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ABSTRACT

This report covers research conducted during the first year of the two-

_ear grant. The research, entitled "Application of Lanczos Vectors to Control

Design of Flexible Structures" concerns various ways to obtain reduced-order

" mathematical models for use in dynamic response analyses and in control design

: studies. This report summarizes research described in the following reports and

papers that were written under this contract.

• Su, Tzu-Jeng, A Decentralized Linear Quadratic Control Design Method

for Flexible Structures, Ref. [5]

• Su, Tzu-Jeng, and Craig, Roy R. Jr., "Controller Reduction by Preserving

Impulse Response Energy," Ref. [7]

• Su, Tzu-Jeng, and Craig, Roy R. Jr., "Substructural Controller Synthe-

sis," Ref. [S]

• Su, Tzu-Jeng, and Craig, Roy R. Jr., "Substructuring Decomposition and

Controller Synthesis," Ref. [9]

• Craig, Roy R. Jr., and Su, Tzu-Jeng, "A Review of Model Reduction

Methods for Structural Control Design," Ref. [10]

• Su, Tzu-Jeng, and Craig, Roy R. Jr., A Decentralized Linear Quadratic

Control Design Method for Flexible Structures, Ref. [11]

• Craig, Roy R. Jr., "Recent Literature on Structural Modeling, Identifi-

cation, and Analysis," Ref. [12]
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Chapter 1

INTRODUCTION

This report summarizes research accomplished during the first year of a

two-year grant on the topic of the application of Krylov and Lanczos vectors

to the control of flexible structures. Under a previous contract with NASA-

JSC, entitled "Application of Attachment Modes in the Control of Large Space

Structures," [1] Lanczos vectors, and the closely-related Krylov vectors, were

first applied to problems related to the control of flexible structures. Results of

this research were published in Refs. [2-4], where the use of Krylov vectors as

basis vectors and the concept of parameter-matching were combined together to

develop Krylov model-reduction algorithms. Algorithms for generating Krylov

vectors for general linear systems and for undamped and damped structural

systems are presented in these references.

The design of a controller based on a reduced-order system model can

lead to three types of control energy spillover: control spiIlover, observation

spillover, and dynamic spillover. The combined effect of the three types of

spillover usually degrades the performance of the controller, when it is applied

to the full order system, and may even destabilize the closed-loop system. In

Refs. [2-4] it is shown that, if model reduction and controller design are based

on a Krylov model, then the control and observation spillover terms can be

eliminated while leaving only the dynamic spillover to be considered.



2

The goalsstated for researchunder the presentgrant are:

1. To developa theory of reduced-order modeling of general linear systems

based on the use of Lanczos vectors, and to apply the theory to the

modeling of flexible structures.

2. To address numerical issues that arise in the application of Lanczos vec-

tors to reduced-order modeling, e.g., sensitivity to choice of starting vec-

tors, loss of orthogonality, etc.

3. To develop control system design techniques employing Lanczos modeling

of the controlled and residual systems, considering relevant issues such

as stability of the closed-loop system, spillover, robustness, and compu-

tational requirements.

4. To apply Lanczos-based control system design to general typical prob-

lems, e.g., optimal co-located velocity feedback, dynamic output feed-

back, optimal control of finite-time slewing of a beam, etc.

Much of the research on topics listed under the first two goals above was

actually conducted just prior to the start of the present grant and is summarized

in Ref. [1]. A theory of reduced-order modeling of general linear systems and

of damped and undamped structures (Goal 1) was developed in Ref. [2-5].

Steps that may be taken to address several numerical issues that arise in the

application of Lanczos vectors to reduced-order modeling (Goal 2) are described

in Ref. [6].
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Researchthat addressesGoals3 and 4, the developmentof control system

designtechniquesemploying Lanczosvectors, and the application of Lanczos-

based control system design, is described in Refs. [3,5,7-11]. Three major

topics were studied: the developmentof a controller reduction method based

on Krylov vectors [7], substructuring decompositionand controller synthesis

[8,9], and a comparisonof Krylov-based model reduction with other model-

reduction techniques[10]. This researchis fully describedin Refs. [5,11], and

abstractsof the major publishedpapersareincludedin Chapter2 of this report.

The preparation of asurveychapterentitled "RecentLiterature on Struc-

tural Modeling, Identification and Analysis" [12]wassupported, in part, by the

presentgrant.

Finally, Chapter 3 outlinesseveraltopics to bestudied during the second

year of this project.



Chapter 2

ABSTRACTS OF TECHNICAL PAPERS

2.1 Controller Reduction by Preserving Impulse Re-

sponse Energy (Ref. 7)

This paper presents a controller reduction method that is based on a

projection subspace called a KryIov subspace. The Krylov subspace is generated

by a Krylov recurrence procedure. The reduced-order controller is called an

Equivalent Impluse Response Energy Controller (EIREC) because it has the

same impulse response energy as the full-order controller.

The plant to be controlled is described by the standard first-order state-

space form
i, = Az + Bu + Nw

(2.1)
y = Cz+v

The full-order controller to be reduced is described by

= Eq + Fy
(2.2)

u =Gq

The impulse response energy is defined as the L 2 energy norm of the impulse

response of the controller

$ = IIHII_2 = tr[ HTHdt] (2.3)

where H = GeEtF is the impulse response of the controller. It is shown that

the impulse response energy can further be expressed as

$ = tr[fo _ F TeErtGTGeEtF dt]= tr[FTWoF] (2.4)

4



Or, equivalently,

$ = tr[f0 °_ GeEtFFTeErtGT dr] = tr[GWcG T]
(2.5)

Choose La

Li+l = MLi

The first algorithm uses M = E -1 and La

(2.6)

= F and normalizes the

vectors Li with respect to the observability grammian Wo. The projection

subspace is formed as L = ILl L2 ...], which satisfies LTWoL = I. The L

subspace is then partitioned into two subspaces L = [LR Lr] with subspripts n

and T denoting the retained portion and the truncated portions, respectively.

The reduced-order controller is described by

= + PRY

u = (]'R_]R (2.7)

where q = LR(I, and where the reduced controller system matrices are given by

ER = LTWoELR, FR = LTWo F, and GR = GLR. The FR matrix has nonzero

elements only in the first block.

where Wo and Wc are the observability and controllability grammians.

Two algorithms for generating projection subspaces for controller sys-

tem transformation are presented. One algorithm generates a subspace which

normalizes the controllability grammian, and the other normalizes the observ-

ability grammian. The controller is transformed to new coordinates called

normalized grammian coordinates by using the projection subspaces. Con-

troller reduction is based upon the representation in the new coordinates. The

subspace-generating algorithm is a recursive process with either the F matrix

or the G T matrix as the starting block of vectors. The recursive process is a

Krylov recurrence procedure which can be summarized by
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The secondalgorithm usesM = E -T and L1 = G T and normalizes the

vectors L; with respect to the controllability grammian. The reduced-order

controller system matrices are given by /_R = LTREWcLR, _'R = LrRF, and

GR = GWcLR. The OR matrix has nonzero elements only in the first block.

Both algorithms are useful for constructing reduced-order controllers.

The preference depends on the number of actuators and the number of sensors.

The algorithms proposed and the reduced-order controllers obtained have the

following useful properties.

Property 1: The subspace L is both controllable and observable. If the algo-

rithm terminates before n vectors are generated, then the full-order controller

is not minimal. A minimal optimal controller can be produced by projecting

the full-order controller onto the L subspace.

Property 2: The reduced-order controller is asymptotically stable if the full-

order controller is controllable or observable.

Property 3: If the reduced-order controller is asymptotically stable, then it

has the same impulse response energy as the full-order controller.

Property 4: The reduced-order controller matches a set of system param-

eters. This set of parameters includes the so called low-frequency moments

and low-frequency power moments. The low-frequency moments are defined

as GE-iF, i = 1, 2, .... The low-frequency power moments are defined as

FT(ET)-iWoE-JF, and GE-iW,(Er)-JGT, i,j = 1, 2, ....

Two examples drawn from other controller reduction literature are used

to test the proposed controller reduction method. The Equivalent Impulse Re-

sponse Reduction Algorithm can produce closed-loop system designs with good



performance. Computationally, the proposedmethod is economicalcompared

with the other controller reduction methods.

2.2 Substructuring Decomposition and Controller Syn-

thesis (Refs. 8,9)

This paper presents a decentralized control design process called Sub-

structural Controller Synthesis (SCS). A natural decomposition called sub-

structuring decomposition is used to decompose a flexible structure into several

substructures. Then, the linear quadratic optimal control design is carried out

to design a subcontroller for each substructure. The final controller for the

assembled structure is a global controller, which is assembled from the subcon-

trollers by using the same assembling scheme as that employed for structure

matrices.

Although the method can be applied to structures with more than two

substructures, for simplicity a two-component structure is used to demonstrate

The equations of motion of the two substructures are repre-the formulation.

sented by

Mixi + Dixi + Kixi = Piul
i = a, fl (2.8)

yi = V_xi + W_&

The dynamics of the the assembled structure (the structure as a whole) is

described by
M?c + DJc + Kx = Pu

(2.9)
y = Vx + W]c

It is shown that there exists a coupling matrix T which relates x_, xz, to x as

follows:
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and the systemmatrices of the substructures and assembled structure satisfy

op_' v= ov T, W= w T

T

(2.11)

For control design purposes, the equations of motion are rewritten in the

following first-order forms:

DM k 0 x 0.] u

(2.12)

y = [u w] _

or

Sk = Az + Bu
(2.13)

y = Cz

for the assembled structure. Similarly, the equations of motion of substructures

can be represented by

Sizi ---- Aizi -{- Biul
i = c_, /3 (2.14)

Yi = Cizi

Combination of the two substructure equations above gives the first-order equa-

tion of motion of the unassembled structure

_ = A_+ _u

y=_,_ (2.15)

with the system matrices in the following block diagonal form

o
and



It canbe shownthat the systemmatricesof the unassembledstructure and the

assembledstructure satisfy

S = _T_ A = _bTA_ b B = _T/_ C = (_T (2.16)

with
T_ 0

_= 0 To
Ta 0
0 T_

The control design method is the LQG theory with the performance

indices

1 _,.
J_ = lim -E[Sc_Mi_i +

t-.o_ 2
x_,Mix, + uTR,u,] i = a, fl (2.17)

for substructures being minimized. The subcontroller is in the form

Siili = (Ai + BiG ° - F°Ci)qi + F°yi

ui = G° ql
i = a, /3 (2.18)

with F f and G ° the optimal control gain and optimal filter gain matrices. In

a more compact form, the controller equation for the unassembled system is

written as

_q = (_i+ be ° - ko_)4 + koy

= _°i
(2.19)

with

[ ]Qo 0 po F 2 0 (2.20)= ' = oF2
The unassembled closed-loop system is an optimal control system since each

subcontroller is optimal for its associated substructure.

The last step is to assemble the subcontrollers by using the same coupling

scheme as that used for assembling the substructures. The assembled controller
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for the assembledstructure is representedby

S(1 = (A + BG _ - F_C)q + F*y

u = GCq

with

(2.21)

F _ = 5pT_O, G® = _o_ (2.22)

where superscript _ denotes that the controller is not optimal but is considered

as suboptimal.

One advantage of using Substructural Controller Synthesis to design a

controller is that an SCS controller is highly adaptable. For a structure with

varying configuration or varying mass and stiffness properties, like some space

structures, the Substructural Controller Synthesis method may be especially

efficient. The SCS controller can be updated economically by simply carrying

out redesign of subcontrollers associated with those substructures that have

changed. On the other hand, for a controller based on a centralized design

scheme, a slight change of the structure may require a full-scale controller

redesign.

An LQGSCS Algorithm is presented in the paper to summarize the Sub-

structural Controller Synthesis procedure. Also a two-component planar truss

structure with non-colocated actuators and sensors is used to demonstrate the

applicability of the proposed method.

2.3

reviewed.

A Review of Model Reduction Methods for Struc-

tural Control Design (Ref. 10)

In this paper, several frequently used model reduction methods are briefly

The methods reviewed include: modal truncation, balanced model
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reduction, balancedgain approach,Krylov model reduction, and Ritz vectors

and mixed-modemethod.

Among a myriad of existing model reduction methodsfor structural dy-

namicssystems,modal truncation may be the mostpopular approach.A modal

representationhas many advantages:modal frequenciesrepresentresonances

of the structure, equationsof motion are uncoupledimplying a savingof com-

putation time, and modal data can be identified and validated by vibration

test. However,selectionof modesto be retained in the reducedmodel may not

be an easy task. The simplest approachwould be to include all modeswithin

the frequencyrangeof interest. For a largespacestructure with closely-spaced

frequencies,this simplest approachmay produce a reducedmodel whosesize

is still too large to handle.

An efficientmodal truncation criterion is basedon balancedsingular val-

ues. If the structure frequenciesaresufficiently separatedand modal damping

is very small, then modal representationof a structural dynamics system is

approximately balanced.The approximate balancedsingular valuesare calcu-

lated by
/ "r/ T

+ ),_wTwi)Vp,p:tv:,,,
4(iA_ (2.23)

where Pi is the i-th row of force distribution matrix, vi and wi are the /-th

columns of the displacement and velocity sensor distribution matrices, and

Ai and rh are the/-th modal frequency and damping ratio. Balanced model

reduction is performed on modal coordinates.

Other than balanced singular values, balanced gains also can serve as a
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basisfor modal truncation. Balancedgains aredefinedas

g_ = hi (2.24)

The balanced gain approach is an optimal modal truncation method in the L 2

sense. It is closely related to the modal cost analysis.

In addition to normal modes, there are other Ritz vector superposition

methods for dynamic analysis of structures. In Ref. [4], Su and Craig presented

a Ritz vector method called Krylov model reduction. Krylov Vectors are system

static modes generated by a recurrence procedure. For undamped structural

dynamics systems, the Krylov procedure is

Qj+_ =K-1MQj (2.25)

For damped systems, the Krylov procedure is

Krylov reduced models match a set of system parameters called low-frequency

moments.

Other than using only normal modes or only Ritz vectors, a mixed-mode

method combines some dominant normal modes and some static modes in the

basis for model reduction. Static modes are a system's deflection shapes associ-

ated with imposed force distribution vectors. Krylov vectors can be considered

to be system static modes. Recently, several numerical experiments have shown

that by augmenting a modal basis with some Ritz vectors, fidelity of the re-

duced model can be substantially improved [13].
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In this paper, a plane truss structure with closely-spaced frequencies and

light modal damping is used to compare different reduced-order models. Open-

loop comparison includes the L 2 error norm of the impulse response function

and approximation of the output frequency response function. The control de-

sign comparison includes closed-loop stability and control performance. For the

example studied, the balanced gain approach produces reduced-order models

that approximate the impulse response better than any other truncation cri-

terion. However, for closed-loop comparison, modal truncation by preserving

the lowest frequency modes yields more stable closed-loop designs than other

methods.

2.4 Recent Literature on Structural Modeling, Identi-

fication, and Analysis (Ref. 12)

This paper, which surveys literature from 1980 to the present related to

the topics of modeling, identification, and analysis of large space structures,

provides a list of over 240 references. The topic of "Mathematical Modeling of

Large Space Structures" includes sections dealing with the following subjects:

• Continuum Models

• Model Order Reduction

• Substructuring; Component Synthesis

• Computational Techniques

• Waves vs Modes
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• Localization: Local vs Global Behavior

• Nonlinearity: Joints

• Damping

• Modeling Errors and Parameter Uncertainty

Under the topic "System Identification; Model Verification and Model

Updating" the following subjects are surveyed:

• Experimental Modal Analysis

• Model Verification: Model Error Localization and Model Updating

• Scale Modeling of Large Space Structures

• Damage Detection

• On-Orbit System Identification



Chapter 3

PROJECTED FUTURE WORK

During the second year of this project, the research will continue to focus

on investigation of important issues in structure/control interaction problems,

and will specifically focus on the following topics:

1. To address stability issues in substructure-based control design, and to

develop an augmented global controller in order to reduce the influence of

the substructures on each other in the closed-loop system, such that sta-

bility and performance of the substructure-based controllers is enhanced.

2. To develop a reduced-order observer in second-order form, which is to be

used as the feedback basis in the control design for large scale structural

dynamics systems.

3. To incorporate the Krylov model reduction and component mode syn-

thesis method with the substructural control design approach, and to

illustrate the feasibility and efficiency of the Substructural Controller

Synthesis method when it is used to design controllers for practical large

flexible space structures.

4. To apply the Krylov model reduction and the substructural controller

synthesis method to the controller design for multi-flexible-bodies and

15
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articulated mechanicalsystems,which involve reduced-ordermodeling,

precision-pointing,and vibration suppression.
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