This invention is a semi-interpenetrating polymer network which includes a high performance thermosetting polyimide having a nadic end group acting as a cross-linking site and a high performance linear thermoplastic polyimide having the following repeating unit.

\[
\begin{array}{c}
\text{O} \\
\text{N} \\
\text{Z} \\
\text{N} \\
\text{O} \\
\text{C}
\end{array}
\]

wherein \(Z = \text{C} \) or \(\text{SO}_2 \).

Provided is an improved high temperature matrix resin which is capable of performing in the 200\(^\circ\) to 300\(^\circ\) C. range. This resin has significantly improved toughness and microcracking resistance, excellent processability, mechanical performance and moisture and solvent resistances.

7 Claims, 1 Drawing Sheet
CONCEPT OF SEMI-INTERPENETRATING POLYIMIDE NETWORK SYNTHESIS

Addition type thermosetting polyimide
- Easy to process
- Brittle

Condensation type thermoplastic polyimide
- Difficult to process
- Tough

Semi-IPN
- Easy to process
- Tough
TOUGH HIGH PERFORMANCE COMPOSITE MATRIX

SUMMARY OF THE INVENTION

It is a primary object of the present invention to provide a resin that combines the properties of toughness, strength, and thermal and oxidative stability.

DESCRIPTION OF THE PREFERRED EMBODIMENTS

The concept of the high performance semi-IPN synthesis is shown in the single Figure of the drawing. One or more easy-to-process, but brittle thermosetting polyimides are combined with one or more tough, but difficult-to-process thermoplastic polyimides to form a semi-IPN polyimide having a combination of several desirable properties, including easy processability, damage tolerance, good mechanical performance, and good thermo-oxidative stability. In the present invention, the combination of desired properties is achieved by controlling factors which include (1) careful selection of constituent polymer components, (2) composition variation of the constituent materials, (3) processing parameters, and (4) thermodynamic and chemical kinetics variables to control the phase morphology and phase stability. Each of these factors is discussed in detail in the following paragraphs.

The selection of the constituent thermosetting and thermoplastic polyimides is based primarily on their processing and property compatibility. The processing parameters considered of particular importance are solubility in a common organic solvent and compatible cure cycle. Further, these polymers must have comparable glass transition temperature, mechanical performance, and thermo-oxidative stability.

The semi-IPN of this invention comprises (1) a PMR polyimide, which contains a nadic end group acting as a crosslinking site and a high performance semi-crystalline thermopolyimide having the following repeating units:

\[
\text{wherein } Z \text{ is either a carbonyl (O=\(-\)) or sulfonyl (SO_2) linking group. The polyimide having a carbonyl linking group has been generally known as LaRC-TPI, and the other is called polyimidesulfone (hereinafter referred to as PISO_2). A number of additional, especially-preferred embodiments are found in the following Detailed Description of the Invention.}
\]
of monomer reactant (PMR) process as set forth in U.S. Pat. No. 3,745,149, and (2) a LaRC-TPI or PISO₂.

Several nadic end-capped PMR-polyimides are considered compatible with both LaRC-TPI and PISO₂ polyimides and, therefore, can be used in this invention. These include (1) the polyimide of U.S. Pat. No. 3,745,149, particularly preferred being the polyimide commonly known as PMR-15 which is synthesized according to the following reaction equation:

\[
\begin{align*}
\text{Monomer reactants} & \\
2 \left[\begin{array}{c}
C=O \text{H} \\
\text{OCH₃}
\end{array} \right] + (n+1) \left[\begin{array}{c}
\text{H₂N} \\
\text{C₆H₄} \text{H} \\
\text{NH₂}
\end{array} \right] + n \left[\begin{array}{c}
\text{H₃C} \text{O} \text{C} \\
\text{OCH₃}
\end{array} \right] \\
\rightarrow \Delta \text{NE} & \\
\rightarrow \Delta \text{MDA} & \\
\rightarrow \Delta \text{BTDE}
\end{align*}
\]

Prepolymer

\[
\begin{align*}
\Delta \text{Pressure} & \\
\rightarrow \text{PMR-15}
\end{align*}
\]

(3) the polyimide made from four monomers having the following formulas:

where \(n = 2.87 \); (2) the polyimide of U.S. Pat. No. 4,569,988, particularly preferred being the polyimide prepared from four monomer compounds having the following formulas:

\[
\begin{align*}
\text{NE} & \\
\text{MDA} & \\
\text{MDA} & \\
\text{BTDE} & \\
\text{PE}
\end{align*}
\]
(4) the polyimide made from three monomers having the following formulas:

(5) the polyimide made from three monomers having the following formulas:

(6) the polyimide made from three monomers having the following formulas:

The LaRC-TPI materials are commercially available from Mitsui Toatsu Chemicals, Chiyoda-ku, Tokyo, Japan in at least three forms: (1) polyamic acid as a 30 weight percent solution in N,N-dimethylacetamide (DMAc), (2) fully imidized polyimide powder, and (3) a new version with controlled molecular weight 1500 series powders.

The polyamic acid and polyimide can also be prepared as set forth in U.S. Pat. Nos. 4,094,862 and 4,065,345 according to the following reaction:
Similarly, the PISO₂ materials can be purchased from High Technology Services Inc. Troy, New York in two forms: polyamic acid as a 30 weight percent solution in diglyme, and fully imidized polyimide powder. These materials can also be prepared as set forth in U.S. Pat. Nos. 4,398,021 and 4,489,027 according to the following reaction:
PISO₂ polyimide

The composition of the constituent thermosetting and thermoplastic polyimides significantly affects many aspects of the processing, properties and morphology of the semi-IPN. It has been found that increasing the concentration of the thermoset component increases the processability and performance of the semi-IPN, but at a cost of decreasing toughness characteristics. While the weight ratio of the PMR polyimide to LaRC-TPI or PISO₂ can be varied from 95:5 to 5:95, the ratio between 80:20 to 20:80 is preferred. However, the ratio of 80:20 is particularly preferred because this composition offers the best overall balance of processing, performance and cost effectiveness.

The synthesis of the present semi-IPN can proceed in two major ways: simultaneous and sequential. In the former, the uncrosslinked PMR prepolymers are combined with the monomer precursors of the LaRC-TPI or PISO₂. With application of heat, the PMR prepolymers are allowed to crosslink in the immediate presence of the thermoplastic polyimide undergoing simultaneous linear chain extension. This synthesis can lead to a network in which one polymer interlocks with the other prepolymers, forming permanent entanglements at the interfacial regions of the two polymer systems. The resulting physical crosslinking provides synergistic properties. This synthesis is designed so that the constituent polymers are formed independently without any chemical interference between the precursors of the thermosetting and thermoplastic polyimides. The sequential method involves a process in which one polymer is synthesized and/or crosslinked in the immediate presence of the other which has been prepolymerized. There are two sequential semi-IPNs: semi-1-IPN and semi-2-IPN. The former is prepared by polymerizing a linear polymer in a crosslinked network. The reverse sequence results in a semi-2-IPN. In this invention, the semi-2-IPN method is preferred, because it offers easier processing, better performance and less phase separation, as compared with the simultaneous approach. There is yet another synthetic method which is non-conventional. This method involves mixing the monomers of the thermosetting component with the monomers of the thermoplastic component and allowing the monomers to react randomly to form a simultaneous semi-IPN. The inter-reaction between monomers of the thermoset and thermoplastic occurs, which results in a semi-IPN significantly different in chemical structure and properties from those prepared by the previous methods.

A method to control the phase morphology and phase stability has been investigated. It involves the addition of 0.1 to 5 weight percent of NE into the LaRC-TPI monomer precursors. To this mixture, the uncrosslinked PMR prepolymers are added. The concept involves lightly end-capping the LaRC-TPI with a nadic group to form a nadic end-capped LaRC-TPI polyimide. Through the common nadic end group, the nadic end-capped LaRC-TPI is then crosslinked with the PMR polyimide to give a graft copolymer upon heating. This reaction is shown below, wherein \(n_1 = 20\) to 55 and \(\Delta n_2 = 2.987\), and wherein \(X:Y = 80:20\) to 20:80.
Because of chemical bonding between the constituent polymers, the resultant graft copolymer exhibits less phase separation and better long term phase stability, as compared with the physically crosslinked semi-IPNs prepared by the previous methods.

The semi-IPN polyimide of this invention is adapted for use as a composite matrix, and as an adhesive and molding compound suitable for aerospace structural application in the 200° to 300° C. temperature range.

The following are examples that illustrate preparation and use of the semi-IPNs for application in advanced composites, structural adhesives and molding articles. However, it is to be understood that the examples are merely illustrative and intended to enable those skilled in the art to practice the invention in all of the embodiments flowing therefrom and do not in any way limit the scope of the invention as defined in the claims.

EXAMPLES

EXAMPLE 1

Preparation of PMR-15 Prepolymer

To 51.949 g of a 50 weight percent methanol solution of dimethyl ester of 3,3',4,4'-benzophenonetetraacarbonyl acid (BTDE) (25.9 g, 0.0673 mole) was added 19.72 g (0.0996 mole) of 4,4'-methyleneedianiline (MDA), 12.6 g (0.0645 mole) of monomethyl ester of 5-norbornene-2,3-dicarboxylic acid (NE) and 32.5 g of anhydrous methanol. The mixture was stirred at room temperature for one-half hour to give a brown PMR-15 molding powder. The PMR-15 molding powder was soluble in anhydrous methanol. The mixture was stirred at room temperature for two hours, followed by drying at 100° C. in air for two hours, and then stirring at 150° C. in air for one and one-half hours to yield a brown PMR-15 molding powder. The PMR-15 molding powder was soluble in NMP, dimethylformamide (DMF), and N,N-dimethylacetamide (DMAc). Its DSC scan showed one endotherm at about 221° C., which is due to the melt-flow of PMR-15 molding powder. This molding powder was subsequently used to prepare the semi-IPN molding compounds and composites to be described in the following examples.

EXAMPLE 2

Preparation of Semi-2-IPN of PMR-15 and LaRC-TPI (LaRC-RP41)

To 18.5600 g of the above PMR-15 preimidized molding powder was added 15.4667 g of the 30 weight percent LaRC-TPI polyamic acid solution in DMAc. The solution was concentrated in an oven at 150° C. under vacuum (30 inch Hg) for one hour. After 50 hrs at 100° C. and one hour. The temperature was further increased to 350° C. at a rate of 4° C./minute. The neat resin was cured at 350° C. for 5 minutes under 2000 psi pressure. This step was done to melt the LaRC-TPI crystals in order to enhance the melt-flow properties of LaRC-TPI. The 350° C. heat treatment irreversibly eliminates crystallinity in the material. When the die cooled to room temperature, the neat resin was removed from the press. This afforded a neat resin having dimensions of 3.2 cm by 3.2 cm by 1.0 cm. The optical microscopic examination of the cross-section of the neat resin showed no detectable voids or defects. The resin was then accepted for impact tension specimen preparation without further post-curing. However, for other test specimens, the cured resin was subjected to a post-curing at 316° C. for 16 hours in air.

Table 1 gives the results of the morphological studies of the LaRC-RP41 neat resin and composite.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Glass Transition</td>
<td>261, 325</td>
<td>327</td>
<td>257</td>
</tr>
<tr>
<td>Temperature, °C</td>
<td>476</td>
<td>87</td>
<td>662</td>
</tr>
<tr>
<td>Toughness, G,J/m²</td>
<td>10.6</td>
<td>8.0</td>
<td>—</td>
</tr>
<tr>
<td>Isothermal Weight Loss, %</td>
<td>40%</td>
<td>3.0</td>
<td>—</td>
</tr>
<tr>
<td>Resistance, %</td>
<td>74.0</td>
<td>99.0</td>
<td>—</td>
</tr>
<tr>
<td>Solvent Resistance</td>
<td>4.9</td>
<td>6.7</td>
<td>2.1</td>
</tr>
<tr>
<td>Alkali Weight Loss %</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

*By TMA;
†By ASTM E396;
‡By TGA at a heating rate of 2.5° C./min in air;
§4 weeks in water at 25° C.;
*80 hrs in boiling N,N-dimethylformamide;
†Tested by present inventor;
‡Reported by R. A. St. Clair and N. L. St. Clair, NASA 84516 (1982).

TABLE 2

Phase Morphology and Stability of Semi-IPN of PMR-15 and LaRC-TPI (LaRC-RP41)

<table>
<thead>
<tr>
<th>Method</th>
<th>Neat Resin</th>
<th>Composite</th>
</tr>
</thead>
<tbody>
<tr>
<td>Used</td>
<td>As Fabricated</td>
<td>Aged</td>
</tr>
<tr>
<td>OM</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>SEM</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>DMA</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>TMA</td>
<td>—</td>
<td>One phase</td>
</tr>
</tbody>
</table>
TABLE 2-continued

<table>
<thead>
<tr>
<th>Method</th>
<th>Neat Resin</th>
<th>Composite</th>
</tr>
</thead>
<tbody>
<tr>
<td>DSC*</td>
<td>Two phases</td>
<td></td>
</tr>
</tbody>
</table>

*Surfaces extracted by N,N-dimethylformamide at 153 °C for 100 hrs.

1600 hrs at 316 °C in air.

1400 hrs at 316 °C in air.

Dynamic Mechanical Analysis, TMA = Torsional Braid Analysis, TMA = Thermal Mechanical Analysis and DSC = Differential Scanning Calorimetry.

No phase separation detected.

TABLE 4

<table>
<thead>
<tr>
<th>Property</th>
<th>LARC-RP41</th>
<th>PMR-15</th>
<th>LARC-TPI</th>
<th>PMR-15</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glare Transition</td>
<td>332</td>
<td>338</td>
<td>244</td>
<td></td>
</tr>
<tr>
<td>Temperature, °C</td>
<td>4,398</td>
<td>4,398</td>
<td>4,398</td>
<td></td>
</tr>
<tr>
<td>Density, g/cc</td>
<td>1.58</td>
<td>1.58</td>
<td>1.55</td>
<td></td>
</tr>
<tr>
<td>Flexural Strength, KSi</td>
<td>18</td>
<td>17</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>Flexural Modulus, Msi</td>
<td>17</td>
<td>17</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>Interlamellar Shear Strength, Ksi</td>
<td>15.9</td>
<td>16</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>232 °C</td>
<td>9.4</td>
<td>8</td>
<td>6</td>
<td></td>
</tr>
</tbody>
</table>

*By TMA.

**By ASTM D 790.

†By ASTM D 2544.

‡Reinforced with unsized Celion 6000 graphite fibers.

§Tested by present inventor.

¶No postcure, the others postcured at 316 °C for 16 hrs in air.

‖Tested at 316 °C.

**Tested at 177 °C.

EXAMPLE 3

Preparation of Sem-2-IPN of PMR-15 and PISO2

(LARC-RP92)

As in Example 2, a 40 weight percent resin solution was prepared by stirring 43.75 g of the PISO2 polyamic acid solution obtained from High Tech Services as a 30 weight percent solution in diglyme, 52.50 g of the PMR-15 molding powder from Example 1 and 68.30 g of diglyme in an ice-water bath for 3 hours. Initially, the PMR-15 powder appeared to be insoluble in the diglyme solution, but it went into the solution after stirring a single tow of unsized Célicon 6000 fiber. The remaining material was post cured at 316 °C. 16 for 16 hours and then submitted for further testing. Table 3 shows the neat resin properties of LARC-RP92 and its constituent material properties.

TABLE 3

<table>
<thead>
<tr>
<th>Property</th>
<th>LARC-RP92</th>
<th>PMR-15</th>
<th>PISO2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glass Transition</td>
<td>335</td>
<td>402</td>
<td>327</td>
</tr>
<tr>
<td>Temperature, °C.</td>
<td>4,398</td>
<td>4,398</td>
<td>4,489</td>
</tr>
<tr>
<td>Toughness, G, J/m²</td>
<td>322</td>
<td>87</td>
<td>1400</td>
</tr>
<tr>
<td>TGA in Air</td>
<td>465</td>
<td>462</td>
<td>—</td>
</tr>
<tr>
<td>Temperature at 5%</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Wt. Loss, °C.</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Moisture Resistance, g/d</td>
<td>1.2</td>
<td>7.6</td>
<td>—</td>
</tr>
<tr>
<td>Solvent Resistance</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

EXAMPLE 4

Preparation of Célicon 6000/LARC-RP41

As in Example 2, a 30 weight percent resin solution was prepared by mixing 32.50 g of the PMR-15 molding powder, 43.75 g of the LARC-TPI polyamic acid solution and 68.31 g of freshly distilled DMAC. The prepreg was prepared by passing a single tow of unsized Célicon 6000 graphite fiber through the resin solution contained in a dip tank and onto a 12-inch diameter multiple speed drum winder wrapped with release paper. This afforded a 23.5 cm by 190 cm wet prepreg. By visual inspection, the prepreg showed good drape and tack characteristics. The tapes were dried on the rotating drum at room temperature for 16 hours, removed from the drum and cut into 7.6 cm by 17.8 cm plies. Twelve plies were stacked unidirectionally and then staged at 204 °C for one hour in an air-circulating oven. The staged lay-up was placed in a cold matched metal die. This was then inserted into a preheated 316 °C press. A thermocouple was attached to the matched die to determine the temperature. When the die temperature reached 232 °C, 1000 psi pressure was applied. The temperature was raised to 316 °C at a rate of 6 °C./minute. The composite was cured at 316 °C for one hour and 350 °C for one-half hour under 1000 psi pressure, and removed from the press when the die temperature reached 177 °C. The composite was then postcured at 316 °C in air for 16 hours. The ultrasonic C-scan of the composite showed no detectable voids or defects and, thus, the composite was accepted for test specimen preparation.

For comparison purposes, a Célicon 6000/LARC-RP15 composite was also fabricated using the same cure cycle except that 500 psi pressure, instead of 1000 psi pressure, was used, and no further curing at 350 °C was made.

Table 4 compares the composite properties between LARC-RP41 and its constituent materials.

TABLE 5

<table>
<thead>
<tr>
<th>Property</th>
<th>LARC-RP41</th>
<th>PMR-15</th>
<th>LARC-TPI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glass Transition</td>
<td>332</td>
<td>338</td>
<td>244</td>
</tr>
<tr>
<td>Temperature, °C.</td>
<td>4,398</td>
<td>4,398</td>
<td>4,398</td>
</tr>
<tr>
<td>Density, g/cc</td>
<td>1.58</td>
<td>1.58</td>
<td>1.55</td>
</tr>
<tr>
<td>Flexural Strength, KSi</td>
<td>18</td>
<td>17</td>
<td>15</td>
</tr>
<tr>
<td>Flexural Modulus, Msi</td>
<td>17</td>
<td>17</td>
<td>15</td>
</tr>
<tr>
<td>Interlamellar Shear Strength, Ksi</td>
<td>15.9</td>
<td>16</td>
<td>6</td>
</tr>
<tr>
<td>232 °C</td>
<td>9.4</td>
<td>8</td>
<td>6</td>
</tr>
</tbody>
</table>

*By TMA.

†By ASTM D 790.

‡By ASTM D 2544.

§Reinforced with unsized Célicon 6000 graphite fibers.

‖Tested by present inventor.

¶No postcure, the others postcured at 316 °C for 16 hrs in air.

‖Tested at 316 °C.

**Tested at 177 °C.
TABLE 5

<table>
<thead>
<tr>
<th>Property</th>
<th>LaRC-RP41*</th>
<th>PMR-15</th>
<th>PISO2</th>
<th>NASA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glass Transition, °C</td>
<td>325</td>
<td>338</td>
<td>205</td>
<td></td>
</tr>
<tr>
<td>Temperature, °C</td>
<td>1.50</td>
<td>1.58</td>
<td>1.50</td>
<td></td>
</tr>
<tr>
<td>Flexural Strength, Ksi</td>
<td>115.0</td>
<td>268</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25° C</td>
<td>113.0</td>
<td>159</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flexural Modulus, Ksi</td>
<td>12.0</td>
<td>17</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25° C</td>
<td>12.0</td>
<td>13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Interlaminar Shear Strength, Ksi</td>
<td>12.6</td>
<td>16</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>25° C</td>
<td>8.7</td>
<td></td>
<td>8†</td>
<td>7†</td>
</tr>
<tr>
<td>232° C</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

See Table 4 for all footnotes except:
*Reported by the inventors in U.S. Pat. Nos. 4,398,021 and 4,489,027.

EXAMPLE 6

To make a realistic assessment of composite microcracking behavior, a cross-ply composite having a [0,90,0]s layup was fabricated for LaRC-RP41, LaRC-RP92, and PMR-15 as a control. The fabrication of the cross-ply composites follows the same procedure as their unidirectional counterparts described in the previous examples. Specimens (1.5 cm by 0.6 cm by 0.13 cm) were machined from the cured cross-ply composites and were subjected to thermal cycling. The temperature was varied from −156° to 288° C, with a total time of 15 minutes for each cycle. Liquid nitrogen was used as a cooling agent. After 1000 and 1500 thermal cycles the unpolished surfaces were examined by scanning electron microscopy (SEM). Micrographs were taken at both 100 and 2000X magnification. Table 6 shows the composite microcracking properties.

TABLE 6

<table>
<thead>
<tr>
<th>Property</th>
<th>LaRC-RP41*</th>
<th>PMR-15</th>
<th>NASA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Microcracks/in</td>
<td>12</td>
<td>Extensive</td>
<td>50</td>
</tr>
<tr>
<td>316° C Interlaminar</td>
<td>4.5</td>
<td>3.6</td>
<td></td>
</tr>
<tr>
<td>Shear Strength, Ksi</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Moisture Absorption, %</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>As Fabricated</td>
<td>0.7</td>
<td>1.3</td>
<td></td>
</tr>
<tr>
<td>After 1500 Thermal Cycles</td>
<td>1.8</td>
<td>2.4</td>
<td>55</td>
</tr>
</tbody>
</table>

*Thermal cycling temperature from −156° to 288° C;
†Reinforced with unsized Gleen 6000 graphite fibers;
Tested by present inventor;
*1 year in water at 25° C.

EXAMPLE 7

To investigate the relations between resin composition, composite processing, and composite performance, two unidirectional composites were fabricated with the compositions containing 50:50 and 20:80 weight ratios of the PMR-15 molding powder and LaRC-TPI polyamic acid. The composite fabrications follow the procedure of Example 4. Based on the results of the ultrasonic C-scans and composite properties, a correlation exists between the concentration of LaRC-TPI and the ease of semi-IPN composite processing. Increasing the thermoplastic concentration decreases the semi-IPN composite processability and performance.

What is claimed as new and desired to be secured by Letters Patent of the United States is:

1. A semi-interpenetrating polymer network comprising:
 (a) a high performance thermosetting polyimide which is end-capped with a nadic group and
 (b) a high performance linear thermoplastic polyimide having the following repeating unit:

 2. The semi-interpenetrating polymer network of claim 1, wherein the high performance linear thermoplastic polyimide is prepared from a mixture of the following compounds:

 3. The semi-interpenetrating polymer network of claim 1, wherein the high performance linear thermoplastic polyimide is prepared from a polyamic acid precursor having the following repeating unit:
4. The semi-interpenetrating polymer network of claim 1, wherein the thermosetting polyimide is prepared from a mixture of the following compounds:

wherein
\(R_2 \) is hydrogen or alkyl;
\(R_2 \) \(C-OR_2 \)

wherein
\(R_2 \) is hydrogen or alkyl, and
\(R_4 \) is a tetravalent aryl radical; and
\(H_2N-R_3-NH_2 \), wherein \(R_3 \) is a divalent aryl radical.

5. The semi-interpenetrating polymer network of claim 1, wherein the thermosetting polyimide is prepared from a mixture of the following three compounds:

in the molar ratio of 2:n:n+1, wherein \(n \) has a value from 1 to 50.

6. The semi-interpenetrating polymer network of claim 5, wherein \(n=2.087 \).

7. The semi-interpenetrating polymer network of claim 1, wherein the high performance thermosetting polyimide and the high performance linear thermoplastic polyimide are present in a weight ratio between about 80:20 and 20:80.