bl 1 B { il i F

| T

(NASA-CR-184428) ROZ0Y WELDING

PROCESS CONTROL Final Technical

Report, 25 Feb. 1930 - 25 Feb, 1991

(Alabama Univ.) 72 p . Unclas

G3/37 0127406

The University of Alabama in Huntsvill

NASA Report Documentation Page

" ANONY ~ONAICS AC
SUCE ~Orstiaton

1

1. Report No. T 2. Government Accession No. | 3. Recipient's Catalog No.
I
"4 Title ana Subutle _ " 5. Report Data
5 Aug 1991
. Robot Welding Process Control i 8. Performing Organization Code
l B
E
TS Authonts) 8. Performing Organizauon Report No.
: .
% Peter L, Romine 10. Work Unit No.
|
9. Performing Organization Name and Address
' Uni it £ Alab . Hunt 1T 11. Contract or Grant No.
niversity o abama in runtsviile
Electrical and Computer Engineering Department NAS8-36955 DO #75
Huntsville, Alabama 35899 T3 Tve of Report and Period Cavered
. 12 Sponsonng Agency Name and Address Final Technical
' National Aeronautics and Space Administration 25Feb90 - 25Feb9l
" Washi ngton, D.C. 20546-0Q01 14. Sponsoring Agency Code
. George C. Marshal Space Flight Center

|
|
l 15. Supplementary Notes
l
é

16. Abstract o 7

4

This final report documents the development and installation of software and
_hardware for Robotic Welding Process Control. Primary emphasis is on serial
ccommunications between the CYRO 750 robotic welder, Heurikon minicomputer running
|Hunter & Ready VRTX, and an IBM PC/AT, for offline programming and control and

i

‘closed-loop welding control, The requrrements for completion of the implementation
‘of the Rocketdyne weld tracking control are discussed. The procedure for downloading
‘programs from the Intergraph, over the network, is discussed. Conclusions are made
on the results of this task, and recommendations are made for efficient implemen-
‘tation of communications, weld process control development, and advanced process
control procedures using the Heurikon.

17. Key Words (Suggested by Author(s)) 18. Distributicn Statement

]
|
Robotic Welding, serial communications, l
CYRO, HEURIKON, welding control i

19. Secunty Classit. (of this report) 120 Secuntv Classif. (of thns page) t 21. No. of pages ~22. Price

“Unclassified Unclassified 72 ;

NASA FORM 1628 OCT 88

[‘ o en
i s v

I me.

w—
SR

o -
e

Lo W

[

{

l \‘.‘ e

W
Al

o
b

(T

B

=

FINAL TECHNICAL REPORT
ROBOT WELDING PROCESS CONTROL
25 FPebruary 1990 to 25 February 1991

Contract Number NAS8-36955

Delivery Order 75

Prepared for:
George C. Marshall Space Plight Center

Marshall Space Flightcenter, Alabama 35812

22 July 1991

By

Peter L. Romine

Electrical and Computer Engineering Department
The University of Alabama in Huntsville

Huntsville, Alabama 35899

¥

TABLE OF

CONTENTS

CHAPTER —_ Page
1.0 introduction 3
1.1 Introduction. 3
1.2 Objectives 5
1.3 Approach 6
2.0 Communications Hardware . . 7
2.1 CYRO hardware . 7
2.2 PC and Heurikon hardware 8
2.3 Fiber-optic serial interface 9
3.0 The PC Interface . 10
3.1 Introduction . 10
3.2 The CYRO TSR . . 10
3.3 Overview of PC/CYRO Interface Funct1ons .1
4.0 The CYRO Executive . 13
4.1 Introduction . . 13
4.2 Software Changes . . 13
5.0 MSFC Facilities Used17
5.1 SSME CYRO Workcell .17
5.2 Facilities for CYRO executive bape 17
6.0 Conclusions and Recommendations for Future Development 19
6.1 Conclusions . . . 19
6.2 Heurikon development . . 20
6.3 TU58 development .21
6.4 The HOBART robot .21
6.5 Advanced Welding Process Control . 21
APPENDIX Page
A CYRO-PC Installation and Operation Manual. . 23
B Procedure For Generating CYRO Executive Tapes . . 27
c CYRO Serial |Interface Specification . 32
D Source listing of PC code .41

oIl

1.0 INTRODUCTION

1.1 introduction

This report documents the new Weld Process Control interface hardware and
software for the CYRO 750. To appreciate the significance of these changes, it is
heipful to understand the work previously done to improve CYRO functionality,

the type of interface desired for the CYRO, and the computer inside the CYRO.

The basic CYRO is designed to do repetitive welding tasks without outside
intervention. The console and control pendant are normally the only ways for an
operator to interact with the robot. These are used to teach the robot how to
perform specific tasks. The SSME CYRO also includes an optional Sensor
interface. In theory, the sensor is an external computer or intelligent device
used for closed-loop control of the robot. The sensor can interface to the robot

via a serial or paralle! interface.

POP11/23
ser. I—-

DLV11
4

To PC and Heurikon DRV11 Replace all

Parallel comm.
L-|-’ Par. with serial

MINC23 AIM65

Replace with PC Replace with Heurikon

Figure 1. 0ld CYRO communications.

|

i

[tC

B

(i

Wik &

T

The parallel interface was previously implemented between the CYRO and a MINC-
23 micrccomputer. The MINC was :sed as the host computer for storage and
maintenance of CYRO NC programs. Software was developed by Fred R. Sias to
support transferring programs between the CYRO and MINC. The MINC editor
could then be used to create and modify NC programs. It was also possible to
download programs developed on any other system, such as the Intergraph, to
the CYRO. The limitations in this configuration were due to the lack of
computing power and development tools in the MINC, and the parallel interface
did not allow other devices to readily communicate with the CYRO. Moreover,
the MINC system did not utilize interrupts and was not multitasking, therefore
the MINC could not be used to execute another task while the CYRO was running

a program.

The PDP-11/23 inside the CYRO 750 is utilized as a dedicated controller. This

computer contains only 128K words of memory, one TUS58 tape drive, no floppy
drives, and no hard-disk. The program loaded via the tape drive must contain
all of the functions for initia]*ization and basic control of the robot. |In addition,
it must leave space for user rpr‘ogramming and the optional sensor interface.
This does not leave room for an operating system, as we are accustomed to in
modern computers, or any significant diagnostic tools. As a result, software
development must be performed onr a separate system, compatible with the PDP-

11/23 and capable of generating TU58 tapes with a RT~11 format.

To extend the functionality of the CYRO it is highly desirable to implement the
serial sensor interface. This will allow the CYRO to communicate with any modern
computer via a standard RS-232 interface. In particular, this will allow the

Heurikon to send positional updates to the CYRO, based on image processing

Vil

i

i

i

il |

I
i

Hmwl

N
]

L I[BD)

performed on the captured weld image, to implement closed-loop weld process

centrol. In addition, this will ailow a PC or other computer to serve as the host

for software storage and maintenance.

1.2

Objectives

Investigate OSU software communications to send offsets to CYRO
robot from sensed vision data. Software written in Hunter & Ready
VRTX. Implement via serial approach, Heurikon serial 1/0 card to
CYRO robot's DEC PDP-11 computer.

Make recommendations on hardware and software required for
efficient implementation of communications and weld process control
software developments.

Implement software written by Rocketdyne in Canoga Park that
analyzes the weld image, provides offsets to weld path, reguires
software to communicate with CYRO. Complete definition of software
requirements, write code to communicate with robot.

Investigate the computer communications requirements for the welding
robot system presently under contract to Hobart Brothers Co. to be
installed in the welding laboratory late in FY90. Determine proper
interface between Heurikon computer for vision process control as
well as welding process control.

Develop software to allow downloading of programs from Intergraph

to CYRO robot. These routines will run on Heurikon to communicate
with Intergraph for downloading files - interactive with CYRO when
the robot is not in motion.

Investigate procedures and recommend approaches to allow the
Heurikon computer to more effectively support welding process
control. These include, but are not limited to:

Communications to new robot

Peaking/Mismatch

Automatic Robotic Torch Tooling (ARTT) gauging
GD! wire feed contract for SSME applications
Backpurge closed-loop control

i

i

m
i

i
|

]

[

WL
M

L

L]

i

ﬂ

I

1.3 Approach

The element central to all of the objectives is serial communications with the
CYRO. The approach chosen is to perform this task first. Due to the wealth of
development tools available for the PC and the expertise available in program
development on the PC, it is expeditious to establish and validate serial
communications by developing software on the PC first. The new software will
replace the functions provided by the MINC system and also provide the services
that are discussed in the PRINZ windows program user manual. The software will
be written in C, for its suitability for hardware control and to facilitate the

portability of the finished software to the Heurikon.

Dave Gutow of Rocketdyne Canoga Park discussed the overall operation of his
seam tracking software and its comrﬁun‘ications requirements with the CYRO,
during his visit to MSFC. He identified the information his software expected
from the robot and the commands it sent to the robot. Since it is possible now
to modify what the robot sends, it was agreed that it will be ideal to modify the
CYRO to emulate the communications of the Canoga Park robot. This would

greatly simplify exchange of new software between MSFC and Canoga Park.

i

niin

Lol

it

1]

2.0 COMMUNICATIONS HARDWARE

2.1 CYRO hardware

The CYRO initially contained a DLV-11E serial interface card. It was determined
to be defective. This was done using the ODT monitor in the CYRO and an

intelligent serial diagnostic box.

A replacement card was not readily available, instead a DLV-11J was removed
from the MINC-23. This card contains 4 serial ports, but could not be configured
to duplicate the DLV11-E settings. New /0O register locations and interrupt

vector locations were selected for serial port #1.

RCSR 167710
RBUF 167712
XCSR 167714
XBUF 167716
DLVEC 350

Figure 2. Octal register addresses and interrupt vector.

A new CYRO executive tape was required to accommodate the new register
locations and interrupt vectors for the DLV-11J. A new tape was created at
MSFC as described in appendix B. The ODT monitor was used again to verify the

operation of the new card.

Maintenance and troubleshooting was performed on the CYRO during November
1990. The troubleshooting was looking for noise problems that were disrupting
robot performance, especially while welding. The technician working on the CYRO

removed the serial and parallel cards (the option cards) from the card-cage and

[
i

[N

TRl
1 \‘M

A

! 1l

changed the location of some of the other cards. Since the two cntion ~ards are

not required during defauit operation, he did not reinstaill them.

Althcugh the robot worked perfectly with the sensor disabled, it would work only
intermittently and then lock-up, with the sensor enabled. Since the new software
was working before the hardware changes, it was determined to be a hardware
problem. After extensive hardware and software debugging, the original
programmer for the sensor software, Russell Vires, emphasized the card location
was critical to the full operation of the CYRO. A document that outlined the
proper location of the 1/0 cards was located, and after replacing the cards in the
proper positions, the software worked as before. The proper card placement is

shown in the figure below.

KD11-HD MSvit

DRVi1 (Data Bus) DRV11 (To CMC)
DRV11 (Addr Bus) MXV11-AA

2nd Option (DRV11) 1st Option (DLV11)

Figure 3. Proper CYRO card placement.
2.2 PC and Heurikon hardware
The PC and Heurikon required no additional hardware to communicate with the

CYRO. The PC communicates via serial port COM1: and the Heurikon can use any

of its available RS-232 terminal lines.

¥l

i

[ty
(A

il |

!
)

U

il

i

iRl

I

i
It

Uil

il

Rl

il

2.3 Fiber—optic serial interface

Due to the harsh electrical environment to be expected in the vicinity of the
CYRO, especially during welding, it was decided to replace the existing shielded
wire link, between the CYRO and PC, with a fiber optic interface. The link
chosen connects between the two devices exactly as the original wire. The only
additional connection is for the standard wall-type external power supplies

required to power the interfaces.

Two 100 foot links were purchased. One was installed between the PC and CYRO;
this link will eventually be used to connect the Heurikon to the CYRO. The other
link will be used to connect either the PC or the new robot to the Heurikon.

The new interface is illustrated in the figure below.

CYRO CONTROLLER

DLV-117

Fiber-optic cable

Fiber x RS-232 Converter

e

IBM PC/AT

Figure 4. Fiber-0Optic Serial Interface

i

R ARH

b il

1

L

ngl

Rl

3.0 THE PC INTERFACE

3.1 I ntroduction

The initial version of the PC-CYRO program was designed around a graphical user
interface. The functions it provides place it somewhere between the MINC and
Windows programs. In addition to being more complicated to write and maintain,
the software would not be directly portable to the Heurikon. For these reasons,
the one large program was separated and simplified into several stand-alone,
single-function programs. These programs could then be directly transferred to

the Heurikon.

3.2 The CYRO TSR

The low-level hardware/software interface evolved through three phases. The
first phase of interface software did not utilize interrupts. This required the
program to constantly wait for messages from the CYRO. The second phase used
interrupts to receive messages from the CYRO. This freed the program to do
other things while the CYRO was ruﬁnﬁm’ng. However, the program could not be
exited to start another program because the CYRO periodically transmitts status

information while it is running.

The final phase uses a Terminate and Stay Resident (TSR) program to
communicate with the CYRO. The TSR runs continuously, in the background, until
it is removed or the computer is reset. This allows any other program to execute
simultaneously. Of course the program must not use the same serial port as the

CYRO.

I

y

I

m
i

"
I

|

Il

m
| L‘\

"
i

 iitig

it

LI

il

i

A novel feature of liie implementation used is the way in which the TSR "shares"
the serial line with the other interface programs. When the TSR is first
executed, it grabs and initializes the serial interrupt. It then goes to sleep
waiting to intercept messages from the CYRO. !n this mode, the default character
input function, inside the TSR, acknowledges each character recieved from the
CYRO. It then provides the appropriate response to the CYRO once a complete

message has been received.

When one of the interface functions desires to talk to the CYRO, they grab the
interrupt from the TSR when they start and return it to the TSR before they

terminate. The interface function also attaches a new character input function.
This function accumulates characters in a circular buffer and feeds them to the

main program as they are requested.

3.3 Overview of PC/CYRO Interface Functions

The PC/CYRO interface functions support four basic operations:

Robot Initialization

Report/Change Robot Status

Program Exchange

Robot Position Control
Separate functions have been written for each of these, and are listed below.
The programs are envoked by typing the program name and any required
parameters, at the DOS prompt. Installation instructions and a more detailed

description of each function is included in appendix A.

(1

i

1

T)

i

f

L

(K

!
A

[

€

il

[

INIT [irho arguments] - Initializes tne PC and CYRO
communications. This program can be executed before the CYRO is
switched to sensor mode or any time after. |If it is executed after
the CYRO is in sensor mode it will wait until the reset button is
pressed on the control pendant.

LOADP <Program #> <PC File> - Loads the NC program in the
PC to the CYRO in the specified program slot #.

RUNP <(Program #> - Begins execution of the program previously
loaded into the specified program slot #.

HALTP <Program #> - Halts the program currently running from
the specified slot #.

SAVEP <Program #> <PC File> - Saves the NC program from the
specified program slot # in the CYRO to the specified file name in the
PC.

LISTP <KPC File> - Displays the NC program contained in the
specified file on the PC console.

EDTONC <PC Edit File> <PC CYRO File> - Converts the NC program
file from the format necessary for editing to the format necessary for
the CYRO.

| L
AWl

kil

[

Il

i

e

4.0 The CYRO Executive
4.1 Introduction

The CYRO EXECUTIVE (EXEC) refers to the program that must be loaded into the
CYRO PDP-11/23 before the robot can be operated. The EXEC initializes the robot
software and hardware each time the robot is reset. It also controls all of the
robots built-in functions, including the EXTERNAL SENSOR INTERFACE (SENSOR)

which is the method used to interface external computers to the CYRO.

The SENSOR was not fully implemented by the original manufacturer, as indicated
by their sensor interface specification. The original SENSOR does implement the
functions necessary to interface to the CYRO. As discussed in chapter 1, the
parallel SENSOR connection has been used successfully. To this point, the serial
connection had not been used. The following sections discuss the software
modifications that were necessary for proper operation of the SERIAL SENSOR

INTERFACE.

4.2 Software Changes

The software changes were limited to two MACRO-11 source files; EXTIVE.MAC and
SEN.MAC. Two new command files ASM.COM and LINK.COM were written for batch
creation of new tapes. The éomrﬁand files were modified for the RSX-11 operating
system. The ASM.COM file would typically only be run once. The LINK.COM file

must be run each time a new tape is made.

STRTUP,STRTUF’=SHNMAC/ML,STR"’UPM1
0ODTS ,0DTS=SHWMAC/ML ,0DTS
COMMON , COMMON=—SHWMAC /ML , COMMON
TABLE , TABLE=SHWMAC/ML ,TABLE

- STACK ,STACK=SHWMAC/ML ,STACK
EXTIVE ,EXTIVE=SHWMAC/ML ,EXTIVE
SENSOR , SENSOR=SHWMAC /ML ,SENSOR
- GETCMD ,GETCMD=SHWMAC/ML. ,GETCMD
MATHPK ,MATHPK=SHWMAC /ML ,MATHPK
PRGDCD ,PRGDCD=SHWMAC/ML ,PRGDCD
— WMGPF , WMGPF=SHWMAC/ML ,WMGPF
EXCUTE ,EXCUTE=SHWMAC /ML ,EXCUTE
DISP ,DISP=SHWMAC/ML ,DISP

CMC ,CMC=SHWMAC/ML ,CMC

- DIAG,DIAG=SHWMAC/ML ,DIAG

Figure 5. ASM.COM Assembly Batch File.

PETE3/-HD/-MM/SQ,PETE3/-SP/CR=STRTUP ,0DTS ,COMMON
TABLE ,STACK ,EXTIVE ,SEN,GETCMD ,MATHPK
== PRGDCD ,WMGPF ,EXCUTE ,DISP,CMC,DIAG

= /
STACK=0
PAR=PETE3:1000:157000
ég /77
[— |
Figure 6. LINK.COM link batch file.
£
B The initial software change was due to the new register and vector values
required for the DLV11-J, as discussed in chapter 2 and shown below.
= RCSR = 167710
RBUF = 167712
= XCSR = 167714
- XBF = 167716
XCSRO = 167704
XBUFO = 167706
= XCSR1 = 167714
- XBUF1 = 167716
XCSR2 = 167724
= XBUF2 = 167726
- DLVEC = 350

Figure 7. New SENSOR equates (SENSOR.MAC)

iR

ol

lm LELEE
kit id

kil

I\ g

Iy

boisd

LIRS
i b

i

I L] T
mMmm. I. I

IM W
[T

e

n
i

A e

oI

[L LI
il i s

The CYRO still did not communicate serially after these changes. The problem
was isolated to the software after the hardware was proven functional using the

ODT.

The similarity between MOTOROLLA 68000 assembly language and MACRO-11
simplified analysis of the software. The software was downloaded to the PC and
a programming editor was used to trace the flow of communications in the
program. It was discovered that all of the software relating to the SENSOR was
contained in the file SENSOR.MAC (copied to SEN.MAC). A logical error was
discovered in the low-level serial interface functions. These functions were
rewritten and a new tape was generated. The first tape did not work due to a
memory overflow. The parallel /0 functions were removed from SEN.MAC to free
sufficient program memory. A new tape was generated and was validated using a

communications program on the PC.

The EXTIVE.MAC file was only changed to update the CYRO initialization message,
show below. This message will appear on the CYRO console each time the CYRO is

rebooted from the CYRO-SERIAL executive tape.

SSME Robotic Welding Project

Marshall Space Flight Center

UAH Tape Version 2.3

Generated by Peter L. Romine on Feb. 6, 1991
DLV 11-J 4-Channel Serial card
Communications Via Chan. 1, BAUD set on card.

Figure 8. CYRO Initialization message.

I. I

Qg

m
il

 baiil

1 —
A e

C.

fPreT——
TRETRI

ik

| Ao

"
o

I

MSGFLG:
MSG1:

.BYTE
.BYTE
.ASCII
.BYTE
.ASCII
.BYTE
-ASCII
.BYTE
.ASCII
-.BYTE
.ASCII
.BYTE
-ASCII
.BYTE

o}
15,12

/SSME ROBOTIC WELDING PROJECT/

15,12

/MARSHALL SPACE FLIGHT CENTER - /

15,12

/UAH Tape Version 2.3/

15,12

/Generated by Peter L. Romine on Feb. 6, 1991/
15,12

/DLV11-J 4-CHANNEL SERIAL CARD/

15,12

/Communications Via Chan.1, BAUD set on card./
15,12

More substantial changes were made to SEN.MAC, as discussed earlier.

level |/0 functions are DRIN and DROUT, shown below.

Figure 9. Modification to EXTIVE .MAC

was removed from each to simplify the functions and free program memory.

§ R R KRR KRR R KRR KRR KRR R KKK X XXX KRR RR KR XK K
i ROUTINE: DRIN
i FUNCTION: READ A BYTE FROM A SERIAL PORT

s OUTPUT: RO = BYTE READ FROM PORT

RS RS st e et eal e e e e e e e s ey P e 2

ORIN: BIT

#RCVDNE , @4RCSR ;CHAR READY?
BNE ORIN i-INO
MOV @#RBUF,RO FREAD BYTE

BIC #LBYTMS RO

RTS PC

PR RO R R OO KRR KRR E R KRR KRR KR
» ROUTINE: DROUT
3 FUNCTION: OUTPUT A BYTE TO A SERIAL PORT

i INPUT: RO = BYTE TO OUTPUT TO PORT

KRR R KRR R R R R R KRR KRRk X

DROUT: BIT

#XMTRDY ,@#XCSR CAN I XMIT CHAR?

BEQ DROUT i-INO

MoV RO, @8XBUF ;OUTPUT CHAR
RTS PC

The low-

The parallel |/0 support

|

Lo

!

L.}
ik

(i G ot

#

il

]

IIFI [
a1

5.0 MSFC FACILITIES USED
5.1 SSME CYRO Workcell

The primary facility used is the SSME CYRO workcell located in building 4705.
This area contains the CYRO 750 robot, PDP-11/23 based controller, welding
apparatus, an I1BM PC/AT running MSDOS 3.30, and a Heurikon minicomputer
running UNIX and VRTX. The PC serves as an alternative software development
system and is used to demonstrate the operation of the new software. After

initial development is complete, these functions will be shifted to the Heurikon.

5.2 Facilities for CYRO executive tape

As discussed in the first chapter, a separate computer is required to create new
CYRO executive tapes. The complication is that this computer must contain a
MACRO-11 assembler or cross-assembler and be able to either generate RT-11
program images or VAX EXE files. The computer must also have a TUS58 tape

drive.

Ten years argo this would have been a typical computer system. Today it is
becoming more difficult to find a system that supports any of these. The latest
revisions, documented in the foﬂdwiné seCE'ion, requires the use of two separate
computers in two different buildings. To make things worse, the output from the

first system must be physically transferred to the second on magnetic tape.

i

wn
Iy

LINN
i 1

NP R

i
ik

RIIRE

[

oy
i

]
[

i1 »
11 b

wii

1
U

il

il

Pl

)
1l

The two systems used are the PDP-11 running RSX-11M in building 470% and the
VAX running VMS in the back .f 4705. The RSX system contains the source files,
the MACRO-11 assembler, and the linker. Software changes can be made on a
terminal at 4708 or remotely via the NASA network. The new files are then

assembled and linked into an executable or image file.

The new executable file is then loaded on magnetic tape for transfer to the VAX
in 4705. Once on the VAX, the RT11UTL is used to convert the RSX file to RT-11
format. The EXCHANGE utility is used to copy the file to the TU5S8 tape. Finally,
the ZAPCSA1 or ZAPTUS8 utility is used to mark the new tape as a CYRO

Executive tape.

.0

i

Il
[N

Bl

i

I

L
il

non
i1

L B

e

”
i

|l

L
il

6.0 CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE DEVELOPMENT

6.1 Conclusions

Serial communications between the CYRO and PC is fully implemented and tested.
The foundation for serial communications from the CYRO and PC to the Heurikon
is established. The software interface for this communication is designed to
facilitate operation of the OSU software, weld process control, Rocketdyne
software, or other software developed on the Heurikon or PC. The Heurikon
includes sufficient /0 capabilities to support several simultaneous

communications.

Communication from Intergraph to CYRO is now possible. Files are transferred

from Intergraph to the PC or Heurikon over the network, and then to the CYRO.

Experimentation with different BAUD rates on the PC and Heurikon has resulted
in a rough indication of processing margin. Additional analysis will be required

to better quantify processor utilization.

Familiarization was obtained for the requirements for peaking/mismatch, ARTT
gauging, wire feed, backpurge closed-loop control, and other advanced weld
process control methods. From this”cur'sor‘y investigation, it is feasible to run

these processes on the existing equipment.

—

N i

e

11

6.2 Heurikon development

The NC programming support software now running on the PC is written in ANSI
standard C to facilitate its portability to the Heurikon. | propose we port this
software over to the Heurikon, running on one of its spare serial lines. This will

be a good first step in CYRO-Heurikon integration.

The NC programming software developed for the PC supports transfer of
programs between the PC and CYRO. With this setup, files are transferred over
the network from the Intergraph to the PC and then transferred to the CYRO.
Porting the PC software to the Heurikon allows the Heurikon to duplicate this
function. It may prove desirable to obtain an additional modem to connect the
Heurikon directly to the network rather than using the one now connected to the

PC.

After my discussion with Dave Gutow of Rocketdyne, | propose we make small
modifications to the CYRO executive tape to make the CYRO emulate the
communications protocol of the Rocketdyne robot. This will provide greater
compatibility between the two versions of the weld tracking software. | now
have sufficient experience with the process of making CYRO executive tapes to do

this.

I

i
1
I

408

1

0

!
i

i

I

LL

|
{

U

M

6.3 TU58 development

In an attempt to simplify the currently tedious software development cycle for
the CYRO, | propose we make a brief attempt at emulating the CYRO's TU58
tape drive with the PC. | now have a portion of the software necessary for this

and | believe | could quickly determine the feasibility of this.
6.4 The HOBART robot

At a minimum, the Hobart system will require at least one free serial line to be
able to communicate within the present system . We must first define the role of
the Hobart system as to the type and amount of information that it will need to
share between the other devices, robots, computers, etc. The actual
communications requirements will then be determined from this evaluation. In
addition, due to the harsh electrical environment presented by the robots and
the welding process, | propose that all important communications between the
CYRO, Heurikon, PC's , Hobart, and any other computer equipment be made with

fiber optics.
6.5 Advanced Welding Process Control

Once reliable communications is established between the CYRO, PC, Heurikon,
Intergraph, etc. | anticipate the advanced welding process control work will
begin. From my previous experimentation, the PC/AT can support full speed
communications with the CYRO while running other, CPU intensive, processes. |
expect the same to apply for the Heurikon. S5till to be determined though is the

ability of the Heurikon to simultaneously support advanced weld process control

o

gl

il

R

O EIE

M|

in addition to weld tracking. From a controls standpoint, it is essential that the
control loop calculetion time be sufficiently smail to maintain stability. | propose
to determine the maximum loop time allowable by adding processes to the CPU
until stability is degraded. This will quantify the amount of additional
processing power available for Peéking/Mismatch, ARTT, Wire Feed, Backpurge

Closed-loop Control, and other control methods.

~e

{

il

ne
lithi

11
m

il |

1t VD

i

APPENDIX A CYRO-PC INSTALLATION AND OPERATION MANUAL
A.1__ installation

The disk space reguirements of CYRO-PC are small enough that it can be used
directly from a floppy disk, or installed on a hard disk for faster operation. For
the program to operate your machine must have the standard DOS 3.3 (or
greater) files, 1 serial communications port designated COM1:, and 512K or more

RAM. There are no special display requirements.

For hard disk installation, create a subdirectory to store the files in. For
example, if your hard disk is C: and the program files are in drive A:, then at

the C: prompt you would enter,

CD\

MKDIR CYRO
CD CYRO
COPY A:*.x*

Enter the DIR command and you should see the following files.

CYROINIT.BAT
CYROTSR.COM
EDTONC.EXE
HALTP.EXE
INIT.EXE
LISTP.EXE
LOADP.EXE
RUNP.EXE
SAVEP.EXE

The CYRO-PC programs need the DOS program MODE.EXE to initialize the serial
port. Check to see if your systiem knows where this file is by typing MODE then
pressing Enter. If you get a "BAD COMMAND" message, you must locate the MODE

program and copy it to the CYROV éubdirectory.

e

(

i

"
ih

o

I
!

The initialization CYROINIT command file must be run before using any of the
other programs, each time the PC is turned on or rebooted. This file contains
the following commands.

MODE COM1:9600,N,8,1,P

CYROTSR

INIT
You should see a message saying the PC is waiting for the CYRO init message. |If
the CYRO is booted, press the RESET button on the pendant. Otherwise, power-
up and boot the CYRO with the CYRO-PC executive tape. Be sure the key switch

on the CYRO is turned to SERIAL mode.

If the PC does not return with a prompt, reset the CYRO several times. If this
fails, press the Q key on the PC, this should exit from the INIT program; if it
does not, reboot the PC and start over. if you get back to the prompt, enter

INIT, then reset the CYRO; if this does not work, reboot the PC and start over.

Once communications have been initialized you can use any of the other programs
to transfer files between the CYRO and PC; RUN or HALT a program loaded in the
CYRO; or LIST and EDIT CYRO programs on the PC. Detailed instructions for

each of these follows.

m

ln T
btk L

|

l i

T

i

e

1

g

"

T

A.2.1 Transfer To/From CYRO

The SAVEP and LOADP programs are used to transfer files between the CYRO and

PC. The SAVEP program copies a program from the CYRO and saves it in a file

on the PC.
SAVEP <(Program #> <PC File> - Saves the NC program from the
specified program slot # in the CYRO to the specified file name in the
PC.

To save the CYRO program in slot 1 to the PC file MARY.NC you would enter
SAVEP 1 MARY.NC
The LOADP program copies a program from the pC and loads it into the CYRO.

LOADP <(Program #> <PC File> - Loads the NC program in the
PC to the CYRO in the specified program slot #.

To load the program in file MARY;NC into slot 1 on the CYRO you would enter
LOADP 1 MARY.NC

The programs RUNP and HALTP are used to start and stop programs loaded in

the CYRO.

RUNP <(Program #> - Begins execution of the program previously
loaded into the specified program siot #.

HALTP <(Program #> - Halts the program currently running from
the specified slot #.

The program LISTP is used to list CYRO programs on the PC screen, printer, or
file.

LISTP <PC File> - Displays the NC program contained in the
specified file on the PC console.

The program EDTONC is used to convert a CYRO file that has been edited on the

PC into the format required by the CYRO.

EDTONC <PC Edit File> <PC CYRO File> - Converts the NC program
file from the format necessary for editing to the format necessary for
the CYRO.

~nr

i
L

-

1

o

i

lm!m i
Lidl

1
i

L o

O

o
i

T O

:mmm.m

oo

e

I
li

T E

The following file is an example of a3 CYRO NC program that could be entered into

a PC file using any ASCIl| editor.

Yod must

additional format information into the file.

use an editor that dues not insert

NO2G19F5/

N0O4G91XA10/

M2/

Figure 10.

Example CYRO NC program.

!

LY
ol i 1

sl

il

o

3

-~
[T

]
il

L nerth

lv i
il

v

i

iR

i

|

| * I
& b diadily

APPENDIX B PROCEDURES FOR GENERATING EXECUTIVE TAPES

The following section details two methods for creating CYRO Executive tapes. The
first method assumes you are initially operating over the network. The second

assumes you are physically located in the 4708 computer room.

Two systems are used to generéte the executive tapes. The systems are the
PDP-11 running RSX-11M in building 4708 and the VAX running VMS in the back
of 4705. The RSX system contains the source files, the MACRO-11 assembler, and
the linker. Software changes can be made on a terminal at 4708 or remotely via
the NASA network. The new files are then assembled and linked into an

executable or image file.

The new executable file is then loaded on magnetic tape for transfer to the VAX
in 4705. Once on the VAX, the RT11UTL is used to convert the RSX file to RT-11
format. The EXCHANGE utility is used to copy the file to the TU58 tape. Finally,
the ZAPCSA1 or ZAPTUS8 utility is used to mark the new tape as a CYRO

Executive tape.

~e

I W W

e
Hlﬂn N

L0
il

m
i

i

[L]
I Ay

£ U

Ll

LN
loviy

| ik

b il

. RR
il

e
ik

i

'p

TRW

@LOCAL> C ISvX01

USERNAME:

PASSWORD

SET HOST SCAT (Bldg 4708 Room 1107A, Gene Dennis and Jon Scheidt)
YHELLO (Required to start a login)

Account or name: (Enter your account name)

PASSWORD: (Enter your password)

(Use ED to edit files or upload files over the network)

>RUN $MAC (To run the RSX-11 assembler)

RTO>FILE,FILE=SHWMAC/ML,FILE (Wait for prompt to return)

RTO>"Z (To exit the assembler)

>RUN $TKB

TKB>@LINK.COM

>LO (To logoff SCAT)

Lo (To logoff the VAX)

You must now go to Bldg 4708 to copy the new file to mag tape.

>HELLO

Account or name:

PASSWORD:

>MOUNT MSO:SSME

>COPY FILE.TSK MSO:FILE.EXE

>DISMOUNT MSO0:

’LO

no

LI
il ia

O

el
i

mw 1" -
b e

|0
nl

o

il
[t

:I

[T IT
L

™
1] uhwh

1T

!

You must now go to 8ldy 4705 room C-200 to generate the CYRO's TU58 tape

USERNAME:

PASSWORD

SET DEFAULT DUAO:[DEASON.SSME]

MOUNT/OVER=OWNER_ID MSAQ:

SSME

{CR>

COPY MSAOQ:FILE.EXE STA.EXE

RUN RTI11UTL

STA.EXE

DEL FILE.EXE

DISMOUNT MSAQ:

RUN SYS$SYSTEM:SYSGEN

SYSGEN> CON CON

EXIT

EXCHANGE

EXCHANGE> INIT CSA1:

COPY STA.SAV CSA1:

EXIT

RUN ZAPCSA1

DEL STA.SAV

Lo

YOU NOW HAVE A NEW CYRO EXECUTIVE TAPE

Lr (]

A

1

(i

B0

"
b

 $hM

"
I

il Ly ‘l

I | mm

i

i

o

I

YHELLO <CR> (Required to start a login)
Account or name: (Enter your account name)
PASSWORD (Enter your password)

(Use ED to edit files or upload files over the network)

>RUN $MAC (To run the RSX~11 assembler)

MAC>FILE,FILE=SHWMAC/ML,FILE (wait for prompt to return)

MAC>"Z (To exit the assembler)

>RUN $TKB

TKB>@LINK.COM

MOUNT MSO0:SSME

COPY FILE.TSK MSO:FILE.EXE

DISMOUNT MSOQ:

LO

(You must now go to Bldg 4705 room C-200 to generate the CYRO's TUS8 tape)

USERNAME:

PASSWORD

SET DEF DUAO:[DEASON.SSME]

MOUNT/OVER=OWNER_ID MSAOQ:

SSME

{CR>

COPY MSAO:FILE.EXE STA.EXE

RUN RTI11UTL

STA.EXE

an

|

| l
I‘ AT

I

LI

i

) 1
b L

D

{8

{ Sh

Bl

L

I

I

Hi

DEL FILE.EXE

DISMOUNT MSAO:

RUN SYS$SYSTEM:SYSGEN

SYSGEN> CON CON

EXIT

EXCHANGE

EXCHANGE> INIT CSA1:

COPY STA.SAV CSA1:

EXIT

RUN ZAPCSAI1

DEL STA.SAV

LO

[

1L

I

i

il

1

 {llleh

1l

L

APPENDIX C CYRO SERIAL INTERFACE SPECIFICATION

C.1 INTRODUCTION

This section details the actual functions supported by the new software. The
functions added have been clearly identified. This chapter replaces the
Advanced Robotics Corporation, External Device Interface manual (dated April 27,

1984).

The external device interface option provides the capability for other intelligent
devices to communicate with Advanced Robotics Corporation's CYRO 750 and CYRO
2000 arc welding robot controllers. The interface consists of a software package
for the 11/23 based robot controller that is designed to support one
communication channel using a DEC DLV-11 (Serial) board. Note: The interface
originally supported both serial and parallel interfaces. The parallel interface

option was removed toc free memory resources for other applications.

The software for the robot controller supports two classes of external device:
SENSOR and/or COMPUTER. Each device class has a predefined set of allowable

commands to perform the following communication functions:

Device |dentification/Status

Program Status
Welding Status
Robot Positions
Message to/from Device

Error Messages

| MI
| i

I |

L
i

e

!
b

Il

ni

o

bl

LB

Y

1

L}

ni

G

Robot System Parameters

Device Mode Command

ROBOT/SENSOR INTERACTION
Sensor Setup Parameters
Sensor Table
Sensor Position Definition
Sensor Diagnostic
Sensor Calibration
Search for Seam

Sensor Override Data

ROBOT/COMPUTER INTERACTIONS
Save Program to Computer

Load Program from Computer
SERIAL INTERFACE HARDWARE

Digital Equipment Corporation DLV11-J 4 Channel Serial Line Unit
Full Duplex without echo from réééiv&
Device Address Selection
First Serial Device = 175620
Second Serial Device = 175630
Device interrupt Vector
First serial device = 370

Second serial device = 380

204

!

oGl

fhi

Lok

L b

I

i

101!

L

it

1

L

Table 1 SERIAL INTERFACE

PIN#

NOOONULeWN M

NN

SIGNAL
Protective ground
Transmitted Data
Received Data
Request to Send
Clear to Send
Signal Ground
Carrier Detect
Data Terminal Ready
Ring Indicator

The handshaking on the CYRO side is performed in hardware. The receiver

should be able to read each character via an interrupt or polling.

MESSAGE PROTOCOL

The message protocol describes the format that the actual data is transmitted in.

The message format is as follows:

Length = a byte of information is transmitted by the sender
indicating the length of the type code and data portion of the
message. The length of a message can range from 1 to 254 bytes.

Sequence Number = a Biyrta identifying each message. This number
will be used to referance a particular message, for example, an error
message may reference this number to indicate which message caused

an error.

Type Code =

a byte indicating the type of message that is being

transmitted. This information is used to define the format of the

data following,

and is application dependent.

il d

ey

Tl C

[[N

i

Lil

e

Lneh .

W

.

i

I

ol

i

Il

e

Data = 0 to 253 bytes of information that are application dependent.
The number of data bytes plus the type code defines the length of
the messags.

Longitudinal Redundancy Check (LRC) = a byte transmitted by the
sender to be used by the receiver for error detection. The LRC is
computed by exclusive or-ing the length with xff then using the
resuit to exclusive or with the sequence number, then using the
result to exclusive or with the type code, then using the result to
exclusive or with each byte of data.
The message will be complete when a byte is transmitted by the receiver to
acknowledge the correct or incorrect receipt of a message from the sender. |If
the LRC computed by the receiver matches the LRC sent by the sender, then the

message was received correctly.
Response is:

LRC correct = 1
LRC not correct 2
MESSAQGE TYPES
There are six message types supported by the external device interface.

Distances and angle measurements are referred to in many of the messages in

these different message types. For consistency, the following scale factors will

be used when referring to distance and angles:
Distances: 1/64 inch per bit
Angles: 1/10 degree per bit

1 Request Device |dentification/Status
2 Program Status Mode

3 Welding Status Mode

4 Robot Positions

5 Special Message to Device

6 Error

oot

[‘ il

o e
FRNTAM

y

Iw L.
b il

|
d

M

mu

[T
b

I

oo

Robot System Parameters

Device Modes

35
36
37

130
131
132
133
134
138

161

162

Sensor Setup Parameters

Sensor Table
Sensor Position Definition

Sensor Diagnostic

Sensor Calibration

Load Program from Computer Acknowledge

Save Program to Computer Acknowledge

Save Program to Computer

Device |dentification/Status
Set Program Mode

Set Welding Mode

Request Robot Positions
Special Message from Device
Error

Request Robot System Parameters

Override Data

In Position Command

"

i

npm
B,

N ko

1]
l

Mtk

i

[-
Li b

193 Request Save Program to Computer
194 Request Load Program from Computer

195 Load Program from Computer

MESSAGE CONTENTS - ROBOT TO ALL DEVICES

Request Device identification/Status is a message sent at reset time
requesting the device identification and hardware status of the
device. The result of the request will be a Device
|dentification/Status message from the device, indicating existence,
software and hardware version numbers, and the status of the
hardware that can be determined by the device.

Program Status Mode - indicates to the device that the specified
N/C program has been started or stopped.

Type Code = 2
Status (one byte):
Program Started = 1
Program Stopped = 2
Program Number (one byte - 1 to 9)

Welding Status Mode - indicates to the device that welding has
been started or stopped by the N/C program.

Type Code = 3 o

Status (one byte): '
Welding Started = 1
Welding Stopped = 2

Robot Positions - indicates to the device what the current robot
positions are.

a7

| I | lmm |
i L} [T

el

Type Code = 4

X axis position - inches (two bytes, low byte, then high

byte)

Y axis position - inchsz (two bytes, low byte, then high

byte)

Z axis position - inches (two bytes, low byte, then high

byte)

A axis position - degrees (two bytes, low byte, then high

byte)

C axis position - degrees (two bytes, low byte, then high

byte)

X axis position - C positioner - degrees (two bytes)

Y axis position - C positioner - degrees (two bytes)

X axis position - D positioner - degrees (two bytes)

Y axis position - D positioner - degrees (two bytes)
Special Message to Device - s a message that will pass ASCli data

that is placed in a corresponding N/C command to the device. This
message is envisioned to allow special features of some devices to be
enabled without the need to change the robot software. It may also
be used to send information messages from the N/C program to the
device. There is a corresponding message from the device to the
robot that will display on the operator's terminal.

Type Code = 5
Variable number of ASCli bytes to be interpreted by the device
for special function operation.

Error - is a message indicating that an error has occurred in the
robot control, and what that error is., The device will be required to
make a decision based on the error as to the proper course of action
to take.

Type Code = 6

Error number to be defined as needed

Robot System Parameters - 1is a message indicating that a robot
system parameter has changed. Some of the system parameters will
be torch feedrate, welding level, wirefeed speed, and left and right
oscillations.

Type Code = 7
Torch Feedrate - inches per minute (two byte, low byte, then

high)
Wirefeed Feedrate - percent of power supply output (two
bytes)
* 1 bit = 0.1 percent
AVC/ACC setpoint Level - weld level setpoint as defined in the

N/C program for Automatic Voltage Control and Automatic
Current Control (two bytes)
¥ 1 bit = 0.1 percent

{

HH I

i

P

[l

Oscillation - indicates that a left or right oscillation has
occurred (one byte):

None z 0

Left Osc. z 1

Right Osc.= 2

8 Device Modes - is a message telling the device whether the message
being received by the robot will be executed or not. For example,
this will tell a sensor when it should start sending override data, or
a host computer that a safety switch has been released, and that it
has control of the robot.

Type Code = 8
Device Type (one byte):
Sensor Device = 1
Computer Device = 2
Device identification - three characters as defined in the

Device |dentification/Status Message.
Device Status (one byte):

Device On = 1

Device Off = 2

MESSAGE CONTENTS ROBOT TO SENSOR DEVICES

33
34
35
36
37

65

€6

67

Sensor Setup Parameters
Sensor Table

Sensor Position Definition
Sensor Diagnostic

Sensor Calibration

Load Program from Computer Acknowledge
Save Program to Computer Acknowledge

Save Program to Computer

I

i

ey
huﬂiw.n

[

130

131
132
133
134

138

Device |dentification/Status
Set Program Mode

Set Welding Mode

Request Robot Positions
Special Message from Device
Error

Request Robot System Parameters

161

162

Override Data

In Position Command

Request Save Progr‘am”to Computer
Request Load Program from Computer

Load Program from Computer

rm
"

Uil

1

"
I

APPENDIX D SOURCE LISTING OF PC CODE

A1

[
b

i

[

il

[fios

[

1

i

Ll

e

A

g

i)

R

!

bt

|
I

|

lal
b

i
ol |

/% CYRO.H

/x Written by

X%
XX
xx
x/

#define
#define
#define

#define
#define
#define
#define
#define

#define
#define
#define

#define
#define

typedef

#define
#define
#define
#define
#define

#define
#define

UART_PTR
COMM1
COoMM2

XMIT

RCV
SI0_STATUS
RCV_MASK
XMIT_MASK

DTR_MASK
RTS_MASK
CONTROL _232

MAX_INTR
BAD_ITYPE

--- Communications Program For The CYRO750 ROBOT x/

Peter L. Romine 1990

University of Alabama, Huntsville

Electrical and Computer Engineering Department
Copyright 1991 Peter L. Romine. All rights reserved.

0x400
0x00
0x01

0x00
0x00
0x05
0x01
0x20

1

&ono

10
0x100

long IVEC_PTR;

INTR_ENABLE
ENABLE _RCV
ENABLE _XMIT
ENABLE _ERR
ENABLE _232

1
1
2
4
8

SIO_INIT_OK U’
INTON_MASK 8

struct serial

{

unsigned uart_base;
unsigned commport;
unsigned int_on;

b

typedef

unsigned char UCHAR;

struct cyro_msg

{
UCHAR
UCHAR
UCHAR
UCHAR
UCHAR

I

len;

seq;

te:
data[255];
Ire;

42

typedef struct cyro_msg CYRO;

striuct robot

{
(i struct
{
= char type[16]; /% Device type 1=sensor, 2=computer */
o char id{3]; /x Device ID x/
char status(16]; /% Device Status l=on, 2=off */
}device;
i struct
{
float x;
float vy;
float z;
float a;
£ float ¢;
= Jarm;
struct
{
= float «x;
b float vy;
. Jepos;
= struct
- {
float x;
== float vy;
= }dpos;
float torch; /x Torch feed rate */
o float wire; /% Wire feed rate x/
= float weld; /% Weld level */
- float avc_acc; /x avc/acc setpoint x/
UCHAR osc; /* 0=no osc, l=zleft osc, 2=right osc %/
== struct
i {
char program[16];
— char welding(16];
=)stat;
- struct
. { ,
§§ UCHAR number; /x NC program number x/
= UCHAR size_l,size_h; /% Program size in bytes (low,high) x/
char name[16]; /% Program file name x/
== char comment [80];/% Comment to store in file */
= }prog;
b
= #include "cyroproto.h
=

G20

A4

IIM I
e

PO |

it

g

il

i

ni!

0
li

il

LT
il

I}

11

L

o[l

il

Ll

| ik

Wi

/% CYROPROTO.H --- Communications Program For The CYRO750 ROBOT x/

/% Written by Peter L. Rom'ne 1990

xX Universit;, of Alabama, Hunteville

% Electrical and Computer Engineering Department

xx Copyright 1991 Peter L. Romine. All rights reserved.
x/

/% Declared in CYRO.C x/

extern int main(int argc,char xxargv);
extern void robot_status(void);

extern void nc_programming(void);

extern void pc_utilities(void);

extern void control_robot(void);

/% Declared in COMM.ASM x/

extern void init_comm(void); // iinitialize the comm port,
extern void uninit_comm(void); // ;remove initialization,
extern void set_xoff(int flag); // ;enable/disable XON/XOFF,
extern int get_xoff(void); // ;read XON/XOFF state,

extern int rcvd_xoff(void); // ;ireturns true if XOFF revd,
extern int sent_xoff(void); // itrue if XOFF sent,

extern int inp_cnt(void); // ireturns count of rcv chars,

extern UCHAR inp_char(void); // iget one char from buffer,
extern void inp_flush(veoid); // ;flush input buffer,
extern void outp_char(UCHAR ¢); // joutput a character,

/% Declared in SERIAL.C x/

extern struct serial sio;

extern void outport(unsigned port,UCHAR ¢);
extern UCHAR inport(unsigned port);

extern unsigned peek(unsigned segmnt,unsigned offst);
extern void s_xmit(UCHAR ¢);

extern UCHAR s_rev(void);

extern UCHAR s_rcvstat(void);

extern UCHAR s_xmstat(void);

extern UCHAR s_getch({void);

extern void s_putch(UCHAR ¢);

extern UCHAR s_inchar();

extern UCHAR get_rs232(void);

extern void rs232_on(UCHAR rs232_mask);
extern void rs232_of f(UCHAR rs232_mask);

void term(void);
/% Declared in MENU.C %/

/* Declared in CYRO1.C %/

extern void compute_lrc(CYRO xmsg);

extern UCHAR send_msg(CYRO *msg);

extern UCHAR get_msg(CYRO *msg);

extern float to_inches(UCHAR low, UCHAR high);
extern float to_degrees(UCHAR low, UCHAR high);

i

1
b

I“'
ikt

1

i

il

Il

Qi)

i

I

e 1

|
|

Al

HGEs

/x Declared in CYR02.C x/
extern void cyro_init(CYRO *msg);
extern void send_devi.s_i-{CYRO ¥msg);

/% Declared in CYR03.C x/
extern void cyro_position(CYRO *msg);

/% Declared in CYRO4.C =/
extern void cyro_parameters(CYRO xmsg);

/% Declared in CYR05.C x/

extern int Update_0K;

extern struct robot robo;

extern void talk_to_cyro(void);
extern void update_robo(CYRO *msg);
extern void update_status(void);

/% Declared in CYR06.C x/
extern void cyro_run_prog(CYRO xmsg);

/% Declared in CYR07.C x/
extern void cyro_save_prog(CYRO xmsg);

/% Declared in CYR08.C x/
extern void cyro_load_prog(CYRO xmsg);

/% Declared in CYR09.C =/
extern void cyro_stop_prog(CYRO *msg);

/% Declared in CYR010.C x/
extern void cyro_jog(CYRO *msg);

/% Declared in CYRO11.C x/
extern void sorry(void);
extern void cyro_message_to_robot(CYRO xmsg);

/% Declared in CYR012.C x/
extern void cyro_list_prog(CYRO *msg);

/% Declared in CYRO13.C x/
extern void sorry(void);

extern void status(char xmsg);
extern void cyro_time{void);

45

t:

ownooer

m

|
|

n
i

LI

il

LA

Hl
Iu

I
|

it

IT!

1
i

t

[k

I
‘ Lk

[

ol

/x SERIAL.C --- Communications Program For The CYR0750 ROBOT x/

/% Written by Peter L. Romine 1990

£x University of Alabama, Huntsville

X% Electrical and Computer Engineering Department

XX Copyright 1991 Peter L. Romine. All rights reserved.
x/

#include (stdio.h)
#include “cyro.h®
#include *graph.h"

struct serial si0={0,0,0});

#pragma check_stack (off)

void outport(unsigned port ,UCHAR c)

{

_asm

{

}

)

mov dx, [port]
mov al,[c]
out dx,al

UCHAR inport(unsigned port)

{

_asm

{

}

}

mov dx, [port]
in al,dx
xor ah,ah

unsigned peek(unsigned segmnt,unsigned offst)

{

}
}

mov ax, [segmnt]
mov es,ax

mov si, [offst]

mov ax,ES: (si]

void s_xmit(UCHAR ¢)

{

outport(sio.uart_base+XMIT,c);

}

46

i

1

1

1
i d

o
i

3

)

It

ut

[

i 1

1|

|

!

o

LI

UCHAR s_rcv(void)
{

returs (sio.int_on ? inp_char() : inport(sio.uart_basetRCV));

}

UCHAR s_rcvstat(void)

{
return (sio.int_on ? inp_cnt() : ((UCHAR)X inport(sio.uart_base+SI0_STATUS) & RCV_MASK)));
}

UCHAR s_xmstat(void)

{
return ((UCHAR) inport(sio.uart_base+SIO_STATUS) & XMIT_MASK));
}

/% waits forever for char x/
UCHAR s_getch(void)
{
while(s_rcvstat() == (UCHAR)NULL)
if(kbhit{) != (int)NULL)
if(geteh() == ’q’)
{

_setvideomode(_DEFAULTMODE);
restore_int();
// uninit_comm();
exit();
)

return (s_rev());

)

void s_putch(UCHAR ¢)

{
while(s_xmstat() == (UCHAR)NULL)

s_xm;t(c)

}

/x if char not available, return NULL %/
UCHAR s_inchar()
{
return ((UCHAR X (s_rcvstat()==(UCHAR)NULL) ? (UCHARINULL : s_rev()));
}

UCHAR get_rs232(void)
{

return(inport(sio.uart_base+CONTROL_232));
}

void rs232_on{ UCHAR rs232_mask)

{
outport(sio.uart_base+CONTROL_232,get_rs232()i rs232_mask);
)

A7

I

void rs232_of f(UCHAR rs232_mask)
{
- outport(sic.uari._basetCONTROL_232,get_rs232() & “rs23:_mask);
}
- void term(void)
- {
-— int ¢;
et
o while(1)
- if(s_rcvstat() != (UCHARNULL)
putch(s_rev());
= if(kbhit() != (int)NULL)
{
=5 ¢ = getch();
- ?uitch(c)
- case 'q’:
= return;
- default:
= if(¢ ¥=0)
- s_putch((UCHAR)¢);
}
- }
—)
}
&
%

42

it

4

i

i

miram
o Ll

' ‘_mmum
il i

kil

S

i
L

T |

i

!

|
i

m

b

i

=

/% CYROL.C --- Communications Program For The CYRO750 ROBOT x/

/% Writter by Peter L. Romine 133

XX University of Alabama, Huntsville

XX Electrical and Computer Engineering Department

XX Copyright 1991 Peter L. Romine. All rights reserved.
x/

#include {stdio.h)
#include "cyro.h"

#pragma check_stack (off)
struct robot robo;

void compute_lrc(CYRO *msg)
{
UCHAR n;
register UCHAR 1,lrc;

Irc = msg-)len = Oxff;
Irc "= msg-)seq;
Irc "= msg-tc;
n = msg-)len - 1;
for(i=0; i(n; i++)

Ire *= msg-)data[il;

msg-}lrc = lre;

)
UCHAR send_msg(CYRO *msg)
{

UCHAR n;

register UCHAR 1i;

s_putch(msg-)len);
delay();
s_putch(msg-)seq);
delay();
s_putch(msg-)tc);
n = asg-)len - 1;
for(i=0; i(n; i++)

delay();
s_putch(msg-)data[i]);
}
delay();
s_putch{msg-)1rc);

return s_getch();

49

n—
i

t

b 1 d s

LD

!
}

C =

L

I!H‘\ g
il 1

I
I

Lt

i

[mm "™
iolids v

B

!
i

U

I

i

delay()
{

int i,n=3

for(i=0; i(Oxfff; it++)
n = nk(-1);

}

UCHAR get_msg(CYRO *msg)
{
UCHAR n;
register UCHAR 1i,lrc;

msg-}len = s_getch();
lrc = msg-)len * 0xff;

msg-Yseq = s_getch();
lrc "= msg-)seq;

msg-)tc = s_getch();
lre "= msg-)tc;
n = msg-)len - 1i;
for(i=0; itn; it+)
{

msg-)data[i] = s_getch();

lre "= msg-)data(i];
)

msg-)1lrc = s_geteh();

return lre;

float to_inches(UCHAR low, UCHAR high)

{
float flow,fhigh;

flow = (float) low;
fhigh = (float) high;

return (low + 256.0xfhigh)/64.0;

float to_degrees{UCHAR low, UCHAR high)

{
float flow,fhigh;

flow = (float) low;
fhigh = (float) high;

return (low + 256.0%fhigh)/10.0;

50

-
l o 1. M

i

L

I
1

T

]
i

B i

/% CYRO11.C --- Communications Program For The CYR0750 ROBOT x/

/%
X%
X%
%
x/

Written by Peter L. Romine 1990
University of Alabama. iiitsville
Electrical and Computer Engineering Department
Copyright 1991 Peter L. Romine. All rights reserved.

#include (stdio.h)
#include “menu.h"
#include *cyro.h"

#pragma check_stack (off)

void cyro_message_to_robot(CYRO *msg)

{

UCHAR lrc_in,ack;
msg-rseq = 0;
msg-tc = 133;
strepy(msg-)data, *Message to the robot\r*);
msg-)len = strlen{msg-)data) + 1;
compute_lrc(msg);

ack = send_msg(msg);

51

LN
"™

L4l

"
iy

110

I

|

I

|

it

/% INIT.C

/% Written by

k2 4
%
xx
%/

#include

#include (math.h)

#include
#include
#include
#include
#include

#include (time.h)

#include
#include
pinclude

#include "menu.h®
#include "cyro.h'

#pragma

static CYRO

{graph.h)

{malloc.h}
(stdlib.h}
(stdio.h)
{conio.h)
(stddef .h}

(sys\types.h)

(sys\timeb.h)
{string.h}

msgs

--- Communications Program For The CYR0750 ROBOT 1/

Peter L. Romiie 1990,91

University of Alzpama, Huntsville

Electrical and Computer Engineering Department
Copyright 1991 Peter L. Romine. All rights reserved.

check_stack (off)

int main(int argc,char xxargv)

{

register
int

is
n=100;

UCHAR lem,lrc,seq,tc,lrc_in,ack,data[35];

/% Init robo structure %/
sio.uart_base = peek(0,(unsigned { UART_PTR+(2xCOMM1)));

sio.commport = 0;
sio.int_on = 1;

strepy(robo.stat.program,"Not Running®);
strepy(robo.stat.welding, *Not Welding*):
strepy(robo.device.status,"0On*);

robo.prog.number
robo.prog.size_l
robo.prog.size_h

umonn
[PN

0;

strcpy(robo.prog.name, "untitled.ncb®);
strepy(robo.prog.comment, "No Comment*);

grab_int();
inp_flush();

printf(*Waiting for the init message from the CYRO\R®);

len = 29;

while(s_getch() != len)

52

UL L)
e

1
lm e bl

I
il

'
]

\"!”!Wl !
Iuli 11

L

i

C

P
\l.‘u

}

/% Got the 29, now get rest of msg x/
set = 5_getch();
te = s_getch();
for(i=0; i¢(len-1); i++)
data(i] = s_getch();
Irc_in = s_geteh();

s_putch(1);

printf(*Got the init, sending the device ID\n");
send_device_id(&msg);

restore_int();

[]

I
i

L

b kil
L ")

Iz

/% LOADP.C

/% Written by

X
X
XX
x/

#include
#include
#include
ginclude
#include
#include
#include
#include
#include
#include
#include
#include
#include

(graph.h)
{math.h)
(malloc.h)
(stdlib.h)
(stdio.h)
{conio.h)
{stddef .h}
(time.h}
{sys\types.h)
(sys\timeb.h)
{string.h)
*menu.h"
‘cyro.h'

static CYRO msg;

static char

--- Communications Program For The CYR0750 ROBOT %/

Peter L. Romine :990,91

University of flalLaina, Huntsville

Electrical and Computer Engineering Department
Copyright 1991 Peter L. Romine. All rights reserved.

str1(4096] ,str2(128];

int main(int argc,char xxargv)

{

UCHAR num;
FILE xfp;

if(arge ¢ 3)
{

printf("USAGE: loadp (prog#) (file.nc)\m\n");
printf("Loads the program in file.nc from the PC to the CYRO in location prog#\n*);

[T

11T

o

1] I

L

}

exit();

num = (UCHAR) atoi(argv[1]);
if(numd(l |} num)9)

{

)

printf("ERROR: prog# = [%d] is invalid. Must be 1 to 9 \n*,(int)num);

exit();

gf(!(fp=fopen(argv(2],"rb")))

printf("ERROR: opening the requested file [%s]!\n",argv[2]);

exit();

£l

miy o
il

i

L

"

[

biA

i

11

IED

i

WG

/% Init robo structure x/
sio.uart_base = peek(0,{unsigned){ UART_PTR+(2¥COMM1))});
sio.commport = 0;
strepy(robo.stat.program, Not Running®);
strepy(robo.stat.welding, "Not Welding®);
strepy(robo.device.status, “On”);
robo.prog.number = 1;
robo.prog.size_l = 0;
robo.prog.size_h = 0;
strepy(robo.prog.name,"untitled.ncb*);
strepy(robo.prog.comment ,*No Comment");

grab_int();
sio.int_on = 1;
inp_flush();
send_device_id(&msg);

strepy(robo.prog.name,argv(2]);

robo.prog.number = num;

printf("Loading %s to CYRO in program slot #%d\n",robo.prog.name,robo.prog.number);
cyro_load_prog(&msg);

restore_int();

}
void cyro_load_prog(CYRO *msg)
{
UCHAR lrc_in,ack,thisblock,more,block_cnt;
FILE *fp; :
unsigned char id;
register iJs

long bytes;

fp = fopen(robo.prog.name,"rb*);
bytes = filelength(fileno(fp));
robo.prog.size_h = (UCHAR) (bytes/256L);
robo.prog.size_l = (UCHAR) (bytes - ((long)robo.prog.size_h x 256L));
printf("\nbytes = 5ld 1b=%d hb =
%d\n*,bytes,(int)robo.prog.size_l,{int)robo.prog.size_h);
fflush(stdout);

msg-)len = 4;
msg-iseq = 0; o
msg-ite = 194; /x Request for load program from PC %/
msg-)data[0] = robo.prog.number;
msg-)data(i] = robo.prog.size_l;
msg-}data(2] = robo.prog.size_h;

compute_lrc(msg);

ack = send_msg(msg);

&R

0
i

L

il

e
IL li

ll 11 1.
A ki

(18

Y

block_cnt = 0;
more = 1;
while(more)
{
while(1)
{
Irc_in = get_msg(msg);
s_putch(1);
if(msg-)data[0] == 1)
break;
}

/% the message should be a load acknowledge (TC=65)x/

if(bytes (250)

thisblock = (UCHAR)bytes;
else

thisblock = 250;

bytes -= thisblock;
msg->len = thisblock + 2;
msg-)seq = 0;
msg-itc = 195; /% Request for save program from robot */
msg-)data{0] = block_cnt++;
fread(&(msg-)data[1]),1,(size_t)thisblock,fp);

compute_lrc(msg);
ack = send_msg(msg);

if(bytes (=0)
break;
}

fclose(fp);

(Y

/x LOADP.C --- Communications Program For The CYR0750 ROBOT x/

/% Written by Peter L. Romine 1990,91
*k Universit:, oi Alabama, Huntsville
£2 Electrical and Computer Engineering Department
- XX Copyright 1991 Peter L. Romine. All rights reserved.
x/

#include (graph.h)
#include (math.h)
#include (malloc.h)
#include (stdlib.h)

- #include (stdio.h)
#include {(conio.h)
= #include (stddef.h)
i #include (time.h)
B $include (sys\types.h)
o #include (sys\timeb.h)
= #include (string.h)
#include "menu.h®
= #include “cyro.h"
= static CYRO msg;
. static char str1(409¢] ,str2[128];
- int main(int argc,char xxargv)
{
= UCHAR num;
= FILE *fp;
if(arge (3)
{
printf("USAGE: loadp (prog#) (file.nc)\n\n');
printf(*Loads the program in file.nc from the PC to the CYRO in location prog#\n");
i exit();
=)
. num = (UCHAR) atoi(argv{1]);
= if(num¢t |} num)9)
{
s printf("ERROR: prog# = [%d] is invalid. Must be 1 to 9 \n*,(int)num);
= exit();
}
— if(!(fp=fopen(argv(2],*rb")))
- {
printf("ERROR: opening the requested file [%s]!\n",argv[2]);
= exit();
s }
2

R7

ol

[
i

Il

|

TR
l\:w)

B

i

"

il

/% Init robo structure x/

sio.uart_base = peek{0,(unsigned J(UART_PTR+(2xCOMM1)));

sio.commport = 0,
strepy(robo.stat .program, "Not Running®);
strcpy(robo.stat.welding,*Not Welding®);
strepy(robo.device.status, On*);
robo.prog.number = {;
robo.prog.size_l = 0;
robo.prog.size_h = 0;
strcpy(robo.prog.name, "untitled.ncb®);
strcpy(robo.prog.comment ,*No Comment*®);

grab_int();
sio.int_on = 1;
inp_flush();
send_device_id(&msg);

strepy(robo.prog.name,argv{2]);
robo.prog.number = num;

printf("Loading %s to CYRO in program slot #%d\n*,robo.prog.name,robo.prog.number);

cyro_load_prog(&msg);

restore_int();

}
void cyro_load_prog(CYRO *msg)
{
UCHAR 1Irc_in,ack,thisblock,more,block_cnt;
FILE *fp;
unsigned char id;
register i,s

long bytes;

fp = fopen{ robo.prog.name,"rb*);
bytes = filelength(fileno(fp));
robo.prog.size_h = (UCHAR) (bytes/256L);

robo.prog.size_]l = (UCHAR) (bytes - ((long)robo.prog.size_h x 256L));

printf(*\nbytes = $ld 1lb =% hb =

%d\n" ,bytes,(int)robo.prog.size_l,(int)robo.prog.size_h);

fflush({ stdout);

4;
03

msg-)len
msg9-)seq

msg-)tc = 194; /% Request for load program from PC x/

msg-)data(0] = robo.prog.number;
msg-)data{l] = robo.prog.size_l;
msg-)data(2] = robo.prog.size_h;

compute_lrc(msg);

ack = send_msg{msg);

gQ

f
i

1z

||l‘l!
lithid

LIl

]
ik

!

Ll

f
b

!
b

{

block_cnt = 0;
more = 15
while{ more)

while(1)

{

}

Irc_in = get_msg(msg);
s_putch(1); ’
if(msg-)datafo} == 1)

break;

/% the message should be a load acknowledge (TC=65)%/

if(bytes ¢ 250)
thisblock = (UCHAR Dbytes;

else

thisblock = 250;

bytes -= thisblock;

msg->len = thisblock + 2;
msg-)seq = 0;

msg-)tc = 195;
msg-data[0] = block_cntt+;

/% Request for save program from robot %/

fread(&(msg-)data(1]),1,(size_t)thisblock,fp);

compute_lre(msg);
ack = send_msg(msg);

if(bytes (= 0)

}
fclose(fp);

break;

[]

REIF |

!
|

' tmy.
™
fH

/% RUNP.C --- Communications Program For The CYR0750 ROBOT x/

/% Uritten by
%
%
X%
x/

Peter L. Romine

1990,91

Univ:srsity of Alabama, Huntsville
Electrical and Computer Engineering Department
Copyright 1991 Peter L. Romine. All rights reserved.

#include (graph.h)
#include (math.h)
#include (malloc.h)
#include (stdlib.h)
#include (stdio.h)
#include (conio.h)
#include (stddef.h)
#include (time.h)
#include (sys\types.h)
#include (sys\timeb.h)
#include (string.h)
#include "menu.h"
#include "cyro.h"

static CYRO
static char

int main{int arge,char *xargv)

{
UCHAR
FILE

msgs

stri[4096] ,str2[128];

num;
xfp;

if(arge (2)
{

)

printf("USAGE:

runp (prog#) \n\n");

printf("Runs the CYRQ program in location prog#\n®);

exit();

num = (UCHAR) atoi(argv[1]);
If(num¢t) numd9)

{

printf("ERROR: progs# = [%d] is invalid.

exit();

Must be 1 to 9 \n",(int)num);

/N

-
[

Ta.

Al
1

i

mm. X
/AT

g

¥

i

it IN

gy
Lo Ll

iy

/x Init robo structure %/
sio.uart_base = peek(0,{unsigned)(UART_PTR+(2xCOMM1)));
sio.commpors - 33
strepy(robn.stat .program, *Not Running®);
strepy(robo.stat.welding, "Not Welding");
strepy(robo.device.status, *On");
robo.prog.number = 1;
robo.prog.size_l = 0;
robo.prog.size_h = 0;
strepy(robo.prog.name, "untitled.ncb®);
strepy(robo.prog.comment , "No Comment®);

grab_int();
sio.int_on = 1;
inp_flush();

send_device_id(&msg);
robo.prog.number = num;
printf(“Starting CYRO program slot #%d\n",robo.prog.number);
cyro_run_prog(&msg);

restore_int();

}
void cyro_run_prog(CYRO *msg)
{
UCHAR ack;
msg-}len = 3;
msg-iseq = 0;
msg-rtc = 130; /% set program mode x/
msg-)data[0} = 1; /x l=start, 2=stop x/
msg-)data(l] = robo.prog.number; /% Program # (1-9) x/
compute_lrc(msg);
ack = send_msg(msg);
)

A1

m [
[

|

i

Ry

m‘ ehiah

i |
Jui

ORI Y

l.wx b

 fhnioi

!
i

i

1y
i 4

o

it

NI

/% HALTP.C

/x Written by

X%
3
X%
X/

#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include

(graph.h)
{math.h)
(malloc.h)
(stdlib.h)
{stdio.h)
{conio.h)
{stddef .h)
(time.h)
(sys\types.h)
{sys\timeb.h}
(string.h)
"menu.h"
cyro.h

static CYRO msg;

--- Communications Program For The CYR0750 ROBOT x/

Peter L. Romine 290,71

University of Alabama, Hunteville

Electrical and Computer Engineering Department
Copyright 1991 Peter L. Romine. All rights reserved.

int main(int argc,char xxargy)

{

UCHAR num;

if(arge ¢ 2)

}

printf{ "USAGE: haltp (prog#)\n\n*);

printf(
exit();

"Stops the CYRO program in location prog#\n®);

num = (UCHAR) atoi(argv[1]);
if(num¢l | num)9)

{

printf("ERROR: prog# = [%d] is invalid. Must be 1 to 9 \n",(int)num);

exit();

62

i A |

(e

"
b

!
|

| i

AR

B

i i i

I

)

/% Init robo structure %/

sio.uart_base = peek(0,(unsigned) UART_PTR+(2xCOMM1)));

sio.commport = ¢;
sio.int_on = 1;

strepy(robo.stat .program,Not Running®);
strepy(robo.stat.welding, "Not Welding®);

strepy(robo.device.status, On");

robo.prog.number = 1;
robo.prog.size_| = 0;
robo.prog.size_h = 0;

strepy(robo.prog.name, untitled.ncb®);
strepy(robo.prog.comment,*No Comment*);

grab_int();
inp_flush();
send_device_id(&msg);

robo.prog.number = num;

printf("Halting CYRO program slot #%d\n",robo.prog.number);

cyro_stop_prog(&msg);

restore_int();

void cyro_stop_prog(CYRO *msg)

{

UCHAR lrc_in,ack;

msg-)len = 3;
msg-)seq = 0;
msg-rtc = 130; /x set program mode %/

msg-)data[0] = 2; /x 1=start, 2=stop %/
msg-)data{l] = robo.prog.number;

compute_lrc(msg);
ack = send_msg(msg };
Irc_in = get_mso(msg);

if(lrc_in == msg=}lrc)

{

s_putch(1);
else
{

s_putch(2);

/% Program # (1-9) x/

63

I'I
b

1
|

"
it

1o
o ik

LI

fio

11

i

il

/% SAVEP.C --- Communications Program For The CYR0750 ROBOT x/

/% Wriiten by
xx
xx
Xt
x/

#include (graph.h)
#include (math.h)
#include (malloc.h}
#include (stdlib.h)
#include ¢(stdio.h)
#include {(conio.h)
#include (stddef.h)
#include (time.h)
#include (sys\types.h)
#include (sys\timeb.h)
#include (string.h)
#include "menu.h*
#include "cyro.h"

static CYRO

msgs

Peter L. Romine 1990,91

University of Alabama, Huntcville

Electrical and Computer Engineering Department
Copyright 1991 Peter L. Romine. All rights reserved.

int main(int argc,char xxargv)

{
UCHAR
FILE

nums;
xfp;

if(argec (3)

{

}

printf("USAGE: savep (prog#) (file.nc)\n\n");

printf(“Saves the CYRO program in location prog# to the PC in file.nc\n");

exit();

num = (UCHAR) atoi(argv(1]);
if(num(l)i numd9)

{

printf(
exit();

ERROR: prog# = [%d] is invalid. Must be 1 to 9 \n,(int)num);

64

‘pl‘ru
ik 10

{

| o)

[}
[

ﬂ‘
i

i

I

1!

il

if{ (fp=fopen{argv(2],'rb*)))
{

printf({ "WARNING: Th. reguested file [%s] already exists!\n",arwv[1]);
printf(" Do you hant to write over it (Y/N)?*);
switch(getchar())

case 'y’:

case ’Y’:
fclose(fp);
break;

default:
fclose(fp);
exit();

)

/% Init robo structure x/
sio.uart_base = peek(0,(unsigned (UART _PTR#(2xCOMM1)));
sio.commport = 0;
sio.int_on = 1;

strepy(robo.stat.program, *Not Running®);
strepy(robo.stat.welding, "Not Welding*);
strepy(robo.device.status,*0n®);

robo .prog.number = 1;
robo.prog.size_l = 0;
robo.prog.size_h = 0;
strepy(robo.prog.name, "untitled.ncb*);
strcpy(robo.prog.comment, "No Comment*);

grab_int();
inp_flush();
send_device_id(&msg);
robo.prog.number = num;
strepy(robo.prog.name,argv(2]);
printf("Saving CYRO program #%d to PC in file %s\n",robo.prog.number,robo.prog.name);
cyro_save_prog(dmsg);

restore_int();

65

g

il

Al

!

i

me

i

{

L

!

void cyro_save_prog(CYRO *msg)

{

UCHAR lrc_in,ack,thisbleck,more;
FILE xfp;

register i;

long bytes;

msg-)len = 2;
msg-)seq = 0;
msg-)tc = 193; /% Request for save program from robot x/

msg-)data[0] = robo.prog.number;

compute_lrc(msg);
ack = send_msg(msg);

Irc_in = get_msg(msg);
s_putch(1);

/x the message should be a save acknowledge (TC=66)x/

robo.prog.size_l = msg-)data(2];
robo.prog.size_h = msg-)data(3);
bytes = (long)msg-)data(2] + 256L x (long)msg-)data(3];

fp = fopen{robo.prog.name, wb*);

printf(*\nbytes = x1d 1b = %d hb = %d\n",bytes,(int)msg-)data(2],(int)nsg-)data[3]);
more = 1;

while(more)

Irc_in = get_msg(msg);
s_putch(1);

thisblock = msg-)len - 2;
furite(&(msg-)data(1]),1,(size_t)thisblock,fp);

bytes -= thisblock;
if(bytes (= 0)

break;
msg-)len = 2;
msg-)seq = 0;
nsg-rtc = 193; /% Request for save program from robot %/

msg-)data(0] = robo.prog.number;
compute_lrc(msg);
ack = send_msg(msg);

)

fclose(fp);

66

e
B (b,

I

1]
| 1w

I

-
b

g

)
[

I

o

i

(i

il

L

i

/x LLISTP.C --- Communications Program For The CYR0750 ROBOT x/

/% Written by Peter L. Romine 1390,91

Tk University of Alsbzna, Huntsville

xx Electrical and Computer Engineering Department

XX Copyright 1991 Peter L. Romine. All rights reserved.
x/

#include (math.h)
#include (stdlib.h)
#include (stdio.h)
#include (conio.h)
#include (stddef.h)
#include (sys\types.h)
#include (string.h)

static char str1[4096] ,str2[128]);

int main(int arge,char xxargv)
{
FILE xfp;
register i,is
unsigned char id;
long bytes;
char comment [90] ,size_l,size_h;

if(arge (2)

{
printf("USAGE: listp (file.ne)\n\n");
printf(*Lists the program in file.nc from on the PC\n');
exit();

if(!(fp=fopen(argv(i],"rb*)))
{

printf("ERROR: opening the requested file [%s]!\n",argv(1]);

exit();
}
fread(&id,1,1,fp);
switch(id)
{

case Ox12: /% Binary NC File x/
fread(comment ,80,1,fp);
printf(comment);
printf(*\n\n");
fread(&(size_1),1,1,fp);
fread(&(size_h),1,1,fp);
bytes = (long)size_l + 256L x (long)size_h;
break;

default:

rewind(fp);
bytes = (long) fread(stri,1,(size_t)4096,fp);

67

Iu- U]
TR

e

o

]
[

g El

!

il

i
I

Ui

break;

}
fread(stri,1,(size_t)bytes,fo);

j=0;
for(i=0; i(bytes; it+)
{

str2[j++] = stri[i];
switch(str1(i])
(

case '/’:
itt;
case 0x0d:
it+;
case Ox0a:
str2(j-11 = 0x00;
strecat(str2,"/\n");
j=0;
printf(str2);

felose(fp);

68

el

!
1

i

e
e

il

[
ikt

I
o

o

iy
1t

!

tl

I

/x

/%
xx
XX
XX
x/

edtonc.C --- Communications Program For The CYR0750 ROBOT x/

Written by Petor L. Romine 1990,91
University of Alabama, Huntsville
Electrical and Computer Engineering Department
Copyright 1991 Peter L. Romine. All rights reserved.

#include (math.h)
#include ¢io.h)
#include (errno.h)
#include (stdlib.h)
#include (stdio.h)
#include (conio.h)
#include (stddef.h)
#include (sys\types.h)
#include (string.h}

static char stri(4096) ,str2[128];

int main(int argc,char xxargv)

{

FILE xfpin,xfpout;

register i,J;

unsigned char id;

long bytes;

char comment(90) ,size_l,size_h;

if(arge (3)

{
printf("USAGE: edtonc (infile.ed) (outfile.nc)\m\n*);
printf("Converts the editor program infile.ed to CYRO format outfile.nc\n');
exit();
}
if(!(fpin=fopen(argv[i],’rb")))
{
printf("ERROR: opening the requested infile [%s]!\n",argv[1]);
exit();
)

if('(fpout=fopen(argv[2],*wb®)))
{
printf("ERROR: opening the requested outfile [%s]!\n",argv[2]);

exit();
}

printf("Converting the editor file [%¥s] to the CYRO file [¥s)\n",argv[1],argv[2]);

69

'
dib

|
IM\M il o

LTI
[T

IH IR
T

t wi

!

L

-~
Wb 1+ ik

IR
{
iskiin

fread(&id,!,1,fpin);

switch(id)

{

case 0x12: /x Binarv N File x/
fread(comment ,80,1,fpin);
printf(comment);
printf(*\n\n");
fread(&{size_l),1,1,fpin);
fread(&(size_h),1,1,fpin);
bytes = (long)size_l + 256L x (long)size_h;
break;

default:
rewind(fpin);
bytes = filelength(fileno{fpin));
break;

)
fread(str1,1,(size_t bytes,fpin);

j=0;
for(i=0; i(bytes; i++)
{

switch(stri{i])
{

case '/’:
break;

case 0x0d:
break;

case Ox0a:
str2[j++] = Ox0a;
furite(strz,j,1,fpout);
j=0;
break;

default:

str2[j++] = str1(i];
break;
}

fclose(fpin);
fclose(fpout);

70

