MASA-(2-190443

7 -7
r .9
DNET
o
~
A Communications Facility S
] p—
for 5 E
Distributed Heterogeneous Computing *
2
FINAL REPORT e
5
O >
Contract NAS 5 - 30085 ST
g uw
D «a
o > 0
L -
W o X
- I TS|
O r4 D i
Qoo
< o -
~Wuw uw e
[ad] b
O o
N Z T o8
oo +
P D LD
- O
| L~ am
[= SIS B B/
TZI¥ A
Digital Analysis Corporation CEET 4
1889 Preston White Drive JEacw
Reston, Virginia 22091 208 S
(703) 476-5900

Thie SBIR deta is furnished with SBIR rights under NASA Contract NASS-

Fornperioddlmuﬂermohnnm to be delivered under this contract
th%mwtowl&@nhwmmmly.m i isch

lhllmbetﬂ:indmitk(hﬁmrm(' fuding di for p

j lothhﬁumlﬂdﬁchmpmﬁﬂhn.mﬂtnmybedndmedhru
mmmu.mdtonummmueoniubehmmhMuux
oW purp , but s rels from all di P it and Assumes hﬂ)ﬂilyﬁxmuhrb:duedollhilmaby(hirdpnnia.T&Naicelhlllbe
Mb!dtowremnituonhhm;inwhnlc.orinpnn.'

~
~

~

Copyright 1989, Digital Aralysis Corporation

0121157

53/6Q



DNET

INTRODUCTION GUIDE

Version: 1.24
Print Date: 09/01/89 13:14:37
Module Name: intro.gui

Digital Analysis Corporation
1889 Preston White Drive
Reston, Virginia 22091
(703) 476-5900

This SBIR data is furnished with SBIR rights under NASA Contract NASS-:
(Momwmmthmhamrmuummy and #

purposes) during such period without permission of the C except that, subject use and disclosure prohibitions, such data mey be disciosed for use
by support contractors. mmwmwmwu-m to use, and to authorize others to use on its bebalf, this data for
Government purposes, but is relieved from all disch bibit o il§ uthorized used of this data by third parties. This Notice shall be

affined to any reproductions of this dats, in whole, winp-n

Copyrigit 1989, Digital Anadysis Corporstion



1

3
4
5
6
7

8
9

CONTENTS

.Abstract . . . . . ., . . ..

. Services Requested ByNASA . ., . .
. Overall Topology of DNET .

. Defined Boundaries

. Interfacesto DNET . . .,

. DNET Implementation . . . , , .
. Major DNET Components . . . . .
. Organization of the DNET Documentation

2. Organization of the Remainder of this Introductory Guide

LB IS BT O N

10
11
12



DAC Staff who contributed to DNET:

Principal Investigator
John Tole, Sc.D.

Engineers:

S. Nagappan

J. Clayton
P. Ruotolo

C. Williamsoa
H. Solow

Acknowledgements:

The DAC DNET project staff gratefully acknowledges the contributions of other persons and
organizations to this effort.

o Barry Jacobs and Shyam Salona of the DAVID project at NASA Goddard Space Flight Center
(NASA-GSFC) were the principal NASA contacts for this project. Their support and interfaces
with other NASA personnel greatly facilitated all aspects of DAC’s effort. Their understanding of
the nature of this research also made the conduct of this project most pleasant for the project staff
Their efforts are deeply appreciated.

¢ The DNET interfaces to TCP/IP and DECnet are based in part on the 'NET" code developed at
Space Telescope Institute (STI). DNET also derives some of its design philosophy from the STI-
NET system. DAC is grateful to STI for providing the NET code and for consultation on its use.
Peter Shames and Steve Zeller of STI were especially helpful with information and access to STI
resources.

o Todd Butler of the NSSDC facility at NASA-GSFC provided much useful consultation and
assistance on DECNET.

e Jerome Bennett and Charles Cosner of the Data Flow Technology staff were unceasingly co-
operative in resolving numerous questions and problems with the IAF and DFTNIC VAX machines
at NASA-GSFC. This project could not have been completed without their assistance.

o David Pipes and Randy Thompson provided valuable administrative assistance on the nssdcs and
fuesnl SUN4 computers at NASA-GSFC.

e Bob Wood and Sally Saucedo of DAC provided ongoing system administration which is greatly
appreciated.

o Chris Walters of Mitre Corporation offered important technical contributions on the configuration
of an Ethernet System.



1. Abstract

This document describes DNET, a heterogeneous data communications networking facility. DNET
allows programs operating on hosts on dissimilar networks to communicate with one another without
concern for computer hardware, network protocol or operating system differences.

The overall DNET network is defined as the collection of host machines/networks on which the DNET
software is operating. Each underlying network is considered a DNET "domain". Data
communications service is provided between any two processes on any two hosts on any of the
networks (domains) that may be reached via DNET. DNET provides protocol transparent, reliable,
streaming data transmission between hosts (restricted, initially to DECnet and TCP/IP networks).
DNET also provides variable length datagram service with optional return receipts.

Communications and computing services within DNET are provided in an environment based on
clients and servers. When ’permanent’ connections are required, clients request connections to specific
servers by contacting a 'Master Scrver’ at the destination host. The assignment of specific instances of
server processes to clients is done by this Master Server as requests are received. The Master Server
also controls server process creation, prespawning servers as necessary in order to improve response
times. Local system administrators can regulate the number and type of specific servers. Servers report
their status to this Master Server so it’s database is always up to date.

Connectionless datagrams may also be sent between any two DNET processes. The DNET
connectionless service is implemented separately from the streaming service.

There are two types of nodes in DNET, Hosts and Gateways. A DNET host is simply any machine
which can access another machine via DNET. DNET gateways arc special cases of DNET hosts which,
provide protocol conversion "relays® between dissimilar networks in addition to other DNET functions.

DNET Host software includes a library of basic ‘transport level’ 1/0 functions, DNET application
clicnts & servers, a master server (which controls the creation and allocation and permanent circuit
connection of specific servers on its host) and a Datagram Master Server and Protocol Specific
Datagram Servers which provide a universal interface to the DNET connectionless datagram service.
DNET gateways include streaming °’relay’ processes. These relays are simply special application
servers which provide protocol conversion between the underlying networks. The DNET
connectionless service handles protocol conversion between dissimilar networks as part of its inherent
design.

Applications provided with DNET include File Transfer, Remote Login, and Remote Execution. In
addition, a Network Command Interpreter allows 1/O redirection and task ’chaining’ across the
network. Various application level processes may be invoked via this facility. DNET users may also
add other applications by following interface techniques described in this document. Presentation level
routines provide XDR data conversion capabilites in order to handle differences in internal data
representation on different machines.

DNET also includes a provision for electronic mail and several network utilities of use in both system
administration and user applications.

From the user’s perspective, DNET is implemented as a library of program callable functions with
input, output, and error redirection capabilities. No Kernel Modifications arc required on any machine
on which the DNET software operates. While this constraint introduces some potential performance
problems, it greatly simplifies the logistics of implementing and maintaining a heterogeneous network.

2 DNET INTRODUCTION GUIDE



While DNET has been designed for initial use by the NASA-GSFC DAVID project, consideration has
also be given to its future utilization with other applications which must operate in a heterogeneous
environment. The initial DNET environment is thus limited to TCP/IP, DECNET, and dialup
communications alternatives and UNIX (ATT System V and BSD) and DEC VMS operating systems.
Design generality has been maintained as much as possible however, so future inclusion of other
operating systems and communications facilities, especially ISO/OSI, UNIX/uucp, and IBM
SNA/LU6.2 and VM/CMS may be contemplated.



2. Organization of the Remainder of this Introductory Guide

The remainder of this guide contains the following information:

« Discussion of Networking Services Originally requested by NASA
« Overall Topology of DNET

» Current Defined Boundaries

o Definition of Interfaces to DNET

e Overview of Major DNET Components

o Implementation

» Introduction to Documentation Organization

4 DNET INTRODUCTION GUIDE



3. Services Requested By NASA

The following is a brief description of the communications services which NASA required for the
DAVID project.
Task To Task Communications

1. Initiation of program task at a remote internet (DAVID) node with facility to pass
arguments/results and propagate termination signals,

Transfer and execution of portable programs at an internct (DAVID) node

Provide transparent operations which allows 2 programs or command procedures running
on different DAVID nodes on different host environments to communicate with one
another,

Operations would include:

o initiation of remote tasks

o termination of remote tasks

* send data & ’interrupt’ messages

o receive data & ’interrupt’ messages

File Transfer
1. File transfer of ASCII and binary files to any internet (DAVID) node with multiple
authentication options including:
« autologin

e various user/passwords
file transfer between any two internet nodes, neither of which is local to the user
3. end to end reliability with timeout and acknowledge options
NOTE: the ability to specify some or all timeout parameters may be dictated by underlying
protocols and not under control of software DAC is able to provide.
4. Provides presentation layer function for data conversions so as to make differences in data
type representation transparent across machines.
Provision for initiation of remote procedure upon successful completion of file transfer
Additional operations
o check for existence of file
* delete, rename, append to file

Remote Login
L. Supports internet logons (with relay mechanism)

Services Requested By NASA  §



2. Supports different authentication methods
e autologin
e username - password
3. Supports different terminal types
4. Provides option to specify execution of user defined logon procedure

General Utilities

1. Indication that remote internet node is up

2. Ability to determine load on remote node

3. Utility to determine host ids, host names, and host aliases
Mail

1. Provide capability to send mail to one or more people or tasks at various internet nodes

6 DNET INTRODUCTION GUIDE



4. Overall Topology of DNET

The overall topology of DNET is a collection networks as shown in the following diagram:

PROC 1

DNET Gateway

Each of the networks contains one or more nodes (host computers) and some of these nodes
(gateways) are shared by two or more networks. From the perspective of a DNET user, all of the
networks and nodes appear identical. Positive identification of a specific node requires only that the
name of the destination node and the network on which it resides be known. No knowledge of the path
between, nor the cavironment under which the destination node operates is normally required. This,
of course, differs radically from the view that DNET implementors and administrators see. The latter
view involves a collection of incompatible networks and environments that must be combined to bring
reality to the prior view. In order to provide for such a reality, certain boundaries must be defined as
described in the next section.

Overall Topology of DNET 7



5. Defined Boundaries

The following ’Boundaries’ exist for DNET. The boundarics are simply a compact list of the

environments in which DNET can be expected to operate without an excessive software porting effort.
The current boundaries are:

1. Communication Protocols
o TCP/IP (Wollongong, Excelan, and Berkeley Implementations)
e DECnet
o BSD Sockets
2. Operating Systems
¢ UNIX (System V.2 and 4.2BSD)
» VMS
* MS-DOS (DNET Clients Onlyd)
3. Hardware
e AT&T 3B2
¢ Sun Model 3
s« DEC VAX

» IBM PCs (DNET Clients Only; LAN interface only)

Despite support for a varicty of environments and underlying components, the interface to DNET
users will remain standard.

8 DNET INTRODUCTION GUIDE



6. Interfaces to DNET

There are three interfaces defined for the DNET network::
o End User
* Programmer
« Administrator

The end user is a person who takes advantage of the networks services through an interactive mode
involving utilities that are run from the keyboard. These generally manifest themselves as interactive
distributed services like trivial file transfer protocol, clectronic mail, and remote command language.
The user sees DNET as a "homogencous’ network. All commands to operate applications and the
behavior of these applications appears to be uniform across all machines on the DNET network.

The interface provided to the programmer comes in two basic forms: the connection oriented services,
and the connectionless oriented services. The connection oriented services provide a streaming mode
of full duplex conversation between two processes. The connectionless mode services provide a
method of sending and optionally recciving datagrams (packets of information) without previously
establishing a connection. Both of these services are implemented through user libraries that may be
compiled into the programmer’s applications. The DNET user is provided with extensive
documentation to facilitate usage of the system.

The system administrator is provided with utilities for starting and stopping a DNET node, modifying
the number and types of DNET application servers at the node, altering routing tables and monitoring
the status of both local and remote DNET nodes.

For more advanced applications, information is also provided on DNET ’internals’ to allow more
sophisticated special services to be implemented. This information is provided in the DNET technical
guide and reference.

Interfaces to DNET 9



7. DNET Implementation

The implementation of DNET was designed with low impact on target machines as a high priority.
This low impact philosophy is intended to apply not only to resource consumption on the local
machine, but also to administrative and user functions. From a resource standpoint, DNET dacmon
processes only require CPU resources when applications request service, and the resources provided by
the underlying networks are still available to programs that have already been written to interact
directly with them. All administration tasks associatcd with the underlying networks remain the same,
and the administrator’s responsibilities are clearly outlined in the administrative guide. The end user
utilities were created with preexisting standards so that retraining is minimized, and the programmer
tools were kept to a minimum, are well documented, and many times operate in a similar fashion to
standard file operations.

The DNET design also takes into account the importance of simplicity in adding new applications in a
heterogeneous environment. DNET specifies a minimal set of rules for writing client-server pairs to
implement new applications. Details are provided in the DNET Programmer’s Guide and Reference.

10 DNET INTRODUCTION GUIDE



8. Major DNET Components

A small collection of DNET components arc required on each node on the DNET network:
DNET Master Server

This server provides a *well known’ port for the connection oriented DNET services.
All server applications (sec Programmer’s Guide) are started and maintained by the
master server. Onc master server is required per protocol per node. Thus, a DNET
node which is connected to both DECnet anda TCP/IP will have a Master Server
’listening’ on each of these two networks.

DNET DataGram Master Server (DGMS)
The DNET DGMS is the heart of the connectionless service and provides all routing

and switching services for datagrams either coming in from a network, or from it’s
genesis in a user process.

per protocol DataGram Server (DGS)
This component provides the low level interaction with a particular underlying
provider (ie TCP/IP). One such server is required for cach protocol at a particular
DNET node. All DGS components then provide a standard interface to interact with

the DGMS component so that all networks appear to have the same interface.
Beyond that, the DGS components are merely dumb relays.

Relay processes
These processes provide relay service for the connection oriented service and are
only found on gateway machines. The relay processes actually write out on the

proper network in loopback mode to get to the master server controlling that
network type.

Application Processes
These processes provide the ’standard’ collection of DNET applications for the user.
Administrative Processes

Thmarcasmallcollectionofsu-iptsandrulcswhichallowthclocalsystcm
administrator to control the local DNET functions.

User Library
The user library contains all of the routines necessary for a programmer to use the

DNET services. A separate set of routines are provided for connection and
connectionless oriented services.

Major DNET Compounents 11



9. Organization of the DNET Documentation

The DNET documentation is organized around the three interfaces (user, programmer, administrator)
defined above. These documents together with this Introduction Guide and a Technical Guide
describing the internal implementation details, provide a complete description of DNET. There are
thus documentation categories for end users, programmers, network administrators, and internal
programmers. Each of the above mentioned categories is divided into two manuals, a guide and a
reference. Providing two manuals per category allows the documentation to act as both a quick
reference for users who need only specific details, and as a learning or refresher guide. Utilities are
provided so that the reference manuals may actually be stored on-line if space allows so that a DNET
user may interactively reference the manual from their terminal. Additional Notes are provided for

cach catcgory, as appropriate.

12 DNET INTRODUCTION GUIDE



DNET

USER’S GUIDE

Version: 1.21
Print Date: 09/01/89 13:43:05
Module Name: user.gui

Digital Analysis Corporation
1889 Preston White Drive
Reston, Virginia 22091
(703) 476-5900

Copyrighs 1969, Digital Analysis Corporation



.DNETOvervicw................

11
12

13

31

What is DNET?
Major Elements of a DNET Network . e e e e .
12.1 Network Arrangement 2

122 Existing Networks 3

123 DNET Hosts 3

124 Gateways 3

125 DNET Routing 3

What the DNET User Has Available . . C e e e e
13.1 Applications 4

132 Presentation Level Services 4

133 Basic I/0 C Function Library 4

2. How to become a DNET User C e e e e e e e e e
3. An Introduction to DNET Applications . . . ., ., ., | ., .

The Echo Routine e e e e e e

. Help Facilities

52

53
54
55
5.6

ManualPages..............

4.1
4.20n-linchlp..............
421 UNIX 8
422 VMS 8
. File Transfer . . « e e
51 .

DNET TFTP - DNET Trivial File Transfer Protocol . e e
Invoking DNET File Transfer . . , . c e v e . .
5.2.1 DTFTP from the Command Line 9

User Commands . . ., ., . . ., . . . ..
File Transfer Errors . . ., ., ., . e e e e .
AFile Transfer Example . ., . . ., . « e e e
Using the Network Command Language for File Transfer

. Remote Login

6.1
6.2
6.3
6.4

. Network Command Language . .

7.1
7.2
73
7.4

75

Introduction................
Invoking DNET RemoteLogin . . . . . , ., . . . e
Ending the Remote Login Session . . . C e e e e .
64.1 UNIX 14
642 VMS 14

Overview . . . . ., . . . . . .« e
Network Command Processor Schematic .« e
Network Command Language . . . . , , | .
73.1 Command Language Syntax 16

7.3.2 Using The Command Language 16

Network Command Interpreter . ., , ., ., ., . . .
74.1 Status Reporting (from last Network Command Server) 17
Initiation of File Transfer from One Remote Node to Another .

e e s .

. Remote Execution . .

8.1 Passing Arguments to Tasks .

82
83

Transfer & Execution of Portable Programs at a Remote Host .

Initiation of Remote Procedure Upon Completion of File Transfer .

—t

WOo0W AN W

GGG

17

19
19
19
19



9. ElectronicMail . . , . ., , . o e
91 Mail Operation . ., ., , . .« e
9.1.1 Sending Mail 29
9.12 Reading Mail 21
9.13 Auto Notification of Mail Arrival 21

10. General Network Utilities - dnetstat . o .
10.1 Testing if DNET is alive . . . . . .
102 Obtaining Status of DNET Servers . .

11. Presentation Services . o e e e e e
11.IXDRScrviccs.........

12.Glossary

B

R BB BRRB



1. DNET Overview

This section provides an introduction, from the user’s perspective, to the DNET Network for
Heterogeneous Distributed Communications. The various functional elements which make up DNET
are described as are some of the important assumptions made in the design.

1.1 What is DNET?

DNET is a communications environment which provides a consistent view of a number of
interconnected heterogeneous networks. Networks included at present are those which use the
DECnet and TCP/IP communication protocols. DNET provides a ’seamless’ or uniform interface to
these networks and machines, giving the impression that a single homogeneous network is being used.

NOTE: DNET (currently) operates as an application on machines on which it is available. While this
implementation strategy introduces some potential performance problems, it greatly simplifies various
logistical problems in operating a heterogeneous network. Further rationale for this approach is
provided in the DNET Technical Guide.



1.2 Major Elements of a DNET Network

A DNET network consists of the following major elements:

1. A collection of two or more existing, specific networks (with protocols supported by DNET,
currently TCP/IP, DECNET, and Asynch Dial-up )

DNET Hosts - machines which are able to communicate using DNET services

DNET Gateways - special DNET Hosts which also provide protocol conversion between the
underlying networks

By implication, the DNET Hosts and Gateways have DNET software installed which establishes their
functions. Each of these elements is described in more detail below:

1.21 Network Arrangement

DNET is a "meta-network” or a network of networks. The general arrangement of thesc major
elements of a DNET network is shown in the following diagram.

PROC 1

DNET Gateway

2 DNET USERS GUIDE



DNET can establish a "permanent virtual circuit”. In this mode an "open” function is called to establish
a communications path from onc process to another process in another host, possibly in another
nctwork. The path established comprises relay processes and network connections dedicated
exclusively to the stream mode transport of data between the end points of the circuit. Permanent
virtual circuits reduce the number of network connections that must be established and the associated
task initiation required. This significantly improves network performance. When data is transmitted in
a "streaming” fashion in one session the performance increase more than offsets the initial cost of
circuit establishment.

DNET also provides variable length datagram service. The user interface to this service is
connectionless (i.e. no "open” is required before starting process to process communications).
Datagrams may be used to either transmit data or signal information.

1.2.2 Existing Networks

The underlying networks associated with DNET are ones which have existing reliable, data streaming
capabilitics. The networks in which DNET may currently operate are TCP/IP, DECnet, and
Asynchronous links. DNET depends on the transport services of these these "underlying’ networks and
presumes that they are operational.

1.23 DNET Hosts

DNET Hosts are computers at which local processes may use the facilities of DNET to interact with
remote processes in the heterogeneous network. Any computer connected to one of the networks
served by DNET may become a node on DNET provided the following conditions apply. The machine
must:

L be resident on a specific existing network (c.g. TCP/IP Net X, SPANET, etc.) which is known to
DNET

2. have at least one DNET master server listening on a known DNET network. This requires the
following processes: The DNET PVC Master Scrvers(s) DMSDEC and/or DMSTCP, and the
Datagram Master Server(s), DGMS and Datagram Protocol-specific servers: DGSUDP and/or

DGSDEC.
3. have at least one DNET application server running (if requests from remote nodes are to be
serviced)
124 Gateways

DNET Gateways are nodes in DNET which are connected to one or more networks in which DNET is
operating. The function of the gateway is to bridge the protocol and other differences between these
networks in a transparent manner. The gateway functions are implemented in special DNET PVC
Relay scrvers and Datagram Servers which provide protocol conversion for Permanent Virtual Circuits
and connectionless datagrams respectively. Except for their special-purpose function, these servers are
handled just like any other DNET application servers.

1.25 DNET Routing

DNET employs hierarchecal routing. Each DNET node contains a routing table which indicates, for
each network known to DNET, the next host to contact in which to 'move’ toward that particular
network. In general, the next hops listed in the table are all DNET gateway machines. The user
generally need not be concerned with the routing tables, however a ‘map’ of the DNET network or at



least the names of remote DNET nodes and networks of interest is essential for use of DNET facilities.

1.3 What the DNET User Has Available
1.3.1 Applications

The available applications include:
L. File Transfer - loosedly based on TFTP with some enhanced features

2. Remote Login - similar to ’telnet’ or ’set host’ - allows full interactive sessions with UNIX servers
and more limited sessions with VMS servers

3. DNET Network Command Interpreter - A generalized remote execution and task redirection
application - Similar to the redirection capability of UNIX

Mail - a basic system similar to a stripped-down UNIX mail
DNET Status - a generalized network status utility similar to 'netstat’

1.3.2 Presentation Level Services

DNET provides a limited Presentation Level Service for use by the above applications (and user
definined applications) This service allows:

— Conversion of Data Elements between dissimilar machines via the SUN XDR (External Data
Representation) functions.

1.3.3 Basic I/0O C Function Library

The DNET Basic I/O functions may be used to generate custom operations in the DNET
environment. The I/O fuactions provide communications facilities between tasks on different hosts
within DNET. These facilitics include permanent virtual circuits, connectionless datagrams, and
signalling,

The 1/0 library may be used in two ways:

1. Low Level Connectionless Task-to-Task Communications - using the Datagram and Signalling
functions contained in the 1/O package, the user may communicate with other processes
elsewhere in DNET

2. User Specific Custom Applications - by following the conventions for DNET Client-Server
relationships, the user may write higher level custom applications which will operate smoothly in
the heterogeneous DNET environment,

Further discussion of the basic 1/0 package is found in the DNET Programmer’s Guide and Reference
Manual.

4 DNET USERS GUIDE



2. How to become a DNET User

1. The machine which you are using must be *known’ to DNET and have DNET running locally.

2. The path to DNET ’client’ files must be known to your account. This information needs to be
placed in the appropriate file as noted below:

1. UNIX

-profile
set dnet_home and PATH to ~/dnet/bin

2. VAX/VMS
The dnet_home directory must contain the following machine specific file:

DAC Microvax II
dnlogin.dv

NASA-GSFC - DFTNIC VAX
dnlogin.dft

The file
login.com

in the users login directory must have the following lines. The example given is for the
DAC Microvax I machine. The definition for dnet home and dnlogin.XXX will be
machine dependent.

$! DNET Specific Eavironment

$ set proc/priv=grpnam

$ define/group doet_home $diski:[sys0.dnet.dnet]
$! run DNET login script

$ @dnet_home:dnlogin.dv

The DNET System Administrator’s Guide provides details on information to be included in these
files as well as other useful information about DNET configuration,

3. You must be aware of network and host names for the machine(s) with which you wish to
interact.

4. You need to become familiar with the DNET applications which you need to use. These are
presented in the following sections.



3. An Introduction to DNET Applications

This section provides a brief introduction to the use of typical DNET applications. The several
applications have been designed and implemented with two purposes:

1. To make DNET immediately useful in solving typical user problems, even with networks of
limited scope.
2. To serve as examples of how to use the DNET tools to build other applications.

DNET Applications operate in a consistent manner at all nodes defined within the DNET network. In
order to use DNET applications, the user must only be aware of the DNET destination host and
destination names and the specifics of the application. A typical DNET application is invoked with the
command line sequence:

Client-command Destination-network Destination-host

For example, if the user is located at some machine on DNET and wishes to perform a file transfer
to/from the IAF VAX at N -GSFC, he would enter the following command to start the DNET
basic (trivial) file transfer application.

dthtp spanet iaf
Other applications are invoked via a similar syntax.

3.1 The Echo Routine

An elementary echo routine, decho, provides a convenicnt introduction to the use of DNET
applications. decho allows the user to enter lines of arbitrary text which are then echoed back to the
terminal from a remote echo server., Experimentation with this simple function will give the uscr a feel
for the typical setup time for DNET streaming connection and an introduction to error conditions and
run-time debugging options which are available to the user.

Typed-Charastors— ..
U =
i decho dechod
o client DNET server
Terminal »
<——shoed Characters

decho is invoked by entering the following command line:
decho dest_network dest_host [CR]

A message will be printed on the terminal:
Attempting to connect to dest_network dest_host

In 2-10 seconds, the connection to the destination should occur. decho should then respond with
either:

6 DNET USERS GUIDE



Ready

dechod server unavailable at destination (DNET error xxxx)
Assuming the "Ready’ prompt appears, one may then type an arbitrary line of text, eg.:
12345 [CR]

After a short delay, this text should appear on the screen a second time as it is echoed from the remote
server. This process may be continued indefinitely. The ’echo’ delay provides an instantaneous,
subjective indicator of the performance of DNET. Keep in mind that this delay is heavily dependent on
the load on intermediate DNET nodes which may be performing protocol relay operations.

When finished using decho enter the following, machine dependent terminator to exit to the operating
system.

UNIX:
Cntrl D

VAX/VMS:
Cotrl Z



4. Help Facilities
There are two sources of help for DNET applications, manual pages in the DNET User’s Reference
found with this documentation, and on-line versions of the same manual pages on machines where this
facility is supported.
4.1 Manual Pages

Manual pages in the User's Reference follow the style of UNIX manuals. The user is referred to
examples in this Reference.

4.2 On-line Help

DNET provides an online 'manual’ facility which may be of help to the user.
The manual pages found in the various DNET Reference Manuals are available on-line as follows:

421 UNIX

The DNET manual may be invoked by entering:
dman dnet_function_name

where dnet_function_name is the DNET function or application for which additional information is
desired.

422 VMS

On-line Help for VMS has not been implemented in this release

8 DNET USERS GUIDE



S. File Transfer

5.1 DNET TFTP - DNET Trivial File Transfer Protocol

Both binary and text files may be transmitted with diftp. Dtftp also has a number of features beyond
those provided by TFTP including local and remote directory, directory listing, and change directory
and a user warning against inadvertant overwriting of an existing file.

dtftp also requires a username and Ppasswd to be entered in order to connect to the remote system.

5.2 Invoking DNET File Transfer
5.21 DTFTP from the Command Line

The DNET file transfer facility is invoked at the command line by entering:

dtftp [doet_network] [dnet_host] [CR])
If the network and host are specified, DNET will immediately attempt to contact the file transfer
server at that location. If the destination is not specified, dtftp will start up in a local or disconnected
mode.
This will cause the file transfer prompt to be displayed:

dtftp>

If the destination was not specified on the command line, a connection may now be attempted, if
desired by entering the command:

connect
The connect request will require the network and host information, You will be queried for:
Network:
and the
Host:
Then the following message will appear:
Attempting to connect to [network] [host]

Once a connection has been established with the remote host, you will be prompted for a login account
at that machine:

Login:
Enter a valid account name for the destination host.

You will then be prompted for a password associated with this account:



Password:

Enter the password for the account name just entered.

When the account information has been verified, the client will respond with the message:

CONNECTED

You may now proceed with other commands as discussed below:

53 User Commands

The following commands are
noted.

provided with dtftp. These commands are self-explanatory except as

chXX-changethedefaultdlrectoryonthercmotzhosttoXXX

getname[newname‘]-retrieveamefromtberemotetothelocalhost

help - display help message for available dtftp commands

chXXX-changethedetaultdlrectoryonthelocalhoattoXXX

Ipwd-llstthecumntdlrectoryontheloulhost

Is - list the contents of the current directory on the remote host

lls - list the contents of the current directory on the local host

! command string - Allows execution of a local command

mode - Allows specification of binary or ASCII mode

put name [newname *] - transmit a file from the local to the remote host

Ppwd - list the current directory on the remote host

quit - end the file transfer session

‘-hgetorputopmﬂons,lfnewnamelsnotglven,lt
lsassnmedthtumelsthehrgetme.

lfthetargetﬂlealmdyexists,anmingmessageispresented:

Destination File Exists - Overwrite (y/n)?

If you answer yes (¥), the old file will be overwritten. (In VMS, this
wlﬂnotmdlyoecuruauwﬂleextenslonwﬂlbemignedtothe
target flle, however the warning message is consistent for both UNIX

and VMS),

10 DNET USERS GUIDE



54 File Transfer Errors

Error reporting from DTFTP includes the following:
1. Login incorrect
2. File Not Found
3. File I/O Error
4. File Access Violations

Except for the obvious question of access privileges associated with login failure, most non-fatal
"failures’ are self explanatory,

3.5 A File Transfer Example

As an example of the use of dtftp, consider the following diagram:

Conmect, Get
Put, ete.

" m
DNET Network S

- N

5

. .
--------------------------------

We wish to send the file hackl on the Client Machine to the Server Machine, renaming it in the
process to hack2. The series of commands used to perform this task are shown below:

$ dtftp spanet dacvax
attempﬂngtoconnecttospanetdacvn
Login: duet

Password: sesess

dtftp> put hackl hack?

completed ascii put of hack1 to hack?
dtftp> quit

$



5.6 Using the Network Command Language for File Transfer
File Transfer may also be accomplished using the DNET Network Command Language (NCL).

There arc advantages and disadvantages to using the NCL for file transfers. This option is discussed in
the Network Command Language Section of this Guide.

12 DNET USERS GUIDE



6. Remote Login
6.1 Introduction

The DNET remote login application allows the user to log onto and carry on an interactive session with
a distant DNET host. Once connection has been made to the remote host, the user will appear to be
directly connected to that host. Only instantaneous network performance should affect the ability to do
work, including screen oriented editing. Thus dlogin is similar to the telnet, rlogin, or set host xcx
facilities with which the user may already be familiar.

A schematic of the DNET remote login is shown in the diagram below:

Typed-Charssters— 5.
User = =
at ‘:Iknl DNET diog Local ’Shell
Terminal o -
«<——Keshoed- Characters
Password
File

Currently, DNET remote login may be initiated from either UNIX or VMS hosts, however the remote
host must be a UNIX machine in order for complete interactive operations to take place. (An
interactive VMS DCL ’shell’ has not been implemented to date under DNET).

6.2 Invoking DNET Remote Login

The DNET remote login facility is invoked at the command line by entering:
dlogin [dnet_network]) [dnet_host] [CR]

Once a datastream has been opened to the destination, you will be prompted for account information:

login: xxxx

Password: *ssssss
If this information is determined to be correct by the remote machine you will placed in your *home’
directory and your preferred ’shell’ is executed. You may now perform any interactive operations
which you might do were you directly connected to the remote system,



6.3 Ending the Remote Login Session

When the remote login session is complete, simply enter catri-D (or exit or logout, if csh) to abort the
session and to close the DNET virtual circuit between your local machine and the remote host.

6.4 Security Issues

When the client invokes Remote Login, authentication of the client is done by the login process at the
remote host. Subsequent process spawning and/or remote login to other hosts from processes created
by the initial client will all carry the access rights permitted to the initial client.

G64.1 UNIX

At UNIX servers, the file /etc/passwd, controls access to the system. This file is consulted by the
dlogin server in order to validate a user at this host,

6.4.2 VMS
Currently, due to problems accessing the UAF file on VAXes, the password is hard-coded for VMS

servers, an ous security problem for a production network. This limitation must be corrected
before DNET is used in a production environment,

14 DNET USERS GUIDE



7. Network Command Language
7.1 Overview

heterogeneous multi-network environment. This DNET facility allows very general control of processes
across the heterogeneous network and provides for redirection of input/output streams between files
and /or processes located at arbitrary DNET Hosts.

Three Software Elements are required for the Network Command Processor.

= Network Command (Client) Interpreter - used at the initiating node to interpret the Network
Command, provide any local service requested, including process spawning, and send remainder of
command to next net/host/process in the command chain

=~ Network Command Server - services network command which arrives from NCI or another NCS;
provides any local service requested, including process spawning, and sends remainder of command
to next net/host/process in the command chain The NCS is a DNET application server and is thus
registered in the PVC Master server tables,

— Network Command 1/0 Process - special 'cat’ equivalent process which may be spawned by the
NCI or NCS to provide streamed I/0 to/from files.
7.2 Network Command Processor Schematic
A Schematic view of the relationship between these components is shown in the figure below. The
generic command string being executed is:
Netl::Hostl1:File X > Ne&::HosQ:ProcZ(panml,paan) > Net3::Host3:Proc3 > Netd::Host4:File Y

DNET Host 1 DNET Host 2 DNET Host 3 DNET Host 4
(om Net 1) (om Net 2) (om Net 3) (om Net 4)
Network Netweek | : ! [ Network Network | :
Command ﬁ\,; Command P > Command | Command | :
Interpreter ET Dgrag Server 2 :Er.:' Server 3 l?qm" Server 4
A . . M N
File X Prec2 Proc3 : File Y :

. .
------------------------------------------------------------------------------------

7.3 Network Command Language



7.3.1 Command Language Syntax

There are two types of objects used on the command line - Files and Tasks. Output can be directed to
cither a file or another task. The command language makes a distinction between files and tasks
(exccutables) by preceding tasks with an "*".

Filename syntax is: network_name::host_name:ﬂlename
Taskname syntax Is: network_name::host_name:‘hskname(panml, param2 ..)

Initially, there is only one network command language operators, ">". The ">" indicates redirection of
standard output.
An cxample command is;

starnet::xhost:cfile > yhost:*sort > myfile

This NCL command will send the file named "cfile" from the host "xhost" to the host “yhost". On host
"yhost" the cfile will be sorted using the "yhost" resident sort utility. The resulting output will then be
saved in the file "myfile” on the local system.

Other examples are given below.
When the network name or host name is not specified the local name is assumed. Spaces around the

">" are optional.
7.3.2 Using The Command Language

When filenames appear in command strings they imply the execution of file i/o servers. The network
command:

dac_net::vax2:david_comm > g_net::hostl:*checkp > results

requests that the contents of a file "david.comm" on host *vax2" in the network "dac net” be input to the

task "checkp” executed on "host1” in the network "g_net, and the output be placed in the file "results” in
the host on which this network command is being executed.

The network command:
net_one::vax6:c-file > hostl:s-cfile
requests that the contents of a file "c-file” on host "vax6” in the network "net_one” be copied to the file
"s-cfile"
7.4 Network Command Interpreter

The Network Command Interpreter (or client) is invoked as an application from the shell prompt on
the local system.

16 DNET USERS GUIDE



%) dncl
dncl> command_stringl
respoanse to CS1
dncl> command_string2
respoase
etc...
7.4.1 Status Reporting (from last Network Command Server)

When the command line specified by dndl has been executed, an acknowledgement is propagated to
the initiating client process as shown in the following diagram:

Datagram to Client Site
duel Cliont Last N/W
Command
Recving | - - - - - - - _____{  DNETNetwork } - -_--_____|
Report
in chain

1.5 Initiation of File Transfer from One Remote Node to Another

The Network Command Language may be used at a third party location to initiate file transfer, A
typical command would be:

dncl> netl0::host3:filexx > c-net::fhost:newfile
or

dncl> mynet::host6:*dtftp flename options > newfile
Where filename and options are parameters to the file transfer task "dtftp".
The effect of such a command is shown in the following diagram:



netlzhost1:File

DNET
Host
(may be any
DNET host)

host2:File B

18 DNET USERS GUIDE

net2::host2:File B




8. Remote Execution

8.1 Passing Arguments to Tasks
Passing arguments from a calling task to Network Command Processor is by command string, as

described in the preceding section. This is used in both the terminal interactive and the "C* language
interface.

8.2 Transfer & Execution of Portable Programs at a Remote Host

File transfer and execution is implemented using the network command processor. For example the
commands:

dncl> net3::hostS:filez > net3::host2:workfile

dncl> net3::host2:*workflle
will transfer and execute a file.

8.3 Initiation of Remote Procedure Upon Completion of File Transfer

It is also possible to use the DNET Network Command Language to perform a file transfer followed
by the execution of a remote procedure. Several alternatives are possible.

1. Two separate commands:
transfer the file

dncl> bnet::host3:filed > c-net::xhost:newfile
followed by
execute the remote procedure

dncl> c-net::xxhost:*format newflle

One ’composite’ command:

dncl> bnet::host3:filed > c-net::xhost:newfile > c-net::xhost:*format



9. Electronic Mail
DNET provides a basic Electronic Mail facility, This facility allows mail to be sent from the local
DNET hosts to known users at other DNET hosts. Mail which has been received from other hosts
may be read at the local host.
9.1 Mail Operation

The general operation of DNET mail is shown in the following diagram:

File Transéer to Mail Server

Send or Read Mail

Mail Client @ Mail Server,

ACK/NAK to Mail Client

9.1.1 Sending Mail

DNET mail is invoked using syntax similar to that of other DNET applications as indicated below.
dmail network host user

where network = DNET network
host = hostname on that network

user is presumed to be a valid user on the destination machine

The sender then responds to the following prompts
To: receiver login_name_at_destination

From: Seaders
Subject: xxox

Ce: xoxxx
Please enter short message and end with three CRs

this is a test
CR
CR
CR

The following prompts will then appear as the message is sent
20 DNET USERS GUIDE



CONNECTING
Completed ascii put of mail to destination

9.1.2 Reading Mail

To check for any DNET mail which may have arrived at your location simply enter the command
dmail
and request the Read Mail Option.

9.1.3 Auto Notification of Mail Amival
DNET Mail includes a provision for automatic notification of mail arrival each time a user logs in. If
mail is present for your account, the message:
You have DNET mail ....
will be presented as part of your login process.

NOTE: in order for this feature to be activated, the appropriate DNET login script must be part of
your Jogin, .profile, or login.com flle. This file must cause the file ‘checkdmail’ to be executed as part

of the login process.



10. General Network Utilities - dnetstat

DNET provides a general network utility function dnetstat which allows the user to determine a variety
of information about local or remote DNET nodes. Information which dnetstat can obtain for both
local and remote nodes includes:

1. Is DNET ’alive’ at the Node?

2. The Number of active and inactive DNET Processes (long and short formats; Streaming and/or
Connectionless Options)

- Statistics of DNET Use at the Node
4. DNET Routing Tables at the Node

The general form of the dnetstat command is as follows:
dnetstat [dnet_network] [dnet_host] [options]

If the network and host arguments are both omitted, the local host is assumed by default.

If the status of a host on the local DNET network is required, only the dnet_host argument is required
(local network is understood).

10.1 Testing if DNET is alive

As an introduction to dnetstat, try using the ’ping’ option on your local host. This is done by typing
dnetstat -p

If DNET is "running’ on the local machine, the following message will appear:
DNET is ALIVE at dnet_network dnet_host*sess
This response indicates that
1. Atleast one DNET PVC Master Server is running on the local node
2. The DNET Datagram Master Server is running on the local node

If DNET is not running normally on your system, the following message will appear
Timed out waiting for response

Now try using dnetstat to ’ping’ another DNET host on the local or a distant DNET network.

If this is successful, you are further assured not only is the DNET software running at that host, but
also that the DNET datagram service is operating (at least between your machine and the distant host).

10.2 Obtaining Status of DNET Servers

dnetstat may be used to obtain the status of DNET processes at local and remote DNET nodes.
This information may be obtained in the following formats

1. Connection Oriented Services only

2. Connectionless (Datagram) Services only

22 DNET USERS GUIDE



3. Both Services
4. Short Display Format - types, number avail, and state of servers
5. Long Format - short format info + (Process IDs) and Start/Idle Times

The default format is

Both Services
Short Display

The short listing of server status is shown below, The command used is:
dnetstat [network] [host]
$#ss23¢ DNET VIRTUAL CIRCUIT SERVER STATUS at: dnettl sun3:

Srv Type Image PS Av Max S#
dmstcp

dechod dechod 1 1 1 1
drexecd drexecd 1 1 1 1
diftpd dtftpd 1 1 1 1
dncid dncld 3 3 3 3
dlogind dlogind 1 1 1 1

$sesess DNET CONNECTIONLESS (Datagram) STATUS at: doett] sun3:

ProcName S StartTime
dgstcp 1 Aug 1 10:44
1 Aug 1 10:44
dnstatd 1 Aug 1 10:44
dnetstat 1 Aug 1 10:46

A longer listing of the server status may be obtained using the | (long) and ¢ (connection) options.

dnetstat [network] [host] -lcd

$%s2222 DNET VIRTUAL CIRCUIT SERVER STATUS at: dnettl sun3:

Srv Type Image PS Av Max S# PID
dmstcp 5489
dechod dechod 1 1 1 1 5491
drexecd drexecd 1 1 1 1 5492
diftpd dtftpd 1 1 1 1 5493
dncld dncld 3 3 3 3 5494

5497

5498
dlogind dlogind 1 1 1 1 5499

114)

2222222

St Time

Aug 1 10:44

Idle Since

Aug 1 10:44
Aug110:44
Aug 1 10:44
Aug 1 10:44
Aug 1 10:44
Aug 1 10:44
Aug 110:44

A long listing of the both virtual circuit and datagram server status may be obtained using the | (long),



¢ (connection), and d (datagram) options.

doetstat [network] [host] -lcd

¢#s9%3¢ DNET VIRTUAL CIRCUIT SERVER STATUS at: dnett! sun3:
Srv Type Image PsS Av Max S# PID IU St Time
dmstcp 5489
dechod dechod 1 1 1 1 5491 N
drexecd drexecd 1 1 1 1 5492 N
dtftpd dtftpd 1 1 1 1 5493 N
dncid dncld 3 3 3 3 5494 N
5497 N
5498 N
dlogind dlogind 1 1 1 1 5499 N
$#ss338 DNET CONNECTIONLESS (Datagram) STATUS at: dnett! sun3:
ProcName S PID  IPC-Name IPCID SIG  MSzStartTime
dgstcp 1 5482 DN _s482 1 0 OAug 1 10:44
1 5481 DN_5481 2 0 OAug 1 10:44
dnstatd 1 5495 DN 5498 3 0 OAug 1 10:44
dnetstat 1 5504 DN_5504 4 0 OAug 1 10:48

To obtain the routing table at a particular host, enter the following command:
dnetstat [network] [host] -r
An example of output resulting from this command is:

#4422+ DNET ROUTING TABLE at: dnett] sun3:

DestNet Nxt Host Nxt Proc DG Protocol
dnettl NULL NULL

spanet dacvax drelaytd tcp

starnet dacvax drelaytd tcp

24 DNET USERS GUIDE

Aug 1 10:44

Idle Since

Aug 1 10:44
Aug 1 10:44
Aug 1 10:44
Aug 1 10:44
Aug 1 10:44
Aug 110:44
Aug 110:44



11. Presentation Services
DNET provides a limited presentation layer facility.

Within the DAVID environment, the single most important coding problem across heterogeneous
machines is the internal representation of data. Information moved from one machine to another may
only be viewed consistently if data types arc faithfully "mapped" between machines.

Thus, if the transmitting machine views integers as 32 bit quantitics and represents floating point
numbers with 64 bits while the receiver represents these two data types as 64 and 48 bit quantities,
respectively, serious misalignment of data files will occur.

The Presentation Layer Service provided by DNET is a subset of the SUN (XDR) External Data
Representation and/or Existing Data conversion facilities of DAVID.

11.1 XDR Services

XDR Services are currently not available at the user level in DNET. For further information on use of
XDR at the programming level, the reader is referred to the DNET Programmer’s Reference Manual.



12. Glossary

The following terms are used in the description of DNET:
Applications Servers-

Servers such as File Transfer, Remote Login, Remote Execution, etc. that perform
services for clients. Applications Servers are invoked on demand by clients after using
the Service Assignment to obtain the name of an available server.

Connection Lock Table-

List of open connections held by process for use by its Basic Datagram 1/O package.
Locked connections result from user requests for Permanent Virtual Circuits.

Datagram Master Server (DGMS)-

A server process, located at each DNET host and gateway, which provides an interface
to DNET clients and servers and the DNET Connectionless Datagram and Signalling
Service

Datagram Protocol Servers (DPS)-

Protocol specific servers located at each DNET host and gateway, which provides an
DNET Connectionless an interface to the underlying network Datagram service.

Master Server Init Table-

These tables, tbis.msinittcp and tbis.msinitdec contain initialization information for
the DNET Master Servers including the type of server to be activated, the maximum #
allowed at this host, and the number to make available initially, and an indication of
whether the server must be prespawned. The tables arc updated by the local System
Administrator at the specific DNET host.

Master Server Table-

One for each DNET host, it contains information on the types and numbers of each
class of DNET server actively supported on this node at any instant. Each generic
server entry points to a Server Instance Table which lists the current specific instances
of a particular class of server. It is updated by the Master Server and by specific
DNET application servers.

Master Server Process (DMS)-
Processes, one per Network, managing the Master Server Table, handling server

registration, server assignment, and server control. They are spawned by network
start-up command files.

DNET Basic 1/0 package-

Included as library within an application program, it provides network i/o interface
26 DNET USERS GUIDE



including datagram formatting.
Gateway-

A DNET node at which communicaton protocol boundary is passed. DNET relay
servers move data from one network to another performing an effective protocol
conversion for streaming services. These servers are created, allocated, and used like
any other DNET streaming applications scrvers. The Datagram Master Server, in
conjunction with protocol specific datagram servers performs a similar function for
DNET datagrams.

Network Command Line Interpreter-

DNET Client process that directs the exccution of network commands using
datagrams sent to various hosts and several servers.

myname - hostname table-

A table, tbls.myname, maintained in the doet_home directory on each DNET node
lists the DNET networks to which that host is connected and the name(s) by which the
local host is known on those networks.

Network Command Language Processor-

Server that directs the execution of network commands using datagrams sent to various
hosts and several servers. It is an application server, copies can be pre-spawned or
spawned on demand.

Network Command Server-

Spawned by request from Command Language Processor, this Server is directed by
Command Language Processor. It spawns processes and directs i/o to execute network
commands.

Network Status Server-

Resides in each network host. Receives Host Status Tables, Host Alias Table, Well
Known Server Tables, Connectivity Tables, and periodically sends "I am alive"
messages to the Administrative host. To ensure these periodic messages are sent the
Basic datagram I/O package uses a timer /wake-up signal to initiate the transmission
of the message to the Network Status Client. Because this is done by the 1/O package
and there is a copy of this package in every process that uses network 1/0 the network
status data is collected on a per process not per host basis.

PVC Relay

A DNET relay used in the completion of DNET Permanent Virtual Circuits (PVCs).

Special DNET application processes located in a DNET gateway which perform
protocol conversion for DNET streaming service between dissimilar networks. The
appropriate Master Server process ‘listens’ on a particular protocol boundary when
idle and assigns a relay when a request for a protocol b’hop’ is received from DNET..

Glossary 27



Router

Routing Table-

The relays are named according to the protocol boundary which they are intended to
bridge. Thus a T-D relay services requests which arrive on a TCP/IP network,
relaying data to a DECnet net. Relays operate in a full duplex mode while actually in
use.

DNET employs a hierarchical routing strategy. Each DNET node has, for every
(DNET) network known to it, information on the next DNET host to contact in order
to move data toward the destination. The DNET router function uses the information
in the routing table as follows: Given a destination network, host, and process, returns
the next "best’ hop (network, host, process) to *move’ toward the destination.

A hierarchical routing table that contains the next ’hop’ from the local DNET
host/network in the direction of all other DNET networks. A minimal version of this
table is provided with the distribution copy of DNET. The table is currently
maintained manually by the local system administrator. In the future, this table will be
dynamically configured and maintained by the local DNET Network Status Server
after intial startup has taken place. The routing table is named tbls.net and is located
in the dnet_bome directory.

Server Assignment Function-

Returns the name of an available server to a requesting Router, and updates the
Domain Server Table.

Server Instance Table(s-

Lists the current specific instances of a particular class of DNET Application Server.
Entries arc made by the Master Server and cleared via dn_done() calls from the
servers as they complete their tasks.

Server Registration Function-

This function is part of the Domain Server Process. It updates the Domain Server
table with information from Servers (e.g."now in use”).

28 DNET USERS GUIDE



DNET

USER’ S REFERENCE

Version: 1.16
Print Date: 08/10/89 12:28:00
Module Name: user.ref

Digital Analysis Corporation
1889 Preston White Drive
Reston, Virginia 22091
(703) 476-5900

SBIR RIGHTS NOTICE

This SBIR data is furnished with SBIR rights under NASA Contract NASS-30085. For a period of 2 years after acceptance of all items to be delivered under this contract
the Government agrees to use this data for Government purposes only, and it shall not be disclosed outside the Government (including disclosure for procurement
purposes) during such period without permission of the Contractor, except that, subject to the forgoing use and disciosure prohibitions, such data may be disciosed for vse
by support contractors. After the aforesaid 2-year period the Government has a royalty-free license to use, and to suthorize others to use on its behalf, this data for
Government purposes, but is relieved from all disclosure prohibitions and assumes no liability for unawharized used of this data by third parties. This Notice shail be

Copyright 1989, Digital Analysis Corporation



DECHO(1) DNET DECHO(1)

NAME

decho - dnet "echo’ client
SYNOPSIS

decho dnet_network dnet_host
DESCRIPTION

The decho command performs a simple demonstration and test of the DNET network. A
DNET permanent virtual (streaming) connection is opened to the destination network:host.
Command line input at the local host is then echoed back from the destination after each
carriage return,

The command provides a convenient means of demonstrating the setup time and end-to-end
performance of the DNET streaming service.

The ability to run decho depends on its presence in the Master Server Init Table for the
destination host,

Command line arguments
dnet_network name of the destination DNET network
dnet_host name of the destination DNET host
SEE ALSO
dechod(1)
DIAGNOSTICS

The message "Ready” will appear after decho has succesfully connected to the specified remote
node. An error message will appear if a connection can rot be established.



DLOG

NAME

IN(1) DNET DLOGIN(1)

dlogin - dnet 'remote login’ client

SYNOPSIS

dlogin dnet_network dnet_host

DESCRIPTION

The dlogin command provides a remote login function over the DNET network. A DNET
permanent virtual (streaming) connection is opened to the destination network:host. A
standard DNET command line prompt for remote login is then presented:

DSH >

The user may then issue commands which will be understood in the ‘native’ environment of the
destination machine,

X000

The dlogin command provides a convenient means of executing simple command line
instructions on a remote machine.

The ability to run dlogin depends on its presence in the Master Server Init Table for the
destination host.

Command line arguments

dnet_network name of the destination DNET network

dnet_host name of the destination DNET host

SEE ALSO

dms, dlogind(1)

RETURN VALUE

ERRORS

The call fails if:
[D_DGTB]



DMAIL(1) DNET DMAIL(1)

NAME
dmail - dnet *mail’ client
SYNOPSIS
dmail dnet_network dnet_host dnet_user
DESCRIPTION
The dmail command performs a simple mail transfer to another DNET user.

The ability to run dmail depends on its presence in the Master Server Init Table for the
destination host.
Command line arguments
dnet_network name of the destination DNET network
dnet_host name of the destination DNET host
dnet_user user at the destination DNET host
SEE ALSOQ

dms, dmaild(1)
RETURN VALUE

ERRORS
The call fails if:
[D_DGTB]

Page 4 (07/12/89)



DNCL(1) DNET DNCL(1)

NAME

dncl - dnet ’network command language’ client

SYNOPSIS

dncl

DESCRIPTION

Page 5

The dncl command invokes the interactive dnet network command language program. This
program allows for processing of a single data stream in a distributed environment. To do this,
the processing of the data stream is broken into sub command lines SCL (which together make
up the dncl command line CL). The dncl CL may be entered after the dncl prompt:

dncl >

The following is a synopsis of the dncl command line:
SCL > SCL [> SCL]) ...

You will note that a minimum of two SCL components are required in a CL. The reason for
this will be explained when we look at the three categories of SCL components. Also note that
the > symbol is used to delimit the SCL components.

The following is a synopsis of the SCL component:
[[netname::] hostname:] [*] command/file

Notice that netname and hostname are optional, although if a network name is supplied, then a
host name must also be supplied. In the case where both netname and hostname are specified,
a double colon must delimit the netname and the hostname, and a single colon must delimit the
hostname and the command/file. Further, if the command/file value contains a colon, then the
hostname must be supplied at a minimum so that the colon within the command/file will be
ignored by dncl.

If the requested node is the current machine ( the netname and hostname combination
represent the current machine), and no colons appear within the command/file value, then
netname and hostname may be omitted. Similarly, if the hostname machine is on the current
network, then netname may be omitted. On dnet gateway machines remember that only one
network is considered to be current. This means that although the network may be directly
connected to the current machine, it can not be considered a current network.

The command/file portion of the SCL represents either a file or a command to be accessed on
the given machine and falls into one of three categories:

o First SCL component -- must be a file
» Middle SCL component -- must be a command (preccde with *)
» Last SCL component -- must be a file

As you will remember from the CL synopsis above, and minimum of two SCL components must
be specified (a First SCL component and a Last SCL component). This represents the simplest
form of a dncl CL and results in a file transfer without filtering. The dncl CLs of greater
complexity merely represent a higher degree of filtration between the first and last SCL
components. The filtration described here is provided by the middle SCL component category
(a command). This command is assumed to read input from a standard location, process the
input received and generate output to a standard location. Many commands can be described in
this fashion (input/processing/output), but not all work with standard locations for input and
output. Commands that do use standard locations and work in the input/processing/output
fashion are described as being filters. To work progerly as a middle SCL category SCL
component, the command must also be a filter, as unprzdictable results will otherwise occurr.

(07/12/89)



DNCL(1) DNET DNCL(1)

All middle SCL category SCL components must be preceded with an asterix (*) as shown in the
SCL synopsis above.

The UNIX operating system is rich with existing filters to perform a variety of tasks. These
filters are comparatively rare in the VMS operating system. Despite this, filters may be created
for VMS with C language programs by using the predefined stdin and stdout streams with the
standard I/O package.

SEE ALSO

dtftp(1), dsh(1)

DIAGNOSTICS

After successful completion of a dncl CL, the following message will be displayed:
ACKCOMP received.

This means that the ACKCOMP (ACKnowledge COMP etion) packet has been initiated by the
last SCL category driver, and has been successfully passed back through all intermediate SCL
components to be successfully received by the dncl command invoked by the user.

If the ACKCOMP received message is not displayed, then a cryptic error message will be
displayed describing the reason for failure, If the error message is preceded by dncld:, then this
means that the error occurred at a possibly remote node, and this message was propagated back
to be viewed by the user.

A common form of error message is:
No route to netname::hostname:dncld

This indicates that the node specified could not be found from the current location. Two things
should be remembered to help to solve this problem:

1. You may not have specifed the node name portion of the stated SCL, and the default may
have been used.

2. The node is always relative to the node on the previous SCL component. The first SCL is
always relative to your current node. Ag an exariple, if the first SCL was specifed as:
spanet::iaf:sys$login:myfile , and the second SCL was: *sort, then it would try to spawn
the sort filter on the spanet::iaf node.

CAVEATS

Page 6

Never make assumptions about current location within a file system on any node when creating
SCL components. Absolute pathnames or logical names must be used for files. For commands,
absolute pathnames or logical names must also be used, but on UNIX operating systems, the
PATH environmental variable may be set by the dnet administrator before the dncl drivers are
initiated so that they can be forced to look in non-normal locations for UNIX filters.

(07/12/89)



DNETSTAT(1) DNET DNETSTAT(1)

NAME

dnetstat - obtain dnet network status
SYNOPSIS

dnetstat [dnet_network) [dnet_host) [-acdfhinprs]
DESCRIPTION

The dnetstat command allows the display of various DNET-related data structures,
Information may be displayed in various forms, depending on the option which is specified.
dnetstat can be used to determine the status of all DNET servers, routing tables, and server
usage statistics.

Information may be displayed for the local DNET node or may be retrieved and displayed for
other DNET nodes.
Options;

dnet_network - the DNET network of the DNET host from which information is desired; if
omitted, local network is assumed

dnet_host - the DNET network of the DNET host from which information is desired; if both
network and host omitted, local host is assumed

If none of the below options is specified, the defaults local_host & [-cd] are assumed
-a Display all available information (in long format)

-c Display Status of Connection (Streaming) Servers

-d Display Status of Datagram (Connectionless) Servers

-f Display PIDs, etc. in alternate (Decmimal/Hexidecim al) format; allows optional conversion
between machines with different display formats

-h Display help on options for dnetstat
-l Display other specified options in long or extended format
-n show DNET map (network, host)

*P ping the specifed host - ie. test if DNET is alive on the specified host p overrides all other
options. If successful, the message:
DNET is Alive at dnet_network dnet_host

is printed on the terminal If the 'ping’ operation is unsuccessful, dnetstat will usually timeout
waiting for the response from dnstat .

Timed out waiting for response

-r show DNET routing tables for the specified node

-s show per-DNET server statistics (dtftp, drexec, dmail, dncl)

Page 7 (07/12/89)



DNETSTAT(1) DNET DNETSTAT(1)

SEE ALSO

dnstatd, tbls.msinitdec, tbls.msinitdec, tbls.net

DIAGNOSTICS
The call fails if:
Specified host is not ug.
DNET is not operating on the specified host

dnstatd is not operating on the specified host

In each of the above instances, dnetstat, will report:

Timed out waiting for response

Page 8 (07/12/89)



DREXEC(1) DNET DREXEC(1)

NAME

drexec - dnet ‘remote execution’ client
SYNOPSIS

drexec dnet_network dnet_host
DESCRIPTION

The drexec command performs a simple remote execution function over the DNET network, A
DNET permanent virtual (streaming) connection is opened to the destination network:host. A
standard DNET command line prompt for remote execution is then presented:

DREXEC >

The user may then issue commands which will be understood in the ’native’ environment of the
destination machine.

po.0.0.0.0¢

The drexec command provides a convenient means of executing simple command line
instructions on a remote machine,

The ability to run drexec depends on its presence in the Master Server Init Table for the
destination host.
Command line arguments
dnet_network name of the destination DNET network
dnet_host name of the destination DNET host
SEE ALSO

dncl(1)
DIAGNOSTICS

Page 9 (07/14/89)



DTFTP(1)

NAME

DNET DTFTP(1)

dtftp - dnet trivial file transfer client

SYNOPSIS

dtftp [dnet_network] [dnet_host]

DESCRIPTION

The dtftp command al'ows the transfer of files to and from remote DNET machines.
Information may be displayed in various forms, depending on the option which is specified.

Information may be displayed for the local DNET node or may be retrieved and displayed for
other DNET nodes,

Command line options

dnet_network

dnet_host

Commands
cd XXX
get
help
Ied XXX
Ipwd
Is
lls
mode
put
pwd
quit
SEE ALSO
dtftpd(1)
DIAGNOSTICS

Page 10

name of the destination DNET network
name of the destination DNET host

change the default directory on the rem.ote host to XXXX
retrieve a file from the remote to the local host

display help message for available dtftp commands

change the default directory on the local host to XXX

list the current directory on the local host

list the contents of the current directory on the remote host
list the contents of the current directory on the local host
Allows specification of binary or ASCH mode

transmit a file from the local to the remote host

list the current directory on the remote host

end the file transfer session

(07/18/89)



DNET

PROGRAMMER' S GUIDE

Version: 1.26
Print Date: 09/05/89 11:21:16
Module Name: prog.gui

Digital Analysis Corporation
1889 Preston White Drive
Reston, Virginia 22091
(703) 476-5900
SBIR RIGHTS NOTICE
mmka-nmumsnmn.mmmmmumm. anperbdd2yunnﬂermpnmxdnﬂnmwbethvemdmnhumna
mommulmhmmmhcmmummy.udimnuwmuhm( uding di for p
purposes) during such period with of the C ,mxm.mmmmmmmmnqmmmumhm
by support contractors. MumWMWIMWMIWhMm_ mwauhuec(hnlo_unbehu.(hnunbr
Gwermmbﬁb ti from all disck hibiti and mﬁﬁﬂyhmmwwdlhmbytﬁmmiu. This Natice shall be

:ﬂbdtolnymdthmmm.whpl;l.'

Copyright 1969, Digita! Analysis Corporation



¥ %N oo

. Introduction . .

11 DNET Modes of Operation . . . ., . . .

DNETHostSoftwarc..........
21 Overviewof aDNET Host . . . . o v
2.1.1 Basic I/O Function Library 6
22 Client/Server Relationships in DNET
221 Definitions 6
222 Typesof Clients 7
223 Typesof Servers 7
224 Control of Servers 7
225 Number and Types of Servers 7

. DNET Private Virtual Circuits Operation

3.0.1 Client/Server Conversation 13
302 Closing a Client/Server Conversation 14

- Writing Connection Mode Services

4.1 DNET Client Design Issues .

4.1.1 General Rules for Coding DNET PVC Client 15

412 Detailed Discussion 16
42 DNET Server Design Issues .

421 General Rules for Coding DNET PVC Server 18

4.2.2 Detailed Discussion 19

43 Connectionless Datagram Service in a Streaming Application (if required)

44 An Example Streaming Application

. Connectionless Mode Services

5.1 Introduction o e e e w4 e
5.1.1 Connectionless Datagram Formats 26
5.2 Details of Datagram Services

5.2.1 Registration with the local Datagram Master Server 27

522 Sending a Datagram 27
523 Receiving Datagrams 28
53 Return Receipt Service . . . . . .

54 Signalling Services . . . .
54.1 Sending a Signal 30
542 Receiving a Signal 30
55 A Connectionless Service Example .
55.1 Datagram Protocol Servers 35
56 Signalling . . , , . . .

5.6.1 Sending Signals
5.62 Delivery of Signals 36

DNETErrorHandling..........

.Routing . . , ., , , ., .

- Interprocess Communication . ., . .
. Presentation Layer Services . . . . . .

9.1XDR..........
9.1.1 Issues in the Use of XDR 40
9.12 The XDR Handle (Control Structure) 41
9.1.3 Creation of the I/O Datastream 41

9.14 Encoding/Decoding of Data using XDR library

W W =

10

GG

18

&

27

B

31

37

39

&8



9.15 Example - use of XDR in dnetstat 45
9.2 Transferring arbitrary files using XDR . . . . . . e
9.3 Existing DAVID Presentation Service . . . . . e e e e
93.1 Virtual Data Format for DNET Transmission 52

10. Standard DNET Code Organization .
10.1 Standard Directory Structure e e
102 Variation for VMS Installations . . . . .

11. Compiling & Making DNET Applications Programs . ., . . .
11.1 General Strategy . . . . , . . . . . . o .
11.2 Setting DNET Compile Time Environment Variables . . . .
11.3MakingUNIXVersion.............
113.1 BSD Systems 54
1132 Example Make File 54
11.4 Making VMS Version . . . ., . . . . . . .
11.4.1 General 58
11.4.2 MicroVAX II 58
1143 NASA-GSFC VAXes ( IAF, DFTNIC, etc. using Excelan TCP)
115 Making individual files
12. Debugging DNET applications
13. DNET Error Codes . . .

14. Glossary

59

62



1. Introduction

This Guide is intended to provide the information necessary for a programmer to write DNET
applications using the DNET Basic I/O package.

A discussion of DNET operation relevant to writing standard applications is presented first, followed
by general issues of interest in writing clients and servers. These discussions are followed by basic
"code’ templates and specific application examples which illustrate both streaming and connectionless
DNET applications. Also included are procedures for ‘making DNET code on the various target
machines,

Introduction 1



DNET Modes of Operation

1.1 DNET Modes of Operation

The basic function of DNET is to provide a reliable communication interface between any
application pair (client/server) running over DNET. Depending upon the particular usage, this
service may be viewed as employing either a client/server or a task/task model of operation.
The task to task model assumes two (or more) arbitrary processes (tasks) on separate DNET
hosts may communicate with one another providing they follow DNET conventions and use the
DNET basic I/O package or Network Command Language in order to communicate. The
service is offered in both connection-based and connectionless modes.

The connection based mode provides a dedicated channel with private gateways and relay
processes. It provides high quality service, but requires that a set of processes be spawned and
connections be established specifically for this communication session. The connection based
DNET service establishes permanent virtual circuits between communicating tasks for the
duration of the communication session. To use the connection based service, the function,
"dn_open()", is required. It creates a circuit that supports DNET data streaming mode which is
useful in applications such as remote login, where rapid, interactive processing is required.
Once such a streaming connection has been established, DNET becomes a "smart wire"
between the communicating tasks; i.c. user program data moves over the open connection as if
it were simply a hardwire link. The calls "dn_write()" and "dn_read()" may then be used to
exchange data over the network.

DNET also provides a reliable, connectionless, datagram service. In connectionless mode,
processes may communicate with one another without any (apparent) need for a circuit
connection to be established. Data are transmitted in units (datagrams) comprising data
prefixed with headers containing source/destination information to be used by the
communications software during the transmission of the data.

2 DNET PROGRAMMERS GUIDE



DNET Modes of Operation

2. DNET Host Software

This section describes the software components provided at DNET Hosts. There are four major
topics:

1. Overview of a DNET Host

2. DNET Basic I/O Library Functions

3. Supporting Software for the DNET Host
4. DNET Applications

More advanced software associated with DNET internals is discussed in the DNET Technical Guide.
2.1 Overview of a DNET Host

Any computer connected to one of the networks served by DNET may become a node on DNET
provided the following conditions apply. A DNET host machine must:

L. be resident on a specific existing network (e.g. TCP/IP Net X, SPANET, etc.) which DNET
considers as one of its 'domains’

2. have DNET Host Software Installed & Operational
3. be "activated" by the local System Administrator (see DNET ADMINISTRATOR’S GUIDE)

The elements in the DNET host are shown in the following diagram:

DNET Host Software 3



Specific Servers

DNET Modes of Operation

.m r—-—=-=-- L T r---= - i
&

m
&

Virtual Circuit

--..--.-..o.---.o.n--.o.-.---ooo-.-u-o..-.-o-c-.oo---a.oo---o-.-

[} )
I 1
) ]
l 1
I I
: Lo --d L

(
I
-4
|
i
Lo
'
Vi
v
|
I
L __.
1/0 Library

IEHREHRER T =

VA l

E1LTE

R I | I
BRI L N SETTR Y Y
oy HE s fis

Major DNET Host Elements

Connectionless Datagram Service

4 DNET PROGRAMMERS GUIDE

sssscens



DNET Modes of Operation

A brief description of these elements follows:

Software Components

L

DNET Basic 1/0 Package - this is a library of function calls which provides basic capability to
generate, route, read, and write DNET datagrams and signals and to establish and drop DNET
permanent virtual circuits.

DNET Master Server - This process controls the spawning and allocation of all DNET
application servers (sce below). It is a Well Known DNET Server

DNET Application Clients (as may apply at particular host) -

~ DNET Network Command Interpreter (NCI) - A special command line interpreter which
allows DNET network commands to be invoked from the local machine.

~ File Transfer

- Remote Login

- Mail

— Network Status

DNET Application Servers (as may apply at particular host) -

— DNET Network Command Server (NCS) - allows interpretation of DNET Network
Commands "distributed” from a DNET Network Command Interpreter

— File Transfer
— Remote Login
- Mail

DNET Datagram Server - This server provides an interface between clients and servers and the
DNET connectionless datagram service

per Protocol Datagram Server - These servers provide interfaces to the underlying networks for
Datagram Service; the interface method is picked to be the most efficient available in a
particular circumstance

DNET Network Status Server - This server uses the datagram service to provide status
information in response to requests from the dnetstat network status client.

Tables and Variables

1

Master Server Init Table (tbls.msinittcp & tbls.msinitdec) - This is a file containing the
initialization information for the Master Server. It is loaded into the Master Server Table when
the DNET software is started on the local node.

Master Server Table - information on the server programs controlled by a Master Server,
including status and connecting links to Master Server. - This table is generated in memory by
the Master Server Process based on contents of the Master Server Init Table.

Routing Table(s) (tbls.net) - table identifying the gateways from this host to every other network
or to networks that lead to all the other networks,

Connection Lock Table - table containing the channel numbers of permanent virtual circuits used
by the I/O Package and their correspondence to user program logical streams

DNET Host Software §



DNET Modes of Operation

6. Hostname Table (tbls.myname) - File containing name of local node and its DNET network
7. Services Files
1. UNIX

The standard file
/ete/services
must contain the following entries:

5279  dms/tcp # DNET PVC Master Server
5279  dgsudp/udp # DNET UDP Datagram Server

2. DEC

For VMS Systems, the DNET master servers are automatically 'registered’
as network objects when DNET is started.

2.1.1 Basic I/O Function Library

The function calls provided in the DNET basic I/0 library are summarized in the following table:

Geaneric Operation | VIRTUAL CKT Client | VIRTUAL CKT Server Datagram SIGNAL
Estab. Connect. dn_open dn_getclient
Write dn_write dn_cwrite dn_signal
Synch Read dn_read dn_cread Dest Oper Sys
ASynch Read dn_cdg_handler | Dest Oper Sys
End Coamect. dn_close dn_dome,dn_close da_cdone

These functions are described in the following sections according to the type of service (PVC,
Connectionless Datagram, or Signal) which they support.

2.2 Client/Server Relationships in DNET

Most applications which use DNET interact via conversations between a client process and a server
process. This section describes the general strategy by which such client-server relationships are
established and operate within DNET.

221 Definitions

= Client - initiating process; DNET communications initiated by the client or processes which it
starts; requests service from a distant server process; '

6 DNET PROGRAMMERS GUIDE



DNET Modes of Operation

= Server - local or remote process which provides the service desired by the client process; the server
must be spawned prior to responding to a request for service from a client process;

— Master Server - a process located at each DNET host which services all requests from clients for
DNET Application Servers which use PVC servi , including DNET PVC Relays at Gateways,
Each Master Server listens on a well-known port on a specific underlying network. Hence, DNET
gateway machines will contain master servers for each protocol actively used by DNET.

~ DNET Datagram Master Server (DGMS) - an independent master Server located at all DNET
host machines which allows the tranmission, reception, and/or relay of DNET connectionless

222 TBpes of Clients

Four major client "types” are expected in DNET:
1. DNET Applications
2. DNET Network Command Interpreter
3. User Defined Clients (new DNET applications)
4. Other existing Clients (possible future expansion); ¢.g. telnet, FTP, etc.

223 Bpes of Servers

There are two application server types defined within DNET:

1. DNET Application Servers - called by client processes, these service providers include a DNET
Basic 1/O package. For all these services (File Transfer, Network Command Server, other
application servers) there is a process which spawns copies of them and assigns the copies to
clients on request. This controlling process is the "DNET Master Server”.

2. Other Servers (user defined, etc) - spawned via DNET network command server
(net_com_serv) these servers do not contain the DNET Basic 1/0 Package. They depend on the
network command server to interface with DNET.

224 Control of Servers

DNET servers which require streaming service are under the control of the DNET Master Server(s) at
each DNET host. These servers may be cither prespawned or spawned on demand depending on the
type of host and local system considerations.

Bidirectional connectionless service is also available to these servers if they register with the Datagram
Master Server. Details of connectionless operations are provided in a later section.

225 Number and Types of Servers

The system administrator on a particular DNET host controls the number and types of DNET servers
which operate on that host.

The number and types of servers are determined by the DNET Master Server Table Init file:

DNET Host Software 7



DNET Modes of Operation

This is a *flat’ ASCII file. Entries in the file appear on scparate rows and have the format as follows:

DNET Master Server Init Table
Server Type  Image Name # Prespaowned Max# Ink #
dechod dechod 1 [ 3
diftpd diftpd 1 ? 4
drexec drexsc 1 1 1
dustatd dastatd 1 1 1
ducld dncidl 1 10 s
dlogind dlogind 1 10 5
dmaild dmaild 1 10 1

The number of prespawned servers is specified in column 3.

The Maximum (permissible) number of servers of this type is specified in column 4
Column 5 contains the number of servers to be started when DNET is first started
Servers may be added or deleted by editing this file (DNET admin privileges required)

Further discussion of the significance of these entries is provided in the following sections.

A separate Master Server Init File is required for each protocol connection at a DNET host. Thus, at a
VAX which is connected to both a TCP/IP and a DECanet Network, there must be two such tables
tbls.msinittcp and tbls.msinitdec.

225.1 Prespawning of Servers

In order to improve the efficiency of response for DNET service requests on VAX machines, certain
DNET servers may be ’prespawned’ prior to service requests.

The number and type of prespawned servers is specified in the Master Server Init Table File described
in the preceding section.
Possible algorithms for spawning and assignment are:

1. At network start up, spawn a number of copies of the servers, according to the contents of the
DNET Master Server Init Table keeping their process id’s for later use in forming the process
names to give to clients. After allocating a server to a client, spawn another to replace it.

2. For less frequently used services- Spawn only when a client requests a server. This is the
Transient Server.

3. For very frequently used services- Spawn the maximum number desired and have servers listen
for the next client when they complete their service for a client, and at the same time notify the
Master that they are ready for assignment.

8 DNET PROGRAMMERS GUIDE



DNET Modes of Operation

2.25.2 Maximum Number of Servers

This parameter controls the maximum number of simul
allowed at the local host. This number can be adj
conditions on the local system.

tancous copies of a particular server which are
usted by the system administrator according to

DNET Host Software 9



DNET Modes of Operation

3. DNET Private Virtual Circuits Operation

To create "private virtual (streaming) circuits” DNET establishes permanent connections on all hops
from the client to the server process. In establishing the connections necessary for these private
circuits, private relay processes and private communications connections are used. The establishment
of the required connections and gateway relays can all be done using the standard DNET open
(dn_open) function which sets up a chain of DNET PVC Relay processes. dn_open() operates by
forwarding a connection request datagram through DNET from client to requested server.
Intermediate PVC relays read the connection request datagram and open a connection to the next
host/process using the routing information in the datagram. The private relay/gateway processes
described above are provided as special DNET application servers and are included in the routing
information in the header of the connection request datagram. In this way the private virtual circuit
will be created by the Basic I/O package as it transmits the datagram and opens connections to
successive host/processes. (Opening a connection to a process will cause the process to be spawned if it
is not already extant.)

Once a private virtual DNET circuit has been established, data is transmitted and received using the
functions dn_write() and dn_read();

To close the connections created for the private virtual circuits described above, the process that
originated the connections simply calls the function dn_close() which causes the PVC to be dropped.

An overview of the setup for a DNET PVC is shown in the following diagrams: A connection request
is first made by the client by calling dn_open():

10 DNET PROGRAMMERS GUIDE



DNET Modes of Operation

Source Destination
Host Host

e~ mm— - 9 F=-m-- - - A
i ) ) !
! | ) )
) ] ] [}
X Application ; ! Application :
[ Client ) [ Server [
! i

. . ; !
| ) 1 }
] 1 t I
I I 1 t
) | Comnection Request Datagram I 1
| : toDesltion —— | |
) 1 HO“ i t
| I ] 1
| dn_open() X | dn_gettlient) |
) I

] [} : :
] 1 [} [}
| 1 1 '
1 [} ] ]
1 [} [} I
. ) F-----=- a r-—------ 9 . )
) t [} 1 1 [} ) 1
: DNET : : |I : : : DNET :
X 1/0 @,—-:-: 1 :%—;: N . :6—,—-; 1/0 ,
: Package : k X X ) : Package :

! 1 I I

| S o A T l
Commm e = J LCom e e e e o _ J

The format of the connection request datagram is shown below:

Field #
0 Type = Connection Request

1 origin_net

2 origin_hest

3 origin_service (process)

4 dest_net

5 dest_host

6 dest_service (process)

7 next_service

8 callback flag

9 callback _port

10 callforward_stream (either channel or file descriptor)

dn_open() returns a data stream to the client only when a virtual connection has been established with
the desired server. Once dn_open() returns successfully, the client and server may each use the
functions dn_write() and dn_read() to read and write data streams to one another as shown in the

following diagram:

DNET Private Virtual Circuits Operation 11



DNET Modes of Operation

Destination

Host

Host

dn_write()

Application
Server
0 4dn_
DNET
1/0
Package

dn read

)
Lo
! 1
|
L

—_—— -1

- - - ——

Datastream
open & dn_getclient

End to End
R
|
|
|
i
|
=

after dn
Relay
1

Application
Cliont
DNET

1/0
kage

The following diagram shows schematically what a private virtual circuit would look like in the

heterogeneous network example:

12 DNET PROGRAMMERS GUIDE



DNET Modes of Operation

PROC 1
DNET Client

NetT
G2
Rélay- Net T to Net Q
Net D )
PROC 1A
NeQ (@) NET Server

Net Q to Net XXX

In this example, two DNET PVC Relay processes are employed, at gateways G1 and G2 in order to
complete the virtual circuit.

3.0.1 Client/Server Conversation

Once the PVC is "open’ data is streamed between client and server processes:

DNET Private Virtual Circuits Operation 13



DNET Modes of Operation

Data stream to Server

Specific
Client

Server

Data stream from Server

3.0.2 Closing a Client/Server Conversation

At the conclusion of a sessio

n, the DNET permanent virtual
dn_close(). Either the client or

circuit may be closed by calling
Server process may call dn_close().

Server

Conn Close Datagram 1o DNET Server

Client @ Se:ver

“«€«————1 Conn Close ACK from Specific Server

14 DNET PROGRAMMERS GUIDE



DNET Modes of Operation

4. Writing Connection Mode Services

4.1 DNET Client Design Issues

DNET Clients are executable processes located in the directory dnet_home/bin. This directory should
be included in the user’s path for UNIX systems. On VMS systems, paths’ to each client are defined
in the dnlogin.XX file which should be executed by the login.com file as part of the user’s login
sequence.

The following defines the procedure for writing ordinary application client processes.

4.1.1 General Rules for Coding DNET PVC Client

The general form for the coding of a DNET Application Client is as follows:

#defline SERVICE_NAME "dhackd"
main ()
{

User-Defined Initialization

processname = "XXXXX" /* this is the mnemonic for the process »/

dn_init()

chan = dn_open()

Application Code

da_write(chan,...)
dn_read(chan,....)

dn_close()

return/exit/bottom of client loop
}

The several elements in this *standard’ form are discussed in the following sections:

Writing Connection Mode Services 15



DNET Modes of Operation

4.1.2 Detailed Discussion
4.1.2.1 SERVICE NAME and progname

SERVICE_NAME is used to indicatc the name of the server to which this client will connect.
SERVICE_NAME is typically passed in the process field of dn_open.

progname defines the name of the client. This variable is used internally by the client and is used to
name an optional 'log’ file.

4.1.2.2 User Initialization
This is any application specific initialization at the option of the programmer.
4.12.3 Initialization - dn_init()

This is a mandatory function call which sets up the necessary run-time tables for the application. The
global variable progname must be called.

4.1.2.4 Defining a Virtual Circuit - dn_open()

dn_open() is used by client processes to request a Private Virtual Circuit connection to the specified
service a given network and host. The function does not return until a path to the destination has been
opened or an error occurs (channel cannot be opened, timeout, etc).

dn_open
chan = dn_open(net, host, service)
int chan; /* A channel number;
used in subsequent read and write calls */
char *net; /* A DNET network name */
char *host; /* A DNET host name */
char *service; /* A DNET service */

Once dn_open() returns a channel, the PVC is assumed to be established. The ‘open’ chan may be
used as a 'file descriptor’ in DNET read and write operations.

4.1.25 Using a Defined Virtual Circuit

4.1.2.5.1 Blocking vs Non-Blocking Operations

DNET read and write operations may be either blocking or non-blocking. Blocking operations are
those which do not return until a certain event has occurred. Thus, a blocking 'read’ or *write’ is one
which waits until a specified number of bytes have been read or written, respectively.

In non-blocking operations, the action may be initiated without waiting to determine if it completes. A
non-blocking operation might also be a ’poll which simply checks for example, whether data has
arrived and needs to be read.

4.1.2.5.2 Reading and Writing on a Virtual Circuit

DNET permanent virtual circuits service provides functions which closely approximate the UNIX
system calls read() and write().

16 DNET PROGRAMMERS GUIDE



dn_write

DNET Modes of Operation

nbytes = dn_write(chan,buf,nbytes)

Int nbytes;

int chan;
char *buf;

de_read

/* The number of bytes, including DNET headers,
that was written on the given stream. */

/* 1/0 channel returned from dn_open *
/‘Thedatathatlltobesent.’lhlsmncﬁon
prepends the data with a DNET header. s/

Synchronous (Blocking) read

nbytes = dn_read(chan, buf, count)

int nbytes;
int chan;
char *buf;

int count;

/* The number of bytes, including DNET headers,
that was read from the given stream. *

/* A pointer to an I/0 structure that was
previously opened by dn_open() */

/*® A result parameter where the datagram, in
string format, is placed; this buffer

containg the DNET headers. */

/* The maximum number of bytes to receive. */

4.1.2.6 Closing a Virtual Circuit - dn_close()

The function dn_close() closes a DNET PVC communications channel; it can be used in both clients

and servers.
dn_close

status = dn_close(stream)

int status;

int chan;

/* An indication of success or fallure ./
/*® A channel structure that was
previously opened using dn_open() */

Writing Connection Mode Services 17



DNET Modes of Operation

4.2 DNET Server Design Issues

In network communications applications, the server the server can be either be permanent or transient.
The choice is transparent to the client.

A permanent server is one that is initiated at network start up time and when not otherwise occupied,
listens for, accepts connections and performs services until the network is shut down.

A transient server is one that listens for connection requests using one process and when a request is
received, starts a process that is dedicated to the client. The listening process can either be one which

performs a particular server application or it can be onc that manages many servers, listening for
requests to any of them and spawning or reactivating the appropriate servers.

A communications server application can be permanent on one host (a VAX, for instance, where
process start-up is slow) and transient on another (most UNIX systems, where processes start quickly).
Control of pre-spawned and demand spawned processes is handled by the DNET PVC Master Server
according to entries in the Master Server Init Table(s) discussed elsewhere.

4.21 General Rules for Coding DNET PVC Server

The following is the ’skeleton’ code for a DNET PVC Server:
#define SERVICE_NAME "dhackd" /* name of server associated with this client */

main()
{

User Static Initialization
progname = "dhack"; /* name of this server */
dn_initQ;
While (chan = do_getclient( ) );
User Dynamic Initialization

Application Code

dn_read(chan,....);
dn_write(chan,....);

dn_done(); /* notify MS that session is over;
loop to getclient for another request */

return/exit/bottom of server loop

dn_close(chan);
}

18 DNET PROGRAMMERS GUIDE



DNET Modes of Operation

4.22 Detailed Discussion
4221 SERVICE NAME & progname

SERVICE NAME is used to indicate the name of the server to which this client will connect.
SERVICE _NAME is typically passed in the process field of dn_open.

progname defines the name of the client. This variable is used internally by the client and is used to
name an optional ’log’ file.

4222 dn_im't()
Same role as for DNET Clients.
4.223 dn_getcliens()

The function dn_getclient() performs a role for DNET servers parallel to than played by dn_open() for
DNET clients. The ‘idle’ server waits on dn_getclient() for notification of a service request from the
Master Server.

dn_getclient
chan = dn_getclient(service, usrbuf, pusrbufien)

char® service;
char® usrbuf;
char® pusrbuflen;

4.22.4 dn_write() / dn_read()
Same function as for client.
4225 dn_done()
dn_done
dn_done is called by each DNET Application Server before exit
to indicate to the local Master Server that it has
completed its task and is available for use

4.22.6 dn_close()
Same function as for client processes.

43 Connectionless Datagram Service in a Streaming Application (if
required)

DNET applications which are pnmanly streaming based may nevertheless have need to use the

optional connectionless service. This service may be used by following the rules outlined in the sections
on DNET connectionless service later in this guide.

Writing Connection Mode Services 19



An Example Streaming Application

44 An Example Streaming Application

The following is an example of a typical client/server pair (decho & dechod) written using the
DNET facilities. The reader is also referred to the DNET source code listings for examples
from the other applications.

The user interface to decho is described in the DNET User’s Guide.

Input lines are entered indefinitely until an end of file is issued by the user (Ctrl-D for UNIX,
Catrl-Z for VMS).

20 DNET PROGRAMMERS GUIDE



An Example Streaming Application

/..‘"..‘...‘.....‘.........‘.......‘....‘.

decho.c
.‘..‘......"..ll...l“.“‘....‘.l..‘...“/

#deflne MAINPROGRAM

#inclode <stdioh>
#include *duet_env."
#inchade "dneth’
#include "dnet_errno.h’

#isdef DN_EVMS
#include <file.h>
#eadif

#ildef DN_EUNIX
#inclode <fcntLh>
#endif

#define SERVICE_NAME "dechod"

main (arge, argv)
int arge
char Sargv(};

{
int channel, fid;

if (arge < 3) {
fprintf{stderr, "Usage: %s net node (files]8, argv[0]);
returng .

}

progname = "decho;

if (dm_inltQ < 0) {
dl_mr("dl_init');
exit(1);

}

fprintf(stderr, "Trying to open connection to %s %s8, argv{1], argv(2]);
channel = dn_open(argv{1], argv[2], SERVICE_NAME);

if (channel <@) {
dn_wror("da_open");
exit(ly

}

fprintf(stderr, "Ready.0);

if (arge == 3)
echo(channel, §);

else {

while (—arge >= 3) {
i ((fid = opem(argv[arge], O RDONLY)) == -1){

perror(argv(arge]);
contimueg
}
echo(channel, fid);
close(fid);
}
}
dn_close(channel);
exit(0);

Writing Connection Mode Services 21



An Example Streaming Application

{

}

ocho(channel, f)
int

channel, g

char lnl[Z‘DN_lUFSIZ + 1)
int Rread, mrevd, nsent;

while ((nread = read(fd, but, sizeof(buf) - 1)) > 9){
buf{aread] = NULL;
if (debug)
fprintf(stderr, "dechoc after read from stdin, nread is %d0,
aread);
if (nsemt = force_write(channel, but, strien(bef), aread)) = nread)
break;

if (debug)
fprintf(stderr, "dechoc after dn_write, nsemt is %dd, nsent);
if ((wrevd = foree read(channel, but, sizeof(buf) - 1, nsent)) != msent)
breal;

if (debug)
fprintf(stderr, "dechot after dm_read, arcvd is %d0, mrevd);
if (msemt = write(1, buf, mrevd)) 1= mread) break;
}

force_write(chan, but, buflex, force)
int chang

char
int
{

}

*buf
buflen, force

int nbytes, ret;

nbytes = &
while (nbytes < force && nbytes < buflen){
if ((ret = dn_write(chan, buf + nbytes,
buflen - nbytes)) < 0)¢
dn_mr("dl_wrm');
return(-1);
}
nbytes + = ret;
i (debug)
fprintf(stderr, "force_write: force=%d nbytes =%d0,
force, nbytes);
}
return(nbytes);

force_read(chan, buf, buflen, force)
int chang

char
int
{

*bul
buflen, force

imt mbytes, ret;

mbytes = 0
while (nbytes < force && nbytes < buflen) {
ret = dn_read(chan, buf + nbytes, bufien - nbytes);
if(ret < @) (
dn_error("dn_read™;
return(-1);
}

nbytes + = ret;
if (debug)
fprintf(stderr, “foree_read: force=%d mbytes = %40,
) force, nbytes);
return(nbytes);

22 DNET PROGRAMMERS GUIDE



/...‘.‘.‘.....l.‘..‘......l.‘...‘.“.‘..‘..‘.““‘..

dechod.c

l.......‘...'....‘...“..‘.....‘...‘...'...‘.....‘.'/

#defime MAINPROGRAM

#include <stdioh>
#inclode "dnet_env.’

#include "dnet.i
#include "dnet_errno.k’
main(arge, argv)
it args;
char sargv(};
{
int channek
char debuglog[88];
FILE *fopen();

extern int vms_errnog
progname = "dechod®;

if (dn_init() < 0)
exit(1);

setup_debug (debug, progname, getpid());

if (debug)
fprimti(stderr,"dechod: calling du_getclient.0);

while ((channel = dn_getclient(progname, §, 0)) != -1) {

dechod (channel);
dn_close(channel);
dn_done (;

}

exit(0);

An Example Streaming Application

Writing Connection Mode Services 23



An Example Streaming Application

dechod( channel)

int chanmel;

{
char b-IIZ‘DN_BUFSIZ +1];
int arcvd, nsent;
while (1) {

if (wrevd = dn_read(chanmel, but, sizeof(buf) - 1)) <= 9)(
if (debug && mrevd = = )]
forintf(stderr, "dechod: normal termination (%d)0, nrevd);
else if (wrevd < 9) |
fprintf(stderr, "*** ERROR *++ dechod: dn_read failed (%d)0,
nrevd);
}
}
if (debug) (
fprintf(stderr, "dechod: %d bytes readd, mrevd);
forint(stderr, "dechod: before da_write0);
}
if (msent = dn_write(channel, but, arcvd)) <= @){
fprintf(stderr, "*** ERROR *** dechod: nsent(%d) <= 00, nsers);
breals
}

if (debug)
fprintf(stderr, "dechod: (%d bytes) writtend, nsent);

24 DNET PROGRAMMERS GUIDE



An Example Streaming Application

5. Connectionless Mode Services

5.1 Introduction

The DNET connectionless communications service is shown schematically in the following diagram.
Client and server process pairs employ the DNET BASIC I/0 Library to generate datagrams which
are routed automatically via DNET Datagram Servers to the destination process.

Source Destination
Host Host
r=-==-- A
| !
! Application ! Application
.I Client : Server
] t
Loy _J
d-_«{neo dn_cdg i-ndler()
DNET DNET
1/0 1/0
Package Package
X
IPC
Fes=====- A r==—===-=- il y, \
t i
DNET ! G":"’ ;' E G":"’ ! DNET
Datagram : : ................ : :. -| Datagram

: Lem ey L "

i ) ) .

[} ! | '
r--4--9 1 l F--t--9
' I || | | t )
! Comb.' ! Conmection ' ! Comnection ' ! Connncﬁon'
1 Lock | [ ! ! I 1 Lock |
) Table ) i Lock | ] Lock ) i Table )

1 [} ' ]
:_ _____ _: , Table | i Tmble 'L _____ _:
[ J [, J

Connectionless Mode Services 2§



An Example Streaming Application

process. A completion routine must be defined which will include a call to dn_cread().

Client S"l"'
du_cwrite(Q
DNET
1/0 IPC
Package
Datagram to Server 1 —
usr_ ler()

Datagram m Datagram
Server w Server

5.1.1 Connectionless Datagram Formats

The general format of a DNET connectionless datagram is:

struct udg

{
struct node src;
struct node next;
struct node dest;
int maxhops;
int type;
long  buflen;

char  buf[D_MAXDG];
|4

where the struct node is defined as:

struct node
char  host[I MAXHNAME];
char  net[l MAXNNAME];
char proc[l_MAXPNAME];

Although the udg.buf field is defined to be D_MAXDG bytes long, the DNET will not assemble a
datagram that is larger than D_MAXDG bytes long. Therefore, there are a number of bytes defined

26 DNET PROGRAMMERS GUIDE



An Example Streaming Application

5.2 Details of Datagram Services
5.21 Registration with the local Datagram Master Server

The fuaction dn_cinit() must be called (after calling dn_init() ) by any process which wishes to use the
datagram service.

Important: Exiting processes must call the function dn_cdone() in order to de-register with the
Datagram Master Server; If this is not done, subsequent executions of the process will result in
errors,

3.22 Sending a Datagram

A process which wishes to send a datagram must include the following elements within its code.,

{

processname ="XXXXX"
dn_init(); /* mandatory */
/* register with the DGMS

*/

dn_cinit();

/* populate src and destination of datagram
*/

udg s.src.host = "dacvax®;

udg_s.src.net = "spanet”;

udg s.src.proc = "hack_sender”;

udg_s.desthost = "dac3b2*;
udg_s.dest.net = "dnett]";
udg_s.dest.proc = "hack_receiver”;

/* write the datagram
*/
dn_cwrite( );

/® De-register with the DGMS
*/

dn_cdone ();

}

Connectionless Mode Services 27



An Example Streaming Application

dn_cwrite
dn_cwrite(udg_r, flags)

struct udg_r *udg;
int flags;

dn_cwrite() is used by DNET processes to send connectionless

datagrams to other DNET processes.
This operation is always synchronous.

5.23 Receiving Datagrams
DNET connectionless datagrams may be received both synchronously and asynchronously.

5.23.1 Enabling Datagram Reception Each process which needs to be able to reccive
connectionless datagrams must use the following format.

{
processname = "XXXXX"

dn_init(); /* mandatory */

dn_cinit();

dn_cread(udg,flags); - may be called asynchronously using Signal or asynch read
routine under appropriate circumstances (see text)

dn_cdone();

3.23.2 Synchronous Datagram Reception

Datagrams may be received synchronously by calling dn_cread(). as shown in the preceding skeleton
example. This call is normally "blocki s i.e. it will not return until a datagram arrives or an error
condition is detected. The function may also act in a non-blocking (or polling) fashion if the
NO_WAIT flag is passed in the ’flags’ argument.

dn_cread(udg r, flags)
struct udg r *udg;
int flags;

28 DNET PROGRAMMERS GUIDE



An Example Streaming Application

5.2.3.3 Asynchronous Datagram Reception

The asynchronous reception of DNET datagrams is used when the DNET process is likely to be
involved in other activities when a datagram arrives. In this situation, datagrams may be viewed as
’interrupts’ to the main process. Such a view requires the specification of an interrupt handler which
simply describes what (software) steps should be taken when a datagram arrives. Depending on the
logic, this handler may selectively accept/reject arriving datagrams,

The handler is specified by calling the function:

dn_chandler(dhandle, d_alert_sig, udg )

where dhandle()
is the interrupt handler (interrupt completion routine),

d_alert_sig is the signal
used to notify the main process of datagram arrival

and

udg points to a DNET datagram structure.

5.3 Return Receipt Service

A provision is made for return receipts for DNET datagrams. The process which sends a datagram
and wishes a 'receipt’ needs to set the 'return receipt’ flag when calling dn_cwrite().

dn_handler must read the receipt flag in datagram and return receipt to calling process via return
datagram

5.4 Signalling Services

Signalling between processes is viewed as a special case of the connectionless service within DNET.

Connectionless Mode Services 29



An Example Streaming Application

Client

,.._+uo

DNET
1/0
Package

Server

Signal Datagram to Server

Operating
System

m

5.4.1 Sending a Signal

5.4.2 Receiving a Signal

30 DNET PROGRAMMERS GUIDE

Datagram




An Example Streaming Application

3.5 A Connectionless Service Example

An example of the use of the connectionless service is provided in this section. The example is an
elementary ’signalling’ application. The client process bed sends the text message "ABORT" in a
connectionless datagram to a network, host, process specified on the command line:

bed network host process

The server process abe is a 'trivial’ process which is started, then idles waiting for an abort message
from a bed process.

Following is the source code for the client process.

/*

* Module: bed.c

s Version: 1.19

L Delta Date: 5/31/89 13:49:38
*/

#include "dnet_env.h"
#define MAINPROGRAM
#include <stdio.h>

#include "dnet.h"
#include “"dnet_errno.h"

/* This redefinition of the user datagram structure in the user’s
* will be replaced by providing the dn_alloc function to the user */

main (argc, argv)
int argc;
char  *argv[];
{
char *getenv();
struct udg *udg;
static char udgbuffer([512];

udg = (struct udg *)udgbuffer;
f(argei=4) {

fprintf(stderr, "Usage: %s destnet desthost destprocl, argv{0]);
exit(1);

Connectionless Mode Services 31



An Example Streaming Application

strcpy(udg- > dest.net, argv[1]);
strcpy(udg- > dest.host, argv[2]);
strcpy(udg- > dest.proc, argv[3]);
strcpy(udg- > buf, "ABORT");
udg->buflen = strien(udg->buf) + 1;
debug = 0;

progname = "dmskill";

fprintf(stderr, "dmskill: before dn_cinit0);

if (dn_cinit(progname) == .1) {

dn_cerror();
exit(1);

fprintf(stderr, "dmskill: before dn_cwrite0);

if (dn_cwrite(udg,0) == .1)  {

dn_cerror();
if(dn_cdone())
dn_cerror();

exit(1);

if(dn_cdone() == -1)

{
dn_cerror();
exit(1);

}

fprintf(stderr, "OK0);
exit(0);

}

Note that the nemwork host and process arguments arc transferred from the command Line into
appropriate fields in the user datagram, udg. The "ABORT" message is placed in the datagram’s
buffer.

dn_cinit() is called to register with bed with the Datagram master server, then dn_cwrite is called to
send the datagram to its destination.
Finally dn_cdone() is called to de-register bed with the Datagram Master Server.

The server process code is presented below:

32 DNET PROGRAMMERS GUIDE



/*

s Module: abe.c

b Version: 1,22

b Delta Date: 5/31/89 13:49:36
*/

#include "dnet_env.h"
#define MAINPROGRAM
#include <stdio.h>

#ifdef DN_EUNIX
#include <signal.h>
#endif

#include "dnet.h"

#ifdef DN_EVMS
#include <ssdefh>
#endif

#include "dnet_errno.h"

char udghuffer[512];

struct udg *udg;

main(arge, argv)

int arge;

char  *argv[];

{
int rtncd;
void  dghandler(;
DEpush("main");

udg = (struct udg *)udgbuffer;
debug = 0;
progname = argv{0];
#ifdef DN_EUNIX
rtucd = (Int)signal(SIGCLD, SIG_IGN);
#endif
/*
*/
fprintf(stderr,"%s: calling da_cinit.0, progname);
rtncd = dn_cinit("abe”);
fprintf(stderr,"dn_cinit: returns.0);
fprintf(stderr,"%s: dn_cinit returns %d.0, progname, rtncd);
if (rtned == -1) {
dn_cerror();

DEpop0);
exit(1);

if (do_cinit(progname) == -1) {

An Example Streaming Application

Connectionless Mode Services

33



An Example Streaming Application

fprintf(stderr, " %s; dn_cinit successful.0, progname);
ir (dn_clmndler(dghandler, SIGUSRI, udg) == -1){

dn_cerror();
if(dn_cdone() == -1)
dn_cerror();
DEpop();
exit(1);
}
#ifdef DN_EUNIX
pause();
#endif
#ifdef DN_EVMS
sys_hiber();
#endif
if(dn_cdone() == -1)
{
dn_cerror();
DEpop();
exit(1);
}
fprintf(stderr, "%s: exiting0, progname);
DEpop();
exit(0);
}
void dghandler()
{
DEpush("dghandler”);

fprintf(stderr, "in dghandler0);
if (!strcmp(udg- > buf,"ABORT"))
fprintf(stderr, "Received ABORTY);
#ifdef DN _EVMS
if(sys_wake(0) == -1)
fprintf(stderr, "%s: Can't wake up ./n", progname);
#endif
DEpop(;
return;

Salient points in this code include:
1. dn_cinit is called to register abe with the Datagram Master Server

2. dn_chandler is called; the signal SIGUSR1 is specified as the asynchronous signalling mechanism
indicating arrival of datagram destined for abc, a completion routine dghandler() is specified for
exccution when this signal is received, and the datagram udg is specified as the target for
incoming datagrams. :

The process "idles’ using pause() or sys_hiber() until a datagram is received
4. dn_cdone is called to de-register with the Datagram Master Server prior to exiting

34 DNET PROGRAMMERS GUIDE



An Example Streaming Application

The completion routine dghandler() is called when the DGMS signals abe that a datagram has arrived.
The buffer of udg is checked for the "ABORT" message If this message is received, the handler wakes

up the idling main process, causing it to exit,
5.5.1 Datagram Protocol Servers

Datagram protocol servers DGS) are DNET processes located at each DNET host which propagate
DNET datagrams through the heterogeneous network. These servers provide a network protocol
specific interface between the Datagram Master Server (DGMS) and the underlying network(s). An
overview of a the relationships between the DGMS and DGS's is provided in the following diagram:

Datagram Master Server
(DGMS)

Prot 1 Prot 1 Prot 2 Prot¢ 2
Datagram Datagram Datagram Datagram
Server Server Server Server
(Recelver) (Sender) (Receiver) (Sender)

Network 1 Network 2

5.5.1.1 Connection Lock Table

The datagram servers keep track of a pool of open connections to other DNET hosts over which
connectionless datagrams may be routed. This information is contained in the Connection Lock Table

The connection lock table contains information about the hosts to which the local host has connections.
It includes the protocol and logical channel number used by the BASIC 1/O package in transmitting
datagrams to that host.

Connection Lock Table
Connection Owner | Stream ID | Net | Host Proc Name | Channel #
FXFRI1-Client 1 D 4 FXFRé 89988419
FXFR1-Client 2 Q 3 FXFR4 89988419
FXFR1-Client 3 T 3 FXFR2 89988419

Connectionless Mode Services 3§



An Example Streaming Application

5.6 Signalling
DNET processes may send signals to other processes within DNET by calling the function dn_signal().
3.6.1 Sending Signals
dn_signal
status = dn_signal(net, host, service, signal)
int status;
int signal;
char *net;
char *host;
char *service;
dn_signal sends a signal datagram to a server on a specified host.
3.6.2 Delivery of Signals
DNET signals are sent to the Datagram Server at the destination host. The Datagram Server
recognizes the type SIGNAL and forwards the appropriate information to the local operating system

for action. The operating system will complete actions such as ’killing’ a process, etc. See the Chapter
on Connectionless Service for more detailed information.

36 DNET PROGRAMMERS GUIDE



An Example Streaming Application

6. DNET Error Handling

DNET Basic I/O Library functions return a non-selective error code if an error is detected during their
operation:

DNET applications which wish to use the error handling facility should include the header file
dnet_ermo.h and follow the procedure below:

Errors detected by the DNET code are identified in the variable dnet_errno:

dnet_errno = XXXXX;
An error function, dnet_error(“string’), is then optionally called where string is an optional, user
provided informative message. dnet_error provides detailed information on conditions when the error
was detected including a stack trace.

dnet_error(‘error_strlng)

char * error_string;

Detailed error codes are provided in an Appendix to this Guide.

DNET Error Handling 37



An Example Streaming Application

7. Routing

protocol in a latter version,

The details of DNET routing operations are hidden from ‘ordinary’ applications and hence will not be
of particular use to the application programmer.

The router selects the host/process to which the datagram will be transmitted next by calling the
function get_path();

path = get _path(src_net,src_host,dest_net,dest_host,dest _process,numhops);
src_net is the network in which the destination host is located
src_host is the destination host
dest_net is the network in which the destination host is located
dest_host is the destination host
dest_process is the destination process

numhops - number of hops from current location to destination

Details on routing within DNET are found in the Adminstrator and Technical Guides.

38 DNET PROGRAMMERS GUIDE

C-Q



An Example Streaming Application

8. Interprocess Communication

As part of its internal design, DNET provides a gencralized interprocess communication facility. A

brief description of this facility is provided here. Complete details on the use of this facility are given in
the DNET Technical Guide and Reference.

Interprocess Communication 39



An Example Streaming Application

9. Presentation Layer Services

DNET will provide a limited presentation layer facility.

Within the DAVID environment, the single most important coding problem across beterogeneous
machines is the internal representation of data, Information moved from one machine to another may
only be viewed consistently if data types are faithfully "mapped" between machines,

Thus, if the transmitting machine views integers as 32 bit quantities and represents floating point
numbers with 64 bits while the receiver represents these two data types as 64 and 48 bit quantities,
respectively, serious misalignment of data files will occur,

The Presentation Layer Service to be provided by DNET will be limited to a subset of the SUN (XDR)
External Data Representation Protocol and the existing DAVID Presentation Services.

9.1 XDR

A subset of the SUN Microsystems External Data Representation (XDR) protocol is provided with
DNET.

provides for the translation (or encoding) of data elements into a canonical representations at the
source machine. These canonical forms may then be interpreted (or decoded) according to
appropriate conventions at the destination machine, Inter-computer differences such as the number of
bits and/or the byte ordering of specific data types are conveniently avoided via judicious use of XDR.

Typical XDR library functions include filter routines for strings (null terminated arrays of bytes),
structures, unions, and arrays as well as primitive routines for most common data types. These filter
routines are used for both encoding and decoding of the XDR canonical data stream. The
encode/decode *direction’ is indicated via a flag when the filters are invoked.

Data may be encoded/decoded source /destination data "stream”. This stream may be a file, a memory
array, of a memory block.
9.1.1 Issues in the Use of XDR

The files ../common/dnxdr.c and ~/common/dnxdr.h contain the XDR functions available for use
within DNET. The reader is referred to the source code for additional details on the various issues
discussed here.

The general procedures used for encoding/decoding of data with XDR are as follows:
1. Specification of the XDR ’handle’

40 DNET PROGRAMMERS GUIDE



An Example Streaming Application

2. Creation of I/O Data Stream
3. Encoding/Decoding of Data using XDR Library functions
9.1.2 The XDR Handle (Control Structure)

A common structure is used to ’control’ the XDR operations on a particular data stream. This
structure is shown below:

/* The XDR handle.
*/
typedef struct {
enum xdr op x_op; /* operation; fast additional param */
struct xdr_ops {
int (*x_getlong) O; /® get a long from underlying stream */
int (*x_putlong)(); /* putalongto " */
int (*x_getbytes)(); /* get some bytes from " */
int (*x_putbytes)(); /* put some bytes to * */
uint (*x_getpostn)(); /* get byte offset from beginning */
bool_t (*x_setpostn)(); /* reposition loc in the stream*/
long * (*x_inline)(); /* put some bytes to * */
vold (*x_destroy)(); /* free privates of this xdr stream s/

} *x_ops;
caddr_t x_public; /* users’ data */
caddr_t x_private; /* pointer to private data */
caddr_t x_base; /* private used for position info */
int x_handy; /* extra private word */
Int x_size; /* yet another */

} XDR;

9.1.3 Creation of the 1/O Datastream

Two functions may be used to create the XDR datastream. The function used depends on whether the
stream is to be a file or an area of memory,

" File

xdrstdio_create(xdrs, fp, x_op)
XDR *xdrs;
FILE *fp;
enum xdr_op x_op;
x_op is chosen from among:

XDR_ENCODE
XDR_DECODE

Memory

Presentation Layer Services 41



An Example Streaming Application

xdrmem_create(xdrs, addr, len, x_op)
XDR *xdrs;
char *addr;
u_int len;
enum xdr _op x_op;
X_op is chosen from among:

XDR_ENCODE
XDR_DECODE

9.1.4 Encoding/Decoding of Data using XDR library

9.1.4.1 Primitive Filters Example of a typical primitive:
bool_t xdr_xxx(xdrs, fp) XDR *xdrs; xxx *fp; {
}

Comments:

xdrs points to the XDR control structure

fp points to the data stream

ENCODE/DECODE already specified in the XDR control structure

Returns TRUE (1) if successful
Returns FALSE (0) if failure

The primitive names are usually adequate to describe the data type involved. e.g :
xdr_long(&xdrs, stdin)

9.1.4.2 Non-filter Primitives

Two especially useful ancillary functions allow determining or setting the current position in the XDR
datastream.

Get current position In the datastream
u_int xdr_gettpos(xdrs, pos)

XDR *xdrs;
u_int pos;

42 DNET PROGRAMMERS GUIDE



An Example Streaming Application

Set current position
bool_t xdr_setpos(xdrs, pos)

XDR *xdrs; '
u_int pos;

9.1.4.3 Higher Level Filters Arrays

9.1.4.4 An Introductory Example

Consider the following simple example. The name of a file and its size, in bytes, is to be passed
between machines with consistent interpretation.

We define a structure in which to place the file information and assume that some convenient utility is
used to populate this structure.

struct

{
char[100] filename;
long filesize;

} filedescrip;

bool_t xdr_filedescription(xdrs, filedes)

XDR *xdrs;

struct filedescrip *filedes;

{

return( xdr_stream(xdrs, &filedes- > fllename) &&
xdr_long(xdrs, &filedes- > filesize) );

Presentation Layer Services 43



An Example Streaming Application

Source:

{‘DeclanmlnstaneeoftheXDR’handle’
X/DR xdrs;

{t open the *Canonical’ File

f]{ = fopen ("Fileinfo", "w");

/* Setup the xdr handle to point to ’Fileinfo’ and to encode the
datastream

*/

xdrstdio_create (&xdrs, fp, XDR_ENCODE);

/* Encode the file information (from file struct) into the open datastream
*/

fledescription(&xdrs, fp);,

/* Close the file

*/
fclose(fp);

/* Send the file to its destination using a convenient function

*/
put_file();

44 DNET PROGRAMMERS GUIDE



An Example Streaming Application

Destination:

{‘ Declare an instance of the XDR *handle’

X/DR xdrs;

{‘ Receive the file at its destination using a convenient function
ro(eelve_ﬂleo;

/* open the *Canonical’ File

;]{ = fopen (“Fileinfo", "w");

/* Setup the xdr handle to point to ‘Fllelnfo’ and to decode the
datastream

*/

xdrstdio_create (&xdrs, fp, XDR_DECODE);

/* Encode the file information (from file struct) into the open datastream
*/
filedescription(&xdrs, fp);,

/* Close the file
*/
fclose(fp);

9.1.5 Example - use of XDR in dnetstat

We next consider an example drawn from the actual DNET implementation. The DNET client /server
pair dnetstat and dnstatd use XDR in order to accurately pass DNET status structures across the
heterogeneous network.

The ’standard’ XDR library function, xdrmem_create(), is used to create a data stream at a specific
location in memory, in this case in the data buffer of a DNET connectionless datagram which is being
assembled for shipment to the dnetstat client.

The steps performed are:
1. Populate the data structure for the network status
2. Create a temporary memory area (in the buffer for a DNET connectionless datagram
3. Invoke a function which encodes/decodes the data structure to/from XDR format

Presentation Layer Services 45



An Example Streaming Application

struct udg udg s;
struct dmsinfo dms_stat;

main()

{
XDR xdrs

xdrmem_create(&xdrs, udg_s->buf, sizeof (udg_s->buf), XDR_ENCODE);
xdr_slt_lnstance(&xdrs,&dms_stat);

Discussion

xdrmem_create() is set up to place the XDR encoded structure in the data buffer (usg_s->buf) of a
DNET connectionless datagram which is being assembled in memory for shipment to some remote
destination.

Since dnetstat is a designed to be a currently used DNET application, its accurate interchange of
information warrants special attention. The functions xdr_sit_instance() and xdr_adgut_instance()
were ’custom’ written for this purpose. These functions and the data structures which they
Encode/Decode are presented below:

struct ms_eatry {
char  service[80];

char  image(80];

int prespawned;

int max;
int avail;
int inuse;
int seqno;

struct si_entry *si_table;
3 /* for generic table */

struct msinfo {
char  service[80];
char  image[80];
int prespawned;
int max;
int avail;
int inuse;
int seqno;

|5 /* for generic table ./

46 DNET PROGRAMMERS GUIDE



An Example Streaming Application

struct si_entry {
int pid;
int inuse;
int Inited;
long  stime;

struct ms_eatry *ms_entry;
int term_sent;

int pendfng;
int buflen;
char buf[BUFSIZ);

) 5 /* for Instance table */

struct slinfo {
int pid;
int inuse;
int Inited;
long  stime;
int term_sent;
int pending;

|4 /* for instance table */

typedef struct ms_entry MS_ENTRY;
typedef struct si_entry SI_ENTRY;

#define DMS_GETCLIENT 1
#define DMS_GETSTATUS 2

struct dms_request {
int pid;
int type;

b

#define DMSTAT END 0
#define DMS_INFO
#define DMSTAT INFO 2

—

struct dmsinfo {
int type; /® DMSTAT_INFO, DMSTAT END */
Int numsi;
struct msinfo ms;
struct siinfo s1[100];

|5

Presentation Layer Services 47



An Example Streaming Application

/* structure for ADGUT (coanectionless service) entry

*/

struct dgms_adut

{

|H

int pid; /* Process Identifier */
char pname[D_MAXPNAME]; /* Process name bound to*/
char lpcname[D_MAXPATHNAME];/‘ Name of IPC mechansim for sending */
Int ipcid; /* ipcid of ipcname */
int maxmsg; /®* Maximum number of bytes that this user can handle s/
int signal; /* Signal number used to inform of impending message */
unsigned w_timeout; /* Timeout period on write s/
time_t add_time;/* Time adgut entry was added */
time_t last_access; /* Time adgut entry was last accessed */
time t last update; /* Time adgut entry was last updated */
time_t last_send; /* Time last datagram was sent to this process s/
time t last_recv; /* Time last datagram was received from this process */
int state; /* 0 - Invalid

1 - Basic

2 - Listen */

48 DNET PROGRAMMERS GUIDE



/* dnetstat utilities - User Network Status Function
*/

#include <stdio.h>
#include <ctype.h>

#include "dnet_env.h"
#include <signal.h>

#ifdef DN_EUNIX
#include <fcntlh>

#ifdef DN3B2

#include "/usr/netinclude/sys/time.h"
#else

#include <sys/time.h>

#endif

#endif

#ifdef DN_EVMS
#ifdef DNDFTNIC
#include time
#else

#linclude "time.h"
#eundif

#endif

#include "dnet.h"
#include "dnet_errno.b”
#include "dnet_ipc.h"
#include "dgms.h"
#include "dms.h*
#include "dnetstat.h"
#include "dnxdr.h"

An Example Streaming Application

Presentation Layer Services

49



An Example Streaming Application

/* Connection Service Definitions
*/

xdr_sit_instance(xdrs,dms_bptr)
XDR *xdrs;
struct dmsinfo *dms_bptr;
{
char *cpp;
Int i;

i (!xdr_int(xdrs,&dms_bptr- >type) )
return(FALSE);

ir (!xdr_lnt(xdn,&dms_bptr-> numsi) )
return(FALSE);

Cpp = dms_bptr-> ms.service;
ir (!xdr_strlng(xdrs,&cpp,D_MAXPATHNAME))
return(FALSE);

¢pp = dms_bptr-> ms.image;
ir (!xdr_su-ing(xdrs,&cpp,D_MAXPATHNAME))
return(FALSE);

if (!xdr_int(xdrs,&dms_bptr-> ms.prespawned) )
return(FALSE);

if (xdr_int(xdrs,&dms_bptr- > ms.max) )
return(FALSE);

ir (!xdr_lnt(xdrs,&dms_bptr- >ms.avail) )
return(FALSE);

if (!xdr_lnt(xdrs,&dms_bptr- >ms.inuse) )
return(FALSE);

ir (!xdr_lnt(xdrs,&dms_bptr- >ms.seqno) )
return(FALSE);

if (debug)
fprintf(stderr,"xdr_sit_instance: numsi = %d0,dms_bptr->numsi);

for (I=0; i< dms_bptr->numsi; i+ +) {
ir (!xdr_lnt(xdrs,&dms_bptr- >si[i].pid) )
return(FALSE);
if (!xdr_lnt(xdrs,&dms_bptr— >si[i).inuse) )
return(FALSE);
if (!xdr_lnt(xdrs,&dms_bptr- >si[i].inited) )
return(FALSE);
If (!xdr_int(xdrs,&dms_bptr- > si[i].stime) )
return(FALSE);
if (xdr_int(xdrs,&dms_bptr-> si[i} term_sent) )
return(FALSE);
ir (!xdr_lnt(xdrs,&dms_bptr- >si[l].pending) )
return(FALSE);
}

return(TRUE);
}

50 DNET PROGRAMMERS GUIDE



xdr_adgnt_lnstanee(xdrs,adg_bptr)
XDR *xdrs;
struct dgms_adut *adg_bptr;

{

No supporting mechanisms are currently
files using XDR.

char *cpp;

ir (!xdr_int(xdrs,&adg_bptr->pid) )
return(FALSE);

CPp = adg_bptr-> pname;
If (!xdr_string(xdrs,&cpp,D_MAXPATHNAME))
return(FALSE);

Cpp = adg_bptr->ipcname;
if (!xdr_su'lng(xdrs,&cpp,D_MAXPATHNAME))

return(FALSE);

ir (Ixdr_int(xdrs,&adg_bptr->ipcid) )
return(FALSE);

if (!xdr_lnt(xdrs,&adg_bptr- >maxmsg) )
return(FALSE);

if (!xdr_int(xdm,&adg_bptr- >signal) )
return(FALSE);

If (!xdr_u_int(xdrs,&adg bptr->w_timeout) )
return(FALSE); :

ir (!xdr_lnt(xdrs,&adg_bptr- >add_time) )
return(FALSE);

if (!xdr_long(xdrs,&adg_bptr-> last_access) )
return(FALSE);

if (xdr_long(xdrs,&adg_bptr-> last_update) )
return(FALSE);

if ( !xdr_long(xdrs,&adg_bptr— >last send) )
return(FALSE);

ir (!xdr_long(xdrs,&adg_bptr—> last_recv) )
return(FALSE);

if (!xdr_lnt(xdrs,&adg_bptr- >state) )
return(FALSE);

return(TRUE);

9.2 Transferring arbitrary files using XDR

9.3 Existing DAVID Presentation Service

Existing DAVID system currently includes a
into a straightforward, virtual format for
representation.,

An Example Streaming Application

offered in DNET for the problem of transferring arbitrary

pair of data conversion functions which map data types
interchange with machines employing different internal

Presentation Layer Services 51



An Example Streaming Application
9.3.1 Virtual Data Format for DNET Transmission
ASCII representation

COMP_STATUS dcp_tpack(vea,cca,nvisit,tca,ptca, fptr)
VCA *vca;
CCA *cca;
USHORT *avisit;
TCA *tca;
TCA *ptca;
FILE *fptr;

COMP_STATUS dcp_tupack(vca,cea,fptr,ptrfile)
VCA *vca;
CCA *cca;
FILE *fptr;
FILE *ptrfile;

52 DNET PROGRAMMERS GUIDE



An Example Streaming Application

10. Standard DNET Code Organization

10.1 Standard Directory Structure

The *standard’ DNET directory structure is shown in the figure below:

~/~/dnet = dnet_home

/common /pvedir /dgdir /appdir /bin

NOTE: Programming tasks covered by this Guide should generally require modifications to files in
../dnet/ and ../dnet/appdir

Changes to the subdirectories ../common, ../dnet/pvcdir, ../dnet/dgdir should only be undertaken
with a view toward global changes in mind.

10.2 Variation for VMS Installations

The DNET directory-tree on VMS systems is logically identical to that on UNIX systems. It differs
only in the syntax used to reference directories:

dnet_home:[.common]
dnet_home:[.pvcdir]
dnet_home:[.dgdir]
dnet_home:[.appdir]
dnet_home:[.bin]

Standard DNET Code Organization 53



An Example Streaming Application

11. Compiling & Making DNET Applications Programs

11.1 General Strategy
Use existing DNET applications as a model for make files

The relevant libraries in dnet_home dircctory are placed in the dnet_home directory.

11.2 Setting DNET Compile Time Environment Variables
These Environment variables are ordinarily set automatically based on the machine name provided to
the DNET postmove utility program. Typical of the environment to be specified are:

1. Communication Protocol(s)

2. TCP/IP Implementation

3. Target Machine Type

4. Target Operating System
The most convenient means of setting these variables is to create an entry for the target DNET
machine in the file dnet_home/tbis.db. This is a database file which contains all relevant information
about the target node.

11.3 Making UNIX Version

1. cd doet_home
2. make

11.3.1 BSD Systems

Special considerations - Must run ’ranlib’ manually on the libaries generated during the ’make’
procedure.

ranlib dnet.a

ranlib dnettcp.a

This may be accomplished by running *make’ twice on the target machine; this has the effect of running
ranlib twice.

11.3.2 Example Make File

A typical UNIX makefile is show below. This file is used to make the DNET application files, All
relevant makefiles are presented in the source code listings. :

54 DNET PROGRAMMERS GUIDE



An Example Streaming Application

$(CC) < $(CFLAGS) $<
$(AR) $(ARFLAGS) $@ $*.0
rm -f$%.0

$(GET) $(GFLAGS) $<
$(CC) ¢ $(CFLAGS) $*.c
$(AR) S(ARFLAGS) $@ $%.0
rm -f $%.[co]

DNET=../dnet.a
DNETTCP=../dnettcp.a

DNETDEC=../dnetdec.a

CDIR=../common

BIN=../bin

#DNETDG=.../dgdir/libdn_dg.a

HEAD=$(CDIR) /dnet.b $(CDIR)/dnet_env.h $(CDIR)/dnet_errno.h $(CDIR)/dnet_ipc.h $(CDIR)/dnxdr.h
AR=ar

ARFLAGS =rv

CFLAGS =-g -I$(CDIR) -DDN3B2 -DDN_ETCP

CCLINK =cc $(CFLAGS) -0 $@ $@.c $(LIBS)

WOOL = /usr/lib/libnet.a /usr/lib/libns]_s.a

LIBS=$(DNETTCP) $(DNET) $(WOOL)

all: echo mskill netstat rexec tftp ncl login mail

mail: $(BIN) /dmail $(BIN)/dmaild $(BIN) /checkdmail
nck: $(BIN)/dncl $(BIN) /dncld $(BIN) /dncld_unix
echo: $(BIN)/decho $(BIN) /dechod $(BIN) /dechon
login: $(BIN) /dlogin $(BIN)/dlogind

mskill: $(BIN) /dmskill

netstat: $(BIN)/dnetstat $(BIN)/dnstatd
rexec: $(BIN)/drexec $(BIN) /drexecd
thtp: $(BIN)/dtftp $(BIN) /dtftpd

Compiling & Making DNET Applications Programs 5§



An Example Streaming Application

$(BIN) /decho: decho.o $(DNET) $(DNETTCP)
cc -0 $(BIN) /decho decho.o $(LIBS)

$(BIN) /dechod: dechod.o $(DNET) $(DNETTCP)
cc -0 $(BIN) /dechod dechod.o $(LIBS)

$(BIN)/dechon: dechon.o $(DNET) $(DNETTCP)
cc -0 $(BIN) /dechon dechon.o $(LIBS)

$(BIN)/dmskill: dmskill.o $(DNET) $(DNETTCP)
cc -0 $(BIN) /dmskill dmskill.o $(LIBS)

$(BIN) /dnetstat: dnetstat.o dnstatutil.o $(DNET) $(DNETTCP) $(CDIR)/dgms.h $(CDIR)/dms.h dnetstat.h $(
cc -0 $(BIN) /dnetstat dnetstat.o dnstatutil.o $(LIBS)

$(BIN) /dnstatd: dnstatd.o dnstatutil.o $(DNET) $(DNETTCP) $(CDIR)/dgms.h $(CDIR)/dms.h dnetstat.h $(C
cc -0 $(BIN) /dnstatd dnstatd.o dnstatutil.o $(LIBS)

$(BIN)/drexec: drexec.o $(DNET) $(DNETTCP)
cc -0 $(BIN) /drexec drexec.o $(LIBS)

$(BIN) /drexecd: drexecd.o $(DNET) $(DNETTCP)
cc -0 $(BIN) /drexecd drexecd.o $(LIBS)

$(BIN)/dtftp: dtftp.o dtftputil.o dnlog.o $(DNET) $(DNETTCP)
cc -0 $(BIN)/dtftp dtftp.o dtftputil.o dnlog.o $(LIBS)

$(BIN)/dtftpd: dtftpd.o dtftputil.o dnlog.o $(DNET) $(DNETTCP)
cc -0 $(BIN) /dtftpd dtftpd.o dtftputil.o dnlog.o $(LIBS)

56 DNET PROGRAMMERS GUIDE



An Example Streaming Application

$(BIN) /dpresent: dpresent.o $(DNET) $(DNETTCP) $(CDIR)/dgms.h $(CDIR) /dms.h dpresent.h

cc¢ -0 $(BIN)/dpresent dpresent.o $(LIBS)

$(BIN)/dmail: dmail.o sendmail.o readmail.o diftputil.o $(DNET) $(DNETTCP) $(CDIR)/dnet.h $(CDIR)/d

cc -0 $(BIN) /dmail dmail.o sendmail.o readmail.o dtftputil.o $(LIBS) -lcurses -ltermcap

$(BIN)/dmaild: dmaild.o dtftputilo  $(DNET) $(DNETTCP) $(CDIR)/dnet.h $(CDIR)/dms.h $(CDIR)/dn

cc -0 $(BIN) /dmaild dmaild.o dtftputil.o $(LIBS)

$(BIN) /checkdmail: checkdmail.o  $(DNET) $(DNETTCP) $(CDIR)/dnet.h $(CDIR)/dms.h $(CDIR) /dn

$(BIN) /dncl:

$(BIN) /dncld:

cc -0 $(BIN) /checkdmail checkdmail.o $(LIBS)

dncl.o dncl_utils.o $(DNET) $(DNETTCP) $(CDIR)/dnet.h $(CDIR)/dms.h $(CDIR) /dnet_err
cc -0 $(BIN) /dncl dncl.o dncl_utils.o $(LIBS)

dncld.o dncl_utils.o $(DNET) $(DNETTCP) $(CDIR)/dnet.h $(CDIR)/dms.h $(CDIR) /dnet_er
cc -0 $(BIN) /dncld dncld.o dncl_utils.o $(LIBS)

$(BIN)/dncld_unix: dncld_unix.o dncl_utils.o $(DNET) $(DNETTCP) $(CDIR)/dnet.h $(CDIR) /dms.h $(C

cc -0 $(BIN) /dncld_unix docld_unix.o dncl_utils.o $(LIBS)

$(BIN)/dlogin: dlogin.o dlogutils.o $(DNET) $(DNETTCP)

cc -0 $(BIN) /dlogin dlogin.o dlogutils.o $(LIBS)

$(BIN)/dlogind: dlogind.o dlogutils.o $(DNET) $(DNETTCP)

decho.o:
dechod.o:
dechon.o:
dmail.o:
dma’

dmsh
doetstat.o:
dnstatd.o:
dnstatutil.o:
drexec.o:
drexecd.o:
dtftp.o:
dtftpd.o:
dtftputil.o:
dnlog.0:
dpresent.o:
dlogin.o:
dlogind.o:
dlogutils.o:
dncl.o:
dncld.e:
dncld_unix.o:
dncl_utils.o:

cc -0 $(BIN) /dlogind dlogind.o dlogutils.o $(LIBS)

$(HEAD)
$(HEAD)
$(HEAD)
$(HEAD) dmailh
$(HEAD) dmailh
$(HEAD)
$(HEAD) dnetstat.h
$(HEAD) duetstath
$(HEAD) dnetstath
$(HEAD)
$(HEAD)
$(HEAD) dtftp.h
$(HEAD) dtftp.h
$(HEAD) dtftp.h
$(HEAD)
$(HEAD)
$(HEAD)
$(HEAD)
$(HEAD)
$(HEAD) dncl.h
$(HEAD) dnclh
$(HEAD) dncl.h
$(HEAD) dnclh

Compiling & Making DNET Applications Programs 57



An Example Streaming Application

11.4 Making VMS Version
11.4.1 General

DNET currently employs VMS ’command’ files as a psecudo 'make’ facility. These files are simply
scripts for executing the various steps necessary to *make’ DNET on the target VAX machine. Since
this is not a true make facility, these files DO NOT check for the date of executables versus source files,
requiring instead that the user keep track of incremental changes in the source code and the ’side’
cffects of these changes on the several exccutables.

11.4.2 MicroVAX I1

1. cd dnet_home
2. @make.dv

$ define cSinclude dnet_common, dnet_pvcdir, dnet_dgdir, wool_sys, -

wool_netinet $ define vaxc$include cSinclude, sys$library $ lib/create dnet $ lib/create dnetdec $
lib/create dnettcp $ cd [.common] $ @decnet.m $ @tcp.m $ @vms.m $ cd [-.pvedir] $ @dnet.m $
@drelay.m $ @dms.m $ cd [-.dgdir] $ @mall § cd [-.appdir] $ @decho.m $ @dechon.m $ @drexec.m $
@dtftp.m $ @dmskill.m § @dnstat.m $ @dlogin.m $ @dncl.m $ @dmail.m $ cd [-.bin] § purge *.exc $
$ cd dnet_home $

The makefile for decho is presented below as a representative example of making a specific
application.

11.4.3 NASA-GSFC VAXes ( LAF, DFTNIGC, etc. using Excelan TCP)

Enter the following commands
1. cd dnet_home
2. @make.dft

11.S Making individual files

It is obviously possible to make individual files via manual steps or via selective *makes’ of cither the
common, pvcdir, dgdir, or appdir makefiles. It is important to note that there are numerous
interactions between the ’core’ DNET files in common, pvedir, and dgdir. Any changes to these files
may have wide ramifications and considerable functional testing of all DNET operations is advised
after such tests.

DNET applications which follow the basic rules in this GUIDE are more ’self-contained’ and may
usually be altered without significant effect on other applications.

58 DNET PROGRAMMERS GUIDE



An Example Streaming Application

12. Debugging DNET applications

For convenience, a generalized 'logging’ facility is provided in order to allow a 1st order indication of
DNET operations. This may be used as a 'debugging’ aid when problems arise with DNET and the
user is unfamiliar with the specific debugging tools on the local machine..

This facility is activated when the DNET "environment variable” is set. This varies with the operating
system as follows:

1. UNIX
shell dnet_debug=1;export dnet_debug
Cshell setenv dnet_debug 1
2. VMS

define/job dnet_debug 1
The debugging files will be placed in the directory and named as follows:

Directories:
UNIX
/tmp/dnet
VMS dnet_home
The log files are generated for each DNET server process (most clients will ’"dump’ messages to the
terminal instead of a file) and are named as follows:
XXX###.log

where XXX is the process name

and ### is the process ID

UNIX files may be viewed while DNET is operational using

On VMS systems, DNET must be stopped before the log files may be inspected.

NOTE:

Care should be exercised in the use of this debugging technique as log files of considerable size may

be generated over time. Thus the ’debug’ option should only be activated long enough to study a
problem, then deactivated by setting dnet_debug = 0

Debugging DNET applications 59



An Example Streaming Application

#define D NOERR
#deflne D_SYSERR
#define D_BADSTATE
#define D_BADARG
#deflne D OVRFLW
#define D_AEXIST
#define D_ESRVRSP
#define D_EPERM
#define D_NOMSG
#define D_ NODGRSC
#define D_INTERN
#deflne D_BADNM
#deflne D_DGTB
#define D MSGTB
#define D BADHN 14
#deflne D ADGENF 15
#define D_PN2BIG 16
#define D_IPCNM2BIG 17
#define D_NOEXIST 18
#define D_INTR 19
#define D NOSRSC 20
#deflne D NODNET 21
#define D WOULDBLOCK
#define D_TIMEOUT 23
#define D QUOTA 24
#define D_NOSYSFILE 25
#deflne D SYNERR 26
#deflne D NOIMAGE 27
#define D_HOMELESS 28
#define D_SRVNOACK 29
#define D NOHOST 30
#define D NOPATH 31
#deflne D_SYSLIBERR 32
#deflne D NODNETSRV
#deflne D_SHUTDOWN 34
#define D MAXERRS 35

13. DNET Error Codes

/* No DNET error */

/* A system errvor has occurred */

/* program in wrong state to issue this dnet call */

/* value of argument was determined to be invalid */
/* overflow of i/o buffer */

/*® The specified object already exists s/

/* Error return value in DGMS service req response */
/* Permission Denied */

/* D_NOWAIT flag set and no message waiting to be read s/
/* No more available DGMS resources */

/* Internal DNET error */

/* Invalid process name was specified */

/* Datagram To Big */

/* Message To Big */

/* Could not find net/host combination in router tables */
/* ADGUT Entry Not Found */

/* Process name string too big */

/* 1PC name string too big. DNET code error */

/* The specified object does not exist */

/* A signal interrupted the library routine */

/* Temporarily out of system resources */

/* Missing all or part of dnet provider */

22 /* Operation would block */

/* Timeout or retry count exceeded */

/* Quota limit exceeded */

/* DNET system file/table not found */

/® DNET system file/table syntax error */

/* Image (server) not file not found */

/* Eav variable ’dnet_home’ not defined */

/*® No respoune from application server */

/* No such host */

/* DNET could not find a path for the src/dest pair */
/* System library function failed */

33 /* DNET servers dms/dgstcp not defined in ’etc/services™/
/* Orderly shutdown from master server */

60 DNET PROGRAMMERS GUIDE



An Example Streaming Application

static char *dgms errmsgs[D_MAXERRS] = {
*No DNET error”,

*A system error has occurred”,

*program in wrong state to Issue this dnet call,

*value of argument was determined to be invalid®,
*overflow of i/0 buffer”,

*The specified object already exists",

*Error return value in DGMS service req response®,
*Permissioa Denied",

*D_NOWAIT flag set and o message waiting to be read”,
*No more available DGMS resources”,

*Internal DNET error”,

*Invalid process name was specified®,

*Datagram To Big",

*Message To Big’,

*Could not find net/host combination in router tables",
*ADGUT Eatry Not Found",

"Process name string too big”,

*IPC name string too big. Probably DNET internal code error”,
*The specified object does not exist”,

*A signal interrupted the library routine”,
*Temporarily out of system resources”,

*Missing all or part of dnet provider”,

*Operation would block",

*Timeout or retry count exceeded",

*Quota limit exceeded",

"DNET system file/table not found®,

*DNET system file/table syntax error”,

*Image (server) file not found®,

*Env variable ’dnethome’ not defined",

*No respone from application server”,

"No such host",

*DNET could not find a path for the src/dest pair”,
*System library function failed",

"DNET servers dms/dgstcp not defined in */etc/services™,
"Orderly Shutdown from master server”

k

DNET Error Codes 61



An Example Streaming Application

14. Glossary

The following terms are used in the description of DNET:
Applications Servers-

Servers such as File Transfer, Remote Login, Remote Execution, etc. that perform
services for clients. Applications Servers are invoked on demand by clients after using
the Service Assignment to obtain the name of an available server.

Connection Lock Table-

List of open connections held by process for use by its Basic Datagram I/O package.
Locked connections result from user requests for Permanent Virtual Circuits.

Datagram Master Server (DGMS)-

A server process, located at each DNET host and gateway, which provides an interface
to DNET clients and servers and the DNET Connectionless Datagram and Signalling
Service

Datagram Protocol Servers (DPS)-

Protocol specific servers located at each DNET host and gateway, which provides an
DNET Connectionless an interface to the underlying network Datagram service.

Master Server Init Table-

These tables, this.msinittcp and tbls.msinitdec contain initialization information for
the DNET Master Servers including the type of server to be activated, the maximum #
allowed at this host, and the number to make available initially, and an indication of
whether the server must be prespawned. The tables are updated by the local System
Administrator at the specific DNET host.

Master Server Table-

One for each DNET host, it contains information on the types and numbers of each
class of DNET server actively supported on this node at any instant. Each generic
server entry points to a Server Instance Table which lists the current specific instances
of a particular class of server. It is updated by the Master Server and by specific
DNET application servers.

Master Server Process (DMS)-

Processes, one per Network, managing the Master Server Table, handling server
registration, server assignment, and server control. They are spawned by network
start-up command files.

DNET Basic I/0 package-
62 DNET PROGRAMMERS GUIDE



An Example Streaming Application

Included as library within an application program, it provides network i/o interface
including datagram formatting,

Gateway-

A DNET node at which communicaton protocol boundary is passed. DNET relay
servers move data from onc network to another performing an effective protocol
conversion for streaming services. These servers are created, allocated, and used like
any other DNET streaming applications servers. The Datagram Master Server, in
conjunction with protocol specific datagram servers performs a similar function for
DNET datagrams.

Network Command Line Interpreter-

DNET Client process that directs the execution of network commands using
datagrams sent to various hosts and several servers.

myname - hostname table-

A table, this.myname, maintained in thc dnet_home directory on each DNET node
lists the DNET networks to which that host is connected and the name(s) by which the
local host is known on those networks.

Network Command Language Processor-

Server that directs the execution of network commands using datagrams sent to various
hosts and several servers. It is an application server, copies can be pre-spawned or
spawned on demand.

Network Command Server-

Spawned by request from Command Language Processor, this Server is directed by
Command Language Processor. It spawns processes and directs i/o to execute network
commands.

Network Status Server-

Resides in each network host. Receives Host Status Tables, Host Alias Table, Well
Known Server Tables, Connectivity Tables, and periodically sends "I am alive”
messages to the Administrative host. To ensure these periodic messages are sent the
Basic datagram I/O package uses a timer/wake-up signal to initiate the transmission
of the message to the Network Status Client. Because this is done by the I/O package
and there is a copy of this package in every process that uses network I/O the network
status data is collected on a per process not per host basis.

PVC Relay

A DNET relay used in the completion of DNET Permanent Virtual Circuits (PVCs).
Relay

Special DNET application processes located in a DNET gateway which perform

protocol conversion for DNET streaming service between dissimilar networks. The
appropriate Master Server process ’listens’ on a particular protocol boundary when

Glossary 63



An Example Streaming Application

Router

Routing Table-

idle and assigns a rclay when a request for a protocol b’hop’ is received from DNET..
The relays are named according to the protocol boundary which they are intended to
bridge. Thus a T-D relay services requests which arrive on a TCP/IP nctwork,
relaying data to a DECnet net. Relays operate in a full duplex mode while actually in
use.

DNET employs a hierarchical routing strategy. Each DNET node has, for every
(DNET) network known to it, information on the next DNET host to contact in order
to move data toward the destination. The DNET router function uses the information
in the routing table as follows: Given a destination network, host, and process, returns
the next *best’ hop (network, host, process) to *move’ toward the destination.

A hierarchical routing table that contains the next 'hop’ from the local DNET
host/network in the direction of all other DNET networks. A minimal version of this
table is provided with the distribution copy of DNET. The table is currently
maintained manually by the local system administrator. In the future, this table will be
dynamically configured and maintained by the local DNET Network Status Server
after intial startup has taken place. The routing table is named tbls.net and is located
in the dnet_home directory.

Server Assignment Function-

Returns the name of an available server to a requesting Router, and updates the
Domain Server Table.

Server Instance Table(s-

Lists the current specific instances of a particular class of DNET Application Server.
Entries are made by the Master Server and cleared via dn_done() calls from the
servers as they complete their tasks.

Server Registration Function-

This function is part of the Domain Server Process. It updates the Domain Server
table with information from Servers (e.g."now in use”).

64 DNET PROGRAMMERS GUIDE



DNET

PROGRAMMER'’ S REFERENCE

Version: 1.7
Print Date: 08/11/89 09:26:51
Module Name: prog.ref

Digital Analysis Corporation
1889 Preston White Drive
Reston, Virginia 22091
(703) 476-5900

SBIR RIGHTS NOTICE

Copyright 1989, Digital Analysis Corporation



DN_CDONE(3U) DNET DN_CDONE(3U)

NAME
dn_cdone - Free up user resources associated with a datagram communication endpoint.
SYNOPSIS
int dn_cdone()
DESCRIPTION
The dn_cdone library routine performs the cleanup of any resources allocated by dn_cinit(3U)
and/or dn_chandler(3U).

Because the DNET Datagram Services are not implemented from the kernel, there is no
feasible method for cleaning up after the user application unless explicately told to do so by the
user application through the dn_cdone library routine. Because many of the datagram
resources are stored in a shared user process, failure of the user applications to use the function
will result in wasted space and resources to the point that no applications will work.

SEE ALSO
dn_cinit(3U), dn_chandler(3U)
RETURN VALUE

A value of 0 will be returned on success, and a value of -1 will indicate an error.
ERRORS
The call fails if:
[D_BADSTATE]  The dn_cinit function was not called previous to invoking this function.

Page 2 (08/10/89)



DN_CHANDLER(3U) DNET DN_CHANDLER(3U)

NAME

dn_chandler - Prepare for the asynchronous receipt of datagrams.

SYNOPSIS

#include "dnet.h"

int dn_chandler(dhandle, d_alert_slg, udg)
void (*dhandle)();

int d_alert_sig;

struct udg *udg;

DESCRIPTION

The dn_chandler library routine is used to provide a standard interface for the declaration of an
exception handling routine for receiving datagrams asynchronously.

The address of your exception routine (a standard C function) is passed along with the address
of a user datagram structure (udg). (Refer to the description of dn_cread(3U) for a description
of the user datagram structure.) Upon the receipt of a datagram, the normal thread of activity
of your program will be interrupted while the datagram is placed in the user datagram structure
(The structure must be big enough). After successfully reading the datagram, the exception
routine is called. The address of the user datagram structure is passed as the only argument.
After returning from the exception routine, the normal thread of activity of your program is
resumed,

In UNIX, the second argument is the signal number used to inform the library routines that a
datagram is pending. The signal should not be used for any other purpose within your program.
Although little validatior is enforced upon the signal number chosen, it is suggested that either
SIGUSR1, or SIGUSR2 is used. This signal number is ignored in VMS implementations.

While executing within or on behalf of your exception routine in UNIX environments, further
indications of pending datagrams will be ignored. Before returning control to the normal
thread of activity within your program, though, the library routines will ensure that no
datagrams are pending. One signal then, may result i multiple invocations of the exception
handling routine before control is returned to the normal thread of activity. The VMS
environment provides for stacking of events which could have in similar results,

SEE ALSO

dn_cinit(3U), dn_cread(3U)

RETURN VALUE

A value of 0 will be returned on success, and a value of -1 will indicate an error.

ERRORS
The call fails if:
[D_SYSERR] A system error has occurred. Check the global variable errno.
[D_AEXIST] The process name that was requested to be bound to is already bound

Page 3

by a process in the state associated with Listen DGMS Service.
[D_BADARG] The value of d_alert_sig was not in the range: (1-32)

[D_BADSTATE]  The calling process was not in a proper state to issue the dn_chandler
function call. This error is identified by the dgms.

[D_BADNM] The process name as bound to in the dn_cinit call was registered at the
dgms as being null.

(08/10/89)



DN_CHANDLER(3U) DNET DN_CHANDLER(3U)

CAVEATS
The user datagram structure that you provide must be big enough to hold the biggest datagram

that may arrive. The D_MAXDG constant may be used in combination with the dn_salloc
library routine to create a structure large enough to hold ' he largest allowed datagram.

Page 4 (08/10/89)



DN_CINIT(3U) DNET DN_CINIT(3U)

NAME

dn_cinit - Create a datagram communications endpoint,

SYNOPSIS

int dn_cinit(pname)
char *pname;  /* Optional specification of name to bind to */

DESCRIPTION

The dn_cinit library routine establishes a datagram communications endpoint over which
datagrams may be received or sent.

If the endpoint is to be used for receipt of datagrams, a pname (process name) must be
specified. This pname is the character string equivalent of the TCP/IP port number. A
datagram is addressed via a network name, host name, and process name. The latter is used
once on the proper machine to determine which dnet datagram server to send the datagram to.
The dn_cinit routine will fail if the requested pname is already in use by another datagram
service.

An empty string may be passed as an argument but will result in an endpoint not capable of
receiving datagrams. The argument should, in all cases, point to a valid memory location to
avoid an unrecoverable run-time error condition,

SEE ALSO

dn_cdone(3U)

RETURN VALUE

A value of 0 will be retur 1ed on success, and a value of -1 will indicate an error.

ERRORS

Page 5

The call fails if:
[D_SYSERR] A system error has occurred. Check the global variable errno.
[D_NODNET]
[D_NOEXIST] The above two errors are indication that the dgms process is not

currently running,

[D_NOEXIST] An internal error has occurred where the dgms process could not access
this process.

[D_BADARG] An internal error has occurred.

[D_AEXIST] Another datagram service has already established an endpoint bound to
the requested pname.

[D_NODGRSC] The dgms is temporarily out of all allocated resources, This error may
occur as a result of failure of datagram services to issue a dn_cdone
successfully before ending.

[D_QUOTA] Your quota limit has been exceeded. This should never occur with the
current implementation since multiple datagram communications
endpoints are not allowed.

(08/10/89)



DN_CLOSE(3U) DNET DN_CLOSE(3U)

NAME
dn_close - close a dnet ccmmunication channel
SYNOPSIS

int dn_close(chan)
int chan;

DESCRIPTION

The dn_close user library routine closes the dnet communication channel: chan.
SEE ALSO

dn_open(3U)
RETURN VALUE

A value of 0 will be returned on success, and a value of -1 will indicate an error,
ERRORS

The call fails if:
[D_SYSERR] A syster error has occurred. Check the global variable errno.

Page 6 (08/10/89 )



DN_CREAD(3U) DNET DN_CREAD(3U)

NAME

dn_cread - read a datagram from a datagram communicarions endpoint.
SYNOPSIS

#include "dnet.h"

int dn_cread(dg, flag)
struct udg *dg;
int flag;

DESCRIPTION

The dn_cread library routine provides a method for reading datagrams synchronously, or within
the normal thread of execution of your program. The dg argument should point to a user
datagram structure large enough to hold the incoming datagram.

The default action of the dn_cread routine is to block until a datagram arrives, if an outstanding
datagram does not exist. If this is not desirable, then the flag may contain the DG_F_NOWAIT
bit set which will cause the dn_cread to return in error if no datagram is outstanding,

The following is a description of the user datagram structure:

struct udg
{
struct node src;
struct node next;
struct node dest; )
long maxhops; /* maximum numkber of hops before failure */
int type; /* user defined type */
long buflen; /* length in bytes of buf */
char buf[1];
b

struct node

{
char host[l_MAXHNAME];
char net[I_MAXNNAME];
char proc(I_MAXPNAME];

b

The address of the user datagram is described in the dest node. The src and next nodes are set
by the library routines. The next node is of transient significance to the datagram service itself.
The src node may be examined by the server application to determine where the datagram
came from. This field is stamped by the library routines on the way out and overwrites anything
placed in it by the user routine.

All fields of the dest field should be filled in by the application before attempting to send the
datagram. No methods exist for sending broadcast datagrams of any form.

The maxhops field is used to avoid errors in the routing tables which might cause a datagram to
endlessly loop in attempt to get to it’s destination node. This field is currently ignored as this
service has not yet been provided.

The type field is currently not used by the system, although the range of types: (0-31) should be
considered to be reserved types and should not be used. The type field is provided so that the
user may have a standard mechanism for categorizing datagrams in whatever fashion needed.

Page 7 (08/10/89)



DN_CREAD(3U) DNET DN_CREAD(3U)

The buflen field specifies the number of bytes of data in the buf field. The buf field is not
limited to ASCII data, so special characters may be passed as part of the datagram.

The buf field hold the actual contents of the datagram. You may note that the buf field is
defined as being one character long. The purpose of this is to allow the datagram applications
to decide how long this fi:ld should be. This may be done by using the dn_salloc library routine
to define an appropriately sized buffer and return an address which may be placed in a udg
structure pointer variable.

SEE ALSO
dn_cinit(3U), dn_cwrite(3U), dn_chandler(3U), dn_cdone(3U)
RETURN VALUE

A value of -1 will indicate an error condition exists and the external variable dnet_errno can be
checked to identify the error. A positive integer will represent the number of bytes contained in
the message read.

ERRORS
The call fails if:
[D_SYSERR] A system error has occurred. Check the global variable errno.

[D_SHUTDOWN] A shutdown message was received from the dgms. An attempt clean up
vill be attempted by the library routine and the datagram
communications endpoint will be removed. The shutdown mechanism
is not currently implemented and so this message should not be
received.

[D_NOMSG] The DG_F_NOWAIT flag was set and there were no outstanding
datagrams.

CAVEATS

If the ipc mechanism used to communicate between the library routines and the dgms process
fills up because of neglect, the dgms will begin discardiag any newly received datagrams until
there exists enough buffer space in the ipc mechanism to hold the entire datagram. The only
indication of the datagram discarded as a result of this will be a terse error message in the dgms
processes error output. This, though, is not the only possible cause for loss of datagrams in this
unreliable datagram service.

The application must insure that the user datagram structure represents a buffer big enough to
hold the largest datagram that might be received. The dn_salloc routine may be used with the
DN_MAXDG constant to create the buffer necessary to hold the largest possible datagram.

Page 8 (08/10/89)



DN_CWRITE(3U) DNET DN_CWRITE(3U)

NAME

dn_cwrite - Send a datagram to a remote process.
SYNOPSIS

#include "dnet.h"

int dn_cwrite(dg, flags)

struct udg *dg;
int flags;

DESCRIPTION
The dn_cwrite function call facilitates the sending of the datagram pointed to by dg to a remote
process. Refer to the description of dn_cread(3U) for a discussion of the udg structure.
The flags argument does not currently have a use at the user level.
The datagram service is inherently unreliable. It is therefore the responsibility of the user
processes to insure receipt.

SEE ALSO
dn_cread(3U)

RETURN VALUE

A value of 0 will be returned on success, and a value of -1 will indicate an error.
ERRORS
The call fails if:
[D_SYSERR] A system error has occurred. Check the global variable errno.
[D_BADSTATE] ‘(ou have not successfully called dn_cinit yet.
[D_SHUTDOWN] A shutdown indication has been scnt by the dgms process.

[D_DGTB] The buflen field was greater than the maximum allowable size of the
entire datagram structure. The entire datagram structure must be less
than D_MAXDG.

Page 9 (08/10/89)



DN_DONE(3U) DNET DN_DONE(3U)

NAME

dn_done - connection services server completion routine
SYNOPSIS

int dn_done()
DESCRIPTION

This connection oriented user library routine should be called by all servers when they are
finished servicing a particular client. An IPC mechanism is opened to the master server that
tells the master server that this server is finished and reacy for a new connection.

SEE ALSO
dn_getclient(3U)
RETURN VALUE
This routine returns the number of bytes written to the master server on success, and a value of
-1is returned to indicate that an error occurred,
ERRORS
The call fails if?
[D_INTERN] The call was unable to inform the dms module that it was available.

Page 10 (08/10/89)



DN_GETCLIENT(3U) DNET DN_GETCLIENT(3U)

NAME
dn_getclient - Wait for a connect request from a remote client.
SYNOPSIS

int dn_getclient(service, usrbuf, pusrbuflen)
char *service;

char *usrbuf;

int *pusrbuflen

DESCRIPTION

The dn_getclient user library routine is called by a permanent server when it wants to establish
a connection with a client which has requested its service,

The service argument points to a character string representing the name of your server. The
usrbuf and pusrbuflen arguments describe a buffer in which the connection request message
will be replaced which will contain the node identification of the requesting client.

If no requests are outsta: ding, this routine will block until a connection request arrives.
SEE ALSO
dn_done(3U), dn_close(3U)
RETURN VALUE
A positive value will be returned on success representing the channel descriptor back towards
the requesting client. A value of -1 will indicate an error.
ERRORS
The cali fails if:
[D_SYSERR] A system error has occurred. Check the global variable errno.

Page 11 (08/10/89 )



DN_INIT(3U) DNET DN_INIT(3U)

NAME

dn_init - initialize connection based dnet services
SYNOPSIS

#include "dnet.h"

int dn_init()
DESCRIPTION

This internal library rout'ne is the dnet initialization function. It is called once after setting the
progname, dlog and debug values. This function loads the nyname and network tables into
memory.,

RETURN VALUE

This routine returns a value of 0 on success and a value o -1 to indicate that an error occurred.
ERRORS
The call fails if:
[D_HOMELESS] The dnet_home environmental variable was not set.
CAVEATS

If dn_cinit is called from within your program, this routine should not be used.

Page 12 (08/10/89 )



DN_OPEN(3U) DNET DN_OPEN(3U)

NAME
dn_open - create a dnet communication channel
SYNOPSIS

int dn_open(destnet, desthost, destproc)
char *destnet;

char *desthost;

char *destproc;

DESCRIPTION

The dn_open user library routine establishes a dnet communication channel between the calling
procedure and the specified server process on the specified host on the specified network. The
server process will have previously issued the dn_getclient routine. The function does not
return until the channel has been successfully established to the destination.

SEE ALSO
dn_write(3U), dn_read(3U), dn_close(3U)
RETURN VALUE
A positive value will be r=turned on success representing the channel number of the established
communication channel. A value of -1 will indjcate an error.
ERRORS
The call fails if:
[D_SYSERR] A system error has occurred, Check the global variable errno.

Page 13 (08/10/89 )



DN_LOGIN(3U) DNET DN_LOGIN(3U)

NAME

dn_login - verify username password for access to services on a node
SYNOPSIS

dn_login( )
DESCRIPTION

This library routine is used by DNET client processes which need to .
RETURN VALUE

This routine returns a value of 0 on success and a value of -1 to indicate that an error occurred.
ERRORS

The call fails if:
CAVEATS

Page 14 (08/10/89)



DN_LOGIN_VERIFY(3U) DNET DN_LOGIN_VERIFY(3U)

NAME

dn_login_verify - verify uscrname password for access to services on a node
SYNOPSIS

dn_login_verify( )
DESCRIPTION

This library routine is used by DNET server processes which need to verify that the current user
has access privileges on the local DNET host.

RETURN VALUE

This routine returns a value of 0 on success and a value of -1 to indicate that an error occurred.
ERRORS

The call fails if:
CAVEATS

Page 15 (08/10/89)



DN_READ(3U) DNET DN_READ(3U)

NAME
dn_read - read data from a dnet communication channel
SYNOPSIS

int dn_read(channel, buf, nbytes)

int channel; /* pointer to channel created with dn_open */
char *buf;

int nbytes; /* Maximum number of bytes to read */

DESCRIPTION

The dn_read user library routine allows data to be read from a channel created previously with
the dn_getclient(3U) or dn_open(3U) library routines.

SEE ALSO
dn_write(3U)
RETURN VALUE

A positive value representing the number of bytes read will be returned on success. A value of
-1 will indicate an error.

ERRORS
The call fails if:
[D_SYSERR] A system error has occurred. Check the global variable errno.

Page 16 (08/10/89)



DN_WRITE(3U) DNET DN_WRITE(3U)

NAME
dn_write - write data on a dnet communication channel
SYNOPSIS

int dn_write(channel, bu'’, nbytes)
int channel;

char *buf;

int nbytes;

DESCRIPTION

The dn_write user library routine writes nbytes bytes from buf onto the channel: channel.
SEE ALSO

dn_open(3U), dn_getclient(3U), dn_read(3U)
RETURN VALUE

A value of 0 will indicate success, and a value of -1 will indicate an error.
ERRORS
The call fails if:
[D_SGXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX



DNET

ADMINISTRATOR' S GUIDE

Version: 1.31
Print Date: 09/28/89 10:58:01
Module Name: admin.gul

Digital Analysis Corporation
1889 Prestoa White Drive
Reston, Virginia 22091
(703) 476-5900

Copyright 199, Digital Analysis Corporation



CONTENTS

1. DNET Administration Overview .

11 Introduction . ., e e e e e e e e e
12 Overall Network Concerns v e e e e e e
13 Local Host Administration . e . .

2. Distribution of DNET Software o e e
2.1 Modification of target machmc dalabasc tbls.db .
22 Creating the distribution files . . . « e e .
23 Moving DNET Source Files to Target Machmc . .
24 Generating the target files . . . o e e

24.1 UNIX Machines 3
242 VAX Machines 4
25 Use of ptar to pack/unpack files . .

2.6 Making the Target Executables for DNET on thc local maclnnc

261 UNIX 4
262 VMS 4

3. Initial Configuration of Local (non-gateway) DNET Node
3.1 Eavironment & Special Permissions .
311 General 6
312 UNIX 6
313 VMS 7
3.2 DNET Tables & Local Host *Service’ Files
321 Services Files 11
322 tbls.myname - Local Host Name(s) file 12
33 Adding/Deleting/Modifying Servers at a DNET host .
33.1 Types of Servers 12
332 Control of Servers 12
333 Number and Types of Servers 12
334 Prespawning of Servers 13
335 Maximum Number of Servers 14
336 Adding/Removing Servers 14
34 Datagram Service Administration . . . . . . . .
34.1 Normal Operation 14
342 The Static Backbone Network 14
35 DNETRouting . . o« .
35.1 Router Operation 14
352 Routing Example 15
353 Routing Table Updates 16
35.4 Future Enhancement of Router Operation 16

4. Gateway Administration ¢ e e e e e e e
41PVCRclays.............
42 Relay of Datagrams .

5. DNET Start-up on an Individual DNET Host .

51 UNIX
511 Individual Scripts 19
52 VAXVMS . .
521 Individual Scripts 19
6. DNET Shutdown . . . . ., ., . . . . . . . ..
61 UNIX . . .. ..., ... ... ....

6.2VAX-VMS...............

Wi WNWN o s

& o

1

14

14

17
17
18

19
19

19

21
21
21



7. Network Startup . . . . . . . . . . .
8. Network Administration Operations . . . . . .

8.1 Network Maintenance . . .
811 AddmganaddmonalDNETHostSue 23
8.12 Deactivating an existing DNET Host Site 23
8.13 Adding an additional DNET Network 23
8.14 Deactivating an existing DNET Network 23

. Testing a DNET Installation
. DNET Initial Demonstration Network . . . .

B8 R

11.

12.

14.

16.
17.

18.

10.1 Network Topology . . o e e e e e

10.2 Information on DNET nodcs .

103 Starting up (a subset of) the Dcmonstratlon thwork .
Asynchronous DECnet connectionfrom d a ¢ v a x

11.1 Starting the Link . . -
11.2 Stopping the asynch DECnet lmk

DNET Network Utility Commands

12.1 Examining The Status of DNET
122 Testingif DNET isalive . . . .
123 Obtaining Status of DNET Servers

12.4 Underlying Processes for Network Status
12.4.1 Update Local Routing Table 34

. DNETErrors . . . . . . . . . .

DNET Security . . .
14.1 Execution Security
14.2 User Security .
14.2.1 UNIX 37
1422 VMS 137
143 File Security

. Electronic Mail Administration

Library and Program Pool Administration

DNET Performance Monitoring . .
17.1 General . . .

17.2 DNET Performance Tcst Apphcatlon dptc .

173 VMS Host vs UNIX Host . . . .
174 DECnetvs TCP/IP . . . . . .

Glossary . . . . . .

B8R IZ¥pL R

35

37
37
37

e %

88888

P-S
oy



1. DNET Administration Overview

1.1 Introduction

Administration of DNET is divided into two general categories. These categories relate to 1) overall
DNET network issues and 2) local DNET node administration.

1.2 Overall Network Concerns

The following are the major "global’ concerns in the administration of DNET.
L. Admininistration of Underlying Networks
Since DNET operates as a meta-network or a network of networks, its operation is highly
dependent on the intergrity of the underlying networks such as TCP/IP and DECnet. These
networks are maintained in their ordinary fashion; under normal circumstances so long as the

underlying network(s) are operational it should be possible for DNET to use these network(s)
for its purposes. The behavior of DNET may be affected by any or all of the following factors:

L. Changes in Local Operating System
2. Upgrades or changes in local network interfaces
2. DNET Network Map
The master copy’ of the DNET network map is maintained at -- TO BE DETERMINED This
factor influences, at a minimum, the contents of DNET routing tables.
3. Consistency of Underlying Network Names in DNET Tables

4. Routing Strategies in DNET
Routing tables are currently ’static’. They are loaded when the network is started and are not

updated while the network is operating. DNET mechanisms could be used to may these tables
dynamic in the future.

1.3 Local Host Administration

Once DNET software has been installed on a particular computer, administration of the local DNET
node generally involves the specification of the number and types of DNET application servers which
will be allowed to operate on the local node, adjustment of quotas and permissions as necessary, and
administration of the DNET routing tables and mail.

DNET Administration Overview 1



2. Distribution of DNET Software

2.1 Modification of target machine database - tbls.db

If the target machine is 'new’ to DNET, it is convenient to add it to the DNET eavironment 'data base’
prior to making a distribution copy. This is done by editing the 'master copy of the file tbis.db in the
sces_sre directory on ’stubby’ as follows:

1. cd $dnet_home
2. cd../sces_src

3. get-es.tbls.db
4.

locate a convenient entry which is similar to the target machine

NOTE: Alternatively, onc of the default machine entrics, bsd_dnt, sysv_dfit.mvax_dfk, or

vax_df may be used during the postmove operation described below to obtain a default
configuration.

An cxamples for a UNIX host is shown below:

IUESN1- NASA GSFC, Greenbelt, MD
luesnl |envoame | DNSUN4B
iuesnl | myname | #mynet myhost
iuesnl | myname | starnet iuesn1
iuesnl |net| #destnet nexthost relay nextprotocol
luesnl |net | starnet NULL NULL
iuesal |net| dnett1 dfmic  drelaytdtcp
iuesnl | net | spanet dfnic  drelaytdtcp

ivesn1 | msinittcp | dechod dechod 1 1 1
iuesal | msinittcp | drexecd drexecd 1 1 1
iuesn1 | msinittcp | dtftpd dtftpd 1 1 1
iuesnl | msinittcp | dlogind dlogind 1 1 1
luesn1 | msinittcp | dmaild dmaild 0 1 1
iuesn1 | msinittcp | dncld dncid 0 3 3

An example entry for a VAX which is also a DNET gateway machine is shown below:

2 DNET ADMINISTRATORS GUIDE



DFTNIC - NASA GSFC, Greenbelt, MD
dftaic|envname | DNDFTNIC
dftaic| myname | #mynet myhost
dftnic | myname |spanet dftnic
dftnic| myname | starnet dftnic
dftnic | net | #destnet nexthost relay  nextprotocol

dftnic | net | spanet NULL NULL dec

dftnic | net | dnett1 dacvax drelaydtdec

dftnic | net | starnet NULL NULL tep

dftnic| msinitdec | drelaydt drelaydt1 1 1

dftaic | msinitdec | dechod dechod 1 2 2
dftnic | msinitdec | drexecd drexecd 1 1 1
dftnic| msinitdec| dtftpd dtftpd 1 1 1
dftnic | msinitdec | dloginddlogind 0 1 1

dftnic| msinitdec | dmaild dmaild 0 1 1
dftnic | msinitdec|dncld dncld 0 3 3
dftnic | msinittcp | drelayid drelaytd 1 1 1

5. copy this entry to the bottom of the file and change the machine name to that of the target in all
pertinent locations.

2.2 Creating the distribution files

The archival SCCS copy of the DNET software is found on the master DNET host, currently dac3b2,
an AT&T 3B2-600 located at DAC. A master copy of the DNET software may be obtained at any time
from this machine and placed in a form for distribution to any target machine. The steps to generate
the distribution copy are as follows:

1. login to stubby or dac3b2
2. cod /mnt/comm/dnet/bin - stubby

/usr/nasa/dnet/bin - dac3b2

makemove

At the completion of the makemove operation, the directory /tmp/dnet_move will contain the
following ’ptar’ & other files:

dnet.ptar
pve.ptar
app.ptar
commou.ptar

dg.ptar
ptar.ptar
postmove
postmove.vins
dman

Further details on makemove are provided in the DNET Administrative Reference Manual,

23 Moving DNET Source Files to Target Machine
The files generated by ‘makemove’ and placed in /tmp/dnet move should be moved to the target

machine using FTP and/or copy depending on the network(s) involved.

Distribution of DNET Software 3



The target directory for these files will differ depending on the target machine:

PTAR Directory
1. UNIX hosts - /tmp/dnet_move
2. VAX hosts - dnet_home:[.dnet] where dnet_home is an arbitrary path

2.4 Generating the target files

24.1 UNIX Machines
1. Transfer the *ptar’ files,’postmove’, and postmove.vms to the target machine
2. cd dnet_home/bin
3. postmove -hnXXX dnet_home
where

XXX is name of this local host &
(or a default name chosen from bsd_dfi, sysv_dfit, mvax_dfk, or vax_dfk)

dnet_home is an arbitrary path
2.4.2 VAX Machines
The procedure for VAX machines differs only slightly from that on UNIX hosts. The following steps
should be performed:
L. Transfer the ptar’ files to the target machine and place the files in the dnet_home directory
login to the target machine
cd dnet_home

@postmove.vms

Enter the name of the local machine when prompted
(or a default name chosen from bsd_dfk, sysv_dfk, mvax_dfk, or vax_dfk)

6. Wait for postmove to complete unpacking and distributing the files

LA T

2.5 Use of ptar to pack/unpack files

The ptar program allows the packing/unpacking of files in a generic format for transfer to DNET
target machines. Ordinarily, postmove automatically extracts files from the ptar files, however this
extraction may be performed manually, if necessary.

ptar -x file.ptar

2.6 Making the Target Executables for DNET on the local machine

There are a number of *make’ files which are included with the DNET distribution package. The
postmove operation automatically places these files in the appropriatc directories on the target
machine and updates the necessary environment variables within the files to the target computer.
Thus, typically one need only start the *make’ procedures in order to generate a current copy of the
DNET executable files. The specific procedures are outlined in the following sections.

4 DNET ADMINISTRATORS GUIDE



261 UNIX

1

2,

If this is a first time installation on this UNIX host, follow steps above for setting environment
variables, ctc.

cd $doet_home

make

wait for the make process to complete

262 VMS

1.

2.

If this is a first time installation on this VAX, follow steps above for sctting environment
variables, ctc.

¢d dnet_home
The exact make file used will depend on the VAX environment as follows:
1. dacvax (or other MicroVAX with VMS and Wollongong TCP/IP Interface)
make.dv

2. NASA Vaxes with Excelan Interface (or other VAX with VMS and Excelan TCP/IP
Interface)

make.dft
Wait for the make procedure to complete

Distribution of DNET Software §



3. Initial Configuration of Local (non-gateway) DNET Node

This section describes how to configurc a Local DNET node which is not a gateway node. Special
considerations for gateway nodes are described in a later section.

3.1 Environment & Special Permissions
3.1.1 General
Environment Variables/Logical Names

The following ’environment’ variables are used by all DNET software.
dnet_home - the *home’ directory of the DNET software
daet_gateway = 1 if machine is a DNET gateway

path to dnet_bin - the directory containing the DNET executables

dnet_debug - this flag controls the generation of various debugging ’log’ files; it should ordinarily
be set to 0. It should be set to 1 if the debug ’log’ option is desired (see DNET
PROGRAMMER'’s GUIDE)

Lol o L

While these general requirements apply to both the UNIX and VMS environments, the specific details
iffer considerably between the two operating systems. The specifics are covered in the following

sections.

3.1.2 UNIX

The environment variables may be set in UNIX by modification of the user .profile file found in each
users home directory.

Additions to .profile for DNET:
Bourne shell
dnet_home = /.../ ... /dnet; export dnet_home

PATH = existing path specs;/dnet_home/bin

- $dnet_home/dnlogin.sh
C shell
setenv dnet_home /..../ ... /dnet

PATH = existing path specs;/dnet_home/bin

source $dnet_home/dnlogin.csh

6 DNET ADMINISTRATORS GUIDE



3.1.3 VMS

Specification of the DNET ’environment’ is somewhat more complex for VAX/VMS systems. The
correct operation of DNET requires that certain VMS Privileges and Quotas be set in addition to the
usual eavironment variables.

3.1.3.1 General Enviroment Variables - Logical Names

The general DNET environment variables are set in VMS using The login.com file in the VAX login
dircctory should contain the following Lines. The entrics define logical names in the’GROUP’ table.

The values are for the dacvax machine

$ define/group dnet_home "$disk1:[sys0.dnet.dnet]"
$ define/group dnet_bin "$disk1:[sys0.dnet.dnet.bin]"
$ define/group dnet_gateway 1

For IAF and DFTNIC these definitions should be:

$ define/group dnet_home "cldata:[dnet.dnet]”
$ define /group dnet_bin "cldata:[dnet.dnet.bin]"
$ define/group dnet_gateway 1

If the dnet_debug option is desired, it should be set in a transient’ fashion in the *JOB’ table as follows:
$ define/job dnet_debug 1

Ordinarily, most of the VMS environment can be set "automatically’ using script files provided with the
distribution. These scripts are executed as part of the usual "login’ procedure. Only a short *machine
specific’ change should usually be required in the login.com file. This change is accomplished as
follows:

1. cd sys$login
2. Edit the file login.com to add the following entries:

$

$! DNET Specific Environment

$ set proc/priv=grpnam

$ define/group dnet_home $disk1:[sys0.dnet.dnet]
$! rua dnetlogin script

$ @dnet_home:dnlogin.dv

S

NOTE: The specifications for dnet_home & dnlogin are machine specific. The example given
for dnet_home for the DAC Microvaxll, dacvax.

3. The corresponding version of dnloginxx is dnlogin.dv which is located in the dnet_home
directory. The contents of dnlogin.dv are shown below: All dnlogin.xx files are included with the
DNET source code listings.

Initial Configuration of Local (non-gateway) DNET Node 7



$! dalogin.com
$! login script for DNET
$

$! logical names

$

$ DNET_DEBUG == %0*

$ define wool_netinet $disk1:[net.wool.netdist.include.netinet]
$ define wool_sys $disk1:[net.wool.netdist.include.sys]

$

$ deflne/job dnet_pvcdir $diskl:[sys0.dnet.dnet.pvcdir]

$ deflne/job dnet_dgdir $diskl:[sys0.dnet.dnet.dgdir]

$ define/job dnet_common $disk1:[sys0.dnet.dnet.common]
$ define/job dnet_appdir $disk1:[sys0.dnet.dnet.appdir]

$! define/job dnet_debug 1

$ set proc/priv=grpnam

$ define/group dnet_home $disk1:[sys0.dnet.dnet)

$ define/group dnet_mail $disk1:[sys0.dnet.dnet.mail]

$ define/group dnet_bin $disk1:[sys0.dnet.dnet.bin]

$ define/group dnet_gateway 1

$

$ define cSinclude dnet_common, dnet_pvcdir, dnet_dgdir, wool_sys, -
wool_netinet

$ define vaxc$include c$include, sysSlibrary

S

$ assign $disk1:[user.netlibnet.dacnet] TABLES

"$ doet_bin:ddechoc.exe”
$ dechon == "§ dnet_bin:dechon.exe”

$ drexec == "$ dnet_bin:drexec.exe”

$ dtftp == "$ dnet bin:dtftp.cxe”

$ dlogin = = "$ dnet_bin:dlogin.exe’

$ dmskill = = *$ dnet_bin:dmskill.exc®

$ dnetstat = = *§ doet_bin:dnetstat.exe”
$ dndl = = *$ dnet_bin:dncl.exe”

$ dmail = = *$ doet_bin:dmail.exe”

8 DNET ADMINISTRATORS GUIDE



$

$! development only

S

$! delmbx == *§ $diskl:[odnet]delmbx.exe"
$ shack = = °$ dnet_bin:shack.exe"
$1to_o =="$ dnet bin:i_to_o.exe’
$ bed = = *§ dnet_bin:bed.exe’

$ ddechoc = = "$ dnet_bin:ddechoc.exe®
H

$! alinses

S

$ sl = = "show logical"

$ 33 = = "show symbol"

$ls == "¢gir

$1==x"gdjp

$ cd = = "set def"

$ pwd = = *show def"

s v-l == .ed'

$ view = = “ed/read_only"

$ ps = = "show system”

$ ns = = "netstat -2"

$ more = = "type/page”

$ clear = = "@clear”

]

$ Il = = °$ $disk1:[user.netlibnet.paul]ll.exe’

$ ptar = = *$ $diskl:[sys0.dnet.bin] ptar.exe”

$ od == "$ $disk1:[user.net.libuet.paul] od.exe"
$ we = = "$ $disk1:[user.netlibnet.paul]we.exe”
S

$ set proc/priv=sysnam

S

$ cd dnet_home
$ checkdmail
$

3.1.3.2 Privileges

VMS has an extensive set of privileges which control the various operations which a user or process
may perform on the VAX. The following privileges are required for DNET operation.

1. SYSNAM
This privilege is required for DECnet network operations; DNET servers will not operate
without this privilege

2. GRPNAM
This allows logical names to be placed in the ’'GROUP’ table; This table is a convenient location
for the DNET environment variables.
GROUP
NETMBX

Initial Configuration of Local (non-gateway) DNET Node 9



Allows creation of *network’ mailboxes

5. TMPMBX

Allows creation of "temporary’ mailboxes

These privileges need to be ’activated’ in order to be used. The dnloginxxx file in the VAX login
directory should contain the following lines:

$ set proc/priv=grpaam
$ set proc/priv=sysnam

3.1.3.3 Quotas

VMS defines a large number of resource coatrols known as ’quotas’. Certain of these quotas must be
set to other than their default values in order to successfully operate DNET. An annotated list of the
pertinent quotas is given below. The following section describes how to change these quotas.

1.

10

Byte Count Limit BYTLM - 60000

This quota determines the temporary storage available to DNET for mailboxes. Each active
DNET process (including Master Servers and application servers) requires a minimum of 2
mailboxes for its operation.

Approximate Formula for Determing appropriate Byte Count Limit
#of Entries in tbls.msinit (dec & tcp) = AS

2* (DGMS + DMS + AS ) * 2000
Job Table Quota

JT Quota - 12000

This value controls the amount of information which DNET can place in the JOB Table

Paging File Quota - 30,000

This quota is used as an adjunct to swap operations in VMS and needs to be increased as the
number of DNET processes increased.

AST

Controls the number of simultancous AST operations allowed by DNET; this value will probably
need to be increased in gateways where a large number of DNET relay processes are in use.
Subprocess Quota - PRCLM - 30

This Quota controls the number of subprocesses which may operate under DNET. The exact

number will undoubtedly be controlled by the local system adminstrator. Value should match
that of MAXDETACH.

Open File Limit - FILLM - 300

DNET ADMINISTRATORS GUIDE



7.

Max Detached Processes - MAXDETACH - 30

This value controls the number of detached processes which can be started by DNET. This
quota is important when DNET is started in ’stand-alone’ or detached mode. Value should
match that of PRCLM.

3.1.3.4 Setting/Changing Quotas

The procedure for changing quotas on the VAX is as follows;

1

2,
3.
4.

Login as 'SYSTEM’
cd sys$system
Run Authorize
UAF>
modify dnet /prcim=30000

etc.

The command show/full dnet may be used to list all of the quotas while in’AUTHORIZE’

3.2 DNET Tables & Local Host *Service’ Files

Several Files (& Tables) must be modified for the local DNET node.

1L
2,
3.
4,
5.

Network *Services’ File

Initial Local Version of DNET Routing Table - tbls.net

User Alias Table - tbls.myname

Master Server Init Table - tbls.msinittcp and/or tbls.msinitdec

Connection Lock Table (for Datagram Backbone Network - not yet implemented)

Modification of each of these files is discussed below:

3.2.1 Services Files
Service Files on the Local Machine must be modified to support DNET.

1.

UNIX

The standard file
[ete/services
must contain the following entries:

5279 dms/tcp # DNET PVC Master Server
5279 dgsudp/udp # DNET UDP Datagram Server

Initial Configuration of Local (non-gateway) DNET Node 11



These entrics can only be changed by ’root’ and need be made only when DNET is first installed
on the UNIX machine.

2. VAX/VMS - No special changes are required to register DNET servers on DEChet.

3.22 tbls.myname - Local Host Name(s) file

The file this.myname found in the dnet_home directory contains one or more names for the local host.
This file allows "self-identification” of the local host by DNET software and is used by the routing
function.

An example of the 'tbls.myname’ file is shown below:

DNET Local ‘myname’ Table
Name Network

dacvax spanet

dacvax dnettl

3.3 Adding/Deleting/Modifying Servers at a DNET host
3.3.1 Dypes of Servers

There are two application server types defined within DNET:

1. DNET Application Servers - called by client processes, these service providers include a DNET
Basic I/O package. For all these services (File Transfer, Network Command Server, other
application servers) there is a process which spawns copies of them and assigns the copies to
clients on request. This controlling process is the "DNET Master Server”.

2. Other Servers (user defined, etc.) - spawned via DNET network command server
(net_com_serv) these servers do not contain the DNET Basic I/O Package. They depend on the
network command server to interface with DNET.,

3.3.2 Control of Servers

The control of DNET servers which require streaming service is under the control of the DNET
Master Server at cach DNET host. These servers may be either prespawned or spawned on demand
depending on the type of host and local system considerations.

Bidirectional connectionless service is also available to these servers if they register with the Datagram
Master Server. Details of connectionless operations are provided in a later section.

3.3.3 Number and Types of Servers

The system administrator on a particular DNET host controls the number and types of DNET servers
which operate on that host.

12 DNET ADMINISTRATORS GUIDE



The number and types of servers are determined by the DNET Master Server Table Init file:
This is a 'flat” ASCII file. Entries in the file appcar on separate rows and have the format as follows:

DNET Master Server Init Table
Server Type  Image Name # Prespawned Max# Init #
dechod dechod 1 ] 3
dtRpd diftpd 1 9 4
drewse dremse 1 1 1
dustatd dustaed 1 1 1
duncld dacldl 1 10 5
diogind diogind 1 10 s
dmaild deaild 1 10 1

The number of prespawned servers is specified in column 3.

The Maximum (permissible) number of servers of this type is specified in column 4
Column 5 contains the number of servers to be started when DNET is first started
Servers may be added or deleted by editing this file (DNET admin privileges required)

Further discussion of the significance of these entries is provided in the following sections.

A separate Master Server Init File is required for each protocol connection at a DNET host. Thus, at a
VAX which is connected to both a TCP/IP and a DEChnet Network, there must be two such tables
tbls.msinittcp and tbls.msinitdec.

3.3.4 Prespawning of Servers

In order to improve the efficiency of response for DNET service requests on VAX machines, certain
DNET servers may be "prespawned’ prior to service requests.

The number and type of prespawned servers is specified in the Master Server Init Table File described
in the preceding section.

Possible algorithms for spawning and assignment are:

1. At network start up, spawn a number of copies of the servers, according to the contents of the
DNET Master Server Init Table keeping their process id’s for later use in forming the process
names to give to clients. After allocating a server to a client, spawn another to replace it.

2. For less frequently used services- Spawn only when a client requests a server. This is the
Transient Server.

3. For very frequently used services- Spawn the maximum number desired and have servers listen
for the next client when they complete their service for a client, and at the same time notify the
Master that they are ready for assignment.

Initial Configuration of Local (non-gateway) DNET Node 13



3.3.5 Madmum Number of Servers

This parameter controls the maximum number of simultaneous copies of a particular server which are
allowed at the local host. This number can be adjusted by the system administrator according to
conditions on the local system.

3.3.6 Adding/Removing Servers

The following steps are used to control DNET application servers.

1. Edit the Master Server Init Table (tbls.msinittcp & /or tbls.msinitdec) found in the directory
dnet home

2. Scroll to desired row of table and type in the new entry according to the format described below.
3. Write the table back, overwriting the existing table.
4. The new version of the Master Server Init Table will be read automatically when the Master

Server is started.
3.4 Datagram Service Administration
3.4.1 Normal Operation

Under normal circumstances, the datagram service requires no action on the part of the system
administrator.

3.4.2 The Static Backbone Network

This feature is currently not implemented in DNET.
3.4.21 Adding Elements

3.4.22 Removing Elements

3.5 DNET Routing

This section describes the operation and control of routing within DNET from the perspective of the
local system administrator.

3.5.1 Router Operation

The paths to hosts in the local network are direct connections via usual local network mechanisms. For
paths to hosts in other networks a dynamic router is used. A hierarchical routing table is used to
determinc the next host to which a PVC connection request or a connectionless datagram should be
forwarded to 'move’ toward the final destination.

A typical routing table is shown below:

14 DNET ADMINISTRATORS GUIDE



DNET Local Rosting Table

Destination Net | Next (Gateway) Host | Next Process Datagram Protocol
dmettl - - wdp
spanst dacvax drelaytd udp
starnet dacvax drelaytd udp
Net X Host Y drelaytX uwdp

The four columns in the routing table contain the following information

1. Destination Network

2. Next Host (in hicrarchical path to destination net)

3. Next DNET Process (always

a relay except for last hop)

4. Local Datagram protocol used to make next hop

3.5.2 Routing Example

The route generated for a typical datagram is shown in the following diagram:

Client CL X

In this example client CL X on DNET host D2 wishes t

DNET host T2.

Server SV X

Initial Configuration of Local (non-gateway) DNET Node

o conduct a session with server SV X on

15



The router on host D2 has the following routing table available:

DNET Local Routing Table - Host D2
Destimation Net | Next (Gateway) Host | Next Process Datagram Protocol

dmett] NULL NULL wdp
spamet dacvax drelaytd udp
starnet dacvax drelaytd wdp

The router on host D4 has the following routing table available:

DNET Local Routing Table - (Gateway) Host D4
Destination Net | Next (Gateway) Host | Next Process Datagram Protocol

spanet NULL NULL dec
dmettl dacvax drelaytd wdp
starnet iaf delaydt dec

3.5.3 Routing Table Updates

Initially, routing table updates will be handled in a manual fashion. Examination of a method for
automatic updates for these tables will is a topic for further expansion of DNET as discussed in the
next section.

3.5.4 Future Enhancement of Router Operation

In the future the router may be enhanced to include scarching for alternate paths and servers if the
standard search fails to satisfy the request. The second search could extend into other networks in

16 DNET ADMINISTRATORS GUIDE



4. Gateway Administration

DNET gateways are similar to ordinary DNET hosts but, in addition, they have connections to at least
two underlying network (protocols) supported by DNET, There is a PVC Master Server and a pair of
per-protocol datagram servers for cach of these protocols and an a pre-specified number of inter-
protocol PVC ’relay processes. The exact number of the latter is indicated in the appropriate Master
Server Init Table.

4.1 PVC Relays

These relay processes are named according to the Master server with which they are associated and for

the protocol pair for which they provide conversion service. The general naming convention is
drelayXY n where

X Is a single letter representing the protocol of the
associated master server

Y is a letter representing the protocol to which
conversion must be made,

n is the nth instance of this relay; used to provide a unique name
for the relay server

Thus for a typical DNET TCP/IP - DECnet gateway machine the 1st instance of a relay associated
with the TCP/IP master server (dmstcp) and providing conversion to DECnet is named:

drelaytd 1
Similarly the 3rd instance of a relay associated with the DECnet master server (dmsdec) and
converting to the TCP/IP protocol is named:

drelaydt 3

The PVC Master Server Init Table for a Typical Gateway is shown in the following diagram:

Gateway Administration 17



DNETM&-—S-NMM-MM-’M&H-
Server Type  Image Name # Prespawned Max# Init #
dechod dechod 1 ] 3
diftpd diftpd 1 1 1
drexse drexee 1 1 1
dnstatd dustatd 1 1 1
dacld ducldl 1 10 2
dlogind dlogind 1 3 1
dmaild dmaild 1 10 1
drelaydt drelaydé 1 10 5
drelaytd drelaytd 1 10 5

4.2 Relay of Datagrams

Routing of datagrams is accomplished by the Datagram Master Server at each DNET node. The
routing information for datagrams is included as the last

18 DNET ADMINISTRATORS GUIDE



S. DNET Start-up on an Individual DNET Host

Three Administrative *Script’ Programs are used to control DNET on a local host machine:

1

dnstart

2. dnstop

3.

dnadmin

The sequence of operations necessary to 'start’ DNET on a local DNET host is given below. The steps
vary in their details according to the type of machine/operating system.

5.1 UNIX

1.

DNET Software is loaded onto two or more hosts and at least one DNET gateway.

2. The local Master Server Init Table, Host Alias Table, DNET Routing Table are checked for

3.

accuracy and edited as necessary
The command script
dnstart

is invoked in order to start the necessary processes on the local host. (NOTE: This script is
added to the reboot procedure for the DNET host machines.) Once this script is invoked, the
DNET Master Server Process and the protocol specific DNET datagram servers becomes
operational as a DNET Well Known Servers.

Each DNET Master Server then spawns (or initializes in anticipation of spawning) the servers
indicated in its Master Server Init Table. This produces the initial set of servers (File Transfer,
Remote Login, Command Language Processor, etc).

5.1.1 Individual Scripts

dnstart invokes three other scripts to start the several DNET components. The components and
associated scripts are:

1.

Datagram Service Script - strdgms

2. PVC Service Script - strpve

3.

Network Status Service Script - strstat

5.2 VAX VYMS

1

cd dnet_home

2. @dnstart

3.21 Individual Scripts

DNET Start-up on an Individual DNET Host 19



1. Datagram Service Script - strdgms.com
2. PVC Service Script - strpvc.com
3. Network Status Service Script - strstat.com

20 DNET ADMINISTRATORS GUIDE



6. DNET Shutdown

DNET shutdown is done by the following:

1. The Administrative Server sends a Datagram to each Domain Server requesting that they
shutdown all activity. This means no further service requests will be processed and all active
server processes, as indicated in the Domain Server Table, will be sent "ABORT" signals,

The Administrative Server may then be terminated, or left in an idle state until the next network
start-up.

NOTE: If the local node is a DNET Gateway, shutdown may adversely affect the operation of DNET.

6.1 UNIX

1. cd $dnet_home
2. cdbin
3. dnstop

6.2 VAX - VMS

1. cd dnet_home
2. @dnstop
3. Wait for "stopping ...." messages to complete

DNET Shutdown 21



7. Network Startup

There is no global activation procedure for DNET. Since DNET is a meta-network, the integrity of the
DNET network is dependent on the following.

L. Required Hosts are Operational

2. Underlying Networks are Operational

3. DNET Processes Operating at all nodes required to reach a particular destination - i.e. local
administrators must have activated DNET at each of these nodes

If these conditions are met, DNET should operate, within the limitations of loading on each of the
nodes,

The dnetstat function may be used to examine the integrity of the network, if required (see section
below).

22 DNET ADMINISTRATORS GUIDE



8. Network Administration Operations

The following administrative operations are possible for the network as a whole.
— Modify DNET configuration

— Add/Delete Underlying Networks

— Add/Delete Local Hosts

~ Examine and Modify Administrative Tables

8.1 Network Maintenance

8 1.1 Adding an additional DNET Host Site
This is a local operation.

&1.2 Deactivating an existing DNET Host Site

This is a local operation.

&1.3 Adding an additional DNET Network

L. One or more hosts in new network must have DNET software installed and operational

2. DNET Gateway(s) into the new network must be identified, have DNET software installed, and
be operational

3. Routing Tables must be updated to include new destination network and appropriate gateway(s)
&1.4 Deactivating an existing DNET Network

If a network is to be removed from DNET, this can be accomplished by deleting this network from the
routing tables.

Network Administration Operations 23



9. Testing a DNET Installation

This section describes the functional testing of DNET operation at a local node,

1

If you have not done so already, cdit the appropriate Master Server Init Tables for this node.
Make sure that at least one echo server, dechod, is specified for this node.

Start DNET on the local node following the procedure described in an carlier section.

Run decho and attempt to contact the local node following the instructions in the DNET User’s
Guide. If you are able to run the echo program, the PVC service is probably ok at this node

At the shell prompt, type dnetstat. If a short form list of the DNET servers on this node is
printed, most other local DNET functions are probably working normally.

If another node on the local net is operational, try using dnetstat to ’ping’ this node by entering
dnetstat network host -p

If this operation is successful, the DNET connectionless service is also probably functioning
properly.

24 DNET ADMINISTRATORS GUIDE



10. DNET Initial Demonstration Network

10.1 Network Topology

The logical arrangement of the initial DNET demonstration network is shown in the following
diagram:

DNET Initial Demonstration Network 2§



3B2 DAC
( TCP/IP - Ethernet sunl
dac3b2) DAC LAN Asyach
Q O ..................... nu-:nQ
Not Yet Imp
DAC FC
MicroV;
(dacvax)
Dial-up:DECnet
: iaf

(:f)-* STI TCP/IP LAN

2

Pilot Network for DNET

Additional details on these sites is provided in the following table:

26 DNET ADMINISTRATORS GUIDE



Tenative DNET Wide Area Demonstration Sites

Site Network(s) Computers
DAC DECnet, TCP/IP both Ethernet MicroVAX, 3B2, HP, PCs
NSSDC- GSFC DECnet(SPAN) TCP/IP VAX 8600, 3B2, Sun 3, Sun 4, PCs
NSSDCA - GSFC DECnet VAX 8600
IPAC - JPL TCP/IP Sun 3
SAQ - Cambridge DECuet Sun 3, VAX
STI - Bait, TCP/IP, DECnet Sun, VAX
IVE - Colo. TCP/IP, SPAN Sun, VAX
IVE - GSFC TCP/IP, SPAN Sun, VAX

10.2 Information on DNET nodes

A list of current contacts & other information for each DNET node is listed in the file dnetinfo which
is located in the dnet_home directory and part of the usual DNET distribution.

103 Starting up (a subset of) the Demonstration Network

Suggested Demonstration Network Subset

1.

2.
3.
4.

DAC - brinc - (sun386i) - DAC TCP/IP LAN

DAC - dacvax (microvax IT) - DAC TCP/IP LAN & Dial-up SPANET (DECnet) connection
GSFC - dftnic (vax) - SPANET (DECnet) and Internet (TCP/IP)

GSFC - iuesn1 (sund) - Internet (TCP/IP)

NOTE: A login session must be maintained with each site for the duration of the demonstration.
DNET, as described here, requires each a login at each site in order to remain *up’.

DNET Account information for these machines is given in the file dnetinfo, found in the dnet_home
directory.

E i ol I

login to brinc
enter 'dnstart’
On a separate terminal login to dacvax
Enter the following:
cd doet_home

@dnstart
On a separate terminal, login to dacvax as ’system’. Then follow the instructions in the section
below on establishing an asynchronous DECNet connection from dacvax to SPANET.
once the dacvax SPANET connection has been started perform the following steps to start up
DNET on DFTNIC

DNET Initial Demonstration Network 27



set host dftnic
login to dftnic
cd doet_home

@dnstart
7. From a separate terminal, login to dacvax, then perform the following steps to connect to fuesnl.
set host dftnic

login to dftnic
telnet fuesni
login to luesnl

when logged in to iuesn1, enter *dnstart’
To stop DNET, enter "dnstop’ on UNIX systems and @dnstop on VAX systems.

28 DNET ADMINISTRATORS GUIDE



11. Asynchronous DECnet connection from dacvax to SPANET

The connection from DAC to the demonstration network shown in the preceding section is currently
accomplished via a low-speed asynchronous DEChnet conncction which must be manually established.
This section describes the procedure for starting/stopping this link.

11.1 Starting the Link
Procedure to establish/drop dial-up DEChet link between DACVAX & "DFTNIC’ at NASA-GSFC.

Assumptions:

— Hayes Modem connected to port on VAX
— Phone line to DAC Switch is connected

— Md. tie line available on the DAC switch

Logon to VAX as 'SYSTEM’
set host/dte ttal
atz[CR]

If the response is not OK, try following the steps in the shutdown procedure in the next section;
link may be hung from an earlier session.

atdt91,2869000{CR ]
Wait for connection

N &

L

7. Inresponse to Enter Number:
type Yiafmpp[CR]’
When ’Call Complete’ msg appears
[CR][CR]
10. Inrespoanse to ’enter class’
type *dftnic’ [CR]
11.  Type [CR][CR] several times, then enter
12. user: ASYNCH
13. password: enter password here
14.  wait for message 'DECnet’ control returned
15. test by entering *set host dftnic’; should respond with a username, password

11.2 Stopping the asynch DECnet link

Asynchronous DECnet connection from dacvax to SPANET 29



login to the dacvax as SYSTEM

Disconnect modem (power switch off, then on); yes, it’s not pretty, but don’t ask questions!
cd sys$system

run ncp

NCP> set circuit tt-0-1 state off

NCP> exit

Y N

30 DNET ADMINISTRATORS GUIDE



12. DNET Network Utility Commands

12.1 Examining The Status of DNET

DNET provides a general network utility function dnetstat which allows the user to determine a variety
of information about local or remote DNET nodes. Information which dnetstat can obtain for both
local and remote nodes includes:

1. Is DNET ’alive’ at the Node?

2. The Number of active and inactive DNET Processes (long and short formats; Streaming and/or
Connectionless Options)

Statistics of DNET Use at the Node
DNET Routing Tables at the Node

The general form of the dnetstat command is as follows:
doetstat [dnet_network] [dnet_host] [options]

If the network and host arguments are both omitted, the local host is assumed by default.

If the status of a host on the local DNET network is required, only the dnet_host argument is required
(local network is understood).

12.2 Testing if DNET is alive

As an introduction to dnetstat, try using the ’ping’ option on your local host. This is done by typing
dnetstat -p

If DNET is 'running’ on the local machine, the following message will appear:
DNET is ALIVE at dnet_network dnet_hostssess
This response indicates that
1. Atleast one DNET PVC Master Server is running on the local node

2. The DNET Datagram Master Server is running on the local node
If DNET is not running normally on your system, the following message will appear

Timed out waiting for response

Now try using dnetstat to ’ping’ another DNET host on the local or a distant DNET network.

If this is successful, you are further assured not only is the DNET software running at that host, but
also that the DNET datagram service is operating (at least between your machine and the distant host).

DNET Network Utility Commands 31



12.3 Obtaining Status of DNET Servers
dnetstat may be used to obtain the status of DNET processes at local and remote DNET nodes.

This information may be obtained in the following formats
L. Connection Oriented Services only
Connectionless (Datagram) Services only
Both Services
Short Display Format - types, number avail, and state of servers
Long Format - short format info + (Process IDs) and Start/Idle Times

“Nos oW

The short listing of server status is shown below. The command used is:
dnetstat [network] [host]
$#sse2¢ DNET VIRTUAL CIRCUIT SERVER STATUS at: dnett] sun3:

Srv Type Image PS Av Max S#
dmstcp

dechod dechod 1 1 1 1
drexecd drexecd 1 1 1 1
dtfipd dtftpd 1 1 1 1
dncld docld 3 3 3 3
dlogind dlogind 1 1 1 1

$#2s¢2+ DNET CONNECTIONLESS (Datagram) STATUS at: dnettl sun3:

ProcName S StartTime
dgstcp 1 Aug 1 10:44
1 Aug 1 10:44
dnstatd 1 Aug 1 10:44
dnetstat 1 Aug 1 10:46

A longer listing of the server status may be obtained using the 1 (long) and ¢ (connection) options.
dnetstat [network] [host] -lcd

32 DNET ADMINISTRATORS GUIDE



$#94422 DNET VIRTUAL CIRCUIT SERVER STATUS at: doettl sun3:

Srv Type Image PS Av Max S# PID
dmstcp 5489
dechod dechod 1 1 1 1 5491
drexecd drexecd 1 1 1 1 8492
dtftpd dtftpd 1 1 1 1 8493
dncld dncid 3 3 3 3 5494

5497

5498
dlogind dlogind 1 1 1 1 5499

g

Aug 1 10:44

22222272

St Time

Idle Since

Aug 1 10:44
Aug 1 10:44
Aug 1 10:44
Aug 1 10:44
Aug 1 10:44
Aug 1 10:44
Aug 1 10:44

A long listing of the both virtual circuit and datagram server status may be obtained using the 1 (long),

¢ (connection), and d (datagram) options.
dnetstat [network) [host] -lcd

#4¢44%% DNET VIRTUAL CIRCUIT SERVER STATUS at: dnett1 sun3:

Srv Type Image PS Av Max S# PID IU St Time
dmstcp 5489
dechod dechod 1 1 1 1 5491 N
drexecd drexecd 1 1 1 1 5492 N
dtitpd dtftpd 1 1 1 1 5493 N
dncld dncld 3 3 3 3 5494 N
5497 N
54998 N
dlogind dlogind 1 1 1 1 5499 N
#4¢4s%¢ DNET CONNECTIONLESS (Datagram) STATUS at: dnettl sun3:
ProcName S PID IPC-Name IPCID SIG  MSzStartTime
dgstcp 1 §482 DN _s482 1 0 O0Aug 1 10:44
1 S481 DN 5481 2 0 0Aug 1 10:44
dnstatd 1 5495 DN 5495 3 0 OAug 1 10:44
dnetstat 1 $504 DN_S504 4 0 OAug 1 10:45

To obtain the routing table at a particular host, enter the following command:
dnetstat [network] [host] -r
An example of output resulting from this command is:

$443s%¢ DNET ROUTING TABLE at: dnett] sun3:

DestNet Nxt Host Nxt Proc DG Protocol
doettl NULL NULL tcp
spanet dacvax drelaytd tcp
starnet dacvax drelaytd tcp

Aug 1 10:44

Idle Since

Aug 1 10:44
Aug 1 10:44
Aug 1 10:44
Aug 1 10:44
Aug 1 10:44
Aug 1 10:44
Aug 1 10:44

DNET Network Utility Commands 33



12.4 Underlying Processes for Network Status

The duetstat process is invoked on demand at any DNET host. It provides a set of generalized
network utility functions. It interacts with the DNET Status Server dnstatd located at either the local
or any remote DNET node. Its functions are:

1. Determine status of local/remote DNET processes

2. Determine/report status (UP/DOWN) of remote DNET nodes

3. Determine current load of remote DNET processes

Update DNET Routing Tables

Update of DNET Well Known Server Table (if required)

Maintain other DNET status information for use by local processes

A

The relationship between the Status Client and a Status Server on one of the DNET hosts is shown in
the following diagram:

12.4.1 Update Local Routing Table

The hierarchical routing table at a DNET host may be updated through the following procedure:
1. Poll local DNET Gateway(s) for their routing table
2. Retrieve the Gateway Routing tables
3. Inturn, poll the more distant gateways to retrieve their routing tables
4. By deduction, determine local routing table contents

34 DNET ADMINISTRATORS GUIDE



The following errors are defined within DNET.

#define
#define
#define
#define
#define
#deline
#define
#define
#define
#define
#define
#define
#define
#define
#define
#defline
#deline
#define
#define
#define
#deflne
#define
#define
#deflne
#define
#define
#define
#deflne
#define
#deflne
#define
#deflne
#define
#define
#define
#deflne

13. DNET Errors

D_NOERR
D_SYSERR
D_BADSTATE
D_BADARG
D_OVRFLW
D_AEXIST
D_ESRVRSP
D_EPERM
D_NOMSG
D_NODGRSC
D_INTERN
D_BADNM
D_DGTB

D_MSGTB
D_BADHN 14
D _ADGENF 15
D _PN2BIG 16
D_IPCNM2BIG 17
D_NOEXIST 18
D_INTR 19
D_NOSRSC 20
D _NODNET 21
D_WOULDBLOCK
D_TIMEOUT 23
D QUOTA 24
D_NOSYSFILE 25
D_SYNERR 26
D_NOIMAGE 27
D_HOMELESS 28
D_SRVNOACK 29
D_NOHOST 30
D_NOPATH 31
D_SYSLIBERR 32
D_NODNETSRV
D_SHUTDOWN 34
D_MAXERRS 3§

/* No DNET error */

/*® A system error has occurred */

/*® program in wrong state to issue this dnet call */

/* value of argument was determined to be invalid */
/® overflow of i/o buffer */

/* The specified object already exists */

/*® Error return value in DGMS service req response */
/* Permission Denled */

/* D_NOWAIT flag set and no message waiting to be read */
/* No more available DGMS resources */

/*® Internal DNET error */

/* Invalid process name was specified */

/* Datagram To Big */

/*® Message To Big */

/* Could not find net/host combination in router tables */
/* ADGUT Eatry Not Found */

/* Process name string too big */

/* 1PC name string too big. DNET code error */

/*® The specified object does not exist */

/* A signal interrupted the library routine */

/* Temporarily out of system resources */

/* Missing all or part of dnet provider */

22/* QOperation would block */

/* Timeout or retry count exceeded */

/*® Quota limit exceeded */

/* DNET system file/table not found */

/® DNET system file/table syntax error */

/* Image (server) not file not found */

/® Eav variable ’dnet_home’ not defined */

/* No respone from application server */

/* No such host */

/® DNET could not find a path for the src/dest pair */
/* System library function failed */

33/¢ DNET servers dms/dgstcp not defined in etc/services’
/* Orderly shutdown from master server */

DNET Errors 35



static char *dgms_errmsgs[D_MAXERRS] = {
*No DNET error*,

"A system error has occurred®,

“program in wrong state to issue this dnet call”,

"value of argument was determined to be invalid®,
*overflow of i/0 buffer”,

*The specified object already exists®,

"Error return value in DGMS service req respoase”,
"Permission Denied",

*D_NOWAIT flag set and no message waiting to be read",
"No more available DGMS resources”,

*Internal DNET error”,

“Invalid process name was specified",

*Datagram To Big",

"Message To Big",

"Could not find net/host combination in router tables",
"ADGUT Eatry Not Found",

"Process name string too big”,

"IPC name string too big. Probably DNET internal code error”,
"The specified object does not exist",

"A signal interrupted the library routine",

"Temporarily out of system resources",

"Missing all or part of dnet provider”,

"Operation would block",

"Timeout or retry count exceeded”,

"Quota limit exceeded",

"DNET system file/table not found",

"DNET system file/table syntax error,

*Image (server) file not found",

"Eav variable ‘dnethome’ not defined",

"No respone from application server”,

“No such host",

"DNET could not find a path for the src/dest pair”,
"System library function failed",

"DNET servers dms/dgstcp not defined in */etc/services™,
" Shutdown from master server”

5

36 DNET ADMINISTRATORS GUIDE



14. DNET Security

14.1 Execution Security

Access to remote DNET hosts is always via the PVC or Datagram Master Servers. Once connected to
the remote host, the DNET client process will be connected to the corresponding server, if one is
available. An optional login function may be placed in any of the DNET client-server pairs (currently
login is required for dlogin and dtftp). Sece the next section and the DNET Programmer’s GUIDE &
REFERENCE MANUAL for further information on the use of dn_login.

When DNET provides access to remote execution of processes, the execution privileges for non-DNET
processes are the same as for a locally-connected user.

14.2 User Security

The functions da_login & dn_login_verify may be used on the client and server DNET applications
respectively in order to validate user access to the server machine.

14.21 UNIX

The /etc/passwd is used by dn_login_verify in the UNIX environment to validate DNET users where
an application requires such validation. The user login account names and passwords are maintained
in the normal fashion for the local UNIX system.

1422 VMS

No password protection is currently implemented on VMS systems for DNET other than a very weak,
’hardwired’ password.

A more general approach would incorporate a routine to access the uaf.dat file in order that user

passwords could be checked. Attempts to locate and /or write such a routine have been unsucessful to
date.

14.3 File Security

Access to files on individual systems is dependent on the local file protection mechanisms.

Once a user has been 'validated’ using the dn_login he has the same file access privileges as he would
have had he "logged’ on to that host via some other procedure.

DNET Security 37



15. Electronic Mail Administration

The initial version of DNET mail is quite elementary in concept and requires no maintenance.

The mail client process dmail interacts with local or remote server processes dmaild and places mail
in a file with the name of the destination uscr (account) in the directory dnet_home/mail.

DNET mail will operate on the local node provided
1. the dmaild server is operational (has been started by the DNET master server).
2. the directory dnet home/mail exists - this is ordinarily created by the DNET postmove
procedure when DNET is installed on a local machine.

If mail fails to operate, thesc two conditions should be checked and appropriate action taken as
needed.

38 DNET ADMINISTRATORS GUIDE



16. Library and Program Pool Administration

Master source code for DNET is maintained under sccs on an AT&T 3B2-600 at DAC in the directory
/usr/nasa/dnet/sccs_src. The ’master’ copics all DNET code are maintained in under this top
directory with the following organization. The ’standard’ DNET directory structure is shown in the
figure below:

usr/nasa/dnet/sccs_src/ ..
/common /pvedir /dgdir /appdir

NOTE: Administration and maintenance of the files in this directory tree is essential for the integrity
of the DNET code.

Most common modifications to DNET will likely occur in files in ../sccs_src/ and st Changes to the
subdirectories ../common, ../dnet/pvcdir, ../dnet/dgdir should only be undertaken with a view toward
global changes in mind. The administrator of these files should make every effort to ascertain that
the DNET code at all sites ’in the field’ is consistent with the latest copy maintained under sccs and
vice versa.

Library and Program Pool Administration 39



17. DNET Performance Monitoring

17.1 General

There was no performance specification for throughput or system loading for this initial version of
DNET. Nevertheless, some care was exercised in both the design and implementation of the software
in an attempt to make the overhead of DNET as low as possible. These cfforts were qualitative in
nature, empirical attempts to make DNET have as ’light’ an effect as possible on the systems and
networks involved.

Despite the absence of a formal DNET performance specification, it scemed useful to provide at least
some rudimentary quantititative performance measurements for the system. This section describes the
measurements made on DNET responsiveness.

In a distributed, heterogeneous environment, it can be exceedingly difficult to define a ’stable’ test
environment for conducting timing tests of any kind. The number of users, number and types of
processes, and the network communication traffic in the test environment may all be beyond the
control of the person performing the test.

At this stage of development, it seems most important to comment on how DNET compares with a
comparable homogeneous network environment under similar conditions. This can be done in the
DAC portion of the DNET testbed environment.

17.2 DNET Performance Test Application - dptc

17.3 VMS Host vs UNIX Host
17.4 DECnet vs TCP/IP

40 DNET ADMINISTRATORS GUIDE



18. Glossary

The following terms are used in the description of DNET:
Applications Servers-

Servers such as File Transfer, Remote Login, Remote Execution, ctc. that perform
services for clients. Applications Servers are invoked on demand by clients after using
the Service Assignment to obtain the name of an available server.

Connection Lock Table-

List of open connections held by process for use by its Basic Datagram 1/O package.
Locked connections result from user requests for Permanent Virtual Circuits.

Datagram Master Server (DGMS)-

A server process, located at each DNET host and gateway, which provides an interface
to DNET clients and servers and the DNET Connectionless Datagram and Signalling
Service

Datagram Protocol Servers (DPS)-

Protocol specific servers located at each DNET host and gateway, which provides an
DNET Connectionless an interface to the underlying network Datagram service.

Master Server Init Table-

These tables, tbls.msinittcp and tbls.msinitdec contain initialization information for
the DNET Master Servers including the type of server to be activated, the maximum #
allowed at this host, and the number to make available initially, and an indication of
whether the server must be prespawned. The tables are updated by the local System
Administrator at the specific DNET host.

Master Server Table-

One for cach DNET host, it contains information on the types and numbers of cach
class of DNET server actively supported on this node at any instant. Each generic
server entry points to a Server Instance Table which lists the current specific instances
of a particular class of server. It is updated by the Master Server and by specific
DNET application servers.

Master Server Process (DMS)-

Processes, onc per Network, managing the Master Server Table, handling server
registration, server assignment, and server control. They are spawned by network
start-up command files.
DNET Basic 1/0 package-
Glossary 41



Included as library within an application program, it provides network i/o interface
including datagram formatting.

Gateway-

A DNET node at which communicaton protocol boundary is passed. DNET relay
servers move data from one network to another performing an effective protocol
conversion for streaming services. These servers are created, allocated, and used like
any other DNET streaming applications servers. The Datagram Master Server, in
conjunction with protocol specific datagram servers performs a similar function for
DNET datagrams.

Network Command Line Interpreter-

DNET Client process that directs the execution of network commands using
datagrams sent to various hosts and several servers.

myname - hostname table-

A table, tbis.myname, maintained in the dnet_home directory on ecach DNET node
lists the DNET networks to which that host is connected and the name(s) by which the
local host is known on those networks.

Network Command Language Processor-

Server that directs the execution of network commands using datagrams sent to various
hosts and several servers. It is an application server, copies can be pre-spawned or
spawned on demand.

Network Command Server-

Spawned by request from Command Language Processor, this Server is directed by
Command Language Processor. It spawns processes and directs i/o to execute network
commands.

Network Status Server-

Resides in each network host. Receives Host Status Tables, Host Alias Table, Well
Known Server Tables, Connectivity Tables, and periodically sends "I am alive
messages to the Administrative host. To ensure these periodic messages are sent the
Basic datagram I/O package uses a timer/wake-up signal to initiate the transmission
of the message to the Network Status Client. Because this is done by the I/O package
and there is a copy of this package in every process that uses network I/O the network
status data is collected on a per process not per host basis.

PVC Relay

A DNET relay used in the completion of DNET Permanent Virtual Circuits (PVCs).
Relay

Special DNET application processes located in a DNET gateway which perform

protocol conversion for DNET streaming service between dissimilar networks. The
appropriate Master Server process ’listens’ on a particular protocol boundary when

42 DNET ADMINISTRATORS GUIDE



Router

Routing Table-

idle and assigns a relay when a request for a protocol b’hop’ is received from DNET..
The relays are named according to the protocol boundary which they are intended to
bridge. Thus a T-D relay services requests which arrive on a TCP/IP network,
relaying data to a DECnet net. Relays operate in a full duplex mode while actually in
use.

DNET employs a hierarchical routing strategy. Each DNET node has, for every
(DNET) network known to it, information on the next DNET host to contact in order
to move data toward the destination. The DNET router function uses the information
in the routing table as follows: Given a destination network, host, and process, returns
the next 'best’ hop (network, host, process) to *move’ toward the destination.

A hierarchical routing table that contains the next ’hop’ from the local DNET
host/network in the direction of all other DNET networks. A minimal version of this
table is provided with the distribution copy of DNET. The table is currently
maintained manually by the local system administrator. In the future, this table will be
dynamically configured and maintained by the local DNET Network Status Server
after intial startup has taken place. The routing table is named tbls.net and is located
in the dnet_home directory.

Server Assignment Function-

Returns the name of an available server to a requesting Router, and updates the
Domain Server Table.

Server Instance Table(s-

Lists the current specific instances of a particular class of DNET Application Server.
Entries are made by the Master Server and cleared via dn_done() calls from the
servers as they complete their tasks.

Server Registration Function-

This function is part of the Domain Server Process. It updates the Domain Server
table with information from Servers (e.g."now in usc”).

Glossary 43



DNET

ADMINISTRATOR’ S REFERENCE

Version: 1.14
Print Date: 08/31/89 12:59:53
Module Name: admin.ref

Digital Analysis Corporation
1889 Preston White Drive
Reston, Virginia 22091
(703) 476-5900

SBIR RIGHTS NOTICE

by support ors. After the af. i ‘&ynrperiod(hecwemmeuhnamy-lty-treelicen-eroue.md:o-uhorizeothzutomeoninbehu,tmdu.!or
Government purposes, but is relieved from all disclosure prohibitions and assumes no lisbility for unauthorized used of this data by third parties. This Notice shall be
affixed to any reproductions of this data, in whole, or in part.*

Copyright 1989, Digital Analysis Corporation



CHECKDMAIL(1) DNET CHECKDMAIL(1)

NAME

checkdmail - dnet *mail’ auto-user notification process
SYNOPSIS

checkdmail
DESCRIPTION

The checkdmail process is invoked by the DNET login script when a user logs in to a DNET
host. It checks if a non-null mail file is present in the directory dnet_home/mail
(dnet_home:mail for VMS), and if so notifies the user with the message:

You have DNET mail .....
The user may then invoke the dmail client to read this mail file,

The ability to run checkdmail depends on its presence in the Master Server Init Table for the
destination host,

SEE ALSO
dms, dmail(1D), dmaild(1D)
RETURN VALUE

ERRORS
The call fails if;
[D_DGTB]



DECHOD(1) DNET DECHOD(1)

NAME

dechod - dnet ’echo’ server

SYNOPSIS

Must be entered into the dms init table,

DESCRIPTION

The dechod ’echoes’ command lines sent to it from a distant DNET decho client process back
to that client.

dechod is started by the local DNET Master Server according to information in the Master
Server Init Table. A DNET permanent virtual (streaming) connection is opened to the
destination network:host. Command line input at the local host is then echoed back from the
destination after each carriage return.

In conjuction with decho dechod provides a convenient means of demonstrating the setup time
and end-to-end performance of the DNET streaming service.

SEE ALSO

decho(1), tbls.msinitox(4)

DIAGNOSTICS

If the dnet_debug environmental variable (logical name in VMS) is defined with a non-zero
value, then a log file will be generated where error output may be viewed. If the dnet_debug
value is zero, then all error output will be discarded.



DLOGIND(1) DNET DLOGIND(1)

NAME
dlogind - dnet "remote execution’ server
SYNOPSIS
dlogind
DESCRIPTION
dlogind is the DNET server used to provide remote login function over the DNET network.

The ability to run dlogind depends on its presence in the Master Server Init Table for the
destination host.

SEE ALSO
dms, dlogin(1), drexec(1)
RETURN VALUE

ERRORS
The call fails if:
[D_DGTB])



DMAILD(1) DNET DMAILD(1)

NAME
dmaild - dnet *mail’ server
SYNOPSIS
dmaild
DESCRIPTION
dmaild acts a simple mail transfer server from a remote ¢mail client,

The ability to run dmaild depends on its presence in the Master Server Init Table for the
destination host.

SEE ALSO
dms, dmail(1D), checkdmail(1)
RETURN VALUE

ERRORS
The call fails if:
[D_DGTB]

Page § (07/10/89)



DNCLD(1) DNET DNCLD(1)

NAME

dncl - dnet 'network command language’ server

SYNOPSIS

dncl

DESCRIPTION

Page 6

The dncl command invokes the interactive dnet network command language program. This
program allows for processing of a single data stream in a distributed environment. To do this,
the processing of the data stream is broken into sub command lines SCL (which together make
up the dncl command line CL). The dncl CL may be entered after the dncl prompt:

dncl>

The following is a synopsis of the dncl command line:
SCL > SCL [> SCL] ...

You will note that a minimum of two SCL components are required in a CL. The reason for
this will be explained when we look at the three categories of SCL components. Also note that
the > symbol is used to delimit the SCL components,

The following is a synopsis of the SCL component:
[[netname::]hostname:] [*]lcommand/file

Notice that netname and hostname are optional, although if a network name is supplied, then a
host name must also be supplied. In the case where both netname and hostname are specified,
a double colon must delimit the netname and the hostname, and a single colon must delimit the
hostname and the command/file. Further, if the command/file value contains a colon, then the
hostname must be supplied at a minimum so that the colon within the command/file will be
ignored by dncl.

If the requested node is the current machine ( the netname and hostname combination
represent the current machine), and no colons appear within the command/file value, then
netname and hostname 'nay be omitted. Similarly, if the hostname machine is on the current
network, then netname may be omitted. On dnet gateway machines remember that only one
network is considered to be current. This means that although the network may be directly
connected to the current machine, it can not be considered a current network.

The command/file portion of the SCL represents either a file or a command to be accessed on
the given machine and falls into one of three categories:

o First SCL component -- must be a file
¢ Middle SCL component -- must be a command (prec::de with *)
o Last SCL component -- must be a file

As you will remember from the CL synopsis above, and minimum of two SCL components must
be specified (a First SCL component and a Last SCL component). This represents the simplest
form of a dncl CL and results in a file transfer without filtering. The dncl CLs of greater
complexity merely represent a higher degree of filtration between the first and last SCL
components. The filtration described here is provided by the middle SCL component category
(a command). This command is assumed to read input from a standard location, process the
input received and generate output to a standard location. Many commands can be described in
this fashion (input/processing/output), but not all work with standard locations for input and
output. Commands that do use standard locations anc work in the input/processing/output
fashion are described as being filters. To work properly as a middle SCL category SCL
component, the command must also be a filter, as unpredictable results will otherwise occurr.

(07/10/89)



DNCLD(1) DNET DNCLD(1)

All middle SCL category SCL components must be preceded with an asterix (*) as shown in the
SCL synopsis above,

The UNIX operating system is rich with existing filters to perform a variety of tasks. These
filters are comparatively rare in the VMS operating system. Despite this, filters may be created
for VMS with C languag: programs by using the predefined stdin and stdout streams with the
standard I/O package.

SEE ALSO

dtftp(1), dsh(1)

RETURN VALUE

After successful completion of a dncl CL, the following message will be displayed:
ACKCOMP received.

This means that the ACKCOMP (ACKnowledge COMPletion) packet has been initiated by the
last SCL category driver, and has been successfully passed back through all intermediate SCL
components to be successfully received by the dnel command invoked by the user.

If the ACKCOMP received message is not displayed, then a cryptic error message will be
displayed describing the reason for failure. If the error message is preceded by dncld:, then this
means that the error occurred at a possibly remote node, and this message was propagated back
to be viewed by the user.

A common form of error message is:
No route to netname::hostname:dncld

This indicates that the node specified could not be found from the current location. Two things
should be remembered to help to solve this problem:

1. You may not have specifed the node name portion of the stated SCL, and the default may
have been used.

2. The node is always relative to the node on the previous SCL component. The first SCL is
always relative to your current node. As an example, if the first SCL was specifed as:
spanet::iaf:sys$login:myfile , and the second SCL was: *sort, then it would try to spawn
the sort filter on the spanet::iaf node.

~ CAVEATS

Page 7

Never make assumptions about current location within a file system on any node when creating
SCL components. Absolute pathnames or logical names must be used for files. For commands,
absolute pathnames or logical names must also be used, but on UNIX operating systems, the
PATH environmental variable may be set by the dnet administrator before the dncl drivers are
initiated so that they can be forced to look in non-normal locations for UNIX filters.

(07/10/89)



DNETSTAT(1) DNET DNETSTAT(1)

NAME

dnetstat - obtain dnet network status
SYNOPSIS

dnetstat [ dnet_network] [dnet_host] [-acdfhinprs]
DESCRIPTION

The dnetstat command allows the display of various DNET-related data structures,
Information may be displayed in various forms, depending on the option which is specified.
dnetstat can be used to determine the status of all DNET servers, routing tables, and server
usage statistics.

Information may be displayed for the local DNET node or may be retrieved and displayed for
other DNET nodes.
Options:

dnet_network - the DNET network of the DNET host from which information is desired; if
omitted, local network s assumed

dnet_host - the DNET network of the DNET host from which information is desired; if both
network and host omitted, local host is assumed

If none of the below options is specified, the defaults local_host & [-cd] are assumed
-a Display all available information (in long format)

-¢ Display Status of Connection (Streaming) Servers

-d Display Status of Datagram (Connectionless) Servers

-f Display PIDs, etc. in alternate (Decmimal/Hexidecimal) format; allows optional conversion
between machines with different display formats

-h Display help on optiors for dnetstat
-1 Display other specified options in long or extended format
-n show DNET map (network, host)

-p ping the specifed host - i.e. test if DNET is alive on the specified host p overrides all other
options. If successful, the message:
DNET is Alive at dnet_network dnet_host

is printed on the terminal If the ’ping’ operation is unsuccessful, dnetstat will usually timeout
waiting for the response from dnstatd.

Timed out waiting for response

-r show DNET routing tables for the specified node

-s show per-DNET server statistics (dtftp, drexec, dmail, dncl)

Page 8 Q . 5 (07/12/89)



DNETSTAT(1) DNET DNETSTAT(1)

SEE ALSO

dnstatd, tbls.msinitdec, tbls.msinitdec, tbls.net

DIAGNOSTICS
The call fails if:
Specified host is not up
DNET is not operating on the specified host

dnstatd is not operating on the specified host

In each of the above instances, dnetstat, will report:

Timed out waiting for response

Page 9 (07/12/89)



DNLOGIN.CSH(8) DNET DNLOGIN .CSH(8)

NAME

dnlogin.csh - DNET logir script for UNIX systems with *C’ Shell
SYNOPSIS

@dnlogin.csh
DESCRIPTION

The dnlogin.csh script sets up the operating environment for DNET when a user logs in to a
UNIX system running the 'C’ Shell, dnlogin.csh is ordinarily invoked from the file .prolile in
the user’s login directory. A listing of the script follows:

# dnlogin.csh

# login script for C Shell under UNIX for DNET
# First set dnet_home in your Jogin,

# Then source this file.

setenv PATH "$SPATH":$dnet_home/bin
checkdmail

Page 10 (07/12/89)



DNLOGIN.DFT(8) DNET DNLOGIN.DFT(S)

NAME

dnlogin.dft - DNET login script for NASA-GSFC DFTNIC VAX
SYNOPSIS |

@dnlogin.dft
DESCRIPTION

The dnlogin.dft script sets up the operating environment for DNET when a user logs in to the
DFTNIC VAX running VMS, dnlogin.dft is ordinarily invoked from the file login.com in the
user’s login directory. A listing of the script follows:

Page 11

$! dnlogin.dft
$! login script for DNET for dftnic
$

$! logical names

$

$ DNET_DEBUG = = ")*

$

$ define/job dnet_pvedir $cldata:[dnet.dnet.pvcdir]
$ define/job dnet_dgdir $cldata:[dnet.dnet.dgdir]

$ define/job dnet_common $cldata:[dnet.dnet.common]
$ define/job dnet_appdir $cldata:[dnet.dnet.appdir]
$! define/job dnet_debug 1

$ set proc/priv=grpnam

$ define/group dnet_home $cldata:[dnet.dnet]

$ define/group dnet_bin $cldata:[dnet.dnet.bin)

$ define/group dnet_gateway 1

$

$ptar == "§ cldata:[dnet.bin] ptar.exe"

$

$ define c$include dnet_common, dnet_pvcdir, dnet _
$ define vaxc$include cSinclude, sys$library
$

$! Clients

$

$ decho =="g dnet_bin:decho.exe"

$ ddechoc == g dnet_bin:ddechoc.exe"

$ dechon =="g dnet_bin:dechon.exe”

$ drexec == "$ dnet_bin:drexec.exe"
Sdiftp == g dnet_bin:dtftp.exe"

$ dlogin == "y dnet_bin:dlogin.exe"

$ dmskill == "§ dnet_bin:dmskill.exe"

$ dnetstat == "§ dnet_bin:dnetstat.exe"
$dncl == 1§ dnet_bin:dncl.exe"

$ dmail == ¢ dnet_bin:dmail.exe"

dgdir, exos_etc

(07/12/89)



DNLOGIN.DFT(8) DNET

Page 12

$

$! development only

$

$! delmbx =="g Sdiskl:[odnet]delmbx.exe”
$shack == "§ dnet_Lin:shack.exe"
$itoo=="g dnet_vin:i_to_o.exe"
$bed == "¢ dnet_bin:bcd.exe"

$ ddechoc == "§ dnet_bin:ddechoc.exe"
$

$! aliases

$

$ sl = = "show logical"

$ ss == "show symbol"

$1s = = "dir

$1 == dir

$ cd = = "set def

$ pwd = = "show def

$vi == "ed"

$ view == ‘ed/read_snly"

$ ps == "show system"

$ ns = = "netstat -a"

$ more = = "type/pay,e"

$ clear = = "@clear"

$

$ set proc/priv=sysnam

$ cd dnet_home
$ checkdmail
$

DNLOGIN.DFT(8)

(07/12/89)



DNLOGIN.DV(8) DNET DNLOGIN.DV(8)

NAME

dnlogin.dv - DNET login script for DAC Microvax II
SYNOPSIS

@dnlogin.dv
DESCRIPTION

The dnlogin.dv script sets up the operating environment for DNET when a user logs in to a
VAX running VMS. dnlogin.dv is ordinarily invoked from the file login.com in the user’s login
directory. A listing of the script follows:

$! dnlogin.com
$! login script for DNET for dftnic
$

$! logical names

$

$ DNET_DEBUG == "¢"

$

$ define/job dnet_pvedir $cldata:[dnet.dnet.pvedir)
$ define/job dnet_dgdir $cldata:[dnet.dnet.dgdir]

$ define/job dnet_common $cldata:[dnet.dnet.common]
$ define/job dnet_appdir $cldata:[dnet.dnet.appdir]
$! define/job dnet_debug 1

$ set proc/priv=grpnam

$ define/group dnet_home Scldata:[dnet.dnet]

$ define/group dnet_bin $cldata:[dnet.dnet.bin]

$ define/group dnet_gateway 1

$

$ ptar == $ cldata:. dnet.bin] ptar.exe”

$

$ define c$include dn et_common, dnet_pvedir, dnet_dgdir, exos_etc
$ define vaxc$includs cSinclude, sys$library

$

$! Clients

$

$ decho == "$ dnet_bin:decho.exe"

$ ddechoc =="$ dnet_bin:ddechoc.exe"
$ dechon == "$ dnet_bin:dechon.exe"
$ drexec == "§ dnet_bin:drexec.exe"
$dtftp =="$ dnet_bin:dtftp.exe"

$ dlogin == "§ dnet_bin:dlogin.exe"

$ dmskill == "§ dnet_bin:dmskill.exe"
$ dnetstat == "§ dnet_bin:dnetstat.exe"
$dncl == g dnet_bin:dncl.exe"

$ dmail == "§ dnet_bin:dmail.exe"

$

Page 13 (07/12/89)



DNLOGIN.DV(8) DNET

Page 14

$! development only

$

$!delmbx == g $d:sk1:[odnet] delmbx.exe"
$shack == g dnet_bin:shack.exe"
$ito_o=="$dnet din:i_to_o.exe”
$bed=="¢ dnet_bir:bcd.exe"

$ ddechoc = = "$ dne:_bin:ddechoc.exe"

$

$! aliases

$

$ sl == "show logical"
$ ss == "show symbol"
$1s == "dir"
$1=="dir

$ cd == "set def
$ pwd = = "show def"

$vi == "eg
$ view = = "ed/read_only"
$ ps = = "show system"

$ ns = = "netstat -a"
$ more = = "type/page"
$ clear = = "@clear"

$
$ set proc/priv=sysuam

$ cd dnet_home
$ checkdmail
$

DNLOGIN.DV(8)

(07/12/89)



DNLOGIN.SH(8) DNET DNLOGIN.SH(8)

NAME

dnlogin.sh - DNET login script for UNIX systems with Bourne Shell
SYNOPSIS

@dnlogin.sh
DESCRIPTION

The dnlogin.sh script sets up the operating environmen* for DNET when a user logs in to a
UNIX system running the Bourne Shell. dnlogin.sh is ordinarily invoked from the file .prolile
in the user’s login directory. A listing of the script follows:

# dnlogin.sh

# login script for Beurne shell under UNIX for DNET
# First set dnet_home in your .profile.

# Then . this file.

PATH=$PATH :$dnet_home/bin

export PATH

checkdmail

Page 15 (07/12/89)



DNSTART(8) DNET DNSTART(8)

NAME
dnstart - start local DNET node
SYNOPSIS |
dnstart
DESCRIPTION

The dnstart command allows the system administrator on a UNIX host to start-up the local
DNET node.

SEE ALSO
dnstart.com(8), dnstop(8), dnstop.com(8), startdgms
DIAGNOSTICS

The dnstart module is a UNIX shell script. The output directly from the script merely informs
the user of the modules being started up. Output from those modules may also appear on the
screen. The script in turn calls the startdgms to start the DNET datagram service.

The dnstart script is listed below:

dnstop

dnet_home=‘echo "${dnet_kome}/" | tr -5 '/’ ik
dnet_log = "/tmp/dnet/";export dnet_log

rm -rf /tmp/dnet

mkdir /tmp/dnet

iperm -Q 100

cd $dnet_home/bin

startdgms

sleep 2

echo’ Starting dmstcp
dmstcp &

sleep 1

echo’ Starting dnstatd*
dnstatd &

pidlist=$pidlist" "$!

echo $pidlist > > "${dnet_home} pidlist"

sleep §

echo DNET now running!

Page 16 (07/12/89)



DNSTART.COM(S8) DNET DNSTART.COM(8)

NAME

dnstart.com - start local [)NET node (on VAX systems)
SYNOPSIS

@dnstart
DESCRIPTION

The dnstart.com command allows the system administrator on a UNIX host to start-up the
local DNET node.

SEE ALSO
dnstart(8), dnstop(8), dnstop.com(8), strdgms.com, strstat.com

DIAGNOSTICS
The dnstart.com file is z VMS DCL shell script. The output directly from the script merely
informs the user of the modules being started up. Output from those modules may also appear
on the screen. The script in turn calls the strdgms.com and strstat.com to start the DNET
datagram service and the network status server respectively.

The dnstart.com script is listed telow:

Page 17 (07/12/89)



DNSTART.COM(8) DNET DNSTART.COM(8)

$

$ cd dnet_home

$

$ @dnstop

$

$ write sysSoutput "deleting old log files"
$ del * log;»

$ write sys$output "purging dnet_home"
$ purge

$

$ cd [.bin]

$

$ write sys$output "purging ‘dnet_home"
$ purge

$ cd dnet_home

$

$ write sys$output "starting dnet DGMS ..."
$ @strdgms

$

$ walit 00:00:05.00

$ @strpve

$

$ wait 00:00:05.00

$ @strstat

$

$ cd dnet_home

$

$ wait 00:00:05.00

$ write sysSoutput "DNET Successfully STARTED *##sxsss:
$

Page 18 (07/12/89)



DNSTART.DET(8) DNET DNSTART.DET(S)

NAME

dnstart.det - start local DNET node (on VAX systems) in a detached mode
SYNOPSIS

@dnstart.det
DESCRIPTION

The dnstart.det command allows the system administratcr on a UNIX host to start-up the local
DNET node in a detached mode. The effect of running *detached’ is to allow DNET to remain
operational without DNET being ’logged in’.

SEE ALSO
dnstart(8), dnstop(8), dnstop.com(8), strdgms.com, strstat.com
DIAGNOSTICS

The dnstart.det script is listed be low:

$ ! dnstart.det - start DNET in detached mode
$

$ cd dnet_home

$

$ ! stop any existing DNET processes

$ @dnstop

$

$ cd [.bin]

$

$ set proc/priv=grpnam

$ define/group dnet_home "$disk1:[sys0.dnet.dnet]"
$ define/group dnet_bin "Sdlskl:[sysO.dnet.dnet.bin]"
$ define/group dnet_gateway 1

$

$ write sysSoutput "starting dgms ...DETACHED"

$ spawn/in=nl:/out = dnet_home:dgms.log/process = dgms/aowait -
run/detached/nodebug/ buffer_limit= 60000/subprocess_limit =30/io_buffered =20 -
/maximum_working_set =1024/extent = 1024 /working_set=512 /queue_limit=30 -
/ast_limit =30/file_limit=200/ job_table quota= 1200/page_file =30000 -
/privileges = (grpnam,sysnam,netmbx,tmpmbx) /proc=dgms dgms

$ write sysSoutput "starting dgsudp_in ...DETACHED"

$ run/detached /nodebug/ buffer_limit =60000/subprocess_limit =30/io_buffered=20 -
/maximum_working_set =1024/extent= 1024 /working_set=512 /queue_limit=30 -
/ast_limit= 30/file_limit=200/ Jjob_table_quota= 1200/page_file=30000 -
/privileges = (grpnam,netmbx,tmpmbx) /proc = dgsudp _in ¢ gsudp in

$ write sysSoutput "starting dgsudp_out ...DETACHED" ]
$ run/detached/nodebug/buﬂ'er_limit= 60000/subprocess_limit=30/io_buﬂ'ered=20 -

Page 19 (07/12/89)



DNSTART.DET(S) DNET DNSTART.DET(8)

/maximum_working_set =1024 /extent = 1024/working_set=512 /queue_limit=30 -
/ast_limit=30/ file_limit=200/ job_table_quota=1200/ page_file=30000 -
/privileges = (grpnam,netmbx,tmpmbx) /proc= dgsudp_out dgsud p_out

$ write sysSoutput "starting dgsdec ..DETACHED"

$ run/detached/nodebug/ buffer_limit= 60000/subprocess_limit=30/ io_buffered=20 -
/maximum_working_set =1024/extent=1024 /working_set=512 /queue_limit=30 -
/ast_limit=30/1 ile_limit= 200/job_table_quota =1200/ page_file=30000 -
/privileges = (grpnam,sysnam,netmbx,tmpmbx) /proc=dgsdec dgsdec

$ wait 00:00:05.00

$

$ write sysSoutput "starting dmsdec ..DETACHED"

$ run/detached/ buffer_limit =60000/sub process_limit=30/io_buffered =20 -
/maximum_working_set =1024/extent = 1024 /working_set = 512/queue_limit=30 -
/ast_limit=30/f; Hle_limit=200 /job_table_quota= 1200/page_file=30000 -
/privileges = (sysnam,netmbx,tmpmbx) /proc=dmsdec dmsdec

$ write sysSoutput "starting dmstcp ...DETACHED"

$ run/detached/ buffer_limit= 60000/subprocess_limit=30/ io_buffered =20 .
/maximum_working_set =1024/extent=1024 /working_set=512 /queue_limit=30 -
/ast_limit=30/file_limit =200/job_table_quota= 12000/page_file=30000 -

/privileges = (sysnam,netmbx,tm pmbx) /proc=dmstcp dmstcp

$ wait 00:00:05.00

$

$ write sysSoutput "starting dnstatd ...DETACHED"

$ run/detached/buffer limit = 60000/subprocess_limit =30/io_buffered =20 -

/maximum_working_set =1024/extent=1024 /working_set=512/ queue_limit=30 -
/ast_limit= 30/file_limit=200/ job_table quota= 12000/page_file=30000 -
/privileges = (sysnam,netmbx,tmpmbx) /proc = dnstatd dnstatd

$ cd dnet_home

$

Page 20 (07/12/89)



DNSTATD(1) DNET DNSTATD(1)

NAME

dnstatd - DNET network status server
SYNOPSIS '

dnstatd
DESCRIPTION

dnstatd is a general network utility which allows the display of various DNET-related data
structures. Information may be displayed in various forms, depending on the option which is
specified. dnstatd can be used to determine the status of all DNET servers, routing tables, and
Server usage statistics.

Information may be displayed for the local DNET node or may be retrieved and displayed for
other DNET nodes.
Options:

dnet_network - the DNET network of the DNET host from which information is desired; if
omitted, local network is assumed

dnet_host - the DNET network of the DNET host from which information is desired; if both
network and host omitted, local host is assumed

If none of the below options is specified, the defaults local_host & [-cd] are assumed
-a Display all available information (in long format)

-¢ Display Status of Connection (Streaming) Servers

-d Display Status of Datagram (Connectionless) Servers

-f Display PIDs, etc. in alternate (Decmimal/chidecimal) format; allows optional conversion
between machines with different display formats

-h Display help on options for dnetstat
-1 Display other specified options in long or extended format
-n show DNET map (network, host)

-P ping the specifed host - i.e. test if DNET is alive on the specified host p overrides all other
options. If successful, the message:
DNET is Alive at dnet_network dnet_host

is printed on the terminal If the ’ping’ operation is unsuccessful, dnetstat will usually timeout
waiting for the response irom dnstatd.

Timed out waiting for response

-r show DNET routing tables for the specified node

-s show per-DNET server statistics (dtftp, drexec, dmail, dncl)

Page 21 (07/12/89)



DNSTATD(1) DNET DNSTATD(1)

SEE ALSO

dnstatd, tbls.msinitdec, tbls.msinitdec, tbls.net .

RETURN VALUE

ERRORS
The call fails if:
Specified host is not up
DNET is not operating on the specified host

dnstatd is not operating on the specified host

In each of the above instances, dnetstat, will report:

Timed out waiting for response

Page 22 (07/12/89)



DNSTOP(8) DNET DNSTOP(8)

NAME

dnstop - stop the local DNET services
SYNOPSIS

dnstop
DESCRIPTION

The dnstop command allows the system administrator to stop the local DNET services.

SEE ALSO
dnstart(8)
DIAGNOSTICS

The contents of dnstop are listed below:
echo ***#ssssxnnSiopping TCP Master Server *#+sssnssssr

dmskill tcp
stopdgms

Page 23 (08/31/89)



DTFTPD(1) DNET DTFTPD(1)

NAME

dtftpd - dnet trivial file tr.nsfer server
SYNOPSIS

dtftpd
DESCRIPTION

The dtftpd is the DNET file transfer server. It provides for the transfer of files to and from
remote DNET machines.

SEE ALSO
dms, dtftp(1)
RETURN VALUE

ERRORS
The call fails if:
[D_DGTB]

Page 24 (08/31/89)



MAKEMOVE(8) DNET MAKEMOVE(8)

NAME

makemove - generate a generic image of the DNET source files for transport to a remote
machine

SYNOPSIS
makemove

DESCRIPTION

The makemove command allows the system administ-ator at the Master DNET node to
generate 'ptar’ files of the DNET source code for transport to remote locations.

SEE ALSO
ptar(1)
DIAGNOSTICS

Page 25 (07/14/89)



POSTMOVE(8) DNET POSTMOVE(S)

NAME
postmove - generate DNIZT on a target machine
SYNOPSIS |
postmove [-m] [-s] [-sc] {-h]
DESCRIPTION
The postmove command generates the DNET source and/or executables on a target DNET
host.
-m make DNET after source code has beea unpacked
-s¢ suppress cleanup - do not remove local copies of ’ptar’ files after executables
have been made
-S create shell environment
-h help
SEE ALSO

makemove(8), sdenv(1), ptar(1)

DIAGNOSTICS
The postmove utility is 1 shell program (or DCL script). Short messages will be generated
during normal operation informing the user what porticn of the postmove is being performed

currently. Most error conditions result in an abort with the message indicating that an abort is
taking place. A final me:sage will be issued when the postmove has run successfully.

Page 26 (07/14/89)



PTAR(1) DNET PTAR(1)

NAME

ptar - pack/unpack file(s) in a generic tar format
SYNOQPSIS

ptae [-xct] filename
DESCRIPTION

The ptar command packs or unpacks a file or files into a generic tar’ format for shipment to
remove DNET target machines.

X extract files
- Create a ptar file
-t Table cf contents on existing ptar file
SEE ALSO
makemove(8), postmove(8)
DIAGNOSTICS

The ptar displays a list of file names as they are being extracted or archived.

Page 27 (07/14/89)



STARTDGMS(8) DNET STARTDGMS(8)

NAME

startdgms - start local DNET Datagram Service
SYNOPSIS

startdgms
DESCRIPTION

The startdgms command allows the system administrato~ on a UNIX host to start-up the local
DNET Datagram service. startdgms is ordinarily invoked automatically by the dnstart script.

SEE ALSO
dnstart(8), startdgms
DIAGNOSTICS

The startdgms script is listed below:

Page 28 (07/12/89)



STARTDGMS(8) DNET STARTDGMS(8)

if [ "$dnet_home" = "™ ]
then

echo’ ‘dnet_home not set...Aborting

exit 1
fi
dnet_home=‘echo "${dnet_home}/" | tr -s ARTA
dnet_log = "/tmp/dnet/";export dnet_log
nohup dgms > "${dnet_log}dgms.log" 2> &1 &
pidlist=$!
odgms ="$ {dnet_log}dgms.log"; export odgms
sleep 1
nohup dgsudp_in > "${dnet_log}dgsudp_in.log" 2>&1 &
pidlist=S$pidlist" "$!
odgsin="${dnet_log} dgsudp_in.log";export odgsin
nohup dgsudp_out > "${dnet_log}dgsudp__out.log" 2>&1&
pidlist=S$pidlist" "$!
odgsout="${ dnet_log}dgsud!p_out.log";export odgsout
sleep 1
echo ***dgms.log
cat $odgms
echo dgstcp_in.log
cat $odgsin
echo’ *dgstcp_out.log
cat Sodgsout
# nohup pingerd > "${dnet_log} pingerd.log"2> &1 &
# pidlist = $pidlist" "$!
# opingerd="${ dnet_log}pingerd.log";export opingerd
# nohup abe > "${dnet_log}abc.log" 2> &1 &
# pidlist=$pidlist" "$!
# oabc="${dnet_log}abc.log";export oabc

# sleep 1

# echo PINGERD.log
# cat Sopingerd

# echo * ABC.log

# cat $oabc

echo $pidlist > "${dnet_home} pidlist"

Page 29 (07/12/89)



STRDGMS.COM(8) DNET STRDGMS.COM(8)

NAME

strdgms.com - start local DNET node (on VAX systems)
SYNOPSIS

@strdgms
DESCRIPTION

The strdgms.com command allows the system administrator on a UNIX host to start-up the
DNET datagram service. Ordinarily, this script is executed automatically by the dnstart.com
script.

SEE ALSO
dnstart(8), dnstop(8), dnstop.com(8), strdgms.com, strsta..com

DIAGNOSTICS

The strdgms.com script is listed below:

$ ! strdgms - start DNET Datagram Service

$

$ cd dnet_home

$ ¢d [.bin]

$

$ set proc/priv=sysnam

$ spawn/in =nl:/out= dnet_l.ome:dgms.log/process = dgms/nowait run/nodebug dgms

$ set proc/priv=nosysnam

$ spawn/in=nl:/out= dnet | sme:dgsudp_in.log/process = dgsudp_in/nowait run/nodebug dgsudp _in
$ spawn/in=nl:/out = dnet_}.ome:dgsudp_out.log/process = dgsudp_out/nowait run/nodebug dgsudp out
$ set proc/priv=sysnam

$ spawn/in=nl:/out= dnet_home:dgsdec.log/process = dgsdec/nowait run/nodebug dgsdec

$! set proc/priv=nosysnam

$! spawn/in=nl:/out= dnet_home:pingerd.log/process = pingerd/nowait run/nodebug pingerd

$! spawn/in=nl:/out= dnet_home:abc.log/process = abe/nowait run/nodebug abe

$ cd dnet_home

$

$ type dgms.log

$ type dgsudp_in.log
$ type dgsudp_out.log
$! type pingerd.log

$! type abc.log

Page 30 (07/12/89)



DNSTOP.COM(8) DNET DNSTOP.COM(8)

NAME

dnstop.com - stop the locil DNET services on VAX syste.ns
SYNOPSIS '

@dnstop
DESCRIPTION

The dnstop command allows the system administrator to stop the local DNET services.

SEE ALSO
dnstart.com(8)
DIAGNOSTICS

The contents of dnstop.com are listed below:

$

$ cd dnet_home

$

$ write sysSoutput "stopping dgms.....
$ @stpdgms

$ write sysSoutput "stopping dmsdec ....."
$ stop dmsdec

$ write sys$output "stopping dmstcp ....."
$ stop dmstcp

$ write sys$output "stopping dnstatd ....."
$ stop dnstatd

$

$ cd dnet_home

$

$ wait 00:00:05.00

$

$ write sysSoutput "DNET is halted ....."
$

Page 31 (08/31/89)



STOPDGMS(8) DNET STOPDGMS(8)

NAME

stopdmgs - stop the local DNET datagram service on a UNIX system
SYNOPSIS

stopdgms
DESCRIPTION

The stopdgms command allows the system administrator to stop the local DNET services.

SEE ALSO
dnstart(8), dnstop(8), startdgms(8)
DIAGNOSTICS

The contents of stopdgms are listed below:

if [ ”$dnet__home" = "]
then
echo’ ’dnet_home not set...Aborting
exit 1
fi
dnet_home=‘echo "${dnet_home}/" | tr-s'/* '/
if [ -f"${dnet_home}pidlist" ]
then
echo Cleaning up dgms
else
echo No dgms running
exit 0
fi
pidlist=‘cat "${dnet_home} idlist"
echo kill -9 "$pidlist"
for pid in $pidlist
do
kill -9 $pid
done
iperm -Q 101
rm "${dnet_home}pidlist"

Page 32 (08/31/89)



STRPVC.COM(8) DNET STRPVC.COM(8)

NAME
strpvc.com - start local DNET node PVC service on a VAX system
SYNOPSIS

@strpve
DESCRIPTION

The strpve.com command allows the system administrater on a UNIX host to start-up the local
DNET node. ordinarily run via dnstart.com.

SEE ALSO
dnstart(8), dnstop(8), dnstop.com(8), strdgms.com, strstat.com
DIAGNOSTICS

The strpvc.com script is listed below:

$ ! strpvc - start DNET PVC Service

$

$ cd dnet_home

$ cd [.bin]

$

$ set proc/priv=sysnam

$ write sys$output "starting dmsdec ..."
$ run/proc=dmsdec dmsdec

$ write sysSoutput "starting dmstcp ..."
$ run/proc=dmstcp dmstcp

$ cd dnet_home
$

Page 33 (07/12/89)



STRSTAT.COM(8) DNET STRSTAT.COM(8)

NAME

strstat.com - start local DNET network status server (on 'vAX systems)
SYNOPSIS

@strstat
DESCRIPTION

The strstat.com command allows the system administrator on a UNIX host to start-up the local
DNET node. Ordinarily run by dnstart.com.

SEE ALSO
dnstart(8), dnstop(8), dnstop.com(8), strdgms.com, strsta..com
DIAGNOSTICS

The strstat.com script is listed betow:

$ ! strstat - start DNET status daemon
$

$ cd dnet_home

$ cd [.bin]

$

$ write sysSoutput "starting dnstatd ..."
$ run/proc=dnstatd dnstatd

$

$ cd dnet_home

$

Page 34 (07/12/89)



DNET

TECHNICAL GUIDE

Version: 1.18
Print Date: 09/01/89 13:54:37
Module Name: tech.gui

Digital Analysis Corporation
1889 Preston White Drive
Reston, Virginia 22091
(703) 476-5900

SBIR RIGHTS NOTICE

Government Purposes, but is relieved from all disclosure prohibitions and assumes 1o lisbility for unauthorized used of this da
affixed to any reproductions of this data, in whole, or in part.*

Copyright 1989, Digital Anatysis Corporation



CONTENTS

1. DNET Overview .
1.1 Underlying Assumptions
1.2 Basic Design Philosophy .o
13 Major Elements of a DNET Network
13.1 Network Arrangement 2
13.2  Existing Networks 3
1.3.3 DNET Hosts 3
13.4 Gateways 5
14 Layered Model for DNET .o
1.5  Layered Model for Communication Services
1.5.1 Application 8
1.5.2 Presentation 8
1.53 Session 8
1.5.4 Transport 8
1.5.5 Network 9
1.5.6 Link - Interface 9
1.5.7 Link 9
1.5.8 Physical 9

2. Relationships between DNET Components
21  Basic I/O Function Library . . . . . . . . . . .
2.2 DNET Objects . . . . . . . e e e e e

3. DNET Permanent Virtual Circuit (PVC) Internals . . .

3.1  Connection Establishment e e e e e,
3.1.1 Summary of Connection Establishment Sequence 13
32 PVCClientDetails . . , , ., . . . e e e e,

32.1 Connection Establishment 18
322 Close Connection 18
33 PVC-Server . . o e
33.1 Receive a Connection 18
33.2 Notify Master Server of Session Completion 19
3.4  Data Streaming During Session - Clients and Servers . . .
35 Mastcherver.............
351 Master Server Schematic 21
3.52 Master Server Control Function 22
353 Initialization of the Master Server 22
3.54 Example of Application Server Spawning 23
3.6  Details of Specific Application Server Assignment . .
3.6.1 Service Assignment Function 23
3.6.2 Specific Server Instance Table 24
37 DNET Gateways . ., . . . e e
3.7.1 Permanent Virtual Circuit Relays 26
3.7.2 Master Server Control of PVC Relays 26
373 Detail of PVC Relay Function 26

4. Connectionless Mode Services . . e e . .

4.1  Introduction to Connectionless Service e e e e e
4.1.1 Schematic of Connectionless Communications Service 28
4.1.2 Connectionless Datagram Formats 29

4.2 per protocol DataGram Server (DGS) .

43 DataGram Master Server (DGMS) .
43.1 The Routing Function 32
43.2 The Multiplexor Function 33

[ T

[=,}

10
10
11

12

12

17

18

20

20

23

24

88

31
32



433 The DGMS Service Routines 34
43.4 The ADGUT 38

44  The Connectionless Services Library ., . , | |,
4.4.1 The Function Of dn_cinit 40
442 The Function of dn_cwrite 40
443 The Function of dn_chandler 40
444 The Function of dn_cread 41
4.4.5 The Function of dn_cdone 41
4.4.6 The Function of dn_salloc 41
4.4.7 The Function of dn_cerror 42

4.5  Component Interaction Diagrams

- DNET Interprocess Communication (IPC)
5.1 Introduction . e e ..
5.2Interfacc...........
521 Administration Of IPC Medium 64
5.22  Administration Of Individual IPC Mechanisms 66
523 Sending And Receiving Messages 68
53 Implementation . , , . . e e
5.3.1 Theipcid Table 70
532 SystemV 70
533 BSD 71
534 VMS 72

- Miscellaneous DNET Internal Utilities
6.1  General System Utilities

6.1.1 getppid 74
6.1.2 fperror 74
6.1.3 iosync 74
6.14 is error 74
6.1.5 prttime 74
6.16 stricmp 74

6.2  General Network Utilites .

6.21 check_mynet 74
6.2.2 disassemble 74
623 dn_init 74

624
6.2.5

dn_makedg 74
dn_makepvc 74

6.3  Stream to Datagram Conversion Utilities

6.3.1
6.3.2
633
63.4
6.3.5
6.3.6
6.3.7
6.3.8

strtodg_dglen 74
strtodg msg 74
strtodg numhops 74
strtodg_path 74
strtodg_pathlen 74
strtodg_stream 74
strtodg_stream msg 74
strtodg_type 74

6.4  UNIX Specific Utilities

6.4.1
6.4.2
6.4.3

build_argarr 74
execshell 75
startserver 75

6.5  VMS Specific Utilities .

6.5.1
6.5.2
6.53
6.5.4

create_mailbox 75
execshell 75
getargs 75
gobetween 75

74
74

74

74

74

75



6.6

6.5.5 setargs 75
6.5.6 startserver 75
6.5.7 lib_do_command 75
658 lib_spawn 75
6.59 sys assign 75
6.5.10 sys cancel 75
6.5.11 sys_crelnm 75
6.5.12 sys crelnt 75
6.5.13 sys crembx 75
6.5.14 sys_creprc 75
6.5.15 sys dassgn 75
6.5.16 sys dellnm 75
6.5.17 sys_delmbx 75
6.5.18 sys getdvi 75
6.5.19 sys _getjpi 75
6.5.20 sys_getmsg 75
6.5.21 sys_hiber 75
6.522 sys gio 75
6.5.23 sys_qiow 75
6.5.24 sys trnlnm 75
6.5.25 sys wake 75
6.5.26 vms fperror 75
6.5.27 vms_perror 75
6.5.28 vms read 75
6.5.29 vms write 75
MS DOS Specific Utilites .

7. Interfaces to Underlying Networks . , .

7.1
72
73

74

Underlying Network Protocols
TCP/IP . . e
TCP/IP Specific Utlhucs o v ..
73.1 tcp_accept 77

732 tcp_close 77

733 tcp_getclient 77

734 tcp_initperm 77

7.3.5 tcp_inittrans 77

73.6 tcp_open 77

73.7 tcp_pvcopen 77

738 tcp_read 77

739 tcp_write 77

DECoet . . . , , .

74.1 _decnet_read 77

742 decnet_accept 77

743 decnet_close 77

744 decnet_errgeneric 77

74.5 decnet_errprotocol 77
74.6 decnet_getclient 77

74.7 decnet_initperm 77

748 decnet_inittrans 77

749 decnet_open 77

7.4.10 decnet_pvcopen 77

74.11 decnet_read 77

74.12 decnet_select 77

74.13 decnet_write 78

74.14 vms_aread 78

- i -

75

76
76
76
77



74.15 vms_awrite 78
74.16 vms wait 78

8. User Application Internals . . ..

10.

11.

12.
13.

81  File Transfer Protocol . . . .
82  Schematic of File Transfer | e e e e
82.1 General Considerations 79
822 ASCII 79
823 BinaryFiles 80
8.3  Security During File Transfer D T
84  Initiation of File Transfer from One Remote Node to Another
8.5  Initiation of Remote Procedure Upon Completion of File Transfer
86 RemoteLogin . ., , . . S,
87  Electronic Mail . . . N .
8.8General.................
8.9  Mail Operation . , , ., ., T T
89.1 Structure of DENT mail files 82
892 Sending Mail 82
893 Reading Mail 82
89.4 Mail Routing 82
dnetstat - Network Status Function . e e e e e
Network Command Execution & Task Redirection . ., . , , |
10.1 Network Command Processor Schematic . . . ,
10.2 Network Command Language . . . ., ., , . |
10.2.1 Command Language Syntax 85
10.2.2 Using The Command Language 85
10.3 Network Command Interpreter e e e .,
10.3.1 Schematic of Network Command Interpreter 86
10.4 Network Command Server e e e e e e
10.4.1 Operations at Network Command Server during File I/0
10.4.2 Status Reporting (from last Network Command Server) 88
10.5 AnExample.................
10.6 An Example of Network Command Execution . , , ., .
10.7  Network Command Processor Implementation .
10.8 Network Command Interpreter . . , . . . . |
10.8.1 Additional Processing 91
109 Network Command Server . o .

10.9.1 Implementation of the Network Command Server 92

10.10 Network File1/0 . . . . .

Presentation Layer Services . . . Coe e e e ..,
111 XDR . . . ., . . C e e e e e e e
DNET Error Handling
Routing ce e e e

13.0.1 get path 96

13.0.2 load_my name 96

13.03 load_net_table 96
13.1 Router Operation , . ., . . e e e e
132 Routing Example . . . . . e e e e,
133 Routing Table Updates . . . e e e e,

-iv-

79
79
79

81
81
81
81
82

83

SR

94
94

95

98
100



LIST OF FIGURES

Figure 1. DGMS Active Datagram User Table

Figure 2. Schematic Overview of Connectionless Service

Figure 3. Empty Host Machine With No DNET Components .

Figure 4. Datagram Master Server Started
Figure 5. Process Communication Medium Preparation
Figure 6. Invocation of DGS Components .
Figure 7. dn_cinit process .
Figure 8. dn_cwrite Process . . . . . .
Figure 9. dn_chandler Process
Figure 10. Receive Datagram at Destination

Figure 11. Receive Datagram: at Gateway

45
47
49
51
53
55
57
59
61



1. DNET Overview

This section provides an introduction to the internal functions of DNET. The various elements which
make up DNET are described as are some of the important assumptions made in the design. Each of
these elements is discussed in more detail in a subsequent chapter.

1.1 Underlying Assumptions

1. Existing (networking) protocols to be employed as the combined link /physical layer for the
Heterogeneous Net.

2. DNET Software (operating at transport & network layers) to be resident on all nodes which
constitute the Heterogeneous Net.

3. No modification of Operating System Kernels to be required in the implementation /use of
DNET Software

4. Initial Operating Environment
- TCP/IP
- DECNET

1.2 Basic Design Philosophy

DNET communications and computing services are provided in an environment based on clients and
servers. Using the communications services administrative processes request the initiation of server
processes; clients then request connections to the servers and obtain the services. Interactive and batch
mode operations are supported. The interface to the communications services is provided by a set of
input/output subroutines that are included in the user’s run-time utility library.

Administrators on each host can regulate the number and type of servers. At connection establishment
time the assignment of specific server processes to clients is done using the task initiation facilities of
the local operating system. Servers status may be monitored on demand by a network status utility,

In an environment comprising networks with heterogeneous communications protocols, gateways are
needed to permit data to Pass from one network to another which uses a different communications

others without concern about possible network protocol differences. Using end-to-end
acknowlegements for reliability and automatic inclusion of gateways for protocol conversion DNET
provides protocol transparent, reliable, data streams or datagram transmission between hosts on
connected DECnet, TCP/IP, (and Asynchronous) networks.

The DNET user can choose to establish a "permanent virtual circuit”. In this mode an "open” function

1s called to establish a communications path from one process to another process in another host,

DNET Overview 1



DNET also provides variable length datagram service. The user interface to this service is
connectionless (i.e. no "open" is required before starting process to process communications) however
certain local registration as a datagram user is required of processes wishing to use this service.
Datagrams may be used to ejther transmit data or signal information,

1.3 Major Elements of a DNET Network

DNET consists of the following major elements:

1. A collection of two or more existing, specific networks

underlying networks
By implication, the DNET Hosts and Gateways have DNET software installed which establishes their
functions. Each of these elements is described in more detail below:

1.3.1 Network Arrangement

DNET is a "meta-network” or a network of networks. The general arrangement of these major
elements of a DNET network is shown in the following diagram.

2 DNET TECHNICAL GUIDE



DNET Host

DNET Gateway

~ 1.3.2 Existing Networks

The underlying networks associated with DNET are ones which have existing reliable, data streaming
capabilities. The networks in which DNET may currently operate are TCP/IP and DEChet.

1.3.3 DNET Hosts

DNET Hosts are computers at which local processes may use the facilities of DNET to interact with
remote processes in the heterogeneous network. Any computer connected to one of the networks
served by DNET may become a node on DNET provided the following conditions apply. The machine
must:

1. be resident on a specific existing network (e.g. TCP/IP Net X, SPANET, etc.) which is known to
DNET

2. have DNET Host Software Installed & Operational

Each DNET Host contains the following elements:

DNET Overview 3



Software Components

1. DNET Basic 1/0 Library - This is a library of 'C’ Language functions which provide the
capability to generate, route, read, and write DNET datagrams and to open and close DNET
permanent virtual circuits. The major functions of the 1/O package are:

~ Establishment of DNET Private Virtual Circuits
— Send/Receive Connectionless Datagrams & DNET Signals
~ Routing for PVCs and Datagrams

— Interface to underlying communications network(s)

These are discussed below,
1. Private Virtual Circuit Service

—~ The DNET user has the option of requesting the establishment of a DNET private
virtual circuit (PVC). When a PVC is required the client process makes a call to the
DNET function, dn_open(), specifying the destination network, host, and process.
When a connection to the latter has been established dn_open returns an appropriate

Once the DNET PVC is ‘oper’, it appears as a smart’ wire; i.e. no additional DNET
overhead is imposed on the datastream which passes between the communicating
processes at each end of the PVC link.

2. Datagram & Signalling Service

Two types of datagrams are supported

1. Connectionless datagrams - these datagrams are used to move user data between
remote tasks in connectionless fashion

2. Signalling datagrams- these are similar to the connectionless datagrams except for
their "type" fields and the signal information that they contain in their data fields,

3. Routing Software

4. Interface to Underlying Networks connected to the local host

= Underlying Network Protocols supported in the initial version of DNET include,
Interfaces to these networks are established as configuration paramters at the time
DNET is installed on a particular host system.

1. TcCp/IP
2. DECnet

2. DNET Master PVC Server(s) - This server process responds to requests from DNET Clients for
connection to DNET Application Servers

4 DNET TECHNICAL GUIDE



3. DNET Application Clients - These are specific DNET applications such as File Transfer, etc.
which may be invoked by the user at each DNET host.

4. DNET Network Command Interpreter - operates as special command line interpreter to parse
and distribute DNET commands; The latter allow such operations as I/O redirection and
distributed command chaining across DNET.,

5. DNET Application Servers - These are specific servers which are required by a wide range of
Network user applications on a continuing basis. The number and types of such servers available
at a specific node may vary according to local conditions. Application servers are controlled by
systems administrators on hosts in the local domain (network).

6. DNET Network Command Server - this 'special’ application server interprets DNET Network
Command Language commands, executing the local portions thereof, and forwarding those
portions of the command to be executed at other DNET hosts.

7. DNET Datagram Master Server (DGMS) - this is an internal server process which provides local
control for the datagram service and routing for datagrams to remote nodes. All processes
which wish to use the datagram service must register with the DGMS,

8. DNET per Protocol Datagram Server(s) - these are well-known DNET servers whose purpose is
to forward connectionless DNET datagrams to destinations elsewhere in DNET via specific
datagram protocols.

Tables and Variables

1. DNET_Hostname tbls.myname - Variable containing name of local node and its underlying
DNET networks

2. DNET Routing Tables - tbls.net. A hierachical routing table which lists the next hop (via a
DNET gateway) to move toward all distant DNET networks.

3. Master Server Init Table - tbls.msinittcp and tbls.msinitdec. This is a file containing the
initialization information for the Master Server. It is loaded into the Master Server Table when
the DNET software is started on the local node.

4. DNET Master Server Table - This table contains a list of allocated DNET application servers on
this host and their status (not-running, idle, in-use). It is used by the Master Server in
responding to DNET clients’ requests for service.

5. DNET Server Instance Table(s) - These tables list detailed instances of Specific DNET servers
under control of the Master Server at this DNET host. There is a separate SIT for each type of
server available at this node.

6. Connection Lock Table - (not implemented at this time) Used by the DNET Datagram Service;
lists process/channel/streams currently connected to this host which may be used for the
forwarding of connectionless datagrams

1.3.4 Gateways

DNET Gateways are nodes in DNET which are connected to one or more networks in which DNET is
operating. The function of the gateway is to bridge the protocol and other differences between these
networks in a transparent manner. The gateway functions are implemented in special DNET PVC
Relay servers and Datagram Servers which provide protocol conversion for Permanent Virtual Circuits
and connectionless datagrams respectively.

Specific Gateway Elements include all elements of other DNET hosts with the following variations and
additions:

DNET Overview §



Software Components - All of DNET hosts plus

1.

PVC Relay Server - these special processes perform protocol hops for PVC client/server
conversations between two different underlying networks forming a portion of DNET. When idle,
these relay processes are like DNET application servers. The PVC Master controls allocation of

processes.

Tables - Same as (non-gateway) DNET hosts

1.4 Layered Model for DNET

6 DNET TECHNICAL GUIDE



Application

T
1
)
1
L

Presentation

T
{
§
!
Il

Session (NULL)

Existing Protocol
Pseudo-Link

DNET

Applications
& Network Utilities

DNET
Presentation
Functions

DNET
1/0
Library

DNET
Relays

DNET
Network

R T T TR T,

—_— Application
i
|
|
L
—_— Presentation
T
!
i
|
.
Session (NULL)
i
1
}
|
E—— Transport
I
........ L
. i
:' L
—_— Network
Existing Protocol
: Pseudo-Link
: ,
feesaae L seecacecaan
/
7/
’
, !

Existing Protocols

DNET Overview 7



1.5 Layered Model for Communication Services

1.5.1 Application

Provides library of function calls which DAVID (or other applications) may invoke in order to converse
with remote nodes on the heterogeneous net

Application Services Supported:
1. File Transfer
~ ASCII and Binary
~ End to End Acknowledgement
— Data Structures mapped end to end if context registered with Presentation layer Service
Remote Login
Remote Execution
Mail
General Utilities
- Status of all network nodes (up/down)

?ok W

— Load on remote node

— Hostid, hostname, alias resolution

1.5.2 Presentation

— The SUN External Data Representation (XDR) Specification is used to allow machine
independent sharing of data types across all DNET nodes,

1.5.3 Session

— This layer is null at present; All connections are assumed to support only one simultaneous session

1.5.4 Transport

~ DNET Basic 1/0 Function Library
— Reliable Task-to-Task Communications
— End-to-End Acknowledgement of Files, etc.

~ User Authorization, Access Privileges

8 DNET TECHNICAL GUIDE



1.5.5 Network

~ Defines routing strategies on the Heterogeneous Net
— Provides Relay function at intermediate Nodes

— Self Contained within DNET 1/O Library, PVC Relays, and Datagram Servers

1.5.6 Link - Interface

-~ A Pseudo-

Link facility which provides consistent interface to a variety of underlying network
protocols

= Generally, the calls from the network la

yer to this interface map on a one-to-one basis to calls in
the underlying, well known protocol.

1.5.7 Link

— These layers provided by underlying protocols

1.5.8 Physical

~ Data is assumed to move in a reliable, streaming fashion on any of these links

DNET Overview 9



2. Relationships between DNET Components

2.1 Basic I/O Function Library

The function calls provided in the DNET basic I/0 library are summarized in the following table:

Generic Operation | VIRTUAL CKT Client VIRTUAL CKT Server Datagram SIGNAL
Estab. Connect. dn_open dn_getclient
Write dn_write dn_cwrite dn_signal
Synch Read dn_read dn_cread Dest Oper Sys
ASynch Read dn_cdg_handler | Dest Oper Sys
End Connect. dn_close dn_done,dn_close dn_cdone

These functions are described in the following sections according to the type of service (PVC,
Connectionless Datagram, or Signal) which they support.

10 DNET TECHNICAL GUIDE



2.2 DNET Objects

The following table shows the relationships between the various DNET components

DNET Object Table
—
Object Name Resides in Started by Started at Updated by Receiver Monitored ty Shutdown by Shutdown at
generic various hosts server control some at start | - server names | Master Server Master Server | N /W
applications function upothers  as sent to | Process Process shutdown or
servers needed requestors by reduced need
FXFR, server
RLOGIN, assignment
REXEC ,ete.
Connection Lock Table Each DNET Host DG Server when  perm | DG Server DG Server - -
connection
DNET Basic I/0O pig application program | user program proc start - - part of end of proc end of proc
application
program
Master Server Table host where M S is Mast Serv startof M S MSs MsS M S proc net shutdn net shwdn
Master Server Each DNET host start of DNET S/W | . - - net shutcn net shurdn
Gateway Hosts w 2 or server cont fen in DS | system start - client calls DS proc Sys Admin net shutdn
more N/Ws
N/W Comm Lang Interprir | Each DNET host User as needed - N/W Util User
when complete
N/W Command Server Each DNET host Master Server Comm Exec B - M S Proc M S Control when complete
Local Routing Table all DNET hosts local Sys Admin net Start N/W  Statug | Net Status | - - -
Client Server at
G/W
N/W Stat Server Gateways any ifo runs period - reports to Net | Net Stat C1 end of appl prog | proc term
Stat C1
Service Assign Fen in M S Proc PartotM S at net Start - Master Server | - Net Shutdn Net Shutdn
* § Control function InM S Proc Partot MS atN/WStart |- controls # | Adm Host Net Stat C1 | Net Shutdn Net Shwtdn
servers via M
— S Tab
Well Known Server Table N/W Admin Host N/W Admin Server N/W Start N/W Admin | sent to all|. - -
Server hosts by N/W
Admin server
Datagram Server All DNET Hosts Loc Sys Admin DNET Start - Remote DG | N/W Util N/W Shutdn N/W Shutdn
Serv;  Local
DNET proc
PVC Relay Gateways Mast Server As needed - Next Hop Mast Server Mast Serv
when complete
Server Instance Table Each DNET Host Mast Serv N/W Scartup | Mast Serv -
Mast Serv Mast Serv N/W Shutdn

Relationships between DNET Components

11



3. DNET Permanent Virtual Circuit (PVC) Internals

The section describes the several function calls associated with DNET Permanent Virtual Circuits.
The functions are arranged to indicate those used by DNET client and server processes.

3.1 Connection Establishment

This section provides additional details on the DNET PVC connection establishment operations. The
basic client-server connection establishment procedure is shown in the following diagram:

Master
Y Server

Conn Req Datagram to Master Server o

Client 7\

12

Server

ACK from Specific Server

The client calls dn_open() with parameters including:
» Network Name
¢ Host Name
e Name of Server

dn_open() obtains a network address for itself from the local network software. This address is
sent as part of the connection request datagram to the Master Server.

If relays are used (required), the relay processes recognize the connection request datagram and
do not close the connections following transmission of the datagram,

The last relay (or the Basic I/O package on the client if there are no relays) connects to the
Master Server at the destination host; it places its network address in the connection request
datagram as the "call back’ address. The network address of the client is preserved for possible
use by the server.

DNET TECHNICAL GUIDE




The Connection request datagram is delivered to the Master Server.

6. Using the Master Server Table and a Specific Server Instance Table, the Master Server
allocates/spawns (VMS/UNIX respectively) a particular instance of the requested server type.

7. If service cannot be provided by the Master Server, a service_denied or "NAK" response is
returned to the client.

8. If a specific server can be provided, the Master Server passes the Connection Request Datagram
to this server, sends an "ACK" to the client, then closes its connection to the preceding process in
the connection chain.

9. The specific instance of the server calls dn_getclient(). Depending on the state of the
“callback flag" in the Connection Request Datagram, dn_getclient() performs either a
call_forward or call_back procedure to complete the connection.

NOTE: If the user wishes to use a specific user-defined process (not a known DNET service) that
process name should be specified in the initial call to dn_open(). dn_open(), using the networking
software of the local system, spawns a copy of the named process if that process does not exist already.

3.1.1 Summary of Connection Establishment Sequence

The several operations described above are shown schematically in the following series of diagrams:

DNET
Bask /0

i

Get 14t Hop
Client Calls dn_open()

DNET Coan
Basic /O Req DG

i

Connection Request Datagram Issued

DNET Permanent Virtual Clrcuit (PVC) Internals 13



Baskc 1/0

Basic /O

Relay 1

Basic I/0

Relay 1

Master Server Allocates /Starts Specific Server &

14 DNET TECHNICAL GUIDE

Master

Server
Master
Server

Master
Server

{
Coanection Info

t
Specific
Server

’hands off Connection Info



n_ J
Penfling
DNET Master
Relay 1 Relay N B o P
Basic1/O Server

i

Master Server Closes Connection to Last Relay

DNET Permanent Virtual Circuit (PVC) Internals 15



Client

dn d&o

retyras
Chn defcriptor

DNET

Basic 1/0

Server Calls dn_getclient()

Client

dn_chen()

DNET
Basic 1/0

Server Sends Connection ACK to Client

{ Relay 1

to complete connection to Client

Basic1/0

Client & Server Interact via dn_write() & dn_read()

16 DNET TECHNICAL GUIDE

Relay 1

L

Relay N

I




3.1.1.1 Client Server Conversation

Once the PVC is *open’ data is streamed between client and server processes:

Client

TN
/" DNET
1/0
\ Package

<c———1 Data stream from Server

Data stream to Server }|— =

N ) //"’_\
™ DNET
DNET Network 1/0
/ Package

-

3.1.1.2 Closing a Client Server Conversation

Specific
Server

At the conclusion of a session, the DNET permanent virtual circuit may be closed by calling

dn_close().

Client

Conn Close Datagram to DNET Server | — .

/"\ .

-

/DNEI‘ Network \L

Master
Server

Server

/
N/

V’

Conn Close ACK from Specific Server

3.2 PVC Client Details

A DNET Client Process employs the following calls for Virtual Circuit Service:

DNET Permanent Virtual Circuit (PVC) Internals 17



3.2.1 Connection Establishment
dn_open

chan = dn_open(net, host, service)

int chan; /* A channel number;
used in subsequent read and write calls */
char *net; /* A DNET network name */

char *host; /* A DNET host name */
char *service; /* A DNET service */

char *userid;
char *passwd;

dn_open() is used by client processes to request a Private Virtual Circuit connection to the specified
service a given network and host. The function does not return until a path to the destination has been
opened or an error conditions occurs,
3.2.2 Close Connection
dn_close
status = dn_close(stream)
int status; /* An indication of success or failure */
int chan;  /* A channel structure that was

previously opened using dn_open() */

dn_close() closes a communications channel; it can be used in
clients and servers.

3.3 PVC - Server
3.3.1 Receive a Connection
dn_getclient
chan = dn_getclient(service, usrbuf, pusrbuflen)
char* service;
char* usrbuf;

char* pusrbufien;

dn_getclient is invoked by all DNET application servers in order
to establish connections with clients which request this service,

Functionally, dn_getclient() waits for the Master Server to *hand’ it a service request (in the form of a
valid "channel’ or stream descriptor) for the current application server.

Internally, dn_getclient() is slightly more complex:

18 DNET TECHNICAL GUIDE



1. ADNET IPC is created for 'receipt’ of future service requests,

2. dn_done() is called to ’register’ this instance of the server as available in the appropriate Server
Instance Table.

3. The program then *blocks’ on ipcrey; it is waiting for an actual service request to arrive from the
Master Server

4. when ipcrev returns, its contents are inspected and disassembled using the function disassemble.

If the Datagram type is callback, dn_open() is used to call back. When dn_open() returns a
channel, this descriptor is passed on to the waiting application server.

6. If the CR Datagram type is ’stream’, the channel descriptor for this call is passed as part of the
datagram. dn_getclient transparently passes this channel descriptor to the server.

NOTE: the callforward mode is not currently activated at any server The call forward mode is
intended for use in Master Server/Application Server relationships where an ’open channel
descriptor’ may be passed from a parent to a child process. UNIX/TCP/IP supports such
channel passing with ease, DECnet does not.

Master
Server
Process

Connectjon REQ

DNET
get_client() Application
Server

3.3.2 Notify Master Server of Session Completion

DNET Permanent Virtual Circuit (PVC) Internals 19



dn_done
dn_done is called by each DNET Application Server before exit
to indicate to the local Master Server that it has
completed its task and is available for use

dn_done is also called (the first time thru) within dn_getclient
to register the server as available with the Master Server

dn_done() uses a common IPC (DMS_TCP or DMS_DEC depending
on the environment)

3.4 Data Streaming During Session - Clients and Servers

The functions dn_write() and dn_read() arc used by both clients and servers to ’talk’ on an open
DNET PVC Stream. These functions are equivalent to the UNIX system calls write() and read(); the
chan on which the operations occurs is an open DNET channel.

dn_write

nbytes = dn_write(chan,buf,nbytes)

int nbytes; /* The number of bytes, including DNET headers,
that was written on the given stream. */

int chan; /* 1/0 channel returned from dn_open */

char *buf; /* The data that is to be sent. This function

prepends the data with a DNET header. */

dn_write() takes data and packages it in a datagram
for transmission over the appropriate communications channel.

dn_read
Synchronous (Blocking) read
nbytes = dn_read(chan, buf, count)

int nbytes; /* The number of bytes, including DNET headers,
that was read from the given stream. */

int chan; /* A pointer to an 1/0 structure that was
previously opened by dn_open() */
char *buf; /* A result parameter where the datagram, in

string format, is placed; this buffer
contains the DNET headers. */
int count; /* The maximum number of bytes to receive. */

dn_read() reads a datagram from the communications channel and
unpackages it based on its type.

3.5 Master Server

This section describes the operation of DNET Master Servers. Master Servers are used to control the
DNET application processes within a single domain (underlying network) on the heterogeneous
network. The Master Servers are located at any computer attached to the local network which is to be

20 DNET TECHNICAL GUIDE



considered a DNET Host.

Master Servers are also used at DNET gateways to allocate Permanent Virtual Circuit Relay processes.
Since Master Servers ’listen’ on only one specific underlying network, DNET Gateways must have a
separate Master Server for each network to which it can provide relay services. (See the Chapter on
Gateways for additional information).

3.5.1 Master Server Schematic

Co tion
Reqgpest
H Master
Master : Server Server H
H rvi :
Server Assignment - CRDG> IPC
Pr H Control Functi .
ocess ion :
H Function
csesansd AP esssesnnnrrnseeus s ’ n-.......:
N ! 1
\\ / 4
AN / \
N N ‘\ DNET
\ / " Application
AR / ) Server
Ay ' \
A / \
N ' \
N \ I 1
! 3
. & - \\ dn_close()
: Master : “
: Server : ! IPC
1
! Table ! \
) |
b e e = = J \\
RN \
S v
T~ \
S~
F‘—S;“‘“V r-—s;---1 oo
e TV
oo I <o . st
. Instance | . Instance ' (DNET
: Table : 1 Table : “ s N) :
erver
¢+ (FXFR) i (RLogin) | |
L D 4 - = - Lo - - - — — - L - - - - - |

The Master Server Process has several separate functional elements as indicated in the above figure:
— Server Control Function

-~ Server Assignment Function

The Master Server utilizes the Master Server Table and Server Instance Tables in providing application
services.

DNET Permanent Virtual Circuit (PVC) Internals 21



3.5.2 Master Server Control Function

This function has responsibility for the allocation and spawning of DNET application servers within the
local domain.

Prespawning of processes is available as an option in order to improve the response time of certain
systems such as VAX/VMS in which process start up time is signficant.
3.5.2.1 Application Server Spawning Algorithm

1. At network start up spawn a number of copies of the servers, keeping their process id’s for later

use in forming the process names to give to clients. After giving a server to a client, spawn
another to replace it.

2. For less frequently used services- Spawn only when a client requests a server, This is the
Transient Server. Generally used in UNIX-TCP/IP cases.

3.5.3 Initialization of the Master Server
3.5.3.1 Master Server Init Table

The Master Server Init Table is read when the Master Server is started at the local DNET host,

DNET Master Server Init Table
Server Type  Image Name # Prespawned Max # [Init #*
dechod dechod 1 8 3
deftpd dtftpd 1 9 4
drexec drexec 1 1 1
dnstatd dnstatd 1 1 1
dnecld dneldl 1 10 5
dlogind dlogind 1 10 5
dmaild dmaild 1 10 1

This is a flat ASCII file which may be edited by the local system administrator.
3.5.3.2 DNET Master Server Table

The Master Server Table is a dynamic indicator of the types of DNET application servers available at
the local DNET host, the number which are currently available, whether these processed are

An example of the Master Server Table is shown in the following diagram:
22 DNET TECHNICAL GUIDE



DNET Master Server Table

ServerType | PreSpawned | Max # | # Avail# | In-Use | Ptrto SIT
drexecd Y 10 5 2 78555
deftpd Y 10 5 2 79747
dnmail Y 1 1 1 83297
dncl Y 10 s 2 99541
drelaydt Y 10 5 2 81423

This table is maintained dynamically by the Master Server internal to itself. It may be read using
dnetstat
Use of this function is described in the USER’s and ADMINISTRATOR’s guides.

3.5.4 Example of Application Server Spawning

The server spawning procedure is shown in the following diagram:

..........................

-------------------------------------------------------------

Spawning Application
Spawner | - - <- - _ [
Algorithm pawner : T Server
DNET
Host
Master Server Process

3.6 Details of Specific Application Server Assignment

3.6.1 Service Assignment Function

The Service Assignment function of the Master Server Process has the task of responding to requests
for service from application Client Processes at DNET hosts.

1. Accept Application Server Requests as they arrive at Master Server

DNET Permanent Virtual Circuit (PVC) Internals 23



2. Find available Application Server (or spawn one) by examining Master Server Table and Specific
Server Instance Table.

3. Send Connection Information to the Specific DNET Server assigned to this request via DNET
IPC Mechanism.

4. Flag server as In-use in Master Server Table

3.6.2 Specific Server Instance Table

DNET Server Instance Table

Server Type = File Transfer

PID | In-Use | Time Started | Time End | Ptr to MST Entry

1322 | 'Y 10:11 . 45779
1377 | Y 10:15 - 45888
1422 { N 10:15 10:20 45995
1428 | N 10:16 10:21 46100

3.7 DNET Gateways

DNET Gateways are nodes in DNET which are connected to one or more networks in which DNET is
operating. The function of the gateway is to perform protocol conversion between these networks in a
transparent manner. Following terminology used by Space Telescope Institute and others, the protocol
conversion are performed via DNET relay servers. The relay functions are implemented in special
DNET PVC Relay servers and Datagram Servers. The PVC (Permanent Virtual Circuit) servers

support private circuits between communicating tasks while the Datagram Servers perform relay tasks
for DNET connectionless datagrams,

24 DNET TECHNICAL GUIDE



Permanent Virtual Service

Listen Master Master Listen
Connection Request . : Connection Request
—5c> <—on— Server Server —oR—5 <o —
Netwprk 1| Network 1 Network N Netwprk N
: Conn Req
I .
: DG :
: Y :
PVC Relay
PVC on Net 1 PVC on
Net 1 : to NetN :
: Net N
Li s‘ Protocol Protocol Li Een
isten i
Connectionless . Datagram Datagram q( Connectionless
<] —— -—
DG Netw‘i)rk 1 Server Server Netws KN DG
r
: Network 1 Network N :
: Datagram
Master
Server
: (DGMS) :
Connectionless Service
DNET Gateway Elements

DNET Permanent Virtual Circuit (PVC) Internals 25



3.7.1 Permanent Virtual Circuit Relays

The PVC Relay Servers provide a means of moving DNET stream data between two different network
protocols. Each relay process is tailored for a specific protocol conversion task. The relays server
accepts calls from one protocol/network and then establish a full duplex channel.

PVC Relays are allocated by DNET Master Server Processes in the gateway machine and may thus be
considered as special purpose DNET Application Servers whose primary function is protocol
conversion on a data stream. Since Master Servers can only listen on a single network, a gateway has a
Master Server (and a corresponding "pool’ of relay processes) for each protocol boundry it supports.
Each Master Server accepts connection requests from a particular side of a protocol boundary and
allocates relays from this pool to service the request.

Relays can be used in routing and communications load balancing. Adding additional relay processes to
a gateway reduces the delay in accepting data from the network.

3.7.2 Master Server Control of PVC Relays

PVC Relays are controlled by the DNET Master Server in the Gateway machine. The interactions
between the Relays and the Master Server are very similar to those of any DNET application server.
Startup and connection passing are identical to other servers. Thus, the relay calls dn_getclient() to
complete the connection to the preceding element in the connection chain.

The ’application’ element of the relay requires establishment of a forward connection on the next hop
required as part of the connection establishment. This is accomplished by having the each relay call
dn_open() on its "server side.
The detailed steps in starting up the PVC relay are as follows:

1.

2. Master Server spawns/allocates 'next_service’ (the appropriate PVC relay in this case) and hands
the entire 'CR DG’ to the Relay Server.

3. The allocated Relay Server is waiting on return from dn_getclient()

4. Waits for "ACK" to be returned from the ’dest_service’ (through its call to dn_getclient). The
"dest_service’ would make the last ’dn_getclient’ call.

stream = dn_getclient ();

When dn_getclient returns, the relay then calls dn_open() passing the CR DG to this function:

3.7.3 Detail of PVC Relay Function

The major elements associated with PVC Relays are shown in the following diagram:

26 DNET TECHNICAL GUIDE



Permanent
dn_read() Virtual dn_read()
‘n;-\\ﬁ“(-)“ Circuit —————dn—write)
Network 1 Relay Network N
Server

DNET Permanent Virtual Circuit (PVC) Internals 27



4. Connectionless Mode Services

4.1 Introduction to Connectionless Service

4.1.1 Schematic of Connectionless Communications Service

The connectionless communications service is shown schematically in the following diagram. Client
and server process pairs employ the DNET BASIC I/O Library to generate datagrams which are
routed automatically via DNET Datagram Servers to the destination process.

Source Destination
Host Host
o= R
i !
' Application Application
| Client | Server
! ]
Lo __
dn_:\{rite() dn_cdg_] ler()
DNET DNET
1/0 1/0
Package  R—— Package
Datagram ;)
.\
IPC
re==== === l r===-=-=== ! X
' Gateway ! Gateway
! | !
DlzNE’I‘ ! 1 ! : N ‘ DDNEI‘
ata M fecedeet i eiirarenens tagra;
Se gra : Datagram : 1 Datagram T " m
rver \ ) X | Server
\ Server [ \ Server X
. b ey be e p e j
i ! i i
i .' | |
l__—l—_j ! ! F__'L——T
' Connection ' Fomteoa Fo-tooa ' Connection '
' Lock ! j Connection : : Connection : I Lock !
1 i { !
| Tabl | I Lock | | Lock ! ; Table |
e
: ' “ Table : : Table : ! !
[ a Lo J
Lo _ ] [ ]

28 DNET TECHNICAL GUIDE



Client

dn_cwrite()

DNET
I/0
Package

Server

Datagram to Server 1

Datagram
Server

Applications using the connectionless mode of this service call only two library functions: dn_cwrite()
& dn_cdg_handler(). The initiating process (process sending the datagram) invokes dn_cwrite().
Processes which expect to receive datagrams, (in general, all DNET applications), must call
dn_cdg_handler() at start up to identify an "asynchronous completion routine” to be executed whenever
a connectionless datagram arrives for this process. More complete details on the datagram service are

provided in a separate Chapter.

usr_deler()

4.1.2 Connectionless Datagram Formats

The general format of a DNET datagram is:

struct ass_dg_buf

char
char
char
char
char
char
int

int

char

b

The DNET connectionless services provides a standard connectionless interface to a heterogeneous
pool of underlying protocols. The underlying protocols include:

desthost[I MAXHNAME]
destnet[I MAXNNAME]
destproc[I_ MAXPNAME]
srchost[I_ MAXHNAME]
srenet[I_ MAXNNAME]
sreproc[I_MAXPNAME]
maxhops;

buflen;

buf[D_MAXDG];

Datagram
Server

Connectionless Mode Services




» Operating Systems
o UNIX System V.2
« UNIX BSD4.2
o VMS
» Networks
+ UDP/IP
o DECnet

The DNET user applications will be provided with connectionless service totally independent of any of
the above possible combinations through the following major components:

per protocol DataGram Server(DGS)

The basic function of these components is to provide a standard interface to the
DGMS for all underlying protocols. There will be one dgs module set for every
underlying network protocol ( UDP/IP, DECnet). The UDP dgs module set
consists of two modules: one for reading incoming datagrams and one for writing
outgoing datagrams. The DEChnet dgs module consists of one module which both
reads incoming while sending outgoing datagrams.

All dgs modules are written as standard dnet datagram programs. This is to say that
the dgs modules interact with the dgms using the same library routines as any other
datagram application. The difference being that they have a specific function to
perform that is imperative to the operation of dnet. That function is to act as a dumb
relay between underlying network provider and the dgms module.

DataGram Master Server (DGMS)

As the name implies, this component coordinates the activities of all DNET
connectionless components. The dgms module provides two basic services for the
dnet datagram service: routing and multiplexing of datagrams.

The routing procedure is driven by the same routing tables used by the dnet
connection services. The dgms, though, is the only component of the dnet
connectionless services that provides routing. All other modules know only how to
pass a partially qualified datagram off to the dgms. The dgms looks up the
destination network in the routing table and uses the next nmetwork protocol to
determine which dgs module set to pass the datagram on to (It may also just pass it
directly to a server process if the datagram is already on the destination machine).

The multiplexing service provided by the dgms is driven off of an internal table
(ADGUT - Active Datagram User Table) which has a record for every
communication endpoint provided. Included within these records is a string value
representing the name that is bound to a given endpoint. This name is used to
identify which process is to recejve a datagram. All processes must bind to a process
name at the time they call dn_cinit if they expect to receive datagrams. The following
process names are reserved for the datagram services and should not be used in user
applications:

» dgsudp
o dgstcp
o dgsdec

30 DNET TECHNICAL GUIDE



Connectionless Services Library

The connectionless services library will provide DNET connectionless user
applications with a variety of standard subroutines to access the connectionless
services. These subroutines include:

o dn_cinit()

o dn_cwrite()

¢ dn_chandler()
e dn_cread()
 dn_cdone()
 dn_salloc()

e dn_cerror()

4.2 per protocol DataGram Server (DGS)

The primary purpose of the DGS module set is to provide a simple interface to an underlying
communication provider independent of the underlying communication provider. This interface is
actually the set of library routines described below and developed for use by dnet datagram
applications.

The first step that the DGS module set must perform is to register with the DGMS module. This is
facilitated through the dn_cinit and dn_chandler library routines. These are the same library routines
used by other handlers, although the dgms will check for a process registering with one the dgs module
set reserved names and will interact differently in some situations. The dn_cinit call will register the
dgs module set under it’s reserved name, and will provide a means for passing datagrams to the dgs
module set’s representative network(s). The dn_chandler library routine is optionally used (currently
only on dgsdec) to allow for asynchronous receipt of datagrams from the dgms.

After being properly registered, then the dgs module set is responsible for establishing a protocol
dependent endpoint for communication with other dgs module sets of the same type on different
machines. A name is bound to this endpoint for the peer dgs module sets to send to. At this stage a
perceived full duplex connection exists through the dgs module set from its underlying network
endpoint to its dnet endpoint,

The only responsibility left for the dgs module set is to maintain this full duplex connection, thereby
providing the dgms access to the underlying protocol. To provide this, the dgs module set must
respond to events on either side of the full duplex connection. For the UDP/IP and TCP/IP module
sets there actually exists two modules, one for reading from the underlying protocol and passing
datagrams on to the dgms, and another for reading datagrams from the dgms and passing them on to
the underlying protocol. The DECnet module set is implemented with only one module, and uses the
dn_chandler routine to respond asynchronously to datagrams coming from the dgms, while waiting for
datagrams from the underlying protocol. The DECnet module was designed in this fashion so as to
work efficiently on the VMS machine.

The specific details of implementation are discussed in the appropriate sections that describe every
possible combination. This section will describe the general requirements that every DGS component
must meet.

All dgs modules are invoked independently of the dgms, although they will fail if they are invoked
before the dgms is running, The shell program: startdgms, and the DCL script: strdgms.com illustrate
an acceptable method of network initiation. A more detailed discussion of the network initiation
should be found in the administrator’s guide.

Connectionless Mode Services 31



4.3 DataGram Master Server (DGMS)

The dgms module provides two basic functions for the datagram services: routing and multiplexing of
datagrams.
4.3.1 The Routing Function

The routing function is driven off of the same table used by the connection services for routing,
although some different fields are used. The following is a description of this routing table:

[ destnet | nexthost | relay | nextproto |

The fields within the user datagram structure are used to determine which record to pull (if any) from
the routing table. The following structure describes the user datagram:

struct node

{
char host[l_MAXHNAME];
char net [I_MAXNNAME];
char proc[I_MAXPNAME];

b

struct udg /* User Datagram structure */

struct node src;

struct node next;

struct node dest;

long maxhops;

int type;

long bufien;

char buf{1];

k

The user datagram structure provides a definitive description of a datagram. The user library stamps
the src node information on the way out (the dgs module sets avoid this stamping with a special flag on
the dn_cwrite routine). This information is not used directly by dnet components, but rather is there to
provide the dnet application with information about the datagram source. The destination node is set
by the user application and is never modified by the dnet components. The dgms module reads this
i in it’s routing function and sets the next node field accordingly. The next node field is used

field is currently never used by the dgs module or set by the dgms module. This requires that machines

be named uniquely when there is a possibility that they will reside on networks common to any gateway
machine,

32 DNET TECHNICAL GUIDE



In addition to the above, the dgms module must be able to correctly describe itself in terms of machine
name and connected networks. This is determined from the myname table which is described below:

,ﬂ)stname , netnanﬂ

The process for routing is, then, as follows. A datagram arrives at the dgms, the destination node is
checked against the myname table to place the datagram in one of the following three categories:

* The datagram is at the destination host and network
* The datagram is at the destination network but is not yet at the destination host

* The datagram is not yet at the destination network
Datagrams in the first category need no further routing and hence are passed on directly to the
multiplexor. Datagrams in either the second or third category require a network table lookup, using
the dest.network subfield of the datagram as the key. After a successful lookup, a table lookup is
performed on the next.proto subfield of the network table to determine the name of the dgs module

All users of the DNET datagram service must be registered with the DGMS and entered into the
ADGUT. The DGMS will insure that two processes may not bind to the same process name. The

The service routines to the dgms are accessed via the same Inter Process Communication (IPC)
mechanisms that are used to send and receive datagrams. This means the dgms has only to contend

struct dgms_msg

{
int type;
long buflen;
char buf[1];
5

Connectionless Mode Services 33



The type field identifies the contents of the buf field and may be one of the following values:

D MSGDG  User Datagram

D_MSGSRQ Service Request

D _MSGSRS Service Request Response

D_MSGSHD Shutdown Advisory -- Not currently implemented

4.3.3 The DGMS Service Routines

The dgms service routines mentioned above provide a means for dnet datagram applications (including
the dgs process sets) to interact administratively wit the dgms. The interface to the service routines are
provided through the dgms_serv library routine.

The dgms_serv library routine issues a Service Request message to the dgms and awaits a Service
Request Response message. The service request and service request response are both data structures.
Your program is required to fill out the service request structure before calling dgms_serv. After
returning from dgms_serv, the calling program interprets the results left in the service request response
structure. The following describes these two structures:

struct srvreq

{
int service; /* service token */
int pid; /* process id of requesting process */
char pname[D_MAXPNAME];/* requested process name to be bound */
char rspipcname[D_MAXPATHNAME];/* set only by dgms_serv */
char ipcname[D_MAXPATHNAME];/* where to send datagrams */

int value; /* service dependent field */
b
struct srvrsp
{
int service;
int pid;
char ipcname[D_MAXFNAME];/* no longer used */
char pname[D_MAXPNAME];/* not used */
int retval; /* return value */
5

The following is a list of available services. These services are described in detail later in this
document.

DN_REQBAS Request Basic DGMS Service. Register a process name, send datagrams, and
receive datagrams synchronously.
DN_REQLIS Request Listen DGMS Service. Receive datagrams asynchronously.

DN_REQCLN Request DGMS Cleanup Service. Free up any resources tied up by the
identified communications endpoint.

DN_REQAGS Request ADGUT Status Service. Receive a copy of the ADGUT table in its
entirety.

34 DNET TECHNICAL GUIDE



Although the service request message is sent through the same IPC mechanism used for sending
datagram messages, the service request response messages are sent through a separate, transient IPC
mechanism. This is due in part to the service routines being used to actually establish the IPC
mechanism used for receipt of datagrams.

The dgms_serv routine attempts first to establish an IPC endpoint for receiving the service request
response. The service request always uses the same ipcname (dgmsrs) and will make multiple attempts
to gain access to this ipcname in the UNIX environments. In a VMS environment, this will only happen
to processes under the same login session, because normal user processes do not advertise their logical
mailbox name, but rather their actual mailbox name through the service request (the vms version of
ipcget changes the logical name passed to the actual mailbox name) to this rule is the dgms, who uses a
special flag (and must have SYSNAM privilege) on the ipcget routine to advertise the logical name in
the system table.

After an appropriate IPC endpoint has been established, the dgms_serv routine assigns the ipcname
bound to the endpoint (mailbox device name in VMS) to the rspipcname field of the srvreq structure.
The service request is packaged in a message and sent out the standard IPC mechanism used for
sending to the dgms. A blocking read is then performed on the newly created IPC endpoint waiting for
the service response. After a service response is received, the endpoint is freed (possibly making it
available to other processes) and the service response is returned to the function calling dgms_serv.

The following describes in detail each of the service routines supported by the dgms:
Request Basic DGMS Service

This request is made by the dn_cinit(3U) user library routine and performs three
basic functions:

1. Establish an entry in the ADGUT table to describe the datagram
communications endpoint.

2. Establish a means of sending datagrams to the user program by connecting to
the IPC endpoint specified in the service request structure for receipt of
datagrams. The user program must have already created this IPC endpoint
before issuing this request.

3. Bind the process name specified in the service request to the newly created
datagram communications endpoint.

The following fields of the srvreq structure are significant in the DN_REQBAS
service request:

service = DN_REQBAS

pid  This is the unique process identifier to be used when communicating back
to this process information on the requested service (see below).

pname This represents an optional process name that the process wishes to be
bound to so that datagrams sent will have a known process name. If no
name is given, then the system will not send datagrams to this process.

value This represents the maximum number of bytes that this process is capable
of receiving. If a message for this process is larger, it will be truncated, but
the size field will not be altered so that the receiving process will know that
there was information lost. THIS IS NOT CURRENTLY SUPPORTED.

ipcname This character string represents the name that may be used by the dgms
to access the IPC endpoint so that datagrams may be sent to the user
process. In UNIX environments this is a file name stored in a standard
directory location. In VMS, this is the fully qualified pathname of the

Connectionless Mode Services 35



mailbox being used for IPC. The requesting process should already have
this IPC endpoint established.

rspipcname This is an ipcname in the same form as ipcname which is used to send
the service response back to the requesting process. The requesting
process should already have this IPC endpoint established.

Response Basic DGMS Service

The following fields from the srvresp structure are used:
service = DN_REQBAS
retval

The retval field may contain the following values:

0 Successful. The Request Basic DGMS Service control statement
has completed succesfully and the DNET datagram user is now in
a state where datagrams may be sent and received synchronously.
The DGMS listen service may also be requested now.

-1 Internal DNET error. An internal error has occurred.
2 No DGMS resources. There are currently no available entries in
the ADGUT.

-3 ADGUT quota exceeded. You have exceeded the maximum
number of entries you may use from the ADGUT table. This is
not implemented yet due to the fact that only one endpoint per
process may be established.

-4 No ipcname. The ipcname you specified for receipt of datagrams
does not exist, or cannot be accessed by the dgms.

-5 Name in use. The process name that you requested to be bound
to your endpoint is already in use by another process.

Request Listen DGMS Service

This control routine allows a signal number to be defined (in UNIX environments)
to be used to inform the user application of a pending datagram. This routine has no
real functionality for the VMS environment except to reset the state indicator for this
process in the ADGUT,

service = DN _REQLIS

pid  The primary use of the pid is to allow the DGMS to signal or interrupt the
DNET Datagram User to indicate that a datagram has been received. This
field should be the same as was specified in the DN _REQBAS request, as
it will be used to query the ADGUT.

pname This field should be the same as was specified in the DN_REQBAS
request, as it will be used to query the ADGUT.

ipcname This field should be the same as was specified in the DN_REQBAS
request, as it will be used to query the ADGUT.

value
This is the "signal" (in UNIX terminology) that will be used to wake up the

dn_handler routine. This field is required, but is not meaningful in s VMS
environment,

36 DNET TECHNICAL GUIDE



Response Listen DGMS Service

This control statement will be initiated by the DGMS after receiving a Request Basic
DGMS Service control statement. The Response Listen DGMS message will use the
following fields of the srvresp structure:

service = DN _REQLIS
retval
The retval field may contain one of the following values:

0 Successful. The Request Listen DGMS message was serviced
successfully and the calling process is now in a state associated
with the Listen DGMS Service,

-1 Internal DNET error.

-2 Bad argument(s). The specified pid field was less than zero, the
pname field was not specified, or the ipcname field was not
specified. The dgms cannot perform the ADGUT query without
these fields.

-3 An ADGUT entry was not found with the values supplied for pid,
pname, and ipcname,

Request DGMS Cleanup The Request DGMS Cleanup message instructs the DGMS to free up all
resources allocated for the process using the given pname, and under the provided
pid. This will remove any unique IPC mechanisms associated with this process, if the
IPC mechanism is not being used for another process name within the given process.

The Request DGMS Cleanup message uses the following fields from the srvreq

structure:
service = DN_REQCLN
pid This is the actual process identifier. It will be used to determine which

entries to remove from the DGMS Active Datagram User Table when a
process name is being shared by more than one process.

ipcname This should be the same as used in the DN_REQBAS request, as it will
be used for an ADGUT query.

Response DGMS Cleanup The Response DGMS Cleanup uses the following fields of the srvresp
structure:

service = DN_REQCLN

retval  The retval field will indicate the success of the Request DGMS Cleanup
Statement. A value of 0 will indicate success, and indicates that all
resources being tied up by this pid, pname combination are now freed.
The following values will indicate the error condition existing:

-1 Internal dnet error.

2 Bad argument. The pid field or the ipcname field were not
specified or were invalid.

-3 An ADGUT entry could not be found with the specified pid
and ipcname,

Connectionless Mode Services 37



srvreq structure are significant:
service = DN_REQAGS
pid Process identifier.
rspipcname For sending service response.

Response ADGUT Status The response to DN_REQAGS includes the following fields of
significance:

service = DN_REQAGS

ipcname The name of the datafile in the dnet_home directory which contains the
ADGUT copy. The table is in its binary form and can be accessed using
the dgms_adut structure defined in dgms.h and described below.

4.3.4 The ADGUT

The DGMS Active Datagram User Table is created and maintained internally by the DGMS so as to
keep track of all processes that interact with it (including all DGS components).

struct dgms_adut
{
int pid; /* Process Identifier */
char  pname[MAXPNAME];/* process name bound to */
char  ipcname[MAXFNAME];/* IPC name to use to send */
int ipcid; /* IPC id used to send messages */
int maxmsg; /* maximum size of message this component can receive */
int signal; /* Signal number used to inform of pending datagrams */
unsigned w_timeout;/* timeout period on write */
time_t add_time;/* time entry was added */
time t last access;
time_t last_update;
time t last _send;
time t last recv;
int state; /* 0 - invalid, 1 - basic, 2 - listen */
b

Figure 1. DGMS Active Datagram User Table

The pid field is the process id of the process used primarily so that signals or interrupts may be sent to
the process to inform it of impending datagrams. The pname field is a process name that is bound to
the process. This allows outgoing datagrams to have a process name, and allows for incoming
datagrams to be routed to the proper server process. The DGMS will allow only one process to be
listening on a given process name, although many processes may be sending under a common name.

The ipcname field is used to keep track of the name of the IPC mechanism used to send messages to
that particular process. The ipcid is used to hold the id (a file descriptor in the case of named pipes) of
the IPC mechanism.

The maxmsg field is not currently supported but is intended to allow a user application to impose limits
on message sizes that may be passed to them. This is handled now by requiring that all user processes

38 DNET TECHNICAL GUIDE



be capable of handling the maximum size message, or the biggest message they expect to receive.

The signal field is used only in UNIX and indicates the signal number that is to be sent to a user
application in the listen state when a datagram is pending,

The w_timeout field is always set to 0 except for special dnet processes who will have a hard-coded

value. This value represents the amount of time (units are system dependent) that the dgms will block

The state field indicates the current state that an endpoint is in. This field is used when determining if
an ADGUT entry is available.

The time fields are all used to monitor activity of the user applications.

Connectionless Mode Services 39



4.4 The Connectionless Services Library

The connectionless services library consists of seven user function calls:
dn_cinit Establish endpoint and basic service state
dn_cwrite Send a datagram towards a destination node

dn_chandler Declare an exception handler for asynchronous receipt of datagrams

dn_cread Read a datagram synchronously

dn_cdone Free up datagram communications endpoint resources
dn_salloc Dynamically allocate dnet data structures

dn_cerror Send a dnet error message (including stack trace) to stderr

4.4.1 The Function Of dn_cinit

name (possibly null) to that endpoint with the DN_REQBAS service routine. The dn_cinit routine also
establishes the IPC mechanisms necessary for sending and receiving of datagrams.

A user application that is in a basic state is capable of sending a datagram to another registered user
application (local or remote). In addition, the user application in a basic state may request the listen
state as long as a valid (non-null) process name was bound on the datagram communications endpoint.

4.4.2 The Function of dn_cwrite

The dn_cwrite function call facilitates the sending of a datagram to a remote process.  This is done by
source stamping the datagram (filling in the source node of the datagram structure), encapsulating that
datagram in a dgms message structure and passing that message along to the dgms. No reliability is
implicit or explicate within dn_cwrite.

4.4.3 The Function of dn_chandler

The dn_chandler library routine is by far the most complicated and operating system dependent of the
function calls. The basic function of the call is to place the user into a state associated with Listen
DGMS Service. This involves identifying an exception routine that is to be called when a datagram has
arrived for this user.

The UNIX implementation will allow the address of the exception routine to be identified to the
library routines. The library routines will set up a trap for the signal that the user specifies. The signal
can not be used for any other purpose within the user application. This is why the dn_chandler

40 DNET TECHNICAL GUIDE



function call allows the process to choose the signal. This information will be passed along to the
DGMS so that it may be included in i’s Active Datagram User Table.

After the routine and signal have been set, then the receipt of the datagram for this process will result
in a signal being sent to the process by DGMS (this of course requires that DGMS have an effective
uid of root), which will then cause the library routine to call the exception routine specified in the
original call. The exception routine will be passed the address of the udg structure containing the
datagram just read.

The VMS implementation will be similar, in that an exception routine is specified, and the address of
the udg structure is passed as an argument to the exception handler when a datagram arrives. The
VMS implementation will, though, use asynchronous traps (AST) to inform of pending datagrams.

4.4.4 The Function of dn_cread

pending. The routine is capable of working in either blocking or nonblocking mode (the default is
blocking).

The dn_cread routine basically maps directly to a ipcrev call, checks the message type for a datagram,
and if so, unpacks the datagram and passes it back to the calling function,

If the message type read was D_MSGSHD, then a dn_cdone is issued, the dnet_errno value is set to
D_SHUTDOWN, and the call returns in error (with a -1).

4.4.5 The Function of dn_cdone

The dn_cdone routine provides for the freeing of resources normally allocated for a datagram
communications endpoint. This is done mostly through the DN_REQCLN service routine.,

The dn_cdone routine itself also closes any standard IPC mechanisms, and removes the mechanisms
that it created (inherently by the ipcclose). Finally, the dn_cdone routine resets any signal handlers
activated by a call to dn_chandler.

4.4.6 The Function of dn_salloc

The dn_salloc library routine is used to dynamically allocate dnet data structures that contain an
imbedded buffer to be used for the layering of abstractions. This function is useful so that a program
may choose the size of the buffer rather than always creating a buffer of maximum size, and can also be
used to create reentrant/recursive code sections (possibly in combination with the dn_chandler
routine),

Connectionless Mode Services 41



4.4.7 The Function of dn_cerror

The dn_cerror function is used merely as a last resort to try to display diagnostic information as to why
something failed. A stack trace of dnet calls is displayed to try to provide insight as to where in the
user code the failure occurred.

The stack trace is facilitated within the datagram service code through an array of character arrays that

hold the name of the library routine called. This array is updated by calling macros defined in the
dnet_errno.h file. These macros are:

+ DE push()

« DE_pop()
« DE_print()

42 DNET TECHNICAL GUIDE



4.5 Component Interaction Diagrams

The following diagram describes schematically all of the components of the datagram service that have
been discussed. Following that diagram, there is a series of diagrams describing the series of steps that
are taken in bringing the network up and in sending a receiving a datagram.

Connectionless Mode Services 43



User User
Application Application
DNET-Connectionlase. DNET -Connectionless |
... Services Library .. ! ... Services Librasy . .
DNET
DGMS

DNET DNET
UDP DGS DECnet DGS

UDP DEChnet
Provider Provider

Figure 2. Schematic Overview of Connectionless Service

44 DNET TECHNICAL GUIDE



uUDP
Provider

MNP
Provider

Figure 3. Empty Host Machine With No DNET Components

Connectionless Mode Services

45




This represents an empty machine. T

he only components of interest existing on the machine are any
underlying protocol providers.

46 DNET TECHNICAL GUIDE



DNET
DGMS

Figure 4. Datagram Master Server Started

Connectionless Mode Services 47




Here, the DataGram Master Server is started either manually by a systems administrator, or through a

regular boot up procedure in the machine. The DGMS will coordinate all connectionless service
activity and so will be the first component started.

48 DNET TECHNICAL GUIDE



Process ET
Commuaigation— — ] -._Db
. i DGMS
Medium 5

Figure 5. Process Communication Medium Preparation

Connectionless Mode Services 49




The DGMS will first create the process communication medium. This will be one form of
communication that will be used by all components when interacting with the DGMS. This will allow
the DGMS to concentrate on reading from only one entity. The communication medium must support
message oriented service. The message oriented service will provide for the synchronization of
otherwise potentially non-atomic writes over a single IPC mechanism potentially shared by many
writers.

50 DNET TECHNICAL GUIDE



. Active Datagram :
User Table

DGMS

! Mediuni-.. !
L . "

““““ 7
!
. o7 '
1 B S [
2 2
P !
P |
P |
- |
DNET DNET
UDP DGS MNP DGS

Figure 6. Invocation of DGS Components

Connectionless Mode Services

51



1. The DGS program sets are started independently of the dgms program. These issue the dn_cinit
call, which establishes the IPC communication endpoint for receiving datagrams and connects to
the standard IPC communication endpoint for sending messages to the dgms.

2. After the connection to the dgms is made, service request (DN_REQBAS) is made (via
dgms_serv).

3. The dgms responds to the service request by establishing a dnet datagram communications
endpoint in the ADGUT and binds the requested process name (dgstcp and dgsdec in this case)
to the established endpoint.

4. Finally the dgms connects to the IPC endpoint created by the dn_cinit routine in step 1. This
simplex connection will be used to send datagrams to the dgs program sets. The service response
is sent through a transient IPC mechanism created and maintained by the dgms_serv routine.

52 DNET TECHNICAL GUIDE



DNET

User
DGMS
. DNET Connectioniess' : : Active Datagram
.. ..S6rvices Library . | - : User Table
1 B
T e
! Communication I ..................... 4., DNET
i - I DGMS
Medium

Lo - - _ _ _A

Figure 7. dn_cinit process

Connectionless Mode Services 53




The dnet user application uses the same procedure as the DGS program sets in accessing the dgms.

54 DNET TECHNICAL GUIDE



Communication
Medium

DNET

4 DGMS

Routing
Table

Underlying
Protocol
Provider

Figure 8. dn_cwrite Process

Connectionless Mode Services

55



1. The dn_cwrite will send a message containing a datagram with a DGMS Message Header
inserted (exactly the same way that the DGS component passes datagrams to the DGMS and
through the same key value) onto the process communication medium,

2. The DGMS (again who is performing a blocking read on the process communication medium)
will read this message and will interpret it as being a datagram.

3. The DGMS component consults the routing table to determine the address of the next hop (after
determining that the destination is not the current machine... again the exact same mechanism
used when a datagram arrives from a DGS component).

4. The DGMS sends a message out to the process communication medium of type datagram and
sent under the key value so that the proper DGS component will read it (this is determined from

the routing table).

5. If necessary (in dgsdec only) a signal is sent to inform the module that a datagram is pending (the
dgsdec module is blocking in the underlying protocol side). In the case of the dgsudp program

6. The DGS component reads the message from the process communication medium and prepares
internal structures (structures that are unique to the appropriate protocol).

7. The datagram is then sent to the underlying protocol. All special considerations of underlying
protocol are handled here. For example, if the underlying protocol does not support a
connectionless service, then a connection is established for each datagram to be sent.

56 DNET TECHNICAL GUIDE



re- g - -"""7

| . —
Communication '

Process

Active Datagram
User Table

Medium

DNET
DGMS

Figure 9. dn_chandler Process

Connectionless Mode Services

57



1. After achieving the state associated with Basic DGMS Service, the DNET User component is
able to move to the state associated with Listen DGMS Service. The dn_chandler sends a
Request Listen DGMS Service message to the process communication medium under the hard
coded key value used to communicate with the DGMS (the same value used when sending the
Request Basic DGMS Service message).

2. The DGMS reads the message sent to it and interprets it as being a Request Listen DGMS
Service message.

3. Assuming the component sending the Request Listen DGMS Service message is in the proper
state (it must have previously sent a Request Basic DGMS Service message and be listed in the
DGMS’s Active Datagram User Table), the DGMS will modify the entry in the Active Datagram
User Table.

4. The DGMS sends a Response Listen DGMS Service message out to the DNET Datagram User
with the ipcname specified in the Active Datagram User Table. Information included in this
message includes the DNET User Identifier, and key value which may contain a negative number
indicating an error.

5. The dn_chandler routine will have been waiting for the Response Listen DGMS Service message
over the standard response ipcname (this all happens in the dgms_serv internal library routine).
After reading a successful response, the DNET Datagram User will now be in a state associated
with the Listen DGMS Service and is capable of sending datagrams as well as responding to
datagrams sent to it.

58 DNET TECHNICAL GUIDE



© DGMs -
AR DNET -~ : . Active Datagram :
. 1/OLibrary. . © User Table
g y
r-- }", ot T
Communieation ™ > DNET
| mmunication " i DOMS
Medium
DGS
i
Underlying
Protocol
Provider

Figure 10. Receive Datagram at Destination

Connectionless Mode Services 59



1. When a datagram arrives from another host, the underlying protocol passes it to the DGS
component performing the blocking read on that particular protocol.

2. The DGS component inserts the DGMS Message Header on the datagram to form the datagram
message (the exact message type that the DNET User component forms when sending a
datagram with dn_cwrite) and this message is placed on the process communication medium with
the key value specified so that the DGMS will read the message (the same key value used by the
dn_cwrite routine when sending it’s datagram message).

3. The DGMS reads the message from the process communication medium and interprets that it is
a datagram message.

4. The DGMS figures out that that the datagram is destined for this host, and so it checks the
DGMS’s Active Datagram User Table to find the process (if one exists) that is waiting to receive
this datagram. The DNET process ID and the key value for this process will be pulled from the
Active Datagram User Table.

5. The message is placed on the process communication medium with the key value specified so the
proper DNET User component will read it.

6. If the state associated with the intended destination of the datagram is 2, indicating that it
received datagrams asynchronously, a signal is sent when the operating system environment is
UNIX.

7. The DNET User component will read the message waiting for it on the process communication
medium.

60 DNET TECHNICAL GUIDE



| S 1
| Proce.ss ) < s DNET
| Commur}lcanon L 5 DGMS
Medium
Lo
T
!
|
|
b 6
|
| Routing
w Table
UDP/IP DECnet
DGS DGs
I B
UDP/IP DECnet
Provider Provider

Figure 11. Receive Datagram: at Gateway

Connectionless Mode Services 61



1. A datagram is received by the underlying protocol and is passed along to the DGS Component
associated with that underlying protocol.

2. The DGS component inserts the DGMS Message Header and places the message in the process
communication medium with a key value such that the DGMS will read it.

3. The DGMS reads the message and determines that it is a datagram message.

4. The DGMS determines that it does not represent the destination machine, and so consults the
Routing Table to determine the next hop.

5. The DGMS changes the next hop node in the user datagram structure to state the node
information of the next hop and places the datagram message back into the process
communication medium with a key value such that it will be read by the proper DGS component.

6. If necessary, the dgs program (dgsdec only) will be sent a signal if it resides on a UNIX machine.

7. The DGS component will then read the datagram message and prepare the internal structures in
preparation for passing it along to the underlying protocol.

8. The DGS component will then pass the datagram along to the underlying protocol provider. As
stated previously, any provision for support of connectionless service in an underlying protocol
which otherwise does not support a connectionless service is the responsibility of that DGS
component.

62 DNET TECHNICAL GUIDE



5. DNET Interprocess Communication (IPC)

5.1 Introduction

The standard IPC implementation was created to provide a standard means of communicating between
processes running in varied environments. These means must be capable of providing services
necessary and reasonable for both the connectionless and connection services. The following
summarize the requirements placed upon the IPC services:

Independence from DNET

The mechanisms should serve all of the needs of the dnet services but should
avoid (where possible) imposing dnet constraints. These constraints could be
usage of global constants defined in the dnet domain, or reliance upon dnet
locations within a file system, or the usage of functions defined within the dnet
domain. THIS REQUIREMENT HAS NOT BEEN COMPLETELY MET.
MOST VIOLATIONS OCCUR WITHIN THE VMS ENVIRONMENT.

Implemented under BSD UNIX, System V UNIX, and VMS

The standard IPC implementation should be accessed the same regardless of
the operating environment under which it was created. This was the primary
reason for creating the standard IPC implementation, so as to provide a
standard interface for communicating with other processes on the same box.

Simplex IPC mechanisms

The IPC mechanisms established need only be simplex. This requirement is
stated to allow for economizing resources. If a full duplex connection is
required (the exception rather than the rule in dnet), then two mechanisms
may be established. In two of the three operating environments, this does not
require any more resources than an actual full duplex mechanism.

Message oriented transmission

The message oriented transmission is required mainly because of the need to
have a single reader responding to many writers. The IPC mechanisms
themselves are more capable of managing messages than is the receiver
capable of making messages from a stream. All operating environments
provide a direct IPC mechanism for passing messages.

Oriented towards endpoint establishment

The endpoint establishment should be contrasted with a "mid point”
establishment such as the message queues used in System V UNIX. The mid
point establishment allows a common area to be logically set up where
messages may be placed (a bulletin board of sorts), all members are then able
to pick any message sitting in the mid point. The endpoint method allows one
process to advertise an address which can be globally sent to, but only locally
read. The BSD socket interface is an example of endpoint establishment. The
VMS mailbox devices would fall into the category of mid point. The endpoint

DNET Interprocess Communication (IPC) 63



establishment requirement was set down mostly because it is easier to force a
midpoint type IPC mechanism to act like an endpoint type IPC mechanism
than vice-versa.

Addressing via character strings

All IPC endpoints should be addressable with character strings. There are
some limitations to this including length and use of special characters like "/" in
UNIX and "" in VMS. The BSD and VMS provide direct addressing of
endpoints with character strings. The conversion used for System V message
queues is discussed in the section on implementation for System V.

Independence between peers

All interactions across the IPC mechanisms should be performed
independently of the action or availability of the peer. If the buffer between
the peers is full, then the sender should have the ability to fail the write without
wasting time blocking. In no case should the success of the write be hinged
upon the availability of a read.

5.2 Interface

The interface to the IPC mechanisms is intended to be similar to a socket interface, but simpler
because of less required functionality. In addition, and more important, the interface should be
independent of the operating system, although there still exist some subtle differences. Finally, there is
a provision for binding and connecting (like the socket interface), but the simplex nature of the
connections allows this provision to be included in the library routine to establish the endpoint.

The following, then, are brief descriptions of the library routines making up the general IPC interface.

5.2.1 Administration Of IPC Medium

To provide for full flexibility, it is necessary on some operating systems to create a medium for the IPC
mechanisms. This medium may include an environment for name translation or location (UNIX) or
may require that a chunk of the operating systems IPC "medium” be reserved for use by the set of
cooperating processes (System V). The VMS operating does not require the administrative creation of
the IPC medium, and in that environment merely no action is performed on an attempt to create the
medium.

The phrase "midpoint establishment” merely provides convenient semantics for this discussion and should not be confused
with any other phraseology that may be similar

64 DNET TECHNICAL GUIDE



Two routines are provided for the administration of the IPC medium. One routine is called to create
the medium, and the other routine is called to remove or free the medium. An explanation of these
two routines follow.

5.21.1 The makeipc function

The _makeipc function allows for the administrative creation of an IPC medium necessary for
establishing and using IPC mechanisms for communication. The following is a listing of the
declaration of _makeipc:

int _makeipc(sv_msg_key, ipedir, flags)

int sv_msg_key; /* System V message key value ./

char *ipedin; /* UNIX directory where addresses will reside */

int flags; /* D_CREAT, D_EXCL */
The sv_msg_key argument is only pertinent in the system V environment (although a value may be
passed in any environment without harm). This value is used to determine the lookup key value for the
message queue that will be used. One message queue is shared for all IPC mechanisms in System V.
Consult with your administrator or use the UNIX ipcs -q utility to determine available message queue
key values,

only (no "/s are allowed) that is relative to the ipedir. Once the IPC medium has been established
and is being used, an examination of this directory will reveal the active connections.

The flags argument is used to allow for the creation of the IPC medium. When this routine is called
administratively, the D_CREAT flag should be set at a minimum to insure that you will create the
environment if it does not exist. It is suggested that you use the D_CREAT in combination with the
D_EXCL to insure that two administrative processes are not reigning over a single IPC medium.

The use of this call with neither of the flags set is valid and is used to merely access an existing IPC
medium. This call is already performed transparently from within the dn_cinit routine discussed below.

The _makeipc routine called explicately for the creation of the IPC medium must agree in its
arguments with the implicate call made by the later calls to ipcget. The implicit call is made within the
ipcget using the makeipc (no preceding underscore) routine which in turn calls _makeipc as follows:

if(_makeipc(DNE'I‘_IPCKEY, DNET_IPCDIR, D_CREAT) == .1)

the D_CREAT flag should be set to 0. This will allow you to call _makeipc explicately using the
preprocessor constants as arguments along with the D_CREAT | D_EXCL flags, and then the ipcget
routine will use the same values when accessing the medium created by the administrative process.

The following is an example code section on suggested method for the adminstrative creation of the
IPC medium:

DNET Interprocess Communication (IPC) 65

o-of



#include "dnet_ipc.h"
#define DNET_IPCKEY 1504
#define DNET_[PCDIR "/tmp /myapp"

if(_makeipc(DN ET IPCKEY, DNET _IPCDIR, D_CREAT | D EXCL) == .1)

{
fprintf(stderr, " _makeipc failed: dnet_en'no(%d) errno(%d).0, dnet_ermo, errno);
return(-1);

3.21.2 The _removeipc function

The _removeipc routine is provided to clean up the IPC medium created with the _makeipc routine.
No arguments are passed to the _removeipc routine because the IPC module keeps track of the

immediately without error. The rationale for this is that since there is no way of determining which
process actually created the medium (multiple processes may assume this), then it is not reasonable to
assume which process may remove it.

5.2.2 Administration Of Individual IPC Mechanisms

The individual IPC mechanism is a logical device which provides for simplex transmissions betweening
peer processes on a common machine. These mechanisms should be assumed to be reliant upon an

The responsibilities of the program in administering individual IPC mechanisms is the establishment of
the endpoint and the cleaning up of the endpoint when the program is through with it

Two routines are provided for these purposes: ipcget and ipcclose. A description of these routines
follow:

5.2.21 The ipcget function

The ipcget function provides for the establishment of an IPC endpoint and provides for either a
address to be bound to that endpoint, or a connection to be made to another endpoint with an address
bound to it. After a successful ipcget, the endpoint is an established IPC mechanism and may be used
for either receiving datagrams (if bound) or sending datagrams (if connected). No support for a
connectionless endpoint exists where the address is specified on each message, and the only way to
bind or connect to a different address is the remove the endpoint and reestablish.

The following is the declaration of the ipcget function:

66 DNET TECHNICAL GUIDE



int ipcget(name, flags)
struct dnet_ipcname *name;
int flags;

The dnet_ipcname structure consists of the following fields:

struct dnet_ipcname

{
char name(D_MAXPATHNAME];

unsigned maxmsg;
unsigned maxmq;
B
The maxmsg and maxmaq fields of the dnet_ipcname structure are not currently used. The name field
should contain the address (a simple character string) that your program wishes to have bound to its
own endpoint, or of the endpoint of another program to which your program wishes to be connected.

The flags argument must have one and only one of the following flag values set:

D_CONNECT Find the IPC endpoint to which the address in ipcname.name is bound and connect
to this endpoint.

D_BIND Bind the address in ipcname.name to this endpoint.

In addition, the D_GLOBAL flag may be set in combination with the D_BIND flag to force the
address to be advertised globally across the current machine. This flag only has significance in the
VMS environment since this is the norm in a UNIX environment. In order to have the address
globally advertised, the process must have SYSNAM privilege.

The ipcget function returns an integer ipcid on success. This is similar to a file descriptor, but is not.
Instead it is translated to a file descriptor, channel descriptor, or message type when used. This will be
discussed more in the implementation section.

The following examples demonstrates the suggested usage of the ipcget library routine. The server
program example is binding the address to its endpoint (thereby advertising the address), while the
client program is connecting to the advertised address (at a time after the server has bound).

Server Program

#include "dnet_errno.h”

int ipcid;
struct dnet_ipcname ipcname;

strepy(dnet_ipcname, "myaddress™);

if((ipcid = ipcget(&dnet_ipcname, D_BIND | D_GLOBAL)) == .1)

{
fprintf(stderr, "ipcget:dnet_errno(%d) errno(%d).0, dnet_errno, errno);
return(-1);

}

Client Program

DNET Interprocess Communication apC) 67



#include "dnet_errno.h’

int ipcid;
struct dnet_ipcname ipcname;

strepy(dnet_ipcname, "myaddress");

if((ipeid = ipcget(&dnet_ipcname, D_BIND | D_GLOBAL)) == -1)

{
fprintf(stderr, “ipcget:dnet_errno(%d) errno(%d).0, dnet_errno, errno);
return(-1);

}

5.2.2.2 The ipcclose function

The ipeclose function frees resources associated with the IPC mechanism identified by the ipcid which
is passed as an argument. On UNIX systems, this will also unlink the file entry in the DNET IPCDIR.

5.2.3 Sending And Receiving Messages

Two routines are provided for sending and receiving messages over an established IPC mechanism.
Validation is performed on each transaction to insure that the mechanism is capable of
sending/receiving a message. Because the mechanisms are simplex in nature, the routines will not
allow a message to be sent out an endpoint that has a bound address, and will not allow an attempt to
read from an endpoint which is connected to a peer endpoint.

The descriptions of these two functions: ipesnd and 3ipercev follow:
3.2.3.1 The ipcsnd function

The ipcsnd function allows a message to be sent out through and endpoint that has been successfully
connected. The declaration of the ipcsnd function follows:

int ipcsnd(ipcid, umsg, umsglen, fiag)

int ipeid;

char *umsg;

int umsglen;

int fag;
The ipcid argument is the endpoint identifier returned by the ipcget function. The umsg argument
points to the buffer (binary data is acceptable) containing the data to be sent, while the umsglen
indicates the number of bytes to be sent. The flag argument may have the D_NOWAIT flag set which
will force the send to be non-blocking,

The following is a section of the same client program above demonstrating the use of the ipcsnd library
routine. Because of the simplex connections, only the client program is allowed to use the ipesnd
routine on this IPC mechanism. The client program is not allowed to use the ipcrev library routine on
this IPC mechanism.

68 DNET TECHNICAL GUIDE



char umsg[D_MAXMSG];
int umsglen;

strepy(umsg, "This does not have to be an ascii string");

umsglen = strlen(umsg) + 1;

if(ipesnd(ipcid, umsg, umsglen, 0) == .1)

{
fprintf(stderr, "ipesnd:dnet_errno(%d) errno(%d).0, dnet_errno, errno);
return(-1);

}

5.2.3.2 The ipcrev function

The ipcrev function allows a program to read a message from an endpoint that has an address bound to
it. A description of the ipcrev function follows:

int iperev(ipeid, umsg, umsglen, flag)

int ipcid;

char *umsg;

int umsglen;

int flag;
The ipcid argument again identifies the endpoint over which the program wishes to receive a message.
The umsg argument points to the buffer where the message will be placed, and the umsglen argument
states how large that buffer is in bytes. The flag argument may have the D NOWAIT flag set which
will insure that the call does not block.

The following is a section of the server program above demonstrating the use of the ipcrev library
routine. Because of the simplex connections, only the server program is allowed to use the ipcrev
routine on this IPC mechanism. The server program is not allowed to use the ipcsnd library routine
on this IPC mechanism.

char umsg[D_MAXMSG];
int umsglen;
int readlen;

umsglen = D MAXMSG;

if((readlen = ipcrev(ipeid, umsg, umsglen, 0)) = = -1)

{
tprintf(stderr, "iperevidnet_errno(%d) errno(%d).0, dnet_errno, errno);
return(-1);

DNET Interprocess Communication (apPC) 69



5.3 Implementation

This section will discuss the unique features of each operating system that were used to implement the
standard IPC implementation.

5.3.1 The ipcid Table

The IPC module maintains a table of all active endpoints for a particular process. This table is very
similar in function to the file descriptor table in UNIX operating systems. A short description of this
table follows:

static struct
{
char name[D_MAXFNAME];
int flag;
int id;
}ipctab[D_MAXIPCIDS];

The name field contains the address used in this IPC mechanism. The flag contains the flags specified
on the ipcget, and the id contains a numeric value describing the lower level IPC mechanism. In
System V environments this si a message type, in BSD environments it is a file descriptor for a socket,
and in VMS environments it is a channel descriptor,

5.3.2 System V

The System V message queue facility was used to implement the IPC implementation on System V
operating systems. This facility required work on three areas to bring it in line with the requirements
of the IPC implementation:

» Standard interface
+ Endpoint establishment
o Character string addresses

A description of the implementation of the standard interface follows:

_makeipc The ipc directory is created if requested and necessary. The message key value is
used in attempt to create a new message queue for use by all processes using the to
be created IPC medium. If the D_CREAT flag is not set, then an attempt will be
make to look up an existing message queue with a matching key value, and will fail if
one does not exist. If the D_CREAT flag is set, then the queue will be created if it
cannot be found. If the D_CREAT and D_EXCL flags are set, then the call will only
succeed if a message queue with the requested key value did not previously exist.
The flag values are used in a similar nature for the creation of the ipc directory.

70 DNET TECHNICAL GUIDE



_removeipc  If it is determined that this program called _makeipc with both the D_CREAT and
D_EXCL flags set, then the ipc directory will be removed, and the message queue
will be freed and returned to the system. In all other cases the call always returns
successfully.

ipcget The ipcget routine attempts to find a file in the ipc directory with the same name
specified as the address requested in the ipname structure. If the D CONNECT flag
is set and the file exists, then a message type value is determined (as described
below) and is placed in the id field of the appropriate entry in the ipcid table.

If the D_BIND flag is set, then a file is created in the ipc directory, a message type
value determined and is placed in the id ficld of the appropriate entry in the ipcid
table.

ipcclose The ipcclose routine will remove the file from the ipc directory as long as the
D_BIND flag was used on the ipcget. If the D_CONNECT flag was used, then the
file will remain.

ipesnd The ipcsnd routine packages the message into a System V message queue structure,
sets the message type field to be that of the id field in the ipcid table and adds the
message to that queue.

ipcrev The ipcrev routine attempts to read a message from the queue where the message
type matches the id field in the ipcid table.

Making the midpoint characteristics of the message queues emulate endpoint characteristic was
accomplished by creating file nodes in the ipc directory for every IPC mechanism (note that this is for
every mechanism and not for every endpoint). This allows a simple check to be done to insure that
before an attempt to bind is made, that there is not another process bound to that address, and that
before an attempt to connect is made, that another process has bound to that address and is ready to
receive.

Mapping a character string name to the message type value was performed by merely obtaining the
inode number of the file node created for the IPC mechanism. Because all file nodes are created on
the same file system (they are all in the same directory), the inode number is unique. In addition, the
inode number is the same for every process that checks it and so provides a stable conversion.

- 5.3.3 BSD

The BSD socket interface was used with the UNIX address family as the underlying mechanism of IPC
in Berkeley UNIX systems. This facility required work only in the area of interface to bring it in line
with the requirements of the IPC implementation. One apparent bug in the operating system makes
the IPC mechanisms system hogs during excessive use of the IPC mechanisms. This is discussed in the
description of the ipcsnd interface.

A description of the implementation of the standard interface follows:

_makeipe The _makeipc routine creates/references the ipc directory in a fashion identical to
that of the System V _makeipc.

_removeipc  The _removeipc routine acts identical to the _removeipc routine of System V
excluding the freeing up of the System V message queue.

ipcget The ipcget routine translates almost directly into a socket system call followed by a
bind system call if the D_BIND flag is set or a connect system call if the

DNET Interprocess Communication arc) n



D_CONNECT flag is set. The file descriptor returned by the socket system call is
placed in the id field of the appropriate record in the ipcid table.

ipcclose The ipcclose routines uses the close system call on the file descriptor in the ipcid
table, and then, if the D_BIND flag was specified on the ipcget, then the file node is
removed explicately from the ipc directory. The BSD system does not yet remove
the file nodes it creates on the bind system call.

ipcsnd The ipcsnd maps almost directly to the send system call. There exists a bug, though,
in the BSD implementation of the IPC on send where, even when blocking mode is
set (this is by default), the system will return with a E_NOBUFS error when there is
a transient shortage of buffers in the system to place the message. With that attitude
that this bug will be fixed, the ipcsnd routine loops (eating up valuable CPU
resources) until the message can be taken or a more definitive error occurs.

iperev The ipcrev routine maps directly to the recv system call.

5.3.4 VMS

The VMS mailbox interface was used as the underlying mechanism of IPC in VMS systems. This
facility required work in the following areas to bring it in line with the requirements of the IPC
implementation. The VMS system, in addition actually fails implied requirements of the IPC
implementation in that SYSNAM privilege is required to advertise globally. To partially overcome this,
the ipcget routine in VMS returns the actual device name of the mailbox accessed by the ipcget call.
This name may be passed, through some means, to the person attempting to connect to your endpoint.
The problem with this is that the fully qualified mailbox name can be very long (especially in cluster
environments). This required that all IPC implementations increase their overhead to accommodate
for the extra space required by VMS. This can be overcome, but lack of time and resources limit us at
this time.

e Standard interface
 Endpoint establishment

¢ Independence between peers

A description of the implementation of the standard interface follows:

_makeipe This is an effective noop function call in VMS.
_removeipc  This is an effective noop function call in VMS.

ipeget This is probably the most complex of all the IPC routines because of all the facilities
potentially touched. In general, a channel is assigned to the address specified in the
name field of the ipcname structure if the D_CONNECT flag is set. The name ficld
is either a logical name which will translate to a mailbox device name, or is the direct
mailbox device name itself. If the logical name cannot be translated, and error is
returned indicating that no peer exists.

If the D_BIND flag is sct a mailbox is created. A logical name is equated to this
mailbox, and a channel is assigned to the logical name. This results in the logical
name being placed in the job table. If the D_GLOBAL flag was set, then an attempt
is made to assign the same logical name to the system table. In both events for the
bind, the device name of the mailbox is copied over top of the logical name in the

72 DNET TECHNICAL GUIDE



name field of the dnet_ipcname structure. The channel number is placed in the id
field of the appropriate ipcid table entry.

ipeclose If this endpoint had an address bound to it, then the logical name entries are
removed from all appropriate tables, and the mailbox device is freed for use
elsewhere.

ipcsnd The ipcsnd routine is implemented with the standard SYSSQIOW system service,

The VMS mailbox facility will normally attempt to hold the write outstanding until a
peer has attempted to read it. The IOSM_NOW flag was set to force the write into
the mailbox and prevent it from remaining outstanding,

ipcrev The iperev routine is also implemented using the standard SYS$QIOW system
service,

The requirement of endpoint establishment is not met under VMS. Two sticking points still exist: 1)
The global advertisement of addresses requires SYSNAM privilege (which is an unfeasible
expectation) and therefor opens the door to multiple processes binding to the same name. In addition,
the logical tables are allowed to be overwritten with new values, meaning that no check is performed
to see if the name has already been bound to. The dnet services currently compensate for this under
VMS environments.

The requirement of peer independence was met through a combination of the IO$M_NOW flag and
the SYSSSETRWM system service. The IO$M_NOW flag was set in the ipcrev routine to initiate a
non-blocking read. In the ipcsnd routine, the IOSM_NOW flag must always be set, and the
SYSSSETRWM system service was used to temporarily set the resource wait mode from its default of
waiting for the resource to the state in which it will fail if the resource is not available (a full mailbox in
this case).

DNET Interprocess Communication (IpC) 73



6. Miscellaneous DNET Internal Utilities

This section describes miscellaneous utilities which are internal to DNET.

6.1 General System Utilities

6.1.1 getppid
6.1.2 fperror
6.1.3 iosync

6.1.4 is_error
6.1.5 prttime
6.1.6 stricmp

6.2 General Network Utilites

6.2.1 check_mynet
6.2.2 disassemble
6.2.3 dn_init
6.2.4 dn_makedg
6.2.5 dn_makepvc

6.3 Stream to Datagram Conversion Utilities

- 6.3.1 strtodg dglen

6.3.2 strtodg msg

6.3.3 strtodg numhops
6.3.4 strtodg path

6.3.5 strtodg pathlen
6.3.6 strtodg stream
6.3.7 strtodg stream msg
6.3.8 strtodg type

6.4 UNIX Specific Utilities
0.4.1 build_argarr

74 DNET TECHNICAL GUIDE



6.4.2 execshell
6.4.3 startserver

6.5 VMS Specific Utilities

6.5.1 create_mailbox
6.5.2 execshell
6.5.3 getargs

6.5.4 gobetween
6.5.5 setargs

6.5.6 startserver
6.5.7 lib_do_command
6.5.8 lib_spawn
6.5.9 sys_assign
6.5.10 sys_cancel
6.5.11 sys_crelnm
6.5.12 sys_crelnt
6.5.13 sys_crembx
6.5.14 sys_creprc
6.5.15 sys_dassgn
6.5.16 sys_dellnm
6.5.17 sys_delmbx
6.5.18 sys getdvi
6.5.19 sys getjpi
6.5.20 sys_getmsg
- 6.5.21 sys_hiber
6.5.22 sys_gio
6.5.23 sys_giow
6.5.24 sys_trninm
6.5.25 sys wake
6.5.26 vms_fperror
6.5.27 vms_perror
6.5.28 vms_read
6.5.29 vms_write

6.6 MS DOS Specific Utilites

To be added

Miscellaneous DNET Internal Utilities 75



7. Interfaces to Underlying Networks

Both the Datagram Assembler/Disassembler and the Router of the BASIC 1/0 Package connect to
underlying networks via the Network I/O Interface. This interface “maps” generic function calls
(dn_open, dn_close, dn_read, dn_write, etc.) into protocol specific functions for a particular network.

The files tep.c and decnet_nt.c in the network specific interfaces for most TCP or DECnet systems.
The files exostcp.c contain

7.1 Underlying Network Protocols

Wherever possible, existing, well known network protocols are employed in order to achieve reliable
communication services between DNET nodes. These protocols are internally sophisticated, typically
containing their own queing, buffering, retry and timeout mechanisms as well as their own routing
within their own network domain. Despite this internal complexity, it is important to note the
following:

— From the DNET perspective the protocols provide point to point link and physical level services
between nodes defined in the the DNET network.

For each protocol the following generic functions are provided:

— Open

— Init_Permanent_Server

— Init_Transient_Server

— Get_Client

— Close

— Read

- Write

— Async_Read

- Wait

Two protocols are currently supported within DNET. These are:
1. TCP/IP
2. DECnet

The specific interfaces to these protocols are discussed in the following sections:
7.2 TCP/IP

Three implementations of TCP/IP are in use within DNET. The usage varies with the particular
DNET node. The three implementations of TCP/IP currently supported together with the relevant

76 DNET TECHNICAL GUIDE



host machines are:
1. Berkeley UNIX - DAC & NASA Sun’s
2. Wollongong - DAC MicroVAX II and 3B2/600
3. Excelan - NASA VAX's

Common source code is used for all three implementations. This code is located in the file tep.c.

7.3 TCP/IP Specific Utilities
The following tcp/ip’ specific functions are supported by DNET:

7.3.1 tcp_accept
7.3.2 tcp_close
7.3.3 tcp_getclient
7.3.4 tcp_initperm
7.3.5 tcp_inittrans
7.3.6 tcp_open
7.3.7 tcp_pvcopen
7.3.8 tcp _read
7.3.9 tcp write

The reader is referred to the source listings for tep.c for further details on these functions.

7.4 DECnet

Source code for the DNET interface to DECnet is found in the source files decnet.c and decnet_nt.c.
The supported functions include:

74.1 _decnet read
7.4.2 decnet_accept
7.4.3 decnet close
7.4.4 decnet _errgeneric
7.4.5 decnet_errprotocol
7.4.6 decnet getclient
7.4.7 decnet _initperm
7.4.8 decnet _inittrans
7.4.9 decnet_open
7.4.10 decnet_pvcopen
7.4.11 decnet read
7.4.12 decnet select

Interfaces to Underlying Networks 77



7.4.13 decnet_write
7.4.14 vms_aread

7.4.15 vms_awrite

7.4.16 vms_wait

78 DNET TECHNICAL GUIDE



8. User Application Internals

8.1 File Transfer Protocol
The DNET File Transfer protocol

dtftp transfers blocks in fixed size (512 byte) units. Acknowlegements are sent by the receiving host’s
file transfer server (dtftpd) after each block has been received. Error reporting packets include the
following:

8.2 Schematic of File Transfer

Connect, Get
Put, etc.

deftp / deftp
DNET Network
Client or / Server

821 General Considerations

The receiving host tests for existance of the target file using the "access” function and gives notice if the
file exists and creates a new version (if version numbers are supported by the local file system).
Default values for protection mode and sharing options are used.

822 ASCll

The routines aput() are used to transmit ’text’ or ASCII format files. The ’formatted’ i/o calls fopen,
gets, etc. are used for file access in this mode.

User Application Internals 79



8.2.3 Binary Files

8.3 Security During File Transfer
When the client invokes dtftp, authentication of the client is done by the login process at the remote

host. Subsequent process spawning and/or remote login to other hosts from processes created by the
initial client will all carry the access rights permitted to the initial client.

8.4 Initiation of File Transfer from One Remote Node to Another

The Network Command Language may be used at a third party location to initiate file transfer. A
typical command would be:

dnocl> netl0::host3:filexx > c-net::fhost:newfile
or

dncl> mynet::host6:*dtftp filename options > > newfile

Where filename and options are parameters to the file transfer task "dtftp".

The effect of such a command is shown in the following diagram:

Initiating
DNET
Host
(may be any
DNET host)
dnel
netl:thosti:File ::host2:File B
File File
at Transfer— at
A net2::host2:File B B

80 DNET TECHNICAL GUIDE



8.5 Initiation of Remote Procedure Upon Completion of File Transfer

It is also possible to use the DNET Network Command Language to perform a file transfer followed
by the execution of a remote procedure. Several alternatives are possible.

1. Two separate commands:

transfer the file

dncl> bnet::host3:filed > c-net::xhost:newfile
followed by

execute the remote procedure

dncl> c-net::xhost:*format newfile

One ’composite’ command:

dncl> bnet::host3:filed > c-net::xhost:newfile | c-net::xhost:*format

8.6 Remote Login

8.7 Electronic Mail
8.8 General

DNET provides a very basic Electronic Mail facility.

File Transfer to Mail Server | 5.

Send or Read Mail

Mail Client \mh Mail Server
N\ J

‘\_/

| ACK/NAK to Mail Client

User Application Internals 81



8.9 Mail Operation
8.9.1 Structure of DENT muail files

The organization of DNET muail files is as follows:

8.9.2 Sending Mail
8.9.3 Reading Mail

8.9.4 Mail Routing

Routing of mail is implicit. The user sending mail must know the (DNET) destination host, network
and user account name of the receiving party.

82 DNET TECHNICAL GUIDE



9. dnetstat - Network Status Function

The status of Master Servers and the servers they spawn will be monitored by a program operating on
one or more of the network hosts. Status of the Master Servers on the local network will be obtained
using the facilities provided by the networking software native to the local network. Status of the
servers created by the Master Servers can be obtained in the same way because the names of these
processes can be derived from their parent.

User wishing DNET
DNET Status Info Host
geeseommentenaaaaaas where status desired
Network Network
. dnetstat
Status . Status
Client . - : Se;
d l:sun : dnstatd d ?:1 :
nel : . nsta .
: using DG service :
]
: Host :
H | y o
F---£__ 1 \ Status |
s ! ! I Table Lo
. ] ( 1.
i Routig , 4t
: : Table : - --- 1
P ', DpG
Pbea o —e o 4 (o
B | Users .l
: 4 Table ' :
H | ).
: Lmmm oo J
P rTToTs 1 :
E : Master : .
| Server |
| Tables '
! i .
Lo J :

dnetstat - Network Status Function 83



10. Network Command Execution & Task Redirection

The Network Command Processor is a command language processor for use in a heterogeneous
multi-network environment. A terminal user interface and a "C" language interface to this processor
will be provided.

This DNET facility allows very general control of processes across the heterogeneous network and
provides for redirection of input/output streams between files and/or processes located at arbitrary
DNET Hosts.

Three Software Elements are required for the Network Command Processor.

— Network Command Interpreter (NCI) - used at the initiating node to interpret the Command Line
(CL) entered by the user, divide this CL into separate Sub Command Lines (SCL) and pass these
on to the first NCS.

— Network Command Server (NCS) - services network command which arrives from NCI or another
NCS; provides any local service requested, including process spawning, and sends remainder of the
SCL to the next NCS in the command chain The NCS is a DNET application server and is thus
registered in relevant domain server tables.

A Schematic view of the relationship between these components is shown in the figure below. The
generic command string being executed is:

Netl::Hostl:File X > Net2::Host2:*Proc2 > Net3::Host3:*Proc3 > Netd::Host4:File Y

10.1 Network Command Processor Schematic

84 DNET TECHNICAL GUIDE



DNET Host 1 DNET Host 2 DNET Host 3 DNET Host 4
(on Net 1) (on Net 2) (on Net 3) (on Net 4)
Network : Network Network Network
Command [ > Command |—: :> Command |: i» Command

ET Dgray DNET Dgram DNET ;
Interpreter ﬁN gram Server 2 Server 3 Dgram Server 4
. H . |
File X Proc2 Proc3 FileY

....................................................................................

10.2 Network Command Language
10.2.1 Command Language Syntax

There are two types of objects- Files and Filters. The ">" operator is used to delimit the SCL
components of the CL.

Filename syntax is: network_name::host_name:filename
Taskname syntax is: network_name::host_name:*taskname(paraml, param2 ...)

An example command is:
starnet::xhost:cflle > yhost:*sort > myfile

Other examples are given below.

When the network name or host name is not specified the local name is assumed. Spaces around the
">" are optional.

10.2.2 Using The Command Language

When filenames appear in command strings they imply the execution of file i/o servers. The network
command:

dac_net::vax2:david.comm > g_net::hostl:*checkp > results
requests that the contents of a file "david.comm" on host "vax2" in the network "dac_net" be run through

the filter "checkp” executed on "host1” in the network "g_net, and the output be placed in the file
"results” in the host on which the previous NCS was run (g_net::host1 in this case).

Network Command Execution & Task Redirection 85



The network command:
net_one::vax6:c-file > hostl:s-cfile

requests that the contents of a file "c-file" on host "vax6” in the network "net_one" be copied to the file
"s-cfile" on the host1l machine on the same network. The network command:

10.3 Network Command Interpreter

The Network Command Interpreter is invoked as an application from the shell prompt on the local
system,

%) dncl

%) dnc

dncl> command_stringl
response to CS1

dncl> command_string2
response

etc.

After parsing the CL, the NCI module opens a dnet connection to the NCS module specified in the
first SCL. The complete list of SCLs are passed over this connection to the NCS component.

All interaction between NCS components and between the NCI and NCS components are via
standardized packets. The packet header contains a length field and packet type field to describe the
data (if any) that follows.

The NCI module then wait for an ACKCOMP packet type to be recieved over the connection just
established to send the CL to the first NCS module. An ERROR packet type may also be received at
this point, and the data within the packet would be an error message generated at one of the downline
NCS modules.

10.3.1 Schematic of Network Command Interpreter

86 DNET TECHNICAL GUIDE



Network Command Interpreter

---------------------------------------------------------

User Command =

dncA >B>CR

User

Lo i > Shell Parser -
: dn_write()
dn
Spawner Child I/O

‘cat’
‘\4 Equivalent
File
1I/0

10.4 Network Command Server

The NCS module is set up to provide for exactly one SCL. This may involve reading a file, spawning a
filter, or creating a new output file. After the last NCS module has completed successfully, it will
initiate an ACKCOMP packet to inform all NCS modules upline, and the initial NCI module that the
operation was completed successfully.

Operations at the NCS include:

1
2.
3.

N o ok

Wait for the NCI client or an upline NCS component to request a connection,
Read the CL (one SCL at a time) from the established dnet connection.
Determine SCL category
e First SCL on the CL -- read file
¢ A middle SCL -- filter
o Last SCL on the CL -- create output file, initiate ACKCOMP
Read input data packets until EOF packet arrives
Send EOF packet downline
Wait for ACKCOMP packet to arrive from downline
Send ACKCOMP packet upline

Network Command Execution & Task Redirection

87



8. Close upline and downline channels

10.4.1 Operations at Network Command Server during File 1/O

A>B>CR

[————=> Network Command Server
1/0
—R W Pac - R/W = :
Parser
Spawner Child 1/0
\
N . cat’
Yy Equivalent
File
1/0

10.4.2 Status Reporting (from last Network Command Server)

88 DNET TECHNICAL GUIDE

B>CR




- Datagram to Client Site

T T
i ) Last N/W
d:elcs:lne: | DNET Network L - - - - — - — — - _ | Command
Server
i S - in chain
~e—

10.5 An Example

An example command is:
netl:hostS:*lookup < > net2::hostd:*sort > netS::hostl:filex
The execution of this command is discussed below.

To support the execution of network commands two types of tasks are used: network command servers
(net_com_serv) and network i/o servers (net_file_io).

The net_com_serv tasks will assist in the remote execution of network commands by accepting
messages from other hosts’ network command servers, spawning tasks as required, reading from and
writing to other hosts, passing the data to the spawned task as "standard input"(SYSSINPUT) and
taking ‘“standard output(SYS$SOUTPUT), thereby allowing the spawned tasks to operate in the
network environment without modification.

The second type of supporting task is the net_file io. It is used to transmit and receive files. When a
filename appears as the only object in command component (i.e. it is not a parameter to a task), it is
assumed that the task to be executed is net_file_io.

The procedure used by a network command server to execute a network command is:

1. Read a command line from a network command language processor, or a network command
server

2. After deleting that portion of the command that is being executed by the current host, send a
copy of the command line to the host that will execute the next part of the command line

3. Identify the first task name in the command line (scan from left)

4, Spawn the identified task using the host that sent the command line in step 1. as the source of
standard input to the spawned task (pass data through a mail box to the spawned task) and send
the output from that task to the network command server on the host which will execute the next
task in the command line.

When the network command server controlling the last task in the command string completes, it sends

Network Command Execution & Task Redirection 89



a termination message, with status information, to the network/host/process that initiated the
command execution chain.

10.6 An Example of Network Command Execution

As described above, the network commands will be processed by distributing all or part of the
command line to various hosts for execution. Processing will start by sending a copy of the command
line from the network command language processor to the network command server on the system
which will execute the first task in the command line. To execute the network command:

netl::host5:*lookup < > net2::hostd:*sort > net5::hostl:filex

the following processing is performed:

1. The network command language processor sends a copy of the command line to net1 hostS

2. The network command server on netl host5 will send to net2 host4 a copy of the command line
text starting at "net2::host4".

Then identify the task "lookup” as the task to be executed.

4. Spawn a copy of the lookup task with standard input comming from the host that sent the
command line and standard output going to net 2 host 4. Both standard input and output streams
pass through the mailbox shared by the lookup task and the network command server which
spawned it.

5. Status messages are sent to the network command processor that invoked this command
execution.

~ 6. The network command server on net2 host4 will send to netS host1 a copy of the command line
text starting at "net5::host1”,then

7. identify the task "sort" as the one to be executed.

8. Spawn a copy of the sort task with standard input being from the host which sent the command
line and standard output to net 5 host 1. Both standard input and output streams pass through
the mailbox shared by the sort task and the network command server which spawned it.

9. The network command server on net 5 host 1 will read the command line and
10. identify "filex" as a filename, therefore choose task "net_file_io” as the one to be executed.

11. Since there is no more text in the command line there is no successor task to send the command
line to. The network command server spawns the net_file_io task with "filex" as the output file
and standard input being from the host which sent the command. Data from the input source is
read and stored in the output file until an end of file causes the termination of the net_file_io
task.

12. This causes the parent process, "net_com_serv" to send a completion status message to the
process that initiated the execution of this command string.

10.7 Network Command Processor Implementation

There are three major components in the Network Command Processor:

90 DNET TECHNICAL GUIDE



o Network Command Interpreter
» Network Command Server
o Network File I/O

The implementation of these is outlined below.

10.8 Network Command Interpreter

The Network Command Interpreter reads commands from users, parses, processes, and distributes
them to the network servers on the specified hosts. messages sent to the servers that execute the
command.

In the design presented below the symbol used for the data flow operations is ">" .
“Names" refer to either files or tasks (the "*" precedes tasknames).

The datagrams sent to the Network Servers are produced as follows:

1. Pointer P1 is set to the start of the first name in the command.

Starting at P1 text is scanned, stopping at the first op code it finds, or the end of the
command line, whichever is found first. If it finds the end of the command line a flag is set
(see below for processing done for this).

The op code is saved in 'op’.
P2 is set to the start of the name following the op code.

Scan as in Step 2 to the next op code.

IS

Using P1 ’op’ and P2 genetate the skeleton form of the message that will be sent to the host
whose name is pointed to by P1.

7. Set P1 to the value in P2.
8. If the "end" flag is not set go to Step 2.

1081 Additional Processing

Additional processing of messages is required to add information about "implied” servers and
parameters for file names and for the return of completion status. Samples of the types of messages
that require this processing are shown below.

Original Message Modified Message
Host1:*taskl < > Host2:*task2 Prefix message with name of net_com_serv.
or
Host1:*taskl > Host2:*task2
Host1:*taskl > Host2:file2 Prefix message with name of net_com_serv. Replace file2 with
*net_file_io,(create, file2)

Network Command Execution & Task Redirection 91



Host1:filel > > Host2:file2 Prefix message with name of net_com_serv. Replace file2 with
*net_file_io,(append, file2)

In addition to the modifications shown above, each message will be given a serial number uniquely
identifying the command with which it is associated and the network address of the command
interpreter to which completion status will be sent.

10.9 Network Command Server

The Network Command Interpreter sends messages to the various hosts specified in a network
command. The messages contain the name of a server, the parameters to be used in processing, and
the network address of the Network Command Server to which the completion status code should be
sent.

10.9.1 Implementation of the Network Command Server

The Network Command Server listens for datagrams from any Network Command Interpreter. Upon
receiving one it determines the name of the server being requested, the parameters to be used in the
call to it, and the network address of the Network Command Interpreter that sent this request.

On VMS systems the following is done:

To obtain the name of the mailbox associated with an instance of the requested server the local Master
Server is called. The Network Command Server then writes a message to the mailbox, requesting a
local service connection. In this mode of operation the client (Network Command Server) provides the
names of one input and one output mailbox to be used by the requested server for SYSSINPUT and
SYSSOUTPUT. During the execution of the command the Network Command Server continuously
reads from the network connection to the prior host in the command pipeline and writes to the
SYSS$INPUT mailbox. At the same time it continuously reads from the SYSSOUTPUT mailbox and
writes to the network host on which the next task in the command pipeline is executed.

After the completion of the command execution the Network Command Server Deassigns the
mailboxes used in the command, keeping them for future use. The completion status code is returned
to the originating Network Command Interpreter by sending a datagram.

On UNIX systems the processing is as follows:

Each server is created by the Network Command Server when needed, using the fork and exec system
calls. In this way the standard input/output files, in this case pipes, created by the parent (the Network
Command Server) are available to both parent and child. During the execution of the command the
Network Command Server reads from the network connection to the prior host in the command
pipeline and writes to the standard input of the child. At the same time it reads from the standard
output of the child and writes to the network host on which the next task in the command pipeline is
executed.

The completion status code is returned to the originating Network Command Interpreter by sending a
datagram.

10.10 Network File I/O

Network File I/0 is a server that is used to read and write files on the local host to and from remote
hosts. It assists in transmitting input and output data across network connections that support

92 DNET TECHNICAL GUIDE



command pipes.
The arguments to Network File 1/0 are

— mode (append or create)

— filename

Network Command Execution & Task Redirection 93



11. Presentation Layer Services

11.1 XDR

dn_xdr.c

94 DNET TECHNICAL GUIDE



12. DNET Error Handling

DNET Basic I/O Library functions return a non-selective error code if an error is detected during their
operation. These errors are defined in the header file ../dnet/common/dnet_errno.h

Errors detected by the DNET code are identified in the variable dnet_errno:
dnet_errno = XXXXX;

An error function, dnet_error("string"), is then optionally called where string is an optional, user
provided informative message. dnet_error provides detailed information on conditions when the error
was detected including a stack trace.

dnet_error(*error_string)

char * error_string;

Detailed error codes are provided in the programmer reference manual.

DNET Error Handling 95



13. Routing

13.0.1 get_path
13.0.2 load_my name
13.0.3 load_net_table

The router selects the host/process to which the datagram will be transmitted next.

get_path();

path = get_path(src_net,src_host,dest_net,dest_host,dest_process,numhops);

src_net is the network in which the destination host is located

src_host is the destination host

dest_net is the network in which the destination host is located

dest_host is the destination host

dest_process is the destination process

numhops - number of hops from current location to destination
13.1 Router Operation
The paths to hosts in the local network are direct connections. For paths to hosts in other networks a
dynamic router is used. A hierarchical routing table is used to determine the host to which the
datagram should be sent next. The entries in the routing table are updated by exchange of
connectionless datagrams between DNET gateways and individual DNET hosts.
In the future the router may be enhanced to include searching for alternate paths and servers if the
standard search fails to satisfy the request. The second search could extend into other networks in
requests for generic servers that need not be executed in a specific network or host. Extended searches
will provide automatic alternate routing, load sharing, and backup services for use when failures in

hardware or software reduce the availability of facilities.

The datagram header contains three fields which are used in routing as indicated below:

96 DNET TECHNICAL GUIDE



[ dglen T chan T type [num‘htlpl Src [RelSch Next | Dest | Rept [ Seq# | Msg |

’ ~
7 ~
7 ~

! ~

( Src Net | Src Host | Src Host

Rel Net | Rel Host | Rel Proc

Next Net | Next Host | Next Proc

Dest Net | Dest Host | Dest Host

Routing 97




typedef struct {
short dglen;

short chan;
short type;

/* The total length of the datagram, excluding
this field */
/* The channel number that is being used */

/* A code for the datagram type - Connectionless,

Virtual Circuit or Signal */

short hopnum;

char srcnet;

char rel_srcnet;

char nextnet;

short nexthost;
char *nextproc;

/* The curent hop number-- to catch circular routing*/

/* The DNET code for the src host's network name */
short srchost; /* The DNET code for the src host’s host name */
char *srcproc; /* The name of the process to be used on the src host */

/* The DNET code for relative

src host’s network name */
short rel_srchost; /* The DNET code for the src host’s host name */
char *rel_srcproc; /* The name of process to be used on the src host */

/* Next DNET network to be reached */

/* Next DNET host (on nextnet) */
/* Process to be contacted on 'nexthost’ */

char destnet; /* The DNET code for the dest host’s network name */

short desthost; /* The DNET code for the dest host’s Liost name */

char *destproc; /* The name of the process to be used on the dest host */

/* Return Receipt Request = 0 no receipt
1 receipt requested

char receipt;

char *sequence#

char *msg;
} DATAGRAM;

/* The data to be sent */

A typical routing table is shown below:

/* PID and datagram sequence number */

DNET Local Routing Table

Destination Net | Next (Gateway) Host | Next Process | Datagram Protocol
dnettl - - udp
spanet dacvax drelaytd udp
starnet dacvax drelaytd udp
Net X Host Y drelaytX udp

13.2 Routing Example

The route generated for a typical datagram is shown in the following diagram:

98 DNET TECHNICAL GUIDE




Client CL X

TCP/IP LAN

Net 3
starnet
TCP/IP - Internet

Server SV X

In this example client CL_X on DNET host D2 wishes to conduct a session with server SV_X on

DNET host T2.

The router on host D2 has the following routing table available:

DNET Local Routing Table - Host D2

Destination Net | Next (Gateway) Host | Next Process | Datagram Protocol
dnettl NULL NULL udp
spanet dacvax drelaytd udp
starnet dacvax drelaytd udp

The router on host D4 has the following routing table available:

Routing 99



DNET Local Routing Table - (Gateway) Host D4

Destination Net | Next (Gateway) Host | Next Process | Datagram Protocol
spanet NULL NULL dec

- dnettl dacvax drelaytd udp
starnet iaf dec

delaydt

13.3 Routing Table Updates

Initially, routing table updates will be handled in a manual fashion.

automatic updates for these tables will be considered as time allows.

100 DNET TECHNICAL GUIDE

Examination of a method for



DNET

TECHNICAL REFERENCE

Version: 1.10
Print Date: 08/31/89 17:37:38
Module Name: tech.ref

Digital Analysis Corporation
1889 Preston White Drive
Reston, Virginia 22091
(703) 476-5900

SBIR RIGHTS NOTICE

This SBIR date is furnished with SBIR rights under NASA Contract NASS-3008S. For a peniod of 2 years after acceptance of all itens to be delivered under this contract
the Government agrees to use this data for Government purposes only, and it shall not be disclosed nuside the Government (including disciosure for procurement
purposes) during such period without permission of the Contractor, except that, subject (o the forgoing use and disclosure prohibitions, such dats may be disciosed for use
by support contractors. After the aforesaid 2-year period the Governmend has a royalty-free license to use, and to suthorize others to use on its behalf, this data for
Government purposes, b is relieved from all disclosure prohibitions and sssumes no liabulity for unaut wrized used of this data by third parties. This Notice shall be

Copyright 1989, Digital Analysis Corporation



ASS_DG(3I) DNET ASS_DG(3I)

NAME

ass_dg - assemble a dnet datagram.
SYNOPSIS

#include "dnet"

int ass_dg(udg, ddg)

struct udg *udg;
char *ddg;

DESCRIPTION
The ass_dg internal library routine takes the contents of the udg structure and assembles a
standard dnet datagram into the ddg buffer.

This function is used for purposes of preparing the user datagram to go over a network. Integer
conversions are performed here as necessary. This function is only called by the per protocol
dgs components.

SEE ALSO
dass_dg(3I)
RETURN VALUE
The ass_dg routine will return the size in bytes of the assembled datagram if successful. If an

error condition exists, then the return value will be -1 and the external variable dnet_errno will
hold the error value. ’

ERRORS

The call will not currently return in error.

Page 2 (07/19/89)



CHECK_MYNET(3I) DNET CHECK_MYNET(3I)

NAME

check_mynet - validate the name of default network
SYNOPSIS

#include "dnet.h"

int check_mynet()
DESCRIPTION

This routine checks the name of the default network (retrieved by load_my nmae(3I)) against
entries in the tbls.net table (loaded by load_net_table(3I)) to insure the the default network is
truly defined.

This routine is currently only called from the dn_init(3U) routine.
SEE ALSO

dn_init(3U), load_my_name(3I), load_net_table(3I)
RETURN VALUE

The routine returns a value of zero on success, and -1 to indicate an error.
ERRORS
The call fails if:

[D_INTERN] The default network name could not be found in the tbls.net table. This would
indicate an administrative error.

Page 3 (07/19/89)



DASS_DG(3I) DNET DASS_DG(3I)

NAME

dass_dg - dissasemble a received dnet datagram.
SYNOPSIS

#include "dnet.h"

int dass_dg(ddg, udg)

struct udgbuf *ddg;
struct udg *udg;

DESCRIPTION
This routine dissasembles a datagram received from the rctwork into the structure used by dnet
user programs and the dgms,

The per protocol dgs components are the only components that need to call this routine.
Network integer conversions are performed for the header information in this routine as
needed.

SEE ALSO
ass_dg(3I)
RETURN VALUE

The routine will return a value of 0 on success and a value of -1 to indicate an error condition,

ERRORS

This routine will not curr :ntly return in error.

Page 4 (07/19/89)



DBCOPY(3I) DNET DBCOPY(3I)

NAME
dbcopy - binary copy
SYNOPSIS

int dbcopy(frombuf, tobuf, len)
char *frombuf;

char *tobuf;

int len;

DESCRIPTION
The dbcopy library routine provides a binary copy of data from one location in memory to
another. The first argument (frombuf) is the address of the source buffer. The second

argument (tobuf determines the location to copy to (destination buffer), and the third argument
(len) specifies the number of bytes to be copied.

SEE ALSO
dbzero(3I)
RETURN VALUE

This function returns an undefined value. This value should not be tested.
BUGS

This function returns an undefined value., This value should never be tested.

Page 5 (06/19/89)



DBZERO(3) DNET DBZERO(3I)

NAME
dbzero - zero fill a buffer
SYNOPSIS

int dbzero(buf, buflen)
char *buf;
int buflen;

DESCRIPTION
The dbzero library routine provides a standard mechanism for zero filling a given buffer of

given length. The fisrt argument is the address of the buffer, and the second argument specifies
the number of bytes that are to be zero filled.

SEE ALSO
dbcopy(31)
RETURN VALUE

This library routine always returns an undefined value, but never fails.
BUGS

This library routine returns an undefined value, no test on the value should be made.

Page 6 (06,/19/89)



DG_GET_NEXT_HOP(3I) DNET DG_GET_NEXT HOP(3I)

NAME

dg_get_next_hop - set ne:t node in user datagram structu-e
SYNOPSIS

#include "dnet.h"

int dg_get_next_hop(udg)
struct udg *udg;

DESCRIPTION

This routine will take the values passed in the user datagram structure and will determine the
‘next hop value” for that datagram. The value of the next hop will be placed in the next.net,
next.host, and next.proc fields of the udg structure. The values placed in the next node fields
will differ slightly according to wether the next hop is a process on the existing machine, or is
the address of another host on a network directly linked to the current machine.

The value of proc always represents the process to send thie message containing the datagram to
on the current machine. In the case of a datagram arriving at the destination, this represents a
user processes bound to process name and may be looked up in the ADGUT. The net and host
entries will be set to the same value in the destination node.

In the case of a datagrar arriving at a gateway, the process name set represents the bound to
process name of the per protocol DGS component that runs the network over which the next
hop host is connected to. The net and host names represent the place that the per protocol DGS
component is to send the datagram. The net name is re quired as the DGS component may be
responsible for more than one network of a given type.

RETURN VALUE
This routine will return a value of 0 on success and a -1 when
an error condition exists.

ERRORS
The call fails if:

[D_NOPATH] The network passed in the user datagiam structure could not be resolved in
the current host’s routing table.

CAVEATS

This routine is defined internally within the dgms component and therefore is inaccessable to
any other module,

Page 7 (07/19/89)



DISASSEMBLE(3I) DNET DISASSEMBLE(3I)

NAME

disassemble - disassemble a "datagram" for connection services
SYNOPSIS

#include "dnet.h"

void disassemble(buf, dg)

char *buf;

struct datagram *dg;
DESCRIPTION

This user library routine (used only with the connection oriented services) disassembles a
datagram created by one of the following user library rou:ines:

+ dn_makedg(3U)
» dn_makepvc(3U)
+ dn_makesignal(3U)
The datagram is disassembled into a datagram structure of the following form:

struct datagram

{
short dglen;
int stream;
short type;
short numhops;
short pathien;
char *path;
char *msg;

SEE ALSO
dn_makedg(3U), dn_mal:epvc(3U), dn_makesignal(3U)

Page 8 (07/19/89)



DN_ALLOC(3I) DNET DN_ALLOC(3I)

NAME

dn_alloc - dynamically allocate memory for dnet structurcs
SYNOPSIS

#include "dnet.h"

char *dn_alloc(s_token, ¢_token, size, addr)
int s_token;

int c_token;

unsigned *size;

char *addr;

DESCRIPTION

The dn_alloc internal library routine (should be implemented for the user library also)
dynamically allocates memory for the dnet structures to be used by programs. These routines
not only encourage the efficient usage of memory, but also provide for portability of programs if
the definition of the structure is modified. If these rout:nes are used, then the template of the
structre should not be redefined, and fields should be referenced through the field names
provided in the system definition of the structure.

The following structures may be allocated using this routines:

DGMS_MSG This will allocate space that may be accessed through the dgms_msg
structuce.

DN _UDG This will allocate space that may be accessed through the udg structure.

DN_SVMSG  This structure token is only valid and compiled on a Unix System V and will
result in a D_BADARG error condition if use is attempted on any other
system. This allocates space necessary for the msgbuf structure used in
System V message queues.

The c_token parameter must specify one of the following command tokens:
DN_ALLOC This is used to initially allocate the structure. The addr field is ignored.

DN_REALLOC This is used to reallocate the size of an existing structure allocated using the
DN_ALLOC command. The addr field must reference the address of a valid
structure allocated using the DN_ALLOC command.

DN_DALLOC This command is used to deallocate, or free up the space allocated for the
structure, after the structure is of nc use. As the amount of dynamically
allocated memory increases, the efficieacy at which more memory is allocated
decreases.

The size parameter is a pointer to an unsigned value. This value is read by dn_alloc to
determine the requested size of the buffer field within the structure being allocated. If the value
is zero, then dn_alloc will allocate the maximum allowable buffer for that particular structure.
The dn_alloc routine will return in the location specified by size the size of the entire allocated
structure. The size of the header may be determined by subtracting the number of requested
buffer bytes (if non-zero) from the value set after the dn_alloc call. If the size is not initialized
to a valid value, the program will behave unpredictably.

The addr parameter is only meaningful when used with the DN_REALLOC or DN_DALLOC
commond token. In these cases the address should be the location in memory of a dnet
structure previuosly allocated with dn_alloc.

Page 9 (07/19/89)



DN_ALLOC(3I) DNET DN_ALLOC(3I)

RETURN VALUE
The routine will either return the memory location of the newly allocated structure, or a NULL
value indicating an error.
The DN_DALLOC command will always return a NULL pointer.
ERRORS
The call fails if;

[D_SYSERR] A system error has ocurred, check the errno variable to determine what the
system error was.

[D_BADARG] An unknown structure token was passc.d.
[D_BADARG] An unknown command token was pass :d.

[D_BADARG] The ccmmand token was either DN_REALLOC, or DN _DALLOC and the
addr field vas 0.

[D_MSGTB] The size argument passed with the DGMS_MSG or DN_SVMSG structure
token excecded the maximum allowable size for that structure.

[D_DGTB] The size argument passed with the DN_UDG structure token would exceed the
maximum allowable datagram size,

BUGS

This call is implemented on top of the malloc library routines which are ambiguos as to the
source of error. Therefor, the dn_alloc routine may incorrectly report a system error when one
has not actually occurred.

Page 10 (07/19/89)



DN_INITPERM(3I]) DNET DN_INITPERM(3I)

NAME
dn_initperm - Establish and bind an endpoint for communication
SYNOPSIS

int tep_initperm(service, backlog)
char *service;
int backlog;

int decnet_initperm(service, backlog, pauxchan)
char *service;

int backlog;

int *pauxchan;

DESCRIPTION

The dn_initperm routines establishes an endpoint for communication over either a TCP/IPC or
DECnet provider, binds to the port number specified by service, and specifies that up to
backlog connection requests may be outstanding on the established endpoint. In the
decnet_initperm routine, the pauxchan points to the location where the file descriptor will be
placed for the mailbox associated with the network chanel. This is needed to handle multiple
inbound requests on VMS.

This call is used to merely set up the endpoint and will not block waiting for a connection
request.

The service argument is a character string that has either been defined as being a well known
service (in /etc/services on UNIX machines) or is an ASCII representation of an integer value,
in which case the value will be used directly as the TCP port to bind to.

SEE ALSO
dn_initperm(3U)
RETURN VALUE

The call returns a valid file descriptor to the endpoint on success or a -1 to indicate an error.
ERRORS
The call fails if:

[D_SYSERR] A system error has occurred, check *he global variable errno (on UNIX
machines) to determine the cause. (UNIX ONLY)

[D_INTR] A signal was caught while attempting to establish the endpoint. No endpoint will
be established in this case. (UNIX ONLY)

[D_NODNETSRV] The service name specified could not be found in the definition of
servers (/etc/services on UNIX). (UNIX ONLY)

BUGS

The decnet_initperm roatine does not currently set any indication for cause of error. The
standard VMS crror reporting routines should be consulted in when using this routine.

Page 11 (07/19/89 )



DN_MAKEDG(3I) DNET DN_MAKEDG(3I)

NAME
dn_makedg - assemble a .JG_CALLBACK datagram
SYNOPSIS

void dn_makedg(buf, channel, numhops, path, msg)
char *buf:

int channel;

int numhops;

char *path;

char *msg;

DESCRIPTION

This internal library routine assembles a DG_CALLBACK datagram, used exclusively by the
connection oriented service, given the channel number, the number of hops, the path, and
message. The contents of the assembled "datagram® ire placed into the buf buffer. The
assembled datagram resembles:

dg_len|channel |type=D3_CALLBACK |numhops |pathlen | path |msg

The path element is composed of the following. (Sometimes the next and destination hops are
the same so the three next clements are eliminated):

thisnet | thishost |thisproc | nextnet | nexthost | nextproc | destnet | desthost | destproc
SEE ALSO
dn_makepve(3I), dn_makesignal(3I)

Page 12 (07/11/89)



DN_MAKEPVC(3I) DNET DN_MAKEPVC(3I)

NAME
dn_makepvc - assemble a DG_STREAM datagram
SYNOPSIS

void dn_makepvc(buf, channel, msg)
char *buf;

int channel;

char *msg;

DESCRIPTION

This internal library routine creates a DG_STREAM "datagram"® (used only by the connection
oriented services) given 1 channel and message. The assembled "datagram” is placed into the
buffer (buf). The datagram looks similar to:

dg_len|channel |type=DG_STREAM |msg
SEE ALSO
dn_makesignal(3I), dn_makedg(3I)

Page 13 (07/11/89 )



DN_MAKESIGNAL(3I) DNET DN_MAKESIGNAL(3I)

NAME
dn_makesignal - make a . DG_SIGNAL datagram
SYNOPSIS '

void dn_makesignal(buf, channel, msg)
char *buf;

int channel;

char *msg;

DESCRIPTION

This internal library routine assembles a DG_SIGNAL "catagram” (used only by the connection
oriented services) given a channel and message. The assembled “datagram” is placed into the
buffer (buf). The assembled "datagram” looks similar to the following:

dg_len|channel |type=DG_SIGNAL|msg

NOTE: For now, this is identical to dn_makepve(31) except that the datagram type is
DG_SIGNAL. Eventually, this should assemble something that looks more like a
DG_DATAGRAM datagram.

SEE ALSO
dn_makepve(31), dn_mak edg(3I)

Page 14 (07/11/89)



DNET_ERROR(3I) DNET DNET_ERROR(3I)

NAME
dnet_error - print dnet stack dump and error description
SYNOPSIS
#include "dnet.h"
void dnet_error(user_message)
char *user_message;
DESCRIPTION
The dnet_error library routine prints out a dnet stack cump and a descriptive error message

about the dnet_error that just occurred. If the dnet error indicates a system error, then a
descriptive message of the system errror which just occurred will also be displayed.

On top of the error display and stack dump, the message pointed to by the first argument
(user_message) will be displayed.

BUGS

The descriptive error messages being written are dependant upoon the underlying services
setting the dnet_errno variable (see dnet_errno.h). In the connection services and on the VMS
machines, this variable is not reliably set.

Page 15 (07/19/89)



GET_FIRSTHOP(3I) DNET GET_FIRSTHOP(3I)

NAME

get_firsthop - get source wode description from path strin 1
SYNOPSIS

#include "dnet.h"

int get_firsthop(path, fir;sthop)

char *path; /* Returned by get path(3I) */
HOPFIELD *firsthop;/fP

DESCRIPTION

The get_firsthop routine will set the value of firsthop to the source node description according
to the values in the path string. The get_path(3I) routine may be used to extract routing
information, which can then be broken out by this routine, get nexthop(3I), and
get_lasthop(3I).

SEE ALSO
get_path(3I), get_nexthop(3I), get_lasthop(3I)
RETURN VALUE

The return value of get_firsthop is undefined.
BUGS

The return value of this routine is undefined and should be ignored.

Page 16 (07/19/89)



GET_LASTHOP(3I) DNET GET_LASTHOP(3I)

NAME

get_lasthop - get destination node from path string
SYNOPSIS

/B3#include "dnet.h"

int get_lasthop(path, numhops, desthop)

char *path;

int numhops;
HOPFIELD *desthop;

DESCRIPTION

This routine extracts the Jdestination node string from the path string. The path string can be set
using the get_path(3I) routine.

If numhops is a non zero value, then this routine will grat the destination node description from
the third section of the path string. If numhops is a zero value, then it is assumed that the
destination node is being determined on the destination machine. The path string will then only
contain two sections, ana the destination node description from the second section of the path
string,

SEE ALSO
get_path(3I), get_firsthop(3I), get_nexthop(3I)
RETURN VALUE

The return value is undefined for this routine.
BUGS

This routine currently returns an undefined integer value. It should be ignored.

Page 17 (07/19/89)



GET_NEXTHOP(3I) DNET GET_NEXTHOP(3I)

NAME

get_nexthop - get next node description from path string
SYNOPSIS

#include "dnet.h"

int get_nexthop(path, nexthop)

char *path;
HOPFIELD *nexthop;

DESCRIPTION

This routine will extract the next node description string from the path string. The path string is
set by the get_path(3I) routine.

This routine along with get_firsthop(3I) and get_lasthop(3I) make up a set of routines for
extracting node descriptions from the path string. Because the path string may vary depending
upon the machine it is on, these routines should be used to extract the node descriptions rather
than accessing the path string directly.

SEE ALSO
get_path(3I), get_firsthop(3I), get_lasthop(3I)
RETURN VALUE

This routine currently returns an undefined integer.
BUGS

This routine currently returns an undefined integer value. It should be ignored.

Page 18 (07/19/89)



GET_PATH(3I) DNET GET_PATH(3I)

NAME

get_path - low level dnet .outing function

SYNOPSIS

#include "dnet.h"

char *get_path(source, destnet, desthost, destproc, numhops)
struct nethost_entry *source;

char *destnet;

char *desthost;

char *destproc;

int *numhops;

DESCRIPTION

This internal library routine provides the low level dnet routing service for dnet components,
Given the source and destination networks, hosts, and processes, this routine determines wherre
the next hop is. If the source and destination networks are the same, a two part path is
assembled, aconsisting of the following;

thisnet|thishost|thisproc|destnet | desthost | destproc
In that case, a value of 0 s placed in numhops.

If the source and destination networks are different, the router looks in the network routing
table (loaded into memory by dn_init(31)) for an ent-y wherre the source and destination
networks match the source and destination networks passed to this routine. If a match is found,
a path is returned that looks similar to:

thisnet|thishost | thisproc | nextnet | nexthost | nextproc| destnet | desthost | destproc

A value of 1 is placed into numhops to indicate this type of path.

SEE ALSO

get_firsthop(3I), get_nexthop(3I), get_lasthop(3I)

RETURN VALUE

A valid character pointer is returned on success, and a NULL pointer is returned to indicate an
error.

Page 19 (07/19/89)



IPCCLOSE(3I) DNET IPCCLOSE(3I)

NAME
ipcclose - close an ipc mechanism
SYNOPSIS
int ipeclose(ipcid)
int ipcid;
DESCRIPTION
The ipcclose internal library function removes the calling process’s access to the ipc mechanism

identified by ipcid. Any later access to that ipcid will be invalid.

If the mechanism being ¢ osed was accessed by the user using the D_BIND flag in the ipcget(3I)
routine, then the mechanism will be removed from the system. If the D_BIND flag was not
specified, then the mechanism will remain in the syst:m until the binding peer issues the
ipcclose(3I) call. Even if the mechanism remains intact, the user will still not be able to access
after the ipcclose.

SEE ALSO
ipcget(3I)
RETURN VALUE
Upon successful completion, the function will return a value of 0. If an error occurred, then the

function will return a value of -1 and will set the variable dnet_errno to indicate the error
condition.

ERRORS
The call fails if:
[D_SYSERR] A system error has occurred. Check the global variable errno.
[D_BADARG] The ip:id passed was invalid.

[D_EPERM] Write permission is denied on the ipc directory, or search permission to the
ipc directory is denied. This indicate; that permissions have been changed
since the time that ipcget was called.

[D_NODNET] The ipc directory no longer exists.

[D_NOEXIST] The ipc mechanism has already been removed. This usually means someone
has manually removed the file node.

CAVEATS

If ipcid is valid, the ipc mechanism will be closed by this routine even if an error occurrs.

Page 20 (07/19/89)



IPCGET(3I) DNET IPCGET(3I)

NAME

ipcget - establish and/or yain access to an IPC mechanism

SYNOPSIS

#include "dnet.h"

int ipcget(name, flags)
struct dnet_ipcname *name;
int flags;

DESCRIPTION

The ipcget library routine is used to establish and/>r gain access to a mechanism for
interprocess communiction.

The following is the template definition for the dnet_ipcname structure:

struct dnet_ipcname

{
char name[D_MAXPATHNAME];
unsigned msgsize;
unsigned mqueuesize;

b

The name field represen’s a string value that will be used to determine peers in a conversation.
The name chosen may nct contain the forward slash character.

The msgsize field represents an attempt at negotiation between the user process and dnet for
determining the maximum size of message that may e passed through. If the icpget call
succeeds, then dnet guarantees that messages of that size or smaller will not be truncated. The
ipcget call will fail if the underlying IPC mechansisms are not capable of handling a message of
the size requested.

The mqueuesize argument is used to request that dnet attempt to allocate enough space to
allow mqueuesize number of messages of msgsize to be sant to the queue without ever blocking.
This is infeasible in most environments because of sharing of buffering space with other
processes, but can be used to warn dnet of the expected activity for a particular user. Future
releases of dnet may actually take back allocated space if it is needed for other users.

An integer (ipcid) will be returned on successful comple ion which must be used in future calls
to the established IPC m=chanism.

The following flags may be set:

D _BIND Specifies that name is to be used to identify what incoming datagrams
zre to be received at this endpoint. Only one process is allowed to bind
to a given name at a time. Either the D_BIND, or the D_CONNECT
flag must be specified.

D_CONNECT Specifies the address (name) to which all datagrams leaving via this IPC
mechanism are to be sent. This flag is mutually exclusive with respect
to D _BIND. At least one of these mutually exclusive flags
(D_CONNECT, D_BIND) must be specified in the flags parameter.

D_GLOBAL This flag is only meaningful when used in a VMS environment in
combination with the D_BINL flag. The effect of this flag is to
advertise the name of the ipc mechanism in the system table, rather
than just the job table. This flag will cause the call to fail if the calling
process does not have SYSNAM privilege.

Page 21 (07/19/89)



IPCGET(3I)

SEE ALSO
ipesnd(3I), iperev(3l), ipeclose(31)
RETURN VALUE

DNET IPCGET(3I)

The function call will return a positive number representing a valid ipcid, or will return a -1
indicating an error and the external variable dnet_crrno will be set to the error code.

ERRORS
The call fails if:

Page 22

[D_SYSERR]
[D_BADNM]

(D_BADMN]
[D_BADARG]
[D_AEXIST]

[D_NOEXIST]

[D_NOSRSC]

[D_NOSRSC]
[D_QUOTA]

[D_NODNET]

(D_EPERM]

[D_EPERM]
[D_EPERM]

[D_INTR]

A system error has occurred. Chzck the global variable errno.

The name was cither determined to have a length of zero, or the length
cf the name was longer than the system imposed maximum (see
D_MAXPNAME in dgh). All names are assumed to be null
t:rminated string values.

The name contained the forward slash (/) character.
Both the D_BIND and D_CONNECT flags were specified.

The D_BIND flag was set and another process was already bound to
the address in name- > name.

The D_CONNECT flag was set and there was no process bound to the
given name.

There are currently not enough system resources available to provide
for another IPC mechanism at this time. The call may succeed at a
later time.

You have too many ipc mechanisms active. You will need to perform
2n ipcclose(3I) before you issue znother ipcget(3I).

“our process has the maximum number of file descriptors already in
L S€.

The error that occurred would indicate that the proper dnet
components were not started up, or were not started up properly. One
or more of the followin indications were found:

* A component of the dnet assembled absolute pathname for the IPC
mechanism was determined to not be a directory. This is indicative
of absence of the dnet temporary directory from this machines file
hierarchy.

o If the current system is Unix System V, the error may have resulted
from the dnet message queue(s) not existing.

Search permission of a component of the dnet temporary directory was
denied the calling process, or write permission to the dnet temporary
directory itself was denied.

If the current system is Unix System V, this error may have occurred
trom lack of permission to the m=ssage queue(s).

If the current system is VMS, then the user may not have permission to
create mailboxes.

“"he system call was interrupted by the receipt of a signal before it could
be completed. :

(07/19/89)



IPCGET(3I) DNET IPCGET(3I)

BUGS

None of the size fields within the dnet_ipcname structure are currently supported or checked.
This was provided for '/MS implementations where t12 IPC queueing space is explicately
allocated for each mechaism.

Page 23 (07/19/89)



IPCRCV(3I)

NAME

DNET IPCRCV(3])

ipcrev - receive an ipc message

SYNOPSIS

#include "dnet.h"

int ipcrev(ipcid, msg, msglen, flag)

int ipcid;
char *msg;
int msglen;
int flag;

DESCRIPTION

The ipcid argument is the integer handle rcturned from a successful ipcget routine.

The iperev function call zllows a process to receive an incoming message on the specified ipcid.
A blocking read is perforned unless the D_NOWAIT flag has been set.

The value in msg is an address of a character array where the message will be placed. No more
than msglen characters will be read. Any extra characters will be truncated.

SEE ALSO
ipesnd(3I)
RETURN VALUE

Upon successful completion, the function will return a value representing the number of
characters received. If an error occurred, the value rcturned will be -1 and the variable
dnet_errno will be set to indicate the specilic error condition.

ERRORS
The call fails if:
[D_SYSERR]
[D_BADARG]

[D_BADARG]
[D_NOMSG]
[D_EPERM]

[D_NOEXIST]

[D_INTR]

BUGS

A system error has occurred. Check the global variable errno.

The ipcid passed was zero or did not reference a valid dnet ipc
mechanism,

The specified buffer length was less than one.
The D_NOWAIT flag was set and no messages were waiting to be read.

Read permission on the underlying IPC mechanism was denied to the
calling user.

The peer reset it's connection. The ipcrev routine will issue an
ipcclose(3I) on this ipcid to iavalidate it for you. On System V
machines, this actually means that the dgms component reset the entire
ipc medium.

A signal was caught while attempting to read from the ipc mechanism.
No message was read in.

The D_NOWAIT flag requires a system call after receiving a message in the BSD environment.
This opens up the possibility of a signal being posted after a successful read. This situation will
cause a D_INTR error t5 be specified and the ipcrev call will appear to fail. If the D_INTR
message is set, check to see if the message was actually read, and if so, reissue another non-

Page 24

(07/19/89)



IPCRCV(3I) DNET IPCRCV(3I)

blocking read to reset the socket endpoint properly.

Page 25 (07/19/89)



IPCSND(31) DNET IPCSND(3I)

NAME
ipcsnd - send a message via a dnet IPC mechanism
SYNOPSIS

int ipcsnd (ipcid, msg, msglen, flags)
int ipcid;

char *msg;

int msglen;

int flags;

DESCRIPTION

The ipesnd function call allows a process to send a message out an IPC mechanism created with
the ipcget library routine.

The only flag value currently supported is the D_NOWAIT flag which will insure that the calling
procedure will not block on back pressure from the underlying IPC mechanism.

SEE ALSO
ipcrev(3l)
RETURN VALUE

Upon successful completion, the ipcsnd function call will return a value of 0. If an error
occurred, a value of -1 will be returned and the dnet_errno variable will be set to indicate the
error code.

ERRORS
The call fails if:
[D_SYSERR] A system error has occurred. Check the global variable errno.

[D_WOULDBLOCK] The D_NOWAIT flag was set and sending the message at this time
would cause the process to block waiting for the underlying mechanism to
release back pressure.

[D_BADARG] The ipcid value passed was either zero, was a negative number, or did not
represent a valid dnet IPC mechanism.

[D_BADARG] The ip:id passed represents an IPC mechanism created with D_BIND, and
therefcre cannot be used with ipcsnd.

[D_BADARG] The value of umsglen was determined to be less than one or greater than the
maximum allowable message size (D_MAX _IPC_MSG_SIZE in dnet_ipc.h).

[D_NOEXIST] The peer reset it’s connection. The ipcsnd routine will issue a ipcclose(3I) for
your process.

CAVEATS

Unix System V implementations attempt to dynamically allocate memory space for sending
messages when they are called from within a dnet user program. This may result in a system
error occurring from temporary lack of memory space which may be available at a later time.
The expected results would be that dnet_errno would be set to D_SYSERR, and errno would
be set to EAGAIN. The current implementation provides no explicit or guaranteed method for
determining this condition.

BUGS

No explicit and guaranteed indication of temporary lack of dynamically allocatable memory
space is provided by dnet.

Page 26 (07/19/89)



IPCSND(3I) DNET IPCSND(3I)

NAME
is_error - print error message if system call return value indicates error
SYNOPSIS

int is_error(retval, errmsg)
int retval;
char *errmsg; /* Message to print if error occurred */

DESCRIPTION

This internal library routine is meant to be called after « system call. If the value returned by
the system call (retval) indicates an error, the the errmsg is displayed.

NOTE:

This function has probably outlived its uscfullness. The original intent was to get a handle on
errors returned on the VAX. Some system calls (those implemented by Wollongong) return an
error value but fail to set errno so that you can’t learn anything by calling perror(). Instead,
another external variable, uerrno, was set. This function was needed to get the value of uerrno
so we coulde ook it up in the errno.h file manually.

SEE ALSO
dnet_error(3U)
RETURN VALUE

This routine returns a viue of 0 if retval is not negative, and a 1 if it is.

Page 27 (07/19/89)



LOAD_MY NAME(Q(3I) DNET LOAD_MY_NAME(3I)

NAME

load_my name - determine the name of this host
SYNOPSIS

#include "dnet.h"

int load_my_name()
DESCRIPTION

This internal library routine loads the entry from the myname table into the myname structure.
The myname_table array is defined in the dnet.h header file and is of type struct nethost_entry.
The nethost_entry structure is defined as follows:

struct nethost_entry

{
char netname[ MAXNAMESIZE];
char hostname[ MAXNAMESIZE];
b

The load_my_name routine determines these values from :he tbls.myname file in the dnet home
directory.

If your module contains ¢ main function definition, then the following line must be in your code
before the inclusion of dret.h:

#define MAINPROGRAM
SEE ALSO
dn_init(3U), load_net_table(3I)
RETURN VALUE

This routine returns a zero on success and a -1 on failure.
ERRORS
The call fails if:

[D_NOSYSFILE] The tlbs.myname file could not be found in the dnet home directory, or
was in an invalid format.

[D_SYNERR] More than one non-commented entry was found in the tbls.myname file.

Page 28 (07/19/89)



LOAD_NET TABLE(3I) DNET LOAD_NET TABLE(3I)

NAME

load_net_table - load routing table into memory
SYNOPSIS

#include "dnet.h"

int load_net_table()
DESCRIPTION

This internal library routine is used to load the current host’s routing table into memory for
quicker access and use by future routing functions.

The table is loaded into a structure array defined in dnzt.h and named net_route_table. The
structure type is net_rout:_entry and is defined as follows:

struct net_route_entry

{
char srcnet[MAXNAMESIZE];
char destnet{ MAXNAMESIZE];
char gateway[MAXNAMESIZE];
char dgsproc{MAXNAMESIZE];
b

The table is initialized from the tbls.net file in the dnet home directory.

If your module contains a main function definition, then you will need to add the following line
above the inclusion of dnet.h:

#define MAINPROGRAM
SEE ALSO
dn_init(3U), load_my_name(3I)
RETURN VALUE

This routine returns a zeio on success and a -1 on failure.
ERRORS
The call fails if:

[D_NOSYSFILE] The tbls.net file was not found in the dnet directory, or read permission
was denied.

[D_NOSRSC] The tbls.net file contained more recoris than were defined for the internal
table. Look at the value of MAXTBLSIZE in the dnet.h header file.

[D_SYNERR] A record was found in the tbls.net table that was determined to have the
wrong number of fields.

Page 29 (06/26/89 )



MAKEIPC(3I) DNET MAKEIPC(3I)

NAME

makeipc - administrative creation of an IPC medium
SYNOPSIS

#include "dnet.h"

int makeipc()

int _makeipc(sv_msg_key, ipcdir, flags)
int sv_msg_key;

char *ipcdir;

int flags;

DESCRIPTION

These library routines provides for the administrative creation and general access of a dnet IPC
medium. The creation of an IPC medium (not to be confused with creation of an IPC
mechanism as described in ipcget) allows creation of a private "area” within the means of inter
process communication of the operating system. The intention is to avoid collisions with
unrelated processes using inter process communication. The creation of a private area differs
according to the operating system.

On all UNIX machines, the UNIX filename is supported for addressing a particular IPC
mechanism. To facilitate this, an ipc directory is used to place all addresses (only filenames are
supported, explicate pathnames will cause an error on ipcget). If, in addition, the machine hosts
a System V operating system, a System V message queue is also required. In a VMS
environment, these routines are effectively empty functions.

ANl TPC routines require that the IPC medium be accessed by all processes wishing to use it. In
addition, an administrative process needs to create it tcfore any other processes attempt to
access it. The flags parameter allows the _makeipc rowine to be issued for creation by using
D_CREAT | D_EXCL. The makeipc routine calls _makeipc with the flags set in this fashion.
If _makeipc is called with only the D_CREAT flag specified, then the _removeipc (or
removeipc) will always return successfully without removing the medium. Processes other than
the administrative process should attempt to "access" the IPC medium by setting the flag values
to 0. The call will fail in this case if the IPC has not been created.

The first two parameters to the _makeipc routine allow the processes to choose the IPC
directory and System V message queue key value (only meaningful on a System V machine).
These parameters allow for avoidance of collisions with other, unrelated processes using the
interprocess communication means for a particular machine. In addition, the proper placing of
the IPC directory may also provide additional security inkerant within the UNIX filestore.

SEE ALSO
ipeget(3I), removeipc(31}
RETURN VALUE
Upon successful completion, the function will return the value of the msqid for the System V

message queue created, or a 0 in other environments. The msqid, though, is of no use to other
IPC routines, since the _makeipc routine makes it availatle to them transparent to the user.

If an error occurred, then the function will return a value of -1 and will set the variable
dnet_errno to indicate the error condition.

Page 30 (07/19/89)



PRTTIME(3I) DNET PRTTIME(3I)

NAME

prttime - return a string representing the current time of day
SYNOPSIS

char *prttime()
DESCRIPTION

This internal library routine returns the current time of day in a character string of the form:
"time: 12:59:59". Hours, mninutes, and seconds are given.

RETURN VALUE

This routine returns a pointer to the character string generated.

Page 32 (07/19/89)



