
NASA-t._-190t>63

DNET

A Communications Facility
for

Distributed Heterogeneous Computing

I',,- f'--

I "-
I,; t,j

FINAL REPORT

Contract NAS 5 - 30085

Digital Analysis Corporation
1889 Preston White Drive

Reston, Virginia 22091 z u c_.

(703) 476- 5900

tl_ _ _ to ,m tlm a_t_ I_" _ _ _ml_, _:I/_ _I_II nlx be _ _ tl_ _ (ind_ainll _ tot. Im_"u_nt
pu_l_l) dm'_l lucl_ IX'rind without permi_i_ ot tl_ _mtr_tor, e_ept tl_ _a to tl_ Io_1_1 _ _ _ _ _ _ _ _ _ _ _

by mgmn _o_m_on. A,_r t_,. _ 2-_" _ t_ _/_ a"_/_/-_'ee _ to we, and to _Mei_ _ to ,me oa _- I_ aw a_ fo¢

_ but tit m_ bata all _ _iti_ t_l,_i_ _,.li_ilily _" u_mll_i_z_l _ oil'tl_ _ by tbinl [_tl,-,,. _ Not¢_ _I_11 be

gffimd to t_y _m_ o¢ 0_ d_t_, m whole, or m p_rt.' _

0

t_

DNET

INTRODUCTION GUIDE

Vcndom: 1.24

Print Date:. 09]01/89 13:14".37
Module Name: iutro.gui

Digital Analysis Corporation
1889 Preston Wlfl_ Drive

Restou, Virginia 22091
(703) 476-$900

 .oo_/
Thin _mm dma i funzbkd v_h qmm rqll_ ueder NASA Camm_ NAS_=or a pro-lad _ 2 _es al_" _ d d _ m _ _ _ ¢_ _
t_. Oo_rmmt qp_m to m tbiJ ¢bm _or Oovemmmffi purpmm ou_, m_ k _gt m t_ _ _ tk _ (_ _ _ _

Imcpems) d_ll m_d_ p_iod w_ut _ ar tlm Omtmat_', anmulp¢ tl_. mallet t_ _ tree _d dn_mm_ [m2ml_'iom, _ _ _ _ _ _ _

by mnppon _mmmm_. Altm. tt_ _ 2-ymu. pm._ ttm Oommmm_ tm a roga_-_-mm to _, _ to am_ m_ _ _ _ _ _ t_ _ _

CONTENTS

1. Abstract 2

2. Organization of the Remainder of this Introductory Guide 4

3. Services Requested By NASA 5

4. Overall Topology of DNET 7

5. Def'med Boundaries 8

6. Interfaces to DNET 9

7. DNET Implementation 10

8. Major DNET Components 11

9. Organization of the DNET Documentation 12

-i-

DACStaffwhocontributedtoDNET:

PrincipalInvestigator
John'role, Sc.D.

Engineers:

S. Nagappnn
J. Ciaytom
P. Ruotoio
C. Wiillamsou
H. Solow

Acknowledgements:

The DAC DNET project
organizations to this effort.

staff gratefully acknowledges the contributions of other persons and

• Barry Jacobs and Shyam Salona of the DAVID project at NASA Goddard Space Flight Center
(NASA-GSFC) were the principal NASA contacts for this project. Their support and interfaces
with other NASA personnel greatly facilitated all aspects of DACs effort. Their understanding of
the nature of this research also made the conduct of this project most pleasant for the project staff
Their efforts are deeply appreciated.

• The DNET interfaces to TCP/IP and DECnet are based in part on the 'NET' code developed at
Space Telescope Institute (STI). DNET also derives some of its design philosophy from the STI-
NET system. DAC is grateful to STI for providing the NET code and for consultation on its use.
Peter Shames and Steve Zeller of STI were especially helpful with information and access to STI
resources.

• Todd Butler of the NSSDC facility at NASA-GSFC provided much useful consultation and
assistance on DECNET.

• Jerome Bennett and Charles Cosner of the Data Flow Technology staff were unceasingly co-
operative in resolving numerous questions and problems with the IAF and DFTNIC VAX machines
at NASA-GSFC. This project could not have been completed without their assistance.

• David Pipes and Randy Thompson provided valuable administrative assistance on the nssdcs and
luesnl SUN4 computers at NASA-GSFC.

• Bob Wood and Sally Saucedo of DAC provided ongoing system administration which is greatly
appreciated.

• Chris Waiters of Mitre Corporation offered important technical contributions on the configuration
of an Ethernet System.

1. Abstract

This document describes DNET, a heterogeneous data communications networking facility. DNET
allows programs operating on hosts on dissimilar networks to communicate with one another without
concern for computer hardware, network protocol or operating system differences.

The overall DNET network is defined as the collection of host machines/networks on which the DNET
software is operating. Each underlyiog network is considered a DNET "domain'. Data
communications service is provided between any two processes on any two hosts on any of the
networks (domains) that may be reached via DNET. DNET provides protocol transparent, reliable,
streaming data transmission between hosts (restricted, initially to DECnet and TCP/IP networks).
DNET also provides variable length datagram service with optional return receipts.

Communications and computing services within DNET are provided in an environment based on
clients and servers. When 'permanent' connections are required, clients request connections to specific
servers by contacting a 'Master Server' at the destination host. The assignment of specific instances of
server processes to clients is done by this Master Server as requests are received. The Master Server
also controls server process creation, prespawning servers as necessary in order to improve response
times. Local system administrators can regulate the number and type of specific servers. Servers report
their status to this Master Server so it's database is always up to date.

Connectlonless datagrams may also be sent between any two DNET processes. The DNET
connectionless service is implemented separately from the streaming service.

There are two types of nodes in DNET, Hosts and Gateways. A DNET host is simply any machine
which can access another machine via DNET. DNET gateways are special cases of DNET hosts which,
provide protocol conversion "relays"between dissimilar networks in addition to other DNET functions.

DNET Host software includes a library of basic 'transport level' I/O functions, DNET application
clients & servers, a master server (which controls the creation and allocation and permanent circuit
connection of specific servers on its host) and a Datagram Master Server and Protocol Specific
Datagram Servers which provide a universal interface to the DNET connectionless datagram service.
DNET gateways include streaming 'relay' processes. These relays are simply special application
servers which provide protocol conversion between the underlying networks. The DNET
connectionless service handles protocol conversion between dissimilar networks as part of its inherent
design.

Applications provided with DNET include F'le Transfer, Remote Loon, and Remote Execution. In
addition, a Network Command Interpreter allows I/O redirection and task 'chaining' across the
network. Various application level processes may be invoked via this facility. DNET users may also
add other applications by followin 8 interface techniques described in this document. Presentation level
routines provide XDR data conversion capabilites in order to handle differences in internal data

representation on different machines.

DNET also includes a provision for electronic mail and several network utilities of use in both system
administration and user applications.

From the user's perspective, DNET is implemented as a library of program callable functions with
input, output, and error redirection capabilities. No Kernel Modifications are required on any machine
on which the DNET software operates. While this constraint introduces some potential performance
problems, it greatly simpfifies the logistics of implementing and maintaining a heterogeneous network.

2 DNET INTRODUCTION GUIDE

WhileDNEThasbeendesignedfor_ use by the NASA-GSFC DAVID project, consideration has
also be given to its future utilization with other applications which must operate in a heterogeneous
environment. The initial DNET environment is thus limited to TCP/IP, DECNET, and dialup
communications alternatives and UNIX (ATr System V and BSD) and DEC VMS operating systems.
Design generality has been maintained as much as pos_'ble however, so future inclusion of other
operating systems and communications fa"ctlitie._ especially ISO/OSI, UNIX/uucp, and IBM
SNA/LU6.2 and VM/CMS may be contemplated.

Abstract 3

2. Organization of the Remainder of this Introductory Guide

The remainder of this guide contains the following information:

• Discus,_on of Networking Service_ Originally requc_od by NASA

• Overall Topology of DNET

• Current Dcf'mcd Boundarics

• Def'mition of Interfaces to DNET

• Overview of Major DNET Components

• Implementation

• Introduction to Documentation Organization

4 DNET INTRODUCTION GUIDE

3. Services Requested By NASA

The following is a brief description of the communications services which NASA required for the

DAVID project.

Task To Task Communications

1. Initiation of program task at a remote internet (DAVID) node with facility to pass

arguments/results and propagate termination signals.

2. Transfer and execution of portable programs at an internet (DAVID) node

3. Provide transparent operations which allows 2 programs or command procedures running
on different DAVID nodes on different host environments to communicate with one
another.

Operations would include:

• initiation of remote tasks

• termination of remote tasks

• send data & 'interrupt' messages

• receive data & 'interrupt' messages

Fde Transfer

1. F'de transfer of ASCII and binary f'des to any internet (DAVID) node with multiple

authentication options including:

• autologin

• various user/passwords

2. f'de transfer between any two internet nodes, neither of which is local to the user

3. end to end reliability with timeout and acknowledge options

NOTE: the ability to specify some or all time.out parameters may be dictated by underlying

Wotocois and not under control of software DAC is able to provide.

4. Provides presentation layer function for data conversions so as to make differences in data

type representation transparent across machines.

5. Proviu'on for initiation of remote procedure upon successful completion of f'de transfer

6. Additional operations

• check for existence of fde

• delete, rename, append to fde

Remote Login

1. Supports internet Iogons (with relay mechanism)

Services Requested By NASA $

2. Supports different authentication methods

• autologin

• username - password

3. Supports different terminal types

4. Provides option to specify execution of user defined logon procedure

General Utilities

1. Indication that remote internet node is up

2. Ability to determine load on remote node

3. Utility to determine host idg host names, and host aliases

Mail

1. Provide capability to send mail to one or more people or tasks at various internet nodes

6 DNET INTRODUCTION GUIDE

4. Overall Topology of DNET

The overall topology of DNET is a collection networks as shown in the following diagram:

PROC 1

Q Net
PROC IA

Q4

Each of the networks contains one or more nodes (host computers) and some of these nodes

(gateways) are shared by two or more networks. From the perspective of a DNET user, all of the

networks and nodes appear identical. Positive identification of a specific node requires only that the
name of the destination node and the network on which it resides be known. No knowledge of the path

between, nor the environment under which the destination node operates is normally required. This,

of course, differs radically from the view that DNET implementors and administrators see. The latter

view involves a collection of incompatible networks and environments that must be combined to bring

reality to the prior view. In order to provide for such a reality, certain boundaries must be defined as
described in the next section.

over_ To_o_S ot DN'_r 7

5. Defined Boundaries

The following 'Boundaries' exist for DNET. The boundari_ are simply a compact list of the
environments in which DNET can be expected to operate without an _ software porting effort.
The current boundaries are:

1. Communication Protocols

• TCP/IP (Woilongong, Excelan, and Berkeley Implementations)

• DECrier

• BSD Sockets

2. Operating Systems

• UNIX (System V.2 and 4.2BSD)

• VMS

• MS-DOS (DNET Clients Onlyd)

3. Hardware

• AT&T 3B2

• Sun Model 3

• DEC VAX

• IBM PCs (DNET Clients Only;, LAN interface only)
Despite support for a variety of environments and underlying components, the interface to DNET
users will remain standard.

g DNET INTRODUCTION GUIDE

6. Interfaces to DNET

There arc three interfaces dcf'med for the DNET network::

• End User

• Programmer

• Administrator

The end user is a person who takes advantage of the networks services through an interactive mode
involving utilities that are run from the keyboard. These generally manifest themselves as interactive
distributed services like trivial f'de transfer protocol, electronic mail, and remote command language.
The user sees DNET as a 'homogeneous' network. All commands to operate applications and the
behavior of these appficafions appears to be uniform across all machines on the DNET network.

The interface provided to the programmer comes in two basic forms: the connection oriented services,

and the connectionlesa oriented services. The connection oriented services provide a streaming mode
of full duplex conversation between two processes. The _ mode services provide a
method of sending and optionally receiving datagrms (packets of information) without previously
establishing a connection. Both of these services are implemented through user libraries that may be
compiled into the programmer's appfications. The DNET user is provided with extensive
documentation to fac/litate usage of the system.

The system administrator is provided with utilities for starting and stopping a DNET node, modifying
the number and types of DNET appfication servers at the node, altering routing tables and monitoring
the status of both local and remote DNET nodes.

For more advanced applications, information is also provided on DNET 'internals' to allow more
sophisticated special servicesto be implemented. This information is provided in the DNET technical
guide and reference.

in_toDNET 9

7. DNET Implementation

The implementation of DNET was designed with low impact on target machines as a high priority.
This low impact philosophy is intended to apply not only to resource consumption oil the local

machine, but also to administrative and user functkms. From a resource standpoint, DNET daemon

processes only require CPU resources when applications request service, and the resources provided by
the underlyin 8 nctworks are still available to programs that have akeady been written to interact

directly with thcm. All administration tasks associated with the tmderlying networks remain thc same,

and the administrator's responsibilities are clearly outlined in the administrative guide. The end user

utilities were created with preexisting standards so that retraining is minimized, and the programmer
tools were kept to a minimum, are well documented, and many times operate in a similar fashion to
standard f'de operations.

The DNET design also takes into account the importance of simplicity in addin8 new applkafiom in •

heterogeneous cnviromncnt. DNET specifies a minimal set of rules for writing client-server pairs to
implement new application_. Details arc provided in the DNET Programmcr's Guide and Reference.

I0 DNET INTRODUCTION GUIDE

8. Major DNET Components

A small collection of DNET componcnts are required on each node on the DNET network:

DNET Master Server

Tim server provides a 'well known' port for the connection oriented DNET servicea.
All server applications (sec Programmer's Guide) are stilted and maintained by the

master server. One master server is required per protocol per node. Thus, a DNET

node which is connected to both DECnct anda TCP/IP will have a Master Server

'listening' on each of these two nctwor]m.

DNET DataGram Master Server _DGMS)

The DNET DGMS is the heart of the connectionle_ serv/cc and prov/des all routing
and switching services for dat_rams either coming in from a network, or from it's

genesis in a user process.

per protocol DataGram Server (DGS)

This component provides the low level interaction with a particular tmderlyin 8

provider (ie TCP/IP). One such server is required for each protocol at a particular
DNET node. All DGS components then provide a standard interface to interact with

the DGMS component so that all networks a_ear to have the same interface.

Beyond that, the DGS components are merely dumb relays.

Rc_ypr_

These processes provide relay service for the connectioa oriented service and are

only found on gateway machines. The relay processes actually write out on the
proper network in loopback mode to get to the master server controlling that

network type.

Application Processes

These processes provide the 'standard' collection of DNET applications for the user.

Administrative Processes

These are a small collection of scripts and rules which allow the local system
administratc_ to control the local DNET functions.

User la'brary

The user library contains all of the routines necessary for a programmer to use the

DNET services. A separate set of routines are provided for connection and
connectionless oriented services.

_v

Major DNET Comp_eats 11

9, Organlzatlon of the DNET Documentation

The DNET documentation is organized around the three intcrfaccs (user, programmer, administrator)
dcf'mcd above. These documents together with this Introdm:tio., Guide and a Technical Guiclc

describingthe internal implementationdetails,provide• complete_ of DNET. There are
thusdocumentationcategoriesfor end users,programmers,networkadministrators,and internal

programmers.Each of theabove mentionedcategoriesisdividedintotwo manuals,a guideand a

reference.Providingtwo manuals per categmy allowsthe documentationto actas both a quick

referenceforuserswho need onlyspecificdetails,and asa learningorrefresherguide.Utilitiesare

provided so that the reference manuals may actually be stored on-line if space allows so that a DNET
user may interactively reference the manual from their terminal. Additiomd Notes are provided for
each category, as appropriate.

U DNET INTRODUCTION GUIDE

DNET

USER'S GUIDE

Version: 1.21

Print Date:. 09/01/89 D:43.'05

Module Name: user.gul

Digital Analysis Corporation
1889 Prestom White Drive

Restoa, Virginia 22091

(703) 476-5900

Copyrq_,n_, _pua _ Cmpormim

CONTEN'I_

1.DNET Overview 1

I.I What is DNET7 1

1.2 Major Elements of a DNET Network 2
1.2.1 Network Arrangement 2
1.2.2 Existing Networks 3
1.2.3 DNET Hoes 3

1.2.4 Gateways 3

12.5 DNET Routin 8 3
1.3 What the DNET User Has Available 4

1.3.1 Applications 4
1.32 Presentation LevelServices 4

1.3.3 BasicI/O C Function Library 4

2. How to become a DNET User 5

3. An Introduction to DNET Applications 6
3.1 The Echo Routine 6

4. Help Facilities 8
4.1 Manual Pages 8
4.2 On-line Help 8

4.2.1 UNIX 8
4.2.2 VMS 8

5. F'deTransfer 9
5.1 DNET T_'- I)N_ _dal'F'ie Transfer Protocol . . . _ 9

5.2 Invoking DNET F'deTransfer 9
52.1 DTFTP from the Command Line 9

5.3 User Commands 10
5.4 F'de Transfer Errors 11

5.5 A File Transfer Example 11
5.6 Using the Network Command Language for F'de Transfer 12

6. Remote Login 13
6.1 Introduction 13

6.2 Invoking DNET Remote Login 13
6.3 Ending the Remote Loon Session 14
6.4 Security Issues 14

6.4.I UNIX 14
6.4.2 VMS 14

7. Network Command Language 15
7.1 Overview 15
7.2 Network Command Processor Schematic 15

7.3 Network Command Language 15
7.3.1 Command Language Syntax 16
7.3.2 Using The Command Language 16

7.4 Network Command Interpreter 16
7A.1 Status Reporting (from last Network Command Server) 17

7.5 Initiation of F'deTransfer from One Remote Node to Another 17

8. Remote Execution 19

8.1 Passing Arguments to Tasks 19
8.2 Transfer & Execution of Portable Programs at a Remote Host 19
8.3 Initiation of Remote Procedure Upon Completion of F'de Transfer 19

-i-

9. Ek, ctroak Mail 20

9.1 Mail Operation 20

9.1.1 Sending Mail 20

9.1.2 ReadingMai_ 21
9.1.3 Auto Notification of Mail Arrival 21

10. General Network Utilities - dnetstat 22

10.1 Testing if DNET _s alive 22

10.2 Obtaining Status of DNET Servers 22

11. Presentation Services 25

11.1 XDR Services 25

12. Glossary 26

.il.

1. DNET Overview

This section provides an introduction, from the user's perspective, to the DNET Network for
Heterogeneous Distributed Communications. The various functional elements which make up DNET
are described as are some of the important assumptions made in the design.

1.1 What is DNET?

DNET is a communications env/ronment which provides a consistent view of a number of
interconnected heterogeneous networks. Networks included at present are those which use the
DECrier and TCP/IP communication protocols. DNET provides a 'seamless' or uniform interface to
these networks and machines, giving the impression that a single homogeneous network is being used.

The basic DNET software provides a consistent 'Transport' Level interface to the underlying existing
networks/protocols on which in operates. Various applkatlom may use these transport facilities for
their communication needs. DNET includes a set of commonly used 'generic' applications as a basic
working set of tools and as examples of how this communication facility may be used.

NOTE: DNET (currently) operates as an appfication on machines on which it is available. While this
implementation strategy introduces some potential performance problems, it greatly simplifies various
logistical problems in operating a heterogeneous network. Further rationale for this approach is
provided in the DNET Technical Guide.

1.2 Major Elements of a DNET Network

A DNET network consists of the following major elements:

1. A collection of two or more existing, specific networks (with protocols supported by DNET,

currently TCP/IP, DECNET, and Asynch Dial-up)

2. DNET Hosts - machines which are able to communicate using DNET services

3. DNET Gateways - special DNET Hosts which also provide protocol conversion between the

underlying networks
By implication, the DNET Hosts and Gateways have DNET software installed which establishes their
functions. Each of these elements is described in more detail below:.

1.21 Network Arrangement

DNET is a "meta-network" or a network of networks. The general arrangement of these major
elements of a DNET network is shown in the following diagram.

PROC 1

PROE 2

2 DNET USERS GUIDE

DNETcanestablish a "permanent virtual circuit'. In this mode an "open"function is called to establish
a communications path from one process to another process in another host, possibly in another
network. The path established comprises relay processes and network connections dedicated
exclusively to the stream mode transport of data between the end points of the circuit. Permanent
virtual circuits reduce the number of network connections that must be established and the associated

task initi""_ionrequired. This significantly improves network performance. When data is transmitted in
a "streaming" fashion in one session the performance increase more than offsets the initial cost of
circuit establishment.

DNET also provides variable length datagram service. The user interface to this service is
connectionless (i.e. no "open" is required before starting process to process communications).
Datagrams may be used to either transmit data or signal information.

1.22 Existing Networks

The underlying networks associated with DNET are ones which have existing reliable, data streaming
capabilities. The networks in which DNET may currently operate are TCP/IP, DECnet, and
Asynchronous links. DNET depends on the transport services of these these 'underlying' networks and
presumes that they are operational

1.23 DNET Hosts

DNET Hosts are computers at which local processes may use the facilities of DNET to interact with
remote processes in the heterogeneous network. Any computer connected to one of the networks
served by DNET may become a node on DNET provided the following conditions apply. The machine
must:

1. be resident on a specific existing network (e.g. TCP/IP Net X, SPANET, etc.) which is known to
DNET

, have at least one DNET master server listening on a known DNET network. This requires the
following processes: The DNET PVC Master Servers(s) DMSDEC and/or DMSTCP, and the
Datagram Master Server(s), DGMS and Datagram Protocol-specific servers: DGSUDP and/or
DGSDEC.

3. have at least one DNET application server running (if requests from remote nodes are to be
serviced)

1.24 Gatem2ys

DNET Gateways are nodes in DNET which are connected to one or more networh in which DNET is
operating. The functioa of the gateway is to bridge the protocol and other differences between these
networks in a transparent manner. The gateway functions are implemented in special DNET PVC
Relay servers and Datagram Servers which provide protocol conversion for Permanent Virtual Circuits
and conne,ctionless datagrams respectively. Except for their special-p_ function, these servers are

handled just like any other DNET application servers.

1.25 DNET Routing

DNET employs hierarchecai routing. Each DNET node contains a routing table which indicates, for
each network known to DNET, the next host to contact in which to 'move' toward that particular
network. In general, the next hops listed in the table are all DNET gateway machines. The user
generally need not be concerned with the routing tables, however a 'map' of the DNET network or at

leastthenamesofremoteDNETnodesandnetworksofinterestisessentialforuseof DNETfacilities.

1.3 What the DNET User Has Available

1.3.1 Applications

Certain common application fadlities are provided with DNET. Each of these applications has a
corresponding application server within the domain in which it is available. Operation of specific
applications will be at the discretion of the administrator at the destination node. The DNET function
dmetstat, described elsewhere may be used to determine which servers are running at a specific DNET
node.

The available applications include:

1. File Transfer - loosedly based on TFTP with some enhanced features

2. Remote Login - similar to 'telnet' or 'set host' - allows full interactive sessions with UNIX servers
and more limited sessions with VMS servers

3. DNET Network Command Interpreter - A generalized remote execution and task redirection
application - Similar to the redirection capability of UNIX

4. Mail - a basic system similar to a stripped-down UNIX mail

5. DNET Status - a generalized network status utility similar to 'netstat'

L3.2 Presentation Level Services

DNET provides a limited Presentation Level Service for use by the above applications (and user
definined applicatioas) This service allows:

- Conversion of Data Elements between dissimilar machines via the SUN XDR (External Data

Representation) functions.

1.3.3 Basic I/0 C Function Library

The DNET Basic I/O functions may be used to generate custom operations in the DNET
environment. The I/O functions provide communications facilities between tasks on different hosts
within DNET. These facilities indude permanent virtual circuits, connectionless datagrams, and

The I/0 library may be used in two ways:

L Low Lev_ Cmnectionle_ "lhsk-te-Tnsk Communications - using the Datagram and Signalling
functiom contained in the I/O package, the user may communicate with other processes
elsewhere in DNET

2. User Specific Custom Applkatloas - by following the conventions for DNET Client-Server
relationships, the user may write higher level custom applications which will operate smoothly in
the heterogeneous DNET environment.

Further discussion of the basic I/O package is found in the DNET Programmer's Guide and Reference
Manual

4 DNET USERS GUIDE

o

2.

2. How to become a DNET User

The machine which you are using must be 'known' to DNET and have DNET running locally.

The path to DNET 'client' fdes must be known to your account. This information needs to be
placed in the appropriate f'de as noted below:.

1. UNIX

o

.

.protne

set daethome and PATH to ./dnet/eoht

2. VAX/VMS

1"heduet home directory must contain the following machine speclfk rde:
m

DAC Mlcrovax !I

dniogin.dv

NASA-GSFC - DFTNIC VAX

dalegtn.dlt

The fde

Iogin.com

in the user's login directory must have the following lines. The example given is for the
DAC Microvax II machine. The definitiou for dmet home and dnlogin.XXX will be
machine dependent.

$! DNET Specific Environment
$ set proc/prlv = 8rlmam
$ define/group dnet home SdJskl:[sysO.dnet.dnet]
$Zrun DNET togin w_ript
$ @dnet home:dniogin.dv

The DNET System Administrator's Guide provides details on information to be included in these
f'des as well as other useful information about DNET conrtguration.

You must be aware of network and host names for the machine(s) with which you wish to
interact.

You need to become familiar with the DNET applications which you need to use. These are
presented in the following sections.

3. An Introduction to DNET Applications

section provides a brief introduction to the use of typical DNET applications. The several
applications have been designed and implemented with two purposes:

1. To make DNET immediately useful in solving typical user problems, even with networks of
limited scope.

2. To serve as examples of how to use the DNET tools to build other applications.

DNET Applications operate in a consistent manner at all nodes def'med within the DNET network. In
order tO _ DNET applications, the user must only be aware of the DNET destination host and
destination names and the specifics of the application. A typical DNET application is invoked with the
command line sequence:

Client-command Desthmtion-netwerk l)estinntJon-bost

For example, if the user is located at some machine on DNET and wishes to perform a fde transfer
to/from the IAF VAX at NASA-GSFC, he would enter the following command to start the DNET
basic (trivial) f'de transfer application.

dtflp spanet iaf

Other applications are invoked via a similar syntax.

3.1 The Echo Routine

An elementary echo routine, decho, provides a convenient introduction to the use of DNET
applications, decho allows the user to enter lines of arbitrary text which are then echoed back to the
terminal from a remote echo server. Experimentation with this simple function will give the user a feel
for the typical setup time for DNET streaming connection and an introduction to error conditions and
run-time debugging options which are available to the user.

User 1 dedm

It ¢llmt
Terminal

DNET

_erJ

decho is invoked by entering the following command line:

decho cleat netwerk dest best [CR]
u

A message will be printed on the terminal:

Attempting to connect to dest netwerk dest host

In 2-10 seconds, the connection to the destination should occur.
either:

decho should then respond with

6 DNET USERS GUIDE

iteadr

or:

dechod server uuavullable at desflnaflom (DNET error xux)

Assuming the 'Ready' prompt appears, one may then type an arbitrary line of text, e.g. :

[CR]

After a short delay, this text should appear oil the screen a second time as it is echoed from the remote
server. This process may be continued indef'mitely. The 'echo' delay provides an instantaneous,
subjective indicator of the performance of DNET. Keep in mind that this delay is heavily dependent on
the load on intermediate DNET nodes which may be performing protocol relay operations.

When f'mished using decho enter the following, machine dependent terminator to exit to the operating
system.

UNIX:

Cntrl D

VAX/VMS:

Cntrl Z

4. Help Facilities

There are two sources of help for DNET application& manual pages in the DNET User's Reference
found with this documentation, and on-line versions of the same manual pages on machines where this
facility is supported.

4.1 Manual Pages

Manual pages in the User's Reference follow the style of UNIX manuals. The user is referred to
examples in this Reference.

4.2 On-line Help

DNET provides an online 'manual' facility which may be of help to the user.

The manual pages found in the various DNET Reference Manuals are available on-line as follows:

4.21 UNIX

The DNET manual may be invoked by entering:.

dnum daet fenctioa name

where drier_function_name is the DNET function or application for which additional information is
desired.

4.22 VMS

On-line Help for VMS has not been implemented in this release

g DNET USERS GUIDE

5. File Transfer

5.1 DNET TFTP - DNET Trivial File Transfer Protocol

The DNET F'de Transfer protocol is loosely based on TFYP (Trivial F'de Transfer Protocol) based on
the Network Working Group RFC 783 dated June 1981. This standard was selected because it is
simple, yet capable of transfering f'des in the DNET environment. DNET provides the reliable
streaming transport facillties, while the _ protocol provides the command processing, data
formatia8, error detection, reporting and recovery.

Both binary and text ides may be transmitted with dtftp. Dfftp also has a number of features beyond

these provided by TFTP including local and remote directory, directory listing, and change directory
and a userwarning againstinadvertant overwriting of an e._aing fde.

dtRp also requires a username and passwd to be entered in order to connect to the remote system.

5.2 Invoking DNET File Transfer

5.21 DTFTP from the Command Line

The DNET f'de transfer facility is invoked at the command line by entering:

dtftp [,haet_network] [dnethest] [CR]

If the network and host are specified, DNET will immediately attempt to contact the f'de transfer
server at that location. If the destination is not specified, dtftp will start up in a local or disconnected
mode.

This will cause the file transfer prompt to be displayed:

drop>

If the destination was not specified on the command line, a connection may now be attempted, if
desired by entering the command:

connect

The connect request will require the network and host information. You will be queried for:

Network

and the

Hmt:

Then the following message will appear:.

Attempthqg te connect to [network] [hmt]

Once a connection has been established with the remote host, you will be prompted for a Io0n account
at that machine:

Enter a valid account name for the destination host.

You will then be prompted for a password associated with this account:

Pammmrd:

Enterthepasswordfor theaccountnamejustentered.

Whentheaccountinformationhasbeenverified,theclientwill respondwiththe message:

CONNECTED

You may now proceed with other commands as discussed below:.

5.3 User Commands

The following commands are provided with dtflp. These commands are serf-explanatory except as
noted.

ed XXX - change the default directory an the remote host to XXX

get name [newname *] - retrieve s file from the remote to the local host

help - display help message for available dtftp commands

kd XXX - change the default directory on the local hint to XXX

Iimvd- list the current directory on the local host

Is - list the contents of the cart'eat directory on the remote host

Us - list the contents of the current directory on the local host

! command string - Allows execution of a local command

mode - Allows specification of binary or ASCII mode

put name [newname *] - transmit a file _ the local to the remote host

pwd - list the current directory on the remote host

quit - mad the file transfer session

* - in get or put operations, If nemmme Is not given, it
is assumed that unme IS the target file.

If the target file already exists, a warning messageis presented:

Destination File F.adsts- Overwrite (y/n)?

Ifyon amsweryes (y), tbe eld file will be overwritten. (lmVMS, this
will net actually eccar as • mewfile extension will be assigned to the
target _ however the warning message is consistent for both UNIX
and VMS).

10 DNET USERS GUIDE

5.4 File Transfer Errors

Error reporting from DTFYP includes the following:

1. Login incorre_

2. Fde Not Found

3. F_ I/O Error

4. Fde Access Violations

Except for the obviousquestion of access privileges associated with login failure, most non-fatal
'failures' are self explanatory.

$.5 A File Transfer Example

As an example of the use of dtftp, consider the following diagram:

Cmmsa,_

I
-ICliam

.I..Io*,*

: FI_ :
:

Imekl
•
:

." F_I

le*i*IIoOe***oIl

We wish to send the f'de hacid on the Client Machine to the Server Machine, renaming it in the
process to bade. The series of commands used to perform this task are shown below:.

$ dtap Slamet daoax
attempting to emaect to spuac't dacvax
LEO,,:
Pa_werd: *****'
CONNECTED

dtftp> put _ Imck2
completed ascH put or hackl to hacl_
drop> quit
$

5.6 Using the Network Command Language for File Transfer

F'de Transfer may also be accomplished using the DNET Network Command Language (NCL).
There are advantages and disadvantages to using the NCL for f'de transfers. This option is discussed in
the Network Command Language Section of this Guide.

12 DNET USERS GUIDE

6. Remote Login

6.1 Introduction

The DNET remote login application allows the user to log onto and carry on an interactive session with

a distant DNET host. Once connection has been made to the remote host, the user will appear to bc

directly connected to that host. Only instantaneous network performance should affect the ability to do

work, including screen oriented editing. Thus diogla is similar to the telnet, rlogin, or set host xxx
facilities with which the user may already be familiar.

A schematic of the DNET remote login is shown in the diagram below:.

U.wat I dleCa
cites/

DNET

_It'S

Lecal'Sh,n

Currently, DNET remote login may be initiated from either UNIX or VMS ho_s, however the remote

host must be a UNIX machine in order for complete interactive operations to take place. (An
interactive VMS DCL "shell" has not been implemented to date under DNET).

6.2 Invoking DNET Remote Login

The DNET remote login facility is invoked at the command line by entering:

dlollia [daet_network] [dnet_host] [CR]

Once a datastream has been opened to the destination, you will be prompted for account information:

leon: xx_
Pas_,ord: *******

If this information is determined to be correct by the remote machine you will placed in your 'home'

directory and your preferred 'shell' is executed. You may now perform any interactive operations

which you might do were you directly connected to the remote system.

6.3 Ending the Remote Login Session

When the remote login session is complete, simply enter eatrI-D (or exit or Iogout, if csh) to abort the
session and to close the DNET virtual circuit between your local machine and the remote hof,t.

6.4 Security Issues

When the client invokes Remote Login, authentication of the client is done by the Iog/n process at the
remote host. Subsequent process spawning and/or remote login to other hosts from processes created
by the initial client will all carry the access rishts permitted to the initial client.

6.4.1 UN/X

At UNIX servers, the f'de/ete/imuwd, controht acce_ to the system. This file is consulted by the
dleOa server in order to validate a user at this host.

6.42 VMS

Currently, due to problems accessing the UAF f'de on VAXes, the password is hard-coded for VMS
servers, an obvious security problem for a production network. This limitation must be corrected
before DNET is used in a production environment.

14 DNET USERS GUIDE

7. Network Command Language

7.1 Overview

The DNET Network Command Processor is a command language processor for use in a

heterogeneous multi-network environment. This DNET facility allows very general control of processes
across the heterogeneous network and provides for redirection of input/output streams between f'des

and/or pro_._es located at arbitrary DNET Hosts.

Three Software Elements are required for the Network Command Processor.

- Network Command (Client) Interpreter - used at the initiatln_ node to interpret the Network

Command, provide any local service requested, including process spawning, and send remainder of
command to next net/host/process in the command chain

- Network Command Server - services network command which arrives from NCI or another NCS;
provides any local service requested, including process spawning, and sends remainder of command

to next net/host/process in the command chain The NCS is a DNET application server and is thus
registered in the PVC Master server tables.

- Network Command I/O Process - special 'cat' equivalent process which may be spawned by the
NCI or NCS to provide streamed I/O to/from f'des.

7.2 Network Command Processor Schematic

A Schematic view of the relationship between these components is shown in the f'_,ure below. The
generic command string being executed is:

Netl::Hostl:File X • Net2::Host2:Proc2(paraml,param2) • Net3::Host3:Proc3 • Net4::Host4:Flle Y

DNET Host t DNETFlora2 DNE'rHost 2; DNET Host 4

(ms Nat 1) (os Nat2) (os N,t 3) (os Nit 4)

.................... : : : • : •

• : : : .: :

tl II II IIl : : . . :

FtbX : 1_2 !_oc3 : : FlieY

. : . :
• : : " . •
. : . • .

: . : : :
• : • :
.................... •, • •

7.3 Network Command Language

7.3.1 Command Lansuase Syntax

There are two types of objects used on the command line - F'des and Tasks. Output can be directed to
either a f'de or another task. The command languase makes a distinction between ides and tasks
(executables) by preceding tasks with an "*"

Filename syntax is: netwerk ume::hest name:filename
m

"lkskaame syntax is: netwerk_name::hmtname:*taslmame(paraml, param2 _)

Initially, there is only one network command language operators, ">'. The ">" indicates redirection of
standard output.

An example command is:

starnet::xhost:cfile > yhmt:*sort • myfile

This NCL command will send the f'de named "cf'de"from the host "xhost"to the host "yhost'. On host
"yhost" the cfile will be sorted using the "yhost"resident sort utility. The resulting output will then be
saved in the f'de "myf'de"on the local system.

Other examples are given below.

When the network name or host name is not specified the local name is assumed. Spaces around the
">" are optional.

Z3.2 Using The Command Lansuage

When f'denames appear in command strings they imply the execution of f'de i/o servers. The network
command:

dac_net:.-vax2:davidcomm • g_net::hostl:echeckp > results

requests that the contents of a file "david.comm" on host "vu2" in the network "dac net" be input to the
task "checkp"executed on 'hostl* in the network "g_net, and the output be placed in the f'fle"results" in
the host on which this network command is being executed.

The network command:

net one:.'vax6:c-file > hestlm-cfile

requests that the contents of a f'de "c-Fde"on host "va_5"in the network "net one" be copied to the f'de
%-c/de"

7.4 Network Command Interpreter

The Network Command Interpreter (or client) is invoked as an application from the shell prompt on
the local system.

16 DNET USERS GUIDE

%)dad

dad> comaaad sa-lagl

response to CSI

dud • commandstring2

r_pouse

etc...

7.4.1 Status Reporting (from last Network Command Se_er)

When the couand line specified by dud has been e_cuted, an acknowledgement is propagated to
the initiating client process as shown in the following diagram:

L_,NIW
Commsml

Server

is dmls

7.5 Initiation of File Transfer from One Remote Node to Another

The Network Command Language may be used at a third party location to initiate f'de transfer. A
typical command would be:

dad • aetlO:.:hostS:rilezz • c-net_:fnost_newflle

or

dad> mI"m_:host6:*dtflp fUename options • newrde

Where filcnamc and options arc parameters to thc f'dc tra_cr ta_ "dtflp'.

The effect of such a command is shown in thc following diagram:

DNET

Hoa

DN_F lug)

N

A
_km_Fil_ B

FIM

IN

B

18 DNET USERS GUIDE

8. Remote Execution

8.1 Passing Arguments to Tasks

Passing arguments from a calling task to Network Command Processor is by command string, as
described in the preceding section. This is used in both the terminal interactive and the "C"language
interface.

8.2 Transfer & Execution of Portable Programs at a Remote Host

F'de transfer and execution is implemented using the network command processor. For e_ample the
commands:

clad> net3::hostS:filez > net3::host2.'workfile

dad > aet3::host2:*work/'de

will transfer and execute a f'de.

8.3 Initiation of Remote Procedure Upon Completion of File Transfer

It is also possible to use the DNET Network Command Language to perform a f'de transfer followed
by the execution of a remote procedure. Several alternatives are possible.

1. Two separate commands:

transfer the file

2.

dncl> Imet::host3:file4 > c-net::xhost:newflle

followedby

execute the remote procedure

dnd > c-net::xhost:Oformat newflde

One 'composite' command:

dnd> Imet::host3:file4 • c-net::xbos_newflle • c-net::xhost:eformat

9. Electronic Mail

DNET provides a basic Electronic Mail facility. This facility allows mail to be sent from the local
DNET hosts to known users at other DNET hosts. Mail which has been received from other hosts

may be read at the local host.

9.1 Mail Operation

The general operation of DNET mail is shown in the following diagram:

IF1b'[hmmlm.to MaU _ [

[ACK/NAK to Mall CIl_ [
I I

9.1.1 Sending Mail

DNET mail is invoked using syntax similar to that of other DNET applications as indicated below.

dmall network host user

where network = DNET network

host = hostname on that network

user Is presumed to be s valid user on the destination machine

The sender then responds to the following prompts

To:receivc_login_name at _.ination
From: Senders marne

Subject: zxx_
Cc: xxxxz

Please enter short message and end with three CRs

this is a test

CR

CR

CR

The following prompts will then appear as the message is sent

20 DNET USERS GUIDE

CONNECTING

Compkted _ put of mail to destlnatlou

9.1.2 Reading Mail

To check for any DNET mail which may have arrived at your location simply enter the command

dmail

and request the Read Mail Option.

9.1.3 Auto Notification of Mail Arrival

DNET Mail iadudes a provision for automatic notification of mail arrival each time a user logs in. If
mail is present for your account, the message:

You have DNET mail _.

will be presented as part of your login process.

NOTE: ha order for this feature to be activated, the appropriate DNET Iogin script must be part of
your Josin, .profile, or login.com file. This file must cause the file 'checkdmail' to be executed as part
of the I_ precess.

10. General Network Utilities - dnetstat

DNET provides a general network utility function dnetstat which allows the user to determine a variety
of information about local or remote DNET nodes. Information which dnetstat can obtain for both
local and remote nodes includes:

1. Is DNET 'alive' at the Node?

2. The Number of active and inactive DNET Processes 0on8 and short formats; Streaming and/or
Connectiouless Options)

3. Statistics of DNET Use at the Node

4. DNET Routing Tables at the Node

The general form of the dnetstat command is as follows:

dnetstat [dnetnetwork] [dnet_host] [options]

If the network and host arguments are both omitted, the local host is assumed by defa,,It.

If the status of a host on the local DNET network is required, only the dnethost argument is required
(local network is understood).

10.1 Testing if DNET is alive

As an introduction to dnetstat, try using the 'ping' option on your local host. This is done by typing

dnetstat -p

If DNET is 'running' on the local machine, the following message will appear:

DNET is ALIVE at dnet network dnet host m

This response indicates that

1. At least one DNET PVC Master Server is running on the local node

2. The DNET Datagram Master Server is running on the local node

If DNET is not running normally on your system, the following message will appear

matwaiting for response

Now try using dnetstat to 'pin8' another DNET host on the local or a distant DNET network.

If this is successful, you are further assured not only is the DNET software running at that host, but
also that the DNET datagram service is operating (at least between your machine and the distant host).

10.2 Obtaining Status of DNET Servers

dnetstat may be used to obtain the status of DNET processes at local and remote DNET nodes.

This information may be obtained in the following formats

1. Connection Oriented Services only

2. Connectionle.ss (Datagram) Services only

22 DNET USERS GUIDE

3. Both Services

4. Short Display Format - typeg number avail, and state of servers

5. Long Format - short format info + (Process IDs) and Start/Idle Tunes

The default format is

Thc short listing of server status is shown below. The command used is:

daetstat [network] [host]

******* DNET VIRTUAL CIRCUIT SERVER STATUS at: dnettl sun3:

Srv _ Image PS Av Max S#

dmstep
dechod decbod 1 1 1 1
draecd drexecd 1 1 1 1

dmpd dtfY1xI 1 ! 1 1
dncid dndd 3 3 3 3

dlogtnd dlogind 1 1 I 1

*****_ DNET CONNECTIONLESS (Datap-am) STATUS at: dnettl sun&
ProcName S StartThne

dgstcp 1 Aug I 10:.44
1 An8 1 10:.44

dnstatd 1 Aug 1 10:.44
dnetstat 1 Aug I 10:.46

A longer listing of the server status may be obtained using the I (long) and c (connection) options.

dnetstat [network] [host] -kd

*'0**** DNET VIRTUAL CIRCUIT SERVER STATUS at: dnettl sun3:

Sty _pe Image PS Av Max S# PID IU

dmstcp S489
dechod dechod 1 1 1 1 5491 N
drexecd drezecd I I I I $492 N

dtftpd dlftpd 1 1 1 1 $493 N
dncid dncid 3 3 3 3 5494 N

$497 N
549a N

dlngJnd dJogind 1 I 1 1 S499 N

St Thne

Aug 1 10:.44

Idle Since

Aug 1 10:44
Aug 1 10:44
Aug I 10:44
Aug I 10:44
Aug 1 10:44
Aug I 10:44
Aug 1 10:44

A long listing of the both virtual circuit and datagram server status may be obtained using the I (long),

c (connection), and d (datagram) options.

daetstat [network] (hint] -kd

******* DNET VIRTUAL CIRCUIT SERVER STATUS at: thtCtl su3:

Sty _ Image PS Av Max S# PID

ttmtcp S4S9
decked dechod 1 1 1 1 5491

drmaecd drexecd 1 1 1 1 5492

dtftpd dfftpd 1 1 ! ! 5493
dndd dncid 3 3 3 3 S494

S497

5,19S

dloghtd dlogind 1 1 1 1 S499

IU

N

N

N

N
N

N
N

St Time

Aug t t0:.44

Idle Since

Aug 1 10:44

Aug I 10:44

Aug I 10:44

Aug I 10:44

Aug I 10:44

Aug I 10:44
Aug 1 10:44

******* DNET CONNECTIONLESS (Datagram) STA'IXJS at: dnettl sun3:
ProcName S PID IPC-Name IPCID SIG

dgstcp 1 5482 DN S482 1 0
1 5481 DN-S481 2 0

dnstatd 1 S49S DN-S49S 3 0

dnetstat 1 5.504 DN-$$04 4 0

MSzS_

0AUg I 10:.44

0Aug I 10:.44

0Aug I 10:.44

0Aug 1 10:.4.5

To obtain the routing table at a particular host, enter the following command:

dnetstat [network] [host] -r

An example of output resulting from this command is:

******* DNET ROUTING TABLE at: dnettl sun3:

DestNet Nxt Host Nxt Proc DG Protocol

duettl NULL NULL tcp
spuet dacvax _.htr.i tep
starnet dacvu drelaytd tcp

7.4 DNET USERS GUIDE

11. Presentation Services

DNET provides a limited presentation layer facility.

Within the DAVID environment, the single most important coding problem across heterogeneous
machines is the internal representation of data. Information moved from one machine to another may
only be viewed consistently if data types are faithfully "mapped"between machines.

Thus, if the transmitting machine views integers as 32 bit quantities and represents floating point
numbers with 64 bits while the receiver represents these two data types as 64 and 48 bit quantities,
respectively, serious misalignment of data f'des will occur.

The Presentation Layer Service provided by DNET is a subset of the SUN (XDR) External Data
Representation and/of Existing Data conversion facilities of DAVID.

11.1 XDR Services

XDR Services are currently not available at the user level in DNET. For further information on use of
XDR at the programming level, the reader is referred to the DNET Programmer's Reference Manual.

12. Glossary

The foUowing terms are used in the description of DNET:

Applications Servers-

Servers such as F'de Transfer, Remote t,oon, Remote Execution, etc. that perform
services for clients. Applications Servers are invoked on demand by clients after using
the Service Assignment to obtain the name of an available server.

Connecfloa Lock Table-

List of open connections held by process for use by its Basic Datagram I/O package.
Locked connections result from user requests for Permanent V'u_ual Circuits.

Datsgrsm Master Server (DGMS)-

A server process, located at each DNET host and gateway, which provides an interface
to DNET clients and servers and the DNET Connectionless Datagram and Signalling
Service

l_tagram Protocol Servers (DI'S)-

Protocol specific servers located at each DNET host and gateway, which provides an
DNET Connectlonless an interlace to the underlying network Datagram service.

Master Server lait 'Ikble-

These tables, tbisjmsinitt_ and tbisamsinitde¢ contain initialization information for
the DNET Master Servers including the type of server to be activated, the maximum #
allowed at this host, and the number to make available initially, and an indication of
whether the server must be prespawned. The tables are updated by the local System
Administrator at the specific DNET host.

Muter Server 'l_He-

One for each DNET host, it contains information on the types and numbers of each
class of DNET server actively supported on this node at any instant. Each generic
server entry points to a Server instuce Table which lists the current specific instances
of a particular class of server. It is updated by the Master Server and by specific
DNET application servers.

Master Server Process (DMS)-

Processes, one per Network, managing the Master Server Table, handling server
registration, server assignment, and server control They are spawned by network
start-up command f'des.

auk frO packa

Included as h'brary within an application program, it provides network i/o interface

26 DNET USERS GUIDE

includingdata_ramformatting.

Gsteway-

A DNET node at which communicaton protocol boundary is passed. DNET relay
servers move data from one network to another performing an effective protocol
conversion for streaming service& These servers are created, allocated, and used like
any other DNET streaming applicatiom servers. The Datagram Master Server, in
conjunction with protocol specific datasram servers performs a similar function for
DNET datagrams.

Network Command Line laterpreter-

DNET Client process that directs the execution of network commands using
datagrams sent to various hosts and several servers.

mymune, hostname table-

A table, tbis.myuame, maintained in the dnet_home directory on each DNET node
lists the DNET networks to which that host is connected and the name(s) by which the
local host is known on those networks.

Network Command Language Processor.

Server that directs the execudon of network commands using datagrams sent to various
hosts and several servers. It is an application server, copies can be pre-spawned or
spawned on demand.

Network Command Server-

Spawned by request from Command Language Process_, this Server is directed by
Command Language Processor. It spawns processes and directs i/o to execute network
commands.

Network Status Server-

Resides in each network host. Receives Host Status Tables, Host Alias Table, Well
Known Server Tables, Connectivity Tables, and periodically sends "I am alive"
messages to the Administrative host. To ensure these periodic messages are sent the
Basic datagram I/O package uses a timer/wake-up signal to initiate the transmission
of the message to the Network Status Client. Became this is done by the I/0 package
and there is a copy of this package in every process that uses network I/O the network
status data is collected on a per process not per host basis.

PVC Relay

A DNET relay used in the completion of DNET Permanent Virtual Circuits (PVCs).

Special DNET application processes located in a DNET gateway which perform
protocol conversion for DNET streaming service between dissimilar networks. The
appropriate Master Server process 'listens' on a particular protocol boundary when
idle and assigns a relay when a request for a protocol h'hop' is received from DNET..

Glossary 27

The relays are named according to the protocol boundary which they are intended to
bridge. Thus a T-D relay services requests which arrive on a TCP/IP network,
relaying data to a DECnet net. Relays operate in a full duplex mode while actually in
tiSC.

Router

DNET employs a hierarchical routing strategy. Each DNET node has, for every
(DNET) network known to it, information on the next DNET host to contact in order
to move data toward the destination. The DNET router function uses the information

in the routing table as follows: Given a destination network, hc_, and process, returns
the next 'best' hop (network, host, process) to 'move' toward the destination.

Routes Table.

A hierarchical routing table that contains the next 'hop' from the local DNET
host/network in the direction of all other DNET networks. A minimal version of this
table is provided with the distribution copy of DNET. The table is currently
maintained manually by the local system administrator. In the future, this table will be
dynamically configured and maintained by the local DNET Network Status Server
after intial startup has taken place. The routin8 table is named rids.net and is located
in the dm,t_home directory.

Server Assignment Function-

Returns the name of an available server to a requesting Router, and updates the
Domain Server Table.

Server Instance Table(s-

lasts the current specific instances of a particular class of DNET Application Server.

Entries are made by the Master Server and cleared via dn_done 0 calls from the
servers as they complete their tasks.

Server Rqgistratlou Fncttea-

This function is part of the Domain Server Process. It updates the Domain Server
table with information from Servers (e.g.'now in use').

28 DNET USERS GUIDE

DNET

USER" S REFERENCE

Version: 1.16

Print Date: 08/10/89 12:28:00
Module Name: user.tel

Digital Analysis Corporation
1889 Preston White Drive

Reston, Virginia 22091
(703) 476-5900

lk IUGIII N_qIICil

Th_ SBIR c_tt il fun_hecl wilh SBIR ril.hts under NASA Co_ract NASS-300_. For a period o_ 2 yeanl after _ o(all items to be del/_red ,.ruder thiJ

the Goverrm_nz agrees to use this dsta [o¢ G'o_rnment purpo_ only, snd it shall no/ be discJmed outside the Government (including _ _ procurement

putlx_) din'rag such period without petm,uwion ot the Congr'_'or, _ that, sul_lect to the f_ talc and _ pt'oh_itiom, such _ troy be _ for u_

by st_pon comr_ton. After gl_ agoresaid 2-ye_u" period the Government h_ a royalty-tree license to L,se, and to authorize othem to use on its behalf, thi_ c_a for

Go,,e_ p_, but is relieved from all di_Imure pcoh_itiom and assumes no liability fc¢ ima_hociz, ed _ of this dmla by th/xd part,es. This Notice shsU be
=ffi,_'d tO any _i_ o_ this dsta, in whole, or m part."

Copynl_t 1989, Digital Ans_ysis Corlx_tton

DECHO(1) DNET DECHO(1)

NAME

decho - dnet 'echo' client

SYNOPSIS

decho dnet network dnet host
q

DESCRIPTION

The decho command performs a simple demonstration and test of the DNET network. A

DNET permanent virtual (streaming) connection is opened to the destination network:host.

Command line input at the local host is then echoed back from the destination after each

carriage return.

The command provides a convenient means of demonstrating the setup time and end-to-end

performance of the DNET streaming service.

The ability to run decho depends on its presence in the Master Server Init Table for the
destination host.

Command line arguments

dnet network name of the destination DNET network

dnet host name of the destination DNET host

SEE ALSO

dechod(1)

DIAGNOSTICS

The message "Ready" will appear after decho has succesfuUy connected to the specified remote

node. An error message will appear if a connection can r.ot be established.

DLOGIN(1) DNET DLOGIN(1)

NAME

dlogin- dnet'remotelogin'client
SYNOPSIS

dlogindnetnetworkdnethost
DESCRIPTION

ThedlogincommandprovidesaremoteloginfunctionovertheDNETnetwork.A DNET
permanentvirtual(streaming)connectionis openedto the destinationnetwork:host.A
standard DNET command line prompt for remote login is then presented:

DSH >

The user may then issue commands which will be understood in the 'native' environment of the
destination machine.

xxxxxx

The dlogin command provides a convenient means of executing simple command line
instructions on a remote machine.

The ability to run dlogin depends on its presence in the Master Server lnit Table for the
destination host.

Command line arguments

dnet network name of the destination DNET network
m

dnet host name of the destination DNET host

SEE ALSO

dins, dlogind(1)

RETURN VALUE

ERRORS

The call fails if:

[D DGTB]

DMAIL(1) DNET DM_dL(1)

NAME

dmail - dnet 'mail' client

SYNOPSIS

dmali dnet network dnet host dnet user

DESCRIPTION

The dmail command performs a simple mail transfer to another DNET user.

The ability to run dmail depends on its presence in the Master Server Init Table for the
destination host.

Command line arguments

dnet network name of the destination DNET network

dnet host name of the destination DNET host

dnet user user at the destination DNET host

SEE ALSO

dins, dmaild(1)

RETURN VALUE

ERRORS

The call fails if:

[D_DGTB]

Page4 (07/12/89)

DNCL(1) DNET DNCL(1)

NAME

dncl-dnet'networkcommandlanguage'client
SYNOPSIS

dnci

DESCRIPTION

The dncl command invokes the interactive dnet network command language program. This

program allows for processing of a single data stream in a distributed environment. To do this,
the processing of the data stream is broken into sub command lines SCL (which together make

up the dncl command line CL). The dncl CL may be entered after the dncl prompt:

dncl >

The following is a synopsis of the dncl command line:

SCL • SCL [• SCL] ...

You will note that a minimum of two SCL components are required in a CL. The reason for

this will be explained when we look at the three categories of SCL components. Also note that

the • symbol is used to delimit the SCL components.

The following is a synopsis of the SCL component:

[[netname::l hostname:] [*] command/file

Notice that netname and hostname are optional, although if a network name is supplied, then a

host name must also be supplied. In the case where both netname and hostname are specified,

a double colon must delimit the netname and the hostname, and a single colon must delimit the

hostname and the command/file. Further, if the command/file value contains a colon, then the

hostname must be supplied at a minimum so that the colon within the command/me will be
ignored by dncl.

If the requested node is the current machine (the netname and hostname combination
represent the current machine), and no colons appear within the command/rde value, then

netname and hostname ,nay be omitted. Similarly, if the hostname machine is on the current

network, then netname may be omitted. On dnet gateway machines remember that only one

network is considered to be current. This means that although the network may be directly
connected to the current machine, it can not be considered a current network.

The command/file portion of the SCL represents either a file or a command to be accessed on

the given machine and falls into one of three categories:

• First SCL component -- must be a file

• Middle SCL component -- must be a command (precede with *)

• Last SCL component -- must be a file

As you will remember from the CL synopsis above, and minimum of two SCL components must

be specified (a First SCL component and a Last SCL component). This represents the simplest
form of a dncl CL and results in a file transfer without filtering. The dnd CLs of greater

complexity merely represent a higher degree of filtration between the first and last SCL

components. The filtration described here is provided by the middle SCL component category

(a command). This command is assumed to read input from a standard location, process the
input received and generate output to a standard location. Many commands can be described in

this fashion (input/processing/output), but not all work with standard locations for input and

output. Commands that do use standard locations and work in the input/processing/output

fashion are described as being filters. To work prol:erly as a middle SCL category SCL

component, the command must also be a filter, as unpredictable results will otherwise occurr.

Page 5 (07/12/89)

DNCL(1) DNET DNCL(1)

All middle SCL category SCL components must be preceded with an asterix (*) as shown in the
SCL synopsis above.

The UNIX operating system is rich with existing filters to perform a variety of tasks. These

filters are comparatively rare in the VMS operating system. Despite this, filters may be created
for VMS with C language programs by using the predefined stdin and stdout streams with the

standard I/O package.

SEE ALSO

dtftp(1), dsh(1)

DIAGNOSTICS

After successful completion of a dncl CL, the following message will be displayed:

ACKCOMP received.

This means that the ACKCOMP (ACKnowledge COMP'_etion) packet has been initiated by the

last SCL category driver, and has been successfully passed back through all intermediate SCL
components to be successfully received by the dncl command invoked by the user.

If the ACKCOMP received message is not displayed, then a cryptic error message will be

displayed describing the reason for failure. If the error message is preceded by dncld:, then this

means that the error occurred at a possibly remote node, and this message was propagated back
to be viewed by the user.

A common form of error message is:

No route to netname::hostname:dncld

This indicates that the node specified could not be found from the current location. Two things

should be remembered to help to solve this problem:

1. You may not have specifed the node name portion of the stated SCL, and the default may
have been used.

2. The node is always relative to the node on the previous SCL component. The first SCL is

always relative to your current node. As an exaraple, if the first SCL was specifed as:

spanet::iaf:sys$1ogin:myfile, and the second SCL was: *sort, then it would try to spawn

the sort filter on the spanet::iaf node.

CAVEATS

Never make assumptions about current location within a file system on any node when creating

SCL components. Absolute pathnames or logical names must be used for files. For commands,

absolute pathnames or logical names must also be used, but on UNIX operating systems, the

PATH environmental variable may be set by the dnet administrator before the dnel drivers are
initiated so that they can be forced to look in non-normal locations for UNIX filters.

Page 6 (07/12/89)

DNETSTAT(1) DNET DNETSTAT(1)

NAME

dnetstat - obtain dnet network status

SYNOPSIS

dnetstat [dnetnetwork] [dnetJ_ost] [-aedfhlnprs]

DESCRIPTION

The dnetstat command allows the display of various DNET-related data structures.
Information may be displayed in various forms, depending on the option which is specified.

dnetstat can be used to determine the status of all DNET servers, routing tables, and server

usage statistics.

Information may be displayed for the local DNET node or may be retrieved and displayed for
other DNET nodes.

Options:

dnet network - the DNET network of the DNET host from which information is desired; if
omitt'ed, local network is assumed

dnet host - the DNET network of the DNET host from which information is desired; if both
network and host omitted, local host is assumed

If none of the below options is specified, the defaults iocaihost & [-ed] are assumed

-a Display all available information (in long format)

-c Display Status of Connection (Streaming) Servers

-d Display Status of Datagram (Connectionless) Servers

-f Display PIDs, etc. in alternate (Decmimal/Hexidecimal) format; allows optional conversion

between machines with different display formats

-h Display help on options for dnetstat

-i Display other specified options in long or extended format

-n show DNET map (network, host)

-p ping the specifed host - i.e. test if DNET is alive on the specified host p overrides all other

options. If successful, the message:

DNET is Alive at dnet network dnet host
m

is printed on the terminal If the 'ping' operation is unsuccessful, dnetstat will usually timeout

waiting for the response from dnstatd.

Timed out waiting for response

-r show DNET routing tables for the specified node

-s show per-DNET server statistics (dtftp, drexec, dmail, dad)

Page 7 (07/12/89)

DNETSTAT(1) DNET DNETSTAT(1)

SEE ALSO

dnstatd, tbls.msinitdec, tbls.msinitdec, tbls.net

DIAGNOSTICS

The call fails if:

Specified host is not up

DNET is not operating on the specified host

dnstatd is not operating on the specified host

In each of the above instances, dnetstat, will report:

Timed out waiting for response

Page 8 (07/12/89)

DREXEC(1) DNET DREXEC(1)

NAME

drexec - dnet 'remote execution' client

SYNOPSIS

drexec dnet network dnet host

DESCRIPTION

The drexec command performs a simple remote execution function over the DNET network. A

DNET permanent virtual (streaming) connection is opened to the destination network:host. A

standard DNET command line prompt for remote execution is then presented:

DREXEC>

The user may then issue commands which will be understood in the 'native' environment of the
destination machine.

gxxxxx

The drexec command provides a convenient means of executing simple command line
instructions on a remote machine.

The ability to run drexec depends on its presence in the Master Server Ink Table for the
destination host.

Command line arguments

dnet network name of the destination DNET network
u

dnet host name of the destination DNET host

SEE ALSO

dncl(1)

DIAGNOSTICS

Page 9 (07/14/89)

DTFTP(1) DNET DTFTP(1)

NAME

dtftp- dnettrivialfiletransferclient
SYNOPSIS

dtftp[dnetnetwork][dnethost]
DESCRIPTION

The dtftp commandal',owsthe transfer of files to and from remote DNET machines.

Information may be displayed in various forms, depending on the option which is specified.

Information may be displayed for the local DNET node or may be retrieved and displayed for
other DNET nodes.

Command line options

dnet network

dnet host
D

Commands

cd XXX

get

help

lcd XXX

Ipwd

Is

|Is

mode

put

pwd

quit

SEE ALSO

dtftpd(1)

DIAGNOSTICS

name of the destination DNET network

name of the destination DNET host

change the default directory on the rerr_ote host to XXXX

retrieve a file from the remote to the local host

display help message for available dtftp commands

change the default directory on the local host to XXX

list the current directory on the local host

list the contents of the current directory on the remote host

list the contents of the current director/on the local host

Allows specification of binary or ASCII mode

transmit a file from the local to the rentote host

list the current directory on the remote host

end the file transfer session

Page 10 (07/18/89)

DNET

PROGRAMMER" S GUIDE

Version: 1.26

Print Date: 09/05/89 11".21:16

Module Name: prog.gui

Digital Analysis Corporation
1889 Preston White Drive

Reston, Virginia 22091
(7O3) 476-$900

Sl[it IlIGilTS _A3crl[Cl[

Thi_ _IR dma is [urn_hed with _mlR rilila um_ NASA C.c_ract NA._-_. For a Ft'riod _ 2 yearJ tilter _x'lxaz_ _ all _mw to be delivered uoder tim cocJn_

the G_ernmeec mll_ w _ tlm ¢_m for G_ p_t1_cmesotdy.t_cSit_Imlla_ _¢ dimc_m_d otuide Ik _ (_ _ _ _

put_mw) dwiall nclh t_ad'_tlx,et _ _ t_ _, ewelX tli, ¢_,ject to _ lerF_ we _1 _ _ _ _ _ _ _ _ _

t_y m?l?OM matrtetm_ ,&aer the alhmmid _ar pmml the Gomfma_ I_ a]Walff-frm limwe w urn, tacl to autlwrize cxJ_m m _ m _ _ t_ _a _

CONTENTS

1. Introduction 1

1.1 DNET Modes of Operation 2

2. DNET Host Software 3
2.1 Overview of a DNET Host 3

2.1.1 Basic I/O Function Library 6
2.2 Client/Server Relationships in DNET 6

2.2.1 D_f_'ous 6

2.2.2 TypesofCllents 7
223 Types of servers 7
2.2.4 Control of Servers 7

2.2-5 Number and Types of Servers 7

3. DNET Private Virtual Circuits Operation 10
3.0.1 Client/Server Conversation 13
3.0.2 Closing a Cfient/Server Conversation 14

4. Writing Connection Mode Services 15
4.1 DNET Client Design Issues 15

4.1.1 General Rules for Coding DNET PVC Client 15
4.1.2 Detailed Discussion 16

4.2 DNET Server Design Issues 18
4.2.1 General Rules for Coding DNET PVC Server 18
4.2.2 Detailed DisoL_on 19

4=3 Connectiouless Datagram Service in a Streaming Application (if required) 19
4.4 An Example Streaming Application 20

5. Connectionless Mode Services 25
5.1 Introduction 25

5.1.1 Connectionless Datagram Formats 26
5.2 Details of Datasram Services 27

5.2.1 Registration with the local Datagram Master Server 27
5.2.2 Sending a Datagram 27
5.2.3 Receiving Datagrams 28

5_3 Return Receipt Service 29
5.4 Signalling Services 29

5.4.1 Sending a Signal 30
5.4.2 Receiving a Signal 30

5.5 A Connectionless Service Example 31
5.5.1 Datagram Protocol Servers 35

5.6 s amn8 36
5.6.1 Sending Signals 36
5.62 Delivery of Signals 36

6. DNET Error Handling 37

7. Routin 8 38

8. Interproce_ Communication 39

9. Presentation Layer Services 40
9.1 XDR 40

9.1.1 Issues in the Use of XDR 40

9.1.2 The XDR Handle (control Structure) 41
9.1.3 Creation of the 1/(3 Datastream 41

9.1.4 Encoding/Decodlng of Data using XDR library 42

-i-

9.1.5 Example - use of XDR in dnetstat 45

9.2 Transferring arbitrary f'des using XDR 51
9.3 Existing DAVID Presentation Service 51

9.3.1 Virtual Data Format for DNET Transmission 52

10. Standard DNET Code Organization 53

10.1 Standard Directory Structure 53
10.2 Variation for VMS Installations 53

11. Compiling & Making DNET Applications Programs 54

11.1 General Strategy 54

11.2 Setting DNET Compile Time Environment Variables 54
11.3 Making UNIX Version 54

11.3.1 BSD Systems 54

11.32 Example Make F'de 54
11.4 Making VMS Version 58

11.4.1 General 58

11.4.2 MicroVAX II 58

11.4.3 NASA-GSFC VAXes (IAF, DFI'NIC, etc. using Excelan TCP) 58
11.5 Making individual f'des 58

12. Debugging DNET applications 59

13. DNET Error Codes 60

14. Glossary 62

-ii-

1. Introduction

This Guide is intended to provide the information necessary for a programmer to write DNET
applications using the DNET Basic I/O package.

The generation of 'ordinary' applications should be handled by the information in this guide.
Programming details for special DNET applications and internal functions, such as Master Servers,
Protocol Specific Datagram Servers, and Network Command Language Internals are discussed in the
Technical Guide and Reference.

A discussion of DNET operation relevant to writing standard applications is presented first, followed
by general issues of interest in writing clients and servers. These discussions are followed by basic
'code' templates and specific application examples which illustrate both streaming and connectionless
DNET applications. Also included are procedures for 'making' DNET code on the various target
machines.

Introduction 1

DNETModesofOperation

1.1 DNET Modes of Operation

The basic function of DNET is to provide a reliable communication interface between any
application pair (client/server) running over DNET. Depending upon the particular usage, this
service may be viewed as employing either a client/server or a task/task model of operation.
The task to task model assumes two (or more) arbitrary processes (tasks) on separate DNET
hosts may communicate with one another providing they follow DNET conventions and use the
DNET basic I/O package or Network Command Language in order to communicate. The
service is offered in both connection-based and connectionless modes.

The connection based mode provides a dedicated channel with private gateways and relay
processes. It provides high quality service, but requires that a set of processes be spawned and
connections be established specifically for this communication session. The connection based
DNET service establishes permanent virtual circuits between communicating tasks for the
duration of the communication session. To use the connection based service, the function,

"dn open0", is required. It creates a circuit that supports DNET data streaming mode which is
useful in applications such as remote login, where rapid, interactive processing is required.
Once such a streaming connection has been established, DNET becomes a "smart wire"
between the communicating tasks; i.e. user program data moves over the open connection as if

it were simply a hardwhre llnk. The calls "dn_write0" and "da_read0" may then be used to
exchange data over the network.

DNET also provides a reliable, connectionless, datagram service. In connectionless mode,
processes may communicate with one another without any (apparent) need for a circuit
connection to be established. Data are transmitted in units (datagrams) comprising data
prefixed with headers containing source/destination information to be used by the
communications software during the transmission of the data.

2 DNET PROGRAMMERS GUIDE

DNETModesofOperation

2. DNET Host Software

This section describes the software components provided at DNET Hosts. There are four major
topics:

1. Overview of a DNET Host

2. DNET Basic [/O Library Functions

3. Supporting Software for the DNET Host

4. DNET Applications

More advanced software associated with DNET internals is discussed in the DNET Technical Guide.

2.1 Overview of a DNET Host

Any computer connected to one of the networks served by DNET may become a node on DNET
provided the following conditions apply. A DNET host machine must:

1. be resident on a specific existing network (e.g. TCP/IP Net X, SPANET, etc.) which DNET
considers as one of its 'domains'

2. have DNET Host Software Installed & Operational

3. be "activated" by the local System Administrator (see DNET ADMINISTRATOR'S GUIDE)

The elements in the DNET host are shown in the following diagram:

DNET Host Software 3

DNET Modes of Operation

Permanent

Virtual Circuit

Service

Protocol

S_m_
DG

S.rv_r

DNET

ml_ J/c,

T
D_m p'lm

or Stpii

Mmlw

J s I
I

I

. r- i l

I

Comi¢.llo_
llmtbll

Lock ,
Tlbb

I

t.. L -/

Comwtqionless DatalP'nm Fm-vk¢

' Host
I I

, i 'rhble '
; I I

/ /J
P

/

/ I- -'1

-.--- -- -4 I

I I

I..J

s

_ Server

' Table '
I I

I_ J

I/O IAbra,7

Major DNET Host Elements

4 DNET PROGRAMMERS GUIDE

DNETModesofOperation

A briefdescriptionof these elements follows:

Software Components

1. DNET Basic I/O Package - this h a library of function calls which provides basic capability to

generate, route, read, and write DNET datagrams and signals and to establish and drop DNET
permanent virtual circuits.

2. DNET Master Server - This process controls the spawning and allocation of all DNET

application servers (see below). It is a Well Known DNET Server

3. DNET Application Clients (as my apply at particular host) -

- DNET Network Command Interpreter (NCI) - A special command line interpreter which
allows DNET network commands to be invoked from the local machine.

File Transfer

Remote Login

MY

.

m

w

- Network Status

DNET Application Servers (as may apply at particular host) -

- DNET Network Command Server (NCS) - allows interpretation

Commands "distributed" from a DNET Network Command Interpreter

- File Transfer

- Remote Login

- Mail

of DNET Network

5. DNET Datagram Server - This server provides an interface between clients and servers and the

DNET connectionless datagram service

6. per Protocol Datagram Server - These servers provide interfaces to the underlying networks for

Datagram Service; the interface method is picked to be the most efficient available in a
particular circumstance

7. DNET Network Status Server - This server uses the datagram service to provide status

information in response to requests from the dnetstat network status client.

Tables and Variables

1. Master Server Inlt Table (tbls.msinittcp & tbls.msinltdec) - This is a file containing the
initialization information for the Master Server. It is loaded into the Master Server Table when

the DNET software is started on the local node.

2. Master Server Table - information on the server programs controlled by a Master Server,

including status and connecting links to Master Server. - This table is generated in memory by
the Master Server Process based on contents of the Master Server Init Table.

3. DNET Server Instance Table(s) - These tables list detailed instances of Specific DNET servers
under control of the Master Server at this DNET host. There is a separate SIT for each type of

server available at this node. These tables are internal to the Master Server but may be viewed

using the dnetstat process (see USER's and ADMINISTRATOR's guides).

4. Routing Table(s) (tbls.net) - table identifying the gateways from this host to every other network
or to networks that lead to all the other networks.

5. ConneOttoa Lock Table - table containing the channel numbers of permanent virtual circuits used

by the I/O Package and their correspondence to user program logical streams

DNET Host Software 5

D_T Mi _ O_rlfl_

,

7.

Hostuame Table (tbls.myname) - F'de containing name of local node and its DNET network

ServicesFries

1. UNIX

The standard rde

must contain the following entries:

5279
5279

dmsflcp # DNET irv'C Master Server

dgsudp/udp # DNET UDP Datagram Server

2. DEC

For VMS Systems, the DNET master servers are automatically 'registered'

as network objects when DNET Is started.

21.1 Basic I/O Function Library

The function calls provided in the DNET basic I/O library are summarized in the following table:

I Gcmm_Ol_lom VIRTUALCKT CI1¢_ VIRTUALCKT Server Dmtalpmm SIGNAL

Cesmgt. dn_op_ da 8et¢limt

Write da write dn ¢wr_e dn signal

Syagh _ dn read dn oread DestOper Sys

AS_S RNd dn_edt.bud_ _ Oper Sys

End Cosnset. dnciom da_doas,dn close &t_cdom

These functions are described in the following sections according to the type of service (PVC,

Connectionless Datagram, or Signal) which they support.

2.2 Client/Server Relationships in DNET

Most applications which use DNET interact via conversations between a client process and a server
process. This section describes the general strategy by which such client-server relationships are

established and operate within DNET.

221 Def/n/t/ons

- Client - initiating process; DNET communications initiated by the client or processes which it

starts; requests service from a distant server process;

6 DNET PROGRAMMERS GUIDE

DNET Modes of Operation

L

- Server - local or remote process which provides the service desired by the client process; the server
must be spawned prior to responding to a request for service from a client process;

- Master Server - a proce_ located at each DNET host which services all requests from clients for
DNET Appficadon Servers which use PVC service, including DNET PVC Relays at Gateways.
Each Master Server listens on a well-known port on a specific underlying network. Hence, DNET
gateway machines will contain master servers for each protocol actively used by DNET.

- DNET Datagram Master Server (DGMS) - an independent master Server located at all DNET
host machines which allows the tranmission, reception, and/or relay of DNET connectionless
datagrams and signals. Processes which wish to use the DNET connectionless service must pro-
register with the DGMS. Protocol Specific Dntagram Servers - These servers provide protocol
specific interfaces to existing networks for the DNET connectlonless service.

222 Types of Clients

Four major client "types" are expected in DNET:

1. DNET Applications

2. DNET Network Command Interpreter

3. User Def'med Clients (new DNET applications)

4. Other e_sting Clients (possible future expansion); e.g. telnet, FTI', etc.

223 Types of Servers

There are two application server types dermed within DNET:

1. DNET Application Servers - called by client processes, these service providers include a DNET
Basic I/O package. For all these services (F'de Transfer, Network Command Server, other
application servers) there is a process which spawns copies of them and assigns the copies to
clients on request. This controlling process is the "DNET Master Server'.

2. Other Servers (user defined, etc.) spawned via DNET network command server
(net_corn serv) these servers do not contain the DNET Basic I/O Package. They depend on the
network command server to interface with DNET.

224 Control of Servers

DNET servers which require streaming service are under the control of the DNET Master Server(s) at
each DNET host. These servers may be either prespawned or spawned on demand depending on the
type of host and local system considerations.

Bidirectional connectionless service is also available to these servers if they register with the Datagram
Master Server. Details of connectionless operations are provided in a later section.

22.5 Number and Types of Servers

The system administrator on a particular DNET host controls the number and types of DNET servers
which operate on that host.

The number and types of servers are determined by the DNET Master Server Table lnit f'de:

DNET Host Software 7

DNETModesofOperatiom

Thisisa 'flat'ASCIIf'de.Entriesin the f'de appear on separate rows and have the format as follows:

DSET MasUr Server inJt Tkble

Sm_r_ ImmpNmm #_ Mu# lmlt#

decbod decbod 1 8 3

dre_ dremc 1 1 I

dns_d dmmud 1 1 1

dndd dncidl 1 10 $

diosind di_ 1 10 $
dm_lJd _ 1 10 1

The number of prespawned servers is specified in column 3.

The Maximum (permissible) number of servers of this type is specified in column 4

Column 5 contains the number of servers to be started when DNET is first started

Servers may be added or deleted by editing this f'de (DNET admin privileges required)

Further discussion of the significance of these entries is provided in the following sections.

A separate Master Server Init F'de is required for each protocol connection at a DNET host. Thus, at a
VAX which is connected to both a TCP/IP and a DECnet Network, there must be two such tables
tbis.msinlttcp and tbls.msinltdec.

2 2 5.1 Prespawning of Servers

In order to improve the efficiency of response for DNET service requests on VAX machines, certain
DNET servers may be 'prespawned' prior to service requests.

The number and type of prespawned servers is specified in the Master Server Init Table F'de described
in the preceding section.

Possible algorithms for spawning and assignment are:

1. At network start up, spawn a number of copies of the servers, according to the contents of the
DNET Master Server Inlt Table keeping their process id's for later use in forming the process
names to give to clients. After allocating a server to a client, spawn another to replace it.

2. For less frequently used services- Spawn only when a client requests a server. This is the
Transient Server.

3. For very frequently used services- Spawn the maximum number desired and have servers listen

for the next client when they complete their service for a client, and at the same time notify the
Master that they are ready for assignment.

8 DNET PROGRAMMERS GUIDE

DNET Modes of Operation

225.2 Maximum Number of Servers

This parameter controls the maximum number of simultaneous copies of a particular server which are

allowed at the local host. This number can be adjusted by the system administrator according to
conditions on the localsystem.

DNET Host Software 9

DNET Modes of Operation

3. DNET Private Virtual Circuits Operation

To create "private virtual (streaming) circuits" DNET establishes permanent connections on all hops
from the client to the server process. In establishing the connections necessary for these private
circuits, private relay processes and private communications connections are used. The establishment
of the required connections and gateway relays can all be done using the standard DNET open
(tin_open) function which sets up a chain of DNET PVC Relay processes, dn open 0 operates by
forwarding a connection request datagram through DNET from client to requested server.
Intermediate PVC relays read the connection request datagram and open a connection to the next
host/process using the routing information in the datagram. The private relay/gateway processes
described above are provided as special DNET application servers and are included in the routing
information in the header of the connection request datagram. In this way the private virtual circuit
will be created by the Basic I/O package as it transmits the datagram and opens connections to
successive host/processes. (Opening a connection to a process will cause the process to be spawned if it
is not already extant.)

Once a private virtual DNET circuit has been established, data is transmitted and received using the
functions dn_write0 and dn_read0;

To dose the connections created for the private virtual circuits described above, the process that

originated the connections simply calls the function dn_close0 which causes the PVC to be dropped.

An overview of the setup for a DNET PVC is shown in the following diagrams: A connection request
is first made by the client by calling tin_open0:

10 DNET PROGRAMMERS GUIDE

DNET Modes of Operation

Source

Hut

........... *'l

Dc_imttom

Host

I- -I

d_c M_O

F

DNTT

i/O

V_kJ,em

Co,u_k)-]bq_a
to DutildJom

Host

f" -I

I I 1 I
I I I

I

L J
I

L J

dm_ UeutO

p 7

I

, _ : DNVr
!/O

I N _ i Pmcla_
I I I

I

L J ¢

L

The format of the connection request datagram is shown below:.

Field #

0 Type = Connection Request

I origin_net

2 origin_host

3 origin_service (process)
4 dest net
S dest-host

6 dest-service (process)

7 next service

8 canback_m8
9 callbackport
10 callforwm'd stream (either channel or file descriptor)

dn_openO returns a data stream to the client only when a virtual connection has been established with

the desired server. Once dn_openO returns successfully, the client and server may each use the

functions dn writeO and dn_readO to read and write data streams to one another as shown in the

following diagram:

DNET Private Virtual Circuits Operation 11

DNET Modes of Operation

Sow_ DGs_la_Jon

Hoa Hos_

........... 7 -;

d_ 'writ_ as_rmdO

DN_I"

n/o

F_d to Eui Datsstnsm

idler dm OlXU & dn Ip_ll_t

Applicmtiou

du_nadO ln_writeO

r _ r- "1

I I

, , 1 I i N I , l'ldmlt
I I I I I I

I I

I L J L J I

L -J L

The following diagram shows schematically what a private virtual circuit would look like in the
heterogeneous network example:

12 DNET PROGRAMMERS GUIDE

DNET Modes of Operation

PROC 1

DNgr Cliem

D
Na 2

T

PROC 1A

G3

Net Q to Na XXX

In this example, two DNET PVC Relay processes are employed, at gateways G1 and G2 in order to
complete the virtual circuit.

3.0.1 Client�Server Conversation

Once the PVC is 'open' data is streamed between client and server processes:

DNET Private Virtual Circuits Operation 13

DNET Modes of Operation

Dml_toSm'v_]I

Specific

Server

1

-- Dtta strmm from _ I

3.0.2 Closing a Client�Server Conversation

At the conclusion of a session, the DNET permanent virtual circuit may be closed by calling

dn..closeO. Either the client or server process may call dncloseO.

Corns Close Datagram So DNET Server

CIl_t
Server

l

- Corns CIoN ACK from Specific Serv_ I

14 DNET PROGRAMMERS GUIDE

DNET Modes of Operation

4. Writing Connection Mode Services

4.1 DNET Client Design Issues

DNET Clients are executable processes located in the directory dnethome/bln. This directory should
be included in the user's path for UNIX systems. On VMS systems, 'paths' to each client are defined

in the dnlogin.XX file which should be executed by the login.com f'de as part of the user's Iogin

sequence.

The following defines the procedure for writing ordinary application client processes.

4.1.1 General Rules for Coding DNET PVC Client

The general form for the coding of a DNET Application Client is as follows:

#define SERVICE NAME "dhackd"

main 0

(
User-Defined Initialization

processname = "XXXXX _ /* this is the mnemonic for the process */

dn_initO

chart = dn_openO

*

Application Code

dm write(chan__)
dn read(chart,..)

dn..closeO

return/exit/bottom of client loop
}

The several elements in this 'standard' form are discussed in the following sections:

Writing Connection Mode Services 15

DNETModesofOperation

4.1.2 Detailed Discussion

4.1.2.1 SERVICE_NAME and progname

SERVICE NAME is used to indicate the name of the server to which this client will connect.

SERVICE:NAME is typically passed in the process field of tin_open.

progname defines the name of the client. This variable is used internally by the cfient and is used to

name an optional 'log' file.

4.1.2.2 User Initialization

This is any appfication specific initialization at the option of the programmer.

4.1.23 Initialization - dninitO

This is a mandatory function call which sets up the necessary run-time tables for the application. The

global variableprogname must be called.

4.1.24 Defira'ng a Virtual Circuit - dn_openO

dn openO is used by client processes to request a Private Virtual Circuit connection to the specified

service a given network and host. The function does not return until a path to the destination has been

opened or an error occurs (channel cannot be opened, timeout, etc).

dn_open

chan = dn_open(net, host, service)
hat chart; /* A channel number,

used in subsequent read and write calls */

char *net; /* A DNET network name */

char *host; /* A DNET host name */

char *service; /* A DNET service */

Once dn open 0 returns a channel, the PVC is assumed to be established. The 'open' chan may be
used as a 'f'de descriptor' in DNET read and write operations.

4.1.2.5 Using a Defined Virtual Circuit

4.1.2.5.1 Blocking vs Non-Blocking Operations

DNET read and write operations may be either blocking or non-blocking. Blocking operations are

those which do not return until a certain event has occurred. Thus, a blocking 'read' or 'write' is one

which waits until a specified number of bytes have been read or written, respectively.

In non-blocking operations, the action may be initiated without waiting to determine if it completes. A

non-blocking operation might also be a 'poll' which simply checks for example, whether data has
arrived and needs to be read.

4.1.2.5.2 Reading and Writing on a Virtual Circuit

DNET permanent virtual circuits service provides functions which dosely approximate the UNIX

system calls re,adO and writeO.

16 DNET PROGRAMMERS GUIDE

DNETModesofOperation

dnwrite
nb_es= dn_write(chan_buf_bytes)

lnt nbytes;

int chart;

char *bur;

/* The umber of bytes, Including DNET headers,

that was written on the given stream. */

/* l/O cluumd returned from dn_open "/
/* The data that b to k sent. Th_ function

prepende the data with a DNET header. */

dn read

Synchronous (Blocking) read

nbytes = dn_read(chan, bur, count)
hat nbytes; /* The number of bytes, including DNET headers,

that was read from the given stream. */
iat chart; /* A pointer to an I/0 structure that was

previnusly opened by dn_openO "1
char *buf; 1" A result parameter where the datngram, In

str/ng format, is pinced; this buffer

contains the DNET headers. */

int count; /* The maximum number of bytes to receive. */

4.1.26 Closing a l/'trtt_ Circuit - dnclose 0

The function dn_closeO doses a DNET PVC communications channel; it can be used in both clients
and servers.

dn dose

status : da_dose(s_)
lut status; /* An indication of success or failure */

int chart; /* A channel structure that was

previously opened using tin_open0 */

Writing Connection Mode Services 17

DNETModesofOperation

4.2 DNET Server Design Issues
In network communications applications, the server the server can be either be permanent or transient.

The choice is transparent to the client.

A permanent server is one that is initiated at network start up time and when not otherwise occupied,

listens for, accepts connections and performs services until the network is shut down.

A transient server is one that listens for connection requests using one process and when a request is

received, starts a process that is dedicated to the client. The listening process can either be one which

performs a particular server application or it can be one that manages many servers, listening for

requests to any of them and spawning or reactivating the appropriate servers.

A communications server application can be permanent on one host (a VAX, for instance, where
process start-up is slow) and transient on another (most UNIX systems, where processes start quickly).

Control of pre-spawned and demand spawned processes is handled by the DNET PVC Master Server

according to entries in the Master Server Init Table(s) discussed elsewhere.

4.21 General Rules for Coding DNET PVC Server

The following is the 'skeleton' code for a DNET PVC Server:

#define SERVICE NAME "dhackd'

main0

{

User Static Initialization

progname = 'dhack';

dn_initO;

While (than = dn_getdlent());

User Dynamic Initialization

Application Code

/* name of server associated with this client */

/* name of this server *[

dn r_d(_);

dn_write(chan,....);

dn_done0; /* notify MS that session is over;,
loop to zetdient for another request */

return/exit/bottom of' server loop

}

18 DNET PROGRAMMERS GUIDE

DNETModesofOperation

4.22 Detailed Discussion

4.221 SERVICE_NAME & progname

SERVICE NAME is used to indicate the name of the server to which this client will connect.

SERVICE_-NAME is typically passed in the process field of dn_open.

progname defmes the name of the client. This variable is used internally by the client and is used to

name an optional 'log' f'de.

4.222 dn_ira't 0

Same role as for DNET Clients.

4.223 dn_getclientO

The function dn_getcllent0 performs a role for DNET servers parallel to than played by dn_open0 for

DNET clients. The 'idle' server waits on dn_getclient 0 for notification of a service request from the
Master Server.

da_getclknt
chart = dn_getcUent(servtce, usrbuf, pusrbuflen)

char*service;
char* usrbuf;

char* pusrbufkn;

4.224 dn__teO / dn_readO

Same function as for client.

4.225 dndoneO

dn done
w

dn done is called by each DNET Application Server before exit
to lndleato to the local Master Server that it has

completed its task and is available for use

4.226 dn_closeO

Same function as for client processes.

4.3 Connectionless Datagram Service in a Streaming Application (if
required)

DNET applications which are primarily streaming based may nevertheless have need to use the

optional conneaionless service. This service may be used by following the rules outlined in the sections
on DNET connectionless service later in this guide.

Writing Connection Mode Services 19

Aa Example SmmmlaS Appik:,Uo,

4A An Example Streaming Application

The following is an example of a typical cllent/server pair (dee.he & dechod) written using the
DNET facilities. The reader is also referred to the DNET source code listings for examples

from the other applications.

The user interface to decho is described in the DNET User's Guide.

The echo application establishes a permanent virtual circuit with a specified (remote) host. The
client then accepts input from the user a line a time. When carriage return (CR) is pressed, the

input is sent over the PVC to the echo server which returns it immediateaUy to the client where
it is displayed on the next line of the screen.

Input lines are entered indef'mitely until an end of file is issued by the user (Ctrl-D for UNIX,
Cntrl-Z for VMS).

20 DNET PROGRAMMERS GUIDE

An Example Streaming Application

o*o00000ooo*eeooooee*o*oooo*oo,oo**ooo***o

dccho.c

*ooooeo*ooo**o*sJe*en**oeo**eeoee**e,80o,,/

dfddlW MAINPROGRAM

#iadude <Ndio.k>
#isclmle "dmt envY'
#inrbde "dm_
#inch,de"d_ emm.V

#iMd DN EVMS
#istis_ _'til_>
#mll_
tikld DN EUNIX
#include _kntLh>
#mdff

#ddine SERVICE NAME "decbod"

(_ _)
im _rBq
char *arlrv[];
(

dma_, n_

if (sty < 3) (
lpri_r(stderr, "Vsae= _ ,IN ..ode [meslO, aqrv[O]);
return;

)

prosmme = "decho_;

if (dn_lnlt0 < 0) (
dn_eryor('dn_inil')l
exit(l);

)

fprlmf(sdderr,_ to opa comection to %s %s0, arllv[ll, arsv[2l);

clmnnd 8 dn_epm(mllv[l], arllv[2], SERVICENAME);

it (chamd,:O) (
d._e,,_"d._opm_
air(i);

)

fprint_Uderr, "Rmdy.0);

it (mTt -- 3)
ecbo(clmami,O);

ebe (
wldle(-eric •,, 3) (

if ((rid ,, otm,_a,m[_l, ORI)ONLY)) _., -1)(
pm_arr, la,_]);
co,,a,_

)
•*ko(dmmd, no');
dose(rid);

)
)

a. clo_a_md);
ed_(O);

Wr#iwIComwcflonMode Services21

AmgJa,n_ SUzmiq Appik_ie=

or.ll_dlmd,
im clmmd, i
(

char bwfl2*DNnUFStZ+ 1];
lm mind, mvd, ram;

whae ((mnmd- ,rod(it, I_g, _ - 1)) :, O)(
Imtlmrmd]• NULI4
g (¢hbq)

Iprb_derr, "d_bocde" reidfroms_di__ is
m'eed)_

it ((m/= brce write(chamd,_a; strlea_t), wind)) X=are,d)

it (debq_
Iprimf(stderr,'detbecder da write,mereb qtdO,msem);

it ({,=x-.i.. S,wce_r,md(clm,nd,bur,s_r}. t, mat)) t.. ,,_v)
b,r..I¢

It {ddmqO
stderr. 'der.bm dm_nmd,_ is_ i'evd)t

it ((mat = _rlte(1,tat, .god)) X=.red)
)

}

b_.e _de(cnm, beg,benin, _rce)
lit clmq
ohm" *Smt
im tmmu,J_u¢
(

Jm nt_¢_ re¢

while(d_lte.< force&&dl_tes < Imi'a){
it {{ret ,, dm_wrtte(cbu,bc,f+ rebates,

I_m,n.mi_tu)) ,<o)(
d= .r,w('dt_wrlt.");
rctara(.l)!

)
d_jt_ +,, rtt;
It(ddmlt)

ti,ri_d.,'r, 't_r_,writmIkw_=Cklni_-. =qi_m.

)

)

Ib,__r.md(d_, _t. b=nm,bre.)

¢lw *b.4
im b=n.,,,tor_
(

wldle(mb_s < Ibm Ik&d_.,, • Imtlm){
,i ,, dmremd(cimm,bwr+ ab_ta, Imtlm. abytu)_
if(m <_) (

ch,_m'or('d=_r..d'_
r.t,,r_.X)_

)
d_.. +.* r,t_
It {ddmlO

,i,ri=_s,d.rr. ",m.._r._ tor_='kl ,d_t._- _t,dO,
gbm,,d_t..)_

}
rmrn(_es)_

22. DNET PROGRAMMERS GUIDE

An Example Streaming Application

eOOteSOIOSqa'0t I Basooseloso oso oslslsseleeoeoosooeiieo

ck_bcxl_

In0sl elpsolaeo_ eaIIl0ea ei_elesoei_sloo e_I oeaoso oll esl Jlel/

#dd_ MAINPROGRAM

#inclmle <stdioJI >

#1aelmle"dmt_em.lf
#ilcillde "diet.if
#1mclmle"dnet_errno_

,,u,_.rF, ar_v)

e]w "mIp'[];
(

im channek
¢lir ddmeloldm];
1_I_ qopmO;
externint vmsm'rno;

progname= "d_bod';.

if (dm..hdtO < I)
_(l);

s,_p__ (dd,q. _ e.¢pklO);

Lf(,ld)_
!prb_r(stderr,'d.eko_ mmnI du_imcUm_);

whik ((¢bum_ =dm ImCUWComIIm_ e, e)) _= .1) (
dcebod(¢iimd);
dm_¢lo_(¢liIl);
dl_dom O;

}
mdt(O);

Writlall CoIIon Mode Services 23

_ str,,m_ App_io_

derJ_(dmmd)
_ dm,,_
(

elms" bldl2"DN BUFSlZ + ll;

wkUe(D {
r((. _ ned(ck_md,_ stz,oi_f). 1)) <- e)(

Itr(ddml/_lkm_l -,, e)
li_'hdffs4dm'r, "dechod:normal termln_ion (qkl)O_m-cvd);

d_ff(art_ < e) (
Iprimffstdert, _ ERROR _ dechock dnread tailed (qEd)0,

am,d);
}

)
{
b,'tn_mkwr, ",0-'nneda_ b,_,sr,mde,word);
brt,,c_m_ut,'r,"d_nw,d_bd_rodJ ,,rUd);

.dm w,odeOhund,_ art,d)) <- O)(
!prtntf(Uda'r,"***£RROR*** de:hod:nsent(qr_l)<,, OO,menO;
break

brh_stderr, "dechod:(q_d_os) ,,,rt,enO,ns_);

24 DNET PROGRAMMERS GUIDE

An Example Streaming Application

5. Connectionless Mode Services

5.1 Introduction

The DNET connectionless communications service is shown schematically in the following diagram.

Client and server process pairs employ the DNET BASIC I/O Library to generate datagrams which
are routed automatically via DNET Datagram Servers to the destination process.

Host Host

r 1

I

i ApplieatJo-
I

t CB_t

DNlgr

[/0

1

i

I

I

I

!

___l___

I I

I I

L,1

I"

i Gatem_y
I

i 1
e.i

I

I-___ ..I

I

I

I

I

I I

t I

I_ _1

r _

N

I

I

I

I

P-- 7

'Comec'llss'
I I

,][_k ,

I I

L J

I

I

I

I

_1

d _lll__n_l]e_ [)

DNET

1/o

A

A

D_'lr

I

I

I

I

.,L _ _
I-- - "1

i Com_'tion ;
I I

, Lock ,

' T_bk '
I I

I_ J

Applications using the connectionle.ss service use only a small collection of library functions. The

initiating process (process sending the datagram) invokes dn_cwrite0. There are two options for the
receipt of datagrams, blocking and non-blocking or asynchronous reception. Synchronous datagrams

are easily received by calling the function dn_cread0. Processes which expect to receive asynchronous
datagrams, (in general, all DNET applications), must call dn_cdg handler0 at start up to identify an
"asynchronous completion routine" to be executed whenever a cotmectionless datagram arrives for this

Connectionless Mode Services 25

AaExampleStreamingApldkatloa

process.A completionroutinemustbedefinedwhichwill includeacalltodn_creadO.

Climt _lr'ver

1

d+
l/o

r_k_e

I
usr_+lerO

3.1.1 Connectionless Datagram Formats

The general format of a DNET connectionless datagram is:

struct udg
{

stmuct node src;

struct node next;

struct node dest;

lnt maxhops;

lit type;
long buflen;

char bur[DMAXD];
);

where the street node is def'med as:

struct node

char host[i_MAXHNAME];

char net[I_MAXNNAME];

char proc[i_MAXPNAME];

Although the udg.buf field is dermod to be D MAXDG bytes long, the DNET will not assemble a

datagram that is larger than D_MAXDG bytes long. Therefore, there are a number of bytes defined

26 DNET PROGRAMMERS GUIDE

AnExampleStreamingApplication

5.2 Details of Datagram Services

5.21 Registration with the local Datagram Master Server

The function da_cinitO must be called (after calling dn_initO) by any process which wishes to use the
datagram service.

Important: Exiting processes must call the function dn cdone 0 in order to de-register with the

Datagram Master Server;, if this is not done, subsequent executions of the process will result In
erl'o_.

5.22 Sending a Datagram

A process which wishes to send a datagram must include the following elements within its code.

(
processname = "XXXXX w

dn inlt0; /* mandatory */

/* register with the DGMS
*/
dn_dnit0;

/* populate src and destination of datagram

*/
udg_s.wc.host = 'dacv_;

udg_s.src.net = "spanet';

udg..s.src.proc = "hack_sender';

udg_s.dest.host = 'dac3b2";

udg_s.destmet ffi 'dnettl';

udg_.dest.proc = "hack receiver';

/* write the datagram

,/
da_cwrite();

/* De-register with the DGMS

*/
dn cdone O;

}

Connectlonless Mode Services 27

An Example Streaming Application

du cwrite

du_cwrite(udg r, ross)

struct udg_r *udg;
Jutnags;

dn cwrite0 Is used by DNET processes to send connectlonless
datngrams to other DNET processes.
This operation is always synchronous.

5.Z3 Receiving Datagrams

DNET connectionless datagrams may be received both synchronously and asynchronously.

5.2.3.1 Enabling Datagram Reception Each process which needs to be able
connectionless datagrams must use the following format.

to receive

{
proeessname = u

dn_inltO; /* mndatory */

da dnitO;

dn_cread(udg, flags);, my be called asynchronously using Signal or asynch read
routine under appropriate circumstances (see text)

dncdoneO;

5.23.2 Synchronous Datagram Reception

Datagrams may be received synchronously by calling dn_creadO, as shown in the preceding skeleton
example. This call is normally 'biockins', i.e. it will not return until a datagram arrives or an error
condition is detected. The function may also act in a non-blocking (or polling) fashion if the

NO_WAIT flag is passed in the 'flags' argument.

du_cread(udsr, flags)
struct udgr *udg;
int flags;

28 DNET PROGRAMMERS GUIDE

An Example Streaming Application

5.2.3.3 Asynchronous Datagram Reception

The asynchronous reception of DNET datagrams is used when the DNET process is likely to be

involved in other activities when a datagram arrives. In this situation, datagrams may be viewed as

'interrupts' to the main process. Such a view requires the specification of an interrupt handler which

simply describes what (software) steps should be taken when a datagram arrives. Depending on the

logic, this handler may selectively accept/reject arriving datagrams.

The handler is specified by calling the function:

dn_dumdler(dhandle, d alert sig, udg)

where dlmndleO

is the interrupt handler (interrupt completion routine),

d_alert_sig Is the signal
used to notify the main process of datagram arrival

and

udg points to a DNET datagram structure.

5.3 Return Receipt Service

A provision is made for return receipts for DNET datagrams. The process which sends a datagram

and wishes a 'receipt' needs to set the 'return receipt' flag when calling dn_cwrite0.

dn handler must read the receipt flag in datagram and return receipt to calling process via return
dffagram

5.4 Signalling Services

Signalling between processes is viewed as a special case of the connectionless service within DNET.

Connectlonless Mode Services 29

An Example Streaming Applicatlom

CIMW

i/o

1

1

Ope_
System

5.4.1 Sending a Signal

5.4.2 Receiving a Signal

30 DNET PROGRAMMERS GUIDE

An Example Streaming Application

5.$ A Connectionless Service Example

An example of the use of the connectionless service is provided in this section. The example is an

elementary '_iamallin_ application. The client process bcd sends the te_ message "ABORT" in a

connectionless datagram to a netm_ host, process specified on the command line:

bcd network hostprocess

The server process abe is a 'trivial' process which is started, then idles waiting for an abort message
from a bed process.

Followingisthe sourcecode for the client process.

8

* Module: bcd.c

* Version: 1.19

* Delta Date: 5/31/89 13:49.38

o/

#include "dnet env.h"

#deflne MAI_R_RAM

#include < stdlo.h •

#include 'drier.h"

#include "dnet errno.h"

/* 1"nls redefinition of the user datngram structure in the user's

* will be replaced by providing the dn_alloc function to the user */

main (argo,argv)
int argo;

char *argv[];
{

char *getenvO;

struct ud8 *udm

static char udsbuffer[$12];

udg ffi(structudg *)udgbuffer;

If (atilt != 4) {

fprintf(stderr, "Usage: %s destnet desthost destproc0, argv[0]);
exit(D;

}

Connectlonless Mode Services 31

An Example Streaming Application

strcpy(udg- • destJM_,argvO]);
strcpy(udg- • desthost, argv[2]);
strcpy(udg- > dest.pro¢, argv[3]);
strcpy(udg- > bur, 'ABORT');

udg->buflen = strlen(udg->lm0 + 1;
debug : 0;
pregname = 'dmskm';

fprintf(stderr, "dmsidli: before dn_cinit0);

if (dnclnlt(progname) -- = -1) {
dn_cerror0;
exitO);

}

fprintf(stderr, *dmsldll: before dn cwrlte0);

if (dn_cwrite(udg, 0) = - d) {
dn_cerror0;
if(dn_cdone0)

tht_cerrorO;
exit(l);

)
if(dn_cdone0 = = -1)
{

dn_cerror0;
exit(l);

)
fprintf(stderr, 'OK0);

exit(0);
)

Note that the network host and process arguments are transferred from the command line into
appropriate fields in the user datagram, udg. The "ABORT' message is placed in the datagram's
buffer.

dn_cinitO is called to register with bcd with the Datagram master server, then dn cwrite is called to
send the datagram to its destination.

F'mally dn_cdone0 is called to de-register bcd with the Datagram Master Server.

The server process code is presented below:.

32 DNET PROGRAMMERS GUIDE

An Example Streaming Application

/.
* Module: abc.c

* Version: 1.22

* Delta Date: $/31/89 13:49-.36

*/

#include "dnet env.h'

#define MAINPROGRAM

#include < stdlo-h >

#1fdef DN EUNIX

#include <signai.h •
#_dlf

_ifdef DN EVMS
#include < ssdef.h >

#endlf

#include "daet errnoJ_'

char udgbuffer[$12];

struct udg *udg;

main(argc, argv)
lnt argc;

char *argv[l;
(

int rtncd;

void dslumdler0;

DEpush('maln');

udg= (street u_ *)udgbu_r;
debug = 0;,

progmune = arp[0];
#1fdef DN EUNIX

rt_cd ffi (int)signal(SIGCLD, SIGIGN);
#endlf

/.
ff (dn clnlt(progname) = = -1) (

,/
fprinff(stderr,_e: calling di_chflt.0, progname);

rtncd = dn_ciait('lb¢');

fprinff(stderr,'du_c_t: rctm-a_);
q)rinff(stderr,_: dn clult returns qkl.O, _ rtncd);

if (rtncd = = -I) {

du_cen'm'O;
DEpopO;
txit(l);

}

Connectlonless Mode Services 33

An Example Streaming Application

fprluff(stderr,'9_: du c_lt successtui.0, propame);
if (dn clmndler(dglumdler, SIGUSRI, udg) -- -- -I) {

du_cerror0;
ff(dn_cdone0 = = -1)

dm eerror0;
DEpop0;
exlt(U;

}
#ifdef DN EUNIX

pause0;
#eudlf
#1fdef

#eudlf

DN EVMS

syI.-hlber0;

If(dn..cdoneO = = -I)
(

dn__rrorO;
DEpopO;
exlt(1);

}
fprinff(stderr, _1as:exRingO, progname);
DEpopO;
exlt(0);

void dglmudler0
{

DEpush('dghandler");

#ifdd

#endlf

fprintf(stderr, *in dghandler0);
if (!strcmp(udg- > buf,'ABORT'))

fprlnff(stderr, 'Received ABORT0);
DN EVMS

r(s,_m_(o) = = .t)
fprintf(stderr, "%s:Can't wake up ./a', procaine);

DEpopO;
return;

Salient points in this code include:

1. dn cinit is called to register abe with the Datagram Master Server

2. dn chandler is called; the signal SIGUSR1 is specified as the asynchronous signalling mechanism
in_cating arrival of datagram destined for abe., a completion routine dghandler 0 is specified for

execution when this signal is received, and the datagram udg is specified as the target for
incoming datagrams.

3. The process 'idles' using pause 0 or sys_hiber 0 until a datagram is received

4. dn_cdone is called to de-register with the Datagram Master Server prior to exiting

34 DNET PROGRAMMERS GUIDE

An Example Streaming Application

The completion routine d_and/er 0 is called when the DGMS signals abe that a datagram has arrived.
The buffer of udg is checked for the "ABORT" message ff this message is received, the handler wakes

up the idling main process, causing it to exit.

.5.5.1 Datagram Protocol Servers

Datagram protocol servers DGS) are DNET processes located at each DNET host which propagate
DNET datagrams through the heterogeneous network. These servers provide a network protocol

specific interface between the Datasram Master Server (DGMS) and the underlying network(s). An

overview of a the relationships between the DGMS and DGS's is provided in the following diagram:

DatallramMaster Server
(IX;MS)

Pretl

n.talrrm
Server

(Pacedver)

T

Pretl

l_aap-m
Server

(Sender)

Prot2

Dalapm
Serv_

Oteeet_)

Pret2

lhtapm
Server

(Seeder)

NmworkI N_avork 2

£.5.1.1 Connection Lock Table

The datagram servers keep track of a pool of open connections to other DNET hosts over which

connectlonless datagrams may be routed. This information is contained in the Connection Lock Table

The connection lock table contains information about the hosts to which the local host has connections.

It includes the protocol and logical channel number used by the BASIC I/O package in transmitting
datagrams to that host.

CommtctiomLock Tabte

Cmmectiou Owner _ ID

!FXFRI.CIImt 1
FXFRI.Cliem 2

FXFRI.Cliem 3

N,t Host Pine Nine Clmnnd #

D 4 FXFR_ 119988419

Q 3 FXFK4 89_84Lt
T 3 FXl;'R2 89985419

Connectlonless Mode Services 35

AnExampleStreamingApplication

5.6 Signalling

DNET processes may send signals to other processes within DNET by calling the function dn..slgnal0.

5.6.1 Sending Sign_

dm s_

status -- dnslgnal(net, host, service, signal)
Jut status;

int signal;

char *net;

char *host;

char *se_

tin_signal sends a signal datagram to a server on a specified host.

5.62 Delivery of Signals

DNET signals are sent to the Datagram Server at the destination host. The Datagram Server
recognizes the type SIGNAL and forwards the appropriate information to the local operating system

for action. The operating system will complete actions such as 'killing' a process, etc. See the Chapter
on Connectlonless Service for more detailed information.

36 DNET PROGRAMMERS GUIDE

An Example Streaming Application

6. DNET Error Handling

DNET Basic I/O Library functionsreturn a non-selective error code if an error is detected during their

operation:

DNET applications which wish to use the error handling facility should include the header f'de
dnet enno.h and follow the procedure below:.

Errors detected by the DNET code are identified in the variable daet errno:

dnet errno =

An error function, dnet error('string'), is then optionally called where string is an optional, user

provided informative me_age, dneterror provides detailed information on conditions when the error
was detected including a stack trace.

dneterror(*error..strinO

char * error string

Detailed error codes are provided in an Appendix to this Guide.

DNET Error Handling 37

An Example Streaming Application

7. Routing

DNET employs a hierarchecal routing scheme. Each DNET node has a routing table which lists the
next DNET node to contact in order to reach each known network within DNET. A 'null' entry for the
destination indicates that the local host is directly connected to the destination network. The routing
tables are 'static' in the initial version of DNET, but could be easily updated via an appropriate
protocol in a latter version.

The details of DNET routing operations are hidden from 'ordinary' applications and hence will not be
of particular use to the application programmer.

The router selects the host/process to which the datagram will be transmitted next by calling the
function 8et..path0;

path = get_path(src_net,src_host,destnet, desthost,dest_process,uumhops);

src net is the network in which the destination host Is located

src host Is the destination host

dest net is the network in which the destination host is located
m

dest host is the destination host

dest process Is the destination process

numhops - number of hops from current location to destination

Details on routing within DNET are found in the Adminstrator and Technical Guides.

38 DNET PROGRAMMERS GUIDE

An Example Streaming Application

8. Interprocess Communication

.fi p.art of. internal design, DNET provides a generalized interprocess communication facility. A

et aescnption of this facility is provided here. Complete details on the use of this facility are given in
the DNET Technical Guide and Reference.

Inter]process Communication 39

An Example Streaming Application

9. Presentation Layer Services

DNET will provide a limited presentation layer facility.

Within the DAVID environment, the single most important coding problem across heterogeneous
machines is the internal representation of data. Information moved from one machine to another may
only be viewed consistently if data types are faithfully "mapped"between machines.

Thus, if the transmitting machine views integers as 32 bit quantities and represents floating point
numbers with 64 bits while the receiver represents these two data types as 64 and 48 bit quantities,
respectively, serious misalignment of data ides will occur.

The Presentation Layer Service to be provided by DNET will be limited to a subset of the SUN (XDR)
External Data Representation Protocol and the existing DAVID Presentation Services.

9.1 XDR

A subset of the SUN Microsystems External Data Representation (XDR) protocol is provided with
DNET.

XDR allows arbitrary C data elements to be written and read in a consistent and accurate manner,
independent of the representation of these data elements on the source/destination computers. XDR
provides for the translation (or encoding) of data elements into a canonical representations at the
source machine. These canonical forms may then be interpreted (or decoded) according to
appropriate conventions at the destination machine. Inter-computer differences such as the number of
bits and/or the byte ordering of specific data types are conveniently avoided via judicious use of XDR.

Typical XDR h'brary functions include f'dter routines for strings (null terminated arrays of bytes),
structures, unions, and arrays as well as primitive routines for most common data types. These f'dter
routines are used for both encoding and decoding of the XDR canonical data stream. The
encode/decode 'direction' is indicated via a flag when the f'dters are invoked.

Data may be encoded/dexoded source/destination data "stream'. This stream may be a f'de, a memory
array, of a memory block.

9.1.1 Issues in the Use of XDR

The f'des ./common/dnxdr.¢ and ./common/daxdr.h contain the XDR functions available for use
within DNET. The reader is referred to the source code for additional details on the various issues
discussed here.

The general procedures used for encoding/decoding of data with XDR are as follows:

1. Specification of the XDR 'handle'

40 DNET PROGRAMMERS GUIDE

An Example Streaming Application

2. Creation of I/O Data Stream

3. Encoding/Decoding of Data using XDR Library functions

9.1.2 The XDR Handle (Control Structure)

A common structure is used to 'control' the XDR operations on a particular data stream. This
structure is shown beio_

/* The XDR handle.

,/
typedet struct {

eunm xdr_op
struct xdr ope {

tat (*x_getieng) 0;

tat (*x_puflont0 0;

tat (*x_lDethytes) 0;

tat (*x puthftes)0;

utat (*x getimsto)0;
bed t (*z setposto)O;
tong-*(*x taut)O;
void (*x_destroy)O;

} *x_ops;

x.op; /* operation; fast additional imram */

/" pt a long from underlying stream 8/

/* put a long to" */

/* pt sow bytes from ' */
/* put some bytes to ' */
/* get byte offset from beginning */

/* repositioa Ioc in the stream*/

/* put some bytes to ' */

/* free prlvateJ of this xdr stream */

eaddr_t xpublic; /* users' data */

caddr_t x..prlvate; /* pointer to private data */

eaddrt x_base; /* private used for position into *[
tat x_handy; /* extra private word */

tat xsize;, /* yet another */
} XDR;

9.1.3 Creation of the I/O Datastream

Two functions may be used to create the XDR datastream. The function used depends on whether the

stream is to be a f'de or an area of memory.

l_dc

zdrstdlo_create(xdrs, rp, x..op)
XDR exdrs;

FILE *rp;

eunm xdr_op x_op;

x..op is chosen from among:

XDR ENCODE
XDR-DECODE

Memory

Presentation LayerServices 41

EzzempleStreaming Application

•Alrm__create(xdre, addr, Ion, x..op)

XD_'xdrs;
char *addr;
u_tut
enm sdr_op x..op;

_op Is chosen from among:

XDR ENCODE
XDR DF._ODE

9.1.4 Encoding/Decoding of Data using XDR library

9.1.4.1 Pn'mitive Filters Example of a typical primitive:

boolt x__xxx(xdrs, fp) XOR "xdrs;xxx "rp;{

}

Comments:

xdrs points to the XDR control structure

tp points to the data stream

ENCODE/DECODE already specified in the XDR control structure

Retazrus TRUE (1) If successful
Returns FALSE (0) If _llure

The primitive names arc usually adequate to de_rib¢ the data type involved, e.g :

xdr Iong(&xdre, stdln)

9.1.4.2 Non-fUter Primitives

Two especially useful ancillary functions allow determining or setting the current position in the XDR
datastream.

Get current position in the datastream

u_rutxdrjettp_(xdrs, pos)
XDR _drs;

u int pos;

42 DNET PROGRAMMERS GUIDE

An Example Streaming Application

Set current position

beei_t xdr setlms(xdrs, pro)
XDR *xdrs;

u feat pos;

9.1.4.3 Higher Level Filters Arrays

9.1.4.4 An Introductory Example

Consider the following simple example. The name of a file and its size, in bytes, is to be passed

between machines with consistent interpretation.

We def'me a structure in which to place the f'de information and assume that some convenient utility is

used to populate this structure.

struet

{
char(100] fllename;

long filesize;,

} flledescrtp;

boei_t xdr_filedescription(xdrs, filedes)
XDR *xdrs;
struct filedescrip *filedes;

I
return(xdr stremu(xdrs, &fUedes-> rdeuame) &&

xdr_iong(xdrs, &flledes. > fileslze));
}

Presentation Layer Services 43

An F_uuuple Stremnlng AppllmOou

Source:

/e Declare u instance d the XDR 'handle'
./
XDR xdrs;

/* open the 'Canonical' File
-/
fp = fopen ('Fileinfo', 'W');

/* Setup the xdr handle to point to 'Fileinfo' and to encode the
datastream

,/
xdrstdlo_crute (&xdrs, fp, XDR ENCODE);

/* Encode the file information (from file struct) into the open datastream
./
fUedescrlptlon(&xdrs, fp);,

/* Close the file
*/
rc]ose(rp);

/* Send the file to its destiution using a convenient function
*/
put..fUeO;

44 DNET PROGRAMMERS GUIDE

AnExampleStreamingApplication

Destination:

/* Declm_ u instance of the XDR 'handle'
,/
XDR xdrs;

/* Receive the file at its destination using a convenient function
,/
recdve_fUe0;

/* open the 'Canonical' File
,/
fp ffifopen ('Fileinfo', NO');

/* Setup the xdr handle to point to 'Fileinfo' and to decode the
datastream

./
xdrstdlo create (&xdrs, fp, XDR_DECODE);

/* Encode the file information (from file struct) into the open datastream
,/
flledescription (&xdrs, fp);,

/* Close the file

./
fdose(fp);

9.1.5 Example - use of XDR in dnetstat

We next consider an example drawn from the actual DNET implementation. The DNET client/server
pair dnetstat and dnstatd use XDR in order to accurately pass DNET status structures across the
heterogeneous network.

The 'standard' XDR library function, xdrmem_create0, is used to create a data stream at a specific
location in memory, in this case in the data buffer of a DNET connectionless datagram which is being
assembled for shipment to the daetstat client.

The steps performed are:

1. Populate the data structure for the network status

2. Create a temporary memory area (in the buffer for a DNET connectionless datagram

3. Invoke a function which encodes/decodes the data structure to/from XDR format

Presentation Layer Services 45

AnExampleStreamingApplication

sUructuds udgs;
struct dmainfo dins stat;

main0
(

XDR xdrs

xdrmem_create(&xdrs, udgs- > Imf, sizeof (udg_s- • buff, XDR_ENCODE);
xdr_sit_instance(&xdrs,&dms_stat);

Discussion

xdrmem_create0 is set up to place the XDR encoded structure in the data buffer (usg_s-> but) of a
DNET connectionless datagram which is being assembled in memory for shipment to some remote
destination.

Since dnetstat is a designed to be a currently used DNET application, its accurate interchange of

information warrants special attention. The functions xdr_sit_instance0 and xdr adgut_instance0
were 'custom' written for this purpose. These functions and the data structures which they
Encode/Decode are presented below:.

struct ms_entry (
char service[80];
char image[80];
hat prespawned;
hat max;
int avail;
hat inuse;
hat seqno;

struct sJ_eutry*si_tabt_
}; /* for generic table */

struct msinfo (
char service[801;
char hnage[80l;
int prespawned;
hat max;
lnt avail;
int inuse;
hit seqno;

); /* for generic table "1

46 DNET PROGRAMMERS GUIDE

AnExampleStreamingApplication

su-_t si_enu_ {
im pi&
hat lnuse;
tat hdted;
long stime;

strect ms entry *msentr_,
tat term_seat;
hat pend_
tat buflen;
char buf[BUFSIZ];

1; /* for instance talde "/

struct silnto (
tat pid;
tat tause;
tat talted;
long stime;
tat term_sent;
tat pend_

}; /0 for instance table */

typedef struct ms_entry MS_ENTRY;
typedef struct si_entry SI_ENTRY;

#define DMS GETCLIENT 1
#define DMS-GETSTATUS 2

struct dins_request {
tat pid;
tat type;

1;

#define DMSTAT END
#dena, DMS tNgO
#define DMSTAT INFO

struct dmstafo (

tat type; 1*
tat numsl;
struct mslnfo ms;
struct siinfo si[100];

};

DMSTATINFO, DMSTATEND */

Presentation Layer Services 47

An Example Streaming Application

/e structure for ADGUT (connectionless service) entry

,/
struct d__adut
{

int pld; /* Process Identifier */

char pname[D MAXPNAME]; /* Process name bound to */

char ipcname[D_MAXPATHNAME];/* Name or IPC mechanslm for sending */
hat ipcid; /* ipcid of ipcnan_ */

int numnsg; /* Maximum number of bytes that this user can handle */

lnt signal; /* Signal number used to inform ot impending message */

unsigned w_thneout; /* lqmeout period on write */

thne_t add_thne;/* Time adgut entry was added */
thne_t last access; /* Thne adgut entry was last accessed */

time_t last..update; /* Time adgut entry was last updated */
thnet lastsend; /* Thn¢ last datagram was sent to this process */

thnet last_recv;,/* Time last datagram was received from this process */

lnt state; /* 0 - Invalid
1 - Basic

2 - Listen */

);

48 DNET PROGRAMMERS GUIDE

An Example Streaming Application

/0 dnetstat utilities - User Network Status FUnction
,/

#include < stdio.h >
#include < ctype.h>

#include 'dnet env-h'
m

#include < signal.b >

_fdef DN EL_IX
#include <fcntl.h >

Jqfdef DN3B2

#include "/usr/netlnclude/sys/thneJl'
#eLse

#include < sys/fime-h
#endif

#endff

#ifdef DN EVMS
#1fd_r DN_)Fr_Ic

#include time
#else
#include "tlme.h"
#encUf
#endIf

#include "dnet.h'
#1ndude "dnet errnoJf

 adude "d Cip "
#include 'dgms.h"
#include 'dins.h"
#include "dne_tat.h"
#include 'dnxdr.h'

Presentation Layer Services 49

An Example Streaming Applkation

/" Connection Service Definitions
./

x_ slt_imtance(xdrs,dms_bptr)
XDR "xdrs;

struct dmslufo *dms_bptr;
(

char *cpp;
int 1;

If (_xdr int(sdrs,&dmsbpW- > type))
return(FALSE);

if (_xdr int(xdrs,&dms .bptr- > numsl))
return(FALSE);

cpp = dms_bptr. • mum.service;
if (!xdr strlng(xdrs,&cpp,D_MAXPATHNAME))

return(FALSE);

cpp = dms_bptr- > msAmage;
ff (!xdr string(xdrs,&cpp,D_MAXPATHNAME))

return (FALSE);

ff (!xdr_iut(xdrs,&dmsbptr- > ms.prespawned))
returu(FALSE);

ff (!xdr int(xdrs,&dms_bptr- > ms.max))
return(FALSE);

if (_xdr_lnt(xdrs,&dms_bpW- > ms.avail))
return(FAl_E);

ff (!xdr int(sdrs,&dms_bptr- > ms.lnuse))
return(FALSE);

ff (!xdr int(xdrs,&dmsbptr- > ms.seqno))
return(FALSE);

if (debug)
fprintf(stderr,'xdr_sit_.instance: numsi - %d0,dms_bptr->numsi);

for (1=0; i< dmsbptr->numsi; i+ +) {
if (!xdr_int(xdrs,&dmsbplr- >sl [i].pld))

return0FAI_E);

ff (!xdr lnt(xdrs,&dms_bptr- >sl [I]Anuse))
return(FALSE);

if (!xdr_lnt(xdrs,&dms_bptr-> si[il.fnited))
returu(FALSg);

if (!xdr_int(xdrs,&dms_bptr- >st [i].stlme))
return(FALSE);

ff ('xdr int(xdrs,&dmsbptr- • si [i].term_sent))
return(FALSE);

ff (_xdr_int(xdra,&dma bptr- • si [Jl.pendlng))
return(FALSE);

}

return(TRUE);

50 DNET PROGRAMMERS GUIDE

An Example Streaming Application

xdr_adgut Instance(xdrs_dg bptr)
XDR

struct dgms_adut *adg_bptr;
{

char *cpp;

if (!xdr_Int(xdrs,&adg bptr- • pld))
return(FALSE);

cpp = adg_bptr- • pname;

If (!xdr_string(xdrs,&cpp,D_MAXPATHNAME))
return(FALSE);

cpp - adgbpU'- • Ipcmun¢;
(:xdr str_(_h_cpp,D_MS_XP_S_ME))

return(FALSE);

if (Ixdr_int(xdrs,&adg_bptr- • ipcid))
return(FAJLSE);

if (_xdr_Int(xdrs,&adgbptr- > maxmsg))
return(FALSE);

if (!xdr Int(xdrs,&adg_bptr- > signal))
return(FM_E);

if (!xdr_u_int(xdrs,&adg_bptr- >w_tlmeout))
return(FALSE);

if (!xdr_Int(xdrs,Aadgbptr- > add_tlme))
return(FALSE);

if (!xdr_long(xdrs,&adg_bptr- > last access))
return(FALSE);

If (!xdr_long(xdrs,&adg_bptr- > last_update))
return(FALSE);

if (!xdr_long(xdrs,£mdgbptr- • last.send))
return(FALSE);

if (!xdr_long(xdn,&adg_bptr- > last_recv))
return(FALSE);

if (!xdr lnt(xdrs,&mdgbptr- >state))
return(FALSE);

return(TRUE);

9.2 Transferring arbitrary files using XDR

No supporting mechanisms arc currently offered in DNET for the problem of transferring arbitrary

f'desusing XDR.

9.3 Existing DAVID Presentation Service

Existing DAVID system currently includes a pair of data conversion functions which map data types

into a straightforward, virtual format for interchange with machines employing different internal

representation.

Presentation Layer Services $1

An Example Streaming Applkatlon

9.3.1 Virtual Data Format for DNET Transmission

ASCII representation

COM_STATUS dcpt pack(vca,cca,nvisit, tca, ptca,fptx)
VCA *vca;
CCA *cca;
USHORT *nvisit;
TCA *tca;
TCA °ptca;
FILE *fptr;

COMP STATUS dcp_tupack(vca, cca,fptr,ptrf'de)
VCA *vca;
CCA *cca;
FILE *fpU';
FILE *ptrfde;

52 DNET PROGRAMMERS GUIDE

An Example Streaming Application

10. Standard DNET Code Organization

10.1 Standard Directory Structure

The 'standard' DNET directory structure is shown in the f'_,ure below:.

././doer = daa home

/common /pvcdir/dgdlr /appdlr/bin

NOTE: Programming tasks covered by this Guide should generally require modifications to ides in
./drier/and ./dnet/uppdir

Changes to the subdlrectorles ./common, ./dnet/pvcdir, ./dnet/dgdir should only be undertaken
with a view toward global changes in mind.

10.2 Variation for VMS Installations

The DNET directory-tree on VMS systems is logically identical to that on UNIX systems. It differs
only in the syntax used to reference directories:

dnet_home: [.commou]

dmet_home: [.pvcdir]
dnethome:[.dgdir]
dnet_home: [.appdlr]

dnethome:[.bin]

Standard DNET Code Organization 53

An F.,xamp_ Streaming Applkation

11. Compiling & Making DNET Applications Programs

11.1 General Strategy

Use existing DNET applications as a model for make Ides

The relevant libraries in drier_home directory are placed in the dnet_home directory.

11.2 Setting DNET Compile Time Environment Variables

These Environment variables are ordinarily set automatically based on the machine name provided to
the DNET postmove utility program. Typical of the environment to be specified are:

1. Communication Protocol(s)

2. TCP/IP Implementation

3. Target Machine Type

4. Target Operating System
The most convenient means of setting these variables is to create an entry for the target DNET
machine in the f'de dnethome/tbls.db. This is a database f'de which contains all relevant information
about the target node.

11.3 Making UNIX Version

1. cd dnet home
R

2. make

11.3.1 BSD Systems

Special considerations - Must run 'ranlib' manually on the libaries generated during the 'make'
procedure.

ranllb daeLa

ranllb dnettcpam

This may be accomplished by running 'make' twice on the target machine; this has the effect of running
ranlib twice.

11.3.2 Exmnple Make File

A typical UNIX makefde is show below. This f'de is used to make the DNET application files. All
relevant makef'des are presented in the source code listings.

54 DNET PROGRAMMERS GUIDE

An Example Streaming Application

$(CC) -c $(CF_LAGS)S<
$(AR) $(AR_AGS) $@ S*.o
rm -f $*.o

$(GET) S(GFI_G$) S<

$(CC) -c $(ClrL_GS) S*.c
$(AR) $(ARF_GS) $@ $*_
rm J $*.[co]

DNET=./dnet.a

DNETrCP =./dnettcp.a

DNETI)EC =./dnetdec.l
CDIR =./common

BIN=./blu

#ONETDG-,./_cUr/Ubaa__

HE =$(CDIR)/dneLh $(CDIR)/dnet_envJl $(CDIR)/dnet..errno.h $(CDIR)/dnet_Ipc.h $(CDIR)/dnxdr.h
AR : ar
ARFLAGS - rv

CFLAGS--8 -IS (CDIR) -DDN3B2 .DDN ETCP
CCl_K=cc $(CFLAGS) -o $@ $@_ $(LIBS)
WOOL:/usr/IIb/IlbneLa/usr/llb/llbnsi_s.a
LIBS:$(DNEI'rcP) $(DNET) $(WOOL)

all: echo msklll netstat rexec trip ncl Iogln mll

mall: $(BIN)/dmall $(BIN)/dmalld $(BIN)/checkdmall

rich $(BIN)/dnd $(BIN)/dncid $(BIN)/dncid_unlx

_.J[io: $(BIN)/decho $(BIN)/dechod $(BIN)/dechon

losiu: $(nlN)/dlogln $(BIN)/diogind

mskllh $(BIN)/dmsklll

netstat: $(BIN)/dnetstat $(BIN)/dnstatd

IMgU_ $(BIN)/druec $(BIN)/drexecd

teq_ $(BIN)/dtftp $(Bll_/dtflpd

Compiling & Making DNET Applications Programs 55

AnF._ampleStreamingApplication

$(BIN)/decbo:decbo.o$(DNET)$(DNE'FrCP)
cc-o$(BIN)/decbodecho.o$(LIBS)

$(BIN)/decbod: dechod.o $(DNET) $(DNETrCP)

cc -o $(BIN)/dechod decbod.o $ULIBS)

$(BIN)/dechou: dechon.o $(DNE'U $(DNETrCP)

cc .o $(BIN)/dechou dechoa.o $(LIBS)

$(BIN)/dmskill: dmsldH.o $(DNET) $(DNE'FI'CP)

cc -o $(BIN)/dmskfll dmsklll.o $(LIBS)

$(BIN)/dnetstat: dnetstat.o dustatutfl.o $(DNET) $(DNETrCP) $(CDIR)/dgms.h $(CDIR)/dms.h dnetstat.h $(

c¢ -o $(BIN)/dnetstat dnetstaLo dnstatuUl.o $(LIBS)

$(BIN)/dnstatd: dnstatd.o dnstatutil.o $(DNET) $(DNETI'CP) $(CDIR)/dgms.h $(CDIR)/dms.h dnetstat.h $(C
cc -o $(BIN)/dnstatd dnstatd.o dnstatutil.o $(LIBS)

$(BIN)/drexec: drexec.o $(DNET) $(DNETI'CP)

cc -o $(BIN)/drexe¢ drexec.o $(LIBS)

$(BIN)/drexecd: drexecd.o $(DNET) $(DNE'ITCP)

cc -o $(BIN)/drexzcd drexecd.o $(LIBS)

$(BIN)/dl_p:

$ (s u_')l ,_mpO:

dtftp.o dtftputil.o dnlog.o $(DNET) $(DNETTCP)

c¢ -o $(BIN)/dtftp dtftp.o dtftputil.o dnlog.o $(LIBS)

dtftpd.o dtftputil.o dnlog.o $(DNET) $(DNE'PrcP)

ec -o $(BIN)/dtftpd dtftpd.o dtflputfl.o dnlog.o $(LIBS)

$6 DNET PROGRAMMERS GUIDE

AnExampleStreamingApplication

$(BIN)/dpresent: dpresent.o$(DNET)$(DNETrCP)$(CDIR)/dgms.h$(CDIR)/dms.hdpresent.h
c¢-e$(BIN)/dpresentdpresent.o$(LIBS)

$(BIN)/dmall: dmalLo_.ndmaiLo rmtdmalLo dfftputlLo $(DNET) $(DNETrCP) $(CVlR)/dnet.h $(CDIR)/d

cc -o $(BIN)/dmall dmall.o _dmall.o readmall.o dfftputll.o $(LIBS) .Icurses -Itermcap

$(BIN)/dmalld: dmalldLo dfltpufll.o $(DNET) $(DNETrCP) $(CDIR)/dnet.h $(CDIR)/dms.h $(CDIR)/dn

cc -o $(BIN)/dmalld dmalld.o dfftputil.o $0LIBS)

S(BIN)/checkdmafl: _ $(DNET) $(DNETrCP) S(CDIR)/dnet.h $(CVIR)/dms.h $(CDIR)/dn

cc -o $(BIN)/checkdmall checkdmafl.o $0LIBS)

$(UD0/dnd- dncl.o dm:i utiiJ.o $(DNET) $(DNETrCP) $(CDIR)/dnet.h $(CDIR)/dms.h $(CDIR)/dnet err

cc -o $(BIN_/dncl dncLo dncl_utlls.o $(LIBS)

$(BIN)/dndd: dndd.o dnd_utiht_ $(DNET) $(DNETrcP) $(CDIR)/dneUh $(CDIR)/dms.h $(CDlR)/dnet_er
cc -o $(BIN)/dncld dncld.o dnd_utlls.o $(LIBS)

$(BIN)/dncld_unLx: dmdd unix.o dncl_uflis.o $(DNET) $(DNETrCP) $(CDIR)/dnet.h $(CDIR)/dms.h $(C
cc -o $(BIN)/d-ndd_unix dncld_unlx.o dncl_utlls.o $0LIBS)

$(BIN)/dloglu: diogin.o dlogutlls.o $(DNET) $(DNETrCP)

cc -o $(BIN)/dlogin dlogin.o dlogutils.o $(LIBS)

$(BIN)/dlogind: dlogind.o dlogutlls.o $(DNET) $(DNETI_P)
cc -o $(BIN)/dlogind dlogind.o dlogutils.o $(LIBS)

decho.o: $(HEAD)

dechod.o: S(HEAD)
dechon.o: $(HEAD)
dmail.o: $(HEAD) dmafl.h

dma; $(HEAD) dmall.h

dmsk . $(HEAD)

dnet_tat.o: $(HEAD) dnetstat.h

dnstatd.o: $(HEAD) daetstat.h
d_tatutil.o: $(HEAD) dnetstat_

drezec.m $(HEAD)

drexecd.o: $(HEAD)

dmp.e: $(HEXD) dmp_
dmpd.o: $(HEAD) dtftpJm
dtnputll.o: $(HEAD) dtftp_
dsdog.o: S(HEAD)
dprzsent.o_ $(HEAD)
dlog_co: S(_)
dloC_d.o: S(HY_)
diogutiis.o: $(HEAD)
dud.o: S(HF_d)) clnd_
dnclcLo: $(HEAD) dnd.h

dncld unlx.m $(HEAD) dnd.h

dncl utils.o: $(HEAD) dncLh

Compiling & Making DNET Applications Programs 57

AnExampleStreamingApplication

11.4 Making VMS Version

11.4.1 General

DNET currently employs VMS 'command' f'des as a pseudo 'make' facility. These ides are simply

scripts for executing the various steps necessary to 'make' DNET on the target VAX machine. Since
this is not a true make facility, these f'des DO NOT check for the date of executables versus source files,

requiring instead that the user keep track of incremental changes in the source code and the 'side'

effects of these changes on the several executables.

11.4.2 MicroVAX H

1. cd dmet home

2. @make.dv

$ define c$indude dnet_common, dnet..pvcdir, dnet_dgdir, woolsys, -

wool netinet $ define vaxcSindude c$indude, sys$library $ lib/create dnet $ lib/create dnetdec $
lib/create dnettcp $ cd [.common] $ @decnet.m $ @tcp.m $ @vms.m $ cd [-.pvcdir] $ @dnet.m $

@drelay.m $ @dms.m $ cd [-.dgdir] $ @mall $ cd [-.appdir] $ @decho.m $ @dechon.m $ @drexec.m $

@dtftp.m $ @dmskiU.m $ @dustat.m $ @dlogin.m $ @dnd.m $ @dmail.m $ cd [-.bin] $ purge *.exe $
$ cd dnet home $

The makef'de for decho is presented below as a representative example of making a specific
application.

11.4.3 NASA-GSFC VAXes (IAF, DFTNIC, etc. using Excelan TCP)

Enter the following commands

1. cd dnet home

2. @make.dft

11.5 Making individual files

It is obviously possible to make individual f'des via manual steps or via selective 'makes' of either the

cotmnon, pvcd/r, dgd/r, or appdb" makef'des. It is important to note that there are numerous

interactions between the 'core' DNET f'des in common, pvcd/r, and dgdir. Any changes to these files

may have wide ramifications and considerable functional testing of all DNET operations is advised
after such tests.

DNET applications which follow the basic rules in this GUIDE are more 'self-contained' and may

usually be altered without significant effect on other applications.

58 DNET PROGRAMMERS GUIDE

An Example Streaming Application

12. Debugging DNET applications

For convenience, a generalized 'logging' facility is provided in order to allow a 1st order indication of
DNET operations. This may be used as a 'debugging' aid when problems arise with DNET and the
user is unfamiliar with the specific debugging tools on the local machine..

shell

C shell

2. VMS

This facility is activated when the DNET "environment variable" is set. This varies with the operating
system as follows:

1. UNIX

dnet_debug= 1;export dnet_debug

setenv dnet_debug 1

define/job dnet._debug 1

The debugging f'des will be placed in the directory and named as follows:

Directories:

UNIX

/tmp/dnet

VlVIS duet home

The log f'd-_ are generated for each DNET server process (most clients will 'dump' messages to the
terminal instead of a fde) and are named as follows:

XXX###.IOg

where XXX is the process name

and ### isthe process ID

UNIX f'des may be viewed while DNET is operational using

On VMS systems, DNET must be stopped before the log f'des may be inspected.

NOTE:

Care should be exercised in the use of _ debugging tedmique u log files of considerable size may
be generated over time. Thua the 'debug' option should only be activated long enough to study a

problem, then deactivated by setting drier_debug = 0

Debugging DNET applications 59

An Example Streaming Application

13. DNET Error Codes

#define D NOERR
#denne D-SYSERB
#define D-KADSTATE

m

#define D BADARG
m

#define D OVRFLW

#define D AEXIST

#dedXne D ESRVRSP

0

I
2

3

4

$

6
#define D EPERM 7

#define D-NOMSG 8

#define D NODGRSC 9

#define D INTERN 10

#define D BADNM 11
#define D-DGTB 12
#define D MSGTB 13

#define D BADHN 14

#define D ADGENF 15
#define D PN2BIG 16

#define D IPCNM2BIG 17

#define D NOEXIST 18

#define D INTR 19

#define D NOSRSC 20
#define D NODNET 21

#define D WOULDBLOCK

#define D TIMEOUT 23

deJ'me D_QUOTA 24
#define D NOSYSFILE 25

#define D SYNERR 26

#define D NOIMAGE 27
#define D HOMELESS 28

#define D SRVNOACK 29

#define D NOHOST 30

#define D-NOPATH 31
#define D-SYSLIBERR 32

#de.flue D NODNETSRV

#define D SHUTDOWNM

#define D MAXERRS 35

/* No DNET error */

/* A _tem avor ha, occurred */
/* pcosram in wrong state to issue this dnet call */

/* value of argument was determined to be Invalid */

/* ovemow ot i/o buffer */
I* _.e spedr_ oki_ ak'm,b'effitsu,*/
1* Error return value In DGMS service req response */

/* Permission Dealed */

/* D_NOWAIT flag set and no message waiting to be read */
/* No more available DGMS resources */

1" Internal DNET error"1
/* Invalid process name was specified */

/* Datasram To Big */

/* Message To Big */

/* Could not find net/ho6t combination in router tables */

/* ADGUT Entry Not Found */

/* Proc_ namesuing toobig*/
/* IPC name string too big. DNET code error */

/* The specified object does not exist 0/
/* A signal interrupted the Ubrary routine */
/* Temporarily out of system resources */

/* Missing all or part of dnet provider */

22 /* Operation would block */

/* Thneout or retry count exceeded */

/* Quota Umit exceeded */
/* DNET system file/table not found */

/* DNET system file/tablesyntax error 0]

/* Image (server) not file not round */
/* Env variable 'dnet home' not defined */
/* No respone from application server */

/* No such host */
/* DNET could not find a path for the src/dest pair */
/* System library function failed */

33 /* DNET servers dms/dgstcp not defined in 'etc/services'*/

/* Orderly shutdown from master server */

60 DNET PROGRAMMERS GUIDE

AnExampleStreamingApplication

sta_ c_ar *dsms_errmsp[n_MAXERRS] = {
"No DNET error',

"A system error has occurred',

'program In wrong state to issue this duet call',

"value of argument was determined to be invalid',

"overflow of 1/o buffer',

"The specified object already exists',

"Error return value in DGMS service req response',
'Permission Denied',

"D NOWAIT flag set ud no message waiting to be read',
"No more available DGMS resources',

"Internal DNET error',

"Invalid process name was specified',

•Datagrm To e_',
"Menage To Bill',

"Could not flnd net/host combination in router tables',
'ADGUT Entry Not Found',

"Process name string toe b/_',

'IPC name string too big. Probably DNET Internal code error*,

"l'ne specified object does not exist',

"A signal interrupted the library routine',

"Temporarily out ot system resources',

'Mlsshtlg all or part of duet provider',

"Operation would block',

"Tlmeeut or retry count exceeded',

"Quota limit exceeded',
"DNET system file/table not found',

'DNET system me/table syntax error',

'Image (server) file not found',
"Ear variable 'dnethome' not defined',

"No respone from application server',

"No such host',

"DNET could not find a path for the src/dest pair',

"System library function failed',

'DNET servers dms/dgstcp not defined in '/etc/services',

'Ordedy Shutdown from master server"

};

DNET Error Codes 61

AnExampleStreamingApplication

14. Glossary

The following terms are used in the description of DNET:

Applications Servers.

Servers such as F'de Transfer, Remote Login, Remote Execution, etc. that perform

services for clients. Applications Servers are invoked on demand by clients after using

the Service Assignment to obtain the name of an available server.

Connection Lock Table-

List of open connections held by process for use by its Basic Datagram I/O package.
Locked connections result from user requests for Permanent Virtual Circuits.

Datagram Master Server (DGMS)-

A server process, located at each DNET host and gateway, which provides an interface

to DNET clients and servers and the DNET Connectionless Datagram and Signalling
Service

Datagram Protocol Servers (DPS)-

Protocol specific servers located at each DNET host and gateway, which provides an

DNET Connectionless an interface to the underlying network Datagram service.

Master Server lnlt Table-

These tables, tbis.mslnittcp and tbls.mslnltde¢ contain ini_don information for

the DNET Master Servers including the type of server to be activated, the maximum #

allowed at this host, and the number to make available initially, and an indication of

whether the server must be prespawned. The tables are updated by the local System
Administrator at the specific DNET host.

Master Server TaMe-

One for each DNET ho_t, it contains information on the types and numbers of each

class of DNET server actively supported on this node at any instant. Each generic

server entry points to a Server Instaace Table which lists the current specific instances

of a particular class of server. It is updated by the Master Server and by specific

DNET application servers.

Master Server Process (DMS)-

Processes, one per Network, managing the Master Server Table, handling server

registration, server assignment, and server control. They are spawned by network

start-up command f'des.

DNET Basic l/O package-

62 DNET PROGRAMMERS GUIDE

AnExampleStreamingApplication

Includedaslibrarywithinanapplicationprogram,it providesnetworki/o interface
includingdatagramformatting.

Gateway-

A DNETnodeat whichcommunicatonprotocolboundaryis passed.DNETrelay
serversmovedatafromonenetworkto anotherperformingan effective protocol
conversion for streaming services. These servers are created, allocated, and used like

any other DNET streaming applications servers. The Datagram Master Server, in

conjunction with protocol specific datagram servers performs a similar function for
DNET datagrams.

Network Command Line Interpreter-

DNET Client process that directs the execution of network commands using
datagrams sent to various hosts and several servers.

myuame, hostname table-

A table, tbisanyuame, maintained in the daet home directory on each DNET node

lists the DNET networks to which that host is connected and the name(s) by which the
local host is known on those networks.

Network Command Language Processor-

Server that directs the execution of network commands using datagrams sent to various

hosts and several servers. It is an application server, copies can be pre-spawned or

spawned on demand.

Network Command Server.

Spawned by request from Command Language Processor, this Server is directed by

Command Language Processor. It spawns processes and directs i/o to execute network
commands.

Network Status Server-

Resides in each network host. Receives Host Status Tables, Host Alias Table, Well

Known Server Tables, Connectivity Tables, and periodically sends "I am alive"
messages to the Administrative host. To ensure these periodic messages are sent the

Basic datagram I/O package uses a timer/wake-up signal to initiate the transmission

of the message to the Network Status Client. Because this is done by the I/0 package

and there is a copy of this package in every process that uses network I/O the network

status data is collected on a per process not per host basis.

PVC Relay

A DNET relay used in the completion of DNET Permanent Virtual Circuits (PVCs).

Relay

Special DNET application processes located in a DNET gateway which perform

protocol conversion for DNET streaming service between dissimilar networks. The

appropriate Master Server process 'listens' on a particular protocol boundary when

Glossary 63

AnExampleStreamingApplication

idleandassignsarelaywhenarequestfor aprotocolh'hop'is receivedfromDNET..
Therelaysarenamed according to the protocol boundary which they are intended to

bridge. Thin a T-D relay services requests which arrive on a TCP/IP network,

relaying data to a DECnet net. Relays operate in a full duplex mode while actually in
u_.

Router

DNET employs a hierarchical rontin 8 stratesy. Each DNET node has, for every

(DNET) network known to it, information on the next DNET host to contact in order
to move data toward the destination. The DNET router function uses the information

in the routing table as follows: Given a destination network, host, and process, returns

the next 'best' hop (network, host, process) to 'move' toward the destination.

Routing Table-

A hierarchical routing table that contains the next 'hop' from the local DNET

host/network in the direction of all other DNET networks. A minimal version of this

table is provided with the distribution copy of DNET. The table is currently

maintained manually by the local system administrator. In the future, this table will be
dynamically configured and maintained by the local DNET Network Status Server

after intiai startup has taken place. The routing table is named this.net and is located

in the dnethome directory.

Server Assignment Function-

Returns the name of an available server to a requesting Router, and updates the
Domain Server Table.

Server Instance Table(s.

Lists the current specific instances of a particular class of DNET Application Server.

Entries are made by the Master Server and cleared via tin_done0 calls from the
servers as they complete their tasks.

Server Registration Function-

This function is part of the Domain Server Process. It updates the Domain Server

table with information from Servers (e.g.'now in use').

64 DNET PROGRAMMERS GUIDE

DNET

PROGRAMMER" S REFERENCE

Version: 1.7

Print Date: 08/11/89 09"26:51

Module Name: prog.ref

Digital Analysis Corporation
1889 Preston White Drive

Reston, Virginia 22091

(703) 476-5900

_1¢h¢ 19_9, Digital Amly*i_ Corporation

DN_CDONE(3U) DNET DN_CDONE(3U)

NAME

dn_cdone - Free up user resources associated with a datagram communication endpoint.

SYNOPSIS

int dn_cdone0

DESCRIPTION

The dn cdone library routine performs the cleanup of any resources allocated by dn cinit(3U)
and/or dn chandler(3U).

Because the DNET Datagram Services are not implemented from the kernel, there is no
feasible method for cleaning up after the user application unless explicately told to do so by the

user application through the dn cdone library routine. Because many of the datagram
resources are stored in a shared user process, failure of the user applications to use the function

will result in wasted space and resources to the point that no applications will work.

SEE ALSO

dn_cinit(3U), dn_chandler(3U)

RETURN VALUE

A value of 0 will be returned on success, and a value of -1 will indicate an error.

ERRORS

The call fails if:

[D BADSTATE] The dn cinit function was not called previous to invoking this function.

Page 2 (08/10/89)

DN CHANDLER(3U) DNET DN_CHANDLER(3U)

NAME

dn_chandler - Prepare for the asynchronous receipt of datagrams.

SYNOPSIS

#include 'dnet.h"

lnt dn chandler(dhandle, d_alert sig, udg)
void (*dhandle)O;

int d_alert_sig;
struct udg *udg;

DESCRIPTION

The dn chandler library routine is used to provide a standard interface for the declaration of an
exception handling routine for receiving datagrams asynchronously.

The address of your exception routine (a standard C function) is passed along with the address

of a user datagram structure (udg). (Refer to the description of dn cread(3U) for a description

of the user datagram structure.) Upon the receipt of a datagram, the normal thread of activity
of your program will be interrupted while the datagram is placed in the user datagram structure

(The structure must be big enough). After successfully reading the datagram, the exception

routine is called. The address of the user datagram structure is passed as the only argument.

After returning from the exception routine, the normal thread of activity of your program is
resumed.

In UNIX, the second argument is the signal number used to inform the library routines that a

datagram is pending. The signal should not be used for any other purpose within your program.

Although little validatior is enforced upon the signal number chosen, it is suggested that either

SIGUSR1, or SIGUSR2 is used. This signal number is ignored in VMS implementations.

While executing within or on behalf of your exception routine in UNIX environments, further

indications of pending datagrams will be ignored. Before returning control to the normal
thread of activity within your program, though, the library routines will ensure that no

datagrams are pending. One signal then, may result m multiple invocations of the exception
handling routine before control is returned to the normal thread of activity. The VMS

environment provides for stacking of events which could have in similar results.

SEE ALSO

dn_cinit(3U), dn..cread(3U)

RETURN VALUE

A value of 0 will be returned on success, and a value of -I will indicate an error.

ERRORS

The call fails if:

[D_SYSERR]

[D_AEXIST]

[D_BADARG]

[D_BADSTATE]

[D_BADNM]

A system error has occurred. Check the global variable errno.

The process name that was requested to be bound to is already bound

by a process in the state associated with Listen DGMS Service.

The value of d_alert sig was not in the range: (1-32)

The calling process was not in a proper state to issue the dn chandler
m

function call. This error is identified by the dgms.

The process name as bound to in the dn_cinit call was registered at the
dgms as being null.

Page 3 (08/10/89)

DNCHANDLER(3U) DNET DNCHANDLER(3U)

CAVEATS

The user datagram structure that you provide must be big enough to hold the biggest datagram
that may arrive. The D_MAXDG constant may be used in combination with the dn salloc

library routine to create a structure large enough to hold phe largest allowed datagram. -

Page 4
(08/10/89)

DN_CINIT(3U) DNET DN CINIT(3U)

NAME

dn cinit - Create a datagram communications endpoint.

SYNOPSIS

int dn_cinit(pname)
char *pname; [* Optional specification of name to bind to */

DESCRIPTION

The dn cinit library routine establishes a datagram communications endpoint over which

datagrams may be received or sent.

If the endpoint is to be used for receipt of datagrams, a pname (process name) must be

specified. This pname is the character string equivalent of the TCP/IP port number. A

datagram is addressed via a network name, host name, and process name. The latter is used

once on the proper machine to determine which dnet datagram server to send the datagram to.
The dn_cinit routine will fail if the requested pname is already in use by another datagram
service.

An empty string may be passed as an argument but will result in an endpoint not capable of

receiving datagrams. The argument should, in all cases, point to a valid memory location to
avoid an unrecoverable run-time error condition.

SEE ALSO

dn_cdone(3U)

RETURN VALUE

A value of 0 will be retur ned on success, and a value of -1 will indicate an error.

ERRORS

The call fails if:

[D_SYSERR]

[D_NODNET]

[D_NOEXIST]

[D_NOEXIST]

[D_BADARG]

[D_AEXISTI

[D_NODGRSC]

[D_QUOTA]

A system error has occurred. Check the global variable errno.

The above two errors are indication that the dgms process is not

currently running.

An internal error has occurred where the dgms process could not access

this process.

An internal error has occurred.

Another datagram service has already established an endpoint bound to
the requested pname.

The dgms is temporarily out of all allocated resources. This error may

occur as a result of failure of datagram services to issue a dn cdone
successfully before ending.

Your quota limit has been exceeded. This should never occur with the

current implementation since multiple datagram communications

endpoints are not allowed.

Page 5 (08/10/89)

DN_CLOSE(3U) DNET DN_CLOSE(3U)

NAME

dn close - close a dnet communication channel
w

SYNOPSIS

int dn close(chan)
int chan;

DESCRIPTION

The dn_close user library routine closes the dnet communication channel: chart,

SEE ALSO

dn_open(3U)

RETURN VALUE

A value of 0 will be returned on success, and a value of -1 will indicate an error.

ERRORS

The call fails if:

[D SYSERR] A systera error has occurred. Check the global variable errno.

Page 6 (08/10/89)

DN_CREAD (3U) D NET D N_CREAD(3U)

NAME

dn_cread - read a datagram from a datagram communications endpoint.

SYNOPSIS

#include "dnet.h"

int dn_cread(dg, flag)
struct udg *dg;

int flag;

DESCRIPTION

The dn cread library routine provides a method for reading datagrams synchronously, or within
the normal thread of execution of your program. The dg argument should point to a user

datagram structure large enough to hold the incoming datagram.

The default action of the dn cread routine is to block until a datagram arrives, if an outstanding

datagram does not exist. Ift'his is not desirable, then the flag may contain the DG_F NOWAIT

bit set which will cause the dn cread to return in error if no datagram is outstanding.

The following is a description of the user datagram structure:

struct udg
{

struct node src;
struct node next;

struct node dest;

long maxhops; /* maximum number of hops before failure "1

int type;/* user defined type */

long buflen; /* length in bytes of buf */
chac bur[l];

};

struct node

{

char host [I_MAXHNAME];

char net [I_MAXNNAME];
char proc [I MAXPNAME];

};

The address of the user datagram is described in the dest node. The src and next nodes are set

by the library routines. The next node is of transient significance to the datagram service itself.

The src node may be examined by the server application to determine where the datagram
came from. This field is stamped by the library routines on the way out and overwrites anything

placed in it by the user routine.

All fields of the dest field should be filled in by the application before attempting to send the
datagram. No methods exist for sending broadcast datagrams of any form.

The maxhops field is used to avoid errors in the routing tables which might cause a datagram to

endlessly loop in attempt to get to it's destination node. This field is currently ignored as this

service has not yet been provided.

The type field is currently not used by the system, although the range of types: (0-31) should be

considered to be reserved types and should not be used. The type field is provided so that the

user may have a standard mechanism for categorizing datagrams in whatever fashion needed.

Page 7 (08/10/89)

DN_CREAD(3U) DNET DN CREAD(3U)

The buflen field specifies the number of bytes of data in the buf field. The buf field is not

limited to ASCII data, so special characters may be passed as part of the datagram.

The buf field hold the actual contents of the datagram. You may note that the buf field is

defined as being one character long. The purpose of this is to allow the datagram applications

to decide how long this fi:ld should be. This may be done by using the dn_salloc library routine
to define an appropriately sized buffer and return an address which may be placed in a udg

structure pointer variable.

SEE ALSO

dn_cinit(3U), dn cwrite(3U), dn chandler(3U), dn_cdone(3U)

RETURN VALUE

A value of -1 will indicate an error condition exists and the external variable dnet errno can be

checked to identify the error. A positive integer will represent the number of byte_ contained in

the message read.

ERRORS

The call fails if:

[D_SYSERR]

[DSHUTDOWN]

[D_NOMSG]

CAVEATS

A system error has occurred. Check the global variable errno.

A shutdown message was received from the dgms. An attempt clean up

v,ill be attempted by the library routine and the datagram

communications endpoint will be removed. The shutdown mechanism

is not currently implemented and so this message should not be
received.

The DG_FNOWAIT flag was set and there were no outstanding
datagrams.

If the ipc mechanism used to communicate between the library routines and the dgms process
fills up because of neglect, the dgms will begin discarding any newly received datagrams until

there exists enough buffer space in the ipc mechanism to hold the entire datagram. The only

indication of the datagram discarded as a result of this will be a terse error message in the dgms

processes error output. This, though, is not the only possible cause for loss of datagrams in this
unreliable datagram service.

The application must insure that the user datagram structure represents a buffer big enough to

hold the largest datagram that might be received. The dn salloc routine may be used with the
DN MAXDG constant to create the buffer necessary to hol'd the largest possible datagram.

Page 8 (08/10/89)

DN_CWRITE(3U) DNET DN_CWRITE(3U)

NAME

dn_cwrite - Send a datagram to a remote process.

SYNOPSIS

#include "dnet.h"

int dn_cwrite(dg, flags)
struct udg *dg;

int flags;

DESCRIPTION

The dn_cwrite function call facilitates the sending of the datagram pointed to by dg to a remote

process. Refer to the description of dn_cread(3U) for a discussion of the udg structure.

The flags argument does not currently have a use at the user level.

The datagram service is inherently unreliable. It is therefore the responsibility of the user

processes to insure receipt.

SEE ALSO

dn cread(3U)

RETURN VALUE

A value of 0 will be returned on success, and a value of -1 will indicate an error.

ERRORS

The call fails if:

[D_SYSERRI

[D_BADSTATE]

[D_SHUTDOWN]

[D_DGTBI

A system error has occurred. Check the global variable eta'no.

Vou have not successfully called dn_cinit yet.

A shutdown indication has been sent by the dgras process.

The buflen field was greater than the maximum allowable size of the

entire datagram structure. The entire datagram structure must be less
than D MAXDG.

Page 9 (08/10/89)

DN_DONE(3U) DNET DN_DONE(3U)

NAME

dn done - connection services server completion routine

SYNOPSIS

int dn done0

DESCRIPTION

This connection oriented user library routine should be called by all servers when they are

finished servicing a particular client. An IPC mechanism is opened to the master server that
tells the master server that this server is finished and ready for a new connection.

SEE ALSO

dn_getclient(3U)

RETURN VALUE

This routine returns the number of bytes written to the master server on success, and a value of

-1 is returned to indicate that an error occurred.

ERRORS

The call fails if:

[D_INTERN] The call was unable to inform the dms module that it was available.

Page 10 (08/10/89)

DN_GETCLIENT(3U) DNET DN GETCLIENT(3U)

NAME

dn_getclient- Waitforaconnectrequestfromaremoteclient.
SYNOPSIS

intdn_getclient(service,usrbuf,pusrbuflen)
char *service;

char *usrbuf;

int *pusrbuflen

DESCRIPTION

The dn_getclient user library routine is called by a permanent server when it wants to establish
a connection with a client which has requested its service.

The service argument points to a character string representing the name of your server. The
usrbuf and pusrhuflen arguments describe a buffer in which the connection request message

will be replaced which will contain the node identification of the requesting client.

If no requests are outstac ding, this routine will block until a connection request arrives.

SEE ALSO

dn_done(3U), dn_close(3U)

RETURN VALUE

A positive value will be returned on success representing the channel descriptor back towards

the requesting client. A value of -1 will indicate an error.

ERRORS

The call fails if:

[D SYSERR] A system error has occurred. Check the global variable errno.

Page 11 (08/10/89)

DN_INIT(3U) DNET DNINIT(3U)

NAME

dn init- initializeconnectionbaseddnetservices

SYNOPSIS

#include "dnet.h"

int dn_init0

DESCRIPTION

This internal library rout!ne is the dnet initialization function. It is called once after setting the
progname, dlog and debug values. This function loads the nyname and network tables into

memory.

RETURN VALUE

This routine returns a value of 0 on success and a value oi! -1 to indicate that an error occurred.

ERRORS

The call fails if:

[D_HOMELESS] The dnet_home environmental variable was not set.

CAVEATS

If dn cinit is called from within your program, this routine should not be used.

Page 12 (08/10/89)

DN_OPEN(3U) DNET DN OPEN(3U)

NAME

dn open - create a dnet communication channel

SYNOPSIS

int dn open(destnet, desthost, destproe)
char *destnet;

char *desthost;

char *destproc;

DESCRIPTION

The dn_open user library routine establishes a dnet communication channel between the calling
procedure and the specified server process on the specified host on the specified network. The

server process will have previously issued the dn..getclient routine. The function does not

return until the channel has been successfully established to the destination.

SEE ALSO

dn..write(3U), dn_read(3U), dn close(3U)

RETURN VALUE

A positive value will be r_turned on success representing the channel number of the established
communication channel. A value of -1 will indicate an error.

ERRORS

The call fails if:

[D_SYSERR] A system error has occurred. Check the global variable errno.

Page 13 (08/10/89)

DN_LOGIN(3U) DNET DN LOGIN(3U)

NAME

dn__login - verify username password for access to services on a node

SYNOPSIS

dn_log|n()

DESCRIPTION

This library routine is used by DNET client processes which need to.

RETURN VALUE

This routine returns a value of 0 on success and a value of -1 to indicate that an error occurred.

ERRORS

The call fails if:

CAVEATS

Page 14 (08/10/89)

DN_LOGIN_VERIFY(BU) DNET DN LOGINVERIFY(3U)

NAME

dn_login verify - verify u: ername password for access to services on a node

SYNOPSIS

dn login., verify()

DESCRIPTION

This library routine is used by DNET server processes which need to verify that the current user
has access privileges on the local DNET host.

RETURN VALUE

This routine returns a value of 0 on success and a value o,."-1 to indicatc that an error occurred.

ERRORS

The call fails if:

CAVEATS

Page 15 (08/10/89)

DN_READ(3U) DNET DN_READ(3U)

NAME

dn read - read data from a dnet communication channel

SYNOPSIS

int dn_read(channel, buf, nbytes)

int channel;/* pointer to channel created with dn_open */
char *buf;

lnt nbytes;/* Maximum number of bytes to read */

DESCRIPTION

The dn read user library routine allows data to be read from a channel created previously with
the dn_getclient(3U) or dn_open(3U) library routines.

SEE ALSO

dn_write(3U)

RETURN VALUE

A positive value representing the number of bytes read will be returned on success. A value of
-1 will indicate an error.

ERRORS

The call fails if:

[D_SYSERR] A system error has occurred. Check the global variable errno.

Page 16 (08/10/89)

DN_WRITE(3U) DNET DN_WRITE(3U)

NAME

dn write - write data on a dnet communication channel

SYNOPSIS

int tin_write(channel, bu; nbytes)
int channel;

char *buf;

int nbytes;

DESCRIPTION

The dn_write user library routine writes nbytes bytes from buf onto the channel: channel.

SEE ALSO

dn_open(3U), dn_getclient(3U), dn_read(3U)

RETURN VALUE

A value of 0 will indicate success, and a value of -1 will indicate an error.

ERRORS

The call fails if:

[D_SGXXXXXXXXX KXX

DNET

ADMINISTRATOR" S GUIDE

Version: 1.31

Print Date: 09/28/89 10-.$8.'01
Module Name:. admin.pi

Digital Analysb Cerporadoa
1889 Preston White Drive

itestoa, VJrsJ_ 22091
(703) 4765900

cowr_ _ee. c_t,d Am_,v co,W,w_

CONTENTS

1. DNET Administration Overview 1

1.1 Introduction 1

1.2 Overall Network Concerns 1

1.3 Local Host Administration 1

2. Distribution of DNET Software 2

2.1 Modification of target machine database - tbl_db 2

22 Creating the distribution Ides 3

2.3 Moving DNET Source Files to Target Machine 3

2.4 Generating the target Ides 3
2.4.1 UNIX Machines 3

2.4.2 VAX Machines 4

2.5 Use of ptar to pack/unpack f'des 4

2.6 Making the Target Ex_utables for DNET on the local machine 4
2.6.1 UNIX 4

2.6.2 VMS 4

3. Initial Conf'_guration of Local (non-gateway) DNET Node 6

3.1 Environment & Special Permissions 6
3.1.1 General 6

3.1.2 UNIX 6

3.1.3 VMS 7

3.2 DNET Tables & Local Host 'Service' F'des 11

3.2.1 Services Fdes 11

32..2 tbls.myname - Local Host Name(s) f'de 12

3.3 Addingfl_le_odifying Servers at a DNET host 12

3.3.1 Types of Servers 12
3.32 Control of Servers 12

3.3.3 lqnmber and Types of Servers 12

33.4 Prespawning of Servers 13
3.3.5 Maximum Number of Servers 14

3.3.6 Adding/Removing Servers 14

3.4 Datagram Service Administration 14

3.4.1 Normal Operation 14
3.4.2 The Static Backbone Network 14

3.5 DNET Routing 14

3.5.1 Router Operation 14
3.5.2 Routin8 Example 15
3.5.3 Routing Table Updates 16

3.5.4 Future Enhancement of Router Operation 16

4. Gateway Administration 17

4.1 PVC Relays 17

4.2 Relay of Datagrams 18

5. DNET Start-up on an Individual DNET Host 19
5.1 UNIX 19

5.1.1 Individuai Scripts 19
5.2 VAX VMS 19

5.2.1 Individual Scripts 19

6. DNET Shutdown 21

6.1 UNIX 21

6.2 VAX-VMS , . . 21

-i-

7. Network Startup 22

8. Network Administration Operations 23
8.1 Network Maintenance 23

8.1.1 AddinganaddifionalDNETHostSiLc 23

8.12. Deactivating an mdsfing DNET Host Site 23

8.13 Adding an additional DNET Network 23

8.1.4 Deactivating an existing DNET Network 23

9. Testing a DNET Installation 24

10. DNET Initial Demonstration Network 25

10.1 Network Topology 25
10.2 Information on DNET nodes 27

10.3 Starting up (a subset of) the Demonstration Network 27

11. Asynchronous DECnetconnectionfrom d a c v a • to SPANEr 29

11.1 Starting the Link 29

112. Stopping the asynch DECnet link 29

12. DNET Network Utility Commands 31

12.1 Examining The Status of DNET 31

122. Testing if DNET is alive 31

113 Obtaining Status of DNET Servers 32

12.4 Underlying Processes for Network Status 34

12.4.1 Update Local Routing Table 34

13. DNET Errors 35

14. DNET Security 37

14.1 _on Security 37

14.2 User Security 37
14.2.1 UNIX 37

14.2.2 VMS 37

14.3 F'de Security 37

15. Electronic Mail Administration 38

16. Library and Program Pool Administration 39

17. DNET Performance Monitoring 40
17.1 General 40

173. DNET Performance Test Application - dptc 40
17.3 VMS Host vs UNIX Host 40

17.4 DECnet vs TCP/IP 40

18. Glossary 41

-il.

1. DNET Administration Overview

1.1 Introduction

Administration of DNET is divided into two general categories. These categories relate to 1) overall
DNET network issues and 2) local DNET node administration

1.2 Overall Network Concerns

The following are the major 'global' concerns in the administration of DNET.

1. Adm_tration of Underlying Networks

2.

Since DNET operates as a meta-network or a network of networks, its operation is highly
dependent on the intergrity of the underlying networks such as TCP/IP and DECrier. These
networks are maintained in their ordinary fashion; under normal c/rcumstances so long as the
underlying network(s) are operational it should be possible for DNET to use these network(s)
for its purposes. The behavior of DNET may be affected by any or all of the following factors:

1. Changes in Local Operating System

2. Upgrades or changes in local network interfaces

DNET Network Map

.

The master 'copy' of the DNET network map is maintained at -- TO BE DETERMINED This
factor influences, at a minimum, the contents of DNET routing tables.

Consistency of Underlying Network Names in DNET Tables

4. Routing Strategies in DNET

Routing tables are currently 'static'. They are loaded when the network is started and are not
updated while the network is operating. DNET mechanisms could be used to may these tables
dynamic in the future.

1.3 Local Host Administration

Once DNET software has been installed on a particular computer, administration of the local DNET
node generally involves the specification of the number and types of DNET application servers which
will be allowed to operate on the local node, adjustment of quotas and permissions as necessary, and
administration of the DNET routing tables and mail.

DNET Administration Overview 1

2, Distribution of DNET Software

2.1 Modification of target machine database - tbls.db

If the target machine is 'new' to DNET, it is convenient to add it to the DNET environment 'data base'
prior to makin 8 a distribution copy. This is done by editing the 'master' copy of the Fde tbis.db in the

sccs src directory on 'stubby' as follows:

1. cd Sdnet home

2. cd ../sees src

3. get -e s.tbls.db

4. locate a convenient entry which is similar to the target machine

NOTE: Alternatively, one of the default machine entries, Imddflt, sysv_dflt,mvax dflt, or
vax dflt may be used during the pestmove operation described below to obtain a default
context,ration.

An examples for a UNIX host is shown below.

IUF_NI- NASA GSFC, Greenbelt, MD
iuesnl Jenvnmne JDNSUN4B
inesnl [m.VuameI#myuet myhmt
iuesnl Jmyuame Jstarnet iuesnl
iuesnl [net [#destuet nathost relay nextprotocol
iuesnl Jnet Jstarnet NULL NULL tcp
inesnl InetJ dnettl dftnl¢
tuemllnet Ispuet dftntc
ineul ImsJnittcp Idechod
Iml Imslalttcp]dramcd
tue_S Im_ttcp Idmpd
iuesnl]msinlttcp Jdiosind
iuesnl [msimdttcpJdmafld
iuesnl JmsinJttep Jdndd

dr_ytdtcp
drela_dtcp
dechod 1 1 1
drezecd 1 1 1

dmpd 1 l 1
dlo_ad 1 1 1
dmalld 0 1 1
dsu:id 0 3 3

An example entry for a VAX which is also a DNET gateway machlnc is shown below:.

2 DNET ADMINISTRATORS GUIDE

.

DPrNIC

dl_k Jmvmme IDND_C

Jnet J#_t_t _ost r_y

lstam NU_

m_lec Jdechod

dl'tsdc mslnltdec [dloginddlogind
dftnJc mshtitdec Jdmafld
dflaJc msinitdec Jdndd
dftnk [mshaittcp [drela_,td

- N_A GSFC, Greenbelt, MD

NULL dec

drelaydt dec
NULL tcp
dr_vdtl 1 1
dechod 1 2
dr_ecA 1 1

dfftpd 1 1
0 1 I

dmaiid 0 1
dndd 0 3

drelaytd 1 1

copy this entry to the bottom of the f'de and change the machine name to that of the target in all
pertinent locatlons.

2.2 Creating the distribution files

The archival SCCS copy of the DNET software is found on the master DNET host, currently dac3b2,
an AT&T 3B2-600 located at DAC. A master copy of the DNET software may be obtained at any time
from this machine and placed in a form for distribution to any target machine. The steps to generate
the distn'bution copy are as follows:

1. login to stubby or dac3b2

2. cA/nmt/comm/dnet/bin - stubby

/usr/uasa/duet/blu - dac3b2

makemov¢

At the completion of the makemove operation, the directory /tmp/dnet_move will contain the
followin8 'ptar' & other fde_

dnet.ptm-
pvc.ptar
app.ptm"
coILlmo_JM[_r

d_ptar
ptar.ptar
pmtmove
polUitO_v/ill8

dream

Further details on makemove are provided in the DNET Administrative Reference Manual.

2.3 Moving DNET Source Files to Target Machine

The fdes generated by 'makemove' and placed in/trap/drier move should be moved to the target
machine usin8 FTP and/or copy depending on the network(s) involved.

Distribution of DNET Software 3

The target directory for these f'des will differ depending on the target machine:

PTAR Directory

1. UNIX hosts -/tmp/daet_n_ove

2. VAX hosts - dnet_home:[.dnet] where dnet_home is an arbitrary path

2.4 Generating the target files

24.1 UNIX Machines

1. Transfer the 'ptar' f'des,'postmove', and pestmove.vms to the target machine

2. cd dm_ home/bin

3. postmove-hnXXX da_ home

where

XXX Is unme of thls local host &

(or a 4etaelt name chela from bsd_dllt, sysv..dr, t, mvu_dtlt, or vax_dllt)

daet home Is aa arb/trar3, pa_

24.2 VAX Machines

The procedure for VAX machines differs only slightly from that on UNIX hosts. The following steps

should be performed:

1. Transfer the 'ptaf f'des to the target machine and place the Ides in the dnet home directory

2. login to the target machine

3. cA dnet home

4. @pomnove.vms

5. Enter the name of the local machine when prompted

(or a default name chosen from bsd dflt, sysv_dflt, mvax dflt, or vax_dflt)

6. Wait for postmove to complete unpacking and distn'buti_ the/"des

2.5 Use of ptar to pack/unpack files

The lmU"program allows the packing/unpacking of f'des in a generic format for transfer to DNET
target mar.hines. Ordinarily, pcstmove automatically extracts flies from the ptar f'des, however this
extraction my be performed manually, if necessary.

ptar -x flk.ptar

2.6 Making the Target Executables for DNET on the local machine

There are a number of 'make' fdes which are included with the DNET distribution package. The

postmeve operation automatically places these f'des in the appropriate directories on the target
machine and updates the necessary environment variables within the f'des to the target computer.
Thmt, typically one need only start the 'make' procedures in order to generate a current copy of the
DNET executable f'des. The specific procedures are outlined in the followin8 sections.

4 DNET ADMINISTRATORS GUIDE

26.1 UN/X

o

2.

3.

4.

If this is a first time immdtation on this UNIX host, follow steps above for setting environment
variable_ etc.

cd $dmt home

make

wait for the make process to complete

26.2 VMS

1. If this is a first time installation on this VAX, follow steps above for setting environment
variables, etc.

2. cd daet home
i

3. The exact make f'de used will depend on the VAX environment as follows:

1. dacvax (or other MicroVAX with VMS and WoUongong TCP/IP Interface)

make.dr

2. NASA Vaxea with Excelan Interface (or other VAX with VMS and Excelan TCP/IP
Interface)

make.dn

4. Wait for the make procedure to complete

DIMrllmtloa of DNET Software $

3. Initial Configuration of Local (non-gateway) DNET Node

This section describes how to configure a Local DNET node which is not a gateway node. Special
considerations for gateway nodes are described in a later section.

3.1 Environment & Special Permissions

3.1.1 General

Environment Variables/Logical Names

The following 'environment' variables are used by all DNET software.

1. dnet_home - the 'home' directory of the DNET software

2. dnet gateway = I if machine is a DNET gateway

3. path to dnet_bln - the directory containing the DNET executables

4. dnetdebug - this flag controls the generation of various debugging 'log' fdes; it should ordinarily
be set to 0. It should be set to 1 if the debug 'log' option is desired (see DNET
PROGRAMMER's GUIDE)

While these general requirements apply to both the UNIX and VMS environments, the specific details
differ considerably between the two operating systems. The specifics are covered in the following
sections.

3.1.2 UNIX

The environment variables may be set in UNIX by modification of the user .profile fde found in each
users home directory.

Additions to .Wefile for DNET:

Bourne shell

daet home =/__/_/drier; export dnet_home

PATH = existing path spea;/dnet_home/bin

C shell

• $dnet home/dnioQin.sh

setenvduethome/._/_/drier

PATH =existing path spees;/dnet_home/bin

source Sdnet home/dnlogJn.csh

6 DNET ADMINISTRATORS GUIDE

3.1.3 VMS

Specif'_Ltion of the DNET 'environment' is somewhat more complex for VAX/VMS systems. The
correct operation of DNET requires that certain VMS IMvilqea and Quotas be set in addition to the
usual environment variables.

3.1.3.1 General Enviroment Variables. Logical Names

The general DNET environment variables are set in VMS using The iogln.eom f'de in the VAX login
directory should contain the following lines. The entries defme logical names in the 'GROUP' table.

The values are for the dacvax machine

$ ddlue/group duet home '_lislO:[s_sO.duet.d_]"
$ dellue/group duet-bin '_lisH:fsysO.dnet.dnet.bin]"
$ define/group dnetgateway 1

For IAF ud DFTNIC these definitions should be:

$ define/group dnet_hom¢ 'cldata:[dnet.dnet]"
$ define/group dnetbin 'ddata: [dnet.dnet.blul"
$ define/group dnet_gatev_y I

If the dnet_debug option is desired, it should be set in a 'transient' fashion in the 'JOB' table as follows:

$ define/job dnet_debu8 1

Ordinarily, most of the VMS environment can be set 'automatically' using script ides provided with the
distribution. These scripts are executed as part of the usual 'login' procedure. Only a short 'machine
specif_ change should usually be required in the loOn.corn fde. This change is accomplished as
follows:

1. cd sysSlogin

2. Edit the f'de Iogin.com to add the following entries:

$

$! DNET Specific Environment
$ set prec/priv--grpnm
$ ddtae/gronp drier_heine Sdlskl:[sys0.dnet.dnet]
$! rum dneaoOn JerJpt

$ @drier ..home:dnlogin.dv
$

.

NOTE: The specifications for dnet home & dnlegin are machine specific. The example given
for dnet home for the DAC Microv_dI, dacvax.

The corresponding version of dnloOn.u is dnloOn.dv which is located in the dnet home
directory. The contents of dnlogin.dv are shown below:. All dnlogin.xx Ides are included w_th the

DNET source code listings.

Initial Configuration of Local (non-gateway) DNET Node 7

StloKimscriptfor DNET
$
S2Ioeiad
S
$ DNET DEBUG = = "0"

$ define__netinet Sdiskh[net.wooLnetdbt.indudemetinet]

$ define wooi_sys $diskl:[net.wooi_aetdistJndude.sys]

_ ddlne/|ob dnet_pvcdlr Sdisld:[sysO.d_t.dnet.pvcdlr]

S derme/job duet..dipUrSdjskt:[s_sO.dnet.duet.dgdJr]
$ derme/Job duet commou Sdlskl:[s_JO.duet.duet.commou]
$ define/Job duet-appdh- Sdiskl:[sysO.dnet.dnet.appdlr]
$! define/Job dnetdebug 1
$ set proc/priv =grpnam
$ deflne/sroup dnethome $dlskl:[sys0.dnet.dnet]
$ define/group drier_mail $diskl:[sysO.dnet.dnet.mail]
$ define/group dnet_bin $disld:[sys0.dneLdneLbln]
$ define/group dnet_gateway 1

S
$ define c$1nclude drier_common, dnet pvcdir, dnet..dgdir, wool_sys, -
wool netinet

$ _ vaxcSlndude cSinclude, sys$11brary
$
$ assign $diskl:[user-netJlbnet.dacnet] TABLES
S
$! Clients

S
$ decho = = _$dnet bin:decho.e_"
$ ddechoc = = w$dn_ bin:ddechoc.exe'
$ dechon - = "$ dnet _m:-dechouze"
$drexec == "$dnet _oin:drexec.e_
S drop = = "$d_t_-bln:dmp.e_
S dlos_ = = "$dnet_t_:d__
$ dmskm = = "$ dnet bin:dmskiIl.ex_
Sdnetstat= = '$ dne_ bin:dnctmt.exe"
$ dncl == "Sdnet bin:dnd.ex_
$ dmafl = = "$ dnet bln:dmaII.exe"

8 DNET ADMINISTRATORS GUIDE

$
$!developmentonly
S
$!delmbx== 'S$diskl:[odnet]delmbLexe'
$shack= = "$ dnet b/u:s_'
$1 to o == "$dnet bind to o_xe"
S _-= = "Sduet b_:_
$ ddechoc = = "5_lnet bis:ddechoc.exe"
$
$I aliases
$
$ el = = 'show logical"
$ ss = = 'Jew symbol"
Sls == "dip
$I == 'dip
$ cd = = "set deP

$ pwd = = "sbowdeP
Svi == 'ed'

$view== " ImLd..anlf
$ lie ffi= "show system"
$ ns = = "netstat -a*
$ more -- = "tTpe/page"
$ clear = " "@clear"

$
$
$

U = = "$ SdJskl:[user_etJllmet.paul]ll_z"
ptar = = "5$dlskl:[sysOAneU_n]ptar_e"

$od = = "$ Sdiskl:[user_._ibnet.paul]od.exe '
$ wc ffi= "$ $dlskl:[user_et.libncLimul]wcJ_e'
$

$ set proc/pflv = sysnam
$
$ cd dnet home

$

VMS has an extensive set of privileges which control the various operations which a user or process
may perform on the VAX. The following privileges are required for DNET operation.

1. SYSNAM

This privilege is required for DECnet network operations; DNET servers will not operate
without tl_ privilege

2. GRPNAM

This allows logical names to be placed in the 'GROUP' table; This table is a convenient location
for the DNET environment variables.

3. GROUP

4. NETMBX

Initial Configuration of Local (non-gateway) DNET Node 9

.

creation of 'network' mailboxes

TMI'MBX

Allows creation of 'temporary' mailboz_

These privileges need to be 'activated' in order to be used.
directory should contain the following lines:

$ m _lpriv=grpam
$ set pro#priv=sysum

The dnlegin.xxa f'de in the VAX login

3.1.3.3 _otas

VMS defines a large number of resource controls known as 'quotas'. Certain of these quotas must be
set to other than their default values in order to successfully operate DNET. An annotated list of the
pertinent quotas is given below. The following section describes how to change these quotas.

1. Byte Count Limit BYTLM - 60000

quota determines the temporary storage available to DNET for mailboxes. Each active
DNET process (indudlng Master Servers and application servers) requires a minimum of 2
mailboxes for its operation.

Approxlmte Formula for Determing appropriate Byte Count Limit

#of Entries in tbis.msinit (dec & tcp) ffiAS

2 * (DGMS + DIMS + AS) * 2000

2. Job Table Quota

JT Quota-

This value controls the amount of information which DNET can place in the JOB Table

3. Paging F'de Quota - 30,000

This quota is used as an adjunct to swap operations in VMS and needs to be increased as the
number of DNET processes increased.

4. AST

Controla the number of simultaneous AST operations allowed by DNET; this value will probably
need to be increased in gateways where a large number of DNET relay processes are in use.

5. Subprocess Quota - PRCLM - 30

This Quota controls the number of subprocesses which may operate under DNET. The exact
number will undoubtedly be controlled by the local system adminstrator. Value should match
that of MAXDETACH.

6. Open F'de Limit - FILLM - 300

10 DNET ADMINISTRATORS GUIDE

7. Max _ Processes.MAXDETACH -30

This value controls the number of detached processes which can be started by DNET. This

quota is important when DNET is started in 'stand-alone' or detached mode. Value should
match that of PRCLM.

3.I.3.4 Settins/ Chansing Quotas

The procedure for changing quotas on the VAX is as follows;

L Login as 'SYSTEM'

2. cA sysSsystem

3. Run Authorize

4. UAF>

modify dnet/prdm=30000

etc.

The command show/full dnet may be used to list all of the quotas while in 'AUTHORIZE'

3.2 DNET Tables & Local Host 'Service' Files

Several F'des (& Tables) must be modified for the local DNET node.

1. Network 'Services' F'de

2. Initial Local Version of DNET Routing Table - tbls.net

3. User Alias Table - tbls.myaan_

4. Master Server Ink Table - tbls.msinittcp and/or tbis.mslnitdec

5. Connection Lock Table (for Datagram Backbone Network - not yet implemented)

Modification of each of these f'des is discussed below:.

3.21 Services Files

Service Flies on the Local Machine must be modified to support DNET.

1. UNIX

The standard f'de

/e_/se_k_

must contain the followingentries:

_;279 dms/tcp # DNET FVC Master Server

5279 dgsudp/udp # DNET UDP Datagram Server

Initial Configuration of Local (nomdlateway) DNET Node U

These entries can only be changed by 'root' and need be made only when DNET is f'trst installed
on the UNIX machine.

2. VAX/VMS - No special changes are required to register DNET servers on DECnet.

3.22 tbls.myname - Local Host Name(s) file

The fde ti_.myaame found in the doethome directory contains one or more names for the local host.
This f'de allows "self-identification" of the local host by DNET software and is used by the routing
function.

An example of the 'tbls.myname' f'de is shown below:.

DNET Local 'mylmm_ Table

Nmm N_work

dat'vn dlldtl

3.3 Adding/Deleting/Modifying Servers at a DNET host

3.3.1 Types of Servers

There are two application server types defined within DNET:

. DNET Application Servers - called by client processes, these service providers include a DNET
Basic I/O package. For all these services (F'de Transfer, Network Command Server, other
application servers) there is a process which spawns copies of them and assigns the copies to
clients on request. This controlling process is the "DNET Master Server'.

2. Other Servers (user defined, etc.) spawned via DNET network command server
(net_com_serv) these servers do not contain the DNET Basic I/0 Package. They depend on the
network command server to interface with DNET.

3.3.2 Control of Servers

The control of DNET servers which require streaming service is under the control of the DNET
Master Server at each DNET host. These servers may be either prespawned or spawned on demand
depending on the type of host and local system considerations.

Bidirectional counectionlessservice is also available to these servers if they register with the Datagram
Master Server. Details of counectionless operations are provided in a later section.

3.3.3 Number and Types of Servers

The system administrator on a particular DNET host controls the number and types of DNET servers
which operate on that host.

12 DNET ADMINISTRATORS GUIDE

The number and types of servers are determined by the DNET Master Server Table lnh file:

This is a 'flat' ASCII f'de. Entries in the file appear on separate rows and have the format as follows:

DNET Mast_ SwvmrI_ TabM

Sm_r'QIDt ImalltNmm #Prmpmmml Max# lair#

dKkod _ 1 | 3

dramc dNme 1 1 1

dmUdd dmtald 1 1 1

dlldd daddl 1 II $

_ t tl s
/ l 1| 1

The number of prespawned servers is specified in column 3.

The Maximum (permissible) number of servers of this type is specified in column 4

Column 5 contains the number of servers to be started when DNET is first started

Servers may be added or deleted by editing this f'de (DNET admin privileges required)

Further discussion of the significance of these entries is provided in the following sections.

A separate Master Server lnit F'de is required for each protocol connection at a DNET host. Thus, at a
VAX which is connected to both a TCP/IP and a DECnet Network, there must be two such tables

tbls.mslnlttcp and tbls.msinltdec.

3.3.4 Prespa_ of Servers

In order to improve the efficiency of response for DNET service requests on VAX machines, certain

DNET servers may be 'prespawned' prior to service requests.

The number and type of prespawned servers is specified in the Master Server Init Table F'de described

in the preceding section.

Possible algorithms for spawning and assignment are:

1. At network start up, spawn a number of copies of the servers, according to the contents of the

DNET Master Server lait Table keeping their process id's for later use in forming the process

names to give to clients. After allocating a server to a client, spawn another to replace it.

2. For less frequently used services- Spawn only when a client requests a server. This is the
Transient Server.

3. For very frequently used services- Spawn the maximum number desired and have servers listen

for the next client when they complete their service for a client, and at the same time notify the

Master that they are ready for assignment.

Initial Coufiguratioa of Local (non-gateway) DNET Node t3

3.3.5 Maximum Number of Servers

This parameter controls the maximum number of ._imnltan,-OUS copies of a particular server which are
allowed at the local host. This number can be adjusted by the system administrator according to

conditions on the local system.

3.3.6 Adding]Removing Servers

The following steps are used to control DNET application servers.

1. Edit the Master Server [nit Table (tbis.mslaittep &/or tbis.msinltdec) found in the directory
daet home

2. Scroll to desired row of table and type in the new entry according to the format described below.

3. Write the table back, overwriting the existing table.

4. The new version of the Master Server lnit Table will be read automatically when the Master
Server is started.

3.4 Datagram Service Administration

3.4.1 Normal Operation

Under normal circumstances, the datagram service requires no action on the part of the system
administrator.

3. 4.2 The Static Backbone Network

This feature is currently not implemented in DNET.

3.4.21 Adding Elements

3.4.22 Removing Elements

3.5 DNET Routing

This section deacribcs the operation and control of routing within DNET from the perspective of the

local system administrator.

3.5.1 Router Operation

The paths to hem in the local network are direct connections via usual local network mechanisms. For

paths to hosts in other networks a dynamic router is used. A hierarchical routing table is used to
determine the next host to which a PVC connection request or a connectionless datagram should be
forwarded to 'move' toward the final destination.

A typical routln 8 table is shown below:.

14 DNI_rADMINISrRATOi_ GUIDg

DNETLoeml_ Table

Nm (Galway) Hint Nut Proems Protocol

U _evax dn/a_d
Nit X Hoa Y _ .dp

+

The four columns in the routing table contain the following information

1. Destination Network

2. Next Host (in hierarchical path to destination net)

3. Next DNET Process (always a relay except for last hop)

4. Local Datagram protocol used to make next hop

3.5.2 Routing Example

The route generated for a typical datagram is shown in the following diagram:

In this example client CLX on DNET host D2 wishes to conduct a session with server SVX on
DNET host T2.

Initial Configuration of Local (non-gateway) DNET Node 15

The router on host D2 has the following routing table available:

DNE'r Local Rmmtimll"l'_b_. Host D2

D_tlmaflom Na N¢mt(Gatmmy) Hwl Nat Pmcma Dmagrmu Progoeoi

damtl NULL NULL .,dis

spam_ dmgv_
starlit dacvmx

.,dp
drlh134d udp

The router on host 134 has the following routing table available:

DNgr La_ _Lq _. (_) H_ D4
' Datimittom Nei Neat (Gat_ay) Host N_I Ptoee_ Datagram Protoeol

Ispa mr NULL NULL dae

d_ttl daeru drt_Cd _lp

mtma _ ckla_ dae

o

3.5.3 Routing Table Updates

Initially, routing table updates will be handed in a manual fashion. Examination of a method for
automatic updates for these tables will is a topic for further expansion of DNET as discussed in the
next section.

3.5.4 Future Enhancement of Router Operation

In the future the router may be enhanced to include searching for alternate paths and servers if the
standard search fails to satisfy the request. The second search could extend into other networks in
requests for generic servers that need not be executed in a specific network or host. Extended searches
will provide automatic alternate routing, load sharing, and backup services for use when failures in
hardware or software reduce the availability of facifities. The entries in the routing table are updated
by exchange of connectionless datagrams between DNET gateways and individual DNET hosts.

16 DNET ADMINISTRATORS GUIDE

4. Gateway Administration

DNET gateways are similar to ordinary DNET hosts but, in addition, they have connections to at least
two underlying network (protocols) supported by DNET. There is a PVC Master Server and a pair of
per-protocol darns'am servers for each of these protocols and an a pre-spccified number of inter-
protocol PVC 'relay' processes. The exact number of the latter is indicated in the appropriate Master
Server Ink Table.

4.1 PVC Relays

These relay processes are named according to the Master server with which they are associated and for
the protocol pair for which they provide conversion service. The general naming convention is

drdayXY_n where

X is n single letter representing the protocol of the
associated master server

Y Is a letter representing the protocol to which
conversion must be made.

n IS the nth Instance of this relay; used to provide n unique name
for the relay server

Thus for a typical DNET TCP/IP -DECnet gateway machine the 1st instance of a relay associated
with the TCP/IP master server (dmstcp) and providing conversion to DECnet is named:

drda d_t

Similarly the 3rd instance of a relay associated with the DECnet master server (dmsdec) and
converting to the TCP/IP protocol is named:

drelaydt_3

The PVC Master Server Init Table for a Typical Gateway is shown in the following diagram:

Gateway Administration 17

DNET MaUer Sav_" I_ 'lbl_. 'l_p4_ C_,mow_ M_w,.,

S-._._.'l_lm ImqtNm,-- #Pmapmm_ Mu# lair#

decked 1 8 3

dfltpd d_pd 1 1 1

dren_ drmo¢ 1 1 1

dm_d d_ 1 1 1

dm,.id dn¢idl 1 10 2

dlosiml dlosJ_ 1 3 1

dmalld dmafld 1 10 1

drd,r_ drd_lt 1 le S
dr_d drda_J 1 10 S

4.2 Relay of Datagrams

Routing of datagrams is accomplished by the Datagram Master Server at each DNET node.
routing information for datagrams is included as the last

The

18 DNET ADMINISTRATORS GUIDE

5. DNET Start-up on an Individual DNET Host

Three Administrative 'Script' Programs are used to control DNET on a local host machine:

1. dastart

2. dnstop

3. dnadmin

The sequence of operations necessary to 'start' DNET on a local DNET host is given below. The steps
vary in their details according to the type of machine/operating system.

5.1 UNIX

1. DNET Software is loaded onto two or more hosts and at least one DNET gateway.

2. The local Master Server Ink Table, Host Alias Table, DNET Routing Table are checked for
accuracy and edited as necessary

3. The command script

dnstart

is invoked in order to start the necessary processes on the local host. (NOTE: This script is
added to the reboot procedure for the DNET host machines.) Once this script is invoked, the
DNET Master Server Process and the protocol specific DNET datagram servers becomes
operational as a DNET Well Known Servers.

4. Each DNET Master Server then spawns (or initializes in anticipation of spawning) the servers
indicated in its Master Server lnit Table. This produces the initial set of servers (F'de Transfer,
Remote Login, Command Language Processor, etc).

5.1.1 Individual Scripts

dnstart invokes three other scripts to start the several DNET components. The components and
associated scripts are:

1. Datagram Service Script - strdsms

2. PVC Service Script - sWpvc

3. Network Status Service Script - strstat

5.2 VAX VMS

1. cd dnet home

2. @dnstart

5.21 Individual Scripts

DNET Sta_-up on an Individual DNET Host 19

I. Datagram Service Script . strd_ns.com

2. PVC Service Script - strpvc.com

3. Network Status Serv/ce Script . strstaLcom

20 DNET ADMINISTRATORS GUIDE

6. DNET Shutdown

DNET shutdown is done by the following;

1. The Administrative Server sends a Datagram to each Domain Server requesting that they
shutdown all activity. This means no further service requests will be processed and all active
server processes, as indicated in the Domain Server Table, will be sent "ABORT" signals.

The Administrative Server may then be terminated, or left in an idle state until the nex_ network
start-up.

NOTE: If the local node is a DNET Gateway, shutdown may adversely affect the operation of DNET.

6.1 UNIX

1. cd Sdnet home
m

2. cdbin

3. dnstop

6.2 VAX - VMS

1. cd tinct home

2. @¢l_smp

3. Wait for "stopping"messages to complete

DNET Shutdown 21

7. Network Startup

There is no global activation procedure for DNET. Since DNET is a meta-network, the integrity of the
DNET network is dependent on the following,

1. Required Hosts are Operational

2. Underlying Networks are Operational

3. DNET Processes Operating at all nodes required to reach a particular destination - i.e. local
administrators must have activated DNET at each of these nodes

If these conditions are met, DNET should operate, within the limitations of loading on each of the
nodes.

The daetstat function may be used to examine the integrity of the network, if required (see section
below).

22 DNET ADMINISTRATORS GUIDE

8. Network Administration Operations

The following administrative operations are possible for the network as a whole.

- Modify DNET configaration

- Add/Delete Underlying Networks

- Add/Delete Local Hosts

- Examine and Modify Administrative Tables

8.1 Network Maintenance

8.1.1 Adding an addin'onal DNET Host Site

This is a local operation.

8"1.2 Deactivating an existing DNET Host Site

This is a local operation.

8.1.3 Adding an additionalDNET Network

1. One or more hosts in new network must have DNET software installed and operational

2. DNET Gateway(s) into the new network must be identified, have DNET software installed, and
be operational

3. Routing Tables must be updated to include new destination network and appropriate gateway(s)

8"1. 4 Deactivating an existing DNET Network

If a network is to be removed from DNET, this can be accomplished by deleting this network from the
routing tables.

Network Administration Operations 23

9. Testing a DNET Installation

This section descn'bes the functional testing of DI_ operation at a local node.

1. If you have not done so already, edit the appropriate Master Server lnit Tables for this node.

Make sure that at least one echo server, dechod, is spec/fiod for this node.

2. Start DNET on the local node following the procedure described in an earlier section

3. Run dee.he and attempt to contact the local node following the instructions in the DNET User's

Guide. If you are able to run the echo program, the PVC service is probably ok at this node

4. At the shell prompt, type dnetstat. If a short form list of the DNET servers on this node is

printed, most other local DNET functions are probably working norma/ly.

5. If another node on the local net is operational, try using dnetstat to 'ping" this node by entering

dnetstat network host -p

If this operation is successful, the DNET connectionless service is also probably functioning

properly.

24 DNET ADMINISTRATORS GUIDE

10. DNET Initlal Demonstration Network

10.1 Network Topology

The logical arrangement of the initial DNET demonstration network k shown in the following
diagram:

DNET initial Demonstration Network 25

IPAC

(JPL)

DAC

3B2

(_)

©
TCP/W- gtlm_

DAC LAN

MigroV,

(

IMaI-_p_DEC_

_C

ma3

A_

DOS-_

iat

ly

/

STtTCP/WL_,N

M

Pilot Network for DNET

Additional details on these sites is provided in the following table:

26 DNET ADMINISTRATORS GUIDE

Tenatlve DNET Wide Area Demonstration Sites

Site Network(s) Computers

DAC DECnet, TCP/IP both Etheruet MlcroVAX, 3B2, HP, PCs

NSSDC- GSFC DECnet(SPAN) TCP/IP VAX 8600, 3B2, Sun 3, Sun 4, PCs

NSSDCA - GSFC DECaet VAX 8600

IPAC - JPL TCP/IP Sun 3

SAO - Cambridge DECrier Sun 3, VAX

STI - Balt. TCP/IP, DECuet Sun, VAX

IVE - Coin. TCP/IP, SPAN Sun, VAX

IVE - GSFC TCP/IP, SPAN Sun, VAX

10.2 Information on DNET nodes

A list of current contacts & other information for each DNET node is listed in the f'de dnetinfo which

is located in the dnet_home directory and part of the usual DNET distribution.

10.3 Starting up (a subset of) the Demonstration Network

Suggested Demonstration Network Subset

1. DAC - brinc - (sun386i) - DAC TCP/IP LAN

2. DAC - dacvax (microvax 1I) - DAC TCPflP LAN & Dial-up SPANET (DECnet) connection

3. GSFC - dftnic (vax) - SPANET (DECnet) and Internet (TCP/IP)

4. GSFC - iuesnl (sun4) - Internet (TCP/IP)

NOTE: A login session must be maintained with each site for the duration of the demonstration.

DNET, as described here, requires each a login at each site in order to remain 'up'.

DNET Account information for these machines is given in the f'de dnetinfo, found in the duet_home
dh ,ory.

1. login to brine

2. enter 'dnstart'

3. On a separate terminal lo0n to dacvax

4. Enter the following:

cd dnet home

@dustart

5. On a separate terminal, login to dacvax as 'system'. Then follow the instructions in the section

below on establishing an asynchronous DECNet connection from dacvax to SPANET.

6. once the dacvax SPANET connection has been started perform the following steps to start up
DNET on DFTNIC

DNET Initial Demonstration Network 27

set l_t dt_4c

Jo_ to dftaic

cd duet_home

@d_tart

7. From a separate terminal, login to dacvax, then perform the following steps to connect to iuesnl.
set host

l_ to dftnie

tdnet iuesnl

logfn to iuesnl

when logged in to iuesnl, enter 'dnstart'

To stop DNET, enter 'dnstop' on UNIX systems and @dnstop on VAX systems.

28 DNET ADMINISTRATORS GUIDE

11. Asynchronous DECnet connectlon from dacvax to SPANET

The connection from DAC to the demonstration network shown in the preceding section is currently
accomplished via a low-speed asynchronous DECnet connection which must be manually established.
This section describes the procedure for starti_stopp'mg this link.

11.1 Starting the Link

Procedure to establish/drop dial-up DECnet link between DACVAX & 'DFTNIC' at NASA-GSFC.

Assumptions:

- Hayes Modem connected to port on VAX

- Phone line to DAC Switch is connected

- Md. tie line available on the DAC switch

1. Logon to VAX as 'SYSTEM'

2. set host/dte ttal

3. atz[CR]

4. If the response is not OK, try following the steps in the shutdown procedure in the next section;
link may be hung from an earlier session.

5. atdt91,2869000[CR I

6. Wait for connection

7. In response to Enter Number:.

type 'iafiupp[CR]'

8. When 'Call Complete' msg appears

9. [CRI[CR]

10. In response to 'enter class'

type,dftate[cR]

11. Type [CR][CR] several times, then enter

12. user: ASYNCH

13. password: enter password here

14. wait for message 'DECnet' control returned

15. test by entering 'set host dftnic'; should respond with a username, password

11.2 Stopping the asynch DECnet link

Asym_.hrouous DECnet commectlou from dacvax to SPANET 29

1. logia to thc dacvH as SYSTEM

2. Disconnect modem (power switch off, then on); yes, it's not pretty, but don't ask questions!

3. cd sysSsystem

4. run ncp

5. NCP> set clrcuit tt-O-1 state off

6. NCP> exit

30 DNET ADMINISTRATORS GUIDE

12. DNET Network Utility Commands

12.1 Examining The Status of DNET

DNET provides a general network utih'tyfunction dnetatat which allows the user to determine a variety
of information about local or remote DNET nodes. Information which dnetstat can obtain for both
local and remote nodes includes:

1. Is DNET 'alive' at the Node?

2. The Number of active and inactive DNET Processes (long and short formats; Streaming and/or
Connectionless Options)

3. Statistics of DNET Use at the Node

4. DNET Routing Tables at the Node

The general form of the dnetatat command is as follows:

dnetatat [dnetnetwork] [duethost] [options]

If the network and host arguments are both omitted, the local host is assumed by default.

If the status of a host on the local DNET network is required, only the drier_host argument is required
(local network is understood).

12.2 Testing if DNET is alive

As an introduction to dnetstat, try using the 'ping' option on your local host. This is done by typing

dnetstat -p

If DNET is 'running' on the local machine, the following message will appear:

DNET is ALIVE at dnet network dnet host*****

This response indicates that

1. At least one DNET PVC Master Server is running on the local node

2. The DNET Datasram Master Server is running on the local node
If DNET is not running normally on your system, the following messase will appear

Timed out waiting for response

Now try using dnetstat to 'ping' another DNET host on the local or a distant DNET network.

If this is successful, you are further assured not only is the DNET software running at that host, but
also that the DNET datagram service is operating (at least between your machine and the distant host).

DNET Network Utility Commands 31

12.3 Obtaining Status of DNET Servers

dnetstat may be used to obtain the status of DNET processes at local and remote DNET nodes.

This information may be obtained in the following formats

1. Connection Oriented Services only

2. Connectionless (Datagram) Services only

3. Both Services

4. Short Display Format - types, number avail, and state of servers

5. Long Format - short format info + (Process IDs) and Startfldle Times

The short listing of server status is shown below. The command used is:

dnetstat [network] [hest]

******* DNET VIRTUAL CIRCUIT SERVER STATUS at: dnettl sun3:

Sty Type Image PS Av Max S#

dmstcp
dechod dechod 1 1 1 1
drexecd drexecd 1 1 1 1

dfftpd dtftpd 1 I I 1
dadd dncid 3 3 3 3

dlogind dlogind 1 I 1 1

******* DNET CONNECTIONLESS (i)atngram) STATUS at: dnettl sun&
ProcName S Starfl'ime

dgstcp 1 Aug 1 10:.44
t A_ t t0:.44

dnstatd 1 Ang 1 10:.44
dnetstat I Aug I 10:.46

A longer listing of the server status may be obtained using the I (long) and c (connection) options.

dnetstat [network] [host] 4cd

32 DNET ADMINISTRATORS GUIDE

******* DNET VIRTUAL CIRCUIT SERVER STATUS at: dnettl sun3:

Sty _/pe _ PS Av Max S# PID IU

dmstcp 5489
dechod dechod 1 1 1 1 $491 N

draecd draecd 1 1 1 1 $492 N

dtlXId dmpd 1 1 1 1 5493 N
dncid dncid 3 3 3 3 5494 N

5497 N

5498 N

dlogfad dlogind 1 1 1 1 5499 N

St Time

Aug I 10:.44

Idle Since

Aug 1 10:44

Aug t 10:44

Aug 1 10:44

Aug I 10:.44

Aug I 1_.44
Aug I 10:44

Aug I 10:44

A long listing of the both virtual circuit and datawram server stat_ may be obtained using the t (long),

e (connection), and d (datagram) options,

daetstat [network] [host] -Icd

****ram DNET VIRTUAL CIRCUIT SERVER STATUS at: dnettl sun3:

Srv Type Image PS Av Max S# PID IU

dmstcp 5489
dechod dechod 1 1 1 1 5491 N

dretecd drexecd 1 1 1 1 5492 N

dtftpd dtftpd 1 1 1 1 5493 N
dncld dncld 3 3 3 3 5494 N

5497 N

5498 N

dlogind dlogind 1 1 1 1 5499 N

St Time

Aug I 10:.44

Idle Since

Aug I 10:44

Aug I 10:44

Aug I 10:.44
Aug 1 10:44

Aug I 10:.44

Aug 1 10:.44

Aug I 10:.44

******* DNET CONNECrlONLESS (Datasram) STATUS at: dnettl sun3:

Prtw.Name S PID lPC.Name IPCID SIG

dgstcp 1 5482 DN $482 1 0
1 5481 DN-5481 2 0

dnstatd l 54_ DN-5495 3 0

dnetstat 1 _d)4 DN $504 4 0

MSzStartTime

OAug t t0:.44
o_ 1 1_.44
0Aug 1 10:.44

0Aug I 10:.45

To obtain the routing table at a particular host, enter the following command:

daetstat [aetwerk] [host] -r

An example of output resulting from this command is:

*****'I' DNET ROUTING TABLE at: dnettl sun3:

DestNet Nxt Hint Nxt Proc DG Protocol

dnettl NULL NULL tcp

spanet dacvax drelaytd tcp

stm'net dacvH drelaytd tcp

DNET Network Utility Commands 33

12.4 Underlying Processes for Network Status

The dmetatat process is invoked on demand at any DNET host. It provides a set of generalized
network utility functions. It interacts with the DNET Status Server thmtatd located at either the local
or any remote DNET node. Its functions are:

1. Determine status of local/remote DNET processes

2. Determine/report status (UPfDOWN) of remote DNET nodes

3. Determine current load of remote DNET processes

4. Update DNET Routin8 Tables

5. Update of DNET WeU Known Server Table (if required)

6. Maintain other DNET status information for use by local processes

The relationship between the Status Client and a Status Server on one of the DNET hosts is shown in
the following diagram:

124.1 Update Local Routing Table

The hierarchical routing table at a DNET host may be updated through the following procedure:

1. Poll local DNET Gateway(s) for their routing table

2. Retrieve the Gateway Routing tables

3. In turn, poll the more distant gateways to retrieve their routing tables

4. By deduction, determine local routing table contents

34 DNET ADMINISTRATORS GUIDE

13. DNET Errors

The following errors are def'med within DNET.

#define D NOERR 0
Q

#detl_ D SYSERR 1

#der D-SADSrATE Z
#define D BADARG 3
#d_'t'lne D-OVRFLW 4

#define D AEXIST $
#ddi_ D-ESRVRSP 6

m

#define D EPERM 7

#define D-NOMSG 8
u

#define D NODGRSC 9

#define D INTERN 10
#define D-BADNM 11

#define D-DGTB 12

#define D-MSGTB 13

#define D BADHN 14
#define D-ADGENF 15

#define D PN2BIG 16

#define D IPCNM2BIG 17

#define D NOEXIST 18
i

#define D INTR 19
#define D-NOSRSC 20

#define D-NODNET 21

#define D WOULDBLOCK

#ddlm_ D TIMEOUT 23

#dm DQUOTA 24
#define D NOSYSFILE 25

#define D SYNERR 7,6

#define D NOIMAGE 27

#define D HOMELESS 28

#define D SRVNOACK 29
#define D NOHOST 30

#define D NOPATH 31

#define D SYSLIBERR 32
#ddine D-NODNETSRV

#define D-SHUTDOWN 34

#define D AXERRS 35

/* No DNET error */

/* A system error has occurred */

/* WoWam in wrong state to Issue this dnet call */

/* value d argument was determined to be invalid */
/* overflowoti/o buffer*/
/* specmedobjectalreadyexist. */
/* Error return value ha DGMS service req response */

/* Permission Denied */

/* D_NOWAIT flag set and no message waiting to be read */
/* No more available DGMS resources */

/* Internal DNET error */

/* Invalid process name was specified */

/* Datagram To Big */

1" Message To Big */

/* Could not find net/host combination in router tables */

/* ADGUT Entry Not Found */
/* Process name string too big */

/* IPC name string too big. DNET code error */

/* The specified object does not exist *I

/* A signal interrupted the library routine */

/* Temporarily out of system resources */

/* Missing all or part of dnet provider */

22/* Operation would block */
/* Ttmeout or retry count exceeded */

/* Quota limit exceeded */
/* D_ system file/table not found */

/* DNET system flle/toble syntax error */

/. Image (server) not file not found 0/

/0 Env variable 'dnot_home' not defined */

/* No respone from application server */

/* No such host */

/0 DNET could not find a path for the src/dest pair */
/* System Hbrsry function failed */

33/* DNET servers dms/dgstcp not defined in 'etc/servtces'*
/* Orderly shutdown from master server */

DNET Errors 35

stark char "dg__errmsp[D_MAXEP.l_] = {
"No DNET re'toP,
"A system error has occurred',
"lwosram In wrong state to issue thls dnet caB',

of argument was determined to be Invalid',
"ovu'flo_v 41/o bulke',
"The ss_ object .U.asd_ _w,
'Error returm value In DGMS service req response',
"Permission Denied',

"D_NOWAIT flail set and no message waiting to be read',
"No more available DGMS resources',
"Internal DNET error',

"Invalid process name was specified',
"Dm_'_ To Big',
"Message To Bi_,
"Could not find net/host combination in router tables',
"ADGUT Entry Not Found*,
"Process name strt_ too blg',
"IPC name string too bill. Probably DNET internal code ezroe,
"The specified object does not exist',
"A signal intexrupted the library routine',
"T_nporarily out of system resources',
"MLssing all or part d dnet provider',

"Operation would block_,
'Timeout or retry count exceeded',
"Quota limit exceeded',
*DNET system file/talde not found n,
"DNET system file/table syntax error',
"hnase (server) file not found',
"Eav variable 'dnethome' not defined',

"No respoae from application server_,
_No such host _,
'DNET could not find a path for the src/dest pair',

_System library function failed',
"DNET servers dms/dgstcp not defined in '/etc/services',
*Orderly Shutdown from master server"
};

36 DNET ADMINISTRATORS GUIDE

14. DNET Security

14.1 Execution Security

Access to remote DNET hosts is always via the PVC or Datagram Master Servers. Once connected to
the remote host, the DNET client process will be connected to the corresponding server, if one is
available. An optional legim function may be placed in any of the DNET client-server pairs (currently
login is required for dlogla and dtftp). See the next section and the DNET Programmer's GUIDE &

REFERENCE MANUAL for further information on the use of da_legla.

When DNET provides access to remote execution of processes, the execution privileges for non-DNET
processes are the same as for a locally-connected user.

14.2 User Security

The functions dla_iollia & da_loliia_verify may be used on the client and server DNET applications
respectively in order to validate user access to the server machine.

14.21 UNIX

The/etc/imsswd is used by dn_login_verify in the UNIX environment to validate DNET users where
an application requires such validation. The user login account names and passwords are maintained
in the normal fashion for the local UNIX system.

14.22 VMS

No password protection is currently implemented on VMS systems for DNET other than a very weak,
'hardwired' password.

A more general approach would incorporate a routine to access the uaf.dat f'de in order that user
passwords could be checked. Attempts to locate and/or write such a routine have been unsucessful to
date.

14.3 File Security

Access to f'des on individual systems is dependent on the local f'de protection mechanisms.

Once a user has been 'validated' using the dn_iogla he has the same t-de access privileges as he would
have had he 'logged' on to that host via some other procedure.

DNET Security 37

15. Electronic MailAdmlnistratlon

The _ version of DNET mail is quite elementary in concept and requires no maintenance.

The mail client process dmall interacts with local or remote server processes dmalid and places mail
in a f'de with the name of the destination user (account) in the directory dnethome/mali.

DNET mail will operate on the local node provided

1. the dmalid server is operational (has been started by the DNET master server).

2. the directory dmet_home/mall e_,ts - this is ordinarily created by the DNET postmove
procedure when DNET is installed on a local machine.

If mail fails to operate, these two conditions should be checked and appropriate action taken as
needed.

38 DNET ADMINISTRATORS GUIDE

16. Library and Program Pool Admlnlstratlon

Master source code for DNET is maintained under sees on an AT&T 3B2-600 at DAC in the directory

/aar/mum/daet/_:s_src. The 'master' copies all DNET code are maintained in under this top

directory with the following organization. The 'standard' DNET directory structure is shown in the

f'_,ur e below:.

usr/nasa/dnet/sces_src/.

]comnlon /pvedlr/dgdir /appdlr

NOTE: Administration and maintenance of the files in this directory tree is essential for the Integrity

of the DNET code.

Most common modifications to DNET will likely occur ha files ha ./sccs_src/and st Changes to the

subdlrectm_ ./common, ./dnet/pvcdlr, ./dnet/dgdlr should only be undertaken with n view toward

global changes i,I mind. The administrator of these files should make every effort to ascertain that
the DNET code at all sites 'in the field' Is consistent with the latest copy maintained under sccs and

vice versa.

Library ud Program Pool Administration 39

17. DNET Performance Monitoring

17.1 General

There was no performance specification for throughput or system loading for this _ version of

DNET. Nevertheless, some care was exerclse_ in both the desisn and implementation of the software

in an attempt to make the overhead of DNET as low as possible. These efforts were qualitative in

nature, empirical attempts to make DNET have as 'light' an effect as possible on the systems and
networks involved.

Despite the absence of a formal DNET performance specification, it seemed useful to provide at least
some rudimentary quantititative performance measurements for the system. This section de.umbes the

measurements made on DNET responsiveness.

In a distn'buted, heterogeneous environment, it can be exceedingly difficult to define a 'stable' test

environment for conducting timing tests of any kind. The number of users, number and types of

processes, and the network communication traffic in the test environment may all be beyond the

control of the person performing the test.

At this stage of development, it seems most important to comment on how DNET compares with a

comparable homogeneous network environment under similar conditions. This can be done in the

DAC portion of the DNET testbed environment.

17.2 DNET Performance Test Application - dptc

17.3 VMS Host vs UNIX Host

17.4 DECnet vs TCP/IP

40 DNiffr ADMINISTRATORS GUIDE

18. Glossary

The following terms are used in the description of DNET:

Appikatlomm Servers.

Servers such as F'de Transfer, Remote Login, Remote _on, etc. that perform

services for clients. Applications Servers are invoked on demand by clients after using
the Service Assignment to obtain the name of an available server.

Connection Lock Table-

List of open connections held by process for use by its Basic Datagram I/O package.
Locked connections result from user requests for Permanent Virtual Circuits.

Datagram Master Server (DGMS)-

A server process, located at each DNET host and gateway, which provides an interface

to DNET clients and servers and the DNET Connectionless Datagram and Signalling
Service

Datagram Protocol Servers (DPS)-

Protocol specific servers located at each DNET host and gateway, which provides an

DNET Connectionless an interface to the underlying network Datagram service.

Master Server Init Table.

These tables, tl_amsinlttclp and tbls.msinltdec contain ini_tion information for

the DNET Master Servers including the type of server to be activated, the maximum #

allowed at this host, and the number to make available initially, and an indication of

whether the server must be prespawned. The tables are updated by the local System

A_trator at the specific DNET host.

Master Server Table-

One for each DNET host, it contains information on the types and numbers of each

class of DNET server actively supported on this node at any instant. Each generic
server entry points to a Server lastance Table which lists the current specific instances

of a particular class of server. It is updated by the Master Server and by specific

DNET application servers.

Master Server Proceu (DMS)-

Processes, one per Network, managing the Master Server Table, handling server

registration, server assignment, and server controL They are spawned by network
start-up command f'des.

DN r i/o

Glossary 41

Included as library within an application program, it provides network i/o interface
including datagram formatting.

Gateway-

A DNET node at which communicaton protocol boundary is passed. DNET relay
servers move data from one network to another performing an effective protocol
conversion for streaming services. These servers are created, allocated, and used like
any other DNET streaming applications servers. The Datagram Master Server, in
conjunction with protocol specific datagram servers performs a similar function for

DNET datagrams.

Network Command IAne Interpreter-

DNET Client process that directs the execution of network commands using

datagrams sent to various hosts and several servers.

myname - hostname table-

A table, tbls.myamme, maintained in the duet home directory on each DNET node
lists the DNET networks to which that host is connected and the name(s) by which the
local host is known on those networks.

Network Command Langua_ Processor-

Server that directs the execution of network commands using datagrams sent to various

hosts and several servers. It is an application server, copies can be pre-spawned or

spawned on demand.

Network Command Server-

Spawned by request from Command Language Processor, this Server is directed by
Command Language Processor. It spawns processes and directs i/o to execute network
commands.

Network Status Server-

Resides in each network hoar. Receives Host Status Tables, Host Alias Table, Well

Known Server Table& Connectivity Tables, and periodically sends "I am alive"

messages to the Administrative host. To ensure these periodic messages are sent the
Basic datagram I/O package uses a timer/wake-up signal to initiate the transmission
of the message to the Network Status Client. Because this is done by the I/O package
and there is a copy of this package in every process that uses network I/O the network
status data is collected on a per process not per host basis.

PVC Relay

A DNET relay used in the completion of DNET Permanent V'mual Circuits (PVCs).

Relay

Special DNET application processes located in a DNET gateway which perform

protocol conversion for DNET streaming service between dissimilar networks. The
appropriate Master Server process 'listens' on a particular protocol boundary when

42 DNET ADMINISTRATORS GUIDE

idle and assigns a relay when a reque_ for a protocol h'hop' is received from DNET..
The relays are named according to the protocol boundary which they are intended to
bridge. Thus a T-D relay services requests which arrive on a TCP/IP network,
relaying data to a DECnet net. Relays operate in a full duplex mode while actually in

Router

DNET employs a hierarchical routing strategy. Each DNET node has, for every
(DNET) network known to it, information on the ne_ DNET host to contact in order
to move data toward the destination. The DNET router function _ the information

in the routing table as follows: Given a destination network, host, and process, returns
the next "uest'hop (network, host, process) to 'move' toward the destination.

Rontinll_b_

A hierarchical routing table that contains the next 'hop' from the local DNET
host/network in the direction of all other DNET networks. A minimal version of this
table is provided with the distribution copy of DNET. The table is currently
maintained manually by the local system administrator. In the future, this table will be
dynamically configured and maintained by the local DNET Network Status Server
after intial startup has taken place. The routing table is named tbls.net and is located

in the dnet_home directory.

Server Assignment Function-

Returns the name of an available server to a requesting Router, and updates the
Domain Server Table.

Server Instance "l_ble(s-

Lists the current specific instances of a particular class of DNET Application Server.
Entries are made by the Master Server and cleared via dn_done0 calls from the
servers as they complete their tasks.

Server Registration Function-

This function is part of the Domain Server Process. It updates the Domain Server
table with information from Servers (e.g.'now in use').

GloasKy 43

DNET

ADMINISTRATOR" S REFERENCE

Version: 1.14

Print Date: 08/31/89 12:59:53
Module Name: admln.ref

Digital Analysis Corporation
1889 Preston White Drive

Reston, Virginia 22091
(703) 476-5900

gilig RIGHTS NOTIClg

Th_ $B|R data iJ _bed with qnlR t'QI,htt madm' _ Ct_ra_ _300_, For a period o(2 yur_ _er aggept_ a[aU item0 to be clel_'_ _ t_ _

_he Government agrees to uu thit data for _ag _ m_, and i_ slmU nm be _ ocr._de the Goum'nm_a (im:iudW$ _ for Wacutement
pm'lpoge_) dunng such period without perm.umioa o4rthe C_._raogo¢, except thttt, It_ject to the forgt_ ule and cfilglolu_ proI_l)inon_ _ dlffal _ De _ _o¢

by #upport contractors. After the _ 2-y_r _rk_ tl_ C-o_ has a roy_lty-t'rt_ tic,me to uoe, and to amhoclz_ other0 to tic on its Debt, tim dmta for

rnmgnt p]x_eu, but is reliev_ h'_cn all dlack_m'e _itiora and an_ no]ia_,illty to¢ tmauthoriz_ Lied of tim data by tl_xl ptrt_. Th_ Ncttce s_ll be
affixal to iny reprt_uc_iot_ o_ thit daga, m wh_, oc in p_r_."

gh 1989, Digital Anaiys_i__,_

CHECKDMAIL(1) DNET CHECKDMAIL(1)

NAME

checkdmail - dnet 'mail' auto-user notification process

SYNOPSIS

checkdmail

DESCRIPTION

The checkdmail process is invoked by the DNET Iogin script when a user logs in to a DNET

host. It checks if a non-null mail file is present in the directory dnet_home/mail
(dnet_home:mail for VMS), and if so notifies the user with the message:

You have DNET mail

The user may then invoke the dmail client to read this mail file.

The ability to run checkdmail depends on its presence in the Master Server Init Table for the
destination host.

SEE ALSO

dins, dmail(1D), dmaild(1D)

RETURN VALUE

ERRORS

The call fails if:

[9_OGTSI

DECHOD(1) DNET DECHOD(1)

NAME

dechod - dnet 'echo' server

SYNOPSIS

Must be entered into the dms init table.

DESCRIPTION

The dechod 'echoes' command lines sent to it from a distant DNET decho client process back
to that client.

dechod is started by the local DNET Master Server according to information in the Master

Server Init Table. A DNET permanent virtual (streaming) connection is opened to the

destination network:host. Command line input at the local host is then echoed back from the

destination after each carriage return.

In conjuction with decho dechod provides a convenient means of demonstrating the setup time

and end-to-end performance of the DNET streaming ser, rice.

SEE ALSO

decho(1), tbls.msinitxxx(4)

DIAGNOSTICS

If the dnet_debug environmental variable (logical name in VMS) is defined with a non-zero

value, then a log file will be generated where error output may be viewed. If the dnet_debug
value is zero, then all error output will be discarded.

DLOGIND(1) DNET DLOGIND(1)

NAME

dlogind - dnet 'remote execution' server

SYNOPSIS

dlogind

DESCRIPTION

dlog|nd is the DNET server used to provide remote login function over the DNET network.

The ability to run dlogind depends on its presence in the Master Server lnit Table for the
destination host.

SEE ALSO

dms, dlogin(1), drexec(1)

RETURN VALUE

ERRORS

The call fails if:

[D_DGTBI

DMAILD(1) DNET DMAILD(1)

NAME

dmaild - dnet 'mail' servcr

SYNOPSIS

dmaild

}' DESCRIPTION

dmaild acts a simple mail transfer server from a remote dmail client.

The ability to run dmaild depends on its presence in the Master Server Init Table for the
destination host.

SEE ALSO

dins, dmail(1D), checkdmail(1)

RETURN VALUE

ERRORS

The call fails if:

[D DGTB]

Page 5 (07/10/89)

DNCLD(1) DNET DNCLD(1)

NAME

dad - dnet 'network command language' server

SYNOPSIS

dnci

DESCRIPTION

The dncl command invokes the interactive dnet network command language program. This

program allows for processing of a single data stream in a distributed environment. To do this,
the processing of the data stream is broken into sub command lines SCL (which together make

up the dncl command line CL). The dncl CL may be entered after the dncl prompt:

dncl >

The following is a synopsis of the dncl command line:

SCL > SCL [> SCL] ...

You will note that a minimum of two SCL components are required in a CL. The reason for

this will be explained when we look at the three categories of SCL components. Also note that
the > symbol is used to delimit the SCL components.

The following is a synopsis of the SCL component:

[[netname::] hostname:] [*] command/file

Notice that netname and hostname are optional, although if a network name is supplied, then a

host name must also be supplied. In the case where both netname and hostname are specified,

a double colon must delimit the netname and the hostname, and a single colon must delimit the
hostname and the command/file. Further, if the command/file value contains a colon, then the

hostname must be supplied at a minimum so that the colon within the eommand/f'd¢ will be

ignored by dncl.

If the requested node is the current machine (the netnam¢ and hostname combination

represent the current machine), and no colons appear within the command/file value, then
netname and hostname :nay be omitted. Similarly, if the hostname machine is on the current

network, then netname may be omitted. On dnet gateway machines remember that only one

network is considered to be current. TI,As means that although the network may be directly
connected to the current machine, it can not be considered a current network.

The command/file portion of the SCL represents either a file or a command to be accessed on

the given machine and falls into one of three categories:

• First SCL component -- must be a file

• Middle SCL component -- must be a command (precede with *)

• Last SCL component -- must be a file

As you will remember from the CL synopsis above, and minimum of two SCL components must

be specified (a First SCL component and a Last SCL component). This represents the simplest
form of a dncl CL and results in a file transfer without filtering. The chad CLs of greater

complexity merely represent a higher degree of filtration between the first and last SCL

components. The filtration described here is provided by the middle SCL component category

(a command). This command is assumed to read input from a standard location, process the

input received and generate output to a standard location. Many commands can be described in
this fashion (input/processing/output), but not all work with standard locations for input and

output. Commands that do use standard locations and work in the input/processing/output

fashion are described as being filters. To work properly as a middle SCL category SCL

component, the command must also be a filter, as unpredictable results will otherwise occurr.

Page 6 (07/10/89)

DNCLD(1) DNET DNCLD(1)

All middleSCLcategorySCLcomponentsmustbeprecededwithanasterix(*) asshownin the
SCLsynopsisabove.
TheUNIX operatingsy:temis richwithexistingfiltersto performa variety of tasks. These

filters are comparatively zare in the VMS operating system. Despite this, filters may be created
for VMS with C languagt', programs by using the predefined stdin and stdout streams with the

standard I/O package.

SEE ALSO

dtftp(1), dsh(1)

RETURN VALUE

After successful completion of a dad CL, the following message will be displayed:

ACKCOMP received.

This means that the ACKCOMP (ACKnowledge COMPletion) packet has been initiated by the

last SCL category driver, and has been successfully passed back through all intermediate SCL

components to be successfully received by the dncl command invoked by the user.

If the ACKCOMP received message is not displayed, then a cryptic error message will be

displayed describing the reason for failure. If the error message is preceded by dncld:, then this
means that the error occurred at a possibly remote node, and this message was propagated back

to be viewed by the user.

A common form of error message is:

No route to netname::hostname:dncld

This indicates that the node specified could not be found from the current location. Two things

should be remembered to help to solve this problem:

1. You may not have specifed the node name portion of the stated SCL, and the default may
have been used.

2. The node is always relative to the node on the previous SCL component. The first SCL is

always relative to your current node. As an example, if the first SCL was specifed as:

spanet::iaf:sys$1ogin:myfile, and the second SCL was: *sort, then it would try to spawn

the sort filter on the spanet::iaf node.

CAVEATS

Never make assumptions about current location within a file system on any node when creating
SCL components. Absolute pathnames or logical names must be used for files. For commands,

absolute pathnames or logical names must also be used, but on UNIX operating systems, the

PATH environmental variable may be set by the daet administrator before the dad drivers are

initiated so that they can be forced to look in non-normal locations for UNIX filters.

Page7 (07/10/89)

DNETSTAT(I) DNET DNETSTAT(1)

NAME

dnetstat- obtaindnet network status

SYNOPSIS

dnetstat [dnet_network] [dnetJzost] [-acdfhlnprs]

DESCRIPTION

The dnetstat command allows the display of vari3us DNET-related data structures.

Information may be displayed in various forms, depending on the option which is specified.
dnetstat can be used to determine the status of all DNET servers, routing tables, and server

usage statistics.

Information may be displayed for the local DNET node or may be retrieved and displayed for
other DNET nodes.

Options:

dnet network - the DNET network of the DNET host from which information is desired; if
omitt'ed, local network is assumed

dnet host - the DNET network of the DNET host from which information is desired; if both
network and host omitted, local host is assumed

If none of the below options is specified, the defaults local_host & [-edl are assumed

-a Display all available information (in long format)

-e Display Status of Connection (Streaming) Servers

-d Display Status of Datagram (Connectionless) Servers

-f Display PIDs, etc. in a]ternate (Decmimal/Hexidecimal) format; allows optional conversion

between machines with different display formats

-h Display help on optiors for dnetstat

-! Display other specified options in long or extended format

-n show DNET map (network, host)

-p ping the specifed host - i.e. test if DNET is alive on the specified host p overrides all other

options. If successful, the message:

DNET is Alive at dnet network dnet host

is printed on the terminal If the 'ping' operation is unsuccessful, dnetstat will usually timeout

waiting for the response from dnstatd.

Timed out waiting for response

-r show DNET routing tables for the specified node

-s show per-DNET server statistics (dtftp, drexec, dmail, dncl)

Page 8 _2-5 (07/12/89)

DNETSTAT(1) DNET DNETSTAT(1)

SEEALSO

dnstatd,tbls.msinitdec,tbls.msinitdec,tbls.net

DIAGNOSTICS

The call fails if:

Specified host is not up

DNET is not operating on the specified host

dnstatd is not operating on the specified host

In each of the above instances, dnetstat, will report:

Timed out waiting for response

Page 9 (07112189)

DNLOGIN.CSH(8) DNET DNLOGIN.CSH(8)

NAME

dnlogin.csh - DNET logit script for UNIX systems with 'C' Shell

SYNOPSIS

@dnlogin.csh

DESCRIPTION

The dnlogin.csh script sets up the operating environment for DNET when a user logs in to a
UNIX system running the 'C' Shell. dnlogin.csh is ordinarily invoked from the file .proUle in

the user's login directory. A listing of the script follows:

dnlogin.csh

login script for C Shell under UNIX for DNET

First set dnet home in your .login.
Then source t-his file.

setenv PATH "$PATH':$dnet home/bin
checkdmail

Page 10 (07/12/89)

DNLOGIN.DFT(8) DNET DNLOGIN.DFT(8)

NAME

dnlogin.dft-DNETloginscriptforNASA-GSFCDFTNICVAX
SYNOPSIS

@dnlogin.dft
DESCRIPTION

Thednlogin.dftscriptsetsuptheoperatingenvironmentforDNETwhena userlogsin to the
DFTNICVAX runningVMS.dnlogin.dftisordinarilyinvokedfromthefile Iogin.comin the
user'slogindirectory.A listing of the script follows:

$! dnlogin.dfi

$! Iogin script for DNET for dftnic
$

$I logical names
$

$ DNET DEBUG ffi= "0M

$

$ define/job dnet pvcdir $cldata:[dnet.dnet.pvcdir]

$ define/job dnet_dgdir $cldata: [dnet.dnet.dgdir]

$ define/job dnetcommon $cldata:[dnet.dnet.comm9n]

$ define/job dnet_appdlr $cldata:[dnet.dnet.appdlr]

$! define/job dnet_debug 1
$ set proc/priv= grpnam

define/group tinct_home $cldata: [dnet.dnet]

define/group dnetbin $cldata: [dnet.dnet.bln]

define/group dnet_gateway I

ptar = = "$ cldata:[dnet.bin]ptar.exe"

$
$

$

$
$

$

$ define c$1nclude dnet..common, dnet pvcdir, dnet_dgdir, exos_etc
$ define vaxc$1nclude c$1nclude, sys$1ibrary
$

$! Clients
$

$ decho = ffi "$ dnet bin:decho.exe'
$ ddechoc ffi= _$ dnet bin:ddechoc.exe"
$ dechon = = uS dnet bin:dechon.exe _

w

$ drexec = = "$ dnet bin:drexec.exe"

$ dtftp = = "$ dnet_bin.'dtftp.exe n

$ diogin = = "$ dnet..bin:dlogin.exe"
$ dmskUl = = _$ dnet bin:dmskill.exe"

$ dnetstat = = "$ dnet bin:dnetstat.exe _
$ dncl = = MSdnet binT.dncl.exe '

$ dmail = = "$ dnet bin:dmail.exe M
D

Page 11 (07/12/89)

DNLOGIN.DFI'(8) DNET DNLOGIN.DFT(8)

$

$! development only
$

$! delmbx = = "$ $di_kl:[odnet]delmbx.exe"
$ shack = = "$ dnet l,in:shack.exe"

$1 to o = = "$ dnet Oin:i to o.exe"
$ bcd---= "$ dnet b['n:bcd.exe%

$ ddechoc = = "$dnet bin:ddechoc.exe"

$

$! aliases

$

$ sl = = "show logical"

$ ss = = "show symbol"
$1s =="dir"

$ I = = "dir"

$ cd = = "set deP

$ pwd = = "show def'
$ vi = ffi "ed"

$ view = = "ed/read ..mlf
$ ps = = "show system"
$ ns -- - "netstat -a"

$ more = = "type/pa$,e"

$ clear = = "@clear"

$

$ set proc/priv = sysnam
$

$ cd dnet home
w

$ checkdmail
$

Page 12 (07/12/89)

DNLOGIN.DV(8) DNET DNLOGIN.DV(8)

NAME

dnlogin.dv- DNETloginscriptforDACMicrovax II

SYNOPSIS

@dnlogin.dv

DESCRIPTION

The dnlogin.dv script sets up the operating environment for DNET when a user logs in to a
VAX running VMS. dnlogin.dv is ordinarily invoked from the file login.com in the user's login

directory. A listing of the script follows:

$!
S:

$
$!

$
$

$

$

$
S

dnlogin.com
Iogin script for DNET for dftnic

logical names

DNET DEBUG = = "0"

define/job dnet_pvcdir $cldata:[dnet.dnet.pvcdir]

define/job dnet dgdir $cidata:[dnet.dnet.dgdlr]

define/job dnet_common $cldata:[dnet.dnet.common]

$ define/job dnet appdir $cldata:[dnet.dnet.appdir]

$! define/job dnet_debug 1
$ set proc/priv = grpnam

$ define/group dnet_home $cldata: [dnet.dnet]

define/group dnet_bin $cldata:[dnet.dnet.bin]

define/group dnet_gateway 1

ptar = = "$ cldata: dnet.bin]ptar.exe"

$

$

$
$

S

$ define c$include dnet common, dnet_pvcdir, dnetdgdir, exos_etc
$ define vaxc$includt c$include, sys$1ibrary

$

$1 Clients

$

$ decho = = "$ dnet bin:decho.exe"
$ ddechoc = = "$ dnet bin:ddechoc.exe"
$ dechon = = "$ dnet bin:dechon.exe"

$ drexec = -- "$ dnet bin:drexec.exe"

$ dtftp = = "$ dnet_bin:dtftp.exe"

$ dlogin = = "$ dnet_bin:dlogin.exe"

$ dmsklll = = "$ dnet bln:dmskill.exe"
$ dnetstat = = "$ dnet bin:dnetstat.exe"
$ dncl = = "$ dnet bl_dncl.exe"

$ dmail = = "$ dnet bin:dmail.exe"

$

Page 13 (07/12/89)

DNLOGIN.DV(8) DNET DNLOGIN.DV(8)

$! development only
9

$! delmbx = = "$ Sd:skl:[odnet]delmbx.exe"
$ shack = = "$ dnet bin:shadc.exe"

$1 to o = = "9 dnet-_in:i to o.exe"
$ bcd-- = "$ dnet bir:bcd.exe-"

$ ddechoc = = "9 dne; bin:ddechoc.exe"

9

$! aliases

9

$ sl = = "show logical"

$ ss = = "show symbol"
$1s =="dir"

$ l = = "dir"
$ cd = = "set deP'

$ pwd = = "show def'
$ vi = = "ed"

$ view = = "ed/readonly"
$ ps = = "show system"
$ ns = = "netstat -a"

$ more = = "type/page"

$ clear = = "@clear _

9

$ set proc/priv = sysnam
$

$ cd dnet home
$ checkdmail

$

Page 14 (07/12/89)

DNLOGIN.SH(8) DNET DNLOGIN.SH(8)

NAME

dnlogin.sh- DNETloginscriptforUNIX systems with Bourne Shell

SYNOPSIS

@dnlogin.sh

DESCRIPTION

The dnlogin.sh script sets up the operating environmcn_ for DNET when a user logs in to a

UNIX system running the Bourne Shell. dnlogin.sh is ordinarily invoked from the file .proUle

in the user's login directory. A listing of the script follows:

dnlogin.sh

iogin script for Bourne shell under UNIX for DNET
First set dnet home in your .profile.
Then. this file.

PATH-- SPATH:$dnet home/bin

export PATH
checkdmail

Page 15 (07/12/89)

DNSTART(8) DNET DNSTART(8)

NAME

dnstart - start local DNET node

SYNOPSIS

dnstart

DESCRIPTION

The dnstart command allows the system administrator on a UNIX host to start-up the local
DNET node.

SEE ALSO

dnstart.com(8), dnstop(8), dnstop.com(8), startdgms

DIAGNOSTICS

The dnstart module is a UNIX shell script. The output directly from the script merely informs

the user of the modules being started up. Output from those modules may also appear on the
screen. The script in turn calls the startdgms to start the DNET datagram service.

The dnstart script is listed below:

dnstop

dnet_home ='echo _${dneti_ome}/"] tr-s ']' '/"

dnet log = _/tmp/dnet/";export dnet_log
rm -rf/tmp/dnet

mkdir/tmp/dnet
ipcrm -Q 100

cd $dnet home/bin
startdgms
sleep 2

echo *************************tartl.g dmstcp*************************'
dmstcp &
sleep 1

echo ****************************** ******************************
dnstatd &

pidlist = $pldlist" "$!

echo $pidlist > > "${dnethome}pidlist"
sleep 5

echo **************************** now running!*************************'

Page 16 (07/12/89)

DNSTART.COM(8) DNET DNSTART.COM(8)

NAME

dnstart.com- startlocalDNETnode(onVAXsystems)
SYNOPSIS

@dnstart
DESCRIPTION

The dnstart.eom command allows the system administrator on a UNIX host to start-up the
local DNET node.

SEE ALSO

dnstart(8), dnstop(8), dnstop.com(8), strdgms.com, strstar..com

DIAGNOSTICS

The dnstart.com file is a VMS DCL shell script. The output directly from the script merely

informs the user of the modules being started up. Output from those modules may also appear
on the screen. The script in turn calls the strdgms.com and strstat.com to start the DNET
datagram service and the network status server respectively.

The dnstart.com script is listed I:elow:

Page 17 (07/12/89)

DNSTART.COM(8) DNET DNSTART.COM(8)

$

$ cd dnet home
$

$ @dnstop
$

$ write sys$output "deleting old log files"
$ del *.log;*

$ write sys$output "purging dnet home"

$ purge
$

$ cd [.bin]

$

$ write sys$output "purging dnet_homC
$ purge
$ cd dnet home

B

$

$ write sys$output "starting dnet DGMS ..?
$ @strdgms

wait 00:00:05.00

@strpvc

wait 00:00:05.00

@strstat

cd dnet home

wait 00:00:05.00

write sys$output "DNET S,Jccessfully STARTED ********"

Page 18 (07/12/89)

DNSTART.DET(8) DNET DNSTART.DET(8)

NAME

dnstart.det - start local D NET node (on VAX systems) in a detached mode

SYNOPSIS

@dnstart.det

DESCRIPTION

The dnstart.det command allows the system administrator on a UNIX host to start-up the local

DNET node in a detached mode. The effect of running 'detached' is to allow DNET to remain
operational without DNET being 'logged in'.

SEE ALSO

dnstart(8), dnstop(8), dnstop.com(8), strdgms.com, strstat.com

DIAGNOSTICS

The dnstart.det file is a VMS DCL shell script. The output directly from the script merely

informs the user of the modules being started up. Output from those modules may also appear
on the screen. The script in turn calls the strdgms.com and strstat.com to start the DNET

datagram service and the network status server respectively.

The dnstart.det script is listed be low:

! dnstart.det - start DNET in detached mode

cd dnet home

! stop any existing DNET processes

@dnstop

cd [.bin]

set proc/prlv = grpnam

define/group dnet_home "$diskl: [sys0.dnet.dnet]"
define/group dnet bin "$dlskl:[sys0.dnet.dnet.bln]'

q

define/group dnetgateway I

write sys$output "starting dgms ...DETACHED"

$ spawn/in = nh/out = dnet_home:dgms.iog/process = dgms/aowalt -

run/detached/nodebug/buffer..limit = 60000/subprocess_Umit = 30/io_huffered = 20 -

/maximum_workingset = 1024/extent = 1024/working_set = 512/queue limit =30 -

/ast_limit = 30/file limit = 200/job table_quota = 1200/page_file = 30000 -
/privileges = (grpnam,sysnam,netmbx,tmpmbx)/proc = dgms dgms

$

$ write sys$output "starting dgsudp In ...DETACHED _

$ run/detached/nodebug/buffer limit = 60000/subprocess_limit = 30/io..buffered = 20 -

/maximum_workingset = 1024/extent = 1024/working_set = 512/queue_limit =30 -

/ast_limit = 30/file_limit = 200/job table_quota = 1200/page_file = 30000 -
/privileges = (grpnam,netmbx,tmpmbx)/proc = dgsudp in Cgsudp in

$

$ write sys$output "starting dgsudp_out ...DETACHED"

$ run/detached/nodebug/buffer limit = 60000/subprocess_limit=30/lo_buffered=20.

Page 19 (07/12/89)

DNSTART.DET(8) DNET DNSTART.DET(8)

/maximum_working_set- 1024/extent = 1024/working_set-" 512/queue_Umit = 30 -

/ast_llmit = 30/file limit = 200/job_table_quota = 1200/page_file = 30000 -

/privileges = (grpnam,netmbx,tmpmbx)/proc = dgsudp_out dgsudp out
$

$ write sys$output "starting dgsdec ...DETACHED"

$ run/detached/nodebug/buffer_iimit = 60000/subprocess limit = 30/io_buffered = 20 -
/maximumworkingset = 1024/extent = 1024/working_set = 512/queue_limit = 30 -

/ast_iimit = 30/file_limit = 200/job_table_quota = 1200/pag__f'de = 30000 -
/privileges = (grpnam,sysnam,netmbx,tmpmbx)/proc = dgsaec dgsdec

$

$ wait 00:00:05.00

$

$ write sys$output "starting dmsdec ...DETACHED"

$ run/detached/buffer limit = 60000/subprocess_limit = 30/io_buffered = 20 -

/maximum_workingset = 1024/extent = 1024/working_set = 512/queue_limit = 30 -

/ast_limit = 30/file_limit = 200/job table quota = 1200/page file = 30000 -
/privileges = (sysnam,netmbx,tmpmbx)/proc = dmsdec dmsdec

$

$ write sys$output "starting dmstcp ...DETACHED"

$ run/detached/buffer limit = 60000/subprocess_llmlt ffi30/io_buffered = 20 -
/maxim umworking_set = 1024/extent = 1024/working_set = 512/queue_limit = 30 -

/ast limit= 30/file_limit = 200/job table_quota = 12000/page_file = 30000 -
/privileges = (sysnam,netmhx,tmpmhx)/proc = dmstcp dmstcp

$

$ wait 00:00:05.00
$

$ write sys$output "starting dnstatd ...DETACHED"

$ run/detached/buffer..iimit = 60000/subprocess_limit = 30/io_buffered = 20 -

/maxim urn_working_set = 1024/exten t = 1024/working_set = 512/queuelimit = 30 -
/ast limit = 30/file_limit = 200/job_table_quota = 12000/paiIe_file = 30000 -
/privileges = (sysnam,netmbx,tmpmbx)/proc = dnstatd dnstatd

$ cd dnet home

$

Page20 (07/12/89)

DNSTATD(1) DNET DNSTATD(1)

NAME
dnstatd- DNET network status server

SYNOPSIS

dnstatd

DESCRIPTION

dnstatd is a general net_vork utility which allows the display of various DNET-related data

structures. Information may be displayed in various forms, depending on the option which is

specified, dnstatd can be used to determine the status of all DNET servers, routing tables, and

server usage statistics.

Information may be displayed for the local DNET node or may be retrieved and displayed for
other DNET nodes.

Options:

dnet network - the DNET network of the DNET host from which information is desired; if
omitt'ed, local network is assumed

dnet host - the DNET network of the DNET host from which information is desired; if both

network and host omitted, local host is assumed

If none of the below options is specified, the defaults local host & [-¢d] are assumed

-a Display all available information (in long format)

-c Display Status of Connection (Streaming) Servers

-d Display Status of Datagram (Connectionless) Servers

-f Display PIDs, etc. in alternate (Decmimal/Hexidecimal) format; allows optional conversion

between machines with different display formats

-h Display help on options for dnetstat

-! Display other specified options in long or extended format

-n show DNET map (network, host)

-p ping the specifed hos! - i.e. test if DNET is alive on the specified host p overrides all other

options. If successful, th,: message:

DNET Is Alive at dnet network dnet host

is printed on the terminal If the 'ping' operation is unsuccessful, dnetstat will usually timeout

waiting for the response from dnstatd.

Timed out waiting for response

-r show DNET routing tables for the specified node

-s show per-DNET server statistics (dtftp, drexec, dmail, dncl)

Page 21 (07/12/89)

DNSTATD(1) DNET DNSTATD(1)

SEEALSO

dnstatd,tbls.msinitdec,tbls.msinitdec,tbls.net

RETURN VALUE

ERRORS

The call fails if:

Specified host is not up

DNET is not operating on the specified host

dnstatd is not operating on the specified host

In each of the above instances, dnetstat, will report:

Timed out waiting for response

Page22 (07/12/89)

DNSTOP(8) DNET DNSTOP(8)

NAME

dnstop - stop the local DNET services

SYNOPSIS

dnstop

DESCRIPTION

The dnstop command allows the system administrator to stop the local DNET services.

SEE ALSO

dnstart(8)

DIAGNOSTICS

The contents of dnstop are listed below:

echo '**********Stopping TCP lVlaster Server ***********'

dmskill tcp

stopdgms

Page 23 (08/31/89)

DTFTPD(1) DNET DTFTPD(1)

NAME

dtfipd- dnet trivial file tr.msfer server

SYNOPSIS

dtftpd

DESCRIPTION

The dtftpd is the DNET file transfer server.
remote DNET machines.

SEE ALSO

dms, dtftp(1)

RETURN VALUE

ERRORS

The call fails if:

[D DGTB]

It provides for the transfer of files to and from

Page 24
(08/31/89)

MAKEMOVE(8) DNET MAKEMOVE(8)

NAME

makemove- generate a generic image of the DNET s3urce files for transport to a remote
machine

SYNOPSIS

makemove

DESCRIPTION

The makemove command allows the system administ:ator at the Master DNET node to

generate 'ptar' files of the DNET source code for transport to remote locations.

SEE ALSO

ptar(1)

DIAGNOSTICS

Page 25 (07/14/89)

POSTMOVE(8) DNET POSTMOVE(8)

NAME

postmove-generateDNETonatargetmachine
SYNOPSIS

postmove[-m] [-s] [-se]i-h]

DESCRIPTION

The postmove command generates the DNET source and/or executables on a target DNET
host.

-m make DNET after source code has bee:a unpacked

-so suppress cleanup - do not remove local copies of 'ptar' files after executables
have been made

create shell environment

help

.s

-h

SEE ALSO

makemove(8), sdenv(1), ptar(1)

DIAGNOSTICS

The postmove utility is _ shell program (or DCL script). Short messages wiU be generated
during normal operation informing the user what porticn of the postmove is being performed

currently. Most error conditions result in an abort with the message indicating that an abort is

taking place. A final me,.sage will be issued when the postmove has run successfully.

Page 26 (07/14/89)

PTAR(1) DNET PTAR(1)

-c

-t

SEE ALSO

NAME

ptar - pack/unpack file(s) in a generic tar format

SYNOPSIS

ptae [-xct] filename

DESCRIPTION

The ptar command packs or unpacks a file or files into a generic 'tar' format for shipment to

remove DNET target machines.

-x extract files

Create a ptar file

Table cf contents on existing ptar file

makemove(8), postmove(8)

DIAGNOSTICS

The ptar displays a list of file names as they are being extracted or archived.

Page 27 (07/14/89)

STARTDGMS(8) DNET STARTDGMS(8)

NAME

startdgms - start local DNET Datagram Service

SYNOPSIS

startdgms

DESCRIPTION

The startdgms command allows the system administrato.- on a UNIX host to start-up the local

DNET Datagram service, startdgms is ordinarily invoked automatically by the dnstart script.

SEE ALSO

dnstart(8), startdgms

DIAGNOST|CS

The startdgms script is listed below:

Page 28 (07/12/89)

STARTDGMS(8) DNET STARTDGMS(8)

if ["$dnet home" = ""]
then

echo' 'dnet home not set...Aborting
exit 1

fi

dnet_home-"echo "$ {dnet_home}/" I tr -s '/' '/"

dnet_log = "/tmp/dnet/";export dnet_log

nohup dgms > "$ {dnet_log}dgms.log" 2 > &l &
pidlist = $!

odgms = "$ {dnet_log} dgms.log"; export odgms
sleep 1

nohup dgsudp in > "${dnet_log}dgsudp_in.log" 2>&1 &
pidlist-" Spidlist" "$!

odgsin = "$ {dnet_log} dgsudp_in.log";export odgs|n

nohup dgsudp_out > "${dnet_log}dgsudp_out.log" 2 >&l &
pidlist-" Spidilst" "$1

odgsout--- "$ { dnet_log} dgsuc*p out.log";export odgsout
sleep 1

echo **************************,,.**g****************************
cat Sod,ms

echo ******************************_********************************
cat Sod,sin

echo ******************************_*********************************
cat $odgsout

nohup plngerd > "${dnet_log}pingerd.log" 2 > &I &
pidllst--" Spidlist" "$1

oplngerd --"$ {dnet log}pingerd.log";export op|ngerd
nohup abc> "${dnet Iog}abc.log" 2 > &l &
pidlist = $pidlist" "$!

oabc = "${dnet_log}abc.iog";export oabc
sleep 1

echo **
cat $opingerd

echo ***
cat $oabc

echo Spidlist > "${dnet_home}pidlist"

Page 29 (07/12/89)

STRDGMS.COM(8) DNET STRDGMS.COM(8)

NAME

strdgms.com- start local DNET node (on VAX systems)

SYNOPSIS

@strdgms

DESCRIPTION

The strdgms.com command allows the system administ:'ator on a UNIX host to start-up the

DNET datagram service Ordinarily, this script is executed automatically by the dnstart.com

script.

SEE ALSO

dnstart(8), dnstop(8), dnstop.com(8), strdgms.com, strsta=com

DIAGNOSTICS

The strdgrns.com script is listed below:

! strdgms - start DNET Datagram Service

cd dnet home

cd [.bin]

set proc/prlv= sysnam

spawn/in = nh/out = dnet_l,ome:dgms.iog/process = dgms/rlowalt run/nodebug dgms

set proc/priv = nosysnam

spawn /ln = nh /out = dnet J _me:dgsudp_in.log/process = dgsudp_ln /nowait run/nodebug dgsudp_in

spawn/in = nh/out = dnet_l.ome:dgsudp_out.log/process = dgsudp_out/nowalt run/nodebug dgsudp_out
set proc/prlv= sysnam

$ spawn/in = nh/out = dnet_home:dgsdec.log/process = dgsd_ c/nowalt run/nodebug dgsdec
$! set proc/priv = nosysnam

$! spawn/in = nh/out =dnet home:pingerd.log/process = pingerd/nowalt run/nodebug pingerd

$! spawn/in = nh/out = dnethome:abc.log/process = abc/nowait run/nodebug abe
$
$cd dnet home

$

$ type dgms.log

$ type dgsudp_ln.log

$ type dgsudp out.log
$! type pingerd.log

$! type abe.log

Page30 (07/12/89)

DNSTOP.COM(8) DNET DNSTOP.COM(8)

NAME

dnstop.com - stop the locJl DNET services on VAX syste:ns

SYNOPSIS

@dnstop

DESCRIPTION

The dnstop command allows the system administrator to stop the local DNET services.

SEE ALSO

dnstart.com(8)

DIAGNOSTICS

The contents of dnstop.com are listed below:

$
$ cd dnet home

$

$ write sys$output "stopping dgms

$ @stpdgms

$ write sys$output "stopping dmsdec "

$ stop dmsdec
$ write sys$output "stopping dmstcp "

$ stop dmstcp

$ write sys$output "stopping dnstatd "

$ stop dnstatd
$
$ cd dnet home

$
$ wait 00:00:05.00

$

$ write sys$output "DNET is halted "
$

Page 31 (08/3i/89)

STOPDGMS(8) DNET STOPDGMS(8)

NAME

stopdmgs - stop the local DNET datagram service on a UNIX system

SYNOPSIS

stopdgms

DESCRIPTION

The stopdgms command allows the system administrator to stop the local DNET services.

SEE ALSO

dnstart(8), dnstop(8), startdgms(8)

DIAGNOSTICS

The contents of stopdgms are lis_,ed below:

if ["$dnet home" = ""]
then

echo' 'dnet home not set...Abortlng
m

exit 1

fi

dnet home='echo "${dnet_home}/" [tr-s '/' '/"
if [-f"$ {dnet home}pidlist"]
then

echo Cleaning up dgms
else

echo No dgms running
exit 0

fi

pidlist-'cat "$ (dnet_home })ldlist"
echo kill -9 "$pidlist"

for pid in $pidlist
do

kill -9 $pid
done

ipcrm -Q 101

rm "$ {dnet_home}pldlist"

Page 32 (08/31/89)

STRPVC.COM(8) DNET STRPVC.COM(8)

NAME

strpvc.com- startlocalDNETnodePVCserviceonaVANsystem
SYNOPSIS

@strpve
DESCRIPTION

Thestrpvc.eomcommandallowsthesystemadministratoronaUNIXhosttostart-upthelocal
DNETnode.ordinarilyrunviadnstart.com.

SEEALSO

dnstart(8),dnstop(8),dnstop.com(8),strdgms.com,strsta.'..com
DIAGNOSTICS

Thestrpvc.com script is listed below:

! strpvc - start DNET PVC Service

cd dnet home

cd [.bin]

set proc/priv = sysnam

write sys$output "starting dmsdec ..."

run/proc = dmsdec dmsdec

write sys$output "starting dmstcp ..."

run/proc= dmstcp dmstcp

cd dnet home

Page 33 (07/12/89)

STRSTAT.COM(8) DNET STRSTAT.COM(8)

NAME

strstat.com- startlocalDNETnetworkstatusserver(on'v'AX systems)

SYNOPSIS

@strstat

DESCRIPTION

The strstat.com command allows the system administrator on a UNIX host to start-up the local

DNET node. Ordinarily run by dnstart.com.

SEE ALSO

dnstart(8), dnstop(8), dn_top.com(8), strdgms.com, strsta:.com

DIAGNOSTICS

The strstat.com script is listed bc,'ow:

$.*strstat - start DNET status daemon

$

$ cd dnet home
$ cd [.bin']

$

$ write sys$output "starting dnstatd ..."

$ run/proc = dnstatd dnstatd
$

$ cd dnet home
$

Page34 (07/12/89)

DNET

TECHNICAL GUIDE

Version: 1.18

Print Date: 09/01/89 13:54".37

Module Name: tech.gui

Digital Analysis Corporation
1889 Preston White Drive

Reston, Virginia 22091

(703) 476-5900

S_IR RIGHTS NOTICE

This SBIR data is ft_rn_hed w_.th SBIR rt_t _ NASA C.o_rsct NAS5-30085. For • period o¢ 2 yea_ after acce_ance of aU ire ¢r_ to be delivered m_der th_ conlract

the Governmen_ sgre_ to me this data _ Gocernment purposeJ only, and it shall n_ be d_clmed o_ the Go_rnmem (incl_d_l _ for pr_-_rement

p_potes) d_.in 8 it_r-.h _ withotl per_ssio_ Ot the Co.factor, except that. ,ubjet_ to the f_ _ _ d_clolm'e prohibitu_l, imeh data may be _ for me

by s_0ort cOmnL_ors. After the af_ 2,.ylzr period the Government hu • royalty._,'ee Ik:enme to use, and to authorize others to _ o_ its behalf, th.',J data for

Govern_-_ p_, but it relieved h'om all di:,clolm'e prohibiUons _ sssum¢¢ no liabdio/for _ma_barized u_d of Ch/s deta by third pstties. This No¢_¢_ shall be

affixed to am/" reproduct _s of this data, m who,,,, o¢ m part."

_ght1989, Di_talAnal_Corporation

CONTENTS

1. DNET Overview
i.i

1.2

1.3

1.4
1.5

• ° • * • • • 4 • ° • • ° • ° ° ° • ° • • _ Q

Underlying Assumptions

Basic Design Philosophy
Major Elements of a DNET Network

1.3.1 Network Arrangement 2

1.3.2 Existing Networks 3
1.3.3 DNET Hosts 3

1.3.4 Gateways 5

Layered Model for DNET

Layered Model for Communication Services

1.5.1 Application 8
1.5.2 Presentation 8
1.5.3 Session 8

1.5.4 Transport 8
1.5.5 Network 9
1.5.6 Link - Interface 9

1.5.7 Link 9

1.5.8 Physical 9

2. Relationships between DNET Components • , • • • * • • • • • • • • °

2.1 Basic I/O Function Library

2.2 DNET Objects

3. DNET Permanent Virtual Circuit (PVC) Internals
3.1 Connection Establishment

3.1.1 Summary of Connection Establishment Sequence 13
3.2 PVC Client Details

3.2.1 Connection Establishment 18
3.2.2 Close Connection 18

3.3 PVC - Server

3.3.1 Receive a Connection 18

3.3.2 Notify Master Server of Session Completion 19
3.4 Data Streaming During Session - Clients and Servers
3.5 Master Server

3.5.1 Master Server Schematic 21

3.5,2 Master Server Control Function 22

3.5.3 Initialization of the Master Server 22

3.5.4 Example of Application Server Spawning 23
3.6 Details of Specific Application Server Assignment

3.6.1 Service Assignment Function 23

3.6.2 Specific Server Instance Table 24
3.7 DNET Gateways

3.7.1 Permanent Virtual Circuit Relays 26

3.7.2 Master Server Control of PVC Relays 26

3,7.3 Detail of PVC Relay Function 26

4. Connectionless Mode Services

4.1 Introduction to Connectionless Service

4.1.1 Schematic of Connectionless Communications Service 28

4,1.2 Connectionless Datagram Formats 29

4.2 per protocol DataGram Server (DGS)

4.3 DataGram Master Server (DGMS)

4.3.1 The Routing Function 32

4.3.2 The Multiplexor Function 33

6

8

10
10

11

12
12

17

18

20

20

23

24

28

28

31

32

-i-

4.4
4.4.1
4.4.2
4.4.3
4.4.4
4.4.5
4.4.6
4.4.7

4.3.3 TheDGMS Service Routines 34

4.3.4 The ADGUT 38

The Connectionless Services Library
The Function Of dn cinit 40
The Function of dn -cwrite 40

The Function of dn-chandler 40

The Function of dn-cread 41

The Function of dn"cdone 41

The Function of dn-salloc 41

The Function of dn-cerror 42

4.5 Component Interaction D_agrams

5. DNET Interprocess Communication (IPC)
5.1 Introduction

5.2 Interface
5.2.1 Administration Of IPC Medium 64

5.2.2 Administration Of Individual IPC Mechanisms 66

5.2.3 Sending And Receiving Messages 68
5.3 Implementation

5.3.1 The ipcid Table 70
5.3.2 System V 70
5.3.3 BSD 71

5.3.4 VMS 72

6. Miscellaneous DNET Internal Utilities

6.1 General System Utilities

6.1.1 getppid 74

6.1.2 fperror 74
6.1.3 iosync 74
6.1.4 is error 74

6.1.5 p_time 74

6.1.6 stricmp 74
6.2 General Network Utilites

6.2.1 check_mynet 74
6.2.2 disassemble 74

6.2.3 dn ink 74

6.2.4 cha-makedg 74

6.2.5 dn makepvc 74
6.3 Stream to Datagram Conversion Utilities

6.3.1 strtodg_dglen 74

6.3.2 strtodg msg 74

6.3.3 strtodg aumhops 74
6.3.4 strtodg_path 74

6.3.5 strtodg_pathlen 74

6.3.6 strtodg stream 74

6.3.7 strtodg stream_msg 74

6.3.8 strtodg type 74
6.4 UNIX Specific Utilities

6.5

6.4.1

6.4.2

6.4.3

VMS

6.5.1

6.5.2

6.5.3

6.5.4

build argarr 74
execsheU 75

startserver 75

Specific Utilities
create mailbox 75
execslaell 75

getargs 75

gobetween 75

40

43

63

63
64

70

74

74

74

74

74

75

-ii-

6.5.5 setargs 75
6.5,6 startserver 75

6.5.7 lib do command
m m

6.5.8 libspawn 75

6.5.9 sys_assign 75
6.5.10 sys_cancel 75

6.5.11 sys crelnm 75

6.5.12 sys crelnt 75

6.5.13 sys crembx 75

6.5,14 sys creprc 75

6.5.15 sys dassgn 75
6.5.16 sys_dellnm 75

6.5.17 sys delmbx 75

6.5.18 sys_getdvi 75

6.5.19 sys getjpi 75

6.5.20 sys getmsg 75

6.5,21 sys hiber 75

6.5.22 sys_qio 75
6.5.23 sys qiow 75

6.5.24 sys trnlnm 75

6.5.25 sys_wake 75

6.5.26 vms fperror 75

6,5.27 vms_perror 75
6.5.28 vms read 75

75

6.5.29 vms-write 75

6.6 MS DOS Specific Utilites

7. Interfaces to Underlying Networks
7,1 Underlying Network Protocols

7.2 TCP/IP

7.3 TCP/IP Specific Uti/ities

7.3.1 tcp_accept 77

7.3.2 tcp_close 77

7.3.3 tcp_getclient 77
7.3.4 tcp_initperm 77

7.3.5 tcpinittrans 77
7,3.6 tcp open 77

7.3.7 tcp..pvcopen 77
7.3.8 tcp_read 77

7.3.9 top_write 77
7.4 DECnet

7.4.1 deenet read 77

7.4.2 decnet_accept 77
7.4,3 decrier dose 77

7.4.4 deenet_errgeneric 77
7.4.5 decnet_errprotocol 77

7.4,6 deeaet..getclient 77

7.4.7 decnet initperm 77
7.4.8 decnet inittrans 77

7.4.9 decnet open 77

7.4.10 decnet._pvcopen 77
7,4.11 decnet read 77
7.4,12 decnet-select 77

7.4.13 decnet-write 78

7.4.14 vms aread 78

75

76

76

76

77

77

- iii -

7.4.15vmsawrite 78
7.4.16ms-wait 78

8. UserApplicationInternals 79
8.1 FileTransferProtocol.................... 79
8.2 SchematicofFileTransfer 79

8.2.1 GeneralConsiderations79
8.2.2 ASCII 79
8.2.3 BinaryFiles 80

8.3 SecurityDuringFileTransfer 80
8.4 InitiationofFileTransferfromOneRemoteNode to Another 80

8.5 Initiation of Remote Procedure Upon Completion of File Transfer 81

8.6 Remote Login 81
8.7 Electronic Mail 81

8.8 General 81

8.9 Mail Operation 82
8.9.1 Structure of DENT mail files 82

8.9.2 Sending Mail 82
8.9.3 Reading Mail 82

8.9.4 Mail Routing 82

9. dnetstat - Network Status Function 83

10. Network Command Execution & Task Redirection 84

10.1 Network Command Processor Schematic 84

10.2 Network Command Language 85

10.2.1 Command Language Syntax 85
10.2.2 Using The Command Language 85

10.3 Network Command Interpreter 86

10.3.1 Schematic of Network Command Interpreter 86
10.4 Network Command Server 87

10.4.1 Operations at Network Command Server during File I/O 88

10.4.2 Status Reporting (from last Network Command Server) 88
10.5 An Example 89

10.6 An Example of Network Command Execution 90

10.7 Network Command Processor Implementation 90

10.8 Network Command Interpreter 91

10.8.1 Additional Processing 91
10.9 Network Command Server 92

10.9.1 Implementation of the Network Command Server 92

10.10 Network File I/O 92

11. Presentation Layer Services 94
11.1 XDR 94

12. DNET Error Handling 95

13. Routing 96

13.0.1 get..path 96

13.0.2 load..my_name 96
13.0.3 load net table 96

13.1 Router Operation 96

13.2 Routing Example 98

13.3 Routing Table Updates 100

° iv-

Figure1.

Figure2.

Figure3.
Figure4.

Figure5.

Figure6.
Figure7.

Figure8.
Figure9.

Figure10.
Figure11.

LISTOFFIGURES

DGMSActiveDatagramUserTable 38
SchematicOverviewof CotmectionlessService 44

EmptyHostMachineWithNoDNETComponents........... 45
DatagramMasterServerStarted 47

ProcessCommunicationMediumPreparation 49
InvocationofDGSComponents................. 51

dn cinitprocess...................... 53
dn cwriteProcess 55

dnchandlerProcess 57

Receive Datagram at Destination 59

Receive Datagram: at Gateway 61

-V-

1. DNET Overview

This section provides an introduction to the internal functions of DNET. The various elements which

make up DNET are described as are some of the important assumptions made in the design. Each of

these elements is discussed in more detail in a subsequent chapter.

1.1 Underlying Assumptions

1. Existing (networking) protocols to be employed as the combined link/physical layer for the

Heterogeneous Net.

2. DNET Software (operating at transport & network layers) to be resident on all nodes which
constitute the Heterogeneous Net.

3. No modification of Operating System Kernels to be required in the implementation/use of
DNET Software

4. Initial Operating Environment

- TCP/IP

- DECNET

1.2 Basic Design Philosophy

DNET communications and computing services are provided in an environment based on clients and
servers. Using the communications services administrative processes request the initiation of server

processes; clients then request connections to the servers and obtain the services. Interactive and batch

mode operations are supported. The interface to the communications services is provided by a set of

input/output subroutines that are included in the user's run-time utility library.

Administrators on each host can regulate the number and type of servers. At connection establishment

time the assignment of specific server processes to clients is done using the task initiation facilities of
the local operating system. Servers status may be monitored on demand by a network status utility.

In an environment comprising networks with heterogeneous communications protocols, gateways are

needed to permit data to pass from one network to another which uses a different communications
protocol. Gateways allow programs operating on hosts on different network to communicate with

others without concern about possible network protocol differences. Using end-to-end

acknowlegcments for reliability and automatic inclusion of gateways for protocol conversion DNET

provides protocol transparent, reliable, data streams or datagram transmission between hosts on
connected DECnet, TCP/IP, (and Asynchronous) networks.

The DNET user can choose to establish a "permanent virtual circuit". In this mode an "open" function
is called to establish a communications path from one process to another process in another host,

possibly in another network. The path established comprises relay processes and network connections

dedicated exclusively to the stream mode transport of data between the end points of the circuit.
Permanent virtual circuits reduce the number of network connections that must be established and the

associated task initiation required. This significantly improves network performance. When data is

transmitted in a "streaming" fashion in one session the performance increase more than offsets the
initial cost of circuit establishment.

DNET Overview 1

DNET also providesvariablelengthdatagramservice.The user interfaceto this serviceis
connectionless(i.e.no"open"isrequiredbeforestartingprocesstoprocesscommunications)however
certainlocalregistrationasa datagramuseris requiredof processeswishingto usethisservice.
Datagramsmaybeusedtoeithertransmitdataorsignalinformation.

1.3 Major Elements of a DNET Network

DNET consists of the following major elements:

1. A collection of two or more existing, specific networks

2. DNET Hosts - machines which are able to communicate using DNET services

3. DNET Gateways - special DNET Hosts which also provide protocol conversion between the
underlying networks

By implication, the DNET Hosts and Gateways have DNET software installed which establishes their
functions. Each of these elements is described in more detail below:

1.3.1 Network Arrangement

DNET is a "recta-network" or a network of networks. The general arrangement of these major
elements of a DNET network is shown in the following diagram.

2 DNETTECHNICAL GUIDE

PROC I

D1

PRO(? 2 - - - '" PROC

/

DNET Hos!

,_ Net 3 "'""_'_ PROC

Gateway _/)

Q4

DNET Gateway

2A

1A

1.3.2 Existing Networks

The underlying networks associated with DNET are ones which have existing reliable, data streaming

capabilities. The networks in which DNET may currently operate are TCP/IP and DECnet.

1.3.3 DNET Hosts

DNET Hosts are computers at which local processes may use the facilities of DNET to interact with

remote processes in the heterogeneous network. Any computer connected to one of the networks

served by DNET may become a node on DNET provided the following conditions apply. The machine
must:

1. be resident on a specific existing network (e.g. TCP/IP Net X, SPANET, etc.) which is known to
DNET

2. have DNET Host Software Installed & Operational

Each DNET Host contains the following elements:

DNET Overview 3

Software Components

1. DNET Basic I/O Library - This is a library of 'C' Language functions which provide the
capability to generate, route, read, and write DNET datagrams and to open and close DNET

permanent virtual circuits. The major functions of the I/O package are:

- Establishment of DNET Private Virtual Circuits

- Send/Receive Connectionless Datagrams & DNET Signals

- Routing for PVCs and Datagrams

- Interface to underlying communications network(s)

These are discussed below.

1. Private Virtual Circuit Service

The DNET user has the option of requesting the establishment of a DNET private

virtual circuit (PVC). When a PVC is required the client process makes a call to the

DNET function, dn open(), specifying the destination network, host, and process.

When a connection to the latter has been established dn_open returns an appropriate

channel descriptor to the client which is then used on subsequent dn read0 and
dn_write0 function calls.

Once the DNET PVC is 'open', it appears as a 'smart' wire; i.e. no additional DNET

overhead is imposed on the datastream which passes between the communicating

processes at each end of the PVC link.

2. Datagram & Signalling Service

.

Two types of datagrams are supported

1. Cormectiordess datagrams - these datagrams are used to move user data between
remote tasks in connectionless fashion

2. Signalling datagrams- these are similar to the conneetionless datagrams except for
their "type" fields and the signal information that they contain in their data fields.

3. Routing Software

- DNET employs dynamic, hierarchical routing. Each DNET host maintains a

hierarchical routing table in support of this routing function. The paths to hosts in the
local network are direct connections. For paths to hosts in other networks, the routing

table indicates the host to which connection should be made (or to which a datagram

should be sent) next in order to move toward the destination network. The entries in

the routing table are currently static, but could be updated dynamically in the future

using the general network utility dnetstat.

4. Interface to Underlying Networks connected to the local host

- Underlying Network Protocols supported in the initial version of DNET include.

Interfaces to these networks are established as configuration paramters at the time

DNET is installed on a particular host system.

1. TCP/IP

2. DECnet

DNET Master PVC Server(s) - This server process responds to requests from DNET Clients for
connection to DNET Application Servers

4 DNET TECHNICAL GUIDE

3. DNET Application Clients - These are specific DNET applications such as File Transfer, etc.

which may be invoked by the user at each DNET host.

4. DNET Network Command Interpreter - operates as special command line interpreter to parse

and distribute DNET commands; The latter allow such operations as I/O redirection and
distributed command chaining across DNET.

5. DNET Application Servers - These are specific servers which are required by a wide range of

Network user applications on a continuing basis. The number and types of such servers available
at a specific node may vary according to local conditions. Application servers are controlled by

systems administrators on hosts in the local domain (network).

6. DNET Network Command Server - this 'special' application server interprets DNET Network

Command Language commands, executing the local portions thereof, and forwarding those

portions of the command to be executed at other DNET hosts.

7. DNET Datagram Master Server (DGMS) - this is an internal server process which provides local

control for the datagram service and routing for datagrams to remote nodes. All processes
which wish to use the datagram service must register with the DGMS.

8. DNET per Protocol Datagram Server(s) - these are well-known DNET servers whose purpose is
to forward connectionless DNET datagrams to destinations elsewhere in DNET via specific
datagram protocols.

Tables and Variables

1. DNET Hostname tbls.myname - Variable containing name of local node and its underlying
DNET-networks

2. DNET Routing Tables - tbls.net. A hierachical routing table which lists the next hop (via a

DNET gateway) to move toward all distant DNET networks.

3. Master Server lnlt Table - tbls.msinittcp and tbls.msinitdec. This is a file containing the
initialization information for the Master Server. It is loaded into the Master Server Table when

the DNET software is started on the local node.

4. DNET Master Server Table - This table contains a list of aUocated DNET application servers on

this host and their status (not-running, idle, in-use). It is used by the Master Server in

responding to DNET clients' requests for service.

5. DNET Server Instance Table(s) - These tables list detailed instances of Specific DNET servers

under control of the Master Server at this DNET host. There is a separate SIT for each type of
server available at this node.

6. Connection Lock Table - (not implemented at this time) Used by the DNET Datagram Service;

lists process/channel/streams currently connected to this host which may be used for the
forwarding of connectionless datagrams

1.3.4 Gateways

DNET Gateways are nodes in DNET which are connected to one or more networks in which DNET is

operating. The function of the gateway is to bridge the protocol and other differences between these

networks in a transparent manner. The gateway functions are implemented in special DNET PVC

Relay servers and Datagram Servers which provide protocol conversion for Permanent Virtual Circuits

and connectionless datagrams respectively.

Specific Gateway Elements include all elements of other DNET hosts with the following variations and
additions:

DNET Overview 5

SoftwareComponents - All of DNET hosts plus

1. PVC Relay Server - these special processes perform protocol hops for PVC client/server

conversations between two different underlying networks forming a portion of DNET. When idle,
these relay processes are like DNET application servers. The PVC Master controls allocation of

the relays when they are required to satisfy a connection request from a client. Once a PVC has

been established, the relay performs efficient, full duplex streaming between the client and server

processes.

Tables - Same as (non-gateway) DNET hosts

1.4 Layered Model for DNET

6 DNET TECHNICAL GUIDE

Application

Presentation

Session (NULL)

Transport

°°°°,o°°°°°°°°°**_..°.o°t._°°,°.°,°.o

Network

I IExisting Protocol

Pseudo.Link

o,.,,°.......... \ .,,.,,.,,,.,

\

\
\

\

\
\

\
\

x

DNET

Applications

& Network Utilities

DNET

Presentation

Functions

DNET

I/0

Library

DNET

Relays

t Application

r

I

I

I

I

t Pl'tw-_l_ation I

P

i

t

°°°°.°_°,**°.°°°°°_°°.°°°,°_°°,.°,°,.

I

Network

i

J

Existinli Protocol

Pseudo.Link

/

/

/

/

/

z

/

/

z

/
/

\\ f/

Network

Existing Protocols

\\ 1//

DNET Overview 7

1.5 Layered Model for Communication Services

The following is a introduction to the services provided at the various layers within DNET Software.

So far as deemed practical, the model attempts to be consistent with services defined by the ISO-OSI

Model. No claim is made that this consistency is exhaustive, however. Rather, the use of terminology,
concepts, and naming conventions, from the OSI model are intended to allow a more detailed future
migration that model's environment.

1.5.1 Application

Provides library of function calls which DAVID (or other applications) may invoke in order to converse
with remote nodes on the heterogeneous net

Application Services Supported:

1. File Transfer

- ASCII and Binary

- End to End Acknowledgement

- Data Structures mapped end to end if context registered with Presentation layer Service

2. Remote Login

3. Remote Execution

4. Mail

5. General Utilities

- Status of all network nodes (up/down)

- Load on remote node

- Hostid, hostname, alias resolution

1.5.2 Presentation

- The SUN External Data Representation (XDR) Specification is used to
independent sharing of data types across all DNET nodes.

allow machine

1.5.3 Session

- This layer is null at present; All connections are assumed to support only one simultaneous session

1.5.4 Transport

- DNET Basic I/O Function Library

- Reliable Task-to-Task Communications

- End-to-End Acknowledgement of Files, etc.

- User Authorization, Access Privileges

8 DNET TECHNICAL GUIDE

1.5.5 Network

- Defines routing strategies on the Heterogeneous Net

- Provides Relay function at intermediate Nodes

- Self Contained within DNET I/O Library, PVC Relays, and Datagram Servers

1.5. 6 Link - Interface

- A Pseudo-Link facility which provides consistent interface to a variety of underlying network

protocols

- Generally, the calls from the network layer to this interface map on a one-to-one basis to calls in

the underlying, well known protocol.

1.5. 7 Link

- These layers provided by underlying protocols

1.5.8 Physical

- Data is assumed to move in a reliable, streaming fashion on any of these links

DNET Overview 9

2. Relationships between DNET Components

2.1 Basic I/O Function Library
The function cars provided in the DNET basic I/O library are summarized in the following table:

Generic Operation VIRTUAL CKT Client VIRTUAL CKT Server Datagram SIGNAL

Estab. Connect. dn_open dn_getclient

Write dn write dn_cwrite dn_silpml

Synch Read dn read dn_.cread Des! Oper Sys

ASynch Read dn_cdlg_handler Dest Oper Sys

End Connect. dn_close dndone,dn_clo_ dn..cdoM

These functions are described in the following sections according to the type of service (PVC,

Connectionless Datagram, or Signal) which they support.

10 DNET TECHNICAL GUIDE

2.2 DNET Objects

The following table shows the relationships between the various DNET components

Object Nanm Resides in Started by Recetvcr Momtort_ by Shutdot_ by Shutdo_ra it

gen_rae

apphcatioat
servers

F.XFR,

RLOGIN,
REXEC ,ere,

Connection Lock Table

DNET Basic 1/O pkg

"¢ltrioushostl

Cnktt'wty

PEach DNET Hou

application

server cofit to[

fm't_ion

[DG S*r_er

, user tnogtzm

seBt to

requeston by

$er¢er

migmnem

N/W
sh.utcIowB or

need

DG Server

end of proc end o¢ procpart of

applicatiott

program

Muter Server Table hott where M S Ut Mast Serv M S M S proc net shmda net shutda

Matter Server Each DNET hint start of DNET S/W Bet shutdn net shutdn

tmrver_ {ctam DS client_ netthxlt_

' N/W Comm Lan 8 Interprtr

' wheB complete

U it¢l"

Mailer Server

loc_ _ Adman

N/W Command Server

Each DNET host

Each DNET h_

all DNET hc_sLocal Routing Table

N/W St_ Server GatewtyS Imy i/o

Service Assign FC'B m M S Ptot:

lnM S Proc

Part c_M S

Part of MS

N/W Admm Sezver

Loc Syt Aamm

Mast Server

N/W Admm Hott

An DN_r Hotts

DNET Object Table

Started at Upcmed by

t_m_e at $tart

up_ot herr at
neet_k.d

when penn DG Server
OOtll_Ct ion

proc start

start o(M S MS

.

rytt em _a_

at needed

!Comm Era©

net S_art N/W Stalat
Client

rum period

at net Start

St N /W Start

N/W StaJn N/W Adman

Server

ID_ sum

As needed

N/W SttrttJ, o M_t Serv

• s Control ftmctton

! Net S_attm

_rv_r it[

!G/w

DS pmc

N/W Util

M S Proc M S Cotlrol

Well Known ServerTable

Datagram Server

witch complete

reports to Net Net Star C1 end Of a_ _, proc term
S_atC1

I,_Ultter Set'vet Net S_xtttht Net S_tt_

comtotl it
laerverl rut M

S Tlb

Adm H_t Net Sort C1

N/W Util

Mast ServerPVC Relay

t¢_ tO Idl

hO_tS by N/W
Admm tmrv_

Remote DG

Ser_, Lootl

DNET pr_

Net Shut dn

N/W Shut_

Gttewayt Next Hap Mast Serv

when complete

r Server lattan_ Table F._h DNET H_t Malt Serv
I

I Mast Sct_r Mast Se_ N/WShutda

Net S_utdn

N/W Shut0a

Relationships between DNET Components 11

3. DNET Permanent Virtual Circuit (PVC) Internals

The section describes the several function calls associated with DNET Permanent Virtual Circuits.

The functions are arranged to indicate those used by DNET client and server processes.

3.1 Connection Establishment

This section provides additional details on the DNET PVC connection establishment operations. The
basic client-server connection establishment procedure is shown in the following diagram:

Corm Req Datagram to Master Server _ _

Master

Server

/
/

/

/

/

/
/

/

Server

[ACK from Specific Server

l

1. The client calls dn open0 with parameters including:

• Network Name

• Host Name

• Name of Server

2. dn_open0 obtains a network address for itself from the local network software. This address is
sent as part of the connection request datagram to the Master Server.

3. If relays are used (required), the relay processes recognize the connection request datagram and
do not close the connections following transmission of the datagram.

4. The last relay (or the Basic I/O package on the client if there are no relays) connects to the

Master Server at the destination host; it places its network address in the connection request

datagram as the "call back" address. The network address of the client is preserved for possible

use by the server.

12 DNET TECHNICAL GUIDE

5. The Connection request datagram is delivered to the Master Server.

6. Using the Master Server Table and a Specific Server Instance Table, the Master Server

allocates/spawns (VMS/UNIX respectively) a particular instance of the requested server type.

7. If service cannot be provided by the Master Server, a servicedenied or "NAK" response is
returned to the client.

. If a specific server can be provided, the Master Server passes the Connection Request Datagram
to this server, sends an "ACK" to the client, then closes its connection to the preceding process in
the connection chain.

. The specific instance of the server calls dn_getcllent0. Depending on the state of the
"callback_flaK' in the Connection Request Datagram, dn_getclient0 performs either a
call_forward or call_back procedure to complete the connection.

NOTE: If the user wishes to use a specific user-deflned process (not a known DNET service) that
process name should be specified in the initial call to dn_open 0. dn_open0, using the networking
software of the local system, spawns a copy of the named process if that process does not exist already.

3.1.1 Summary of Connection Establishment Sequence

The several operations described above are shown schematically in the following series of diagrams:

c...,1 laov

italay I g_qN

Client Calls tin_open0

Coul

............ fi_._.:_ Iidlg Iq

Connection Request Datagram Issued

DNET Permanent Virtual Circuit (PVC) Internals 13

Relay 1

Serif

Connection Request "pulls" Permanent Virtual Circuit Open

Client

dn_oleaO

flily !

Last Relay Sends Final Connection Information to Master Server

Relay N

i Ma_er
Serv_

r

I

Coeaa:lioa lafo

l-
Master Server Allocates/Starts Specific Server & 'hands off' Connection Info

14 DNET TECHNICAL GUIDE

CHeat

cJn_o_nO

R_lay I Rt4ay N • • .Glot_
Mat, tag

Server

SpKm¢
Scrvlr

Master Server Closes Connection to Last Relay

DNET Permanent Virtual Circuit (PVC) Internals 15

Clieat

Relay I Re_ N

\

C_ For*_CP_1_

Server Calls dn getclient0 to complete connection to Client

Mailtqr

Setter

sp_ek

Clleat

Relay I _.-.tf.4t---- RdayN

Server Sends Connection ACK to Client

Mamaer

_rver

SV*dtk

Sm'_¢

Cucm

Rel_, N

Client & Server Interact via dn_write0 & dn_read0

Silecifl¢ Scrv_

r" -i

l i

I _

I I

I I

L J

16 DNET TECHNICAL GUIDE

3.1.1.1 Client Server Conversation

Once the PVC is 'open' data is streamed between client and server processes:

Data stream to Server

Client

I" DNET _ /'f-_'"

t/O _i-------_ DNET Network _--------_ I/O

Package / \, / y Package /

Specific

Server

1

Data stream from Server [

3.1.1.2 Closing a Client Server Conversation

At the conclusion of a session, the DNET permanent virtual circuit may be closed
dn_closeO.

by calling

I Conn Close Datagram to DNET Server

Master

Server

L, _(DNET Network _z
Client

I_ \ / ;IServer

1

-- Coma Close ACK from Specific Server

3.2 PVC Client Details

A DNET Client Process employs the following calls for Virtual Circuit Service:

DNET Permanent Virtual Circuit (PVC) Internals 17

3.Z 1 Connection Establishment

dn_open

chart = dn_open(net, host, service)

int chan;

char *net;

char *host;

char *service;

/* A channel number;,
used In subsequent read and write calls */

/* A DNET network name *]

/* A DNET host name */

/* A DNET service */

char *userid;

char *passwd;

dn open() is used by client processes to request a Private Virtual Circuit connection to the specified
service a given network and host. The function does not return until a path to the destination has been
opened or an error conditions occurs.

3. 2. 2 Close Connection

dn close

status = dn_close(stream)
int status; /* An Indication of success or failure */
int chan; /* A channel structure that was

previously opened using dn_open0 */

dn_close0 closes a communications channel; it can be used in
clients and servers.

3.3 PVC - Server

3.3.1 Receive a Connection

dn_getcllent

than = dn_getclient(service, usrbuf, pusrbuflen)

char* service;

char* usrbuf;

char* pusrbuflen;

dn_getcllent is invoked by all DNET application servers in order
to establish connections with clients which request this service.

Functionally, dn_getclient 0 waits for the Master Server to 'hand' it a service request (in the form of a
valid 'channel' or stream descriptor) for the current application server.

Internally, dn getclient 0 is slightly more complex:

18 DNET TECHNICAL GUIDE

L A DNET IPC is created for 'receipt' of future service requests.

2. tin_done0 is called to 'register' this instance of the server as available in the appropriate Server
Instance Table.

3. The program then 'blocks' on ipcrcv; it is waiting for an actual service request to arrive from the
Master Server

4. when ipcrev returns, its contents are inspected and disassembled using the function disassemble.

5. If the Datagram type is callback, dn open 0 is used to call back. When dn_open 0 returns a
channel, this descriptor is passed on to the waiting application server.

6. If the CR Datagram type is 'stream', the channel descriptor for this call is passed as part of the

datagram, dn_getclient transparently passes this channel descriptor to the server.

NOTE: the eallforward mode is not currently activated at any server The call forward mode is
intended for use in Master Server/Application Server relationships where an 'open channel

descriptor' may be passed from a parent to a child process. UNIX/TCP/IP supports such

channel passing with ease, DECnet does not.

.

Master

Server

Process

Connection REQ

DNET

ppltcstton

Server

3.3.2 Notify Master Server of Session Completion

DNET Permanent Virtual Circuit (PVC) Internals 19

dn done

dn done is called by each DNET Application Server before exit
to]'ndicate to the local Master Server that it has

completed its task and is available for use

dn_done is also called (the first time thru) within dn_getcllent
to register the server as available with the Master Server

dn_done0 uses a common IPC (DMS_TCP or DMS_DEC depending
on the environment)

3.4 Data Streaming During Session - Clients and Servers

The functions dn_write0 and dn_read0 are used by both clients and servers to 'talk' on an open
DNET PVC Stream. These functions are equivalent to the UNIX system calls write() and read(); the
chan on which the operations occurs is an open DNET channel.

dn write
n

nbytes = dn_write(chan,buf, nbytes)

int nbytes;

int chan;

char *buf;

/* The number of bytes, including DNET headers,

that was written on the given stream. */

/* I/O channel returned from dn_open */
/* The data that is to be sent. This function

prepends the data with a DNET header. */

dn_writeO takes data and packages it in a datagram
for transmission over the appropriate communications channel.

dn read

Synchronous (Blocking) read

nbytes = dn_read(chan,
int nbytes;

that

int chan;

char *bu_

int count;

buf, count)

/* The number of bytes, including DNET headers,

was read from the given stream. */

/* A pointer to an I/O structure that was

previously opened by dn open0 */
/* A result parameter where the datagram, in
string format, is placed; this buffer

contains the DNET headers. */

/* The maximum number of bytes to receive. */

dn_readO reads a datagram from the communications channel and
unpackages it based on its type.

3.5 Master Server

This section describes the operation of DNET Master Servers. Master Servers are used to control the

DNET application processes within a single domain (underlying network) on the heterogeneous
network. The Master Servers are located at any computer attached to the local network which is to be

20 DNETTECHNICAL GUIDE

considered a DNET Host.

Master Servers are also used at DNET gateways to dlocate Permanent Virtual Circuit Relay processes.
Since Master Servers 'listen' on only one specific underlying network, DNET Gateways must have a

separate Master Server for each network to which it can provide relay services. (See the Chapter on

Gateways for additional information).

3.5.1 Master Server Schematic

Com_tion

..
: Master

Master : Server

Server i Server Assignment
Conlrol

Process : Function
Function

!......... ;.,............................ _
\

\

\ I

\ I
\

\ I

,__
I

Master

Server

Table q

L..____---- J

f- -1

Server h
I

Instance ,

Table '
I

(FX]L_'_) I

L- -J

f- "-I

Server i
t

Instance p

Table '

(RLogin) ,
...... J

SIT

(DNET

Server N)

...... J

The Master Server Process has several separate functional elements as indicated in the above figure:

- Server Control Function

- Server Assignment Function

The Master Server utilizes the Master Server Table and Server Instance Tables in providing application

services.

DNET Permanent Virtual Circuit (PVC) Internals 21

3.5.2 Master Server Control Function

This function has responsibility for the allocation and spawning of DNET application servers within the
local domain.

Prespawning of processes is available as an option in order to improve the response time of certain
systems such as VAX/VMS in which process start up time is signficant.

3. 5.2.1 Applican'on Server Spawning Algorithm

1. At network start up spawn a number of copies of the servers, keeping their process id's for later
use in forming the process names to give to clients. After giving a server to a client, spawn
another to replace it.

2. For less frequently used services- Spawn only when a client requests a server. This is the
Transient Server. Generally used in UNIX-TCP/IP cases.

3. Give the same prosess name to every client with the extension ' X' where X is the xth instance of
the server, up to the limit specified in the Master Server Init Table. To keep the the client count

accurate the server must signal the Master Server by calling dn done0 prior to terminating at
the completion of a session.

4. For very frequently used services- Spawn the maximum number desired and have server listen for
the next client when they complete their service for a client, and at the same time notify the
Master Server that they are ready for assignment.

3.5.3 Initialization of the Master Server

3.5.3.1 Master Server Init Table

The Master Server Init Table is read when the Master Server is started at the local DNET host.

DNET Master Server Init Table

Server "lype Image Name # Prespawned Max # In/t #

dec:hod dechod l 8 21

dt_pd dtltpd 1 9 4

drexe¢ drexer I I 1

dnstatd dnstatd 1 l 1

dncld dncldl 1 10 5

dloglnd dlolOnd 1 10 5

dmild dmaild I 10 l

This is a flat ASCII file which may be edited by the local system administrator.

3.5.3.2 DNET Master Server Table

The Master Server Table is a dynamic indicator of the types of DNET application servers available at
the local DNET host, the number which are currently available, whether these processed are
prespawned, the maximum number available, and the number currently in use, together with pointers
to a Server Instance table for each specific server type.

An example of the Master Server Table is shown in the following diagram:

22 DNET TECHNICAL GUIDE

DNET Master Server Table

Avail#Servedl3T_ PreSpawned

drexecd Y

dtftpd Y

dnmaU Y

dncl Y

drelaydt Y

Max #

10

10

1

10

10

In-Use

5 2

5 2

1 1

5 2

5 2

Ptr to SIT

78555

79747

83297

99541

81423

This table is maintained dynamically by the Master Server internal to itself. It may be read using

dnetstat

Use of this function is described in the USER's and ADMINISTRATOR's guides.

3.5. 4 Example of Application Server Spawning

The server spawning procedure is shown in the following diagram:

o,ooooooo°**ooo°°°°°,oooooo,o,o,,oo°oooooooo°°°oooooo°°°ooo°o

r

Spawning _ Spawner

Algorithm | I
-t Applicationserver

°°***o°°°°°°°,,,,°°°°°°°°.

DNET

Host

°°''°°°°°°°°°°°°°°**°°°°°°*°,°°°°°°°°o°*°°°*oooo°°oo°°°°°°°°o

Master server Process

3.6 Details of Specific Application Server Assignment

3. 6.1 Service Assignment Function

The Service Assignment function of the Master Server Process has the task of responding to requests
for service from application Client Processes at DNET hosts.

1. Accept Application Server Requests as they arrive at Master Server

DNET Permanent Virtual Circuit (PVC) Internals 23

4.

3. 6.2 Specific Server Instance Table

2. Find available Application Server (or spawn one) by examining Master Server Table and Specific
Server Instance Table.

3. Send Connection Information to the Specific DNET Server assigned to this request via DNET
IPC Mechanism.

Flag server as In-use in Master Server Table

DNET Server Instance Table

Server Type s File "13ransfer

Time Started Time End

10:11

10:15

10:.15 10:20

10:.16 10:.21

PID In.Use

1322 Y

1377 Y

1422 N

1428 N

Plr to MST Entry

45779

4.5888

45995

4610O

3.7 DNET Gateways

DNET Gateways are nodes in DNET which are connected to one or more networks in which DNET is

operating. The function of the gateway is to perform protocol conversion between these networks in a

transparent manner. Following terminology used by Space Telescope Institute and others, the protocol

conversion are performed via DNET relay servers. The relay functions are implemented in special

DNET PVC Relay servers and Datagram Servers. The PVC (Permanent Virtual Circuit) servers
support private circuits between communicating tasks while the Datagram Servers perform relay tasks

for DNET cormectionless datagrams.

24 DNET TECHNICAL GUIDE

Permanent Virtual Service

Connection Request

DG

PVC on

<Net 1

o,,,,,o,,,,,.,..,,,,,.,,,,,,,o,,°,,o,,,,o,,o,.o.,,,-,.,,,o-,,,

Li_en [

Ne_rk 11

Master

Server

Network 1

r

Corot Req

V

Master

Server

Network N

PVC Relay

Net l

to

Net N

PVC on

Net N >

Connection Request

DG

.............oo.o......o..l........o....o.o....o -.--.-.oo.o..

Connectionless

DG

............................°.°.°°.°°*-*-°*°*°ooo*oo*o..°*...

Protocol

Datagram

Server

Network I

\

\
\

\

Protocol

Datalp'am

Server

Network N

/
/

/
/

/
/

Datagram

Master

Server

(DGMS)

Connectionless

IX;

°..,.,.,....°.**.....°..°.°.....°.*............o...°*.....°..

Conn_tionless Service

DNET Gateway Elements

DNET Permanent Virtual Circuit (PVC) Internals 25

3. 7.1 Permanent Virtual Circuit Relays

The PVC Relay Servers provide a means of moving DNET stream data between two different network

protocols. Each relay process is tailored for a specific protocol conversion task. The relays server
accepts calls from one protocol/network and then establish a full duplex channel.

PVC Relays are allocated by DNET Master Server Processes in the gateway machine and may thus be

considered as special purpose DNET Application Servers whose primary function is protocol

conversion on a data stream. Since Master Servers can only listen on a single network, a gateway has a
Master Server (and a corresponding 'pool' of relay processes) for each protocol botmdry it supports.

Each Master Server accepts connection requests from a particular side of a protocol boundary and

allocates relays from this pool to service the request.

Relays can be used in routing and communications load balancing. Adding additional relay processes to

a gateway reduces the delay in accepting data from the network.

3. 7.2 Master Server Control of PVC Relays

PVC Relays are controlled by the DNET Master Server in the Gateway machine. The interactions

between the Relays and the Master Server are very similar to those of any DNET application server.

Startup and connection passing are identical to other servers. Thus, the relay calls dn_getcllent0 to
complete the connection to the preceding element in the connection chain.

The 'application' element of the relay requires establishment of a forward connection on the next hop

required as part of the connection establishment. This is accomplished by having the each relay call

dn_open 0 on its 'server' side.

The detailed steps in starting up the PVC relay are as follows:

1.

2.

.

4.

Master Server spawns/allocates 'next service' (the appropriate PVC relay in this case) and hands
the entire 'CR DG' to the Relay Server.

The allocated Relay Server is waiting on return from dn_getclient0

Waits for "ACK" to be returned from the 'dest service' (through its call to dn_getclient). The

'dest_service' would make the last 'dn getclient' call.

stream " dn_getcllent ();

When dn_getclient returns, the relay then calls dn_open0 passing the CR DG to this function:

3. 7.3 Detail of PVC Relay Function

The major elements associated with PVC Relays are shown in the following diagram:

26 DNET TECHNICAL GUIDE

dnreadO

Network 1

Permanent

Virtual

Circuit

Relay

Server

dnreadO

Network N

DNET Permanent Virtual Circuit (PVC) Internals 27

4. Connectionless Mode Services

4.1 Introduction to Connectionless Service

4.1.1 Schematic of Connectionless Communications Service

The connectionless communications service is shown schematically in the following diagram. Client

and server process pairs employ the DNET BASIC I/O Library to generate datagrams which are

routed automatically via DNET Datagram Servers to the destination process.

Source Destination

Host Host

r -3

Application

Client

DNL_I "

l/o
Package

DNET
I

Dala_m _
f

Server

i

I

I

I

I

r-- J---7

Connection L

Lock

f Table

L

r

r Gateway
I

1

Dat_rsm

Server
I

L__--T----J

I

I

.L _ _
f'- - -- -I

Connection
t

, Lock

I Table

l..J

I Datagram

'_-Ga,eway
i i

P N _
• ,°°.,.,,..°..°°I *.,

, Datagram ,

i Se_e¢ i
i I

L - -- -- T-- --- -J

I

I

5

f---- J'-- 7

' Connection
I I

Lock t

Table

/ _J

Application

Server

d_Lcdll_t"mdlez

DNET

]/o
Pae_t_

_ '

DN_r

Datagram

Server

t

I

r - - 7

P Connection '
I I

Lock

Table
I I

L -3

28 DNET TECHNICAL GUIDE

Client
Server

1

dn__riteO

[/o

Package

Datagram

Server

I Datagram to Server I _-_ usr__t_lerO

/C_ t Datasram

Applications using the cormectionless mode of this service call only two library functions: (ha_ewrite0

& dn_cdg_handler0. The initiating process (process sending the datagram) invokes dn_ewrite0.
Processes which expect to receive datagrams, (in general, all DNET applications), must call

dn..cdg handler0 at start up to identify an "asynchronous completion routine" to be executed whenever
a connectionless datagram arrives for this process. More complete details on the datagram service are

provided in a separate Chapter.

4.1.2 Connectionless Datagram Formats

The general format of a DNET datagram is:

struct ass_dg_buf
(

};

char desthost [I_MAXHNAME]

char destnet [I_MAXNNAMEI

char dmtproc[I_MAXPNAME]

char srchost [I_MAXHNAME]

char srcnet [I_MAXNNAMEI

char srcproc[I_MAXPNAME]

int maxhops;

int bufkn;

char buf[D_MAXDGI;

The DNET connectionless services provides a standard connectionless interface to a heterogeneous

pool of underlying protocols. The underlying protocols include:

Connectionless Mode Services 29

• Operating Systems

• UNIX System V.2

• UNIX BSD4.2

• VMS

• Networks

• UDP/IP

• DECnet

The DNET user applications will be provided with connectionless service totally independent of any of
the above possible combinations through the following major components:

per protocol DataGram Server(DGS)

The basic function of these components is to provide a standard interface to the

DGMS for all underlying protocols. There will be one dgs module set for every

underlying network protocol (UDP/IP, DECnet). The UDP dgs module set
consists of two modules: one for reading incoming datagrams and one for writing

outgoing datagrams. The DECnet dgs module consists of one module which both
reads incoming while sending outgoing datagrams.

All dgs modules are written as standard dnet datagram programs. This is to say that

the dgs modules interact with the dgms using the same library routines as any other

datagram application. The difference being that they have a specific function to

perform that is imperative to the operation of dnet. That function is to act as a dumb
relay between underlying network provider and the dgms module.

DataGram Master Server (DGMS)

As the name implies, this component coordinates the activities of all DNET

connectionless components. The dgms module provides two basic services for the

dnet datagram service: routing and multiplexing of datagrams.

The routing procedure is driven by the same routing tables used by the dnet

connection services. The dgms, though, is the only component of the dnet

connectionless services that provides routing. All other modules know only how to

pass a partially qualified datagram off to the dgms. The dgms looks up the
destination network in the routing table and uses the next network protocol to

determine which dgs module set to pass the datagram on to (It may also just pass it
directly to a server process if the datagram is already on the destination machine).

The multiplexing service provided by the dgms is driven off of an internal table

(ADGUT Active Datagram User Table) which has a record for every
communication endpoint provided. Included within these records is a string value

representing the name that is bound to a given endpoint. This name is used to

identify which process is to receive a datagram. All processes must bind to a process
name at the time they call dn cinit if they expect to receive datagrams. The following
process names are reserved for the datagram services and should not be used in user

applications:

• dgsudp

• dgstcp

• dgsdec

30 DNET TECHNICAL GUIDE

Counectioniess Services Library

The connectionless services library will provide DNET connectionless user
applications with a variety of standard subroutines to access the connectionless
services. These subroutines include:

• dn_cinit 0

• dn_cwrite()

• dn_chandler 0

• dn_cread 0

• dn_cdone 0

• dn_salloc 0

• dn_cerror 0

4.2 per protocol DataGram Server (DGS)

The primary purpose of the DGS module set is to provide a simple interface to an underlying
communication provider independent of the underlying communication provider. This interface is

actually the set of library routines described below and developed for use by dnet datagram
applications.

The first step that the DGS module set must perform is to register with the DGMS module. This is

facilitated through the dn cinit and dn chandler library routines. These are the same library routines
used by other handlers, al{'hough the dg_ns will check for a process registering with one the des module

set reserved names and will interact differently in some situations. The dn cinit call will register the

des module set under it's reserved name, and will provide a means for pas_ing datagrams to the des

module set's representative network(s). The dn chandler library routine is optionally used (currently
only on dgsdec) to allow for asynchronous receipt-of datagrams from the dgms.

After being properly registered, then the des module set is responsible for establishing a protocol

dependent endpoint for communication with other des module sets of the same type on different

machines. A name is bound to this endpoint for the peer des module sets to send to. At this stage a
perceived full duplex connection exists through the des module set from its underlying network
endpoint to its dnet endpoint.

The only responsibility left for the des module set is to maintain this full duplex connection, thereby

providing the dgms access to the underlying protocol. To provide this, the des module set must

respond to events on either side of the full duplex connection. For the UDP/IP and TCP/IP module

sets there actually exists two modules, one for reading from the underlying protocol and passing
datagrams on to the dgms, and another for reading datagrams from the dgms and passing them on to

the underlying protocol. The DECnet module set is implemented with only one module, and uses the

dn chandler routine to respond asynehronously to datagrams coming from the dgms, while waiting for
dat-agrams from the underlying protocol. The DECnet module was designed in this fashion so as to
work efficiently on the VMS machine.

The specific details of implementation are discussed in the appropriate sections that describe every

possible combination. This section will describe the general requirements that every DGS component
must meet.

All dgs modules are invoked independently of the dgrns, although they will fail if they are invoked

before the dgms is running. The shell program: startdgms, and the DCL script: strdgms.com illustrate
an acceptable method of network initiation. A more detailed discussion of the network initiation
should be found in the administrator's guide.

Connectlonless Mode Services 31

4.3 DataGram Master Server (DGMS)

The dgms module provides two basic functions for the datagram services: routing and multiplexing of
datagrams.

4.3.1 The Routing Function

The routing function is driven off of the same table used by the connection services for routing,

although some different fields are used. The following is a description of this routing table:

I destnet I nexthost [relay [nextproto [

The destnet field is the primary key to this table. The nexthost field is the name of the gateway

machine that the datagram should be sent to in propagating the datagram towards it's destination. The

relay field is not used by the datagram service. The nextproto field describes the protocol of the
network that is between the current host and nexthost. The values that this field may contain are

currently "tcp" and "dec".

The fields within the user datagram structure are used to determine which record to pull (if any) from
the routing table. The following structure describes the user datagram:

struct node

{
char host [I MAXHNAME];

char net [I MAXNNAME];

char proc[I MAXPNAME];
};

struct ud8
{

/* User Datagram structure */

struct node src;
struet node next;

struct node dest;

long maxhops;
int type;

long buflen;

char bur[1];
};

The user datagram structure provides a definitive description of a datagram. The user library stamps

the src node information on the way out (the dgs module sets avoid this stamping with a special flag on

the dn_cwrite routine). This information is not used directly by dnet components, but rather is there to

provide the dnet application with information about the datagram source. The destination node is set

by the user application and is never modified by the dnet components. The dgms module reads this
information in it's routing function and sets the next node field accordingly. The next node field is used

only to instruct the immediate dgs module set as to where to send the datagram to next. The next net

field is currently never used by the dgs module or set by the dgms module. This requires that machines

be named uniquely when there is a possibility that they will reside on networks common to any gateway
machine.

32 DNET TECHNICAL GUIDE

In addition to the above, the dgms module must be able to correctly describe itself in terms of machine

name and connected networks. This is determined from the myname table which is described below:

I hostname I netname ,]

The myname table is merely a list of all directly connected networks. This is used by the dgms to

determine when a datagram has reached it's destination network. (The network protocol type must be
determined by looking in the net table.) The hostname field is repetitive, but is required for the dgms

to ascertain when a datagram has reached it's destination machine.

The process for routing is, then, as follows. A datagram arrives at the dgms, the destination node is

checked against the myname table to place the datagram in one of the following three categories:

• The datagram is at the destination host and network

• The datagram is at the destination network but is not yet at the destination host

• The datagram is not yet at the destination network
Datagrams in the first category need no further routing and hence are passed on directly to the
multiplexor. Datagrams in either the second or third category require a network table lookup, using

the dest.network subfield of the datagram as the key. After a successful lookup, a table lookup is

performed on the next.proto subfield of the network table to determine the name of the dgs module
set process to send the datagram to. In addition, if the datagram is in the third category, then the

next.host subfield of the network table is used to determine the name of the gateway to send the

datagram on to. The next.host subfield and converted dgs process name are placed in the next node
field of the user datagram, which is then passed along to the multiplexor.

4.3.2 The Mul@lexor Function

The multiplexor performs a simple table lookup using the next.pro¢ subfield of the user datagram

against the Active DataGram User Table (ADGUT). Datagrams from the first routing category will

have the name of the destination process in this subfield, whereas datagrams from the second and third

routing category will have the process name of the dgs module set necessary to send the datagram on in
its appropriate direction. The ADGUT is described below.

All users of the DNET datagram service must be registered with the DGMS and entered into the

ADGUT. The DGMS will insure that two processes may not bind to the same process name. The

process name to be bound to the datagram communications endpoint is specified in the call to dn cinit.
The dgms is informed of the process name and other vital administrative or control inforn_ation

through its service interface.

The service routines to the dgms are accessed via the same Inter Process Communication (IPC)

mechanisms that are used to send and receive datagrams. This means the dgms has only to contend

with one I/O descriptor for reading. This requires one more level of abstraction above the datagram.

The unit of this abstraction is referred to as a dgms message. The dgms message is used to encapsulate

either a datagram or a service request. The following structure describes the dgms message.

struct dgms msg
{

int type;

long buflen;
char buf[1];

};

Connectlonless Mode Services 33

Thetypefieldidentifies the contents of the buf field and may be one of the following values:

D MSGDG

D_MSGSRQ

D MSGSRS

D MSGSHD

User Datagram

Service Request

Service Request Response

Shutdown Advisory -- Not currently implemented

4.3.3 The DGMS Service Routines

The dgms service routines mentioned above provide a means for dnet datagram applications (including
the dgs process sets) to interact administratively wit the dgms. The interface to the service routines are
provided through the dgms_serv library routine.

The dgms_serv library routine issues a Service Request message to the dgms and awaits a Service

Request Response message. The service request and service request response are both data structures.

Your program is required to fill out the service request structure before calling dgms serv. After

returning from dgrns_serv, the calling program interprets the results left in the service request response
structure. The following describes these two structures:

struct srvreq
{

lnt service; /* service token */

int pid; /* process id of requesting process */

char pname[D MAXPNAME] ;/* requested process name to be bound */

char rsplpcname [D_MAXPATHNAME] ;/* set only by dgms_serv */
char ipcname [D_MAXPATHNAME] ;/* where to send datagrams */
lnt value; /* service dependent field */

};

struct srvrsp
{

int service;

int pld;

char ipcname[D_MAXFNAME];/* no longer used */

char pname[D_MAXPNAME];/* not used */
lnt retvai; /* return value */

};

The following is a list of available services.
document.

These services are described in detail later in this

DN_REQBAS

DNREQLIS

DN_REQCLN

DN_REQAGS

Request Basic DGMS Service. Register a process name, send datagrams, and
receive datagrams synchronously.

Request Listen DGMS Service. Receive datagrams asynchronously.

Request DGMS Cleanup Service. Free up any resources tied up by the
identified communications endpoint.

Request ADGUT Status Service. Receive a copy of the ADGUT table in its
entirety.

34 DNET TECHNICAL GUIDE

Althoughtheservicerequestmessage is sent through the same IPC mechanism used for sending

datagram messages, the service request response messages are sent through a separate, transient IPC

mechanism. This is due in part to the service routines being used to actually establish the IPC

mechanism used for receipt of datagrams.

The dgms_serv routine attempts first to establish an IPC endpoint for receiving the service request
response. The service request always uses the same ipcname (dgmsrs) and will make multiple attempts

to gain access to this ipcname in the UNIX environments. In a VMS environment, this will only happen
to processes under the same login session, because normal user processes do not advertise their logical

mailbox name, but rather their actual mailbox name through the service request (the was version of

ipcget changes the logical name passed to the actual mailbox name) to this rule is the dgms, who uses a
special flag (and must have SYSNAM privilege) on the ipcget routine to advertise the logical name in

the system table.

After an appropriate IPC endpoint has been established, the dgms_serv routine assigns the ipcname

bound to the endpoint (mailbox device name in VMS) to the rsplpcname field of the srvreq structure.
The service request is packaged in a message and sent out the standard IPC mechanism used for

sending to the dgrns. A blocking read is then performed on the newly created IPC endpoint waiting for

the service response. After a service response is received, the endpoint is freed (possibly making it

available to other processes) and the service response is returned to the function calling dgms_serv.

The following describes in detail each of the service routines supported by the dgms:

Request Basic DGMS Service

This request is made by the dn clnlt(3U) user library routine and performs three
basic functions:

1. Establish an entry in the ADGUT table to describe the datagram

communications endpoint.

2. Establish a means of sending datagrams to the user program by connecting to
the IPC endpoint specified in the service request structure for receipt of

datagrams. The user program must have already created this IPC endpoint

before issuing this request.

3. Bind the process name specified in the service request to the newly created
datagram communications endpoint.

The following fields of the srvreq structure are significant in the DN REQBAS

service request:

service = DN REQBAS

pM This is the unique process identifier to be used when communicating back
to this process information on the requested service (see below).

pname This represents an optional process name that the process wishes to be

bound to so that datagrams sent will have a known process name. If no

name is given, then the system will not send datagrams to this process.

vahte This represents the maximum number of bytes that this process is capable

of receiving. If a message for this process is larger, it will be truncated, but

the size field will not be altered so that the receiving process will know that
there was information lost. THIS IS NOT CURRENTLY SUPPORTED.

ipcname This character string represents the name that may be used by the dgms

to access the IPC endpoint so that datagrams may be sent to the user

process. In UNIX environments this is a file name stored in a standard

directory location. In VMS, this is the fully qualified pathname of the

Connectionless Mode Services 35

mailboxbeingusedfor IPC.Therequestingprocessshouldalreadyhave

this IPC endpoint established.

rspipcnarne This is an ipcname in the same form as ipcname which is used to send

the service response back to the requesting process. The requesting

process should already have this IPC endpoint established.

Response Basic DGMS Service

The following fields from the srvresp structure are used:

service = DN REOBAS

retval

The retval field may contain the following values:

0 Successful. The Request Basic DGMS Service control statement

has completed succesfully and the DNET datagram user is now in
a state where datagrams may be sent and received synchronously.

The DGMS listen service may also be requested now.

-1 Internal DNET error. An internal error has occurred.

-2 No DGMS resources. There are currently no available entries in
the ADGUT.

-3 ADGUT quota exceeded. You have exceeded the ma.,dmum

number of entries you may use from the ADGUT table. This is
not implemented yet due to the fact that only one endpoint per

process may be established.

-4 No ipcname. The ipcname you specified for receipt of datagrams
does not exist, or cannot be accessed by the dgms.

-5 Name in use. The process name that you requested to be bound

to your endpoint is already in use by another process.

Request Listen DGMS Service

This control routine allows a signal number to be def'med (in UNIX environments)
to be used to inform the user application of a pending datagram. This routine has no

real functionality for the VMS environment except to reset the state indicator for this
process in the ADGUT.

service = DN REOLIS

pid The primary use of the pid is to allow the DGMS to signal or interrupt the

DNET Datagram User to indicate that a datagram has been received. This

field should be the same as was specified in the DN_REQBAS request, as
it will be used to query the ADGUT.

pname Trim field should be the same as was specified in the DN_REQBAS

request, as it will be used to query the ADGUT.

ipcname This field should be the same as was specified in the DN_REQBAS
request, as it will be used to query the ADGUT.

value

This is the "signal" (in UNIX terminology) that will be used to wake up the

dn handler routine. This field is required, but is not mea_gful in s VMS
envtroument.

36 DNET TECHNICAL GUIDE

ResponseListenDGMSService

This control statement will be initiated by the DGMS after receiving a Request Basic

DGMS Service control statement. The Response Listen DGMS message will use the

following fields of the srvresp structure:

service = DN REQLIS

retval

The retval field may contain one of the following values:

0 Successful. The Request Listen DGMS message was serviced

successfully and the calling process is now in a state associated
with the Listen DGMS Service.

-1 Internal DNET error.

-2 Bad argument(s). The specified pid field was less than zero, the

pname field was not specified, or the ipcname field was not
specified. The dgms cannot perform the ADGUT query without
these fields.

-3 An ADGUT entry was not found with the values supplied for pid,

pname, and ipcname.

Request DGMS Cleanup The Request DGMS Cleanup message instructs the DGMS to free up all

resources allocated for the process using the given pname, and under the provided
pid. This will remove any unique IPC mechanisms associated with this process, if the

IPC mechanism is not being used for another process name within the given process.

The Request DGMS Cleanup message uses the following fields from the srvreq
structure:

service = DNREQCLN

p/d This is the actual process identifier. It will be used to determine which
entries to remove from the DGMS Active Datagram User Table when a

process name is being shared by more than one process.

ipcname Tim should be the same as used in the DN REQBAS request, as it will
be used for an ADGUT query.

The Response DGMS Cleanup uses the following fields of the srvrespResponse DGMS Cleanup
structure:

service =

retval

DN_REOCLN

The retval field will indicate the success of the Request DGMS Cleanup
statement. A value of 0 will indicate success, and indicates that all

resources being tied up by this pid, pname combination are now freed.

The following values will indicate the error condition existing:

-1 Internal dnet error.

-2 Bad argument. The pid field or the ipcname field were not
specified or were invalid.

-3 An ADGUT entry could not be found with the specified pid

and ipcname.

Request ADGUT Status The DN REOAGS service routine places a copy of the entire ADGUT into
a datafile in the dnet home directory. The service response data structure contains

the name of the file tffat the ADGUT was copied into. The following fields from the

Connectlonless Mode Services 37

Response

srvreq structure are significant:

service = DN REQAGS

pid Process identifier.

rspipcname For sending service response.

ADGUT Status The response to DN_REQAGS includes the following fields of
significance:

service = DN REQAGS

ipcname The name of the datafile in the dnet home directory which contains the

ADGUT copy. The table is in its binary form and can be accessed using

the dgms_adut structure defined in dgms.h and described below.

4.3.4 TheADGUT

The DGMS Active Datagram User Table is created and maintained internally by the DGMS so as to

keep track of all processes that interact with it (including all DGS components).

struct dgms_adut
{

int pid; /* Process Identifier */

char pname[MAXPNAME];/* process name bound to */
char ipcname[MAXFNAME];/* IPC name to use to send */

int lpcld; /* IPC ld used to send messages */

int maxmsg; /* maximum size of message this component can receive */
int signal; /* Signal number used to Inform of pending datagrams */
unsigned w_tlmeout;/* timeout period on write */
time t

time t
time-t

time t
time t

int

add_time;/* time entry was added */

iastaccess;

last_update;
last_send;

last_recv;

state; /* 0 - Invalid, 1 - basic, 2 - listen */
};

Figure 1. DGMS Active Datagram User Table

The pid field is the process id of the process used primarily so that signals or interrupts may be sent to

the process to inform it of impending datagrams. The pname field is a process name that is bound to

the process. This allows outgoing datagrams to have a process name, and allows for incoming

datagrams to be routed to the proper server process. The DGMS will allow only one process to be
listening on a given process name, although many processes may be sending under a common name.

The ipcname field is used to keep track of the name of the IPC mechanism used to send messages to

that particular process. The ipcid is used to hold the id (a file descriptor in the case of named pipes) of
the IPC mechanism.

The maxmsg field is not currently supported but is intended to allow a user application to impose limits

on message sizes that may be passed to them. This is handled now by requiring that all user processes

38 DNET TECHNICAL GUIDE

becapableof handling the maximum size message, or the biggest message they expect to receive.

The signal field is used only in UNIX and indicates the signal number that is to be sent to a user

application in the listen state when a datagram is pending.

The w timeout field is always set to 0 except for special dnet processes who will have a hard-coded
value. -This value represents the amount of time (units are system dependent) that the dgms will block

on a write attempting to send a message. In the DGS module sets, this time is intended to represent
the normal amount of time required to relieve itself of a datagram. On all other users applications, the

datagram will be discarded if the message cannot be sent immediately. A terse error message will

appear in the dgms log file to indicate that this occurred.

The state field indicates the current state that an endpoint is in. This field is used when determining if

an ADGUT entry is available.

The time fields are all used to monitor activity of the user applications.

Connectionless Mode Services 39

4.4 The Connectionless Services Library

The connectionless services library consists of seven user function calls:

dn cinit

dn cwrite

dn chandler

dn cread

dn cdone

dn salloc

dn cerror

Establish endpoint and basic service state

Send a datagram towards a destination node

Declare an exception handler for asynchronous receipt of datagrams

Read a datagram synchronously

Free up datagram communications endpoint resources

Dynamically allocate dnet data structures

Send a dnet error message (including stack trace) to stderr

4.4.1 The Function Of dn_cinit

The dn cinit library routine places the DNET Datagram User into a state associated with the Basic
DGMS-Service. This involves establishing a dnet communications endpoint and binding a process

name (possibly null) to that endpoint with the DN REQBAS service routine. The dn cinit routine also
establishes the IPC mechanisms necessary for sending and receiving of datagrams.

A user application that is in a basic state is capable of sending a datagram to another registered user

application (local or remote). In addition, the user application in a basic state may request the listen
state as long as a valid (non-null) process name was bound on the datagram communications endpoint.

4.4.2 The Function of dn_cwrite

The dn cwrite function call facilitates the sending of a datagram to a remote process. This is done by
source stamping the datagram (filling in the source node of the datagram structure), encapsulating that

datagram in a dgms message structure and passing that message along to the dgms. No reliability is

implicit or explicate within dn_ewrite.

4.4.3 The Function of dn_chandler

The dn chandler library routine is by far the most complicated and operating system dependent of the
function calls. The basic function of the call is to place the user into a state associated with Listen

DGMS Service. This involves identifying an exception routine that is to be called when a datagram has
arrived for this user.

The UNIX implementation will allow the address of the exception routine to be identified to the

library routines. The library routines will set up a trap for the signal that the user specifies. The signal

can not be used for any other purpose within the user application. This is why the dn_chandler

40 DNET TECHNICAL GUIDE

function call allows the process to choose the signal. This information will be passed along to the
DGMS so that it may be included in it's Active Datagram User Table.

After the routine and signal have been set, then the receipt of the datagram for this process will result
in a signal being sent to the process by DGMS (this of course requires that DGMS have an effective
uid of root), which will then cause the library routine to call the exception routine specified in the
original call. The exception routine will be passed the address of the udg structure containing the
datagram just read.

The VMS implementation will be similar, in that an exception routine is specified, and the address of
the udg structure is passed as an argument to the exception handler when a datagram arrives. The
VMS implementation will, though, use asynchronous traps (AST) to inform of pending datagrams.

4.4.4 The Function of dn..cread

The dn_cread library routine provides for the synchronous receipt of datagrams. The dn cread routine
is actually called as part of the handler function of dn chandler. This routine reads a d_agram that is
pending. The routine is capable of working in eithe_ blocking or nonblocking mode (the default is
blocking).

The dn cread routine basically maps directly to a ipcrcv call, checks the message type for a datagram,
and ff s_, unpacks the datagram and passes it back to the calling function.

If the message type read was D_MSGSHD, then a dn cdone is issued, the dnet errno value is set to
D_SHUTDOWN, and the call returns in error (with a -_).

4.4.5 The Function of dn_.cdone

The dn cdone routine provides for the freeing of resources normally allocated for a datagram
communications endpoint. This is done mostly through the DN_REQCLN service routine.

The dn_cdone routine itself also doses any standard IPC mechanisms, and removes the mechanisms
that it created (inherently by the ipcclose). Finally, the dn cdone routine resets any signal handlers
activated by a call to dn_chandler.

4.4.6 The Function of dn_salloc

The dn salloc library routine is used to dynamically allocate dnet data structures that contain an
imbedded buffer to be used for the layering of abstractions. This function is useful so that a program
may choose the size of the buffer rather than always creating a buffer of maximum size, and can also be

used to create reentrant/recursive code sections (possibly in combination with the dn chandler
routine).

The dn saUoc uses the malloc routine to allocate new memory. The dn salloc is used in many places
througl_'out the code, but is never used in attempt to create reentrancy of the services code, but rather

to create a standard mechanism for obtaining raw space for data structures.

Connectlonless Mode Services 41

4.4. 7 The Function of dncerror

The dn cerror function is used merely as a last resort to try to display diagnostic information as to why

sometla_ng failed. A stack trace of dnet calls is displayed to try to provide insight as to where in the
user code the failure occurred.

The stack trace is facilitated within the datagram service code through an array of character arrays that
hold the name of the library routine called. This array is updated by calling macros defined in the
dnet errno.h file. These macros are:

• DE_push 0

• DE_popO

• DE_print 0

42 DNET TECHNICAL GUIDE

4.5 Component Interaction Diagrams

The following diagram describes schematically all of the components of the datagram service that have

been discussed. Following that diagram, there is a series of diagrams describing the series of steps that
are taken in bringing the network up and in sending a receiving a datagram.

Connectlonless Mode Services 43

Liter

Application

•. Se_ Library.. :

Uter

AppLicm_

• • Se_ Llbru,/,. :

DNET
DGMS

UDP DGS I DNETDECnet DGS I

UDPProvider DECnet JProvider

Figure 2. Schematic Overview of Connectionless Service

44 DNET TECHNICAL GUIDE

UDP

Provider
MNP

Provider

Figure 3. Empty Host Machine With No DNET Components

Connectlonless Mode Services 45

This represents an empty machine. The only components of interest existing on the machine are anyunderlying protocol providers.

46 DNET TECHNICAL GUIDE

DGMS

Figure 4. Datagram Master Server Started

Connectionless Mode Services 47

Here, the DataGram Master Server is started either manually by a systems administrator, or through a
regular boot up procedure in the machine. The DGMS will coordinate all connectionless service
activity and so will be the first component started.

48 DNET TECHNICAL GUIDE

7

I

d

L_

Process

Gommul_._tion _ I

Medium I
J

Figure 5. Process Communication Medium Preparation

Connectionless Mode Services 49

The DGMS will first create the process communication medium. This will be one form of

communication that will be used by all components when interacting with the DGMS. This will allow
the DGMS to concentrate on reading from only one entity. The communication medium must support

message oriented service. The message oriented service will provide for the synchronization of
otherwise potentially non-atomic writes over a single IPC mechanism potentially shared by many
writers.

50 DNET TECHNICAL GUIDE

DGMS

Active Dotagram
User Table

r-- I;_:;2_- - 7 /

Commtm!cation I '..[DNET

Mediurfi' .. I 1 DGMSL ".._j...

I
"'"-,I. _'_ p

"2"_ "'"" 2

I

• I

DNET DNET

UDP DGS MNP DGS

Figure 6. Invocation of DGS Components

Connectlonless Mode Services 51

1. The DGS program sets are started independently of the dgms program. These issue the dn_cinit
call, which establishes the IPC communication endpoint for receiving datagrams and connects to
the standard IPC communication endpoint for sending messages to the dgms.

2. After the connection to the dgms is made, service request (DN REQBAS) is made (via
dgms_serv).

3. The dgms responds to the service request by establishing a dnet datagram communications
endpoint in the ADGUT and binds the requested process name (dgstcp and dgsdee in this case)
to the established endpoint.

4. Finally the dgms connects to the IPC endpoint created by the dn cinit routine in step 1. This
simplex connection will be used to send datagrams to the dgs progr_a sets. The service response
is sent through a transient IPC mechanism created and maintained by the dgms_serv routine.

52 DNET TECHNICAL GUIDE

DNET
User

•DNL_ C_nnectionless"

•.. _c.e_.Li_ra.ry...

DGMS
Active Datagram

User Table

1 l

Figure 7. dn_cinit process

Connectionless Mode Services 53

The dnet user application uses the same procedure as the DGS program sets in accessing the dgms.

54 DNET TECHNICAL GUIDE

d
Communication I 2

r Medium _ |L

DGMS

[

i

I
5
I

I

DGS I

I IProtocol
Provider

3

Figure 8. dn cwrite Process

Connectionless Mode Services 55

1. The dn cwrite will send a message containing a datagram with a DGMS Message Header
inserted-(exactly the same way that the DGS component passes datagrams to the DGMS and

through the same key value) onto the process communication medium.

2. The DGMS (again who is performing a blocking read on the process communication medium)
will read this message and will interpret it as being a datagram.

3. The DGMS component consults the routing table to determine the address of the next hop (after

determining that the destination is not the current machine.., again the exact same mechanism
used when a datagram arrives from a DGS component).

4. The DGMS sends a message out to the process communication medium of type datagram and
sent under the key value so that the proper DGS component will read it (this is determined from

the routing table).

5. If necessary (in dgsdec only) a signal is sent to inform the module that a datagram is pending (the
dgsdec module is blocking in the underlying protocol side). In the case of the dgsudp program

set, one process is blocking on the UDP side, while the other process is blocking on the dgms

side. No signal is sent in the latter case. The dgrns is aware of this because the dgsdec module

will have a state of 2 because of using dn_chandler, whereas the dgsudp program sets will have a

state of 1 since they only used dn cinit.

6. The DGS component reads the message from the process communication medium and prepares
internal structures (structures that are unique to the appropriate protocol).

7. The datagram is then sent to the underlying protocol. All special considerations of underlying

protocol are handled here. For example, if the underlying protocol does not support a
connectionless service, then a connection is established for each datagram to be sent.

56 DNET TECHNICAL GUIDE

I
i

.... q
Communication I

d Medium
L _3

I

I
t,

Active Datagram

User Table

.......... t

l° JDGMS

Figure 9. dn chandler Process

Connectlonless Mode Services 57

1. After achieving the state associated with Basic DGMS Service, the DNET User component is
able to move to the state associated with Listen DGMS Service. The dn chandler sends a
Request Listen DGMS Service message to the process communication medium under the hard

coded key value used to communicate with the DGMS (the same value used when sending the
Request Basic DGMS Service message).

2. The DGMS reads the message sent to it and interprets it as being a Request Listen DGMS
Service message.

3. Assuming the component sending the Request Listen DGMS Service message is in the proper
state (it must have previously sent a Request Basic DGMS Service message and be listed in the
DGMS's Active Datagram User Table), the DGMS will modify the entry in the Active Datagram
User Table.

4. The DGMS sends a Response Listen DGMS Service message out to the DNET Datagram User
with the ipcname specified in the Active Datagram User Table. Information included in this
message includes the DNET User Identifier, and key value which may contain a negative number
indicating an error.

5. The dn chandler routine will have been waiting for the Response Listen DGMS Service message
over the standard response ipcname (this all happens in the dgms_serv internal library routine).
After reading a successful response, the DNET Datagram User will now be in a state associated
with the Listen DGMS Service and is capable of sending datagrams as well as responding to
datagrams sent to it.

58 DNET TECHNICAL GUIDE

Process 7

Communication _

I Medium I
L

I

I

DGMS

Activ_ Datagram

User Table

DNET

DGMS

DGS

I Underlying I

Protocol

Pro_der

Figure 10. Receive Datagram at Destination

Connectionless Mode Services 59

1. When a datagram arrives from another host, the underlying protocol passes it to the DGS

component performing the blocking read on that particular protocol.

2. The DGS component inserts the DGMS Message Header on the datagram to form the datagram
message (the exact message type that the DNET User component forms when sending a

datagram with dn cwrite) and this message is placed on the process communication medium with
the key value specified so that the DGMS will read the message (the same key value used by the

dn cwrite routine when sending it's datagram message).

3. The DGMS reads the message from the process communication medium and interprets that it is

a datagram message.

4. The DGMS figures out that that the datagram is destined for this host, and so it checks the

DGMS's Active Datagram User Table to find the process (if one exists) that is waiting to receive
this datagram. The DNET process ID and the key value for this process will be pulled from the

Active Datagram User Table.

5. The message is placed on the process communication medium with the key value specified so the

proper DNET User component will read it.

6. If the state associated with the intended destination of the datagram is 2, indicating that it

received datagrams asynchronously, a signal is sent when the operating system environment is
UNIX.

7. The DNET User component will read the message waiting for it on the process communication
medium.

60 DNET TECHNICAL GUIDE

Process 5
Communication

) Medium [3

I uD[/_e
DGS

DGMS

)

6

I

I

DECnet I
DGS

f

{ UDP/IP

l Provider
i iProvider

¢

\

\ Table

Figure 11. Receive Datagram: at Gateway

Connectlonless Mode Services 61

1. A datagram is received by the underlying protocol and is passed along to the DGS Component
associated with that underlying protocol.

2. The DGS component inserts the DGMS Message Header and places the message in the process
communication medium with a key value such that the DGMS will read it.

3. The DGMS reads the message and determines that it is a datagram message.

4. The DGMS determines that it does not represent the destination machine, and so consults the
Routing Table to determine the next hop.

5. The DGMS changes the next hop node in the user datagram structure to state the node

information of the next hop and places the datagram message back into the process
communication medium with a key value such that it will be read by the proper DGS component.

6. If necessary, the dgs program (dgsdec only) will be sent a signal if it resides on a UNIX machine.

7. The DGS component will then read the datagram message and prepare the internal structures in
preparation for passing it along to the underlying protocol.

8. The DGS component will then pass the datagram along to the underlying protocol provider. As
stated previously, any provision for support of connectionless service in an underlying protocol

which otherwise does not support a connectionless service is the responsibility of that DGS

component.

62 DNET TECHNICAL GUIDE

5. DNET Interprocess Communication (IPC)

5.1 Introduction

The standard IPC implementation was created to provide a standard means of communicating between

processes running in varied environments. These means must be capable of providing services

necessary and reasonable for both the counectionless and connection services. The following
summarize the requirements placed upon the IPC services:

Independence from DNET

The mechanisms should serve all of the needs of the dnet services but should

avoid (where possible) imposing dnet constraints. These constraints could be
usage of global constants defined in the dnet domain, or reliance upon dnet

locations within a file system, or the usage of functions defined within the dnet
domain. THIS REQUIREMENT HAS NOT BEEN COMPLETELY MET.
MOST VIOLATIONS OCCUR WITHIN THE VMS ENVIRONMENT.

Implemented under BSD UNIX, System V UNIX, and VMS

The standard IPC implementation should be accessed the same regardless of

the operating environment under which it was created. This was the primary
reason for creating the standard IPC implementation, so as to provide a

standard interface for communicating with other processes on the same box.

Simplex IPC mechanisms

The IPC mechanisms established need only be simplex. This requirement is
stated to allow for economizing resources. If a full duplex connection is

required (the exception rather than the rule in dnet), then two mechanisms
may be established. In two of the three operating environments, this does not

require any more resources than an actual full duplex mechanism.

Message oriented transmission

The message oriented transmission is required mainly because of the need to

have a single reader responding to many writers. The IPC mechanisms

themselves are more capable of managing messages than is the receiver

capable of making messages from a stream. All operating environments

provide a direct IPC mechanism for passing messages.

Oriented towards endpoint establishment

The endpoint establishment should be contrasted with a "mid point"

establishment such as the message queues used in System V UNIX. The mid

point establishment allows a common area to be logically set up where

messages may be placed (a bulletin board of sorts), all members are then able

to pick any message sitting in the mid point. The endpoint method allows one

process to advertise an address which can be globally sent to, but only locally

read. The BSD socket interface is an example of endpoint establishment. The

VMS mailbox devices would fall into the category of mid point. The endpoint

DNET Interprocess Communication (IPC) 63

establishment requirement was set down mostly because it is easier to force a

midpoint type IPC mechanism to act like an endpoint type IPC mechanism
than vice-versa.

Addressing via character strings

All IPC endpoints should be addressable with character strings. There are

some limitations to this including length and use of special characters like "/" in
UNIX and ":" in VMS. The BSD and VMS provide direct addressing of

endpoints with character strings. The conversion used for System V message

queues is discussed in the section on implementation for System V.

Independence between peers

All interactions across the IPC mechanisms should be performed
independently of the action or availability of the peer. If the buffer between

the peers is full, then the sender should have the ability to fail the write without

wasting time blocking. In no case should the success of the write be hinged
upon the availability of a read.

5.2 Interface

The interface to the IPC mechanisms is intended to be similar to a socket interface, but simpler

because of less required functionality. In addition, and more important, the interface should be

independent of the operating system, although there still exist some subtle differences. Finally, there is
a provision for binding and cotmecting (like the socket interface), but the simplex nature of the

connections allows this provision to be included in the library routine to establish the endpoint.

The following, then, are brief descriptions of the library routines making up the general IPC interface.

5.2.1 Administration Of lPC Medium

To provide for full flexibility, it is necessary on some operating systems to create a medium for the IPC

mechanisms. This medium may include an environment for name translation or location (UNIX) or

may require that a chunk of the operating systems IPC "medium" be reserved for use by the set of

cooperating processes (System V). The VMS operating does not require the administrative creation of

the IPC medium, and in that environment merely no action is performed on an attempt to create the
medium.

The phrase *midpoint establishinent" merely provides convenient semantics for this discussion and should not be confused

with any other phraseology that may he similar

64 DNET TECHNICAL GUIDE

Two routines are provided for the administration of the IPC medium. One routine is called to create

the medium, and the other routine is called to remove or free the medium. An explanation of these
two routines follow.

5. 21.1 The _makeipc function

The _makeipc function allows for the administrative creation of an IPC medium necessary for

establishing and using IPC mechanisms for communication. The following is a listing of the

declaration of makeipc:

int _makeipc(sv msg key, ipcdir, fl_gs)

int sv msLkey; /* System V message key value */

char *ipcdir; /* UNIX directory where addresses will reside */

int f_gs; /* D_CREAT, D EXCL */

The sv_msg_key argument is only pertinent in the system V environment (although a value may be

passed in any environment without harm). This value is used to determine the lookup key value for the
message queue that will be used. One message queue is shared for all IPC mechanisms in System V.

Consult with your administrator or use the UNIX ipcs -q utility to determine available message queue
key values.

The ipcdlr argument is pertinent in both UNIX environments. This is an absolute pathname for the

IPC directory. Both System V and BSD environments use a UNIX pathname for the fully qualified

address of an IPC endpoint. All endpoint establishments and references will be made with a filename
only (no "/"'s are allowed) that is relative to the ipcdir. Once the IPC medium has been established

and is being used, an examination of this directory will reveal the active connections.

The flags argument is used to allow for the creation of the IPC medium. When this routine is called

administratively, the D_CREAT flag should be set at a minimum to insure that you will create the
environment if it does not exist. It is suggested that you use the D CREAT in combination with the

D EXCL to insure that two administrative processes are not reiguingover a single IPC medium.

The use of this call with neither of the flags set is valid and is used to merely access an existing IPC
medium. This call is already performed transparently from within the da cinit routine discussed below.

The _makeipe routine called explicately for the creation of the IPC medium must agree in its

arguments with the implicate call made by the later calls to ipcget. The implicit call is made within the

ipcget using the makeipc (no preceding underscore) routine which in turn calls _makeipc as follows:

if(_makelpc(DNET_IPCKEY, DNET_IPCDIR, D CREAT) = = -1)

Notice how preprocessor constants are used to facilitate the agreeance on arguments. For non-dnet

use, it is suggested that the dnet constants be defined (in the dnet ipc.h file) for your own use and that

the D CREAT flag should be set to 0. This will allow you to call _makeipc explieately using the
preprocessor constants as arguments along with the D CREAT] D EXCL flags, and then the ipcget
routine will use the same values when accessing the medium created I_y the administrative process.

The following is an example code section on suggested method for the adminstrative creation of the
IPC medium:

DNET lnterprocess Communication (IPC) 65

#1_lude "dnet_ipc.h"

#define DNET |PCI_"Y 1504

#def'me DNET_IPCDIR '/tmp/myapp'

if(makeipe(DNET IPCKEY, DNET IPCDIR, D_CREAT I D EXCL) ffi ffi -1)

{

fprlnff(stderr, " makeip¢ tailed: dnet errno(%d) errno(qtd).0, dnet_errmb errno);

retarn(-l);

)

5.21.2 The removeipc function

The _removeipe routine is provided to clean up the IPC medium created with the _makeipc routine.
No arguments are passed to the _removeipc routine because the IPC module keeps track of the

arguments used to call _makeipc. The environment will only be removed from the system if the

makeipc routine was called by someone with both the D CREAT and D EXCL flags set. Only the
process that actually created the segment will be allowed to remove it. Allother processes will return

immediately without error. The rationale for this is that since there is no way of determining which

process actually created the medium (multiple processes may assume this), then it is not reasonable to

assume which process may remove it.

5. 2. 2 Administratlbn Of IndivMual IPC Mechanisms

The individual IPC mechanism is a logical device which provides for simplex transmissions betweening

peer processes on a common machine. These mechanisms should be assumed to be reliant upon an

existing IPC medium. The proper IPC medium will be accessed using the preprocessor constants
described in the section above.

The responsibilities of the program in administering individual IPC mechanisms is the establishment of

the endpoint and the cleaning up of the endpoint when the program is through with it.

Two routines are provided for these purposes: ipcget and ipcclose. A description of these routines
follow:

5.2.21 The ipcget function

The ipcget function provides for the establishment of an IPC endpoint and provides for either a

address to be bound to that endpoint, or a connection to be made to another endpoint with an address
bound to it. After a successful ipcget, the endpoint is an established IPC mechanism and may be used

for either receiving datagrams (if bound) or sending datagrams (if connected). No support for a

connectionless endpoint exists where the address is specified on each message, and the only way to

bind or connect to a different address is the remove the endpoint and reestablish.

The following is the declaration of the ipcget function:

66 DNET TECHNICAL GUIDE

intipcgel(name,flags)
structdn__ipcname*name;
hit flags;

The dnet_ipcname structure consists of the following fields:

struct dnet_ipename
{

char name[D_MAXPATHNAMEI;
unsigned maxmsg

unsigned maxmq;
};

The maxmsg and maxmq fields of the dnet_ipcname structure are not currently used. The name field
should contain the address (a simple character string) that your program wishes to have bound to its

own endpoint, or of the endpoint of another program to which your program wishes to be connected.

The flags argument must have one and only one of the following flag values set:

DCONNECT Find the IPC endpoint to which the address in ipcname.name is bound and connect
to this endpoint.

DBIND Bind the address in ipcname.name to this endpoint.

In addition, the D GLOBAL flag may be set in combination with the D BIND flag to force the

address to be advertised globally across the current machine. This flag ot_y has significance in the
VMS environment since this is the norm in a UNIX environment. In order to have the address

globally advertised, the process must have SYSNAM privilege.

The ipcget function returns an integer ipcid on success. This is similar to a file descriptor, but is not.
Instead it is translated to a file descriptor, channel descriptor, or message type when used. This will be

discussed more in the implementation section.

The following examples demonstrates the suggested usage of the ipcget library routine. The server

program example is binding the address to its endpoint (thereby advertising the address), while the
client program is connecting to the advertised address (at a time after the server has bound).

Server Program

#include _dn_ errno.h"

im ipcid;

struct dnet ipcname ipcname;

strcpy(dnel ipcnam., "myaddress');

if((lpcid = ipcgel(&dnet_ipcname, D_BIND [D_GLOBAL)) = = .I)
{

fprintf(stderr,"ipcget:dnet_errno(%d)errno(%d).0,dnel_errno, errno);
return(d);

Client Program

DNET Interprocess Communication (IPC) 67

#include "drier errm_h"

hat ilzid;

struct dne(ipcrmme ipcname;

strcpy(dnet_ipcnam¢_ "myaddress');

if((ipcid = ipcget(&dnet_ipcname, D_BIND J DGLOBAL)) = = .1)

{

fprintf(stderr, "ipcget:dnet_errno(%d) errno(%d).0, dnet_errno, errno);

return(-1);

)

5.22.2 The ipcclose function

The ipcclose function frees resources associated with the IPC mechanism identified by the ipcid which

is passed as an argument. On UNIX systems, this will also unlink the file entry in the DNET_IPCDIR.

5.23 Sending And Recebing Messages

Two routines are provided for sending and receiving messages over an established IPC mechanism.
Validation is performed on each transaction to insure that the mechanism is capable of

sending/receiving a message. Because the mechanisms are simplex in nature, the routines will not

allow a message to be sent out an endpoint that has a bound address, and will not allow an attempt to
read from an endpoint which is connected to a peer endpoint.

The descriptions of these two functions: ipesnd and 3ipcrev follow:.

5.2.3.1 The ipcsnd function

The ipcsnd function allows a message to be sent out through and endpoint that has been successfully

connected. The declaration of the ipcsnd function follows:

int ipcsnd(ipcld, urns_ umsgle_ ring)

char *-msl;

int umsglen;

int

The ipcld argument is the endpoint identifier returned by the ipcget function. The umsg argument
points to the buffer (binary data is acceptable) containing the data to be sent, while the umsglen

indicates the number of bytes to be sent. The flag argument may have the D NOWAW flag set which
will force the send to be non-blocking.

The following is a section of the same client program above demonstrating the use of the ipcsnd library
routine. Because of the simplex connections, only the client program is allowed to use the ipcsnd

routine on this IPC mechanism. The client program is not allowed to use the ipcrcv library routine on
this IPC mechanism.

68 DNET TECHNICAL GUIDE

char umsglD MAXMSG];

int umsgIen;

strcpy(umsgt "rhls does not have to be an ascii string");

umsglen :s strlen(umsg) + 1;

if(ipcsnd(ipcid, umsg, umsglen, 0) = = -1)

{

fprintf(stderr, "ipcsnd:dnt__errno(%d) errno(%d).0, dnet errno, errno);

return(-1);

}

5.2.3.2 The ipcrcv function

The ipcrcv function allows a program to read a message from an endpoint that has an address bound to

it. A description of the ipcrcv function follows:

in/ipcrcv(ipcid, umsg, umsglen, flag)

int ipcid;

char *umss

int umsglen;

tnt ft_

The ipcid argument again identifies the endpoint over which the program wishes to receive a message.
The umsg argument points to the buffer where the message will be placed, and the umsglen argument
states how large that buffer is in bytes. The flag argument may have the D_NOWAIT flag set which
will insure that the call does not block.

The following is a section of the server program above demonstrating the use of the ipcrcv library
routine. Because of the simplex connections, only the server program is allowed to use the ipcrcv
routine on this IPC mechanism. The server program is not allowed to use the ipcsnd library routine
on this IPC mechanism.

char umsg[D MAXMSG];

int umsglen;

in/r,mdlen;

urasglen = DMAXMSG;

if((r.adl.n = ipcrcv(lpcid, umsg, umsglen, 0)) ffi= -I)

{

yrlntt_stdcrr, "ipcrc_.dn__errno(%d) errno(%d).O, dnet_errm, ¢rrno);

return(.1);

}

DNET Interprocess Communication (IPC) 69

5.3 Implementation

This section will discuss the unique features of each operating system that were used to implement the

standard IPC implementation.

5.3.1 The ipcid Table

The IPC module maintains a table of all active endpoints for a particular process. This table is very

similar in function to the file descriptor table in UNIX operating systems. A short description of this
table follows:

static struct

I
char name [D_MAXFNAME];
lnt flag;
int ld;

}ipctab[D MAXIPCIDS];

The name field contains the address used in this IPC mechanism. The flag contains the flags specified

on the ipcget, and the id contains a numeric value describing the lower level IPC mechanism. In

System V environments this si a message type, in BSD environments it is a file descriptor for a socket,
and in VMS environments it is a channel descriptor.

5.3.2 System V

The System V message queue facility was used to implement the IPC implementation on System V

operating systems. This facility required work on three areas to bring it in line with the requirements

of the IPC implementation:

• Standard interface

• Endpoint establishment

• Character string addresses

A description of the implementation of the standard interface follows:

_makelpc The ipc directory is created if requested and necessary. The message key value is

used in attempt to create a new message queue for use by all processes using the to

be created IPC medium. If the D_CREAT flag is not set, then an attempt will be

make to look up an existing message queue with a matching key value, and will fail if

one does not exist. If the D CREAT flag is set, then the queue will be created if it
cannot be found. If the D C-REAT and D EXCL flags are set, then the call will only

succeed if a message queue with the requested key value did not previously exist.

The flag values are used in a similar nature for the creation of the ipc directory.

70 DNET TECHNICAL GUIDE

_removeipc

ipcget

ipcclose

Ipcsnd

ipcrcv

If it is determined that this program called _makeipc with both the D_CREAT and
D EXCL flags set, then the ipc directory will be removed, and the message queue

be freed and returned to the system. In all other cases the call always returns

successfully.

The ipcget routine attempts to find a file in the ipc directory with the same name

specified as the address requested in the ipname structure. If the D CONNECT flag
is set and the file exists, then a message type value is determined (as described

below) and is placed in the id field of the appropriate entry in the ipcid table.

If the D BIND flag is set, then a file is created in the ipc directory, a message type
value d_ermined and is placed in the id field of the appropriate entry in the ipcid
table.

The ipcclose routine will remove the file from the ipc directory as long as the

D BIND flag was used on the ipcget. If the D CONNECT flag was used, then the
file will remain.

The ipcsnd routine packages the message into a System V message queue structure,
sets the message type field to be that of the id field in the ipcid table and adds the

message to that queue.

The ipcrcv routine attempts to read a message from the queue where the message
type matches the id field in the ipcid table.

Making the midpoint characteristics of the message queues emulate endpoint characteristic was

accomplished by creating file nodes in the ipc directory for every IPC mechanism (note that this is for
every mechanism and not for every endpoint). This allows a simple check to be done to insure that

before an attempt to bind is made, that there is not another process bound to that address, and that

before an attempt to connect is made, that another process has bound to that address and is ready to
receive.

Mapping a character string name to the message type value was performed by merely obtaining the
inode number of the file node created for the IPC mechanism. Because all file nodes are created on

the same file system (they are all in the same directory), the inode number is unique. In addition, the

inode number is the same for every process that checks it and so provides a stable conversion.

5.3.3 BSD

The BSD socket interface was used with the UNIX address family as the underlying mechanism of IPC

in Berkeley UNIX systems. This facility required work only in the area of interface to bring it in line

with the requirements of the IPC implementation. One apparent bug in the operating system makes

the IPC mechanisms system hogs during excessive use of the IPC mechanisms. This is discussed in the

description of the ipcsnd interface.

A description of the implementation of the standard interface follows:

makeipc The _makeipc routine creates/references the ipe directory in a fashion identical to
that of the System V _makeipc.

removeipc The removeipe routine acts identical to the _removeipc routine of System V
excluding the freeing up of the System V message queue.

ipcget The ipcget routine translates almost directly into a socket system call followed by a

bind system call if the D_BIND flag is set or a connect system call if the

DNET Interprocess Communication (IPC) 71

ipcclose

ipcsnd

ipcrcv

D CONNECT flag is set. The file descriptor returned by the socket system call is
placed in the id field of the appropriate record in the ipcid table.

The ipcclose routines uses the close system call on the file descriptor in the ipcid

table, and then, if the D BIND flag was specified on the ipcget, then the file node is
removed explicately from the ipc directory. The BSD system does not yet remove

the file nodes it creates on the bind system call.

The ipcsnd maps almost directly to the send system call. There exists a bug, though,

in the BSD implementation of the IPC on send where, even when blocking mode is
set (this is by default), the system will return with a E NOBUFS error when there is

a transient shortage of buffers in the system to place t_ae message. With that attitude

that this bug will be fixed, the ipcsnd routine loops (eating up valuable CPU

resources) until the message can be taken or a more definitive error occurs.

The ipcrev routine maps directly to the recv system call.

5.3.4 VMS

The VMS mailbox interface was used as the underlying mechanism of IPC in VMS systems. This

facility required work in the following areas to bring it in line with the requirements of the IPC
implementation. The VMS system, in addition actually fails implied requirements of the IPC

implementation in that SYSNAM privilege is required to advertise globally. To partially overcome this,
the ipcget routine in VMS returns the actual device name of the mailbox accessed by the ipcget call.

This name may be passed, through some means, to the person attempting to connect to your endpoint.
The problem with this is that the fully qualified mailbox name can be very long (especially in cluster

environments). This required that all IPC implementations increase their overhead to accommodate
for the extra space required by VMS. This can be overcome, but lack of time and resources limit us at
this time.

• Standard interface

• Endpoint establishment

• Independence between peers

A description of the implementation of the standard interface follows:

_makelpc

_removeipc

ipcget

This is an effective noop function call in VMS.

This is an effective noop function call in VMS.

This is probably the most complex of all the IPC routines because of all the facilities

potentially touched. In general, a channel is assigned to the address specified in the

name field of the ipcname structure if the D_CONNECT flag is set. The name field
is either a logical name which will translate to a mailbox device name, or is the direct

mailbox device name itself. If the logical name cannot be translated, and error is

returned indicating that no peer exists.

If the D BIND flag is set a mailbox is created. A logical name is equated to this
mailbox, and a channel is assigned to the logical name. This results in the logical

name being placed in the job table. If the D GLOBAL flag was set, then an attempt
is made to assign the same logical name to'the system table. In both events for the

bind, the device name of the mailbox is copied over top of the logical name in the

72 DNET TECHNICAL GUIDE

name field of the chaet_ipcname structure. The channel number is placed in the id
field of the appropriate ipcid table entry.

ipcclose If this endpoint had an address bound to it, then the logical name entries are

removed from all appropriate tables, and the mailbox device is freed for use
elsewhere.

|pcsnd The ipcsnd routine is implemented with the standard SYS$QIOW system service.

The VMS mailbox facility will normally attempt to hold the write outstanding until a

peer has attempted to read it. The IO$M NOW flag was set to force the write into
the mailbox and prevent it from remaining-outstanding.

ipcrcv The ipcrcv routine is also implemented using the standard SYS$QIOW system
service.

The requirement of endpoint establishment is not met under VMS. Two sticking points still exist: 1)

The global advertisement of addresses requires SYSNAM privilege (which is an unfeasible

expectation) and therefor opens the door to multiple processes binding to the same name. In addition,
the logical tables are allowed to be overwritten with new values, meaning that no check is performed

to see if the name has already been bound to. The dnet services currently compensate for this under
VMS environments.

The requirement of peer independence was met through a combination of the IO$M NOW flag and
the SYS$SETRWM system service. The IO$M NOW flag was set in the ipcrcv rout:me to initiate a

non-blocking read. In the ipcsnd routine, the IOSM_NOW flag must always be set, and the

SYS$SETRWM system service was used to temporarily set the resource wait mode from its default of

waiting for the resource to the state in which it will fail if the resource is not available (a full mailbox in

this case).

DNET lnterprocess Communication (IPC) 73

6. Miscellaneous DNET Internal Utilities

This section describes miscellaneous utilities which are internal to DNET.

6.1 General System Utilities

6.1.1 getppid

6.1.2 fperror

6.1.3 iosync

6.1.4 is error

6_1.5 prttime

6.1.6 stricmp

6.2 General Network Utilites

6. 2.1 check_mynet

6.2.2 disassemble

6.2.3 dn init

6.2.4 dn_makedg

6.2.5 dn_makepvc

6.3

6.3.1

6.3.2

6.3.3

6.3.4

6.3.5

6.3.6

6.3.7

6.3.8

Stream to Datagram Conversion Utilities

strtodg_dglen

strtodg_msg

strtodg numhops

strtodg_.path

strtodg..pathlen

strtodgstream

strtodgstream_msg

strtodg_type

6.4 UNIX Specific Utilities

6.4.1 build_argarr

74 DNET TECHNICAL GUIDE

64.2 execshell

64.3 startserver

6.5 VMS Specific Utilities

6.5.1 create mailbox

6.5. 2 execshell

6.5.3 getargs

65.4 gobetween

6.5.5 setargs

6.5.6 startserver

6.5.7 lib do command

6. 5.8 libspawn

6.5. 9 sys_assign

6.5.10 syssancel

6.5.11 syscrelnm

65.12 syscrelnt

6.5.13 syscrembx

6.5.14 sys_creprc

6.5.15 sysdassgn

6.5.16 sysdellnm

6.5.17 sysdelmbx

6.5.18 sys_getdvi

6.5.19 sys_getjpi

6.5.20 sys..getmsg

65.21 syshiber

65.22 sys_qio

6.5.23 sys_qiow

6.5.24 sys_trrdnm

6.5.25 sys_wake

6.5.26 vms_fperror

6.5.27 vms perror

6.5.28 vms read

65.29 vms write

6.6 MS DOS Specific Utilites

To be added

Miscellaneous DNET Internal Utilities 75

7. Interfaces to Underlying Networks

Both the Datagram Assembler/Disassembler and the Router of the BASIC I/O Package connect to

underlying networks via the Network I/O Interface. This interface "maps" generic function calls

(dn_open, dn close, dn_read, dn write, etc.) into protocol specific functions for a particular network.

The files tcp.c and decnet_nt.c in the network specific interfaces for most TCP or DECnet systems.
The files exostcp.c contain

7.1 Underlying Network Protocols
Wherever possible, existing, well known network protocols are employed in order to achieve reliable
communication services between DNET nodes. These protocols are internally sophisticated, typically

containing their own queing, buffering, retry and timeout mechanisms as well as their own routing

within their own network domain. Despite this internal complexity, it is important to note the
following:

- From the DNET perspective the protocols provide point to point link and physical level services
between nodes defined In the the DNET network.

For each protocol the following generic functions are provided:

- Open

- Init Permanent Server

- Ink Transient Server

- Get Client

- Close

- Read

- Write

- Async_.Read

- Wait

Two protocols are currently supported within DNET. These are:

1. TCP/IP

2. DECnet

The specific interfaces to these protocols are discussed in the following sections:

7.2 TCP/IP

Three implementations of TCP/IP are in use within DNET. The usage varies with the particular

DNET node. The three implementations of TCP/IP currently supported together with the relevant

76 DNET TECHNICAL GUIDE

host machines are:

1. Berkeley UNIX - DAC & NASA Sun's

2. Wollongong - DAC Micr0VAX II and 3132/600

3. Excelan - NASA VAX's

Common source code is used for all three implementations. This code is located in the file tcp.e.

7.3 TCP/IP Specific Utilities

The following 'tcp/ip' specific functions arc supported by DNET:

7.3.1 tcp_accept

7.3.2 tcp_.close

Z3.3 tcp_.getclient

Z3.4 tcpinitperm

Z 3.5 tcpinittrans

7.3.6 tcp_open

7.3.7 tcp_.pvcopen

7.3.8 tcpread

7.3. 9 tcp_write

The reader is referred to the source listings for tep.e for further details on these functions.

7.4 DECnet

Source code for the DNET interface to DECnet is found in the source files decnet.¢ and decnet nt.c.

The supported functions include:

7.4.1 decnet read

7.4.2 decnet_accept

7.4.3 decnet close

7.4.4 decnet_errgeneric

7.4.5 decnet_errprotocol

7.4. 6 decnet getclient

7.4. 7 decnetinitperm

7.4.8 decnet inittrans

7.4. 9 decnetopen

7.4.10 decnet..pvcopen

7.4.11 decnet read

7.4.12 decnet select

Interfaces to Underlying Networks 77

7.4.13 decnet write

7.4.14 vms aread

7.4.15 vms awrite

7.4.16 vms wait

78 DNET TECHNICAL GUIDE

8. User Application Internals

8.1 File Transfer Protocol

The DNET File Transfer protocol

dtftp transfers blocks in fixed size (512 byte) units. Acknowlegements are sent by the receiving host's

file transfer server (dtftpd) after each block has been received. Error reporting packets include the

following:

8.2 Schematic of File Transfer

Connect, Get

Put, etc.

dtltp

Client

°°o°,°°i,oooooo

File:

hackl

°°o°,,,,,,°°,,,.

,,°°°°°1o°°o°o°

File: :

kack2 :

..o.°o.°°°...,.°

&Z 1 General Considerations

The receiving host tests for existance of the target file using the "access" function and gives notice if the
file exists and creates a new version (if version numbers are supported by the local file system).

Default values for protection mode and sharing options are used.

8.22 ASCII

The routines aput 0 are used to transmit 'text' or ASCII format files. The 'formatted' i/o calls fopen,

gets, etc. are used for file access in this mode.

User Application Internals 79

8.2.3 Binary Files

8.3 Security During File Transfer

When the client invokes dtftp, authentication of the client is done by the login process at the remote
host. Subsequent process spawning and/or remote login to other hosts from processes created by the
initial client will all carry the access rights permitted to the initial client.

8.4 Initiation of File Transfer from One Remote Node to Another

The Network Command Language may be used at a third party location to initiate file transfer. A
typical command would be:

dncl> netl0::host3:filexx > c-net::fhost:newfile

or

dncl > mynet::host6:*dtftp filename options > > newf'de

Where filename and options are parameters to the file transfer task "dtflp".

The effect of such a command is shown in the following diagram:

Initiating

DNET

Host

(may be any

DNET host)

dncl

net l:_File B

File

at

A net2::host2:File B

File

at

B

80 DNET TECHNICAL GUIDE

8.5 Initiation of Remote Procedure Upon Completion of File Transfer

It is also possible to use the DNET Network Command Language to perform a file transfer followed

by the execution of a remote procedure. Several alternatives are possible.

1. Two separate commands:

transfer the file

2,

dnci > bnet::host3:file4 > c-net::xhost:newfile

foHowed by

execute the remote procedure

dnci > c-net::xhost:*format newfile

One 'composite' command:

dncl > bnet::host3:flle4 > c-net::xhost:newfile I c-net::xhost:*format

8.6 Remote Login

8.7 Electronic Mail

8.8 General

DNET provides a very basic Electronic Mail facility.

Send or Read Mail

Mail Client

I File Transfer to Mail Server

ACK/NAK to Mail Client

User Application Internals 81

8.9 Mail Operation

8. 9.1 Structure of DENT mail files

The organization of DNET mail files is as follows:

8.9.2 Sending Mail

8. 9.3 Reading Mail

8. 9. 4 Mail Routing

Routing of mail is implicit. The user sending mail must know the (DNET) destination host, network
and user account name of the receiving party.

82 DNET TECHNICAL GUIDE

9. dnetstat- Network Status Function

The status of Master Servers and the servers they spawn will be monitored by a program operating on
one or more of the network hosts. Status of the Master Servers on the local network will be obtained

using the facilities provided by the networking software native to the local network. Status of the

servers created by the Master Servers can be obtained in the same way because the names of these

processes can be derived from their parent.

User wlshinl

DNET Status Into

Network
dnetstat

Status
_lh:
r----Client

dnstatd
dnetstat

usin8 DG service

DNET

Host

where status desired

I Network

Status

Server

dnstatd

/
f- - - - --/- m

Routinll

Table

L _1

Host

Status

Table

C -J

_- "3

I

i DG

t Users
I

I Table
I

L.. _1

F -3

I

t Master

* Server
I

t Tables
I

LJ

dnetstat - Network Status Function 83

10. Network Command Execution & Task Redirection

The Network Command Processor is a command language processor for use in a heterogeneous
multi-network environment. A terminal user interface and a "C" language interface to this processor

will be provided.

This DNET facility allows very general control of processes across the heterogeneous network and
provides for redirection of input/output streams between files and/or processes located at arbitrary
DNET Hosts.

Three Software Elements are required for the Network Command Processor.

- Network Command Interpreter (NCI) - used at the initiating node to interpret the Command Line

(CL) entered by the user, divide this CL into separate Sub Command Lines (SCL) and pass these
on to the first NCS.

- Network Command Server (NCS) - services network command which arrives from NCI or another

NCS; provides any local service requested, including process spawning, and sends remainder of the
SCL to the next NCS in the command chain The NCS is a DNET application server and is thus

registered in relevant domain server tables.

A Schematic view of the relationship between these components is shown in the figure below. The
generic command string being executed is:

Netl::Hostl:Flle X > Net2::Host2:*Proc2 > Net3::Host3:*Proc3 > Net4::Host4:Flle Y

10.1 Network Command Processor Schematic

84 DNET TECHNICAL GUIDE

DNET Host 1 DNET Host 2 DNET Host 3 DNET Host 4

(on Net 1) (on Net 2) (on Net 3) (on Net 4)
°°°°°,111.1..1.oooo. ..11,..**.**.,**...• ********************* *********************

NOorkI +I+orklN+orkCommand •-_ Command
Command D_NET Dgr .I_ET D
Interpreter " Server 2 Server 3

Lt
File X

l Proc 2]
Proc3

J Network
• Command

Dgr .a_n_ Server 4

tT
File Y

10.2 Network Command Language

10.2.1 Command Language Syntax

There are two types of objects- Files and Filters. The ">" operator is used to delimit the SCL
components of the CL.

Fllename syntax is: networkname::hostname:filename

$Taskname syntax is: networkname::host_name: taskname(paraml, param2 ...)

An example command is:

starnet::xhost:cfile > yhost:*sort > myflle

Other examples are given below.

When the network name or host name is not specified the local name is assumed. Spaces around the
">" are optional.

10.22 Using The Command Language

When filenames appear in command strings they imply the execution of file i/o servers. The network
command:

dac_net::vax2:david.comm > g_net::hostl:*checkp > results

requests that the contents of a file "david.comm" on host "vax2" in the network "dac net" be run through
the filter "checkp" executed on "hostr' in the network "g_net, and the output l_e placed in the file
"results" in the host on which the previous NCS was run (g net::hostl in this case).

Network Command Execution & Task Redirection 85

The network command:

net one::vax6:c-file > hostl:s-cfile

requests that the contents of a file "c-file" on host "vax6" in the network "net one" be copied to the file
"s-cfile" on the host1 machine on the same network. The network command:-

10.3 Network Command Interpreter

The Network Command Interpreter is invoked as an application from the shell prompt on the local

system.

%) dncl

%) dnc

dncl • command_stringl

response to CS1

dncl • command_string2

response

etc.

After parsing the CL, the NCI module opens a dnet connection to the NCS module specified in the

first SCL. The complete list of SCLs are passed over this connection to the NCS component.

All interaction between NCS components and between the NCI and NCS components are via

standardized packets. The packet header contains a length field and packet type field to describe the
data (if any) that follows.

The NCI module then wait for an ACKCOMP packet type to be recieved over the connection just

established to send the CL to the first NCS module. An ERROR packet type may also be received at
this point, and the data within the packet would be an error message generated at one of the downline
NCS modules.

10.3.1 Schematic of Network Command Interpreter

86 DNET TECHNICAL GUIDE

Network Command Interpreter

User Command =

dncA>B>CR

*°,°°°°°°,°°°°°°°°°°°°.°,=°°°°°°°°°,°°,°°°°°,°*****).)°°**

......... dnwriteO i

::7-d::
. //

Ic--I
...i.....t"

)Cat)

Equivalent

File

I/o

10.4 Network Command Server

The NCS module is set up to provide for exactly one SCL. This may involve reading a file, spawning a

filter, or creating a new output file. After the last NCS module has completed successfully, it will
initiate an ACKCOMP packet to inform all NCS modules upline, and the initial NCI module that the

operation was completed successfully.

Operations at the NCS include:

i. Walt for the NCI client or an upline NCS component to request a connection.

2. Read the CL (one SCL at a time) from the established dnet connection.

3. Determine SCL category

• First SCL on the CL -- read file

• A middle SCL -- filter

• Last SCL on the CL -- create output file, initiate ACKCOMP

4. Read input data packets until EOF packet arrives

S. Send EOF packet dowuline

6. Wait for ACKCOMP packet to arrive from downline

7. Send ACKCOMP packet upline

Network Command Execution & Task Redirection 87

8. Close upline and downline channels

10.4.1 Operations at Network Command Server during File I/0

A>B>CR
Network Command Server

..,,.ooooo..........o............o...........,....,,.....

B>CR

//
l ,-I

Spa mer I

I/O u _u_

l_lmlle --" _

....if.i!...........
Equivalent

File

X/O

10.4.2 Status Reporting (from last Network Command Server)

88 DNET TECHNICAL GUIDE

Datagram to Client Site [

anti Client/ _/" /_Rec'ving _ DNET Network

Report / \

Last N/W
Command

Server
in chain

10.5 An Example

An example command is:

netl::hostS:*lookup< > net2::host4:*sort > netS::hostl:fllex

The execution of this command is discussed below.

To support the execution of network commands two types of tasks are used: network command servers

(net_com_serv) and network i/o servers (net file io).

The net com serv tasks will assist in the remote execution of network commands by accepting

messages from other hosts' network command servers, spawning tasks as required, reading from and
writing to other hosts, passing the data to the spawned task as "standard input"(SYS$1NPUT) and

taking "standard output"(SYS$OUTPUT), thereby allowing the spawned tasks to operate in the
network environment without modification.

The second type of supporting task is the net file io. It is used to transmit and receive files. When a
filename appears as the only object in command component (i.e. it is not a parameter to a task), it is
assumed that the task to be executed is net file io.

The procedure used by a network command server to execute a network command is:

1. Read a command line from a network command language processor, or a network command
server

2. After deleting that portion of the command that is being executed by the current host, send a

copy of the command line to the host that will execute the next part of the command line

3. Identify the first task name in the command line (scan from left)

4. Spawn the identified task using the host that sent the command line in step 1. as the source of

standard input to the spawned task (pass data through a mail box to the spawned task) and send

the output from that task to the network command server on the host which will execute the next
task in the command line.

When the network command server controlling the last task in the command string completes, it sends

Network Command Execution & Task Redirection 89

a termination message, with status information, to the network/host/process that initiated the
command execution chain.

10.6 An Example of Network Command Execution

As described above, the network commands will be processed by distributing all or part of the

command line to various hosts for execution. Processing will start by sending a copy of the command

line from the network command language processor to the network command server on the system
which will execute the first task in the command line. To execute the network command:

netl::host5:*lookup< > net2::host4:*sort > net5::hostl:filex

the following processing is performed:

1. The network command language processor sends a copy of the command line to netl host5

2. The network command server on net1 host5 will send to net2 host4 a copy of the command line
text starting at "net2::host4".

3. Then identify the task "lookup" as the task to be executed.

4. Spawn a copy of the lookup task with standard input comming from the host that sent the

command line and standard output going to net 2 host 4. Both standard input and output streams
pass through the mailbox shared by the lookup task and the network command server which
spawned it.

5. Status messages are sent to the network command processor that invoked this command
execution.

6. The network command server on net2 host4 will send to net5 hostl a copy of the command line
text starting at "net5::hostl",then

7. identify the task "sort" as the one to be executed.

8. Spawn a copy of the sort task with standard input being from the host which sent the command

line and standard output to net 5 host 1. Both standard input and output streams pass through
the mailbox shared by the sort task and the network command server which spawned it.

9. The network command server on net 5 host 1 will read the command line and

10. identify "filex" as a filename, therefore choose task "net file io" as the one to be executed.

11. Since there is no more text in the command line there is no successor task to send the command

line to. The network command server spawns the net file io task with "filex _ as the output file
and standard input being from the host which sent the command. Data from the input source is
read and stored in the output file until an end of file causes the termination of the net file io
task. - -

12. This causes the parent process, "net corn_sere' to send a completion status message to the
process that initiated the execution of t'his command string.

10.7 Network Command Processor Implementation

There are three major components in the Network Command Processor:

90 DNET TECHNICAL GUIDE

• Network Command Interpreter

• Network Command Server

• Network File I/O

The implementation of these is outlined below.

10.8 Network Command Interpreter

The Network Command Interpreter reads commands from users, parses, processes, and distributes
them to the network servers on the specified hosts, messages sent to the servers that execute the
command.

In the design presented below the symbol used for the data flow operations is ">"

"Names" refer to either files or tasks (the "*" precedes tasknames).

The datagrams sent to the Network Servers are produced as follows:

1. Pointer P1 is set to the start of the first name in the command.

2. Starting at P1 text is scanned, stopping at the first op code it finds, or the end of the
command line, whichever is found first. If it finds the end of the command line a flag is set

(see below for processing done for this).

3. The op code is saved in 'op'.

4. P2 is set to the start of the name following the op code.

5. Scan as in Step 2 to the next op code.

6. Using P1 'op' and P2 genetate the skeleton form of the message that will be sent to the host

whose name is pointed to by P1.

7. Set P1 to the value in P2.

8. If the "end" flag is not set go to Step 2.

10.8.1 Additional Processing

Additional processing of messages is required to add information about "implied" servers and

parameters for file names and for the return of completion status. Samples of the types of messages

that require this processing are shown below.

Original Message Modified Message

Hostl:*taskl < > Host2:*task2 Prefix message with name of net_com_serv.
or

Hostl:*taskl > Host2:*task2

Hostl:*taskl > Host2:file2 Prefix message with name of net_com_serv. Replace file2 with

*net file io,(create, file2)

Network Command Execution & Task Redirection 91

Hostl:filel > > Host2:file2

Prefix message with name of net_com_serv. Replace file2 with*net file io,(append, file2)

In addition to the modifications shown above, each message will be given a serial number uniquely

identifying the command with which it is associated and the network address of the command

interpreter to which completion status will be sent.

10.9 Network Command Server

The Network Command Interpreter sends messages to the various hosts specified in a network

command. The messages contain the name of a server, the parameters to be used in processing, and
the network address of the Network Command Server to which the completion status code should be
sent.

10.9.1 Implementation of the Network Command Server

The Network Command Server listens for datagrams from any Network Command Interpreter. Upon

receiving one it determines the name of the server being requested, the parameters to be used in the
call to it, and the network address of the Network Command Interpreter that sent this request.

On VMS systems the following is done:

To obtain the name of the mailbox associated with an instance of the requested server the local Master

Server is called. The Network Command Server then writes a message to the mailbox, requesting a
local service connection. In this mode of operation the client (Network Command Server) provides the

names of one input and one output mailbox to be used by the requested server for SYS$INPUT and

SYS$OUTPUT. During the execution of the command the Network Command Server continuously

reads from the network connection to the prior host in the command pipeline and writes to the
SYS$INPUT mailbox. At the same time it continuously reads from the SYS$OUTPUT mailbox and

writes to the network host on which the next task in the command pipeline is executed.

After the completion of the command execution the Network Command Server Deassigns the

mailboxes used in the command, keeping them for future use. The completion status code is returned

to the originating Network Command Interpreter by sending a datagram.

On UNIX systems the processing is as follows:

Each server is created by the Network Command Server when needed, using the fork and exec system

calls. In this way the standard input/output files, in this case pipes, created by the parent (the Network

Command Server) are available to both parent and child. During the execution of the command the
Network Command Server reads from the network connection to the prior host in the command

pipeline and writes to the standard input of the child. At the same time it reads from the standard

output of the child and writes to the network host on which the next task in the command pipeline is
executed.

The completion status code is returned to the originating Network Command Interpreter by sending a

datagram.

10.10 Network File I/0

Network File I/O is a server that is used to read and write files on the local host to and from remote

hosts. It assists in transmitting input and output data across network connections that support

92 DNET TECHNICAL GUIDE

commandpipes.

The arguments to Network File I/0 are

- mode (append or create)

- filename

Network Command Execution & Task Redirection 93

11. Presentation Layer Services

11.1 XDR

dn xdr.c

94 DNET TECHNICAL GUIDE

12. DNET Error Handling

DNET Basic I/O Library functions return a non-selective error code if an error is detected during their

operation. These errors are defined in the header file ../dnet/common/dnet_errno.h

Errors detected by the DNET code are identified in the variable dnet errno:

dnet errno = XXXXX;

An error function, dnet_error("strlng'), is then optionally called where string is an optional, user
provided informative message, dnet error provides detailed information on conditions when the error
was detected including a stack trace.-

dnet_error(*error_string)

char * error_string;

Detailed error codes are provided in the programmer reference manual.

DNET Error Handling 95

13. Routing

13.0.1 getpath

13.0.2 load_my_name

13.0.3 load net table

The router selects the host/process to which the datagram will be transmitted next.

get_path();

path = get_path(src_net,sre_host,dest_net,dest_host,dest_process,numhops);

src net Is the network in which the destination host is located

src host is the destination host

dest net is the network in which the destination host is located

dest host is the destination host

dest_process is the destination process

numhops - number of hops from current location to destination

13.1 Router Operation

The paths to hosts in the local network are direct connections. For paths to hosts in other networks a

dynamic router is used. A hierarchical routing table is used to determine the host to which the

datagram should be sent next. The entries in the routing table are updated by exchange of
connectionless datagrams between DNET gateways and individual DNET hosts.

In the future the router may be enhanced to include searching for alternate paths and servers if the

standard search fails to satisfy the request. The second search could extend into other networks in

requests for generic servers that need not be executed in a specific network or host. Extended searches
will provide automatic alternate routing, load sharing, and backup services for use when failures in

hardware or software reduce the availability of facilities.

The datagram header contains three fields which are used in routing as indicated below:.

96 DNET TECHNICAL GUIDE

] dglen l chan] type] numhop] Src i gelSrc I Next] l)est I Rcpt J Seq# [Msg I

Routing 97

typedefstrnct{
shortdglen; /* The total length of the datagram, excluding

this field */
short chan; /* The channel number that is being used */

short type; /* A code for the datagram type - Connectionless,
Virtual Circuit or Signal */

short hopnum; /* The curent hop number-- to catch circular routing*/

char srcnet; /* The DNET code for the src host's network name */

short srchost; /* The DNET code for the src host's host name */
char *srcproc; /* The name of the process to be used on the src host */

char rel_srcnet; /* The DNET code for relative
src host's network name */

short rel_srchost; /* The DNET code for the src host's host name */
char *rei_srcproc; /* The name of process to be used on the src host */

char nextnet;

short nexthost;

char *nextproc;

/* Next DNET network to be reached */
/* Next DNET host (on nextnet) */

/* Process to be contacted on 'nexthost' */

char destnet; /* The DNET code for the dest host's network name */

short desthost; /* The DNET code for the dest host's host name */
char *destproc;/* The name of the process to be used on the dest host */

char receipt; /* Return Receipt Request = 0 no receipt

1 receipt requested

char *sequence# /* PID and datagram sequence number */

char *msg; /* The data to be sent */
} DATAGRAM;

A typical routing table is shown below:.

DNET Local Routing Table

Destination Net Next (Gateway) Host Next Process Dataiffam Protocol
dnettl udp
spanet dacvax drelaytd udp

starnet dacvax drelaytd udp
Net X Host Y drelaytX udp

13.2 Routing Example

The route generated for a typical datagram is shown in the following diagram:

98 DNET TECHNICAL GUIDE

Client CL X

Net I

- - dn_tfl

TCP/IP LAN

Net 2

...... spanet

DECnet

$3

Net 3

starnet

TCP/IP - Interne/

Server SV X

$4

In this example client CL_X on DNET host D2 wishes to conduct a session with server SV_X on
DNET host T2.

The router on host D2 has the following routing table available:

DNET Local Routing Table - Host D2

Destination Net Next (Gateway) Host Next Process Datagram Protocol

dnettl NULL NULL udp

spanet datwax drelaytd udp

starnet dacvax drelaytd udp

The router on host D4 has the following routing table available:

Routing 99

DNET Local Routing Table - (Gateway) Host I)4

Destination Net Next (Gateway) Host Ne_ Process Datagram Protocol

spanet NULL NULL dec

dnettl dacvax drelaytd udp

starnet iaf delaydt dec

13.3 Routing Table Updates

Initially, routing table updates will be handled in a manual fashion. Examination of a method for

automatic updates for these tables will be considered as time allows.

100 DNET TECHNICAL GUIDE

DNET

TECHNICAL REFERENCE

Version: 1.10

Print Date: 08/31/89 17:37:38
Module Name: tech.ref

Digital Analysis Corporation
1889 Preston White Drive

Reston, Virginia 22091
(703) 476-5900

SSIR RIGIITS NOTICE

TI_ SBIR data hi furnmhed wilh SBIR rights under NASA Contract NAS5-30085. For a pen_ of 2 years after acceptance Of aU iten_ to he delivered ur_der this contract

lhe Goverm_nt agrees to _se tt'a_ data fo_ Governn_r_t putposet only, and it sha|l nol be dit_tor_d v,_stde the Governme_ (il_ _we _o¢ prom_ment

pur]:x_e.s) 0ur.ng such pe_xl vnfhout pernu._to_ of the Contractor, ex_jt that, subject I:o lha forgom 8 _ slid di.ttch31ure pt'oh,ibitlo_, such detlt may be _ [or ta_e

by support ¢omrscto_. After the sforesaid 2-y_ar period the Governn_nt has • royalty-free hcent, e to tse. and to authorize ¢_he_ to tie m it* behalL thia data fix"

Government p_, bul hi relieved from all dJ.u:losure ptolttbitior_l; and Jgsu.n_ no liability for _llt_ _ used of thil chits by tht_ plinth. TI_ Noti¢_ shall be

affl.yeO to ally reprodUt_lOm of ti'tll da(|, in whole, or in part."

Col'J_ght 1989. DigttSl Analystt Corporation

ASS_DG(31) DNET ASS_DG(3I)

NAME

ass_dg - assemble a dnet datagram.

SYNOPSIS

#include "dnet"

int ass_dg(udg, ddg)
struct udg *udg;

char *ddg;

DESCRIPTION

The ass_dg internal library routine takes the contents of the udg structure and assembles a

standard dnet datagram into the ddg buffer.

This function is used for purposes of preparing the user datagram to go over a network. Integer
conversions are performed here as necessary. This function is only called by the per protocol
dgs components.

SEE ALSO

dass dg(3I)

RETURN VALUE

The ass_dg routine will return the size in bytes of the assembled datagram if successful. If an
error condition exists, then the return value will be -1 and the external variable dnet errno will
hold the error value.

ERRORS

The call will not currently return in error.

Page 2 (07/19/89)

CHECK_MYNET(3I) DNET CHECK_MYNET(3I)

NAME

check_mynet- validatethenameofdefaultnetwork
SYNOPSIS

#include _dnet.h"

int checkmynet0

DESCRIPTION

This routine checks the name of the default network (retrieved by load my nmae(3l)) against
entries in the tbls.net table (loaded by load net_table(3I)) to insure the the default network is

truly defined.

This routine is currently only called from the dn init(3U) routine.

SEE ALSO

dn_init(3U), load_my_name(3I), load net table(3I)

RETURN VALUE

The routine returns a value of zero on success, and -1 to indicate an error.

ERRORS

The call fails if:

[D INTERN] The default network name could not be found in the tbls.net table. This would
indicate an administrative error.

Page 3 (07/19/89)

DASSDG(3I) DNET DASS_DG(3I)

NAME

dass_dg - dissasemble a received dnet datagram.

SYNOPSIS

#include "dnet.h"

int dass_dg(ddg, udg)
struct udgbuf *ddg;

struct udg *udg;

DESCRIPTION

This routine dissasembles a datagram received from the retwork into the structure used by dnet

user programs and the dgms.

The per protocol dgs components are the only components that need to call this routine.

Network integer conversions are performed for the header information in this routine as
needed.

SEE ALSO

ass dg(3I)

RETURN VALUE

The routine will return a value of 0 on success and a value of-1 to indicate an error condition.

ERRORS

This routine will not curr:ntly return in error.

Page 4 (07/19/89)

DBCOPY(3I) DNET DBCOPY(3I)

NAME

dbcopy- binarycopy
SYNOPSIS

int dbcopy(frombuf,tobuf,len)
char*frombuf;
char*tobuf;
int len;

DESCRIPTION

Thedbcopylibraryroutineprovidesa binarycopyof datafromonelocationin memoryto
another.The first argument(frombuf)is theaddressof the sourcebuffer. Thesecond
argument(tobufdeterminesthelocationtocopyto (destinationbuffer),andthethirdargument
(len)specifiesthenumberofbytestobecopied.

SEEALSO

dbzero(3I)
RETURN VALUE

This function returns an undefined value. This value should not be tested.

BUGS

This function returns an undefined value. This value should never be tested.

Page 5 (06/19/89)

DBZERO(3I) DNET DBZERO(3I)

NAME

dbzero - zero fill a buffer

SYNOPSIS

int dbzero(buf, buflen)

char *bur;

int buflen;

DESCRIPTION

The dbzero library routine provides a standard mechanism for zero filling a given buffer of

given length. The fisrt argument is the address of the buffer, and the second argument specifies

the number of bytes that are to be zero filled.

SEE ALSO

dbcopy(3I)

RETURN VALUE

This library routine always returns an undefined value, bt, t never fails.

BUGS

This library routine returns an undefined value, no test on the value should be made.

Page 6 (06/19/89)

DG GETNEXT_HOP(3I) DNET DG_GET_NEXT_HOP(3I)

NAME

dg_get_next_hop- setne;:tnodeinuserdatagramstructure
SYNOPSIS

#include"dnet.h"

int dg_get_next hop(udg)
struct udg *udg;

DESCRIPTION

This routine will take the values passed in the user data_;ram structure and will determine the

"next hop value" for that datagram. The value of the n,:xt hop will be placed in the next.net,
next.host, and next.proc fields of the udg structure. Tht values placed in the next node fields

will differ slightly according to wether the next hop is a process on the existing machine, or is

the address of another host on a network directly linked t3 the current machine.

The value of proc always represents the process to send t[_e message containing the datagram to

on the current machine. In the case of a datagram arriv!ng at the destination, this represents a
user processes bound to process name and may be looked up in the ADGUT. The net and host
entries will be set to the same value in the destination node.

In the case of a datagrara arriving at a gateway, the process name set represents the bound to

process name of the per protocol DGS component that runs the network over which the next

hop host is connected to. The net and host names represent the place that the per protocol DGS

component is to send the datagram. The net name is rcquired as the DGS component may be

responsible for more than one network of a given type.

RETURN VALUE

This routine will return a value of 0 on success and a -1 when

an error condition exists.

ERRORS

The call fails if:

[D_NOPATH] The network passed in the user datagt am structure could not be resolved in
the current host's routing table.

CAVEATS

This routine is defined internally within the dgms component and therefore is inaccessable to

any other module.

Page7 (07/19/89)

DISASSEMBLE(3I) DNET DISASSEMBLE(3I)

NAME
disassemble- disassemblea"datagram"forconnectionservices

SYNOPSIS
#include "dnet.h"

void disassemble(buf, rig)

char *buf;

struct datagram *dg;

DESCRIPTION

This user library routine (used only with the connection oriented services) disassembles a

datagram created by one of the following user library rouzines:

• dn makedg(3U)

• dn makepvc(3U)

° dn_makesignal(3U)

The datagram is disassembled into a datagram structure of the following form:

struct datagram

{
short dglen;
int stream;

short type;
short numhops;

short pathlen;

char *path;
char *msg;

SEE ALSO

dn_makedg(3U), dn_mal:epvc(3U), dn_makesignal(3U)

Page 8
(07/19/89)

DN_ALLOC(3I) DNET DN_ALLOC(3I)

NAME

dn alloc- dynamically allocate memory for dnet structur_ s

SYNOPSIS

#include "dnet.h"

char *dn_ailoc(s_token, c_token, size, addr)
int s_token;
int c token;

unsigned *size;
char *addr;

DESCRIPTION

The dn alloc internal library routine (should be implemented for the user library also)

dynamically allocates memory for the dnet structures to be used by programs. These routines

not only encourage the efficient usage of memory, but also provide for portability of programs if
the definition of the structure is modified. If these rout:_nes are used, then the template of the

structre should not be redefined, and fields should be referenced through the field names
provided in the system definition of the structure.

The following structures "nay be allocated using this routines:

DGMS_MSG This will allocate space that may be accessed through the dgms_msg
structuce.

DN UDG This will allocate space that may be accessed through the udg structure.

DN SVMSG This structure token is only valid and compiled on a Unix System V and will

result in a D BADARG error condition if use is attempted on any other
system. This"allocates space necessary for the msgbuf structure used in

System V message queues.

The c_token parameter must specify one of the following command tokens:

DN_ALLOC This is used to initially allocate the structure. The addr field is ignored.

DN REALLOC This is used to reaUocate the size of an existing structure allocated using the
DN ALLOC command. The addr field must reference the address of a valid

structure allocated using the DN_ALLOC command.

DN_DALLOC This command is used to deallocate, or free up the space allocated for the
structure, after the structure is of ne use. As the amount of dynamically

allocated memory increases, the efficiency at which more memory is allocated
decreases.

The size parameter is a pointer to an unsigned value. This value is read by dn alloc to

determine the requested size of the buffer field within the structure being allocated. Ift'he value

is zero, then dn alloc will allocate the maximum allowable buffer for that particular structure.

The dn_alloc routine will return in the location specified by size the size of the entire allocated
structure. The size of the header may be determined by subtracting the number of requested

buffer bytes (if non-zero) from the value set after the dn_alloc call. If the size is not initialized
to a valid value, the program will behave unpredictably.

The addr parameter is only meaningful when used with the DN REALLOC or DN DALLOC
commond token. In these cases the address should be the i'ocation in memory-of a dnet

structure previuosly allocated with dn aUoc.

Page 9 (07/19/89)

DN_ALLOC(31) DNET DN_ALLOC(3I)

RETURN VALUE

The routine will either return the memory location of the newly allocated structure, or a NULL
value indicating an error.

The DN DALLOC command will always return a NULL pointer.

ERRORS

The call fails if:

[D_SYSERR] A system error has ocurred, check the errno variable to determine what the

system error was.

[D_BADARG] An unl,nown structure token was pass¢.l.

[D_BADARG] An unknown command token was pass zd.

[D_BADARG] The ccmmand token was either DN REALLOC, or DN DALLOC and the
addr field was 0.

[D_MSGTB] The size argument passed with the DGMS MSG or DN SVMSG structure
token exceeded the maximum allowable size forthat structures

[D_DGTB] The size argument passed with the DN UDG structure token would exceed the

maximum allowable datagram size.

BUGS

This call is implemented on top of the mailoc library routines which are ambiguos as to the

source of error. Therefor, the dn_alloc routine may incorrectly report a system error when one
has not actually occurred.

Page 10 (07/19/89)

DN_INITPERM(3I) DNET DN_INITPERM(3I)

NAIVlE

dn_initperm- Establishandbindanendpointforcommunication
SYNOPSIS

int tcp_initperm(service,backlog)
char *service;

int backlog;

int decnet_initperm(service, backlog, pauxchan)
char *service;

int backlog;

int *pauxchan;

DESCRIPTION

The dn_initperm routines establishes an endpoint for communication over either a TCP/IPC or

DECnet provider, binds to the port number specified by service, and specifies that up to
backlog connection requests may be outstanding on the established endpoint. In the

decnet_initperm routine, the pauxchan points to the location where the file descriptor will be
placed for the mailbox associated with the network chan_ael. This is needed to handle multiple
inbound requests on VMS.

This call is used to merely set up the endpoint and will not block waiting for a connection

request.

The service argument is a character string that has either been defined as being a well known
service (in/etc/services on UNIX machines) or is an ASCII representation of an integer value,

in which case the value will be used directly as the TCP port to bind to.

SEE ALSO

dn_initperm(3U)

RETURN VALUE

The call returns a valid file descriptor to the endpoint on success or a -1 to indicate an error.

ERRORS

The call fails if:

[D SYSERR] A system error has occurred, check the global variable errno (on UNIX
machines) to determine the cause. (UNIX ONLY)

[D INTR] A signal was caught while attempting to establish the endpoint. No endpoint will
be established in this case. (UNIX ONLY)

[D NODNETSRV 1 Tile service name specified could not be found in the definition of

servers (/etc/services on UNIX). (UNIX ONLY)

BUGS

The decnet_initperm routine does not currently set any indication for cause of error. The

standard VMS error reporting routines should be consulted in when using this routine.

Page 11 (07/19/89)

DN_MAKEDG(3I) DNET DN_MAKEDG(3I)

NAME

dn_makedg-assemblea.)GCALLBACKdatagram
SYNOPSIS

voiddn_makedg(buf,channel,numhops,path, msg)
char *buf;

int channel;

int numhops;

char *path;

char *msg;

DESCRIPTION

This internal library routine assembles a DG CALLBACK datagram, used exclusively by the
connection oriented service, given the channel number, the number of hops, the path, and

message. The contents of the assembled "datagram" _re placed into the bur buffer. The
assembled datagram resembles:

dg_len I channel Itype = D_3_CALLBACK I numhops Ipath[en Ipath I msg

The path element is composed of the following. (Sometimes the next and destination hops are

the same so the three ney.t elements are eliminated):

thisnet Ithishost Ithisproc Inextnet I nexthost [nextproc Idestnet Idesthost Idestproe

SEE ALSO

dn_makepvc(3I), dn_makesignal(3I)

Page 12 (07/11/89)

DN_MAKZPVC(3X) DNET DN_MAKEPVC(3t)

NAME

dn makepvc - assemble a DG_STREAM datagram

SYNOPSIS

void dn_makepvc(buf, channel, msg)
char *bur;
int channel;

char *msg;

DESCRIPTION

This internal library routine creates a DG_STREAM "datagram" (used only by the connection
oriented services) given t channel and mcssage. The assembled "datagram" is placed into the

buffer (bur). The datagram looks similar to:

dg_len Ichannel [type = DG_STREAA! Imsg

SEE ALSO

dn_makesignal(3I), dn_makedg(3I)

Page 13 (07/11/89)

DN_MAKESIGNAL(3I) DNET DN_MAKESIGNAL(3I)

NAME

dn makesignal - make a ;)G_SIGNAL datagram

SYNOPSIS

void dn_makesignal(huf, channel, msg)
char *buf;

int channel;

char *msg;

DESCRIPTION

This internal library routine assembles a DG_SIGNAL "catagram" (used only by the connection
oriented services) given a channel and message. The assembled "datagram" is placed into the

buffer (but'). The assembled "datagram" looks similar to the following:

dglen I channel I type = DG_SIGNAL I msg

NOTE: For now, this is identical to dn_makepvc(31) except that the datagram type is
DG SIGNAL. Eventually, this should assemble s3mething that looks more like a

DG-DATAGRAM datagram.

SEE ALSO

dn makepvc(31), dn real. edg(3l)

Page 14 (07/11/89)

DNET_ERROR(3I) DNET DNET_ERROR(3I)

NAIVlE

dneterror- printdnetstackdumpanderrordescription
SYNOPSIS

#include"dnet.h"

void dnet_error(usermessage)
char *usermessage;

DESCRIPTION

BUGS

The dnet error library routine prints out a dnet stack dump and a descriptive error message

about the dnet_error that just occurred. If the dnet error indicates a system error, then a

descriptive message of the system errror which just occurred will also be displayed.

On top of the error display and stack dump, the message pointed to by the first argument

(user..message) will be displayed.

The descriptive error messages being written are dependant upoon the underlying services

setting the dnet errno variable (see dnet_errno.h). In the connection services and on the VMS
machines, this variable is not reliably set.

Page 15 (07/19/89)

GET_FIRSTHOP(3I) DNET GET_FIRSTHOP(3I)

NAME

get_firsthop- getsource:rodedescriptionfrompathstrin:

SYNOPSIS

#include "dnet.h M

int get_firsthop(path, fir,thop)
char *path; /* Returned by get_path(M) */

HOPFIELD *firsthop;/fP

DESCRIPTION

The get_firsthop routine will set the value of firsthop to the source node description according

to the values in the path string. The get_path(3I) ro'atine may be used to extract routing

information, which can then be broken out by this routine, get_nexthop(3I), and

get_lasthop(3l).

SEE ALSO

get path(3I), get_nexthop(3I), get lasthop(3I)

RETURN VALUE

The return value of get_firsthop is undefined.

BUGS

The return value of this rautine is undefined and should be ignored.

Page 16 (07/19/89)

GET_LASTHOP(3I) DNET GET_LASTHOP(3I)

NAME

get_lasthop- getdestinationnodefrompathstring
SYNOPSIS

/f3#include "dnet.h"

int get_lasthop(path, numhops, desthop)
char *path;

int numhops;

HOPFIELD *desthop;

DESCRIPTION

This routine extracts the destination node string from the path string. The path string can be set

using the get_path(3I) routine.

If numhops is a non zero value, then this routine will gral_ the destination node description from

the third section of the path string. If numhops is a zero value, then it is assumed that the
destination node is being determined on the destination machine. The path string will then only

contain two sections, an¢ the destination node description from the second section of the path

string.

SEE ALSO

get path(3I), get_firsthop(3I), get_nexthop(3I)

RETURN VALUE

The return value is undefined for this routine.

BUGS

This routine currently returns an undefined integer value. It should be ignored.

Page 17 (07/19/89)

GET_NEXTHOP(3I) DNET GET_NEXTHOP(3I)

NAlVlE

get_nexthop- getnextnodedescriptionfrompathstring
SYNOPSIS

#include "dnet.h"

int get_nexthop(path, ne,':thop)
char *path;

HOPFIELD *nexthop;

DESCRIPTION

This routine will extract the next node description string from the path string. The path string is

set by the getpath(M) routine.

This routine along with get_firsthop(3I) and get_lasthop(3I) make up a set of routines for

extracting node descriptions from the path string. Becat se the path string may vary depending
upon the machine it is on, these routines should be used to extract the node descriptions rather

than accessing the path string directly.

SEE ALSO

get path(3l), get_firsthop(3I), get_lasthop(3l)

RETURN VALUE

BUGS

This routine currently returns an undefined integer.

This routine currently rettlrns an undefined integer value. It should be ignored.

Page 18 (07/19/89)

GET_PATH(3I) DNET GET_PATH(3I)

NAME

get_path- lowleveldnet;outing function

SYNOPSIS

#include "dnet.h"

char *get_path(source, destnet, desthost, destproc, numhops)

struct nethost entry *source;
char *destnet;

char *desthost;

char *destproc;

int *numhops;

DESCRIPTION

This internal library routine provides the low level dnet routing service for dnet components.

Given the source and destination networks, hosts, and processes, this routine determines wherre

the next hop is. If the source and destination networks are the same, a two part path is
assembled, aconsisting of the following:

thisnet [thishost]thisproc]destnet [desthost Idestproc

In that case, a value of 0 s placed in numhops.

If the source and destination networks are different, thz router looks in the network routing

table (loaded into memory by dn_init(3I)) for an ent_ wherre the source and destination
networks match the source and destination networks passed to this routine. If a match is found,

a path is returned that looks similar to:

thisnet Ithishost Ithisproc Inextnet Inexthost Inextproc I destnet I desthost I destpro¢

A value of 1 is placed into numhops to indicate this type of path.

SEE ALSO

get_firsthop(3I), get_nexthop(3I), get lasthop(3I)

RETURN VALUE

A valid character pointer is returned on success, and a NULL pointer is returned to indicate an
error.

Page 19 (07/19/89)

IPCCLOSE(3I) DNET IPCCLOSE(3I)

NAME

ipcclose - close an ipc mechanism

SYNOPSIS

lnt ipeclose(ipcid)
int ipcid;

DESCRIPTION

The ipcclose internal library function removes the calling process's access to the ipc mechanism
identified by ipcid. Any later access to that ipcid will be invalid.

If the mechanism being c_osed was accessed by the user using the D BIND flag in the ipcget(3l)

routine, then the mechanism will be removed from the system. If the D BIND flag was not
specified, then the mechanism will remain in the syst:m until the bin_ng peer issues the
ipcclose(3I) call. Even if the mechanism remains intact, the user will still not be able to access

after the ipcclose.

SEE ALSO

ipcgct(3I)

RETURN VALUE

Upon successful completion, the function will return a value of 0. If an error occurred, then the
function will return a value of -1 and will set the variable dnet errno to indicate the error
condition.

ERRORS

The call fails if:

[D_SYSERR] A systc m error has occurred. Check the global variable errno.

[D_BADARG] The ip,:id passed was invalid.

[D_EPERM] Write permission is denied on the ipc directory, or search permission to the

ipc directory is denied. This indicate l that permissions have been changed
since the time that ipcget was called.

[D_NODNET] The ipc directory no longer exists.

[D_NOEXIST] The ipc mechanism has already been removed. This usually means someone
has manually removed the file node.

CAVEATS

If ipcid is valid, the ipc mechanism will be closed by this routine even if an error occurrs.

Page 20 (07/19/89)

IPCGET(3I) DNET IPCGET(3I)

NAME

ipcget - establish and/or gain access to an IPC mechanism

SYNOPSIS

#include "dnet.h"

int ipcget(name, flags)

struct dnet_ipcname *name;
int flags;

DESCRIPTION

The ipcget library routine is used to establish and/or gain access to a mechanism for

interprocess communiction.

The following is the template definition for the dnet_ipcname structure:

struct dnet_ipcname
{

char name[D_MAXPATHNAME];
unsigned msgsize;

unsigned mqueuesize;
};

The name field represents a string value that will be used to determine peers in a conversation.
The name chosen may nc,t contain the forward slash character.

The msgsize field represents an attempt at negotiation between the user process and dnet for

determining the maximum size of message that may be passed through. If the icpget call

succeeds, then dnet guarantees that messages of that size or smaller will not be truncated. The

ipcget call will fail if the underlying IPC mechansisms are not capable of handling a message of
the size requested.

The mqueuesize argument is used to request that dnet attempt to allocate enough space to

allow mqueuesize number of messages of msgsize to be sent to the queue without ever blocking.

This is infeasible in most environments because of snaring of buffering space with other

processes, but can be used to warn dnet of the expected activity for a particular user. Future

releases of dnet may actually take back allocated space if it is needed for other users.

An integer (ipcid) will be returned on successful comple:ion which must be used in future calls
to the established IPC mechanism.

The following flags may be set:

DBIND Epecifies that name is to be used to identify what incoming datagrams

rre to be received at this endpoint. Only one process is allowed to bind

tJ a given name at a time. Either the DBIND, or the D_CONNECT
flag must be specified.

D_CONNECT Specifies the address (name) to which all datagrams leaving via this IPC
mechanism are to be sent. This flag is mutually exclusive with respect

to D BIND. At least one of these mutually exclusive flags
(D CONNECT, D_BIND) must be specified in the flags parameter.

D_GLOBAL This flag is only meaningful when used in a VMS environment in
combination with the D BINE flag. The effect of this flag is to
advertise the name of the ipc mechanism in the system table, rather

than just the job table. This fla8 will cause the call to fail if the calling

process does not have SYSNAM privilege.

Page 21 (07/19/89)

IPCGET(3I) DNET IPCGET(3I)

SEEALSO

ipcsnd(3I),ipcrcv(3I),ipcclose(3I)
RETURNVALUE

The function call will return a positive number represcating a valid ipcid, or will return a -1

indicating an error and the external variable dnet_errno will be set to the error code.

ERRORS

The call fails if:

[D SYSERR]

[D BADNM]

[D_BADMN]

[D_BADARG]

[D AEXIST]

[D_NOEXIST]

[D_NOSRSC]

[D_NOSRSC]

[D_QUOTAI

[D_NODNET]

[D_EPERM]

[D_EPERM]

[D_EPERM]

[D_INTR]

A system error has occurred. Check the global variable errno.

The name was either determined to have a length of zero, or the length

cf the name was longer than the system imposed maximum (see
D MAXPNAME in dg.h). All names are assumed to be null
t _'rminated string values.

The name contained the forward slash (/) character.

Both the DBIND and D_CONNECT flags were specified.

The D BIND flag was set and another process was already bound to
the add'ress in name-> name.

The D_CONNECT flag was set and there was no process bound to the
given name.

There are currently not enough system resources available to provide
for another IPC mechanism at this time. The call may succeed at a
later time.

You have too many ipc mechanisms active. You will need to perform

en ipcclose(3I) before you issue another ipcget(3I).

'"our process has the maximum number of file descriptors already in
t se.

] he error that occurred would indicate that the proper dnet

components were not started up, or were not started up properly. One
or more of the followin indications were found:

• A component of the dnet assembled absolute pathname for the IPC
mechanism was determined to not be a directory. This is indicative

of absence of the dnet temporary directory from this machines file

hierarchy.

• If the current system is Unix System V, the error may have resulted

from the dnet message queue(s) not existing.

Search permission of a component of the dnet temporary directory was

denied the calling process, or write permission to the dnet temporary
directory itself was denied.

If the current system is Unix System V, this error may have occurred

trom lack of permission to the m_ssage queue(s).

If the current system is VMS, then the user may not have permission to
create mailboxes.

"'he system call was interrupted by the receipt of a signal before it could

be completed.

Page 22 (07/19/89)

IPCGET(3I) DNET IPCGET(3I)

BUGS

Noneofthesizefieldswithinthednet_ipcnamestructurearecurrently supported or checked.

This was provided for '/MS implementations where the. IPC queueing space is explicately
allocated for each mecha lism.

Page 23 (07/19/89)

IPCRCV(3I) DNET IPCRCV(3I)

NAME

ipcrcv - receive an ipc message

SYNOPSIS

#include "dnet.h"

int ipcrcv(ipcid, msg, msglen, flag)

int ipcid;

char *msg;
int msglen;

int f"lag;

DESCRIPTION

The ipcid argument is the integer handle returned from a successful ipcget routine.

The ipcrcv function call ellows a process to receive an incoming message on the specified ipcid.

A blocking read is perfor.ned unless the D NOWAIT flag has been set.

The value in msg is an address of a character array where the message will be placed. No more

than msglen characters will be read. Any extra characters will be truncated.

SEE ALSO

ipcsnd(3I)

RETURN VALUE

Upon successful completion, the function will return a value representing the number of

characters received. If an error occurred, the value rzturned will be -1 and the variable

dnet_errno will be set to indicate the specific error condition.

ERRORS

BUGS

The call fails if:

[D_SYSERR]

[D_BADARG]

[D_BADARG]

[D_NOMSG]

[D_EPERM]

[D_NOEXIST]

[D_INTR]

A system error has occurred. Check the global variable errno.

The ipcid passed was zero or did not reference a valid dnet ipe
mechanism.

The specified buffer length was less than one.

The D_NOWAIT flag was set and no messages were waiting to be read.

Read permission on the underlying IPC mechanism was denied to the

calling user.

The peer reset it's connection. The ipcrcv routine will issue an
ipcclose(3I) on this ipcid to iavalidate it for you. On System V

machines, this actually means thzt the dgms component reset the entire
ipc medium.

A signal was caught while attempting to read from the ipc mechanism.

No message was read in.

The D_NOWAIT flag requires a system call after receiving a message in the BSD environment.

This opens up the possibility of a signal being posted after a successful read. This situation will

cause a D INTR error t3 be specified and the ipcrcv call will appear to fail. If the D INTR
message is set, check to see if the message was actually read, and if so, reissue another non-

Page 24 (07/19/89)

IPCRCV(3I) DNET IPCRCV(3I)

blocking read to reset the socket endpoint properly.

Page 25 (07/19/89)

IPCSND(3I) DNET IPCSND(3I)

NAME

ipcsnd - send a message _ia a dnet IPC mechanism

SYNOPSIS

int ipcsnd(ipcid, msg, msglen, flags)

int ipcid;
char *msg;

int msglen;

int flags;

DESCRIPTION

The ipcsnd function call allows a process to send a messa;;e out an IPC mechanism created with

the ipcget library routine.

The only flag value currently supported is the D NOWAIT flag which will insure that the calling
procedure will not block ,m back pressure from the underlying IPC mechanism.

SEE ALSO

ipcrcv(3I)

RETURN VALUE

Upon successful completion, the ipcsnd function call will return a value of 0. If an error
occurred, a value of -1 will be returned and the dnet errno variable will be set to indicate the
error code.

ERRORS

The call fails if:

[D_SYSERR] A system error has occurred. Check the global variable errno.

[D WOULDBLOCK] The D NOWAIT flag was set and sending the message at this time
would cause the process to block waiting for the underlying mechanism to

release back pressure.

[D BADARG]The ipcid value passed was either zero, was a negative number, or did not
represent a valid dnet IPC mechanism.

[D_BADARG] The ipcid passed represents an IPC mechanism created with D_BIND, and
therefcre cannot be used with ipcsnd.

[D_BADARG]The vatue of umsglen was determined to be less than one or greater than the

maximum allowable message size (D MAX_IPC MSG_SIZE in dnet_ipc.h).

[D_NOEXIST] The peer reset it's connection. The ipc3nd routine will issue a ipcclose(3I) for

your process.

CAVEATS

Unix System V implementations attempt to dynamicaKy allocate memory space for sending
messages when they are called from within a dnet user program. This may result in a system

error occurring from temporary lack of memory space which may be available at a later time.

The expected results would be that dnet errno would be set to D_SYSERR, and errno would
be set to EAGAIN. The current implementation provides no explicit or guaranteed method for

determining this condition.

BUGS

No explicit and guarantf:ed indication of temporary lack of dynamically aUocatable memory
space is provided by dnet.

Page 26 (07/19/89)

IPCSND(3I) DNET IPCSND(3I)

NAME

is_error - print error message if system call return value iJldicates error

SYNOPSIS

lnt is_error(retval, errmsg)
int retval;

char *errmsg; /* Message to print if error occurred */

DESCRIPTION

This internal library routine is meant to be called after _. system call. If the value returned by
the system call (retval) in:licates an error, the the errmsg is displayed.

NOTE:

This function has probably outlived its uscfullness. The original intent was to get a handle on
errors returned on the VAX. Some system calls (those implemented by Wollongong) return an

error value but fail to set errno so that you can't learn anything by calling perror 0. Instead,
another external variable, uerrno, was set. This function was needed to get the value of uerrno
so we coulde ook it up in the errno.h file manually.

SEE ALSO

dnet_error(3U)

RETURN VALUE

This routine returns a vlue of 0 if retval is not negative, and a 1 if it is.

Page 27 (07/19/89)

LOAD_MY_NAME(3I) DNET LOAD_MY_NAME(3I)

NAME

load_my_name - determine the name of this host

SYNOPSIS

#include "dnet.h"

int load_my name0

DESCRIPTION

This internal library routine loads the entry from the myname table into the myname structure.

The myname table array is defined in the dnet.h header file and is of type struct nethost_entry.
The nethost_entry structure is defined as follows:

struct nethost entry
{

char netname [MAXNAM ES IZE];
char hostname [MAXNAMESIZE];

};

The load_my_name routine determines these values from :he tbls.myname file in the dnet home
directory.

If your module contains a main function definition, then the following line must be in your code
before the inclusion of dret.h:

#define MAINPROGRAM

SEE ALSO

dn_init(3U), load net table(3I)

RETURN VALUE

This routine returns a zero on success and a -1 on failure.

ERRORS

The call fails if:

[D NOSYSFILE] The tlbs.myname file could not be found in the dnet home directory, or
was in an invalid format.

[D_SYNERR] More than one non-commented entry _ as found in the tbls.myname file.

Page 28 (07/19/89)

LOAD_NET_TABLE(3I) DNET LOAD_NET_TABLE(3I)

NAME

load_nettable- loadroutingtableintomemory
SYNOPSIS

#include "dnet.h"

int load net table()

DESCRIPTION

This internal library routine is used to load the current host's routing table into memory for

quicker access and use b_ future routing functions.

The table is loaded into a structure array defined in dnet.h and named net route table. The
m

structure type is net_rout _ entry and is defined as follow,,:

struct netroute_entry
{

char srcnet [MAXNAMESlZE];
char destnet [MAXNA_MESlZE];

char gateway[MAXNAMESIZE];

char dgsproc [MAXNAMES IZE];

};

The table is initialized from the tbls.net file in the dnet home directory.

If your module contains a main function definition, then you will need to add the following line
above the inclusion of dnet.h:

#define MAINPROGRAM

SEE ALSO

dn init(3U), load my name(3I)

RETURN VALUE

This routine returns a zes o on success and a -1 on failure.

ERRORS

The call fails if:

[D_NOSYSFILE] The tbls.net file was not found in the dnet directory, or read permission
was denied.

[D_NOSRSC] The tbls.net file contained more recor:ls than were defined for the internal
table. Look at the value of MAXTBLSIZE in the dnet.h header file.

[D_SYNERR] A record was found in the tbls.net table that was determined to have the

wrong number of fields.

Page 29 (06/26189)

MAKEIPC(3I) DNET MAKEIPC(3I)

NAME

makeipc- administrativecreationofanIPCmedium
SYNOPSIS

#include "dnet.h"

int makeipcO

lnt _makeipc(sv_msg_key, ipcdir, flags)

int sv_msg_key;
char *lpcdir;

int flags;

DESCRIPTION

These library routines provides for the administrative creation and general access of a dnet IPC

medium. The creation of an IPC medium (not to be confused with creation of an IPC

mechanism as described in ipcget) allows creation of a l:rivate "area" within the means of inter

process communication of the operating system. The intention is to avoid collisions with
unrelated processes using inter process communication. The creation of a private area differs

according to the operating system.

On all UNIX machines, the UNIX filename is supported for addressing a particular IPC

mechanism. To facilitate this, an ipc directory is used to place all addresses (only filenames are

supported, explicate pathnames will cause an error on ipcget). If, in addition, the machine hosts

a System V operating system, a System V message queue is also required. In a VMS
environment, these routil,es are effectively empty functions.

All IPC routines require that the IPC medium be accessed by all processes wishing to use it. In

addition, an administrative process needs to create it l;efore any other processes attempt to

access it. The flags parameter allows the _makeipc rou_ ine to be issued for creation by using
D_CREAT] D EXCL. The makeipc routine calls _makeipe with the flags set in this fashion.

If _makeipc is-called with only the D CREAT flag specified, then the _removeipc (or
removeipc) will always return successfully_vithout remo_,ing the medium. Processes other than

the administrative process should attempt to "access" the IPC medium by setting the flag values
to 0. The call will fail in this case if the IPC has not been created.

The first two parameters to the _makeipc routine allow the processes to choose the IPC

directory and System V message queue key value (only meaningful on a System V machine).
These parameters allow for avoidance of collisions with other, unrelated processes using the

interprocess communication means for a particular machine. In addition, the proper placing of

the IPC directory may also provide additional security inlrerant within the UNIX filestore.

SEE ALSO

ipcget(3I), removeipc(3U

RETURN VALUE

Upon successful completion, the function will return the value of the msqid for the System V

message queue created, or a 0 in other environments. The msqid, though, is of no use to other

IPC routines, since the _makeipc routine makes it avaUal:ie to them transparent to the user.

If an error occurred, then the function will return a value of -1 and will set the variable
dnet errno to indicate the error condition.

Page 30 (07/19/89)

PRTI'IME(3I) DNET PRTTIME(3I)

NAME

prttime- returnastringrepresentingthecurrenttimeof,!ay
SYNOPSIS

char*prttime0
DESCRIPTION

Thisinternallibraryroutinereturnsthecurrenttimeof dayin acharacterstring of the form:

"time: 12:59:59". Hours, minutes, and seconds are given.

RETURN VALUE

This routine returns a pointer to the character string gen_ rated.

Page32 (07/19/89)

