
NASA-CR-I91282

November 1992

Center for Reliable and High-Performance Computing

UILU-ENG-92-2243

CRHC-92-25

IV!t _1/ --Ic-/ "_

/ ,,""v- -" - '

"_ J / --:,T__P// -"_" ' t

/

BETA: BEHAVIORAL
TESTABILITY ANALYZER

AND ITS APPLICATION

TO HIGH-LEVEL

TEST GENERATION
AND SYNTHESIS

FOR TESTABILITY

Chung-Hsing Chen

(_ASA-CR-IVI282) _ETA: oEHAVIORAL

TFSTASILITY ANALYZER ANO ITS

APPLICATIPN Tn HIGH-LEVEL TEST

GCNFRATION AND SYNTHESIS _R

TESTABILITY Ph.D. Thesis (Illinois

Univ.) 113 p
G3/33

N9 3-I 3569

Uncl:ls

0131803

Coordinated Science Laboratory

College of Engineering
UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

Approved for Public Release. Distribution Unlimited.

BETA: BEHAVIORAL TESTABILITY ANALYZER

AND ITS APPLICATIONS TO

HIGH-LEVEL TEST GENERATION AND SYNTHESIS FOR TESTABILITY

BY

CHUNG-HSING CHEN

B.S., National Taiwan University, 1985

M.S., University of Massachusetts at Amherst, 1989

THESIS

Submitted in "partial fulfillment of the requirements

for the degree of Doctor of Philosophy in Electrical Engineering

in the Graduate College of the

University of Illinois at Urbana-Champaign, 1993

Urbana, Illinois

BETA: BEHAVIORAL TESTABILITY ANALYZER
AND ITS APPLICATIONS TO

HIGH-LEVEL TEST GENERATION AND SYNTHESIS FOR TESTABILITY

Chung-HsingChen, Ph.D.
Department of Electrical and Computer Engineering

University of Illinois at Urbana-Champaign,1993
Daniel G. Saab,Advisor

In this thesis, a behavioral-leveltestability analysisapproachis presented. This ap-

proach is basedon analyzing the circuit behavioral descriptin (similar to a C program)

to estimate its testability by identifying controllable and observablecircuit nodes. This

information canbe usedby a test generatorto gain better accessto internal circuit nodes

and to reduceits searchspace.The resultsof the testability analyzercanalso beusedto

select test points or partial scanflip-flops in the early design phase. Based on selection

criteria, a novel Synthesis for Testability approach called Test Statement Insertion (TSI)

is proposed, which modifies the circuit behavioral description direatly. Test Statement

Insertion can also be used to modify circuit structural description to improve its testabil-

ity. As a result, Synthesis for Testability methodology can be combined with an existing

behavioral synthesis tool to produce more testable circuits.

iii

DEDICATION

To my father, my wife and the memory of my mother

iv

ACKNOWLEDGMENTS

I would like to express my sincere gratitude to my research advisor, Professor Daniel

G. Saab, for his enthusiasm, encouragement and professional guidance throughout this

thesis work. I also like to thank my committee, Professors Prith Banerjee, Kent Fuchs,

Ibrahim N. Hajj, Wen-mei Hwu and Janak Patel for their time and effort in reviewing

this thesis.

Last, but not least, I wish to thank my parents Chao-Chin Chen and Bee-Fang Yeh

and my wife Emerald Chang for the love, encouragement and support they have provided

for many years.

This research was supported in part by Semiconductor Research Corporation Contract

91-DP-109 and in part by NASA under contract NASA NAG 1-613.

TABLE OF CONTENTS

CHAPTER PAGE

1 INTRODUCTION 1

1.1 Overview 1

1.2 Previous Works on Testability Analysis 1

1.2.1 SCOAP 2

1.2.2 TMEAS 3

1.2.3 PREDICT 4

1.2.4 I-path, F-path, S-path 7

1.3 Previous Works on Synthesis for Testability 8

1.4 An Approach for Testability Analysis 10

1.5 An Approach for Synthesis for Testability 11

2 BEHAVIORAL TESTABILITY ANALYSIS 15

2.1 Behavioral Description 15

2.2 Path Analysis 18

2.3 Controllability 21

2.3.1 Controllable type, CC 21

2.3.2 Controllability calculation 38

2.3.3 NCC handling 39

2.3.4 NC analysis 41

2.3.5 Loop handling 44

2.4 0bservability 47

2.4.1 0bservability types 47

2.4.2 0bservability calculation 53

2.5 Results : 54

3 BEHAVIORAL SYNTHESIS FOR TESTABILITY 59

3.1 The Selection Process 59

3.1.1 Complexity 60

3.1.2 Heuristic approach 61

3.2 Test Statement Insertion 63

3.2.1 Methodology 63

3.2.2 Comparison 67

3.3 Results 69

vi

4 A PROBABILISTIC APPROACH FOR EVALUATION AND SYNTHESIS
FOR TESTABILITY 74
4.1 Introduction 74
4.2 Probabilistic Controllability Evaluation 75

4.2.1 Derivation of PCI(N) 75

4.2.2 Derivation of PPCI(p, N['b]) 79

4.2.3 Derivation of SPCI(p, S_, N[b]) 81

4.2.4 PCF(AND, CPPCI(p, S_, A[Ab]), CPPCI(p, S,, n[Bb])) 82

4.2.5 PCF(ADD, CPPCI(p, S_, A), CPPCI(p, S,, B)) 84
4.2.6 PCF of other functions 84

4.3 Probabilistic Observability Evaluation 85

4.4 Probabilistic Approach for Synthesis for Testability 90

4.4.1 Test point selection 90

4.4.2 Testability modification 91
Results 924.5

5 SUMMARY 96

REFERENCES 99

VITA .. 102

vii

LIST OF TABLES

Table Page

2.1 Sample circuit information 56

2.2 Gate-level description of the microprocessor example 57

2.3 Test generation time for microprocessor example 58

2.4 The results of running BETA on the sample circuits 58

3.1 NCC selection result 69

3.2 Test generation result for the original circuits 70

3.3 Test generation result for the modified circuits 70

3.4 Comparison of 5 test point candidates in circuit circuit6 71

3.5 Comparison for 6 test point candidates in circuit circuit8 72

3.6 Area overhead analysis in transistor count 73

The value on each variable in the example under all possible input combinations. 774.1

4.2 PCF of other functions 85

4.3 RCI and ROI results for several sample circuits 92

4.4 Average RCI before and after circuit modification 93
4.5 RCI results for circuit'/. 94

4.6 Test generation results after circuit modification 94
4.7 RCI results for circuit1 95

viii

LIST OF FIGURES

Figure Page

2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8

2.9

2.10

2.11

2.12

2.13

1.1 Sample circuit 6

1.2 1-controllability calculation in PREDICT when line 6 is 1 6

1.3 1-controllability calculation in PREDICT when line 6 is 0 6

1.4 I-mode example 7

1.5 I-path example 8

1.6 Synthesis for testability system outline 13

1.7 Testability Modifier outline 14

Sample circuit described in behavioral description 17

CFG example 18

Check var =_ {R_} 25

Check consistency C2 27

Example of reconvergent fanout 29

Verify Criterion C3 29

Branch example 1................................. 32

Branch example 2 33

Check CC 37

A loop example 46

Algorithm 5. Check variables' observability 51

Microprocessor example 55

Microprocessor CFG 56

3.1 Test Statement Insertion 64

3.2 The effect of TSI on structure diagram 64

3.3 TSI algorithm 66

4.1 A branch example 90

ix

CHAPTER 1

INTRODUCTION

1.1 Overview

Test generation involves searching all possible input combinations to find an input

pattern or a sequence of input patterns which produce erroneous output response in the

presence of a physical defect. Due to the increasing complexity of VLSI circuits, test gen-

eration has become a very time-consuming process. It is known to be an NP-complete

problem [1]. Testability measures [2]-[8] have been used in a preprocessing stage to speed

up test generation. Since test generation consists of controlling and observing the in-

ternal nodes of a circuit, testability measures usually use the concepts of controllability

and observability to measure the difficulty of testing a design. Traditional testability

measurement tools consider only the structural circuit description which consists of an

interconnection of gates or relatively small functional modules. This limits their appli-

cation and results in a high loss of insight about the control signals in a circuit.

1.2 Previous Works on Testability Analysis

Several different low-level testability analysis approaches [2, 3, 4, 5, 6] have been

proposed in the literature. Also, Abadir [25, 26] and Freeman [27] proposed the concepts

of I-path, F-path, and S-path for the high-level circuits. Here, we shall briefly discuss

some of these methods.

1.2.1 SCOAP

SCOAP [2] is the first popular testability measure. It is intended for use at the logic-

level, and it is based on controllability and observability measures. SCOAP considers

circuits made up of two types of nodes, namely combinational nodes representing logic

gates and sequential nodes representing elements with memory such as flip-flops. Two

kinds of measures, combinational and sequential, axe defined for the controllability and

observability of each node. This leads to a total of six measures associated with each

node N in the circuit.

• Combinational Controllability, CCx(N) or CCo(N): the number of combinational

nodes within the circuit whose values must be specified in order to set N to logic

value 1 or 0.

• Sequential Controllability, SCI(N) or SCo(N): the number of sequential nodes

within the circuit whose values must be specified in order to set N to a logic value

1 or0.

• Combinational and Sequential Observability, CO(N) and SO(N): the number of

combinational (or sequential) nodes whose values must be set in order to propagate

a change in the value at N to a primary output.

Take a simple 2-input AND gate for example.

output be C. Then,

CCo(C) =

CC,(C) =

SCo(C) =

sc (c)=

Let the inputs be A and B and the

MIN[CCo(A),CCo(B)] + 1

CCI(A) + CCI(B) + t

MI N[SCo(A), SCo(B)]

SCt(A) + SC_(B)

Initially, primary circuit inputs have a combinational controllability value equal to 1,

and a sequential controllability value equal to 0. Primary outputs have both combina-

tional and sequential observability values equal to 0. The controllability and observability

measures of all other nodes are initially set to infinity. The controllability measure of

each node is computed during a forward trace from the primary inputs to the primary

outputs. The observability measure is computed by tracing backward from the primary

outputs to the inputs.

1.2.2 TMEAS

TMEAS [3] is one of the earliest testability measures. The circuit is represented as a

directed graph, with nodes representing functional modules and links representing signal

paths. A node may represent a gate or a register transfer-level module, and each link

may represent a number of connections between modules. Sequential components are

modeled as nodes with implicit feedback links.

3

TMEAS derives controllaility and observability values for each link. These values are

between 0 and 1, where 1 indicates perfect controllability or observability. The input

controllability of a node is defined as the average of the corftrollabilities of its input

links, and the output controllability of a node is the average of the controllabilities of its

output links. Similarly, the output observability of a node is defined as the average of

the observabilities of its output links.

The Controllability Transfer Factor (CTF) and Observability Transfer Function (OTF)

are associated with each node (a gate or a module) in the circuit. They are defined as

follows.

• The CTF of a node specifies the ratio of its output controllability to its input

controllability and is determined from its input/output mapping. It reflects the

evenness of the input/output mapping, as measured by the number of O's and l's,

with higher values indicating more even distribution. For example, for a single

output node, its CTF equals 1 if exactly half of all input combinations make the

output to be 1.

• The OTF of a node specifies the ratio of the input observability of the node to

its output observability. The OTF attempts to estimate the extent to which the

input values of a node can be determined by observing its outputs. An OTF of 1

indicates that a change of value on any input link of a node will change the signal

value on an output link, regardless of the values of the other inputs.

1.2.3 PREDICT

As alternative to SCOAP-like testability analysis is to model controllability and ob-

servability as probability. Given a signal line l in the circuit, the 1-controllability (O-

controllability) on l, denoted as Cl(1) (CO(l)), can be defined as the probability that 1

is set to 1 (0) by a random vector. Similarly, 1-detectability (O-detectability), denoted as

Dl(l) (DO(1)} on l, is defined as the probability that line l stuck-at 1 (0) can be detected

by a random vector. There axe several probabilistic measures of testability based upon

the above definition. PREDICT [6] is one of the most popular probabilistic testability

measures for combinationM circuits.

In PREDICT, Dl(l) and DO(l) axe expressed as follows:

DI(I) = CO(I). BO(l)

DO(l) = CI(I).BI(I)

and Bl(l) (BO(1)) denotes the probability of observing l when it is set to 1(0).

The signal dependency due to reconvergent fanout complicates the computation of

controllabilty and detectability. In PREDICT, Seth used a divide and conquer approach

by using the concept of a supergate, which is a subcircuit of the original circuit and

completely includes reconvergent fanouts.

Example: Take the circuit in Figure 1.1 as an example to illustrate how to compute

controllability in PREDICT. The number along each line denotes the line number of

that line. Assume that all of th6 inputs have 0.5 probability to be 1 or 0. There are two

maxima/supergates in this circuit. It would be easy to find that C1(6) is equal to 3/4

and C0(6) is 1/4. Then, Figure 1.2 shows the 1-controllability for the lines in the bigger

supergate given that line 6 is set to 1. Figure 1.3 shows the same probability given that

line 6 is 0. Then, C1(11) can be determined as follows:

3 5 1 1
CI(11)=-.-÷-.-

4 8 4 2

1 _ ",,,,

............... 2----F-"_..2 -- 19 "-
_. ! t

4 I--..*" /- _ I, _" /

............... " s "--'] _o 8 i10 ,,''
o o

11

Figure 1.1 Sample circuit.

1/2m

1

1/2m

1/2

1/2 3/4

1/2

5/8

Figure 1.2 1-controllability calculation in PREDICT when line 6 is 1.

1/2

0

1/2m

1 1/2

I/2

I/2_

Figure 1.3 1-controllability calculation in PREDICT when line 6 is 0.

A

selector---_ 0

Figure 1.4

1.2.4 I-path_ F-path_ S-path

B

MUX1 /

OUT

I-mode example.

Abadir and Breuer proposed the concepts of I-mode and I-path in [25, 26]. There

exists an identity mode (I-mode) for a module M if M has a mode of operation so that

the data on the input of M can be transferred to the output without change. For example,

the multiplexer shown in Figure 1.4 has two I-modes. One is from node A to OUT when

select is equal to 0. The other is from node B to OUT when select is equal to 1. Latches,
b

registers, ALUs and buses are the other examples of high-level modules with I-mode.

There is an Identity path (I-path) from a node A to another node B in the circuit, if

the data on A can be transferred to B without any changes. An I-path consists of a chain

of modules, and each module posseses I-mode. Figure 1.5 shows an I-path example. The

output of module A can be set to the input of module B without change by properly

setting MSelect and BSelect. As a result, there is an I-path from the output of A to the

input of B, and this I-path consists of three I-modes.

The concepts of I-mode and I-path are expanded to S-mode and S-path. There is a

sensitized-mode (S-mode) between an input port A and output port B of a module M if

M has an mode of operation such that there is a one-to-one mapping between A and B.

7

u

I-Path

a m

L
\ MUX

A

/_'--- MSelect

BUS _ BSelect

,L
LATCH

B

___I-mode

._I-mode

__I-mode

Figure 1.5 I-path example.

As a result, any fault which appears on A will be propagated to B through M. Adder

is one such example having S-mode. Then, S-path refers to a chain of modules having

0 or more I-modes and at least one S-mode. Similarly, T-mode refers to onto mapping

between an input port and an output port. One such example is an array of inverters

which maps input vector A into A. Also, T-path is defined as a chain of modules which

consists of I-mode and T-mode.'

1.3 Previous Works on Synthesis for Testability

Currently, the two most popular methods used to enhance circuit testability are Test

Point Insertion [9, 10] and Partial Scan Design [16, 17, 18, 19]. Test Point Insertion

increases controllability and observability by inserting controllability and observability

points in the circuit. Partial Scan Design is an alternative to Full Scan Design [20, 21],

in which only part of the flip-flops are put into the scan chain.

Research on test point selection has concentrated only on combinational circuits [9, 10,

14, 15]. In [9, 10], methods are proposed for inserting test points to make a combinational

circuit completely testable by a small number of test vectors. Krishnamurthy in [14] uses

a dynamic programming approach for selecting test points for combinational fanout-free

circuits to minimize the number of test vectors needed. In [15], Pomeranz and Kohavi

propose a testing-module insertion approach for general combinational circuits. However,

due to the advances of combinational test generation [11, 12], emphasis has shifted to

testing sequential circuits, which were not considered in the existing test point selection

techniques. Although Test Point Insertion still helps the sequential test generation [13],

the optimal combinational test point selection problem is NP-hard [14], and the sequential

test point selection problem is even harder.

As a result, Partial Scan drew a lot of attention in recent years as an appropriate

alternative to full scan and to Test Point Insertion. Unlike Test Point Insertion, only the

flip-flops are considered as candidates for test points. Once a flip-flop that has a large

impact on the overall testability of the circuit is found, it is selected and placed into a

scan chain. There are three main categories for Partial Scan selection methodologies [19]:

testability measure-based [16], structural analysis-based [22] and test generation-based

[17]. In [16], a testability measure-based approach is used. The usefulness of traditional

testability measures [2, 3, 6, 7] for identifying hard-to-detect (HTD) areas is questionable,

since it is difficult to acquire the global picture of the circuit's behavior from a low-level

structural description. In a structural analysis-based approach [22], a minimum set of flip-

flops is selected to break sequential cycles in the circuit. The drawback of this approach is

that the circuit's functionality is ignored during the selectionprocess.A test generation-

basedapproach [17]cannot be appliedwhen a test generatoris not availableand is very

time-consuming,especiallyin the early designphase.In addition, one commondrawback

for all of the existing Test Point Insertion or Partial Scan methods is that they fail to

handle high-level modules.

The key factor to the success of Test Point Insertion and Partial Scan is the selection

of test points. 1

1.4 An Approach for Testability Analysis

In this thesis, first, an approach for computing testability is proposed. This approach,

called BETA (Behavioral Testability Analyzer) [23], can provide guidance to test gener-

ators and synthesis tools. It is based on analyzing the circuit's behavioral description in

the form of a Control Flaw Graph (CFG). The CFG is provided either by the designer or

by high-level synthesis tools [29, 30]. In BETA, a path analysis on the CFG is performed

first. Then, variable classification is used to explore the intrinsic controllability and ob-

servability of the circuit. This p_ocedure examines the controllability and observability of

every variable and classifies them into different groups. Unlike other.testability measures

that compute only measures of difficulty, BETA derives the exact sequence for justifying

and propagating certain variables. For the most controllable and observable registers,

an algorithm is developed to derive the shortest sequence of paths to be traversed along

the CFG in order to control and observe these variables. This alleviates blind searching

1In Partial Scan, the only possible test points are the outputs of flip-flops. Throughout this thesis,

test point refers to either regular test points or the outputs of flip-flops.

10

during test generation. Based upon this classification,guidance can be provided to a

high-level test generator [28].

BETA is applicable only when the structure of the given control flow graph remains

the same under faulty conditions. For faults which change the CFG structure (denoted

as control faults, as opposed to data faults), no direct guidance is provided. However, the

guidance for data faults is still useful in testing control faults, since the activation and

propagation of control faults require variable justification and propagation.

Variable classification is also useful in pointing out hard-to-control and hard-to-

observe areas of the circuit. This information can be fed back to the high-level synthesis

or to the designer. Based on this feedback, alternative designs can be explored. This

motivates our research on Synthesis for Testability (SFT).

1.5 An Approach for Synthesis for Testability

The proposed Synthesis for Testability (SFT) approach is based on BETA [23]. A key

factor crucial to SFT is the identification of HTD areas. BETA introduces the concept

of Completely Controllable (CC)and Completely Observable (CO) to distinguish easy-to-

test and hard-to-test areas. Nodes that are not identified as CC or- CO are more likely

to be HTD nodes, and are good candidates for test points. Due to hardware restrictions,

not all of the HTD areas can be modified by inserting test points. This requires a test

point selection process among these HTD nodes. In this thesis, two test point selection

algorithms are presented. This method can be used for both combinational and sequential

test points. In addition, a novel SFT technique called Test Statement Insertion (TSI) is

also presented. This is used to enhance the testability of a circuit by directly modifying

11

its behavioral description rather than its structure. Test Statement Insertion requires less

area overhead and less test application time than do scan techniques (full scan or partial

scan) and traditional Test Point Insertion. This technique has been integrated with a

behavioral-level synthesis tool, as shown in Figure 1.6. The middle part of Figure 1.6

shows that BETA plus this SFT approach form a bridge between synthesis and test.

During the synthesis process, the intermediate product CFG is first taken out of the

synthesis tool as input to BETA. After the Testability Modifier, a modified and testable

CFG can be fed back to the synthesis tool to resynthesize the circuit. As a result,

behavioral synthesis for testability can be achieved in the early design phase. Figure 1.7

shows the detailed operations performed in the Testability Modifier. First, a testability

analyzer identifies the HTD areas and diagnoses causes. Second, this information is

used in a test point selection process. The designer can then decide to use a traditional

approach (test point insertion or scan design) or TSI.

The remainder of this thesis is organized as follows. The behavioral testability analysis

tool BETA is presented in Chapter 2, which also describes the behavioral information

used in BETA. The proposed synthesis for testability approach is presented in Chapter

3. The first part of Chapter 3 shows the test point selection procedure; the second part

is the proposed Test Statement Insertion. In Chapter 4, an app/'oach for evaluation

and synthesis for random testability is presented. A summary of this thesis is given in

Chapter 5.

12

VHDL (or C)

Compiler]

l
I Optimizer

1
[

CFG
_°oo°° o°o°o°. _ °°1_o°o°°

t

Scheduler &
Allocator

BETA ' II......... [.T.e..s.m..b._yy._I High-Level

TestI o_i_coq_oor_tor
t

Selection IProcess

v

I TS_ I

°°° °°°°.°o°°°°°° °°$

Testable Circuits Testability Modifier

Behavioral-Level Synthesis Tool

Figure 1.6 Synthesis for testability system outline.

13

/
- Testable nodes.

- How to access.

Testability Analyzer [

- Nontestable nodes.

rc, a$on.

Selection
Process

7
Testable circuits

Figure 1.7 Testability Modifier outline.

14

CHAPTER 2

BEHAVIORAL TESTABILITY

ANALYSIS

2.1 Behavioral Description

The circuit's behavioral description is provided either by the designer or by behavioral-

level synthesis tool. If it is provided by a behavioral-level synthesis, it is in an inter-

mediate format for the circuit's final structural description. In BETA, the behavioral

description consists of a symbol table and a statement list. The symbol table describes

the variables defined in the circuit, including primary inputs (denoted as INPUT), out-

puts (OUTPUT), constants (CONSTANT), compiler-generated intermediate variables

(VARIABLE) and states (outputs of memory elements, denoted as REGISTER). It also

specifies the bit range of each variable. For variable vat, the bit range is denoted by

Range(vat). The statement list is a list of control, assignment, logic, arithmetic and

user-defined statements. Control statements consist of IF, SWITCH and CLOCK. There

are seven types of assignment statements, including variable split and merge. In addition,

there are 19 logic operations and 10 arithmetic operations. Variables appearing on the

left-hand side of statements are called results, while those appearing on the right-hand

side are called operands. In every statement, each result or operand is specified with a

variable name and a range. For example, a symbol A[0 : 2] denotes a variable named A,

15

with a range bit 0 to bit 2. In the remainder of this proposal, for simplicity, if a symbol

with no bit range is specified, every bit defined in the symbol table of that variable is

used (full range is assumed).

The behavioral description is represented by a directed graph G(V,E), called the

Control Flow Graph (CFG). A vertex v in V corresponds to a statement in the behavioral

description. The root of G(V,E) is the vertex which corresponds to the first statement

of the behavioral description. Let si represent the statement associated with vertex vi.

There is an edge (vl, vj) in E from vertex v_ to vj if and only if

• s_ is not a control statement and sj is the statement following s_ in the behavioral

description.

• s_ is a control statement and sj is one of the branch destinations.

Throughout this proposal, "vertex" and "statement" will be used interchangeably.

Figure 2.1 shows a sample circuit's behavioral description, which is similar to the

input format accepted by BETA. The first part of Figure 2.1 is a symbol table, which

describes all of the variables (including inputs and outputs) defined in this circuit. The

second part of Figure 2.1 shows the statement list which can be represented as a graph

(CFG). Figure 2.2 shows this circuit's CFG. As in Figure 2.2, more insight into the circuit

functionality can be derived from CFG than from the circuit's structural diagram. For

example, given different values on Cin, we can identify different operations executed in

this circuit.

16

•SymbolTableStart
Cin INPUT [0:0]
CNT REGISTER [0:2]
T1 VARIABLE [0:2]
T4 VARIABLE [0:2]
T7 VARIABLE [0:2]

• SymbolTableEnd

• StatcmcntListStart
SWITCH Cin
CASE 0
ASG 0 T1

ENDCASE
CASE 1
ADD CNT 1
ASG "I'4 T1
ENDCASE
CASE 2
SUB CNT 1
ASG T7 T1
ENDCASE
CASE 3
ASG 7 T1
ENDCASE
ENDSWITCH
ASG T1 CNT

• StatementListEnd

T4

T7

Figure 2.1 Sample circuit described in behavioral description.

17

T1--T4 TI=T7

I I
l

0

TI= 0 Tl=7 I

Figure 2.2 CFG example.

2.2 Path Analysis

Definition: A path is a sequence of edges { (v0, vl), (vl, v2),..., (Vn--1, ?)n) }, where v0

is the root of G and v, has no outgoing edge.

Graph (_ can be partitioned into a set of paths and analysis is done on these paths.

After forming the paths, variable renaming and constant folding are applied to each path

to simplify statements by removing intermediate variables. As an .example, statement

A = 1 followed by B = A+I is simplified to A = 1 and B = 2. Since every result or

operand is specified with a bus range, this complicates the implication process. Currently,

only symbols with the same variable name and range are implied.

Definition: For a statement Stk of the form x= y op z, where op is an operator, then

this statement defines x, and uses y and z (x, y and z are symbols).

18

The processof justification and propagationconstitutes the major work of test gen-

eration. Therefore, the information on how eachnodecan be justifed and propagatedin

the circuit is very important. To derivethis information from CFG leadsto the following

definitions.

Definition: JPath(var) is the set of path8 which can be used to justify at least some

portion of Range(vat). They are paths which define var[a:b], where [a:b] e Range(vat).

One simple way to derive JPath(var) is to find the set of paths which define vat.

However, one variable may be defined more than once with a different range in a path.

This complicates the derivation of JPath(var). Let a path, pi, define a symbol AIR1].

If pl redefines A with a different range R2 (R1 and R2 are both in Range(A)), p_ can

no longer be a JPath for A[R1] if R1 N R2 :_ NULL. This is because after executing

pl, the value of AIR1 N R2] is determined by the second definition. Nevertheless, pi can

still serve as a JPath for symbol AIR2]. As a matter of fact, pl can be used to justify

AIR1 U R2].

A path pi is in the JPath of variable vat if there exists a statement, _j, in pi such that

sj defines vat[R] (R C Range(vat)) and no subsequent definition of var in p_ redefines

any bit in vat[R].

Definition: PPath(var) is the set of path_ which can be used to propagate at least

some portion of the contents of vat.

A path p_ is in PPath(var) if there exists a statement in p_ that uses vat[R] (R E

Range(vat)). Path pi cannot be guaranteed to propagate the contents of vat to the

primary outputs. This is investigated during the observability derivation.

We need the following definition to determine PPath.

19

Definition: PropVar(pl,var) is a set of symbols (Va[R]) which can propagate at least

some portion of the contents of var, where path pi is used to propagate.

To determine PropVar(pi, vat), the following definition is needed:

Definition: A variable Vd[R] is reachable from var[Rk] by path p_, denoted as pi :

var[Rk] --* Vd[R], if there exists a sequence of statements, St1, St2...St,, in pl such that

the defined symbol in Stt is used or partially used in Stt+l for 1 < l < n, var[Rk] is used

in Stx and Vd[R] is defined in St,,.

Each variable Vd[R] in PropVar(pi, var[Rk]) should satisfy

• Va[R] is reachable from var[R_] in pi.

• var[Rk] is not redefined before it reaches Vd[R]. _

• Vd[R] is not redefined afterward in pi.

Then, pl is in PPath of vat if PropVar(pl, vat) is not empty.

Definition: JContVar(pi, vat) is the set of variables needed to be justified (controlled)

if path pi from JPath(var) is used to justify vat.

To derive JContVar(pl, vary, the following definition is needed:

Each V:[Rk] in JContVar(pl, vat) satisfies 2

• pi: Vj[Rk] ---* vat.

• Vj[Rk] is not defined before var is defined.

According to the above criteria, JContVar can be treated as the inputs to path pi,

while justifying var. To use pi to justify var, all of the variables in JContVar have to be

1As in JPath, as long as part of var[Rk] is redefined, this condition fails.
2If vat is defined more than once in Pi, the following criteria are based on its last definition.

2O

set properly. Therefore,the sizeof JContVar is somewhat related to the effort required

while executing p_ to justify vat.

Definition: PContVar(pi, vat, Vd[R]) is the set of variables needed to be justified if p_ in

PPath(var) is used as a propagation path for vat and variable V_[R] e PropVar(pi, vat)

is used to propagate the contents of vat.

To ensure that the data in vat is properly propagated to Vd[Rj], every variable in

JContYar(p. Yd[R]) has to be justified. Therefore, PContYar(pl, var, Vd[R]) is exactly

the same as JContVar(pi, Vd[R]). No extra effort is needed for deriving PContVar(pl, vat, V_[R]).

2.3 Controllability

2.3.1 Controllable type, CC

Unlike traditional testability measures, BETA first performs variable classification

according to each variable's intrinsic controllability and observability. Then, different

testability derivations axe applied to different types of variables. In this chapter, control-

lability classification is first addressed.

Definition: A writing sequence is a sequence of executable paths that can be used to

set the contents of a variable to any possible value. These values can be supplied from

primary inputs.

Definition: A variable is of type Completely Controllable (CC) if that variable has a

writing sequence.

21

Definition: A nonconstantvariable if it is not of type CC is said to be Non-Completely

Controllable (NCC).

For a variable, vat, to be of type CC, the following criteria need to be satisfied for a

path p_ in JPath(var) 3

• CI: All of the variables in JContVar(pi, vat) should be of type CC.

• C2: All of the variables in JContVar(pi, vat) can be justified to any possible values

simultaneously 4

• C3: If both C1 and C2 are satisfied, after the execution of p, vat can be any

possible value.

In the following sections, each criterion will be examined carefully.

2.3.1.1 Criterion 1

According to the definition of JContVar(pi, var), the variables in JContVar(pi, vat)

can be treated as the input cone that has to be set up before vat can be justified using

Pi. Criterion C1 is used to ensure that all of the inputs are controllable.

2.3.1.2 Criterion 2

Criterion C2 ensures that a sequence of paths, denoted as PrePath(pi, vat), can be

found such that after the execution of PrePath, all of the variables in JCont Var(pi, vat)

can be set to any possible values simultaneously. As a result, if pi is executed after

3These conditions are only sufficient.

4To meet this criterion, a sequence of paths is requried to be executed before Pi. This issue will be
addressed later.

'22

PrePath(p_, vat), every possible value needed in JContVar(pi, vat) in order to make vat

CC can be justified by PrePath.

The algorithm to examine C2 depends on whether the sequential elements of the

circuit have the HOLD property or not. Two different algorithms are presented in the

following sections.

Without HOLD Property: Sequential elements in most circuits do not have the

HOLD property. In this case, the following consideration is needed. Let PrePath(pl,

vat) consist of px,p2...p,_, where pk is executed before Pk-1 and pl is the path executed

right before pl. Assume that pi is used to make vat CC. Finding the appropriate pl is

exactly the same as finding the pi for vat which satisfies all three CC criteria, except

that instead of making one variable vat, all of the variables in JContVar(pi, vat) have

to be CC after the execution of Pl. If such a Pl is found, the following set of variables

needs to be justified:

{vi[vi E JContVar(p_, vj), Vvj e JContYar(pi, var) }

Then, it is necessary to find a P2 which can justify {vl). This process is continued

until {vi} consists of only primary inputs.

With HOLD Property: If all of the sequential elements have the hold property, there

is no need to set all JContVar(p_, vat) simultaneously. Instead, variables in JContVar(pi,

vat) can be justified one after the other. Whenever one variable has been justified,

its content is held and the next variable in JContVar(pi, vat) is justified. During the

justification of a variable, the contents of other previously justified variables may be

destroyed (redefined). This situation can be avoided if JContVar(pl, vat) is consistent.

This leads to the following definition:

23

Definition: A set of variablesis consistent if there exists an ordering of these variables,

{vl, v2...v,}, such that while justifying v_, 1 < i < n, the contents of vj are not destroyed,

for all j, j < i.

Then, Criterion C2 requires checking the consistency among JCont Var(pi, vat). Note

that even though JContVar(pi, vat) are not consistent, it does not mean that they cannot

be justified to any possible values simultaneously. For example, Vl and v2 are variables

in JContVar(pi, vat). Assume that vl has been justified, and p is used to justify v2. If p

defines vl, the original content of vl is destroyed by p. If p is the only path in JPath(v2),

{vl, v2} are not consistent unless we can justify v2 first and the justifition of vl does not

destroy vl. However, as in the case of circuits without the hold property, the execution

of p still satisfies C2 as long as after the execution of p, both vl and v2 can be set to

any possible values. As a result, consistency among JContVar(pi, vat) is a sufficient

condition for 122. To reduce the complexity, BETA checks only consistency for C2.

To determine whether a set of variables is consistent, we have to know how the

justification of each variable in this set affects the other variables.

Definition: Let vat =# {Ri} denote that no matter how vat is justified, at least one

variable in the set of variables {)?4} is destroyed.

Let Def(p_) be the set of variables defined in path Pi and JPathC(var) denote the

set of JPath(var) which can make vat CC. The algorithm that checks vat =_ {R,.} is

shown in Figure 2.3.

Definition: Let {JOj(pl, var)} denote a justification ordering for all the variables in

JCont Var(pi, vat). If R_ is the j-th variable to be justified in JCont Var(pl, vat), JOj (pi,

vat) is Rk.

24

input : a set of variables ({RO) and a variable var.

output : TRUE if var => {RO. FALSE, otherwise.

Destroy ({RO, var) {

for every pi in JPath(var) (

if(exists Ri in Def(pi) && Ri in JContVar(pi, var)) next pi;

for every R in JContVar(pi, var) {

for every pj in JPath(var) {

if(Destroy ({Ri}, R)) break;

next pj ;

1;

if (pj is empty) break;

next R;

};

l;

return (FALSE);

};

Figure 2.3 Check vat =_ {Ri}.

25

Lemma 1: The set of variables JContVar(p_, vat) is consistent if and only if there exists

an ordering { JOj(pi, vat)} such that JO_(p,, vat) =_ { JOl (p,, vat)... JOk-l (p,, vat)} is

FALSE for 0 < k < IJOj(pi, var)l , where {JOl(pi,var)...JO__x(p,,var)} denotes the

set of variables which starts from the first element in {JOj(pi, vat)} to the (k - 1)-th

element.

Proof: Obvious. I::1

Now, we can direct our attention on how to determine whether JContVar(pi, vat) is

consistent.

Lemma 2: If vat =_ {Ri} is FALSE, then {Ri} and vat are consistent if and only if

{Ri} is consistent.

Proof: Obvious. []

By Lemma 2, the algorithm shown in Figure 2.4 can be used to determine whether

JContVar(pi, vat) are consistent, i.e., Criterion C2. If an ordering exists, the algorithm

outputs a consistent ordering. Otherwise, it returns FALSE. Given a set of variables

{P_} to check consistency, Figure 2.4 first finds a variable Rj in {/_} such that Rj =_

({Ri} -Rj) is FALSE. As a result, while justifying {Ri}, Rj can be the last one to justify

without destroying others. Then, consistency checking is continued for the remaining

{Pw} - Rj variables. If {P_} is found to be consistent, a justifying ordering for the

corresponding consistent JCont Vat is also found.

2.3.1.3 Criterion 3

Given a JPath(var) pl, Criteria C1 and C2 check if JContVar(pi, vat) can be set

to any possible combinations. This does not guarantee that vat can be justified to any

26

input ; JContReg(pi, var).

output : A consistent ordering, if exists. Return FALSE, otherwise.

Consistent({Ri}) {

if(({Ri}) consists of only one variable) return(TRUE);

find= FALSE;

for every Rj in {Ri} {

if(Destroy({Ri}-Rj, Rj)) next Rj;

push (R j, Order);

find--- TURE;

break;

);
if(/find) return(FALSE);

Consistent ({Ri} - Rj);

};

Figure 2.4 Check consistency C2.

27

possible values after exectuing p_. This leads to the examination of Criterion C3.

following issues affect the examination of C3:

• Reconvergent fanout.

• Operation characteristic.

• Branches.

• Multiple define/use.

Each is discussed below.

The

l:teconvergent Fanout Issue: Figure 2.5 shows the effect of reconvergent fanout on

the determination of CC type variables. In this figure, A, B and D are of type CC and

we want to determine if F is also of type CC. It is possible to produce any possible value

on E (or C) by adjusting the value on A. However, after A has been used for E (or C),

its value is fixed and cannot make C (or E) to be any possible value. In this case, A

becomes constrained 5 in statement sl(or s2). As a result, one of C and E may not be

of type CC 6 and F may not be of type CC.

To handle reconvergent fanout, during the examination of Criterion C3, temporary

controllability types are determined and stored in ConstrainList. Initially, the temporary

controllability of every CC variable is set to FREE, and that of the NCC variable is

set to NCC. Once a FREE variable becomes constrained, its temporary controllability

becomes CONSTRAIN. If an NCC variable is set to CC, its temporary controllability

becomes FREE.

5This is because it can no longer be whatever value we want and acts as a constant.
6The reason we use "may not" is whether it is of type CC also depends on the operation performed

at that statement. This will be explained later.

28

sl • C = A opl B;

s2: E= A op2 D;

s3 : F= C op3 E;

s •
S

, B C '
I l

Ai F

Figure 2.5 Example of reconvergent fanout.

input • one variable, var, and one of its JPath, p.

output • TRUE if p can make var to be CC.

Check.RegFree(var, p) {

ResetConstrainListO ;

for every statement, s, in p {

type= ResultConstrainType(s, p) ;

/** possible type : FREE, CONSTRAIN, NCC. **/

if (s is branch) "{

if(type .t= FREE) return(FALSE);

if (BranchVar(s) = = RBranchVar(p, vat))

};

};

if(CheckLastDefine(s, p))

if(type .t= FREE) return(FALSE);

EnterConstrainType(Resuh(s), type);

};

Figure 2.6 Verify Criterion C3.

return(TRUE);

29

Figure 2.6 shows the algorithm to verify Criterion C3. Starting from the first state-

ment in a path, each statement's operands and operation used are examined to determine

the temporary controllability type of that statement's output. In the next section, we

show how to derive the temporary controllability type. Also, in a later section, we de-

scribe how to handle a branch statement.

Operation Characteristic Issue: Another possibility for a variable vat violating C3

is when the operation performed to produce vat cannot generate all possible values on

vat. Consider the statement vat - A* 2 and assume that A is of type CC. In this case,

the least significant bit of vat is always 0 after executing this statement, and it cannot be

used for setting vat to any possible value. If this is the only statement that defines vat in

this path, then vat is not of type CC. This issue is handled by defining, Controllability

Degree of Freedom for each operation.

Definition: The Controllability Degree of Freedom, CDF, of an operation is the number

of CONSTRAIN-type operands that it can tolerate and still produce a FREE result,

given that all of the operands are not of type NCC.

For example, the CDF of multiplication is 0, since as long as one operand is of type

CONSTRAIN, it is possible that not all possible values can be produced at the output.

When a statement is executed, the CDF of that statement's operation along with the

temporary controllability of the operands are used to determine the temporary control-

lability type of the outcome. This is performed in the procedure ResultConstrainType 0

as shown in Figure 2.6.

Example: Take Figure 2.5, for example. Assume that we want to determine the control-

lability type of F, under the condition that A, B and D are all FREE variables and that

3O

the CDFof opl, op2 and op3 are 0, 1 and 0, respectively. First, we have to determine the

temporary controllability type of C and E. Since opl cannot tolerate any CONSTRAIN

variable (its CDF is 0), in order to make C FREE, both A and B become CONSTRAIN.

On the other hand, op2 can tolerate one CONSTRAIN variable. Even though A is no

longer FREE, E becomes FREE since D is FREE. As a result, F is FREE, because both

of its operands axe of type FREE, even though CDF of op3 is 0. []

Branch Issue: BETA makes no distinction between control and data signals. Thus,

there is no need to assume that the data part and the control part are identified and

completely separated. However, from the viewpoint of CFG, control signals can be

considered as those variables which affect the control flow of CFG. Thus, the input cone

of all of the branch variables (including themselves) is a control signals. To resolve the

conflicts between control signals or between control and data signals, we have to consider

the branch issue.

Conditional branch statements such as "if" and "switch" in the CFG require spe-

cial handling. Every conditional branch in the CFG produces at least two paths that

share some common statements. To traverse one of these paths, every branch variable

has to be properly justified. This effect should be taken into account when deriving

JContVar. Let Branch(pl) denote the set of branch variables in path p_. One straight-

forward way to modify the JContVar of each variable, vat, defined in pi, is to include

all JContVar(pl, Rb), where Rb E Branch(pi).

gContYar(pi, var) = [UJContYar(p,,Rb)] _.J JContVar(p,,var)
Rb

This equation is too pessimistic. Consider Figure 2.7, which is part of a CFG. As-

sume that no further branches appear after Rb. If statement St_ is the last definition

31

P1

I

I
I

1¥

sti

var= A op B [

=1

P2

I

I
I
I

¥

Figure 2.7 Branch example 1.

of vat for both paths pl and p2, then there is no need to include JContVar(Rb) into

JContVar(var), because vat can be properly defined whether Rb is TRUE or FALSE.

Thus, JContVar(pl,var) should be the same as JContVar(p2,var). Therefore, only

those branches above Rb and along Pl (p2) should be added to JContVar(var). This

result is not always TRUE. Consider another portion of CFG, shown in Figure 2.8. Al-

though the vat in statement Sti is the last definition for pl, it is not the last definition

for P2. To use Sti to define vat, _Rbhas to be 0. Therefore, JContVar(Rb) should be put

into JContVar(var, pl). This leads to the following definition:

Definition : RBranch(pl, var) is the branch variable in pi such that all of the statements

below RBranch(pl, vat) form the largest define-free region in pl for vat.

As an example, Rb is the RBranch for vat on both pl and p_ in Figure 2.7. In

Figure 2.8, however, RBranch(pl, var) is Rc, and RBranch(p2, vat) is Ra. This leads to

the fact that all of the branch variables in pl below (including) RBranch(pl, vat), do not

have to be taken into account while deriving JContVar(p_, var[R1]).

32

P1

St i

vat=- A opB I
P2

i..... ' _-o<_-1 i
¥

Stj

] var=CopD I

Figure 2.8 Branch example 2.

33

Not only are the branch variables affecting the derivation of JContVar, but they

are also affecting the examination of C3. In Figure 2.6, let statement sp be a branch

statement with branch variable vb in p_. Assume that pl is executed while vb equals 0.

If vb is not of type FREE, we have no control on vb. As a result, pi cannot be properly

traversed. In Figure 2.6, if vb is not of type FREE, Criterion C3 fails as Figure 2.6

returns FALSE. If all of the branches above RBranch Var(p_, vat) are of type FREE and

the last definition of vat in pi is of type FREE, Figure 2.6 returns TRUE. Note that as

in deriving JContVar, the branch variables below (including) RBranch have no effect on

vat. Only the branch variables above RBranch count in Figure 2.6.

Multiple Define/Use Issue: Another factor which affects the checking of C3 is the

multiple define and use issue. It is possible that a variable vat is defined and/or used more

than once in a path p of CFG. This will affect the identification of CCbecause each define

on vat results in a different temporary controllability type (FREE, CONSTRAIN, NCC);

for each use of vat, the current temporary controllability type is used. In addition, this

current controllability type may not be the same as the final controllability type of vat

because the last definition iN p 9 n vat dominates all of the previous definitions.

Another issue which needs consideration is that each define/use.on vat may not be

in Full Range. z This leads to the following two situations:

(1) Every define/use of vat is in Full Range:

Three more different cases to be considered:

• Multiple uses only:

For each usage of vat, its controllability type is used to determine the output

7This means that every bit of vat is involved in each define/use.

34

controllability (asexplained in the previoussections). At each usageof vat,

its current controllability type has to be identified. If vat is not defined in

path p, vat must be either a primary input or defined in some other path.

In the latter case, the final controllability type defined in some other path is

used as its current controllability type. If there is more than one path which

defines vat, the more controllable one is used as vat current controllability

type, since it is better to use this path to justify vat.

• Multiple defines only:

After each definition of vat, its current controllability type is changed, depend-

ing on the operands and operation used in each definition. After execution

path p, only the last definition cour/ts. If p is used to control vat, the control-

lability type of vat is completely determined by the last definition.

• Multiple defines and uses:

This is a combination of the above two cases and is the same as the above,

only the last definition counts in determining the controllability type on vat

if this path is used. Also, if vat is used in p, the current controllability type

on vat is used as the operand's controllability type. However, this current

controllability type is determined by the previous definition of vat before this

usage. If vat is not yet defined in p, vat's controllabiltiy type is determined

by some other path, as in the multiple uses case.

(2) Not all of the define/use of vat is in Full Range: All of the above situations assume

that for every define/use of vat, every bit of vat is involved. This is not true

for the general circuits. In general, for each define/use of vat in p, denoted as

35

DU(p, var), there is a specific range R(DU(p, var)) associated with this define/use,

where R(DU(p, var)) is in Range(vat).

If vat is used in DU(p, vat), the current controllability type for each bit in R(DU(p, var))

should be found. It is possible that part of but not all R(DU(p, vat)) is defined

by another definition on var, denoted as DUI(p, var). As a result, the controlla-

bility type of that portion of R(DU(p, var)) is determined by DUl(p, var). The

remainging part of R(DU(p, var)) is then determined by the definition prior to

DU1 (p, vat). This process is continued until the current controllability of every bit

in R(DU(p, var)) is determined.

Since it is possible that every bit of R(DU(p, var)) is determined by a different def-

inition, not every bit has the same current controllability type. To be conservative,

in BETA, the current controllability type of R(DU(p, var)) as a whole is determined

by the least controllability type. For example, as long as one bit in R(DU(p, var))

is of type NCC, the current controllability type of R(DU(p, vat)) becomes NCC.

The algorithm shown in Figure 2.9 determines the controllability type for each variable

in the circuit. This is accomplished by checking that a variable satisfies all of the criteria

stated above.

As a byproduct of the algorithm shown in Figure 2.9, all type CC variables and their

corresponding writing sequences are found. All of these variables can then be treated as

pseudo-primary inputs while testing the circuit.

36

input ; every variable in the circuit.

output : controllability type (ContType) for each variable.

DetermineCCO {

for every variable, var,{

if var is PI, ContType(var)= CC;

else ContType(var)= NCC;

);

change= TRUE;

while (change) {

change= FALSE;

for every NCC variable, var,

for every pi in JPath(var)

if (pi satisfies all the criteria) {

ContType(var)= CC ;

change= TRUE;

};

};

{;

Figure 2.9 Check CC.

37

2.3.2 Controllability calculation

Let var be a type CC variable.Define WS(var) as the set of JPath(var) which can

make var a CC variable.These paths are more controllablethan others when justifying

var. To justifyvar, only thistype of path isconsidered. To justifyvar through path

p_,we need to justifyevery variable in JContVar(p_, var). Under the assumption that

variablesin JContVar can be justifiedone afterthe other, the total number of paths

needed to justifyvar depends on the number of paths needed to justifyeach variable in

JContVar(pi, var). Therefore, the totalnumber of paths needed to justifya type CC

variable,var, will be differentifa differentpl is used to justifyvar. In thissection,an

algorithm isdeveloped to find the shortest number of path sequences needed to justify

var using only paths from WS(var). This algorithm isnot validfor type NCC variables,

since they do not have writing sequences.

Definition: CC(var) isa measure of the minimum number of paths needed to justifya

type CC variablevar.

CC(var) is calculated as follows:

if (vat is a PI) then CC(var)= O;
else

CC(var) = Minp,{E,j[CC(rj[Rj])]} + 1,

where pi E WS(var) and rj[Rj] E JContVar(pl,var)

The above equation can be interpreted as follows:

• Primary inputs can be controlled directly without traversing any paths. Therefore,

their controllability is set to 0.

38

• If p, is used to justify var, we have to justify all of the rj[Rj] e JContVar(pi, var)

first. Assume that variables are justified in a sequence one after the other. Then,

the total number of paths needed to justify all rj[Rj] is _r,[CC(rj[Rj])].

• After traversing _r_[CC(rj)] paths, all inputs in pj have been set. But, pj has not

yet been traversed. Thus, a "+1" is needed to account for this.

• Any path p_ in WS(var) can be used to justify vat. To find the path P1 E WS(var)

which requires the minimum number of paths, the Min of all pj is used.

One such equation is associated with every variable in the circuit. An iterative relax-

ation algorithm is then used to solve this set of equations.

As long as CC(var) is found, the path which makes CC(var) minimum is recorded.

This is defined to be the best path to justify vat, denoted by BJPath(var), which is the

best candidate for the writing sequence for var.

2.3.3 NCC handling

Not all of the variables in a_circuit are of type CC. Thus, it is important to derive

some more testability information for NCC variables. In this section; several approaches

are used for this purpose. The first one is to subdivide NCC into several more types.

Another approach is to derive some heuristic for exploring the relative controllability

among the NCC variables. The other approach is to identify the relative controllability

among those NC variables by the reason which makes them NC.

39

2.3.3.1 More controllability types

Variables of type NCC can be subdivided into the following types: PCC, VCC and

NC.

Definition: A variable vat is of type PCC Partially Completely Controllable if vat is not

of type CC and a writing sequence exists for symbol vat[R], where R is in Range(vat).

The multiple define/use issues mentioned in the previous section allow us to iden-

tify PCC variables. In BETA, each controllable range of a PCC variable is identified,

along with the corresponding path sequence which makes this range controllable. This

information is helpful for the test generator to control at least part of a variable.

By using PCC, the controllable range of a variable is found. On the other hand,

a variable may be controllable in the sense that some, but not all, possible values are

completely controllable. This leads to the following controllability type:

Definition: An NCC variable, vat, becomes VCC if there exists a JPath(var) such that

some, but not all, values on vat are completely controllable.

Definition: An NCC variable becomes NC if it is not of type PCC or VCC.

There are several possible reasons for the existance of VCC variables. One is due to

constant assignment. The other case is due to reconvergenet fanout. Consider the state-

ment S_: A-- Bop C. Assume that the temporary controllability of B is CONSTRAIN

and that of C is FREE. If the CDF of op is 0, A becomes CONSTRAIN. This means

that A can be set to some, but not all, values freely.

By using the concept of VCC variables, more controllability information can be de-

rived. If the controllable values of vat can be determined (for example, due to constant

assignment), BETA will keep track of this information. Then, this controllable value

4O

can be treated as the resetvalue for vat. Sometimes, the controllable values is hard to

derive (for example, vat is of type CONSTRAIN). The path sequence which makes vat

VCC is very likely to be able to produce the value needed by the test generator, and

this sequence is relatively more controllable. Thus, the test generator should try this

sequence to jsutify vat first.

2.3.4 NC analysis

In BETA, for every p in a variable n's JPath(n), the reason that p fails to make n CC

is also determined. Based on this determination, p is associated to one of the following

Path Types:

• Rule-l-violated: There exists at least one NC node in JContVar(p,n).

• Rule-2-violated: Violates Criterion 2.

• Branch-violated: Branches on p cannot be set up properly.

• Rule-3-violated: Violates Criterion 3.

Assume that every NC variable has only one JPath. Then, NC variables can be

classified into the following four catagories, denoted as NCType accord.ing to the Path Type

of its JPath.

• Typel: PathType is Rule-l-violated.

• Type2: PathType is Rule-2-violated.

• Type3: Path Type is Branch-violated.

• Type4: PathType is Rule-3-violated.

41

As a result, NCType shows the reason why a variable is NC. This is helpful in classify-

ing the relative controllability among these NC variables. This issue would be explained

later.

In general, however, an NC variable may have more than one JPath, and each JPath

may have a different PathType. Then, the previous way of defining the NCType becomes

ambiguous. This leads to the following modified definitions of NCType:

• Type1: All PathTypes are Rule-l-violated.

• Type2: All PathTypes are either Rule-l-violated or Rule-2-violated, and at least

one Path Type is Rule-2-violated.

• Type3: All PathTypes are Rule-l-violated, Rule-2-violated or Branch-violated, and

at least one PathType is Branch-violated.

• Type4: There exists at least one Rule-3-violated Path Type.

This definition implies that a Rule-3-violated JPath has higher priority in determining

NCType than Branch-violated, Branch-violated is higher than Rule-2-violated, and Rule-

2-violated is higher than Rule-l:violated. The following example is used to explain the

reason for such priorities. Let an NC variable n have two JPaths, pl and p2. Path px

is Rule-l-violated and _ is Rule-3-violated. It is possibly harder to use Pl to control n

than to use P2, since a Rule-3-violated path satisfies all C1, C2 and all branches can be

properly set up. Thus, p2 should be a better choice for justifying n. This motivates that

Rule-l-violated paths, which are the least testable, have the lowest priority in determining

NCType.

42

As a result, Type_ NC variables axe relatively more controllable than the other NCType

variables, and Type1 is the least controllable one. This information is useful for a high-

level test generator when it has to make a decision as to which NC variables to justify.

2.3.4.1 NCC heuristic

Variables of type PCC and VCC are considered more controllable than NC variables.

In this section, a heuristic called NCCDepth is presented to derive the relative controlla-

bility among NC variables.

Definition: NCCDepth is a measure of the difficulty in justifying an NCC variable.

For an NCC variable N, NCCDepth(N) is defined as follows.

• If N is of type PCC or VCC, NCCDepth(N) is 0.

• If there exists a JPath(N) which makes N to be NC and violates Criterion C3 only,

NCCDepth(N) is 1.

• If there exists a JPath(N) which make N to be NC and violates Criterion C2 but

not C1, NCCDepth(N) is 2.

• Otherwise, set NCCDepth(N) to be infinite. Then, iteratively solve the following

equation:

NCCDepth(N) = minp{_'_[NCCDepth(M)] + 1}
M

where p is in JPath(N) and M is in JContVar(p, N) and is of type NCC.

The reason that NCCDepth(PCC) and NCCDepth(VCC) are equal to 0 is that PCC

and VCC variables are relatively more controllable than other NCC variables. Similarly,

43

amongall of the NC variables, those variables having a JPath which violates only Crite-

rion C3 are more controllable than others. Thus, their NCCDepths values axe assigned

to 1. Variables violating C2 are assigned in a similar fashion. For the other variables, if

there are more NCC variables in their JContVar, they are less controllable. Thus, their

NCCDepth is computed by the above equation.

It is possible that some NCC variables' NCCDepth remain infinite. For example, if

N itself appears in its JContVar for all of its JPaths, NCCDepth(N) would be infinite.

In this case, these variables are the least controllable ones.

Note that the path p which satisfies the above equation should be recorded as the

best candidate to be used to justify vat.

2.3.5 Loop handling

BETA derives testability information out of paths formed from CFG. The existence

of a loop complicates the path decomposition process, since we do not know exactly how

many times the loop iterates. A typical loop is shown in Figure 2.10. Currently, we

consider only the single natural loop. s

Definition : A natural loop [31] in a flow graph is a set of nodes in that graph such that

• All nodes in that set are strongly connected.

• There is only one entry, called header to this set of nodes. The entry is the node

through which the outside nodes can reach that set of nodes.

In BETA, CFG is decomposed into paths. For a path with a natural loop, it may

be decomposed into an infinite number of paths, which is impractical. To deal with

s"Single" means no nested loops.

44

this problem, note that one basic concept behind CC is that it is value-independent.

BETA will only identify those CC variables which are independent of the nubmer of

loops extended. For example, if a variable can be set to any possible value only after

the loop body has been executed exactly 10 times, BETA will fail to identify it as a CC

variable. We use the idea of Loop Reduction to decompose the loop into two paths. One

does not traverse the loop; the other traverses the loop exactly once. In BETA, only the

paths which do not traverse the loop or traverse it exactly once are examined to identify

CC variables. This leads to the following definition:

Definition : The E(exit) path of a loop is a path whose branch variable is selected so

that it exits the loop. The L(loop) path is to select the branch variable such that the

loop is traversed exactly once.

Consider Figure 2.10 as an example. The E path in that loop consists of statements

{A, B = 10, Out}, whereas the L path consists of {A, B # 10, C, A, B = 10, Out}. In the

L path, the branch variable (B in this example) appears exactly twice. Let BV1 denote

its first appearance and BV: denote the second one.

The E path behaves just like a normal path, except that the branch variable in B

(BV1, in this case) has to be properly set to avoid the traversal of the possibly uncon-

trollable loop body. Thus, while deriving the RBranch of every variable in E path, BV1

has to be taken into account. To deal with L path, take Figure 2.10 as an example.

Assume that node C consists of only one statement Sc which defines vat. Let BV2 be

vat's RBranch in the L path. According to the previous discussion, there is no need to

examine the controllability type of BV2 while evaluating Criterion C3 of vat. However,

if BV2 is not properly set, the loop body will be traversed one more time, which is not

specified in the L path. As a result, the controllability on vat derived by the L path is

45

[

]
Figure 2.10 A loop example.

no longer valid. Thus, while using an L path to evaluate var's controllability, both BV1

and BV2 have to be taken into account, no matter whether they are above or below the

RBranch. As a result, more variables have to be satisfied in JContVar, and both BV1

and BV2 have to be FREE to make vat CC using the L path.

The above discussion imposes a stronger criterion on vat if an L path is used. One

way to alleviate this criterion is to use backward implication. For example, in Figure 2.10,

let node C consist of only one statement B - B + 1 and node A be null. The L path is not

executable unless B is initially set to 9. To ensure that the L path is executable, an extra

constraint has to be imposed on BV1. Therefore, a backward implication (backtrace) is

done on the L path from BV2 back to BV1 to find the assignment on BV1 such that

after executing the loop exactly once, BV2 is set to the value which exits the loop. Let

this assignment on BV1 be BV_,,t. If the branch variable B is FREE before the loop

and is assigned to BV_,_,, then the L path will be executed. As a result, if BV_,,t can

be successfully identified, there is no need to consider BV2 anymore. This reduces the

size of JCont Vat and the algorithm in Figure 2.5 does not have to check whether BV2

is FREE. If the backtrace fails to find the proper BV_,it, both BV1 and BV2 have to be

FREE in order to use L path as a .]Path or PPath to produce CC or CO variable.

46

2.4 Observability

2.4.1 Observability types

Similar to controllability, variables are classified into several types according to their

observability.

A reading sequence is a sequence of executable paths that can be used to propagate

the contents of a variable to primary outputs.

Definition: A variable is of type Completely Observable (CO) if that variable has a

reading sequence.

Similar to type PC, type PO is defined as follows:

Definition: A variable, vat, is of type Partially Observable (PO) if vat is not of type

CO and there exists a reading sequence for symbol vat[R], where R is in Range(vat).

Then, symbol vat[R] is named observable.

If a variable is not of type CO or PO, it is denoted as NCO, Not Completely Observ-

able.

Assume that path p is in PPath(var) and is used to propagate the content of vat.

Consider the following two cases:

• There exists a primary output out in Prop Vat(p, vat) such that the content of vat

is observable at out:

If all of the variables in PCont Vat(p, vat, out) 9 are consistent, then a path sequence

can be executed to set up all of the variables in PCont Vat(p, vat, out) before the

execution of p to propagate vat to out. Let this path sequence be denoted as

9PContVar(p, vat, out) is the set of variables needed to be justified if out is used to observe vat.

47

PathSeqp(p). As a result, the examination of CO on vat consists of two phases in

this case. The first phase is to find out, a variable which is capable of observing

vat. Then, PContVar(p, vat, out) is checked for consistency. If both phases are

satisfied, vat is of type CO.

• No such primary output exists:

In this case, the content of vat has to be propagated to some register first. Let this

register be reg. To use reg to observe vat, the following three conditions have to

be satisfied:

- All of the input variables needed are consistent. Then, a path sequence, de-

noted as PathSeqp(p), is executed before p to set up all of these variables as

in the previous case.

- After the execution of p, the content of vat will be propagated to reg.

- There exists another path sequence, denoted as PathSeq_(p), such that PathSeq_(p)

is executed right after p and is able to propagate the content of reg to the

primary output.

If all of these conditions are satisfied, the content of vat can be observed by some

primary outputs by cascading PathSe%(p), p and PathSeq_(p).

In the remainder of this section, we shall show how to determine CO by identifying

PathSeqp(p), p and PathSeq_(p).

Assume that the content of vat has been propagated to reg. Then, another set of

variables needs to be justified to propagate the content of reg to the primary outputs.

This leads to the following definition:

48

Definition: ObContVar(var) be the set of variables to be justified such that the content

of vat can be propagated to the primary outputs.

Several notes for ObContVar(var):

• It is different from PContVar which is associated with a specific path p and an

output on that path. This output may be a primary output or some other register.

Thus, PCont Vat can be treated as an input cone if only path p is used. However, the

destination of ObContVar(var) must be a primary output. Thus, ObContVar(var)

is an input cone for the combined path sequence p and PathSeq_(p). As a result,

PContVar is a subset of ObContVar.

• There exists more than one set of ObContVar(var), since ObContVar(var) depends

on p and reg.

Variables ObContVar(var) can be derived as follows. For simplicity, assume that path

p and reg are used to propagate the content of vat to the primary output. We assume

that the registers do not have the HOLD property. After the execution of p, the content

of vat has been propagated to reg. Since the registers do not have the HOLD property, it

is not allowed to hold the content reg while justifying ObContVar(reg). As a result, after

the execution of p, it must be able to propagate the content of vat to rag and set up all

ObContVar(reg) simultaneously. To propagate vat to reg, PContVar(p, var, reg) have

to be set up. Thus, they are part of ObContVar(var). To justify all ObContVar(reg),

the JContVar(p, ob) of each ob where ob is a variable in ObContVar(reg) also have to be

included in ObContVar(var). This leads to the following derivation of ObContVa_.

ObContVar(var) = {UobJContVar(p, oh) } 0 PContVar(p, vat, reg)

49

Then, the criteria for examining CO can be formulated as follows. Variable var is of

type CO if there is a PPath(var), pi, and a reg in Prop Vat(vat) such that the following

criteria are satisfied:

• O1: reg is of type CO.

• 02: reg can observe var and all ObContVar(reg) are FREE after pi.

• O3: All of the variables in the ObContVar(var) are of type CC.

• 04: All of the variables in the ObContVar(var) axe consistent.

Criterion O1 is to ensure that the content of vat can be propagated to the primary

output through reg. Criteria 03 and 04 are similar to Criteria C1 and C2, respectively.

Therefore, we examine Criterion 02. According to the definition of PropVar(pi, vat),

the original contents of vat will reach reg. However, this does not guarantee that vat

can be propagated all the way to reg. For example, let St j, A[0:3]= B[0:3] _ 0001 be a

statement in pl (& represnts bit-wise AND operation). After executing this statement,

only the least significant bit of B can be "observed" by A, i.e., the least significant bit of

B can be uniquely determined by examining the value on A. Therefore, an algorithm is

needed to determine whether vat can be sensitized to any variable in PropVar(p_, var).

This leads to the examination of 02.

The algorithm (see Figure 2.11) to check Criterion 02 is similar to the procedure

used to check Criterion C2 of controllability (see CheckRegFree() in Figure 2.6).

The following is the explanation for the algorithm shown in Figure 2.11:

• To observe one variable, several variables have to be properly justified. Thus,

as in procedure CheckRegFree(), a ConstrainList is used to keep track of the

controllability status, FREE, CONSTRAIN or NCC, of each variable.

5O

input : one variable, var, and one of its PPath, pi.

output : TRUE if pi can make var to be CO.

CheckRegObser(var, pi) {

Res e tC ons trinaL ist() ;

ResetObserListO ;

use= FALSE;

define= FALSE;

for every statement s in pi {

if(operand is var) {

if(use) EnterConstrainList(NCC, var);

else {

use= TRUE;

UpdateObserRang e(s) ;

);

);

if(result(s) is var) EnterConstrainList(NCC, var);

O_type= ResultObserType(s) ;

EnterObser Type(O type, result(s));

C_type= ResultConstrainType(s);

EnterConstrainType(C_type, result(s));
next s;

};

UpdatePropRegO;

if(exists one observable symbol in PropReg) return(TRUE);

else return(FALSE);

};

Figure 2.11 Algorithm 5. Check variables'observability.

51

* There is another list, ObserList, in procedure CheckRegObser 0 to maintain the

information about the ability of each variable to observe vat. Every bit of each

variable takes two possible values in ObserList, 0 (observable) or NO (not observ-

able), to indicate the ability to observe the contents of vat.

If vat appears in the operand and this is its first appearance, procedure UpdateOb-

serRange 0 will enter the range of this operand into ObserList to indicate the ob-

servable part of vat. However, if vat is reused, to simplify the whole procedure, we

simply disregard the second usage by assigning NCC to vat in the ConstrainList.

Then, any further propagation from this second usage of vat will be prohibited.

Similarly, if vat is defined, var no longer stores the original value. Then all of the

subsequent uses of vat cannot be used to propagate vat. Therefore, we also assign

NCC to vat.

• Procedure ResultObserType 0 is used here to determine the observability type of

each statement result. If there exists any operand whose constraint type is NCC,

the result would be NO. Then, according to the ObserList as well as the Observ-

ability Degree of Freedom of each operator (defined later), the observability type of

the result is determined.

Definition: The Observability Degree of Freedom, ODF, of each operation is de-

fined as the number of constrained operands that it can tolerate and still produce

type O results, 10 given that at least one of the operands is of type O and none of

the operands are of type NCC.

1°Note that this O means the observability of the contents of vat, which is different from CO.

52

For example, the ODF of addition is 1, whereas the ODF of multiplication is 0.

Then, the observability type of the statement result can be determined similarly to

the determination of the controllability type in procedure ResultConstrainType().

• After examining all statements in the path, those variables in Prop Var(pi, vat) and

of type O are marked. They are the variables which axe not just reachable from

vat, but also can be used to observe the contents in vat.

Then, for a variable, vat, if there exists a PPath, pi, which satisfies all four criteria,

vat is of type CO, and all such paths are defined as PPathCO(var).

2.4.2 Observability calculation

Definition: For a type CO variable vat, CO(vat) is a measure of the number of paths

needed to propagate the contents of vat to a primary output.

Similar to the CC(var) computation, the CO(vat) calculation can be formulated as

follows:

if (vat is a PO) then CO(var)=O;

else

CO(vat) = Minp,{Min,d[CO(rd) + E_ i CC(rj)]} + 1,

where Pi E PPathCO(var), rd is of type 0 E PropVar(pi, vat) and rj E

O bC ont V ar(pl , var, r d)

The differences between this equation and the one for controllability are the following:

(1) A path, pi, is picked from PPathCO(var) instead of from JPathC.

(2) There may exist more than one var in PropVar(pl, vat). The contents of vat can

be transferred to a primary output through any variables, rd, of type O and in

53

PropVar(pl, vat). Since the observability is defined to be the minimum number of

paths used, there is a Min in the above equation before each CO(ra).

(3) In this equation, ObContVar(pi, var, rd) is used instead of JContVar(pi, vat).

As long as CO(vat) is found, the path and the rd which makes CO(vat) minimum

are recorded. This can be used when justifying vat.

2.5 Results

BETA was written in the C programming language. It consists of about 16,000 lines

of code. BETA was run on several circuits. One of these circuits is shown in Figure 2.12,

called micro. Its corrsponding CFG is shown in Figure 2.13. It is a microprocessor with

several instructions, where DI (Data In) is the primary input, and MAR and MBR are

primary outputs. The first row of Table 2.1 shows the general information of the CFG of

micro. According to Table 2.1, it has 13 variables, total 96 bits among these variables,

45 equations, 3 constant variables and 64 flip-flops. This circuit has been synthesized

by a behavioral synthesis tool to flatten the circuit into gates. Table 2.2 shows the total

number of transistors, gates, D flip-flops, inputs, outputs, stuck-at faults of the circuit

and gate-level test generation result using test generator CRIS [32]. To illustrate the

effectiveness of the testability guidance provided by BETA, a high-level test generator

developed by Wu [28] is used to generate tests for this circuit. BETA is first executed as

a preprocess. There are six data registers in this circuit, MAR, MBR, A, B, HAB and

PC. BETA identifies all of these registers as being of type CC and CO, along with their

reading and writing sequences. Then, the high-level test generator takes the high-level

54

Data Dam
Out In

COMB. _ CONTROL
_ ControlSignals

Figure 2.12 Microprocessor example.

structural description (Figure 2.12), CFG (Figure 2.13) and the results generated by

BETA to perform test generation.

Table 2.3 shows the high-level test generation run times on a SUN 3/50 workstation

with and without BETA where those data registers and AL U are the modules under test.

The run time for each module refers to the testing of all of the faults inside that module.

The run time for BETA is 8.7 seconds. 11 If BETA was not used, the test generator

would randomly pick a path from the JPath (-or PPath, the paths which can be used

to propagate the content of a variable) to justify (propagate) that variable. As shown

in Table 2.3, the test generator obtains a large speedup when BETA is used, because

BETA identifies the best justification and propagation sequence for each register. There

is no speedup in testing HAB because the random path happened to be the best one.

11If SUN SPARC workstation is used to run BETA, its run time information is shown in Table 2.4.

55

-j MAR= PC]

MBR= DI]IR= MBR[3:0]

MAR= PC

PC=PC+ I

MBR= 131

HAB= MBR

MAR= PC

PC=PC+ I

MBR= DI

MAR--HAB_MBR

A= MBR B= MBR i

I! ,Y

1 i'" PC=I'[: @MBR'

Figure 2.13 Microprocessor CFG.

Table 2.1 Saznple circuit information.

name variables

micro 13

circuit 1 28

circuit2 46

circuit3 67

circuit4 16

circuit5 8

circuit6 149

circuit7 29

bits equations const FF

96 45 3 64

47 28 8 8

224 61 13 36

336 90 11 16

41 23 9 3

66 6 1 0

442 194 55 24

134 36 11 14

56

Table 2.2 Gate-level description of the microprocessor example.

Number of transistor 10396

Number of gates 1580

Number of dff 64

Number of inputs 8

Number of outpts 24

Number of faults 4066

Untestable faults 638

Detected faults 3232

Fault Coverage 79.488 %

Fault Efficiency 95.180 %

On the other hand, even though the ALU does not appear on the CFG, BETA is also

helpful for testing the ALU. This is because testing the ALU involves the justification

and propagation of variables A and B. Control faults have not been tested by Wu's test

generator. We believe that speedup is also achievable since to activate the control fault

and propagate the effects require variable justification and propagation.

We have also applied BETA to seven circuits, named circuit1, circuit2...circuitT,

obtained from a behavioral synthesis tool. Information about the sample circuits is

shown in Table 2.1. The first column is the name of the circuit. This is followed by

the total number of variables and bits in the symbol table of this .circuit. The fourth

column shows the number of statements performed in this circuit. Some of the variables

in the circuit are simply constants. This is shown in the fifth column. The last column

in Table 2.1 shows the number of flip-flops in the circuit.

The results of running BETA are shown in Table 2.4. It shows the total number of

type CC, PCC, VCC, NC, CO, PCO and NCO variables found in each circuit. The last

column shows the run times (in seconds) of BETA if SUN SPACR workstation is used.

57

Table 2.3 Test generationtime for microprocessorexample.

fault total total red.
site gates faults faults

MAR 112 243 0
MBR 120 260 0

A 120 260 0

B 120 260 0

HAB 40 87 0

PC 256 556 0

ALU 491 1065 149

total

fault fault time (sec) time (sec)

cov. (%) efficieny (%) w/o BETA w. BETA

100 100 15.1 4.2

100 100 10.0 2.6

100 100 112.9 2.9

100 100 116.0 2.6

100 100 2.3 2.2

i00 100 13.5 2.8

86.0 100 80.1 7.2

349.9 24.5

Table 2.4 The results of running BETA on the sample circuits.

name nodes

micro 13

circuitl 28

circuit2 46

circuit3 67

circuit4 16

circuit5 8

circuit6 149

circuit7 29

const CC PCC VCC NC CO PCO NCO time

3 10 0 0 0 7 0 3 0.7

8 16 1 1 2 9 0 11 0.6

13 21 0 8 4 22 2 9 4.8

11 56 0 0 0 21 2 33 24.7

9 3 0 4 0 4 2 2 0.1

1 7 0 0 0 7 0 0 0.0

55 18 0 61 15 26 0 68 233.7

ii ii 0 7 0 5 0 13 1.1

58

CHAPTER 3

BEHAVIORAL SYNTHESIS FOR

TESTABILITY

As shown in Figure 1.6, our synthesis for testability approach is modeled as the

Testability Modifier. Its major operation is shown in Figure 1.7. First, BETA identifies

the HTD areas and diagnoses causes. Second, this information is used in a test point

selection process. The designer can then decide to use a traditional approach (test point

insertion or scan design) or our proposed Test Statement Insertion (TSI). In this chapter,

our selection process is first presented followed by TSI.

3.1 The Selection Process

If the measure of the difficulty of testing each HTD area can be found, then the most

difficult HTD area seems to be the best candidate for a test point. However, this is not

generally true, because it is possible that by selecting a less difficult HTD area, other

more difficult HTD areas become testable.

Example: A is a Type_ NCC variable, and A is in JContVar of B which makes B a

Type1 NCC variable. In general, B is less controllable than A, since in order to control

B, A has to be controlled first. If only one test point is allowed in this circuit to modify

the controllability, then inserting it at A would be a better choice than at B because B

can be controlled through a more controllable A. o

59

This implies that the best test point candidatemay not be the least testableone,but

the one with the most influence on other NCC variables. As a result, NCCDepth, the

heuristic used to differentiate the relative controllability among NCC variables, is not a

good heuristic for selecting test points. Therefore, another heuristic needs to be developed

to measure the influence of selecting one NCC variable on the other NCC variables. The

heuristic that we use to measure the influence is based on the total number of NCC

variables reduced after one NCC variable is selected. As a result, if the number of test

points selected does not reach the limit on hardware overhead or the modified circuit

does not fulfill the testing (fault coverage or fault efficiency) requirement, the selection

process continues until all of the NCC variables are removed.

3.1.1 Complexity

The goal of our selection procedure is to select the minimum number of test points

such that no NCC rem_ns in the circuit, unless the hardware constrain or testability

requirement is reached. To explore the complexity of this problem, consider the following

special case. Let the NCCType of all NCCvariables be Type1. Let there be n NCC nodes

denoted by N1, N2...N,,. For simplicity and without loss of generality, each NCC node,

N_, has only one JPath, denoted as P_. Let the set of NCC nodes in JContVar(Pi,

Ni) be NCC(PI, N_). Then, a directed graph, DG(N,E) can be formed. The nodes

in N are the n NCC nodes in the circuit. There is an edge e(i,j) in E if node N_ is in

NCC(Pj, Nj).

Claim 1: There is no source in DG(N,E).

6O

Proofi If there is a source, N,, in DG(N,E), there are no incoming edges to N_,

according to the definition of source. However, this violates the fact that N_ is a Rule-

1-violated NCC node. Therefore, there is no source in DG(N,E). []

As a result of Claim 1, there must exist cycles [31] in DG(N,E). On the other hand,

in this example, if we can modify the circuit such that the graph is acyclic, then there

will be no NCC nodes left in the circuit.

Claim 2: The minimum selection problem on the circuit with only Rule-l-violated nodes

is equivalent to the feedback vertex set problem [24], which is an NP-complete problem.

Proof: The feedback vertex set problem is to find a subset N _ C N in a directed graph

G(N, E) such that [N'I < K, where K is a positive integer, and every directed cycle

in G includes at least one vertex from N'. Given the previously defined directed graph,

DG(N,E), if a minimum number of nodes N _ can be found out of N by the feedback

vertex set problem, then by making these N' nodes controllable the final DG(N,E) will

consist of no cycles, and there will be no NCC nodes. Therefore, these two problems are

equivalent. []

Theorem: The minimum selection problem is an NP-complete problem.

Proof: It can be shown that the minimum selection problem is an NP problem. Then,

according to Claims 1 and 2, we showed that a special case of the minimum selection

problem, i.e., the one with only R.ule-l-violated nodes, is equivalent to an NP-complete

problem. Therefore, the general selection problem is NP-complete. []

3.1.2 Heuristic approach

Since the optimal selection among those NCC nodes is at least NP-complete, we

propose a heuristic method to solve this problem.

61

Our heuristic approachcanbe derivedasfollows:

Associate with each NCC variable N an effectiveness value, denoted as EFF(N).

EFF(N) is defined as follows:

EFF(N) = [_ BitSize(nt) - _ BitSize(n._)]/BitSize(N)
ntENCC, nmENCC_(N)

where NCCt denotes the set of original NCC variables, NCC,_(N) denotes the set of

NCC variables after variable N has been inserted as a test point, and BitSize is the

number of bits in variable N.

Heuristic EFF(N) is a measure of the effectiveness and cost ratio if N is selected. The

nominator part of EFF(N) measures the testability improvement associated with N. If

N is selected as a test point, every bit of N has to be modified. As a result, the cost to

select N can be modeled by BitSize(N). Then, the best candidate to be selected is the

one with the largest EFF value. The selection process is repeated until the limit on the

number of variables selected is reached. 1

As can be seen from the above equation, the effect of modifying one variable is

modelled by the number of NCC bits decreased. Therefore, EFF is a prediction of

testability improvement by inserting each variable into a scan chain (or test point).

1Note that after each selection, total NCC is changed. This should be taken into account while

deriving the next best candidate.

62

3.2 Test Statement Insertion

3.2.1 Methodology

Test Statement Insertion (TSI) is a technique that modifies the circuit to make it

more testable. It modifies the circuit's CFG instead of its structure diagram. The basic

idea of TSI is to bypass the original statement, which produces an NCC result, during

the test mode by inserting a test statement which defines the same result as that of the

original statement under normal mode of operation, but is able to make it CC under test

mode. An extra control input, denoted as Ti,_, is needed to distinguish between normal

mode and test mode. During the normal operation, Ti,, is OFF and the original statement

is executed. In the test mode, Ti,_ is set ON, the original statement is bypassed and the

test statement is executed. Consider the example shown in Figure 3.1. The left-hand side

of Figure 3.1 shows that the original CFG, where there is a path pi with a statement sk

on it. Let sk produce an NCC variable nj, and assume that nj has been selected as a test

point. The right-hand side of Figure 3.1 shows the CFG modified by TSL In the modified

CFG, a branch is inserted with Ti,_ as the branch variable, and a new statement s,,_, is

inserted. The variable nj is NCC in the original CFG because the operation performed

by s_, i.e., A op B, fails to produce a CC result. To make nj CC, a CC variable hi,

is assigned to nj in s,,_. The corresponding change in the structure diagram is shown

in Figure 3.2. In the original circuit, nj is produced from variables A and B through

operation op. Another type CC variable ni_ exists somewhere else in the circuit. In the

modified circuit, an extra fanout from ni_ along with the output of operation A op B

are connected to a multiplexer MUX, which is controlled by an extra primary input Ti_.

The output of MUX is assigned to nj.

63

s,I

P° I

$ I

i

1
n i - n

1
I
1
i

Figure 3.1

nl .. l,zorg [r_j .. n in

I I
T

1
I
!
i

A_ TSI

Test Statement Insertion.

I I
! !

' II

I
I

I

PrimaryInpum

I I
I I
I I
I I

I
!
!
!

Tin PrimaryInpum

I I

-__x I

I
!

I

! !

I I

'E 2i

Original circuit Modified circuit

Figure 3.2 The effect of TSI on structure diagram.

64

To successfully apply TSI, the following issues have to be considered in selecting a

variable n_,_:

• Primary inputs are good candidates. However, a lot of primary input fanouts should

be avoided.

• Try to reduce the usage of the same CC variable as n_, for several NCC variables.

• It is better not to use n_,_ again in subsequent statements along pi to avoid bus

reuse which may produce extra NCC variables.

• Each variable has its bit range. The bit range of n_,, should be greater than or equal

to that of hi. Otherwise, more than one n_,, should be used to fill the range of nj.

• Variable n_,, should be physically close to nj 2 to reduce extra routing.

Given a test point NCC to be modified, Figure 3.3 shows the TSI algorithm. Proce-

dure DetermineCandidate finds the possible candidates for this test point and returns a

CandidateList. According to the previous discussion, every candidate must be of type CC

and should create no loops after TSI. Also, the range in this candidate should be greater

than that of NCC. As a result, several CC variables may need to be combined to modify

NCC. Before examining each candidate, the original CFG is saved. Then, the modified

CFG is generated using the method shown in Figure 3.1. Then, for each candidate in the

CandidateList, its ability on overall testability improvement is examined. This heuris-

tic is similar to the EFF heuristic used in the test point selection algorithm. The only

difference is that in EFF modification extra primary inputs are assumed, whereas, in

_From the CFG, we have no idea how physically close between two variables. However, some simple
heuristic can be used to measure this distance.

65

input : CFG and NCC, the selected test point.

output : the best candidate to modify NCC using TSI.

TSI()

{
CandidateList- DetermineCandidateO;

for each Candidate in CandidateList

{
SaveOriginal CFGO;

M odifyC F G(Candidate) ;

heuristic= TSIDetermineCC(Candidate) ;

if(heuristic is the best ever)

BestCandidate-- Candidate;

RestoreCFGO;

next Candidate();

)
report BestCandidate for NCC;

Figure 3.3 TSI algorithm.

66

Figure 3.3, a CandidateList (a list of internal variables) is used to modify NCC. As in

deriving an EFF value, the heurinstic value in Figure 3.3 requires the use of deriving a

CC procedure similar to the one used in BETA. Finally, the best candidate is reported.

3.2.2 Comparison

TSI offers the following advantages:

• It can be adopted in behavioral or high-level synthesis: TSI can be applied

directly on the intermediate format of behavioral-level synthesis. Therefore, this

type of testability enhancement technique can be done in the early design phase

before the circuit's structural diagram is generated. It can also be used to modify

the structural diagram directly, as shown in Figure 3.2.

• Fewer extra primary inputs are needed: In the regular test point insertion

procedure, many extra primary input pins are required. Even for the scan design,

at least three pins, TCK, ScanIn, ScanOut, are required. In TSI, however, only

one extra pin, Tim, is needed, since controllability enhancement is done by internal

variables.

• Lower test application time compared to a scan-based design: One major

drawback for a scan design is the longer test application time associated with

it. This makes at-speed testing impossible. In TSI, controlling and observing an

internal variable can be done under the normal clock rate of the circuit.

• Lower area overhead than a scan-based design: Let variable nj in Figure 3.2

have m bits. Then, in the modified circuit, both of the inputs to the MUX have

m bits. Thus, the MUX can be decomposed into rn multiplexers, each with two

67

single-bit inputs. Each multiplexer can be implemented by two pass transistors

with Ti,_ as the control, and, as a result, only 2m transistors are needed to modify

variable nj by TSI. This is much less than for the traditional LSSD implementation.

Test Statement Insertion is used to enhance controllability. It can also be used to

enhance the observability in a similar fashion. If variable nj is also NO (non-

observable), an extra _rn transistors are needed to make it observable. In this

case, an extra pin, Observability Test Mode Selector, is needed for observability

enhancement. Note that a variable may be CC but not CO, or CO but not CC.

Therefore, two kinds of test mode selector, controllability and observability, can

be used independently to select different variables in the circuit depending on the

characteristics of that variable. As a result, even-though a variable is both NCC

and NO, a total of 4m transistors is required to make it both controllable and

observable. The area overhead is still less than that of an LSSD design. As shown

in Section 3.3, low area overhead was achieved by running experiments on several

sample circuits from the synthesis tool.

The following issues have to be addressed in using TSI:

• For a large circuit, Ti_ may drive many pass transistors in the circuit depending on

the original controllability of the circuit, and may need higher driving capability

than other regular inputs.

• Due to signal degradation caused by a pass transistor, a careful examination of

each gate's input should be done to ensure that it has enough driving capability.

68

Table 3.1 NCC selection result.

name NCC

circuitl 4

circuit2 12

circuit3 0

circuit4 4

circuit5 0

circuit6 76

circuit7 7

Select NCC remaining

2 0

5 0

0 0

1 0

0 0

6 (31) 29 (0)

2 0

• There would be some testability penality associated with TSI if n_,, is not from

extra primary inputs, as in test point insertion. Some experiments have been run

to evaluate this penalty and the results are shown in the next chapter.

3.3 Results

While deriving CC variables, BETA diagnoses the reason for a variable being of type

NCC. Based on this analysis, the proposed selection procedure selects a set of NCC

variables as test points such that all NCC variables are eliminated. The total number of

test points selected is shown in Table 3.1.

The second column in Table 3.1 gives the total number of NCC variables in the circuit,

while the third column gives the number of NCC variables that were selected. 3

Gate-level test generator CRIS [32] was then run on these circuits. The result is shown

in Table 3.2. The fourth column of Table 3.2 shows the untestable faults. 4 The fifth

3A note about circuit circuit6. It has more NCC variables than the other circuits, and, by selecting 6
out of 76 variables, the remaining NCC variables in circuit6 were reduced to 29. To make the remaining
29 variables CC, 25 variables had to be selected.

4The untestable faults are due to the sequential behavior of each circuit. The combinational parts of
the circuits are 100% testable.

69

Table 3.2 Test generation result for the original circuits.

circuit injected detected untestable f cov. (%) f eft. (%)

micro 4066 3232 638 79.488 95.180

circuitl 60 36 0 60.000 60.000

circuit2 737 593 144 80.461 100

circuit3 839 468 362 56.386 100

circuit4 105 76 25 72.381 96.190

circuit5 795 741 54 93.208 100

circuit6 1480 537 45 36.284 39.324

circuit7 462 281 150 60.823 93.2

Table 3.3 Test generation result for the modified circuits.

circuit total mod.

circuit1 28 1

circuit6 149 4

circuit7 29 1

time f coy.(%) f eft. (%) TSI f eft. (%)

0.3 sec 100.000 100.000 100.000

7.89 hr 77.363 95.055 89.728

1.7 sec 68.872 98.054 97.531

and sixth columns of Table 3.2 show the fault coverage and fault efficiency, respectively.

Note that according to Table 2.4, circuit3 and circuit5 are more controllable than the

others in the sense that they have more CC variables. This observation matches the test

generation result in Table 3.2 in which both circuit3 and circuit5 are 100% testable. The

lease controllable circuit predicted by BETA, as shown in Table 2.4, is circuit6. This

circuit is also found to be least testable as in Table 3.2.

According to Table 3.2, micro, circuit2, circuit3, circuit4 and circuit5 are already

testable. Thus, the selection process is applied to the remaining circuits to select test

points. After the selection, test generation is run. This gives the results shown in

Table 3.3.

7O

Table 3.4 Comparison of 5 test point candidates in circuit circuit6.

modify EFF values f coy. (%) f eff. (%)
nodel 7 35.676 47.082

node2 7.5 46.410 57.637

node3 1 38.055 47.785

node4 8 41.646 52.532

node5 5 35.027 47.727

The second column of Table 3.3 shows the total number of variables in each circuit.

The third column shows the number of controllability test points inserted in this exper-

iment. This is followed by the run time (on SUN SPARC workstation) to select these

test points. The fifth and sixth columns show the fault efficiency and fault coverage if

these test points are modified using Test Point Inertion. The last column shows the fault

efficiency if Test Statement Insertion is used to modify these test points.

To show that the selection process selects good test points, we performed the following

experiment on the least testable circuit, circuit6. The NCC variables in circuit6 with

the 5 highest EFF values were found first. The test generation was then run on 5 copies

of the modified circuit6, one copy for each selected NCC variable as a test point. The

results are shown in Table 3.4. The best candidate variable for test point predicted by

the selection process is node4 followed by node2, whereas the test generation shows that

node2 is the best followed by node4. Both nodes are better than the other nodes in the

sense of testability improvement.

We also run another circuit, circuit8, with 556 statements, approximately 10000

transistors and 71 flip-flops. There are 145 NCC nodes in that circuit. The 6 most EFF

value NCC nodes are selected, and test generation is run on the 6 different copies of

circuit8. The result is shown in Table 3.5, where the first row shows the test generation

71

Table 3.5 Comparison for 6 test point candidates in circuit circuit8.

modify EFF values f coy. (%) f eft. (%)

original x 60.049 92.334

nodel 2.833 68.072 100.000

node2 1 60.456 91.298

node3 1 60.957 91.800

node4 1 61.948 93.025

node5 1 62.404 93.479

node6 1 60.891 92.266

result for the original circuit. As shown in Table 3.5, the best test point candidate

predicted by the selection procedure is nodel, which is the node that gives the best test

generation result.

Finally, we show the amount of area overhead due to TSI. Assume that in the worst

case, no test generation is available (this is possible if we evaluate the circuit testability

at high level), and all the NCC variables found in Table 3.1 are modified using TSI. The

area overhead was computed by first counting the total number of transistors used in the

original circuit using the cell library of the synthesis tool. Then, if one node with bit

width m is selected from the circuit, 2m transistors are added to the modified circuit.

Table 3.6 shows the area overhead according to the transistor count.

The second column of Table 3.6 shows the total number of transistors in the original

circuit. The third column is the number of NCC nodes selected. Note that each node has

a different bit range. The fourth column gives the total number of transistors included by

TSI to modify those selected nodes. The overhead is given in the fifth column. Only a low

percentage of overhead was needed to enhance the overall controllability. As indicated in

the last row, the average area overhead for these seven circuits was around 2.599 %. Note

that this result assumes that all of the NCC variables found in Table 3.1 were modified.

72

Table 3.6 Area overheadanalysisin transistor count.

name total Trans. NCC selected extra Trans. overhead(%)
circuitl 1126 2 18 1.599
circuit2 2110 5 94 4.455
circuit3 2228 0 0 0
circuit4 284 1 6 2.113
circuit5 1108 0 0 0
circuit6 3868 31 160 4.137
circuit7 1126 2 30 2.664

average 2.599

As shownin Table 3.3, the actual numberof test points neededmay be far lessthan this,

and, as a result, the actual areaoverheadwill be evenlower.

73

CHAPTER 4

A PROBABILISTIC APPROACH

EVALUATION AND SYNTHESIS

TESTABILITY

FOR

FOR

4.1 Introduction

As the complexity of VLSI circuits increases, automatic test pattern generation

(ATPG) becomes a very time-consuming process. Design for testability by the use of

built-in self-test [33] becomes an attractive alternative. This motivates research on test-

ing through random or pseudorandom test patterns [34]. However, due to the fact that the

test patterns are not exhaustive, random test generation requires test quality verification.

Some research has been done on random testability analysis [35] and signal/detection

probability calculation [6, 36, 37, 38, 39].

In [35], a random testability algorithm called the Cutting Algorithm is presented. It

computes signal probability for combinational circuit and models detection probability

by signal probability. STAFAN [38] uses sampling techniques to compute the detection

probability of combinational and sequential circuits. PREDICT [6] uses the idea of a

super gate to compute exact signal probability. Chakravarty extended the concept of a

super gate to compute the exact detection probability for combinational circuits in [40].

74

In this chapter, a probabilistic testability measureand its corresponding synthesis

for testability approach are presented. First, a behavioral-levelprobabilistic testability

analyzeris presented,calledBEPTA, which computes controllability and observability for

sequential and for combinational circuits based on probabilistic analysis of the circuits.

The inputs to this analyzer are in the form of CFG. The second part of this chapter

describes a synthesis for testability approach based on the analyzer's result. In this

approach, first, a set of test point candidates are selected out of the less testable variables

identified by the testability analyzer. Then, the designer can choose either to use Test

Point Insertion [9, 10, 14, 15], Partial Scan [16, 17, lS] or Test Statement Insertion (TSI)

to modify the test points.

This chapter is organized as follows. The probabilistic controllability analysis is pre-

sented in Section 4.2. Section 4.3 presents the observability analysis. In Section 4.4, an

approach for testability improvement is presented. Some results are shown in Section

4.5.

4.2 Probabilistic Controllability Evaluation

4.2.1 Derivation of PCI(N)

The concept of CC is based on the deterministic analysis of the circuit testability,

whereas, the probabilistic analysis leads to the definition of Completely Probabilistic

Controllability (CPC).

Definition: Given that every primary input pattern has an equal probability to occur, a

variable N is said to be Completely Probabilistically Controllable (CPC) if every possible

value on N has equal probability to occur.

75

Under the random testing environment, if a variable is CPC, it would be easier to

activate any faulty effect on this variable. Thus, it would be important to find out

whether a variable in the circuit is CPC or not, and if not, how close it is to CPC. This

leads to the following definition of Probabilistic Controllability.

Definition: The Probabilistic Controllability of a variable N is defined as the number

of input patterns which are capable of making N CPC, divided by the total number of

input patterns, given that every input pattern has an equal probability to occur.

The following example is used to illustrate how to compute Probabilistic Controlla-

bility.

Example: Let a CFG have only two statements, C[0:1]= A[0:I] ADD B[0:I] followed

by D[O:O]= C[0:1] GE 3. Variables A and B are primary inputs, and all of the variables

are two bits wide, except D. Operation ADD refers to addition without carry and GE

means greater than or equal to. Variable D becomes 1 if C is greater than or equal to

3. Otherwise, D becomes 0. Table 4.1 shows the value of each variable under sixteen

different input patterns. According to Table 4.1, C is CPC, since every possible value of

C is equally likely to occur. However, only four input patterns make D to be 1. Thus,

only eight out of sixteen input patterns are capable of making D CPC (four patterns

make it 1 and the other four make it 0). Then, the ProbabiIistic Controllability of D

becomes 0.5. []

However, the above approach of computing each variable's Probabilistic Controllabil-

ity is impractical, since it relies on the exhaustive examination of input combinations.

Thus, in this section, a heuristic approach called PC[is proposed to measure how prob-

abilistically controllable a variable is.

76

Table 4.1 The value on each variable in the example under all possible input combina-

tions.

A B C D

0 0 0 0

0 1 1 0

0 2 2 0

0 3 3 1

1 0 1 0

1 1 2 0

1 2 3 1

1 3 0 0

2 0 2 0

2 1 3 1

2 2 0 0

2 3 1 0

3 0 3 1
3 1 0 0

3 2 1 0

3 3 2 0

77

Definition: The Probabilistic Controllability Indez, PCI(N), is a measure of the Proba-

bilistic Controllability of N.

While deriving PC[(N}, according to the definition of PCI, we do not treat every bit

of N separately. However, due to the frequent variable merge and split, it is possible that

not every bit of N has the same Probabilistic Controllability. As a result, PCI(N[b]) is

actually computed, where b is a bit in Range(N). In the remaining section, PCI(N) refers

to the average value of PCI(N[b]) among all bits b in Range(N).

The circuit's CFG can be decomposed into a set of paths. Different sets of statements

may be executed by different paths. As a result, PCI(N) depends on whether each

path can make N probabilistic controllable. The general approach of deriving PCI(N) is

outlined below. We first determine the Probabilistic Controllability of N in each path.

This leads to the derivation of PPCI(N), defined later and derived in Section 4.2.2. A

path is composed of statements. Thus, how probabilistically controllable a statement's

result is becomes the next topic to examine. This leads to the definition of SPCI, which

is defined in Section 4.2.3 and derived in Section 4.2.4.

Definition: Under the random assumption, Path Probabilistic Controllability Indez,

PPCI(p, N), is a measure of how probabilistically controllable N is if path p is executed.

As in PCI, PPCI(p, g[b]) is computed, and PPCI(p, N) refers to the average value

amongPPCr(p,

Let PathSet be the set of paths of the given CFG. Then, PCI(N[b]) should be de-

termined by examining all PPCI(p,N[b]), where p is in PathSet. In the ideal case,

PCI(N[b]) is the weighted sum of all PPCI(p, N[b]), weighted by path probability, the

probability that a path is executed under the assumption that inputs are purely random.

Due to the fact that the content of the registers is initially unknown, it is hard to derive

78

the exact path probability. As a result, we assume that each path is equally likely to be

executed as an approximation. Thus, PCI(N[b]) can be determined as follows.

PCI(N[b]) = Zp PPCI(p,N[b])
#PathSet

where p is in the PathSet, and #PathSet denotes the total number of paths in the PathSet.

4.2.2 Derivation of PPCI(p, Ntrb])

To determine PPCI(p, N[b]), every statement in path p should be examined one after

the other according to its order in p. The Probabilistic Controllability of the output of

each statement depends on the operands and the operation performed in this statement.

This motivates the following definition.

Definition: Given a statement S_: N= A op B in path p, SPCI(p, Si, N) is the measure

of how probabilisticalIy controllable N is if statement Si is executed.

Similar to PCI and PPCI, every SPCI(p, Y[b]), where g[b] is defined in S,, is com-

puted, if possible. Let DefineSet(p, iV) denote the set of statements in path p which

defines N. 1 As in deriving PCI(Nfb]), PPCI(p, N[b]) can be computed using SPCI(p,

Si, g[b]) where S_ is in DefineSet(p, N).

There are the following three cases to consider.

• If DefineSet(p, N) is empty, p has no ability to produce N at all. In this case,

PPCI(p, N) is 0. 2

lit is not necessary that the definition of N is in full range.
2This derivation makes sense only if N is either a combinational variable or a sequential variable

without the HOLD property. This implicit assumption is applicable to the remaining sections. On the
other hand, if N is a sequential variable with the HOLD property, this path should not be considered
when computing PCI(N).

79

• If DefineSet(p, N) has exactly one statement, e.g., Si: N- A op B, consider the

following two cases:

(1) N is defined in Full Range: This is the simpler case in which every bit of N

is covered by Si. Then, PPCI(p, N[b]) would be equal to SPCI(p, S,, Nl"o]).

(2) N is defined in Partial Range: This means that only part of N is defined in

S_. As a result, PPCI(p,g[b]) becomes SPCI(p, S_, Y[b]), if g[b] is defined in

S_. Otherwise, PPCI(p, N[b]) is set to 0.

• If DefineSet(p, iV) has more than one statements, e.g., $1, S2...St' according to the

order of appearance in p, and St' refers to the last one, then consider the following

situations:

(1) If St, defines Full Range on N, then for every b E RangeN PPCI(p, N[b])

equals SPCI(p, St', N_]). This is because the last definition erases all of the

previous definitions on g[b]. Thus, PPCI(p, N[b]) is completely determined

by SPCI(p, Sk, N[b]).

(2) If St' defines only Partial Range on N, then previous statements, Sk-1, Sk-2...Sx

begin to influence PPCI(p, IV). The way we handle thiscondition is similar

to the case in which there is only one statement with partial range. We can

associate a BITSPCI value to each bit. Initially, all BITSPCI are set to 0.

Starting from St', for every bit b covered by St,, its BITSPCI value equal to

SPCI(p, St', g[b]). Then, check Sk-1. For every bit b covered by Sk-1 and

not covered by Sk, assign SPCI(p, Sk-_, N[b]) to its BITSPCI. This process

is continued until all bits are covered or no DefineSet(p, iV) is left.

8O

4.2.3 Derivation of SPCI(p, Si, N[b])

We have shown how to compute PPCI(p, N[b/) out of SPCI(p, S_, N[b]). In this

section, we shM1 illustrate the derivation of SPCI(p, Si, N_]).

Assume that Si is N[1VI : Nh]-- AJAr: Ah] op B[Bt : Bh], where op is an operation,

and [NI, Nh], [At, Ah] and [Bt, Bh] specify the bit ranges used in N, A and B, respectively.

There axe the following three factors that determine SPCI(p, Si, iV):

• CPPCI(p, S_, A) and CPPCI(p, S_, B).

• Data dependency between A and B.

• Operation used in S_, i.e. op.

Definition: Current PPCI, CPPCI(p, S,, K[b]), is PPCI(p, K[b}) with only statements

above S_ axe counted while deriving CPPCI(p, S_, K[b]). If K[b] is not yet defined,

PCI(K[b]) is assumed to be CPPCI(p, S,, K[b]).

Current PPCI (CPPCI) axe used to model the Probabilistic Controllability of the input

operands of S_, i.e., A and B. Generally speaking, if the input operands are probabilistic

controllable, the output will be. more controllable. The detailed relationship between

output controllability and input controllability will be shown later. The reason that if A

(or B) is not defined before Si, PCI(A) (or PCI(B)) is used. This is because A (or B)

must be defined in a previous time frame by some other path. Thus, PCI(A) (PCI(B))

should be used as a general controllability index for A (or B).

The other factor is data dependency between A and B due to reconvergent fanout.

While computing SPCI, we are assuming that A and B are independent. The reasons

are the following. First, it is hard to resolve the exact dependency. Second, assume that

A is a function of C and D, e.g., A= f(C,D), and B is a function of C and E, e.g., B-

81

g(C, E). Due to the difference between (f, g) and (D, E), A and B can still be considered

as relatively random to each other while deriving a value-independent SPCI. Thus, this

is a good approximation if f and g axe different and there exist many different inputs

such as D and E.

The last factor which affects SPCI is the operation used in S_. Some operations

have the ability to produce more probabilistically controllable results than the others. For

example, consider the following two statements, $2 : X-- Y ÷ 1 and $2: X- Y AND 0001,

where AND denotes a bit-wise logical AND operation. Assuming that Y is probabilistic

controllable, X will be more random in $1 than in $2.

To derive SPCI by considering the different operation used in each statement, the

concept of a Probabilistic Controllability Function (PCF) is used.

SPCI(p,S_,N) = PCF(op, CPPCI(p,S_,A),CPPCI(p,S_,B))

We use the AND and ADD operations as an illustration for computing PCF given

every CPPCI(p, S_, A[A_]) and CPPCI(p, S_, B[Bb]), where Ab is in A[A_ : A_] and Bb

is in B[Bi : Bh].

4.2.4 PCF(AND, CPPCI(p, Si, A[Ab]), CPPCI(p, Si, B[Bb]))

The value of N[Nt] depends only on the values of A[A,] and B[B,] as does the value of

N[N_+_], N[Nt+2]...N[Nh]. As a result, SPCI(p, S_, NfNb]) can be completely determined

by CPPCI(p, S_, A[Ab]) and CPPCI(p, S,, BfBb]), where [Nb] is in N[N_ : Nh], and A[Ab]

and B[Bs] are the corresponding bits in A[A_: Ah] and B[Bt: Bh], respectively. Three

cases are examined:

82

(1) If both A[Ab] and B(Bb] are known constants, N[Nb] is a known constant. Thus,

SPCI(p, S_, N[Nb]) becomes 0.

(2) If one of A[Ab] and B[Bb] is a known constant, e.g., A is a constant, consider the

following cases:

• If A[Ab] is 0, SPCI(p, S_, N[Nb])= O.

This is because no matter what value is on B[Bb], N is 0.

• If A[Ab] is 1, SPCI(p, Si, Nigh])= CPPCI(p, Si, B[Bb]).

In this case, N[N_] is always equal to B[B_]. Thus, CPPCI(p, S_, B[Bb]) will

be assigned to SPCI(p, S_, g[Nb]).

(3) Otherwise, we can view A[Ab] (or B[Bb]) as a combination of its probabilistically

controllable part, CPPCI(p, Si, A[Ab]) (or CPPCI(p, Si, B[Bb])) and the uncon-

trollable part, 1 - CPPCI(p, S_, A[Ab]) (or 1 - CPPCI(p, S_, B[Bb])). Then, this

leads to the following cases:

• Both operands are not probabilistically controllable (this probability is (I-

CPPCI(p,S_,A[Ab])). (1-CPPCI(p,S_,B[Bb]))):

N[Nb] will not be controllable at all.

,, A is not probabilistically controllable and B is probabilistically controllable

(with probability (1-CPPCI(p,S,,A[Ab])) • CPPCI(p,S_,B[Bb])):

The Probabilistic Controllability on B[Bb] can only be transmitted to N[Nb]

if A[Ab] is 1. Due to the fact that the whole analysis is value-independent,

we can assume the probability that A[Ab] equals 1 is 0.5. Thus, under this

condition, 1/2. (1-CPPCI(p,S,,A[Ab])) • CPPCI(p,Si,S[Bb]) will contribute

to the Probabilistic Controllability on N[Nb].

83

• The other conditions canbe derived in a similar fashion.

As a result,

PCF(AND, CPPCI(p,S,,A[Abl),CPPCI(p,S,,B[Bb]))

= 1/2. CPPCI(p, Si, A[Ab]). CPPCI(p,S,,B[Bb])

+1/2. CPPCI(p,S,,A[Ab]). (1 - CPPCI(p,S,,B[Bb]))

+1/2. (1 - CPPCI(p,S,,A[Ab])) . CPPCI(p, Si, B[Bb])

4.2.5 PCF(ADD, CPPCI(p, Si, A), CPPCI(p, Si, B))

Unlike a logic AND operation, an ADD operation is not bitwise. As a result, we have

to treat A[At : Ah] (and B[Bt : Bh]) as a whole. Let CPPCI(p, S_, A) denote the average

of CPPCI(p, Si, A[Ab]), where Ab is in A[A, : Ah], as is CPPCI(p, S_, B). Then, as

we handled the AND operation, we can view A as a combination of its Probabilistically

Controllable part, CPPCI(p, Si, A), and its uncontrollable part, 1 - CPPCI(p, Si, A),

as is B. Then, as long as one of the operands is probabilistically controllable, N becomes

probabilistically controllable, since the ADD operation will uniformly distribute the value

on the probabilistically controllable operand to N. Thus,

PCF(op, CPPCI(p, S_, A), CPPCI(p, S_, B))

= 1-(1-CPPCI(p,S_,A))(1-CPPCI(p,S_,B))

4.2.6 PCF of other functions

The PCFs of the other functions are shown in Table 4.2. The way in which the PCFs

are defined in Table 4.2 is based on the ability of each function to make the output

84

Table 4.2 PCF of other functions.

type RCF

OR*, NOR*, NAND* same as AND

CAT weighted sum (by bit width) of both operands' CPRCI

EQ*, NE*

GT*, LE*

GE*, LT,

2/(total possible combinations on operand)
2.min_ M AX-constant,constant + l).C P PV l

if one operand is constant: (MAX+l)
otherwise: 1

2.min(M AX-conatant + l ,constant).C P PC I
if one operand is constant: (MAX+I)
otherwise: 1

XOR*, XNOR* if both operands are variables: 1

otherwise: the variable's CPRCI

SUB*, ADDC*, SUBC* same as ADD

MUL*, MULC*

SHR, SHL

ROR, ROL

if one operand is constant:

variable's CRPCI • P.,,,g_(_o._t_,,t)-# of 0 in the lsb
Range(constant)

otherwise: same as ADD

Ra,,_(_,_bl.)i-total bits shifted
Range(variable)

equal to variable's CPRCI

NOT, ASG equal to variable's CPRCI

uniformly distributed among all of its possible values. For the operations with a "*" in

Table 4.2, their operands have equal bit width. In Table 4.2, MAX refers to the maximum

possible value of that specific variable and type CAT refers to the concatenation operation.

In addition, the CPPCI in operations GT, LE, GE and LT refers to the CPPCI of the

nonconstant variable.

4.3 Probabilistic Observability Evaluation

Similar to the controllability analysis, the Probabilistic Observability Index (POI) of

each variable is used as a measure of Probabilistic Observability.

85

Definition: The Probabilistic Obsewability Index, POI(N), is defined as a measure of

the probability that the content of a variable N can be observed at a primary output z

under the random inputs assumption.

Initially, only the primary outputs' POIs are 1. All other variables' POIs are O.

Then, we recursively update each variable's POI by computing PPOI. Unlike the PCI

calculation, for simplicity, not every POI(N[b]) (b is in Range(N)) is calculated. Instead,

only the average observability value POICN) is derived.

Definition: The Path Probabilistic Observability Index, PPOI(p, N, M), is defined as

the probability that after executing one path, p, the content of N can be observed at M

if N is used in p, and M is either of type OUTPUT or REGISTER, and PPOI(p,N) is

defined as the probability that when p is used to observe N, the content of N will be

propagated to at least one primary output.

As in computing RCI(N), POICN) is determined by

POI(N) = E, PPOI(p,N)
#PathSet

where PathSet denotes the set of paths in the given CFG and p is a path in PathSet.

Every statement in path p has to be examined to derive PPOI(p, iV) and PPOI(p,N,M).

This leads to the derivation of SPOI.

Definition: Given a statement Si: C= A op B, SPOI(p, Si, N) denotes the probability

that the content of N can be propagated to C, the output of Si, if N is used in p.

Similar to deriving SRCI, the Probabilistic Observability of variables A and B over

N and the characteristic of op are critical in determining SPOI. Then, CPPOI(p, S_,

3This observation may not be done in one path, but a set of paths are needed to propagate the
content of N to primary outputs.

86

N, A) and CPPOI(p, Si, N, A) can be derived in the same way as CPRCI. Under the

assumption of data independence between A and B, a Probabilistic Observability Function

(POF} can also be derived. As a result,

SPOI(p, S{, N) = POF(op, CPPOI(p, S_, A, N), CPPOI(p, S_, B, N))

Let us take the operation addition without carry (ADD) as an example to illustrate

how to determine POF. Under the data-independent assumption, if either A or B can

observe N (this is indicated by CPPOI(p,Si,A,N) or CPPOI(p,Si,B,N) greater than 0),

C is able to observe N. As a result,

POF(ADD, CPPOI(p,S_,A,N),CPPOI(p,S,,B,N))

= 1 - [1 - CPPOI(p,S,,A,N)]. [1 - CPPOI(p,S,,B,N)]

The POF of the logic operation AND is determined as follows:

• If one of the operands, e.g., A, is of type CONSTANT:

Find the the number of ls in this constant devided by the total number of ls. Let

this number be OneRatio..Then,

POF(AND, CPPOI(p, S_, A, N), CPPOI(p, S_, B, N))

= OneRatio. CPPOI(p, S_, B, N)

• Otherwise:

As in the controllability case, assume that one half probability that 1 will occur.

POF(AND, C PPOI(p, S_, A), C PPOI(p, S_, B))

= 1/2. CPPOI(p, S_, A) • CPPOI(p, S_, B)

87

evaluation.

observation.

observe.

+1/2. CPPOI(p, Si, A) . (1 - CPPOI(p, Si, B))

+1/2. (1 - CPPOI(p,S_,A)). CPPOI(p,S_,B)

After execution of path p, the content of N may be observable by one of primary

outputs or registers. Then, PPOI(p,N,M) can be determined similarly to PRCI(p,N).

Note that while deriving SPOI or PPOI, whether each variable is defined or used by

a full range or a partial range should be carefully examined as in the controllability

For example, let statement S use 8 out of 16-bit of vat, the variable under

Then, CPPOI(p, S, vat, var} is 0.5, even though vat is the variable to

Another important note for CPPOI is the bus split issue. This is illustrated by the

following example.

Example: Let A be a 16-bit variable. Statement $1 defines A[0 : 10] with SPOI equal

to 0.8, and statement $2 following $1 defines A[8 : 16] with SPOI equal to 1. According

to the multiple define/use issue mentioned before, the SPOI of bits 8, 9 and 10 of A are

determined by $2. Assume that A[5 : 9] is used in statement $3. The CPPOI of A[5 : 9]

should be

3 .0.8+2
CRPOI(A[5: 9]) = 1"]" _. 1

Since PO[(M) is the probability that the content on M will be observed by the primary

outputs, PPOI(p, N, M) • POI(M) denotes the probability that if p is used to observe

N, the content of N will be observed by the primary outputs in the subsequent paths.

Because only the registers are able to hold the content till the execution of the next path,

if M is an internal variable (the output of a combinational module), it is not capable of

propagating N to the primary outputs. As a result,

88

PPOI(p,N) = 1 - 1"_(1 - PPOI(p,N,M). POI(M))
M

where M is either a register or a primary output other than N.

One other issue that complicates Probabilistic Observability derivation is the branch

issue. Take the branch variable Rb in Figure 2.7 for example. The content of Rb may

not reach any registers or primary outputs. As a result, Rb is completely not sensitiz-

able. However, Rb's content is still observable by comparing the difference between two

branches taken. Take Figure 4.1 as an example. It shows a branch variable R_, and a

primary output OUT. In this example, the content of Rb is observable by OUT. In other

words, the value of Rb can be uniquely determined by examining the values of OUT.

However, for some other circuits, if the values of one primary output OUT are the same

no matter which branch is taken, then branch variable Rb cannot be observed by OUT.

Under the random inputs' assumption, we can assume that the probability that OUT

takes the same value no matter which branch Rb is taking is

1
D(OUT) = I -

total combinations on OUT

Then, PPOI(p, Rb) should be modified as follows, if Rb is a branch variable:

Partial(OUT))
PPOI(p, Rs)- 1 - I'[(1 - D(OUT). POI(OUT).

OUT

where OUT is either a register or a primary output that is defined in p and after the

branch on Rb is taken, and Partial(OUT) and Full(OUT) refer to the range of OUT

defined beneath Rb and the total range of OUT, respectively. Note that this equation

assumes that OUT is not reachable from Rb. If Rb reaches OUT, the original method of

computing PPOI is used.

89

=0

[
OUT= 0

-1

l
OUT= I

Figure 4.1 A branch example.

4.4 Probabilistic approach for Synthesis for Testa-

bility

In this section, a Synthesis for Testability approach based on the provious probabilistic

testability analysis is presented. It consists of two major steps, test point selection and

testability modification.

4.4.1 Test point selection

After the Probabilistic Controllability evaluation, we can identify the variables in the

circuit which have low Probabilitic Controllability. In this section, a systematic method

is used to select test points.

Due to hardware constraints, the number of test points should be limited. We think

that the most valuable test points are those having the most influence on other variables.

The basic procedure is characterized as follows:

9O

• Use a threshold value on PCI to identify the set of low controllable variables, called

TPCandidate.

• Assume that we use extra primary inputs to modify each variable in TPCandidate

and rerun BERTA.

• Find the variable with the best profit function (PF). The profit function is defined

as

Ev_PCI_(n)- Ev. PCI(n)

PF(N) = bit width of N

where n is a variable in the circuit, PCI_o(n) is PCI(n) after variable N has been

modified and PCI(n} denotes the original PCI value on n.

• The variable with the best PF value is selected as the test point. If the number

of test points selected does not reach the hardware limit and the testability re-

quirement has not been fulfilled, this selection process can be continued to find the

subsequent test points.

4.4.2 Testability modification

Several different approaches can be used to modify the circuit controllability given

the test points selected in the last section, for example Test Point Insertion [9, 10, 14, 15],

Partial Scan Design [16, 17, 18] or Test Statement Insertion [41].

91

Table 4.3 RCI and ROI results for several sample circuits.

name

micro

circuit 1

circuit2

circuit3

circuit4

circuit5

circuit6

circuit7

avg. RCI (org.)

0.496224

0.775000

0.547732

0.662888

0.428571

1.000000

avg. ROI (org.)

0.546443

0.338889

0.670803

0.396255

0.675000

1.000000

0.401312

time (sec)
1.1

0.3

5.1

33.3

0.1

0.0

0.186490

0.533081 0.438194 0.9

280.9

4.5 Results

Our algorithm has been implemented on a SUN SPARC workstation in the C program-

ming language. It was applied to several sample circuits synthesized from a behavioral

synthesis tool.

We applied this tool to the circuits shown in Table 2.1. The results are shown in

Table 4.3. The first column shows the name of the circuit. The second column is the

average the RCI values in the original circuit among all of the variables in the circuit.

The third column shows the average ROI value in the original circuit. The last column

shows the run time for generating these results on a SUN SPARC workstation.

According to Table 4.3, micro, circuit2, circuit_, circuit6 and circuit7 have lower

RCI values than the others. We then use the heuristic profit function to find the most

approapriate test points in each circuit. After modifying those test points, those circuit's

average RCI values increase, as shown in Table 4.4. The second and the fourth columns

of Table 4.4 show the original and modified RCI values, respectively. The third column

shows the number of controllability test points modified in each circuit.

92

Table 4.4 AverageRCI before and after circuit modification.

name avg. RCI (org.) # T.P. avg. RCI (mod.)

micro 0.496224 1 0.644661

circuit2 0.547732 1 0.707198

circuit4 0.428571 1 0.771429

circuit 6 0.186490 5 0.420081

circuit7 0.533081 1 0.798706

Take circuit7 for example. Table 4.5 shows the RCI value of each variable in circuit7

before and after node1 is selected as a test point.

The test generation results on those sample circuits have been shown in Table 3.2. Ac-

cording to Table 3.2, micro, circuit2, circuit3, circuit4 and circuit5 are already testable.

Thus, the test points identified in Table 4.4 are applied only to circuit1, circuit6 and

circuit"[. Table 4.6 shows the test generation results on these modified circuits. All of

those originally less testable circuits become testable after the insertion of test points.

The last column of Table 4.6 shows the run time for finding those test points. Compared

to Table 3.3, the synthesis for testability approach based on BEPTA is much faster than

that based on BETA, especially for larger circuit, for example circuit6. However, BETA

and its corresponding synthesis for testability approach are more useful if a deterministic

test generator is used, whereas BEPTA is more useful in a random testing environment.

Take circuit micro for example. Variable PC is identified as CC in BETA. However, its

RCI value is 0.031250, which is very low, and is suggested as a test point according to

Table 4.4. This is because among the twenty paths in micro's CFG (Figure 2.13), only

two paths can make PC more probabilisticly controllable. Thus, PC is relatively less con-

trollable if random patterns are used in test generation. As a result, the controllability

of a variable may depend on whether test generation is deterministic or probabilistic.

93

Table 4.5 RCI results for circuitZ

name old RCI new RCI

node1 0.000000 1.000000

node2 0.779297 0.779297

node3 0.500000 0.500000

node4 0.500000 0.500000

node5 0.500000 0.500000

node6 0.000000 0.250000

node7 0.750000 0.750000

node8

node9

0.750000

0.750000

0.750000

1.000000

0.750000

node10 1.000000 1.000000

nodell 0.000000 1.000000

node12 0.000000 1.000000

nodel3 0.000000 1.000000

node14 1.000000 1.000000

node15 1.000000 1.000000

nodel6 1.000000

Table 4.6 Test generation results after circuit modification.

name test points f cov.(%) f eft. (%) time

circuitl 1 100.000 100.000 0.1 sec

circuit6 5 77.363 95.055 78.52 min

circuit7 1 68.872 98.054 1.5 sec

94

Table 4.7 RCI results for circuit1.

name old RCI new RCI

node1 0.000000 1.000000

node2 1.000000 1.000000

node3 0.666667 0.666667

node4 0.666667 0.666667

node5 0.666667 0.666667

node6 0.666667 0.666667

node7 0.666667 0.666667

node8 1.000000 1.000000

aode9 1.000000 1.000000

nodelO 1.000000 1.000000

nodell 1.000000 1.000000

node12 1.000000 1.000000

node13 1.000000 1.000000

node14 1.000000 1.000000

node15 0.000000 0.000000

node16 0.500000 1.000000

node17 1.000000 1.000000

node18 1.000000 1.000000

node19 1.000000 1.000000

node20 1.000000 1.000000

The average RCI value shown in Table 4.3 may be misleading. High average RCI

values do not guarantee that all of the variables have a high RCI. For example, the

circuit1 in Table 4.3 does have high average RCIvalue. However, some internal variables

have very low RCI values. Table 4.7 shows the RCI of each variable in circuit1. Most

variables in circuitl have high RC[values, except node1, node15 and node16, where

node16 is 8 bits wide and 4 out of 8 bits have an RCIequal to 1 while the other 4 bits'

RC[are 0. This explains the reason why circuit1 has low fault coverage, as shown in

Table 3.2. After selecting nodel of circuit1, its fault coverage becomes 100% as shown in

Table 4.6.

95

CHAPTER 5

SUMMARY

An approach for testability analysis, called BETA, is first presented in this thesis,

Unlike a traditional testability analysis tool, BETA evaluates testability at the behavioral

level using the Control Flow Graph (CFG). By using CFG, more of a circuit's functionality

can be explored. Also, this allows testability evaluation to be done in the early design

phase of the circuit design when no detailed structural description of the circuit exists.

The first procedure used in BETA is path analysis.

sidered as a macro instruction executed by the circuit.

Each path in CFG can be con-

Thus, a path in CFG can be

considered as a basic unit of operation performed by the circuit. Then, justification and

propagation can be transformed to be a path traversal problem. This motivates the path

analysis. After the analysis, all of the paths can be used to justify or propagate each

variable are first identified. Also, all of the variables that need justifition if a path is

used to justify or propagate a specific variable are identified and associated to each path.

One issue that complicates the whole procedure is that each variable may be defined or

used more than once in a path, and not every bit of that variable is involved in each

definition or usage. Careful examination of the bits involved in each definition or usage

is necessary.

After identifying all of the justification and propagation paths for each variable, BETA

tries to find the most controllable and observable ones. Before identifying such paths,

variable classification is first done to classify all of the variables into several groups

96

accordingto their intrinsic controllabilty and observability. This leads to the concept of

Completely Controllable (CC)and Completely Observable (CO). Unlike other testability

analysis tools give only heuristic values on controllability and observability, BETA derives

the exact writing and reading sequence for CC and CO variables. This information helps

the test generator in controling and observing those variables.

For the variables which are not CC or CO, further analysis is done by subdividing it

into Partial Completely Controllable (PCC), Partial Completely Observable (PC{)) and

Value Completely Controllable (VCC). For PCC (PCO) variables, the controllable (ob-

servable) subrange is identified. For VCC variables, the controllable values are identified.

For the remaining not controllable variables, some heuristics are derived to distinguish

the relative controllability among these less controllable variables.

The second part of this thesis describes a behavioral-level synthesis for testability ap-

proach. Based on the controllability and observability information derived by BETA, the

less controllable and observable variables are identified. They are the candidates for the

test points. Two test point selection methods is presented in this thesis. The common

objective of these two methods are to reduce the total number of less controllable (or ob-

servable) variables by making orie uncontrollable (or unobservable) variable controllable

(or observable).

Traditionally, test point insertion or partial scan design are used to modify the test

points. In this thesis, another method called Test Statement Insertion (TSI), which mod-

ifies CFG directly is presented. As a result, it can be applied to a high-level design envi-

ronment, such as a high or behavioral-level synthesis tool. Also, it is less expensive than

both test point insertion and scan design in terms of extra pins and area space consump-

tion. In addition, unlike partial scan design, no extra test clock is required. This makes

97

at-speedtesting possible. The only drawback is the testability penalty. By combining

both BETA and the synthesis for testability approach with an existing behavioral-level

synthesis tool, a complete behavioral level synthesis for testability cycle can be formed

such that the circuits generated by this synthesis tool would be automatically testable.

The last part of this thesis presents an approach for evaluation and synthesis for ran-

dom testability. The importance of a built-in self-test motivates the research on random

testability. In this thesis, an approach for random testability analysis is presented. As

in BETA, CFG is analyzed instead of the circuit's structural diagram. Under the as-

sumption that every primary input pattern has equal probability, random controllability

and observability for each variable are derived. Random controllability of each variable

is defined as the proability that a specific variable can be uniformly set to all of its pos-

sible values, whereas random observability is defined as the proability that one variable's

content can be propagated to at least one primary output.

Based on this random testability analysis, less controllable and observable variables

can be identified. Then, as in the synthesis for testability case, the most critical test

points can be identified. The designer can then use test point insertion, partial scan

design or the proposed TSI to rhake those test point testable.

All of these approaches have been implemented as a computer program using C pro-

gramming language. Several sample circuits generated by a behavioral-level synthesis

tool are used to evaluate the effectiveness of these approaches_ and the results are en-

couraging.

98

REFERENCES

[1] H. Fujiwara, "Logic testing and design for testability," Computer Systems Series,
1985.

[2] L. Goldstein and E. Thigpen, "SCOAP: Sandia Controllability/Observability Analy-

sis Program," Proc. of DAC, pp. 190-196, June 1980.

[3] J.E. Stephenson and J. Grason, "A testability measure for register transfer level

digital circuit," Proc. Int. Syrup. Fault Tolerant Computing, pp. 101-107, June 1976.

[4] R.G. Bennetts, G.D. Tobinson, and C.M. Maunder, "Computer-aided measure for

logic testability: The CAMELOT program," Proc. IEEE Int. Conf. Circuits Comput.,

pp. 1162-1165, Oct. 1980.

[5] I.M. Raitu, A. Sangiovanni-Vincentelli, and D.O. Peterson, "VICTOR: A fast VLSI

testability analysis program," Proc. ITC, pp. 397-401, Nov. 1982.

[6] S.C. Seth, L. Pan and V.D. Agrawal, "PREDICT-Probabilistic estimation of digital

circuit testability," Proc. Int. Syrup. on Fault Tolerant Computing, pp. 220-225, 1985.

[7] C.-H. Chen and P.R. Menon "An approach to functional level testability analysis,"

Proc. ITC, pp. 373-380, 1989.

[8] K. Thearling and J. Abraham, "An easily computed functional level testability mea-

sure," Proc. ITC, pp. 381-390, 1989.

[9] J.P. Hayes, "On modifying logic networks to improve their diagnosability," IEEE

Trans. Comput., vol. C-23, pp. 56-62, 1974.

[10] K.K. Saluja and S.M. Reddy, "On minimally testable logic networks," IEEE Trans.

Comput., vol. C-23, pp. 552-554, May 1974.

[11] P. Goel, "An implicit enumeration algorithm to generate tests for combinational

circuits," IEEE Trans. Comput., vol. C-30, pp. 215-222, March 1981.

[12] S. Patti and P. Banerjee, "Parallel algorithm for test generation and fault simula-

tion", IEEE Trans. on CAD, vol. 9, no. 3, pp. 313-322, Mar. 1990.

[13] T. Niermann and J. Patel, "HITEC: A test generation package for sequential cir-

cuits", Proc. European Design Automation Conf., pp. 214-218, 1991.

99

[14] B. Krishnamurthy, "A dynamic programming approach to the test point insertion
problem," Proc. 24th Design Automation Conf., pp. 695-705, 1987.

[15] I. Pomeranz and Z. Kohavi, "Polynomial complixity algorithms for increasing the

testabiilty of digital circuits by testing-module insertion," IEEE Trans. Comput., vol.

40, no. 11, pp. 1198-1212, Nov. 1991.

[16] E. Trischler, "Incomplete scan path with an automatic test generation methodology,"

Proc. ITC, pp. 153-162, 1980.

[17] V.D. Agrawal, K.T. Chang, D.D. Johnson and T. Lin, "A complete solution to the

partial scan problem," Proc. ITC, pp. 44-5i, 1987.

[18] H.-K.T. Ma., S. Devadas, A.R. Newton and A. Sangiovanni-Vincentelli, "An incom-

plete scan design approach to test generation for sequential machines," Proc. [TC,

pp. 730-734, 1988.

[19] V. Chickermane and J.H. Patel, "An optimization based approach to the partial

scan design problem," Proc. ITC, pp. 377-386, 1990.

[20] M.J.Y. Williams and J.B. Angel, "Enhancing testability of large scale integrated

circuits via test points and additional logic," IEEE Trans. Comput., vol. C-22, no. 1,

pp. 46-60, 1973.

[21] E.B. Eichelberger, "Level sensitive logic system," U.S. Patent 3,783,254, IBM (As-

signee), Jan. 1, 1974.

[22] K.T. Cheng and V.D. Agrawal, "An economical scan design for sequential logic test

generation," Proc. 19th Int. Syrup. on Fault-Tolerant Computing, pp. 28-35, 1989.

[23] C.-H. Chen, C. Wu and D. Sa_b, "BETA: BEhavioral Testability Analysis," Proc.

ICCAD, pp. 202-205, 1991.

[24] M.R. Garey and D.S. Johnson, Computers and Intractability: A Guide to the Theory

of NP-Completeness. San Francisco, CA: W.H. Freeman, 1979.

[25] M.S. Abadir and M.A. Breuer, "Constructing optimal test schedules for VLSI circuits

having built-in test hardware," Proc. 15th [nt Fault-Tolerant Computing, pp. 165-170,
1985.

[26] M.S. Abadir and M.A.Breuer, "A knowledge based system for designing testable

VLSI chips," IEEE Design _ Test of Computers, vol. 2, no. 4, pp. 56-68, Aug. 1985.

[27] S. Freeman, "Test generation for data-path logic: The F-path method," IEEE Jour-

nal of Solid-State Circuits, vol. 23, no. 2, Pp. 421-427, Apr. 1988.

[28] C. Wu, "Test generation for high level synthesis circuits," M.S. thesis, Department

of Computer Science, University of Illinois at Urbana-Champaign, 1991.

100

[29] M. McFaxland, A. Parker and R. Camposano, "The high-level synthesis of digital

system," Proc. IEEE, vol. 78, no. 2, pp. 301-318, 1990.

[30] M. McFarland, "Using botton-up design techniques in the synthesis of digital hard-

ware from abstract behavioral description," Proc. DAC, pp, 474-480, 1986.

[31] A.V. Aho, R. Sethi and J. D. Ullman, Compiler Principles, Techniques and Tools,

Reading, MA: Addison-Wesley Publishing Company, 1986.

[32] D. Saab, V.G. Sa_b and J. Abraham, "CRIS: A test cultivation program for sequen-

tail VLSI circuits", to appear in Proc. ICCAD, 1992.

[33] T.W. William and K.P. Parker, "Design for testability - A survey," Proc. of IEEE,

vol. 71, no. 1, pp. 311-325, 1983.

[34] K.D. Wagner and E.J. McCluskey, "Pseudorandom testing," IEEE Trans. Comput.,

vol. C-36, no. 3, 1987.

[35] J. Savir, G.S. Ditlow and P.H. Bardell, "Random pattern testability," IEEE Trans.

Comput., vol. C-33, no. 1, 1984.

[36] K.P. Parker and E.J. McCluskey, "Analysis of logic circuits with faults using input

signal probabilities," IEEE Trans. Comput., vol. C-24, pp. 573-578, 1975.

[37] K.P. Parker and E.J. McCluskey, "Probabilitic treatment of general combinational

newtorks," IEEE Trans. Comput., vol. C-24, pp. 668-670, June 1975.

[38] S.K. Jain and V.D. Agrawal, "Statistical fault analysis," IEEE Design _ Test Corn-

put., vol. 2, pp. 38-44, 1985.

[39] B. Krishnamurthy and I.G. Tollis, "Improved techniques for estimating signal prob-

abilities," IEEE. Trans. Cornput., vol. 38, no. 7, pp. 1041-1045, 1989.

[40] S. Chakravarty and H.B. Hunt III, "On computing signal probability and detection

probability of stuck-at faults," [EEE Trans. Comput., vol. 39, no. 11, p. 1369-1377,
1990.

[41] C.-H. Chen and D.G. Saab, "Behavioral synthesis for testability," to appear in Proc.

ICCAD, 1992.

I01

VITA

Chung-Hsing Chen was born in . He received

the B.S. degree in Electrical Engineering from the National Taiwan University, Taipei,

Taiwan, in 1985. From 1985 to 1987, he served in the Noncommissioned Officer School,

Chinese Army, as a platoon leader and research officer. He obtained his M.S. degree in

Electrical and Computer Engineering from the University of Massachusetts at Amherst

in 1989. From 1989 to 1992, he was employed as a research assistant with the Center for

Reliable and High-performance Computing at the Coordinated Science Laboratory.

After completing his doctoral degree, he will join Hewlett-Packard, Santa Clara, Cali­

fornia. His research interests include testing, computed-aided design, fault-tolerant com­

puting, synthesis and computer architecture.

102

