so 

no further consideration is given to that alternative. 

Angular momentum balance Is satisfied only approximately by 

stresses computed in the present method. To keep the accumulated 

error small we embed the angular momentum balance as the stable 
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solution ~T(t):IIO of the following initial value problem: 

• n + An ,. 0 
-T -T -

n (0) ,. 0 
-T -

where the tensorn is defined by 
-T 

n -tt-F -F ·t [ -T -1 T} 
-T -T -T _T _T 

(8.14) 

(8. 15) 

and A> O. In the course of numer i ca 1 i ntegrat Ion we adj us t A at the 

beginning of the time step from tN to t N+l as 

(8.16) 

The optimality of this choice is seen if (8.14) is replaced by the 

difference equation 

n ( t N + h) .. (1 - Ah ) n (t N) • _T -T (8.17) 

Equation (8.14) accounts for the IAMB residual I term in the finite 

element equation (7.24). 

Finallv we note that frame Indifference can be satisfied only 

in an approximate sense when one :~tegrates the stress numerically. 

As an illustration consider the Euler method as applied by observers 

in frame~ which spin relative to each other. The first observer 

obtains 
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(S.18) 

and the second observer obtains (for the same material point and the 

same time step) 

(S.19) 

'.Ie assume that ~T{tN), !T(tN), !;(tN), !~(tN)' and gCt} (the rotation 

between the two frames) are known exactly. According to the transfor­

mation rules, the exact !T and !~ satisfy, at each moment of time, 

for arbitrary time dependent orthogonal g.. But at time (tN+h) 

equations (S.18) and (8.19) yield 

(8.20) 

(B.2l) 

Since the right hand side of (8.21) does not vanish for all admissible 

• g and g, the stress Integrated by Euler's method will depend upon the 

frame of the observer. 
110 



Two courses of action are available. We might attempt to 

reformulate the initial value problem so that a frame Indifferent 

stress is Integrated, or we could attempt to integrate the stress in 

some special manner so as to remove the frame dependence. As pre-

viously discussed, integration of another stress besides !T leaves us 

with no way to ascertain the satisfaction of LMB, so we disregard the 

first option above. 

For insight to the second option, let us consider integration 

of the stress when the deformation is homogeneous. Suppose that the 

spins ~ and ~I vanish in the frames of the two observers of lhe 

previous example. According to the transformation rule for spin 

and since both wand Wi vanish, 

• Q. =- 0 Q. • Q. • constant • 
-0 

In words, all the frames in which the spin vanishes rotate as one with 

the principal axes oJ the deformation. Keeping in mind that the 

deformation is homogeneous, suppose we permit Eulerls method to be 

applied only in frames in which th~ spin vanishes. Then (8.21) is 

reduced to 

(8.22) 
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From this equation we surmise that a frame Indifferent stress may be 

found in any frame if the classical Euler's method is used only in 

those ~es in ~hiah the spin vanishes. 

Let !T(tN+h} be the stress Integrated in the frame of the 

principal axes of the stretching (of the homogeneous deformation), and 

let !~(tN+h) and !~(tN+h) be the stress in two arbitrary frames, 

determined from ~T(tN +h) as 

t'(tN+h). t (tN+h).Q'{tN+h) 1 
-t -t -

t"{tN+h). t (tN+h) .QII(tN+h) 
-t -t -

(8.23) 

(8.24) 

Thus, the stresses !~(tN+h) and !~(tN+h) are frame independent. 

Equation (8.23) gives a clue as to how the stress may be 

integrated In a general frame (when the defonmation is homogeneous). 

In (8.23) !T (t N +"), the stress integrated in the frame of the 

principal axes of stretching, is given by 

which may be used along with the formulas (8.20) to write the first of 
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(8.23) in the form 

(8.25) 

, 
In (8.25) ~N is the spin at the time tN' 

and Q' (t) is the solution of the initial value problem 

(8.26)* 

The prime is dropped in the equations below, but the discussion is for 

general frames. 

In a paper of related interest Rubinstein and Atluri [48] dis-

cuss approximate solutions of the initial value problem posed by 

(8.26) for orthogonal get}. In practice usually only ~(tN) is known. 

Then the best approximation for gT(t N>· S(tN+h) is given by 

1 - - sin(nh)w n _N (8.27) 

1 2 
+ - (l - cos (n h) )~N 

n2 

*sInce only g,T(t N) • g' (t N +h) appears in ~8.25), the initial 

va 1 ue of g.' on ly needs to be orthogona l, hence, S (tN) • !. 
113 



where 

(8.28) 

Since only an approximation for gT(t N}· g{tN+h) is available, applica­

tion of (8.25) through (8.28) as an Integration scheme has the effect 

of integrating the stress In a frame in which the spin nearZy vanishes. 

However 1MB is precisely satisfied since the approximation for 

gT(t N>· g(tN +h) is precisely orthogonal. 

F'or use In the finite element method one would replace ~N by 

the mean spin (on each element) 

I 
~ ~dV (8.29) w· - . 

- VN N 

Thenwe call the equations (8.25). (8.27), and (8.29) the 'modified 

Euler method'; they are summarized below: 

(S.30) 

As long as the spatial mesh is fine enough to render the spin nearly 

constant on each element, this scheme is equivalent to application of 

the classical Euler's method tn a frame in which the spin nearly 
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vanishes. 

By similar arguments we can establish frame indifferent Euler 

schemes for the true stress and Kirchhoff stress as 

where i* .. T + T • W - w· T - - - - -
and 

where • * . o -O+O·W-W·O 
-T -T -T - - -T 

Of course gT (t N) • g(tN + h) is computed approximately according to 

equation (8.30). 

To illustrate the advantage of using the modified Euler method, 

consider the integration ~f the stress in a body which spins rigidly; 

that is 

t e t) • t • Q( t) ; 
-T -0-

,Sea) .. 

i (t) .. t • Q(d; 
-T -0-

where !o is a constant. An initial value problem for the stress !T(t} 

(i n the f ramp. in"'" i c:h body appea rs to s pin) may be se t as 

t (t) .. -t (t) • W t (0) .. t 
-T -T -0 -T-O 

T • 
where w .. -0,' (t) • Q(t} .. constant. Euler's mettmd appl ted to this 

-0 - .. 

initial value problem gives the result: 
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N _t T (Nh) • t • (' - hw) • 
-0 .. -0 

The accumulated error grows without bound. On the other hand, the 

modified Euler method gives the exact answer: 

since Set} -1- ~ sin (Q t}~o +-;1 (l - cos (n t) )~~, and, for constant 
N 

~o ' g ( Nh) • [g (h )] • 

In the integration of the examples accompanying this work the 

term (h~) was always so small as to make the classical and modified 

Euler methods Indistinguishable. However, in the general case one 

must take special precautions In the integration of tensors to Insure 

that a frame dependence is not induced by the integration scheme. 

Sta~ility of Numerical Integration of 

the Initial Value Problem 

It is possible that the difference between two supposed 

numerical solutions of a given initial value problem is much larger 

than would be expected to arise from discretization error alone. As 

an example, consider integration of the stress in a material of the 

type (4.20) by the Euler method. We suppose, for the sake of 

simplicity, that ~(t) Is given and E(!) • -2P{f Y!'), so that the 
r 

difference between two solutions satisfies 

6crit • [VeT + llT) - V(T)]: f;(t) - (3lJy)llT' . ~ ~ - - ~ 
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If the elastic matrix and stretching are such that, in the Euclidean 

norm, 

II [Vet + lit) - v{t)]: e:{dll / 116t!! ... 0 ., ..... - .. .... """ - (8.32) 

as !!~~!I'" 0, then for sufficiently small 1l11~II, equation (8.31) may be 

replaced by 

lIo * • -OllY) 6 t I • ( 8. 33) - -

Defining 60 as 60- J ..J3 lit I : 6t l ,we may reduce (8.33) to a scalar 
o 2 - -

equation in the Invariant ~o: 

(8.34) 

For an initial value 60(0) (small), the closed form solution of (8.34) 

is 

(8.35) 

Eulerl~ method yields 

It is clear from (8.35) that 60 decays to zero as time passes. This 

117 



means that the closed form solution of the equation 

cr* - V : £ ( t) + L 
:: - TeO} • T -0 

is stable with respect to sufficiently small perturbations of the 

(8.37) 

deviatorlc part of!. On the other hand, the numerical solution (8.36) 

attenuates as time passes only if 

1(1 - 3~yh)1 < 1 • (8.38) 

This means that the numerical solution of (8.37) is stable with respect 

to small perturbations of the deviatoric part of !' only so long as 

the time step h is bounded above as 

(8.39) 

This bound is identical to the bound given by Cormeau [~6] (see 

equations 16 and 5~ in this reference)' It Is not surprising that 

time steps such as (8.39) are found to be necessary for stability of 

numerical solutions of the finite element-initial value problem pre-

sented in this work. According to Hughes and Taylor [20]: 

The time step restriction of the Zienkiewicz-tormeau algorithm 
•.• Is a stringent one in practice. For slowly varyIng loads, 
or ~·!h~~ e~unibrlu!!1 response Is of prime Interest, stability 
requires that time steps be selected which are much smaller than 
those necessary for accuracy. 

Argyrls et a1. [19J remark that thls time step restriction amounts to 

118 



------- .. ----

limiting the inelastic strain increment to be smaller than the elastic 

strain. Since the elastic strain is usually very small in metals such 

as those used in structures, this implies that a finite deformation 

analysis would entail an Impractically large number of steps. 

The work of Kanchl et al. [49J and Atluri and Murakawa [14] 

suggests the modification we now describe. To Improve the estimate of 
p 

the inelastic strain increment In a time step, we replace ~ (!N) by an 

estimate of the mean value of the inelastic stretching in that time 

step: 

(8.40) 

where the parameter a, o~e~ I, serves to locate the time at which the 

mean value is achieved. As a goes from zero to one, the estimate of 

the creep-stretch becomes increasingly more conservative. 

Equation (8.40) may be introduced to the finite element 

algorithm through the constitutive equation; (4.20) becomes 

where 

[ 

P -1 
V • V-I + ah df ] 
~e ~ dT ... 

P 
1: ... 9 , - -V • E .a .... 

From ~e (8.41) we derive ~e just as we derived ~ from ~: 
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~e - ~e • ! 

p P 1:_9 .. ·V : £ •• (W + T) : £ .e _ .e._ (8.42) 

When a material which exhibits relaxation is to be analyzed, ~e and :9 
are introduced to the finite element algorithm for Wand 1:. 

::.: -
If Euler's method is used to Inteqrgte the Initial value problem 

which results from the modification described above, then, in the 

terminology of Argyris et al. [19]. an explicit 'forward gradient 

schemel Is recovered. If the 'gradient' (d£P/dT ) Is evaluated at 

!-!e- (1- e)!N +e!N+t' then an implicit forward gradient scheme, 
--

counterpart to that proposed by Hughes and Taylor [20] is recovered. 

Fi na It y, if 
p 

the 'gradient' (d; Id!) is replaced altogether by a 

function 2s' defined through 

(8.43) 

then an implicit 'finite approximation technique, I counterpart to that 

proposed by Argyrls et al. [19] Is recovered. The Implicit schemes 

must be solved by Iferatlng on each time step, keeping 9 fixed. The 

Iterative schemes amount to special predictor-corrector techniques. 

An Important fact that is exploited in our numerical studies Is that 

for the material (8.3]), with llyconstant, all of these schemes are 

equivalent. 
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CHAPTER IX 

EXAMPLES: FINITE DEFORMATION PROBLEMS 

Introduction 

In this chapter we present several examples as demonstrations 

of the feasibility and performance of the finite element algorithm. 

All of the examples may be described either as plane or axisymmetric, 

so we begin by discussing specializations of the algorithm for such 

problems. 

The examples fall into two categories--homogeneous deformations 

and inhomogeneous deformations. By treatment of homogeneous rleforma­

tions (for which closed form solutions are known), several Important 

aspects of the performance of the finite element algorithm can be 

clearly identified and studied. The studies of inhomogeneous deforma­

tions, the results of which are compared to both analytical and other 

numerical results, Indicate the potential of the algorithm for treat­

ment of problems of technological interest. 

In the discussions of the examples the time i~tegratlon scheme 

used is indicated as Euler, Runge-Kutta second order (RK2), or Runge­

Kutta fourtn oreer (RK4). In all cases the classical schemes (i.e., 

those described In [47]) have been used. 

Plane 5tr~i" 

All but one of the deformations studied In this chapter are 

plane strain In character. Just as for formulations using ordinary 
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stresses, a number of the components of the velocity, spin, and stress 

rate vanish if a Cartesian coordinate system is chosen with one axis 

normal to the plane of deformation. We have chosen the x2 coordinate 

line to be normal to the plane of deformation, so that the velocity, 

spin, stress rate, and stress are of the forms 

v - V Ie + v3e 
-1 -3 

+ ,.31e + ,.33e e 
-3!1 -3-3 

None of the components depends upon 2 x • The velocity is represented 

on each element as 
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The snape functions N. are described in Appendix C. Similarly the spin 
-I 

and stress rate are represented as 

NW NT 

I: 1 • I: QT. ai 
w • QW.a t • -I _I 

i-l i-l 

and those shape functions are given in Appendix C also. 

We note that this approach requires minimal 5 pec i ali zat ion in 

programming for the particular case of plane strain. The plane strain 

condition is not satisfied a priori; that is, 

for arbitrary o~. Rather, E: 22 • 0 follows from the stationary con­

dition (a component of 7.1): 

In using the finite element algorithm the plane strain condition is 

only satisfied approximately. In practice a qualitative check for 

satisfaction of the-plane strain condition can be made by seeing that 

the stress component T22 and the mean stress are nearly equal. This 

method for checking £22-0 works so long as the inelastic stretching 

is proportional to the stress deviator (in the constitutive equation). 

As an alternative to approximate satisfaction of the plane 

strain condition, it Is possible to 'split' the constitutive equation 
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into two equations. The ftrst involves only the in-plane components of 

the stretching and stress rate, all that Is actually required for the 

finite element algorithm for plane strain problems. After In-plane 

components of the stress rate and spin have been found, the stress rate 

-22 component t can be assigned so as to give precise satisfaction of the 

plane strain condition. This alternative is attractive from the point 

inverse for the constitutive equation could be used, but it requires 

considerable specialization In programming. Because of the inflex-

ibility of this approach, it was not pursued in programming. 

Axisymmetric Deformations 

One of the deformations studied In this chapter is axisymmetric 

in character, that of creep oL_~ pipe from Internal pressure. We have 

used a right circular cylJndrical coordinate syst~m tQ_~~~~ribe the 

problem, indexing the coordinates as xl.r, x2 .e, and x3.z. Of 

course the z axis Is along the centerline of the pipe, and r is a 

constant on the interior and exterior surfaces of the pipe at any 

particular time. The velocity, spin, stress rate, and stress are of 

the same forms as for plane strain; that is 

v • V1e + v 3e 
-1 - 3 
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None of the components above depends upon x2 • 6. The representat ions 

for the velocity, spin, and stress rate are of the same forms as for 

plane strain; the shape functions are described in Appendix C. 

Homogeneous Deformations 

Through the study of homogeneous deformations various important 

·aspects of the performance of the finite element algorithm can be 

identified and studied. Since closed form solutions to problems of 

homogeneous deformation are widely available, questions of the accuracy 

of the finite element solutions can be resolved quickly and absolutely. 

If we immediately engaged problems complicated by inhomogeneo~s 

deformation, the accuracy of any solution we obtained would be no 

more than a subject for speculation. It was demonstrated by the 

example In Chapter VII I that homogeneous deformations are as difficult 

to integrate from the point of view of time step stability as 

Inhomogeneous deformations (since the same time step bound was found). 

Thus, homogeneous deformations are convenient subjects for studies of 

time step stability, and in the present case, for studies of the 

effect of the forward gradient scheme on accuracy. Finally, the results 

of this study serve to underscore the fact that the material models 

themselves are too idealized to be used in problems of technological 

interest when strains are very large. 

Finite Plane Extension 

We begin our study of homogeneous deformations by considering 
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finite plane extension of (i) the nypoelastlc material (4.31), 

(ii) a hypoelastic/plastic material, and (iiI) a creeping vtscoplastic 

material. The geometry of the specimen for these examples Is gIven 

in Figure 1. These examples serve to demonstrate the relative 

efficiencIes (accuracy/cost) of the Euler, RK2, and RK4 time integra-

tion schemes, the performance of those schemes when the loading path 

crosses a material yield surface, and the effect on accuracy of the 

forward gradient scheme. 

Hypoelastfc Material. For the first problem we consider the 

hypoelastic material defined by the constitutive equation (4.31): 

a* IS A (I : e:) I + 211e: (9.1) 
.., .-rw .. -

It is convenient to introduce the normaHzed stress s, defined as -
s - T/211. Then (9. 1) may be wri tten 

! * - ( 1 ~ 2V) (! : :)! + e: • (9.2) 
- -

For homogeneous plane extension of this material from a stress free 

state, the stresses are given by 

(9.3) 
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where v- (1 - 2v)/(1 - v). In FIgures 2, 3, and 4 the stresses found 

by applicatIon of the finite element algorithm are compared to the 

elosed form solution (9.3) for v-l/3. Euler, RK2, and RK4 time stepping 

algorithms are used. The Euler algorithm underestimates the strain­

softening of the materIal slightly, but the RK2 and RK4 algorithms pro­

vide data Indistinguishable from the closed form solution. The reader 

should note that the stretch increment for each time step is (0.01), 

(0.02), and (0.04), for the Euler, RK2, and RK4 algorithms, respectively. 

Thus, the computational effort is the same in each of these three 

cases (1 element stiffness matrix evaluation per stretch increment of 

0.01). In view of the differences In accuracy, we rank the RK4 

algorithm as most efficient, followed by RK2 and Euler. 

One of the methods used to get qualitative estimates of the 

local error of the Euler and RK2 algorithms Is based on the assumption 

that greater accuracy will always be achieved by the next higher order 

time stepping algorithm when the solution is smooth. To check the 

error of the Euler algorithm on a given time step, we integrate the 

time step a second time using the RK2 algorithm. The local error is 

then assumed to be of the same order of magnitude as the difference 

between those two solutions. The error of the RK2 algorithm may be 

checked in a similar manner using the RK4 algorithm as a 'reference.' 

Plastic Material. As a second example we consider plane 

extension of a hypoelastic/plastic material from a stress free state. 

The specimen geometry Is identIcal to that of the previous example 

(see Figure 1). The material is characterIzed by uniaxial test data 

as 
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(9.4) 

The associated constitutive equation Is 

€ - Ee + €p _ V :;* ... "" ... 

(
1 +v) ·ft 
- a -E ... (r) (I : ;*) I 

, 

~9 .6) 

P 9 (3 ,)-1 (' . *) I 
£ -a -I T:O T ... 1fh 2 _ ... -

In accordance with (4.44) h is defined as 

I (V I ) N- 1 - 11. l/h - llE t - lIE'" (lIE) N - 1 ~~ I 0 
(9.7) 

I I I 
where I -T : T t and a-a or a-I as the material is elastic or 

plastIc. It is convenient in this ease to normalize the stress by its 

yield, value in plane extension: 

5 ,. ff'!/2T . 
... ... y 

(9.8) 

The stress accompanying plane extension from a stress free state of 
-

the material (9.5) are easily found when v-las 
~ 
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1 

s33(1) "" [In(1)/ln(l )]N 
y 

s < 1 

s ~ 1 

where 1 is the nominal strain at the initial yield of the incompres­
y 

sible material in plane extension: 

In(l ) "" 13 T /2E • (9.10) y y 

In the examples we take (E/T )=200, N=4, and \l= (1/3). In Figures 
y 

5, 6, and 7 the stresses found by appl ication of the finite element 

algorithm are compared to the stresses in the incompressible ~aterial 

with the same Young's modulus (E/Ty) and hardening exponent N. The 

discrepancy in the elastic range is due entirely to the difference in 

the Poisson ratio; for both \l • (!) and \l = (~) the stress T22 "" \lT 33 , 

as we have determined it should in the previous example (see 9.3). We 

note that the numerical solution 'overshoots' the yield surface for 

Euler, RK2, and RK4 algorithms, but the error appears to be least for 

the higher order methods. As plastic deformation progresses, the 

stress in the compressible body falls slightly below the stress in the 

incompressible body. This is to be expected, for the compressible 

body is more compliant. One other point made by this example is that 

the deformation in the plastic range (beyond about 2% stretch) Is 
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essentially isochoric. This Is not because the material is any less 

compressible In the plastic range; rather, it occurs because of the 

drastic lowering of the shear rigidity of the material by the plasticity 

mechanism. The condition number of the constitutive matrix V can be 
::: 

used as an indicator of the relative shear rigidity; as that number 

decreases, an unconstrained deformation becomes more and more like the 

deformation of an incompressible body. 

In Figure 8 of the stress accompanying the deformation out to a 

stretch of 1.92 is plotted for the same materials as above. The RK4 

algorithm was used for this integration, with a stretch increment of 

(0.04). 

Creeping Viscoplastic Material. As final examples of plane 

extension we consider a viscoplastic material which creeps (i) from an 

initially stressed state, and (ii) from a stress free state. The 

specimen geometry is the same as that of the previous two examples. 

The material behavior is governed by 

- (~) (I: ~:~)I + l(s - l (s: I}I) 
1+\1 - - - T - 3 - --

(9. 11) 

where ! == ~/2l1, s:~= O''r/2l1, and T= 1/3lJY. When the material is incom--
pressible, the stress accompanying plane extension are easily found as 

11 
5 (t). 0 
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s33(t) _ s33(O)e- t / T + 2 J t e: 33 (1:;)e -(t-1;)/T dr,; • 

o 

For the stretch history 1 (t) .. 1 +Vt. the stretching e: 33 (t) is 

The stresses for this stretch history take the form 

where L-VT, and Ei(·) is the exponential integral, defined 

Ei (x) .. J x (ez/z)dz 
-00 

(9. 12) 

(9.14) 

Values of Ei may be found in tables [53]. In the present case Ei was 

evaluated by a subroutine in the IMSL Mathematical and Statistical 

Library (FORTRAN). The subroutine (MMOEI) returns a value to the call-

lng program which is based on interpolation of tables. 

In both of the cases which follow we take V_l0- 14 sec- l 

(nominal stretch rate) and T-l (~~) x 10
12 

sec. Cormeau's [46] time 

step bound Is h < hc - 2T. 
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In the first case we assign the initial stress as if it arose 

from viscosity alono; 

We take time steps h- (90/56)hc' 2(90/56)hc' and If(90156)hc (fQr 

stretch Increments of 0.01, 0.02, and 0.04, respectively), applying 

Eijler~ RK2, and RK4 algorithms, respectively. The stability parameter 

e is set as e.;. The stresses found by application of the finite 

element algorithm are compared to the closed form solution (9.14) for 

the Incompressible body with the same characteristic time T In Figures 

~, 10, and 11. It Is apparent from these fi9ures that the numerically 

integrated stress is slightly greater than th~ stress in the incom-

pressible material, which .is surprising. One would expect the more 

compliant material to have the lower stress. 

We note that the introduction of the stabili~y parameter e has 

the net effect of replacing (9.11) by 

E • ( en) .~.. (v I eh) · * 
1 + T ~"" 1+'0 + IT (!_:!')! 

+ 1 (s ... -3! (I : s)l ). T· ~ ~ ~ 

Ojvidlng through this equation by (1 +~), setting v-i, and 

definln~ T~. T + i':lh givE"S 
'::I 
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(9.15) 

But thIs equatIon has already been rntegrated for plane extension. 

From (9.12) we can Immediately write 

11 
s: (t) - 0 ; 

-tIT -(t-~}IT . 
s33(t) _ 5 33 (0)e e + tI It £:33(,)e e d, (9.16) 

e 0 

Now we consider the special case that F;.33(t} is a constant. Integra-

tlon of (9.12) gives 

- e 
-tIT) (9. 17) 

At trmes t much later than t· T the stress attains a steady state 

value of 2£:33(0)T. Integration of (9.16) yields 

(9.18) 

and at late times 5~3(t) + 2 &33(0)T. _Thus. the steady state value 

of the stres-s in plane extension is unaffected by the introduction of 

the 5 tab iIi ty pa rameter 9. The fmportant di fference between (9. 17) 

and (9.18) is the rate at which the stress approaches the steady state 

value. rt is cJear that 5 33 (t) and 5~3(t) are related as 
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Simply put, the stress s~3 'Tags' the correct stress. This is exactly 

what is, observed in Figures 9, 10, and 11. That lag becomes increas-

ingly apparent as the order of the integration scheme is increased, 

since the numerical solution tends towards s~3(t), not s33(t). We 

conclude the discussion of this example by remarking that this lagging 

of the stress must be expected any time the stability parameter 9,,0, 

and the lag increases with (8h/T). 

In the second case of plane stretching of a creeping viscoplas-

tic material we set the initial stresses to zero. As before, 

-4 -1 12 V = 10 sec (nominal stretch rate), T= ;(56/90) 10 sec (char.::lcteristic 

time), and Cormeau's [46] time step bound is h<h -2T. The stress in 
c 

this example differs from the ~ ~ss in the previous example solely 

because of the different initial stress, and that difference 

tt t l 'lke e-t/T a enua es For times t much later than t· T, the stress 

In this example is indistinguishable from that of the previous example. 

We use Euler's method for integration, taking time steps of 

h· H90/56)h , (90/56)h , and 2(90/56)h (for stretch increments of c c c 

0.005,0.01, and 0.02, respectively). We set the stability parameter 

e to unitt, ;=, ~gi.,-;r~ (81-./T=(90/56), 2(90/56), and It(90/S6}, 

respectively). In Figures 12, 13, and llt the stresses found by 

application of the finite element Cllgorithm are compared to the 

closed forn l su1utivn (9.12) for the incompressible body with the same 

characte~istic time T, and also to the closed form solution for the 
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incompressible body with the 6-modified characteristic time Teo It is 

clear from these figures that only a qualitative estimate of the 

transient stress response is given by the finite element algorithm; 

and that estimate is degraded as (6h/T) increases. Hore Important 

though is the fact that use of a higher order time stepping algorithm 

(for the same (6h/T)) aannot improve the accuracy of the numerical 

solution, since that solution would be drawn closer to ~6' not:. It 

is therefore senseless to use methods other than Euler's when 6h is of 

the same order of magnitude as the characteristic time T. 

Finite Rectilinear Shear 

We continue our study of homogeneous deformations by considering 

finite rectilinear shear of (i) the hypoelastic material (9.2), (ii) a 

second hypoelastic material which resembles an elastj~-perfectly plas-

tic material, and (iii) a creeping viscoplastic material. The geometry 

of the specimen is given in Figure 15. These examples serve not only 

to further demonstrate the performance of the finite element algorithm, 

but also to portray aspects of the finite deformation behavior of the 

materials themselves. Consistent with the conclusions of the pre-

vious section, we use only higher order integration schemes for the 

two hypoelastic materials (on the basis of efficiency). It happens 

that for this completely constrained deformation stable integration of" 

the stress in the viscoplastic material may be achieved without 

relying on the forward gradient technique. We take advantage of this 

situation by comparing the accuracy of the finite element algorithm 

with and without the forward gradient scheme for the same deformation. 

From the results one can only conclude that further research is needed. 

149 

, 
I 



R 

X' 8 -
a ., 

I 
0 

! 

2 
c 

8 
COP\! 010 0-0 060 ~,~ 10:'0 I :~. 2'00 

0.0 010 

Figure 15. Re~tllinear Shear Specimen 

150 



Hypoelastlc Material. We consider for a second time the 

hypoelastic material defined by (9.2). For homogeneous rectilinear 

shearing of this material from a stress free state, v1 • v2 • 0, 

3 • 1 v • ex , the normalized stress ~ is given by 

(9.19) 

We compare the stresses found by application of the finite e1~ment 

algorithm to the closed form solution in Figure 16. The RK2 

algorithm was used, with time steps corresponding to (nominal) shear 

increments of (0.16). As discussed in Chapter IV, constitutive 

equation (9.2) is invalid beyond the nominal shear strain e.~1T. 

This is of little consequence if one Is interested only in metals such 

as used in structures, because some mechanism of inelasticity always 

sets in long before such a large shear strain as e· ~ 1T Is reached. 

However, since (9.2) is typically used to ~del the elastic part of 

the stretching in constitutive equations for Inelasticity, one must 

ask whether or not similar periodic behavior will be observed when a 

hypoelastic/plastic or hypoelastic/viscoplastic material is subjected 

to such large shear strains. 

A Seeo~d'Hypoelastlc Material. We consider a second hypo-

elastic material whose constitutive equation resembles that of an 

elastic-perfectly plastic material. This material is studied in 
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place of a truly plastic material because of the availability of a 

closed form solution [27]. It would have been possible to 'splice' 

solutions for an elastic material and the present material at the 

yield surface to obtain a closed form solution for a truly elastic-

plastic material, but there would have been little to gain in the way 

of illustration. The new hypoelastic material is defined by 

0* - 211£ + A(I: £)J - 211 (T': e:)T' 
... ... - ~ T2 

3 y 

By defining K2 - ~ (Ty1211) 2 , introducing the normal ized stress 

~ .. ~/211, and pres cri b j ng rect 11 I nea r shea ring. we deduce 

· * 1 ( ) 5 -£--55:£ 
... K2 ---

For materials such as those used in structures the parameter K is 

(9.20 ) 

(9.21) 

typically of the order of (0.01). The stresses accompanying rectilinear 

shearing from a stress free state were found In [27] as 

(9.22 ) 

where 

tan(l$) _ (! ~ ~:) 1 tanh (Ci -2~2) 1 .) 
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In Figure 17 we compare the stresses found by applicatfQn of the finite 

element algorithm to the closed form solution (9.22) or the special 

value K- (0.10). The RK2 time stepping a190rithm was used for the 

computation. The closed form solution has a peak at [27] 

e • c - 0.656431 

but this is completely lost in the numerical solution. At shear strains 

larger than ec above, the shear stre~ss 5
13 is aaecreasing function of 

e; one must conclude that the model (9.20) is unacceptable beyond that 

level of strain. 

Creeping Viscoplastic Material. As final examples of recti-

linear shear we consider a viscoplastic material wh~ creeps from a 
- -

stress free state at several different rates. For a second time we 

use the material defined by (9.11). The specimen geometry is the same 

as in the previous two examples. The stress accompanying the deforma-

t ion Is 

s33(e) • "s 11 (e) • s~31 Eo. exp (=r)[sln(e) + E cos Ce)] t 

where E-~Tt and s1 3• i E/(l +E2). The characteristic: time T Is the 
CD .~ ~ ~ ~~ . 

same in this case as in the pl~ane extenslon~ examplis. We took values 

of E as (0.5), (1.0), and (2.0), corresponding to nominal shear strain 
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'-12 -12 -12 
rates of (4S/28) x 10 • (45/14) x 10 ,and (45/7) x 10 ,respect i ve ly. 

The reader should note that these strain rates are indeed very slow. 

The stresses found byapp1icatton of the finIte element algorithm are 

compared to the closed form solution in Figures 18_, 19, and 20. The RK2 

algorithm was used for time integration, with time steps corresponding 

to nominal shear strain increments of (0.2). The first stress peak 

is at e"!'If, and the final shear strain is (B.O). The r~ader should 

note that the behavior is (qualita,tlvely) similar to the purely 

hypoe 1 as t i cbehavi or (per i od) and to ~ ig i d-v i scop last i c (or viscous 

fluid) behavior at late times. 

In the three cases above it was not necessary to use the forward 

gradient scheme since the deformation was completely constrained. How-

ever we can s till int roduce the stab i 1 i ty parameter for the pu".o.c'se of 

finding out what error it leads to. Just as for the examples of plane 

extension, it is possible to integrate the modified equations in 

closed form. The solution of the a-modified problem is found by 

replacing E by E{l + eh/T) in (9.23) everywhere except in the numerator 

of s13. The stresse~ found by applIcation of the finite element 
GIl 

algorithm, with"e-l, 'are plotted In Figure 21, along w-ith the 

solutions of the true and modified .problems, -'or the case. E-2. All 

the other data is unchanged. The reader should note that at late 

times the two solutions do not coincide; rather, we get the ratios 

11 / ·11 
sa s + (Ee/E)(s~3/$13) 
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From (9.15) it is easily seen that the influence of the parameter e 
will vanish at late times (for any deformation) only so long as ~* 

vanishes at late times. In other words, the forward gradient scheme 

presented here will only give correct steady state values of the stress 

for deformations in which the spin or the total stress vanishes at tate 

times. Rectilinear shearing does not meet either of these conditions. 

Further research is needed to determine whether or not this defect in 

the forward gradient scheme, which is probably only important for large 

deformations, can be overcome. 

Inhomogeneous Deformations 

We conclude this chapter with three studies of inhomogeneous 

deformations. In the first, a study of creep in a pipe due Pn internal 

pressure, the numerical solution is compared to closed form solutions 

for elastic and rigid-plastic bodies (at different stages of the 

deformation), as well as to other numerical results. In the second 

problem, a study of the onset of necking in the plane tensile test, 

results are compared to closed form results for an incompressible body 

as well as to other numerical results. In the third problem, a study 

of plane void growth in a creeping viscoplastic medium, comparison is 

made to other numerical results. As shall be seen, the stress-rate 

based finite element algorithm compares very well in every case. 

Creep of a ~ipe from Internal Pressure 

The problem geometry and boundary conditions are given In 

Figure 22. The problem may be analyzed in three stages: (1) rapid 

elastic inflation, (2) transient stress stage, and (3) large strain 

161 



R(rrm) 
~ . . 

TR-Oa:TZ 
6.688 ~ - - - - - - - - - - - - ... 

I 

6.3501-----------' 

TR -O=VZ 

4 .574 - - - - - - - - - - - - -

4.064 ~-___ ------... 
TR-O=Tz ... 

T 
internal pressure. 2.517 N/mml 

r= 
1.0 

Figure 22. Pipe Creep SpecImen 

162 

-

~ 

Z(mm) 



creep stage. The first two parts of this problem have been studied by 

Greenbaum and Rubenstein [54], and Pian and Lee [55]. The creep 

behavior is characterized by the uniaxial relation 

P ( 11)Nu H-l 
Ell - Y T nt 

where -8 -1 2 -N 
Y=- 2.073 x 10 (hr) (N!mm) , N- 4.4, and H- 0.7. The elastic 

and inelastic components of the stretching are 

E
e = (~)o.* - (~) (I: 0."')1 

E - E - - -
(9. 26) 

P 
e: = 

As in [55], time integration is carried out with respect to the 

parameter :X_tH. Real time is recovered after integration as t_:x'!H. 

In the example we take E-1.379x 1011Pa, \1=0.45, 6=!, and use Euler 

integration exclusively. 

Rapid Elastic Inflation. The pIpe is taken from a stress free 

state to an elastically strained state in a single Euler step by 

imposing a nominal pressure rate on the inside wall of the pipe of 

T·,- 251',' '." 2 101. f 't' \ I~ I 111111 • S tH.. J 0 r a J\ - I me step of 0.001 (sec)H. The pres-

sure in the pipe at the end of elastic inflation Is 2.517 (N/mm2). 

In Figure 2~ the stresses found by 'application of the finite ele~nt 

'* when (he parameter M< 1, the material age-hardens. 
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algorithm are compared to those predicted by the infinitesimal 

displacement theory of elasticity. As Is evident, the two solutions 

are virtually indistinguishable. 

Transient Stress Stage. In this stage the creep mechanism 

causes the stresses to redistribute themselves through the thickness 

of the pipe, and the pipe itself to expand slightly. In this stage 

the nominal traction rate on the Inner wal I was set to zero, and the 
M 

A-time step was set as 6.A-O.5 (sec) • In Figure 23 the new distribu-

tion of stresses is compared to the stresses that would be obtained if 

the material were rigid plastic. These latter stress distr;o~tions 

are given by Hult [56]. Again, the two solutions are virtually 

indistinguishable. In Figure 24 the small deformation displacement 

history of the inner wall of the pipe is plotted against the result of 

Pian and Lee [55]. 

Large Strain Creep Stage. This stage is a continuation of the 

relatively steady creep that characterized the latter part of the 

previous stage. The only difference In the computation was the A-time 

step was set to 400. In Figure 25 the maximum hoop stress history 

(at the outside wall) is plotted against the history for the rlgid-

plastic material. In this stage -it is important to note that the 

• 
traction bOllndary condition on the inside wall, TI - 0 does not corres-

pond to consta~t pressure; rathei frnm the equation (3.36) we find that 

the pressure rate is 

p - -(i/a)p (9.27) 
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where'a is the instantaneous inn1!T r-adius of·thepJpe. Integration 

p. (a p )/a 
o 0 

(9.28) 

TJiis trad:loD-bounda~ry con-dition was cnosen simply for- convenience. 

For- cotlstan"t pressure, the nomlnaf n°·a-ctio-n- rate and veloci ty on the 

This boundary ccmd'ition could be dealf wrtn by iter"ation, using (9.29) 

to form 'res(duaf loa'd-s,' or by recasting the traction boundary con-

dition (7.2) as 

(9.30) 

The Onset or NeckIng In Plane Extel"l.510n 

rt is wefl known that In tensile tests of metals (plane or 

uniaxfal) the deformation prfcu' to the attainment of the maximum load 

is essentially nomog~neous. At some point after the maxTmum load 

point a ineck~ forms and the specimen faiTs almOst invnediately. In 

experiment, the poInt at whIch neekln.g begins Is sensitive to the 

slenderness or the spectl'tle.n, the rate_ of strain hardening of the 

material, and the presence of geometric imperfections or Inclusions. 

Mathematically It is possible to consider specimens absolutely 

108 
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free from geometric Imperfections, and throughout which material 

properties are perfectly homogeneous. For such a 'perfect' specimen 

homogeneous stretching (such as discussed earlier In this chapter) to 

any extension Is a solution of the general boundary value problem. 

However, to reach configurations of pure extension far beyond the 

maximum load point, the perfect specimen must pass through a (possibly 

infinite) number of configurations from which bifurcation is possible. 

For the classical elastic/plastic solid with a smooth yield surface 

the first possible mode of bifurcation is that of necking. 

Within the past few years mathematical analyses of brf~rcation 

from configurations of pure extension have been presented by Hutchinson 

and Hi les [57], Miles [58], and Hill and Hutchinson [59]. The first 

two of these are concerned with the onset of necking in cyl inderical 

and rectangular specimens of an incompressible elastic-plastic material. 

In the third an extensive study of general bifurcation phenomena of 

incompressible materials in the plane tension test is presented. For 

the classical elastic/plastic solid this study indicates that the 

first possible mode of bifurcation Is that of necking. 

Here we present a numerical study of the onset of necking of 

(hypo-) elastic/plastic solids in the plane tension test. To aid 

in the co~pa~i~on of our results to those of Hill and Hutchinson [59], 

certain of their notations are adc~tp-d; these are explained as they 

are presented. The material we consider is slightly compressible*; 

* . the loading surface does not depend upon the pressure. 
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in order to compare our results to those of Hi 11 and Hutch1n~on we 

must assume that the effect of this compressibility is slight, though 

not necessarily ignorable. So that the performance of the present 

finite element method may be contrasted to the performance of a 

velocity-based finite element algorithm, we have chosen particular 

materials identical to those used in the bifurcation study of Burke 

and Nix [601. This appears to b~ the only other ngmerical study of 

bifurcation of classical ela~:tic/plastlc materials In plane extension 

in the literature. 

Finally, we investigate the sensitivity of our results to 

variations In the number, shape, and type*Qf elements In the finite 

element mesh. This latter study serves not only to _graphically 

demonstrate the stability of the finite element algorithm, but also to 

help characterl4e the approximation thus obtained. 

Bifurcation Analysis. As discussed in Chapter VI, a condition 

sufficient for uniqueness of a deformation of an (hypo-) elastic/ 

plastic body is that the second complementary virtual work principle 

have only the trivial solution for the 'linear comparison solid' when 

homogeneous boundary conditions are Imposed. In as much as the finite 

element algorithm is based on that work principle, we equate the 

uniqueness criterion with the condition that the finite element 

equations have only the trivial solution for the linear comparison 

solid when hom0geneous boundary data is imposed. Searching for possible 

'" the type is determined by the number of boundary nodes, the 
number of spin parameters, and the number of stress parameters. 
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bifurcation points amounts to looking for configurations of the body 

in which the global stiffness matrix [K~] is singular. The subscript 

L is to indicate that the stiffness matrix is formed as If loading 

occurs throughout the plastically stressed portions of the body; in 

extension problems this condition can be satisfied a posteriori by 

judicious superposition of the homogeneous and necking modes. 

We consider a specimen of initial length 2a 3 and thickness 
o 

2a'. We assume that the bifurcation mode witl be symmetric in the o 

sense that the velocity field may be reflected across the x3 axis 

(see Figure 26). This is consistent with usage of the adjc~Live 

'symmetric' by Hill and Hutchinson. The finite element mesh is over 

the area a l x2a 3. The specimen is composed of the hypoelastic/plastic 

material of equations (9.5) through (9.7). and the subsequent dis-

cussions pertain only to ·that material. 

To ease the comparison of C)!Jr __ r~sults to those of Hi I I and 

Hutchinson [59] we introduce the plane strain tangent modulus ~~*. 

defined by 

4 '" . ~ 

Assum;~; :!':=: a:: ~ ... ,:: ~ Trurcation point is approached the stresses 

satisfy (approximately--see Figw~~ 8) 

22 • _ 33 
"l l 

the con~titutivp e~u~tions (9.5) through (9.7) yield (without further 
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approximation) 

] 1 [ (/3T33 )N-l] 4~ •. - 1iE (1 - 2v) + 3N 2\ • 

In our calculations the stress T33 at the onset of necking was always 

at a level of stretch at which (i) (9.32) was a very good approximation, 

and (ii) the influence of v on 4~* was negl igible. 

The dimensionless stress (T33/4~*) arises naturally in the 

analysis of Hill and Hutchinson. When the material (9.5)-(9.7) is 

incompressible, considering (9.9). we find 

where X= (a l /2a 3) is the st:A.bbiness·, and X = (a l /2a 3). It is well o 0 0 

known that the maximum lead occurs when the tangent modulus (as defined 

by 4.39 or 9.31) falls to equal the stress; (i.e. when (-r33/41l*)= 1).** 

No bifurcation can occur before this point [23J. 

The tangent modulus continues to decline after the maximum load, 

so 4~~T < T~;x load« 11; that is, the tangent modulus is much smaller 

than the shear modulus in the neighborhood of the bifurcations points. 

As such, the critical streSs (T33/4~*) may be found by the asymptotic 

formula*** 

,'f 
note the latter equation is independent of any elasticity. 

** . this can be sh~1n by computing P-O in equation ('+.34). 

*** see Hll1 and Hutchinson [59], equation 6.8 therein. 
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(9.35) 

where y-nrrrX, m an integer. As {2u*/u)-+0, this formula reduces to 

that of Cowper and Onat [61] for a rigid-plastic !tolid. W~ could use 

(9.34) to eliminate either (T33/4u*) or X frQm (9.35) to get eigenvalue 

. f X (T33/4u}'t) , I 1 ~ l' • • equations or or respect ve y, but ror C arlty It IS bet-

ter to plot (9.34) and (9.35) independently in the X- (T33/4lJ*) plane. 

The critical conflguratlons_ in plane extension are then identified as the 

points at which the curves intersect. This is the approach we take, 

marking the critical configurations found by application of the finite 

element algorithm on the same plot. 

4 For rtumerical study we take YQUrl9_~5 modulus E- 6.895 x 10 MPa, 

v- (1/3), and T - 344~75 HPa. Six individual cases are considered, 
y 

corresponding to values of the hardening exponent N- 4 and N- 8, ror 

Initial slendernesses of l/Xo • 2, 3, and 4. These sCime six cases were 

studied by Burke and Nix (60]. The problam may be treated in two 

parts: (i) generation of the solution for homogeneous extension, and 

(i i) location or the critical configurations through which the specimen 

passes in the course of homogeneous extension. 

To gene rate the so I ut i on for homogeneous ext ens I on for all 5 i x 

cases it Is only necessary to find the solutions for extensions of a 
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unit cube of the two materials involved. These solutions consist of 

a sequence of configurations through which the specimen passes in the 

course of plane extension. It is anticipated that the bifurcation 

analysis will be sensitive to small variations of the stress and stub­

biness. so an accurate integration of the homogeneous extension is 

essential. We use one element. For the material whose hardening 

exponent N equals four, a single RK2 step brings the material from the 

stress free state to the yield surface. This is followed by 30 RK4 

steps to bring the specimen out to nominal stretch 1=1.04. Subsequent 

steps are (all RK4) stretch increments t.l =0.002 out to 1= 1. !Q, fol­

lowed by t.1=0.01 out to 1=1.45. For t_hematerial whose hardening 

exponent N is eight, 40 steps were taken from the yield surface to get 

out to 1= 1.05, followed by stretch increments t.l = 0.01 out to 

1 = 1.25 (all RK4). For both N=4 and N= 8 post maximum load calcula­

tions were repeated llsing t.l =0.002. This gave not only an accuracy 

check, but also a refined sequence of configurations in the neighbor­

hood of the bifurcations points. One result of this increase in 

accuracy {over the example among the homogeneous deformations} is that 

the stress, as a function of the nominal stretch, is found to be 

virtually indistinguishable from the stress in the incompressible 

material: only thp thickness of the specimen varied appreciably, ~nd 

this di ff~rencp is not distinguishable on the figures which follow. 

In t~e second part of the problem, location of the critical 

configll"'i'ltinn~, e~tim~tp.s for thos.e locations were provided by the 

results of Burke and Nix [60]. The global ~tiffness matrix [Kt1 

175 



was formed using a uniform mesh of eight-noded elements, three elements 

through the (half-) thickness a l and twelve elements along the length 

2a3. Then the first ei-ge~vafue (smallest in absolute value) was 

found.* The first eigenvalue has the physical significance of force 

required to produce 'unit' necking. The search for the critical con-

figuration was extended towards or away from the maximum load point as 

this eigenvalue was negative or positive. The critical configurations 

are given rnTabre T. Llriearfnter-poTatTori was lj-sed to get configura-

tions Intermediate to those found in part one of this problem. In 

Figures 27 and 28 the present results are compared to the closed form 

results of Hill and Hutchinson [59] and to the numerical results of 

Burke and Nix [60], for N= 4 and N= 8, respectively.** 

In each of Figures 27 and 28 the three nearly vertical lines 

represent the closed form solutions (9.34) for X = (1/2). (1/3), and o 

(1/4). The stubbiness X decreases and the stress (T 33/4U*) rises as 

extension progresses. Along the loading paths bifurcation is first 

possible when the curve (9.35) (for m-1) is encountered.***' Special 

this. 
* IMSL (FORTRAN) Library subroutines were used to accomplish 

**-Burke and Nix [60] do not report the critical configurations. 
so it was necessary to reconstruct froml"forll1ation they do give. The 
stubbiness X can be recovered from equations 46a, 46b, and Table 2 (in 
that paper). The stress (T33/4u*) is then assigned according to . 
(9.34)--ln this paper. We remark that their results are considerably 
more accurate than entries in (their) Table 2 would have the reader 
believe; the error in that table results from mis-application of the 
asymptotic formula (7.6) from the paper of Hill and Hutchinson [59]. 

*** to show the proximity of the next bifurcation point. (9.35) 
for m- 2 has been plotted also. 
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symbols have been placed on the plots to Indicate the critical 

configurations found by the present finite element method and by the 

velocity-based finite element method used by Burke and Nix [60]. 

Perhaps the most striking feature of these figures Is that In 

every case the present method indicates bifurcation at a stress below 

the critical stress for an incompressible body, while the results of 

Burke and Nix indicate the opposite. While the velocity-based method 

Is certainly providing an upper bound for the critical stress, it would 

be Imprudent to assume from this single result that the stress-based 

method is leading to a lower bound. In fact, counterexamples to such 

a supposition are abundant. As an experiment, the Poisson ratio was 

varied between v-O.l and \)=0.49. It was found that as v increased, 

bifurcation was deZayed. This is certainly not proof, but it supports 

the idea that the bifurcation stress of the incompressible ~~dy is an 

upper bound for the bifurcation stress of compressible bodies. In 

that light, the numerical results found by the present method must be 

more accurate than Figures 27 and 28 indicate, and the question of 

whether they lie above or below the correct critical stress (for 

I v -3) is still open. Moreover, the present result was obtained using 

only 36 elements (239 unconstrained velocity parameters), whereas 75 

elements (479 unconstrained velocity parameters) were required in 

the velocity-based analysis to obtain a result less accurate.* 

* Since a precise account of the critical configurations is not 
given by Burke and Nix 160], it is impossible to say whether or not 
the difference In the results can be attributed to the accuracy with 
which the extension was Integrated. 
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One could ask whether or not the symmetry we Imposed on the 

velocity field (see Figure 26) resulted I!,,~~~e suppre_sslon of an anti­

symmetric bifurcation mode, such as one that formation of a shear band 

might give rise to. This is unlikely, since the bifurcations all occur 

at stress levels too low to support the formation of a shear band in 

the incompressible material. That stress, for incompressible materials, 

is (see [60]) 

(9.36) 

Finally we note that the present bifurcation problems are well 

conditioned in the senses that (I) no other bifurcation points are 

close by, and (ii) the loading p~th an9 locus 9JcrJti~al_stresses 

cross at a large angle. The results of Hill and Hutchinson {59] pro-

vide a basis for evaluation of the performance of a finite element 

algorithm under much more demanding circumstances. 

A Parameter Study. In this section we Investigate the sensi­

tivity of the results of the ~rev!ous bifurcation an~lysi~ to 

variations of number, shape, and type of elements In the finite element 

mesh. The '_tyee' of element is determined by the number ()rboundary 
--

nodes, the number of spin parameters, and the number of stress rate 

parameters. It Is desired that a 'small' change in the character of 

the mesh result in a 'small' (or at least predictable) change In the 

approximate solution. Moreover, it Is hoped that the accuracy of that 

result will Increase monotonically with the computational effort, 

measured roughly by the number of unconstrained velocity parameters. 
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Finally, it Is very Important in practice to know whether an 

approximate load is an upper or lower bound for the actual load. 

Four different types of elements are considered. The first two 

are eight and four-noded elements satisfying all of the rank conditions 

given In Chapter VI I. Third, a four-noded element whose spin field is 

of polynomial degree one less than the stress-rate field is considered. 

Finally, a constant stress--constant spin element is considered. In 

all of the cases that follow, the configuration and stress of the body 

are fixed at values given in Table 2. The material is identical to 

that considered in the previous section with hardening para~~ter Ns 8. 

Though the precise eigenvalue of the configuration (Table 2) is not 

known, it is believed to be small and positive. 

In Figure 29 the smallest eigenvalue of the global stiffness 

matrix [K~'r] is plotted as a function of the total number of uncon­

strained velocity parameters. The finite element meshes were made up 

of uniform eight-noded quadrilaterals with 21 stress parameters and 

6 spin parameters. Complete data is given in Table 3. As can be seen 

in the Figure, the eigenvalue Is quite insensitive to the particular 

arrangement of elements, depending almost exclusively upon the total 

number of degrees of freedom in the mesh. Every estimate for the 

eigenvalue was positive. 

In Figure 30 the smallest eigenvalue of the global stiffness 

matrix [K*] is plotted as a function of the total number of uncon­

strained velocity parameters. The finite element meshes were made up 

of uniform four-noded quadrilaterals with 13 stress parameters and 3 

spin parameters. Complete data is given in Table 4. In contrast to 
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the eight-noded elements, the four-noded elements show a marked 

sensitivity to mesh arrangement. They are also substantially stiffer. 

In spite of the existence of preferred meshes, the eigenvalue estimate 

appears to improve as the degrees of freedom in the mesh increases.* 

Every estimate for the eigenvalue was positive. 

In Figure 31 the smallest eigenvalue of the global stiffness 

matrix IK~"] is plotted as a function of the total number of uncon-

strained velocity parameters. The finite element meshes were made up 

of uniform four-noded quadrilaterals with 13 stress parameters and 

spin parameter. Complete data is given in Table 5. The stress-rate 

field on this element contained linear terms, while the spin field was 

a constant. Thus, angular momentum balance is generally satisifed 

only in the mean by this element. The reader should note the dramatic 

tivity to mesh arrangement. Every estimate for the eigenvalue was 

positive. 

From these three examples it is readily seen that the compliance 

increases with the number of kinematic degrees of freedom (velocity 

and spin parameters), just as it would in a velocity-based finite 

element algorithm. However the type of element makes a bigger dif-

ference th~n do~s the number of elements in the mesh. This is 

Important from the point of view of efficiency, since it means that 

'" the reader should note that the angularity of the lines con-
necting meshes in a sequence would be reduced if a refined sequence 
were used in the plot. 
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it is better to go to a 'higher order' element than to refine the 

finite element mesh to achieve greater accuracy. It is also clear from 

these examples that the finite element algorithm is not providing a 

lower bound for the eigenvalue.* 

We would expect that decreasing the number of stress parameters 

would have just the opposite effect that decreasing the number of 

kinematic parameters had--decrease the stiffnesse~ (see Pian [3]). 

However, we found no difference in the necking eigenvalue for four-

noded el ements when 13 or 21 st ress ~ pa ramete rs were used, for either 

I, 3, 4, or 6 spin parameters. This result is summarized in Table 6. 

As a final example we consider meshes of four-noded elements, 

each with 5 stress-rate parameters and I spin parameter. tach 

element has two kinematic modes, but when the global stiffness matrix 

[K"'] is assembled and the kinematic boundary conditions enforced, 

these modes disappear. The element is interesting because the 

equations of compatibility and angular momentum balance are satisifed 

precisely on the interior of each element. As such, a velocity field 

of the form 

-

~ 

may be integrated on the inter i or of each element. However such a 

velocity field is incapable of matching the boundary velocities of a 

* as might have been inferred from the results of the 
bifurcation analySis. 
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four-noded quadrilateral except in the mean sense (since they contain 

an 'xy' term). Therefore, across element boundaries this velocity 

field must generally be discontinuous. 

According to Washizu,* one of Rayleigh's principles states that 

"if the prescribed boundary conditions are partly relaxed, all the 

eigenvalues decrease." In using the elements above, the actual problem 

has been replaced by a problem in which interelement velocity con­

tinuity has been partly relaxed. Thus, it is not surprising that for 

some meshes the finite element algorithm overestimates the compliance 

of the body. However, as the element mesh is refined, it ca~ be 

imagined that the disparity between the boundary velocity and interior 

velocity diminishes (how rapidly would depend upon the particular 

sequence of meshes). I n Tab Ie 7 two sequences of meshes are deta i led. 

Any smooth velocity field. could be approximated to any degree of 

accuracy by continuation of either of these sequences. In Figure 32 

the sequences of eigenvalues corresponding to these two sequences are 

plotted. These simple elements apparently are converging to the same 

value as all the other elements at a rate matched only by the eight­

noded 'high-order' elements. But the most striking feature is that 

one of the sequences of approximate eigenvalues Is converging from 

above \o!hi Ie the o~"er fro", below. 

The natural tendency would be to attribute this behavior to 

the prcsc~ce of kine~atic modes on the element level. However, for 

sufficie~t1y ~ist~~t~d ",~~h~s of other-wise well-behaved elements, 

.... 
~ashizu [36], p. 48. 
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similar behavior can be observed.* This example supports the idea 

that the present method does not necessarily lead to an upper or lower 

bound. 

Growth of a Void in a Viscoplastic Medium 

In this final example we examine the growth of a void in a 

hypoelastic/viscoplastic medium. This problem has been studied 

(numerically) by Burke and Nix [62], who treated the material as 

rigid/viscoplastic. We present the problem as a further demonstration . 
of the performance of the finite element algorithm. The material 

exhibits stress relaxation, so the forward gradient scheme m~st be 

used to stabilize the time integration. Thus, only a qual itative 

picture of the stress and deformation can be expected of our analysis. 

Nevertheless, the present results agree quite closely with those of 

Burke and Nix [62]. 

The motion is assumed to be plane strain, and throughout the 

body is a doubly periodic array of cylinderical voids. Due to the 

symmetry we need analyze only one quadrant of one rectangular cell of 

the body. The finite element mesh and boundary conditions are 

described in Figure 33. 

Burke and Nix motivate their study by explaining that certain 

theories for the initiation of creep fracture suppose that the growth 

* For a (1 x 10) mesh of eight-noded elements an eigenvalue of 
-30.3368 was found; it was not determined whether this value was 
simply erratic (due to the irregular element shape), or whether 
similar negative values could be found for 'nearby' meshes (such as 
I x 9 or I x 11). 
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of voids can be "attributed to the inhomogeneous plastic deformation 

of the surrounding grains." Furthermore, "finite fracture strains can 

be predicted only when a void lies in the neighborhood of another 

void." Such a study necessarily involves a number of special cases. 

For our purposes, that of demonstration, only one case is taken. 

The problem has been analyzed in three parts, much as the pipe-

creep problem was. In the first part the cell is brought rapidly from 

the virgin state (stress-free) to a state of purely elastic strain. 

This is accomplished by a single RK2 step. In the second part, 

relatively small time steps are taken while the stress relaxes from 

the elastic distribution to a nearly steady creep distribution. In 

the third part, time steps are taken which produce 1% nominal 

elongation of the cell in each step. To stabilize time integration 

in the second and third parts the forward gradient scheme is used, 

the stab iIi ty parameter e set as e = 1/2 and 3/4, respect i ve ly. Con-

sistent with our earlier discussions regarding use of the forward 

gradient scheme, only the Euler time stepping scheme has been used in 

the second and third parts of the problem. 

The material model is identical to (9.11): 

/. 1 y-r' 
2 -
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This model corresponds to that of Burke and Nix [62] with (their) creep 

exponent n-1. The fluidity y is set as y-J x 10- 19 (psf-sec)-l. The 

velocity at the top of the cell (see Figure 33) was adjusted so that a 

specimen with no void would experience a homogeneous constant stretching 

-11 .. -11 -14-1 
E of £ =0.25x 10 sec Since the material was treated as rigid! 

viscoplastlc in [62], our choice of elastic constants is somewhat 

arbitrary. We have taken Young's modulus E- 3 x 107 psi and Poisson 

ratio v-0.4, so the material is like mild steel in its elastic response. 

11 In Figures 34, 35, and 36 the contours of streSS L , mean stress, 

and stress T33 have been plotted for l (the elongation of the cell) 

l = 1.01. The stress concentration where the hole edge crosses the x3 

axis is approximately 2.7.* This is quite reasonable since the 

theoretical value for an isolated void in a purely elastic medium is 

3.0 [63]. In Reference 62 an approximate value of 2.66 was found for 

the rigid plastic material. In Figure 37 the contours of effective 

strain rate ~J:P::P are plotted for l-l.OI. Qualitatively this 

compares very well to Figure 7 in [62]. 

In Fi gure 38 the deformat i on is t raced from l- 1. 0 to l = 1. 5. 

These deformations are physically tenable. We remark that no indication 

of any numerica1 Instability was observed in the course of integrating 

this deformation. 

In Figures 39, 40, and 41 the contours of stress TIl mean 

st ress, and 1'33 have been p lotted for l- 1.50. They compare very we 11 

* A stress concentration of approximately 2.59 was observed for 
the elastically stressed medium. 
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Figure 40. Contours of Mean Stress at L • 1.5 
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to the stresses found in [62] (see Figure 8 there). We note that the 

stress concentration has dropped to 1.71. The stress concentration 

depends strongly on the geometry of the specimen; as such, it was 

observed to decl ine steadi Iy throughout the deformat ion. In Figure 42 

the contours of effective strain rate are plotted for L- 1.5. Again, 

the qualitative agreement with the results of Burke and Nix [62] is 

noted (see Figure 9 there). 

The present calculation was terminated at L= 1.5 because of the 

unstable traction boundary condition* at x3.0.0 and the edge of the 

hole. and the general breakdown of (total) traction reciprocity con­

ditions on the interior of the cell. This problem is easily avoided 

by incorporation of traction residuals. 

We conclude by noting that in the present analysis only 56 four 

noded elements were used, as compared to 56 eight noded elements used 

in the analysis of Burke and Nix. Considering the agreement between 

their results and our own, the present method appears to have performed 

very well, in spite of the large disparity in the degrees of freedom 

of the finite element mesh. 

* see discussion and footnote accompanying equation (3.37). 
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.CHAPTER X 

CONCLUSIONS AND RECOMMENDATIONS 

Conclusions 

In this work a new hybrid stress finite element algorithm, 

suitable for analyses of large quasistatic deformations of inelastic 

solids, has been presented. The feasibility and performance of the 

algorithm has been demonstrated in a number of example problems. 

Principal variables in the formulation are the nominal stress 

rate and spin. As such, consistent reformulation of the constitutive 

equation is necessary. This is discussed at length, as are alterna­

tives to direct numerical inversion of constitutive ~atrices involved 

in that reformulation. 

The principal variables in most finite element algorithms for 

solids are either displacement Increments or stress increments (as 

opposed to actual time derivatives). In problems involving elastic 

bodies the accumulated error of such an algorithm may be kept small 

by 'residual load' iterations; however, in problems involving inelastic 

bodies, the accumulated error of the incremental approach is like that 

of the Euler scheme for integration of ordinary differential equations. 

In the present work the notion of 'Increments' has been discarded 

entirely. As a consequence, the finite element equations give rise 

to an initial value problem (which may be treated independently). 

Integration has been accomplished by Euler and Runge-Kutta schemes, 
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and the superior accuracy of the higher order schemes is noted. 

It has been shown that there is an ambiguity Inherent in finite 

element methods based on complementary work and energy principles sur-

rounding the appropriate definition of the velocity (or displacement) 

on the interior of the element. Heuristic arguments have been given as 

justification for the method by which those velocities were found in 

the present work. Those arguments indicate that mathematical con-

sistency requires that special techniques be used to find the velocity 

on the interior of 'high order' elements, but that the velocity on the 

interior of a 'low order' element may be found by interpolation of the 

boundary velocities. 

In the course of integration of the stress (in time) it has been 

demonstrated that classical schemes such as Euler's and Runge-Kutta may 

lead to strong frame dependence. The problem can be traced to the 

integration schemes themselves. As a remedy, modified Integration 

schemes have been proposed. The potential of the new schemes for 

suppressing frame dependence of numerically integrated stress Is 

demonstrated by an example. 

Time integration of the stress in materials which exhibit stress 

relaxation is compl icated by the necessity that one take very small 

time steps In order to avoid numerical instability. The applicability 

of explicit and implicit forward gradient schemes to improve stability 

of Integration in large deformation problems has been Investigated. 

These schemes are known to be both stable and accurate In problems 

involving small deformations. It has been found that in large deforma-

tion problem:) the schemes are indeed stable, b~t potentially inaccurate. 

204 



The capability of the stress-based finite element algorithm for 

extremely accurate bifurcation analysis was demonstrated. Moreover, it 

was shown that one could expect the result of such an analysis to be 

stable with respect to variations of the finite element mesh, so long 

as the same type of element was used in every mesh. If the type of 

element was varied, the result changed in a (qualitatively) predictable 

manner. It was demonstrated that the method did not necessarily lead 

to an upper or lower bound for the critical load. 

Finally, it was made evident through examples that stresses 

obtained by the present method were of exceptional accuracy; much more 

than could be expected of a velocity-based algorithm. Traction 

boundary conditions and the traction reciprocity conditions were met 

with a correspondingly high accuracy, though their accuracy could have 

been improved by incorporation of residuals (to keep the accumulated 

error small). 

Recommendations 

The principal defect of the algorithm presented in this work is 

its inability to accurately integrate the stress in bodies which exhibit 

stress relaxation, unless of course, the time steps are kept inordi­

nately small. Evidently, this defect is present in the algorithm of 

Kanchi et al [49], though no mention Is made of it. This appears to be 

the only other appl ication of a 'forward gradient' technique to finite 

deformation problems. In the context of small deformation problems, 

the error of (generalized) gradient techniques was studied numerically 

by Argyris et al. ["19]. On that basis they concluded that 'mldstep 
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weighting techniques' (that is, 8=!) were accurate. However, the 

present results Indicate that the accuracy of generalized gradient 

techniques Is highly problem dependent, and that no one choice of e 

assures optimal accuracy. A minimal requirement to be made of any scheme 

for stabilization of numerical integration is that it give correct 

results under steady, or nearly steady conditions; this requirement is 

not met by the generalized gradient techniques currently available. It 

is recommended that an effort be made to develop schemes for stabiliza-

tion of numerical integration of stress for finite element-initial 

value problems whose accuracy can be proved. 

Secondly, it was demonstrated that the present method could not 

be relied upon to give either an upper or lower bound for the critical 

load in a bifurcation analysis. It is suspected that the character of 

the approximate load obtained by the present method may be linked to 

the rank conditions (7.69) and (7.73). Further research, both from the 

mathematical point of view and numerical point of view is needed before 

a practically applicable criteria for c~itical load characterization 

can be given. A mathematically accurate discussion of the problem of 

assigning the velocity on the interior of an element (for hybrid stress 

methods) ~rght aid In thfs chara~terization. 

ri~g11y, thE ~aterials considered In this work all have the com-

mon property that their constitutive equations are isotropic functions. 

Though the generalization of the present method to anisotropic material 

behavior i~ co~ce~tuaiiy straightforward, there may be special problems 

in an implementation. The performance and special problems of the pres-
--

~= 

ent method, w!'en applied to anisotropic materials, should be investigated. 
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APPENDIX A 

DIRECT, DYADIC, AND INDEX NOTATIONS FOR TENSORS 

Let r denote the position vector in E. We write Xl for an 

arbitrary (smooth) system of coordinates in E. Then a triad of vec-

tors ~I' called the 'natural base vectors' of the coordinate system, 

are defined by the equation 

(A. 1 ) 

We assume that these vectors are linearly independent; that is, 

Then a conjugate triad of base vectors is defined by the equation 

II if I=J 
e I·e • 

-J 0 otherNise 
(A.3) 

Any vector in E may be represented as a linear combination of 

I the ba~~ v~cturs ~I or e 

I I 
Y .. v !:l -= vl~ (A. 4) 

I The cor'"I;..to"',cnts v arc called 'contravariant' and the components v, are 
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called 'covariant.' They are defined by 

I I 
v • ~ • v • v (A.5) 

To every triplet <v l ,v2,v3> there corresponds a unique vector in E, 

and vice versa, for any linearly independent set of base vectors ~I' 

This important fact is the basis of the index notation for vectors 

and tensors. If a linearly independent set of base vectors is given 

(for example by specifying a coordinate system), then no ambiguity 

.... 123 . I If arises In writing <v ,v ,v>, or simp y v, or v. In cont i nuum 

mechanics one frequently is forced to work with more than one 

coordinate system at a time; then the dyadic notation, indicated by 

(A.4), is more convenient. 

The relation between the contravariant and covariant components 

is found by 'dotting' the representation (A.4): 

I I J 
v .. (~ • ~ ) v J (A.6) 

Just as the triad ~I constitutes a vector basis in E, the dyads 

(~I~J) are a basis for second order tensors In E. Any second order 

tensor may be represented as a linear combination of these dyads, for 

example 

(A.7) 

. I J I) Other components for I may be defined for the dyads (~ ~ ), (~ ~J ' 
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J and (~I~ ), and they are called 'covariant,' 'mixed,' and 'mixed,' 

respectively. To every 3x 3 matrix there corresponds a unique second 

order tensor In E, and vIce versa, for any linearly independent set of 

dyads. Therefore the index notation may be used for second order 

A fundamental tensor In E is the Identity tensor, defined as 

that tensor with the property 

v .. I • v -
for every vector in E. We may represent as-

I J 
I .. 15 J~ I~ 

I whe re 0 J I s the mat r i x of components of ! for the 

ing to (A.S) we may represent y by vl~I' so (A.8) 

form 

J 
dyad (~I~)' 

may be set in 

(A.8) 

Acc:ord-

the 

For (A.9) to be satisfied for arbitrary vI it Is necessary that clJ be 

de fined as 

I 11 if I-J 
15 -

J 0 otherwise 
} . (A.10) 
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Components of ! may be obtained for the other dyads in a similar manner 

as 

CA.l1) 

In some applications! is called the 'metric tensor.' 

The relation (A.6) between contravariant and covariant vector 

components may be written as 

I 
v = (A.12) 

Similarly, the relations between the various components of a second 

order tensor may be written as 

CA.13) 

The apparent rule for raising and lowering indices may be shown to be 

valid for tensors of all orders. 

When differentiating vectors along a coordinate line, one must 

take into account not only the rate of change of the components, but 

also the rate of change of the base vectors themselves: 

(A.l4) 

The derivative of a base vector Is a vector itself, and may be 
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represented as a linear combination of the base vectors: 

a ( ). yJ I ~K IK ~J ax 
(A. 15) 

The components in the representation (A. IS) are called Christoffel 

symbols (of the second kind); they are defined in the same manner as 

components of any other vector, by use of (A.S). Using the representa-

tion (A. 15), the derivative of the vector in (A.14} may be written 

(A. 16) 

The coefficient in CA.16) is called the 'covariant derivative' of the 

J component v . Covariant derivatives of the compon~l'ItS_Qfsecond order 

tensors may be defined In' a simi lar manner. It should be noted that 

the Christoffel symbols are not co~onents of third order tensors. 

The operators GRAD, DIV, and CURL may be represented as the 

vector operators 

GRAD ~ • V't 

Ol"! v III v . v 

CIJR l. v ... V x v 

where Q is the symbolic gradient operator: 
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(A.18) 

In dyad notation (A.17) may be written out as 

GRAD Vv J I v .. - (v ), 1= =J 

DIV v ,. iJ e v - J 
(v ). J (A. 19) 

CURL 'iJ x I J K v .. v = (v ) t Je I K~ -

where ( )'1 denotes the covariant derivative with respect to Xl. and 

e l
JK is the alternating tensor. defined by 

ee = -K (A.20) 

A convenient summary of formulas of vector analysis is given by 

Spiegel [50]; an extensive treatment of the subject is given by 

Phillips 151]. The remainder of this appendix is devoted to special 

notations used In this work. 

The special notations used in this work are summarized in the 

formulas below. In accordance with (A.7) we wrIte a second order 

tensor T as 

The transpose Is given by 
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I J 
- T J~ ~, -

A fourth order tensor E may be written out as 
III 

The scalar product of two second order tensors Sand T is 

(A.21) 

(A.22) 

(A.23) 

The product of a fourth order tensor E and a second order tensor T is 
::: 

(A.24) 

KLlJ 
T : ; = T KL E ~ I ~ J . 

The product of two fourth order tensors 0 and E 'S 

(A.2S) 

Finally, differentiation by a tensor is defined 

(A.26) 
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APPENDIX B 

ALTERNATIVES TO DIRECT NUMERICAL INVERSION 

OF THE ·CONSTITUTIVE EQUATION 

Formulation of the stiffness matrix involves Inversion of the 

(9 x9) constitutive matrix W at each quadrature point in the body, each 

time the stiffness matrix is evaluated. In practice it is found that 

these inversions figure significantly In the total computational 

effort. In this appendix we investigate the possibility of (1) analytic 

inversion of matrices of the form (4.21), and (2) approximation of the 

inverse of a matrix W=V- T when V-I and T are known. The reader is . ~ ~ ~ ~ 

referred to the articles of Rivlin and Ericksen [25], and Rivlin [52] 

for discussions of representations of symmetric isotropic matrix 

functions. 

Analytic Inversion of the Constitutive Equation 

We begin by Inverting the counterpart of (4.21) which arises in 

plane stress and plane strain problems. We consider a symmetric 

isotropic matrix function of the form 

0* - V : £: + L (B .1) 
::: 

where a*, E, and L are (2x2) matrices, and - - -
2 

~ - LA1J!I!J + 2lJ! (B.2) 

I, J-l 
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~l - ! ; ~2 - T. 

If V Is invertible, then we may write (8.1) as 
:= 

where 

-t 
I ,J=l 

and 

rl -1 ... -v : r 
~ 

Of course V and V 
-1 satisfy ,.. ,.. 

V : v-I -1 -V : V • I .. .. l¥ :::s ::l 

so multiplication of (S.2} and (8.6) must yield 

(in which the summation convention is used). From the linear 
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(8.4) 

(8.5) 

(B.6) 

(8.7) 

-
= -

-
(8.8) 

-

--

~ 

(8.9) 



independence of the basis ~I~L' !,. we conclude that 

ltlll'\ .. 1 (B.l0) 

(B.l1) 

From (S.10) we get 

2M = 1 / (2lJ ) • (S. 12) 

Elimination of 2M for. (B.l1) leads to a (2x2) matrix equation for AIJ: 

= -
1 

2lJ [\] (6.13) 

where 

and 

The solutic~ of (e. 13) :~ easily found by Kramer's rule: 
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(B.1~) 

-

+ 2ll(2),.11 + (,,12 + ,,21)(tr-r) + ,,22(tr-r2» + 4ll2._ 

Thus 2M and 1I. IJ in the representation of V- l (S.6) are all explicitly .. 
determined by ll, "IJ, and the stress. 

The problem of inverting V (4.21) for general problems may be .. 
attacked in precisely the same way as for two dimensional problems. 

For V and V- l we wrl te" 
'If --:II 

IJ I 
~ - A ~I~J + 2ll ~I 

(S.lS) 

-1 I J J 
~ • A ~I~J + 2M ~I 

where 

I 

~2 - T 
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and 

The equation V-I: V.,. gives the following relation among the AIJ, 
- Of Of 

I IJ I 
~ t A , and M : 

(B.16) 

~ N IJ N M )] 
+ 2M A (~N: ~ I ) ~J + 4M il (~N: tM =!. 

It is tedious but straightforward to resolve the expressions (~I: ~J)' 

(*1: ~J)' and (~I: ~J) in the basis ~I:J' ~I· The formulas given by 

Rivlin I52] (generalizations of the Hamilton-Cayley theorem) are 

particularly useful. 

Resolutions: (B.17) 

I· 1,2,3 

~2 : ~ 1 - ~ 1 : ~2 - ~2 
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-------------------------

%3 : ~1 • ~l : ~3 • ~3 

~3 : ~2 • ~2 : t3 • ~2 : ~3 -

-

; 

I • 1,2,3 

~2: ~3· ~3 :~2· Htr !)t2 + Hdet !')! 

After resolution of the terms In (8.16) into the basis of the 
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representation of ~ (i.e. ~I~J and *1)' the coefficient of ~ is set to 

one and the coefficients of the other terms are set to zero. The 

coefficients of the ~I involve the generalized shear moduli p' and MI 

and stress only: 

I: 4lJ l lJ2(trs) +lJ3(detT ' ) -2lJ 3(trs)2 +lJ2 (det TI) Ml 
::::: - -

%2: 4lJ2 4lJ 1 + lJ3(trs) lJ2(trs) - 2lJ3(det TI) M2 = 0 -
~3: 4lJ3 -2lJ2 4lJ 1 + 3lJ 3(trs) M3 0 

(8.18) 

In general (B.18) could just as well be solved numerically as analyti-

cally. In a special case of great practical importance though, when 

lJ2 and lJ3 both vanish, it follows immediately that 2Ml. (l/2lJ l ), 

2M2. 2M3 = O. In any case, the remaining equations form a C3 x 3) matrix 

equation for the AIJ. When 2Ml. (l/2lJ l ) and the other HI vanish, the 

equation for the AIJ is of the same form as (B.13): 

(B.19) 

where the matrices CAl, [A], and [Z] are the identical counterparts of 

those in (B.13). 

-1 Though an analytic expression for V was not found in the 
::::: 

general case, the numerical problem of inverting a (9 x 9) matrix was 

replaced by the problem of solving (at most) two (3 x 3) matrix equa-

tions. Finally we remark that no assumption as to the symmetry of the 
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[A] matrix was made. 

Approximat fon of W . 

Suppose that weare-g.lven the constitutive equation for a body 

In the form 

-1 • ~ P E .. V.-~~> + e: 
~ - -. 

and we wish to obtain the form· 

• Vp :r+e: • 
ow. 

Since 0* III ~+T: e:. we can get the implicit equation 
""" -:::s-

(S.20) 

(B.2l) 

(B.22) 

• di rect ly. I f we try to solve (B.22) for: (when r is ass igned) by 

i terat ion. 

N+l 
~ 

• N P (r + T: e: ) + e: 
'!Ie - ~_ 

then we are led to define ~~1 as 

(B.23) 

• + (B.24) 

-1 N+l 
and the firs t neg 1 ected term is (V : T) : £. where (N + 1) Is the 

.. == .... 
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number of terms in the series (S.24). -1 If the eigenvalue of (V : T) .. ::: 

whose absolute value is greatest is of absolute value less than one, 

then the remainder vanishes as N~oo, so the series converges; that Is 

-1 -1 
~N ~~ . The eigenvalues of ~ coincide with those of the true stress, 

and the eigenvalue of V-I whose absolute value is greatest is a shear 

-1 compliance. Thus, for metals in the elastic range ~l can be expected 

to be. in error by less than 0.01%. We find that in practice if mere 

than two terms in (S.24) are needed, it is more efficient to compute 

-1 W by some other means. The main appeal of (S.24) with two terms 
~ 

taken is in large deformation--small strain analyses, such as In 

structures. 

Construction and Inversion of Constitutive 

Equations for Plane Problems 

We first indicate the class of problems which may be considered 

'planar.' The class consists of those problems in which the true 

• stress T, the (general) stress rate s, and the stretching: are of the 

forms 

T • 
TClBe e 

-Cl- 8 + T33e e 
-3-3 

• ·cx8 ·33 (S.2S) ~ 
.., 

~ ~ 1..8 "" .:> 1::.,° 3 - -0.- - oJ-

e: ... e:cxPe e 
-:i- S + e: 33e e 

-3-3 

where the Greok indices range from 1 to 2. Substitution of (8.25) 
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into the constitutive equation 

yields the component equations 

raJ [ vClByo 
• 

'33 . v33:-,(o s 
-

The tensors V" and r". defined as 
:= 

V" vaS ~ y 0 = = YU~(l~a~ ~ 

(S.26) 

(6.27) 

(S.28) 

(6.29) 

are necessari ly of the forms (B.2) and (B.3) when V and! are of 

( ) 
-., " 

the forms (4.21) and 4.22 • respectively. We define s • e: and Tn as 

For pla~e st~ai~ (B.27) ~ay be written 

-

'" s .-
II II + ~II 

V:e: '" 

(B.30) 

i 
-; 

-

~ 

-

"" 

;33._'J~?_; til + r33 ~ 
-- -
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For plane stress (S.27) becomes 

;" - V £33. V" : e:" + 1:" 
-33 ~ - -

(B.31) 

It is apparent that if we can write V" in the form (B.2) then 

analytic inversion is possible. To find the necessary coefficients we 

set the components so that 

(e eo) : V : (e e.r) - (e eo) 
-~-p ~ -Y-u -~-p 

V" . . (B.32) 

where V is wri tten for (4.21) and V" for (B.2). We let). IJ and ~ I be 
~ -

the coefficients in (4.21) and 1 IJ and m be the coefficients in (B.2). 

Then (B.32) leads directly to 
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where P·T~n .nd q.j(p2-T~eT~e). The planar Inverse 

putt Ing IIJ for A IJ. m for 1.1, p for tr T • and (p2 - 2q) ... 

Is found by 

for tr(T2) In ... 
(8.14). Though (8.33) and (8.14) are algebraically complIcated, their 

ff t I t d th b 1 f t . d I nve rs Ion of W" e ec s .. 0 re. uce e 9ro em 0 cons ruct Ion an 

for planar problems to about ten lines of ordinary FORTRAN. 
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APPENDIX C 

SHAPE FUNCTIONS FOR VELOCITY, STRESS 

RATE, AND SPIN 

Shape Functions for Plane Strain 

Velocity Shape Functions 

Four Noded Element: 

1-1,2,3,4. 

1-5,6,7,8 

'-1,2,3,4 

'-5,6,7,8 

1~1<;1, In I ~ l, 

~2 - 1, ~4 • -1 

n .-1 
2 ' 
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Eight Noded Element 

N1 • -, I { O

HI 1-1,2, ••• ,8 

i-9,10, .•. ,16 

1-1,2, •.• ,8 

1-9,10, ... ,16 

H1 - ~2) (1 +nn.) 
I 

1 .. 2,6 

i - 4,8 

to +~~.)(1 +nn.){F;~. +nn. - 1) i- 1,3,5,7 
I I I I 

~ • n • n - -1' "1 2 3 ' 

Shape Functions for Spln 

where 

.. -e 
1 

If NW-3 add the following shape functions 
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QW 13 ,2 - xC2 

QW13 ,3 • zC
3 

QW31 ,2 • -xc2 

QW31 ,3 • -zc 3 

If Nw=4 add the fo I10wi ng shape functions 

QW 13 ,4 .. xyc4 

QW31 ,4 .. - xyc4 

If NW= 6 add the following shape funct ions 

The constants were used to improve the condition of [H]. 

Stress Shape Functions 

QT 1 1 1 • . , . 

QT 31 ,2 • -I 
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For NT- 13 .dd the following stress shape functions 

O.T,16 -x 
- ,-

Q.T31 ,7 - -x 

Q.T22 ,8 - x 

Q.T '3 ,9 

Q.T33 ,9 

- -x 

- z 

Q.T 33,10 " x 

o.T 11 11 " z , . 

Q.T '3 ,12 ·-z 

o.T22 ,13. z 

For NT-21 add the following stress shape functions 

Q.T ,1 ,14" .5xx 

QT33 ,16 - XI 

QT33 ,17 • xx 
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QT 11 ,18 - xz 

QT31 ,18 ,. -.5zz 

QT 11,19 ,. zz 

QT13 ,20 ,. -XZ 

QT33 ,20 - .5zz 

QT 13 ,21 ,. -zz 

1 x t Gauss quadrature for 'constant' shapes; 

3x3 Gauss quadrature for 'linear' shapes; 

4x4 Gauss quadrature for 'quadratic' shapes. 

Shape Functions for Axisymmetric Deformation 

Components 

functions. 

1 
r = x 

~1 ,. e -r 

Nl ., 
, I 

Spin 

replaces e • -x 

St ress Rate ShaEe 

N2 ., and N3, i are identical to plane strain 
, I 

functions are identical except r replaces x, 

Functions 
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where 

Q.T 11 1 - el r • , 

QT31 ,2 - elr 

QT13 ,3 - e/r 

Q133 ,4 - e/r • 

QT22 ,5 - 1 • 

QT 33 , 7 - - ez Ir 

QT33 ,8 - ez/r • 

QT11 ,10 - Z • 

QT22 ,lO·z. 

QT1 ~,_11 - ezl r 

QT 11 ,12 - (r-e)/e 

QT22 ,12 - (2r-e)/e • 

QT31 ,13 - (r-c)/c • 

QT13 ,14 - (r-e)/e • 

QT33 ,14 - -z(2r-e)/rc 

QT
33

• 15 • (r-c)fc -
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where c is chosen to improve the condition of matrix [H]. {3 x 3} 

Gaussian quadrature was used on this element. The constant c was 

assigned as the value of r at the center quadrature point on each 

element. 
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APPENDIX D 

. TABLES 

Table 1. Critical Configurations in Plane Extension 

N- 1+ 

2a3/a 1 a' 2a3 T22 T33 
o 0 c c e c 

2 3.6191 13.9342 584.79 1173·34 

3 3.7800 20.0053 564.15 1132.54 
~ 

4 3.8388 26.2625 556.25 1116.87 
~ 

N-B 

2 4.0714 12.3385 322.63 646.19 ~ 

-

!,:2852 17.5819 
~ 

3 311. 39 623.93 

4 4.3533 23.0741 307.26 615.77 

~ 

-

---
Tab Ie 2. Configuration for Parameter Study 

~ 

-

" iii 

2a3/a' 1 2a3 T22 T33 a o 0 

-

2 4.0752 12.3271 322.44 645.83 
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Table 3. Data for Figure 29 (8 Noded Element, NT· 21, NW. 6) 

Degrees of 
Mesh Symbo 1 Freedom Eigenvalue 

x 2 c 15 0.5341 
x 3 c 23 0.3221 
x 4 c 31 0.2416 
x 6 c 47 0.1505 

2 x 4 I:l 55 o. 1850 
2 x 6 I:l 83 O. 1259 
2 x 8 I:l 111 0.0957 
2 x 10 I:l 139 0.0772 

3 x 6 0 119 0.0925 
3 x 8 0 159 0.0703 
3 x 10 0 199 0.0568 
3 x 12 0 239 0.0476 

4 x 9 0 233 0.0495 

Table 4. Data for Figure 30 (4 Noded Element, NT • 1 3, NW - 3 ) 

Degrees of 
Mesh Syrri>o 1 Freedom Eigenvalue 

2 x 6 c 29 0.3732 
2 x 8 c 39 11.2843 
2 x 10 c 49 22.6500 

3 x 6 I:l 41 27.1690 
3 x 9 I:l 62 0.1777 
3 x 12 i> 83 2.7302 
3 x 15 .! 104 5.4067 

4 x 8 0 71 9.5265 
4 x 12 0 107 0.1059 
4 x 20 0 179 1.8974 

5 x 10 0 109 4. 1738 
5 x 15 0 164 0.0706 
5 x 20 0 219 0.4415 
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Table 5. Data for Ftgure 31 (4 Noded Element, NT • 13, NW • 1) 

Degrees of 
Mesh Symbol Freedom Eigenvalue 

3 x 6 tJ 41 633.077 
3 x 9 c 62 316.414 
3 x 12 c 83 228.714 
3 III: 15 c 104 197.089 
3 x 18 c 125 185.583 

4 x i ~ 71 237.617 
4 x 12 A 107 117.908 
4 x 16 A 143 80.444 
4 x -20 A 179 68.967 

5 xl0 0 109 107.518 
5 x 15 0 164 49.623 
5 x 20 0 219 35.078 

Table 6. Necking Eigenva1ue--(2 x 6 Mesh, 4 Noded Elements) 

NW • 1 

NW • 3 

NW - 4 

NW • 6 
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NT • 13 

1253.19 

0.3732 

0.3732 

0.3732 

NT • 21 

1253. 19 

0.3732 

0.3732 

0.3732 

~ 
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Table 7. Data for Figure 32 (4 Noded Element, NT • 5, NW • 1) 

Degrees of 
Mesh Syntlo 1 Freedom Eigenvalue 

2 x 4 c 19 1 .0948 
3 x 6 c 41 0.4043 
4 x 8 c 71 0.2074 
5 x 10 c 109 o. 1269 
6 x 12 c 155 0.0862 

2 x 8 ~ 39 -1.2258 
3 x 12 ~ 83 -0.2204 
4 x 16 ~ 143 -0.0426 
5 x 20 ~ 219 0.0003 
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Corrections to 

"Analysis of Large Quasistatic Deformationsof 
Inelastic Solids by a New Stress Based Finite Element Method" 

p. 17, last line: 
replace "£ (X,T)" by "£(!,T)". 

p. 20, equation (3.26): 
replace "0" by "2". 

p. 27, equation (3.52)~ 

replace It d; " by a~ Ii • 

. p. 43, 8th line from page bottom: 
replace "In any case" by "In the case of solids without a 
na-tural time" 
5th line from page bottom i 
replace "so the choice" by "so then the choice". 

p. 91, last line: 
replace "v" by "W". 

p. 225, 3rd line from bottom of page: 

replace II\.I2l n and "lJ 31" by "),21,, and "A 31 .. , respectively. 

244 



- .. 

REPORT DOCUMENTATION PAGE 
Form Approved 

OMB No. 0704-0188 

Public reporting burden lor this collection 01 inlOfmation Is estimated to average 1 hour per response, Including the time lor mvlewing Instructions, searching existing data sources, 
gathering and maintaining the data needed, and compiatlng and reviewing the collection of informellon. Send comments regarding this burden estimate Dr any other aspect 01 this 
collection 01 information, Including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson 
Davis Highway, Suhe 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Peperworl< Reduction Project (0704-0188), Washington, DC 20503. 

1. AGENCY USE ONLY (Leave blank) 12. REPORT DATE 13
. 

REPORT TYPE AND DATES COVERED 

1992 Final Contractor Report 
-. 

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS 

Analysis of Large Quasistatic Deformations of Inelastic Solids 
by a New Stress Based Finite Element Method 

WU-590-21-11 

6. AUTHOR(S) G-NAG3-38 

Kenneth W. Reed 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION 
REPORT NUMBER 

Georgia Institute of Technology 
Atlanta, Georgia 30332 

9. SPONSORING/MONITORING AGENCY NAMES(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING 
AGENCY REPORT NUMBER 

National Aeronautics and Space Administration 
Lewis Research Center NASA CR-] 89235 
Cleveland, Ohio 44135-3191 

11. SUPPLEMENTARY NOTES 

Project Manager, c.c. Cham is, Structures Division, NASA Lewis Research Center, (216) 433-3252. This report was submitted 
by Kenneth Wayne Reed as a thesis in partial fulfillment of the re!juirementsfor the degree Doctor of Philosophy in Civil 
Engineering to Georgia Institute of Technology, Atlanta, Georgi,!:-

128. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE 

Unclassified - Unlimited 
Subject Category 39 

13. ABSTRACT (Maximum 200 words) 

A new hybrid stress finite element algorithm suitable for analyses of large quasistatic deformation of inelastic solids 
is presented. Principal variables in the formulation are the nominal stress rate and spin. The finite element equa-
tions which result are discrete versions of the equations of compatibility and angular momentum balance. Consis-
tent reformulation of the constitutive equation, and accurate and stable time integration of the stress are discussed at 
length. Examples which bring out the feasibility and performance of the algorithm conclude the work. 

14. SUBJECT TERMS 15. NUMBER OF PAGES 

Hybrid element; Kinematic dynamics; Hypoelastic; Yield surfaces; Plastic bodies; 
254 

16. PRICE CODE 
Viscoplastic bodies; Uniqueness; Stablility criteria; Initial value A12 

17. SECURITY CLASSIFICATION 18_ SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT 
OF REPORT OF THIS PAGE OF ABSTRACT 

Unclassified Unclassified Unclassified 

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89) 
Prescribed by ANSI Std. Z39-18 
298-102 

.y u.s. GOVERNMENT PRINTING OFFICE: 1~92 - 750-034/00309 




