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LUNAR MINING OF OXYGEN

USING FLUORINE
- I _17..... '

Donald M. Burt

Oepartmem o$ C.eo/ogV
Arizona State University
Tempe AZ 85287-1404

An inq_mtant aspect of lunar mining uqll be the ,extraction of tolatiles, parn'_da_), o_gen, flare1 lunar
rocks. Therm¢Myru4mic data show that ox?,gen could rea_k'ly be record'red by flu¢_ritu_tffm of abumlant
lunar anorthite, CaAl._i2On. Hutm'ne is the most mactT'te elevnent, amt the only reagent able to extract

ItXYX, of the oxygen fn)m any mineral, 3et it can safely be stored or reacted m nickd or mm containers.
The general fluorination reaction, mineral + 2t, - mixed fluorides + 02, has been used fiw more than
30 3_'ars at a lab_rratory scale by stable-isotolm g_)chemists. For anortbite, meRdlic ,4l and .St"truO, be
recot_red from the mixed fluorides by Na-reduction, and (2tO tqa exchange uYth Na20: the resulting
NaF may be rt,cycled into F, and Na by electrolysis, using lanthanide_dol_,d (2d.] as the inert atoM,,.

INTRODUCTION

Oxygen can be recovered from lunar rocks becau_ they consist

mostly of oxygen, by volume ff not by weight. The minimum cost

technology will probably be that which u_s the least amount (by

weight and volume) of Earth-derived plant components and

reagents. The ideal reagent for oxygcn rccovery may be _)mcthing

light, reactive, and relatively nonvolatile (easily and safely

storable). Hydrogen reduction of the FeO component in lunar

ilmenite, FeTiO_, meres currently to be the "favorite" process

(e.g., Gibson and Knudsen, 1988), although hydrogen is highly

volatile, the therm(Kl)_amics are _)mcwhat unfavorable, and the

proce_ recovers, at best, only one-third of the oxygen in ilmenitc

(as water, not oxygen). High-temperature (pyrometallurgical)

processes that do not require difficult radiational cooling or easily

lost hydrogen (or water) thus .seem preferable. Any technology

will require a great deal of energ T (clectricM or thermal) to break

the very strong metal-oxygen Ixmds in rocks and minerals.

THE MOST POWERFUL
REAGENT: FLUORINE

Of the variety of recyclable reagents that have been suggested

for lunar minerals processing (mainly combinations of hydrogen,

carbon, nitrogen, chlorine, and flu()rine), only one is strong

enough to break all metal-oxygen boncLs, releasing oxygen gas, Oz,

from any rock or mincral. That reagent is simple fluorine gas, F2,

which has been used for that purpose in stable isotope labora-

tories for nearly 40 years (Baertschi and Siherman, 1951; TaJ:lor

and Epstein, 1962); fluorination thus constitutes a proven tech-
nology. Commonly, BrFs (Clayton aml Mayeda, 1963) or CIF_

are used in placc of F2. In cither case, the fluorination of any

mineral occurs rapidly at about 500°C and is ,"safely carried out

in nickel reaction vessels. The basic reaction is mineral +

2F 2 : mixcd fluorides + O2, as di_ussed Ixqow.

Some other properties of fluorine are that ( 1 ) it is the lightcst

halogen (roughly half the atomic weight of chlorine); (2) it is

inexpensive, crustally abun "dant, and readily extractable on Earth

( Kilgtrre et al., 1985), mainly from fluorite, CaF 2 (Ellis and May

1986); (3)it is safely storable not only in Fe or Ni containers,

but al_) as stable fluorides (salts such as ,,w)dium fluoridc, NaE

which I propo_" to use fi)r translx)rting fluorine to the Moon);

(4) the fluoride ion is alx)ut the same size as the oxide ion, and

thus molten fluorides easily dissolve rock oxides; (5)among

halogens, fluorine forms the most stable and least volatile co,'stal

lattices (fluorite is especially stable and therefore CaO is of

potential use in ",scrubbing" minor Fz from the O2 pr(Kluct);

(6)fluoridcs have half the average bond strengths of the

corresponding oxides, and consequently have lower melting

temperatures (making for much easier electrol}sis); (7)fluoride

melts are generally nonvolatile and are much less vi,_ous than
oxide or silicate melts (with better transtx)rt properties for

electrolysis); (8)silicon tetrafluoride, SiF.), is a volatile gas (this

property is umful for dcsilicating rocks or for concentrating Si

for _)tar cells); (9) minor amounts of fluoridc ion (as in drinking

water or toothpaste) are not particularly toxic (although

hydrofluoric acid, HE and F2 gas are); and (10) the chemistry of

fluorine and of fluoride ga_ses, ct3,_tals, and melts is well known.

In particular, fluoride melts (molten cryolite) have king been u,_d

as the electrolytic _)lvent in aluminum production by the Hall-

Heroult process (c£ Grjotheim et al., 1982; Burkin, 1987) and

were thoroughly studied as possible high-temperature reactor

coolants. Fluorine gas is widely u_'d in the proces,sing of uranium

(e.g., Cochet-Mucto, aml Portier, 1985 ), al_) a mature technology.

In sum, fluorine is the most reactive element. 1 believe it is

indeed "the knife to cut the lunar cheese," which is a veD' tough

and refractory one. Fluorine has be'cn u._d to extract oxygen from

lunar minerals for stable i_)topc studies since the very first (e.g.,

Taylt_r aml F_ostein, 1970; k_pstein aml Ta),lo_ 1971 ). Why not

extend this procedure to larger-_ale oxygen extraction?

The possible use of fluorine for lunar oxygen and metal

production was briefly reviewed by l)alton aml 1)egelman ( 1972,

pp. 219-220 and 225-226), but was apparently rejected essen-

tially because "all (ff the reactions are vet'}' fast and difficult to
control" and "becaum of the veD" corrosive nature of fluorides"

(p. 220). To me, the first "disad'_-antage" is essentially an adx-an-

tage, given propcr systems design, and the _cond can be over-

come by proper choice of container, electrode, and reagent

materials, as dimu_sed Ixqow. The above study, did conclude

(pp. 219 and 226) that, despite ,'-safety and corrosion problems,
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the fluorination route was thermodynamically the most favorable

and was the only method studied that was both anhydrous and

allowed easy coproduction of metals. I might also add that it is

the only one (besides direct electrolysis) that allows the direct

production of oxygen as 02 gas (instead of tied up in water,

carbon monoxide, or carbon dioxide).
The direct fluorination method was considered about the same

time by NASA and the U.S. Bureau of Mines (e.g., E. Schnitzer

and M. James, unpublished data, 1972), but apparently has not

been considered since. It is not even mentioned by Waldron et

a/., (1979), Waldron and Criswell (1982), and Waldron (1985),

who instead I_ropose a more complex, lower temperature,
hydrous procedku'e: the HF acid leach process, which depends on

the corrosive nature of HE Others (e.g., Kesterke, 1970; Jarrett

et al., 1980; Anthony et al., 1988) have considered using molten

fluorides merely as fluxes to dissolve refractory hmar oxides

[property (4) above]. This parallels their lO0-year use in the

aluminum extraction industry. Although this use of fluorides as

solvents rather than reagents also leads to the direct production

of oxygen, the dry fluorination route offers many of the same

advantages, and is potentially applicable to extracting oxygen from

the full range of lunar minerals, including ilmenite (although I

here consider only oxygen extraction from anorthite).

TYPES OF _ONS INVOLVING

FLUORINE AND OXYGEN

The simplest reaction type involves roasting an oxide or

fluoride at high temt_ratures to produce a metal plus oxygen or

fluorine, with dissociation reactions of the type (where Me is any

metal)

or

2MeO ----2Me + 02 ( 1 )

MeF 2 = Me + F2 (2)

Because metal-oxygen and metal-fluorine bonds tend to be very

strong, this type of reaction must, in general, be done at extremely

high temt_ratures , and even then the oxide or fluoride may just

vaporize (without dissociation). Despite the advantageous lunar

vacuum, this procedure has only rarely been proposed for oxygen

production (e.g., Steure_, 1985). Oxygen production is more

readily carried out by an exchange reaction between fluorine and

oxygen, of the type

2MeO + 2F 2 _- 2MeF 2 + 02 (3)

This type of reaction occurs readily over a wide range of

temperatures (although Ni containment of fluorine is not practical

500°-600°C). Note that two fluorines are needed to

extract each oxygen. The shorthand notation for such an

exchange operation is F20_ 1, where F20., is a component called

an "exchange operator" (Burr, 1974). It tells you "put two

fluorines in, get one oxygen out." The operator F20._ has

properties of an electronic or Lewis acid (Burt, 1974; cf. Lew/s,

1938). The implication is that the more basic the metal oxide,

the more easily it can be fluorinated, releasing oxygen. Moon

rocks are mainly basic (silica-poor) and therefore easy to

fluorinate (Burr, 1988; c_. Taylor and Epstein, 1970).

The above reactions all involve a gas phase, potentially a

problem if you want to keep your plant small, closed, and

nonpolluting. Solid-solid (or solid-melt or melt-melt) reactions
involving oxygen and fluorine should also be considered. The first

type is an O-exchange reduction, such as

Ca + MgO ----Mg + CaO (4)

You can derive such a reaction from two gaseous dissociation

reactions by subtracting them so that the gas molecules cancel.

In the above reaction, Ca is the reducing agent, able to reduce

Mg to its metallic form because Ca has a greater affinity for (less

of a tendency to give up or more of a tendency to react with)

oxygen than does Mg. A similar, but slightly more complicated,
reaction is

4Al + 3SIO2 = 2Al203 + 3Si (5)

This is part of a proposed dry process for producing aluminum

and silicon using a molten fluoride bath as a solvent for anorthite

(Anthony et al., 1988); the Al203 produced by reduction of SiO2

is electrolyzed to Al and 02 in a process similar to that used for

aluminum production on Earth (accumulation of unreduced Ca()

in the melt is a problem with this method). Analogous reactions
can be written for fluorides, such as

Ca + MgF2 ----Mg + CaF 2 (6)

We can similarly write

and
3Na + AlF 3 = Al + 3NaF

4Na + Na2SiF 6 = Si + 6NaF

(7)

(8)

These represent the Na reduction of Al (the so-called Castner

process) and of Si (Sanjurjo et al., 1980) to native form, and are

steps in the process proposed below.

We can also write fluorine-oxygen exchange reactions involving

only condensed phases, such as

CaO + MgF 2 = CaF 2 + MgO (9)

As above, the tendency for such "two fluorines for one oxygen"

exchange processes can be expressed in terms of the exchange

operator F20_ 1 (Burr, 1974). As mentioned, more basic oxides

have a greater tendency to become fluorinated. Of particular

interest is the reaction involving the basic oxide Na20

Na20 + CaF2 = 2NaF + CaO (10)

This reaction is proposed below for moving fluorine from fluorite,

CaF2, which has a very high melting point (1418°C) and is

therefore unsuitable for direct electrolysis, to NaE, whose much

lower melting point (990°C) makes it more suitable for

electrolysis.

ELEMENT AND EXCHANGE AFFINITIES

The general affinities of some important lunar elements for

oxygen are given ms a bar chart at 1000 K (727°C) in Fig. 1 (data

from Pankratz et al., 1984). The order at other temperatures
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Fig. 1. Bar diagram for free energies of formation (kcal per mole of Oz )

of lunar-element oxides, 10OO K. Diagram shows affinities of the lunar

elements for oxygen (greatest for Ca).
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Fig. 2. Bar diagram for free energies of formation (kcal per mole of F2)

of lunar-element fluorides, 1000 IC Diagram shows atFanities of the lunar

elements for fluorine (greatest for Ca).

would be very similar (c£ the EUingham or free energy vs. tem-

perature diagrams used by extractive metallurgists; e.g., Rosenq.

vist, 1983). The general order is

Ca > Mg > AI > Ti 3 > 3i 4 > Si > Mn 2 > Cr 3 > Na > Fe 2 =

-7o

-9O

Ps = K>Fe3 (11) _1o

Any element to the left will reduce an element to the right from

its oxide (this treatment neglects possible mixed oxides). Note -13o

that iron is very easy to reduce (a major reason why it is so widely

used on Earth), and that sodium is a very poor reducing agent .150

for oxides of elements other than iron (e.g., it cannot reduce

either aluminum or silicon). Calcium is the best reducing agent,

but would be the most difiicult element to produce as a metal, q7o

Affinities for fluorine are given in Fig. 2 under the same

conditions. Note the different order, namely

(12)

Ca > Mg = Na = K > AI > Ti_ > Si > Ti4 =

Mn 2 > Cr 3 > Fe 2 > Fe 3> pS

Sodium is now an excellent reducing agent (about the same as

magnesium), and could easily reduce aluminum and silicon to

metals from their fluorides (as noted above).

Affinities for F-O exchange are given in Fig. 3. Note that this

is the only sequence whose order reflects position of the elements

in the periodic table (e.g., the order K > Na > Li > Ca > Mg > Be)

or periodic properties such as the charge-to-radius ratio of the

cations (Burr, 1988). In fact, this is an order of increasing oxide

acidity

K>Na>Ca> Mg> Mn 2 >Ti _ >Al> Si>

Fe 2 > Fe._ > Cr 3 > Ti 4 > pS (13)

_ ii_¸ _q

r

:

, i_i•7 |
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Elements

Fig. 3. Bar diagram for molar free energy differences (t_Fz -I/2 /_Oz,

where p is the chemical potential) of lunar elements, IOOOK. Diagram

shows affinities of the lunar elements for F-O exchange (greatest for K).

It implies, as mentioned above, that Moon rocks, being relatively

basic, should fluorinate easily (releasing oxygen) and potassium

or sodium oxides could be used to remove the fluorine from

fluorite.

All the above information can be shown on a single #tF 2 vs.

#Oz diagram, Fig. 4, where /_ is the molar flee energy (or

chemical potential) of the gas in equilibrium with the element,

fluoride, or oxide. The order of affinity for F z is given along the
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vertical axis, that for 02 along the horizontal axis, and that for

the exchange operator F20_ t perpendicular to the diagonal lines

(of slope + 1/2 ) from lower right to upper left.
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Fig. 4. p.F2 - vtO2 diagram for lunar elements, 1OOO K.

STEPWISE FLUORINATION OF ANORTHITE

Although fluorination of bulk lunar soil would be possible and

would yield oxygen (e.g., Epstein and Taylor, 1971; Waldron,

1985 ), it seems preferable to use instead a single mineral of fairly

simple constitution. This facilitates metal co-recovery and

recycling of the fluorine. Anorthite from lunar anorthosites is

abundant, presumably could be prepared as a uniform concen-

trate, and could supply as by-products Ca(), Al, and Si. Its idealized

formula is CaAl2Si20 _ (with minor solid solution towards albite,

NaAlSi,O8 ).

The details of fluorinating a single mineral are more compli-

cated than simple element affinities might indicate. A possible

_quence of fluorination reactions for anorthite (as deduced from

available thermodynamic and phase equilibrium data) is given

below (note that an "index fluoride" is produced at each step--

fluorite, topaz, Ca2AIFT, CaAIF% AiF_, and finally SiF 4 gas)

CaAIzSi2Os + 2F2 = 2CaF2 + AleSiOs + SiO2 + O2 (14)

Anorthite Fluorite Al-silicate Quartz

AlzSi() s + F 2 = Ai2SiO4F2 + 1/202

Al-silicate Topaz

(15)

4 "CaF 2 + Ai2SiO4F2 + 2F 2 = 2Ca2AiF, + SiO 2 + 02

Fluorite Topaz Quartz

2Ca2AlF 7 + Ai2SiO4F2 + 2F 2 = 4CaAIF s + SiO 2 + 02

Topaz Quartz

(16)

Ai2SiO4F 2 + 2F 2 = 2AIF_ + SiO 2 + O 2

Topaz Quartz

The overall (bulk) reaction is then

CaAl2Si208 + 8F 2 = CaAIF s + AIF3 + 2SiF4 + 402

Anorthite Mixed fluorides Ccas mixture

(20)

At equilibrium, the above would be the sequence of reactions

occurring from top to bottom of a fixed- or fluidized-bed reactor

in which sieved anorthite was fed into the top and F2 gas into

the bottom Note that quartz is produced by each of the reactions

except the last (which is the only reaction that produces a gas

other than 02) and that SiO2, as the most acid oxide, is the most

difficult to fluorinate (consistent with what was stated about

exchange "affinities above). The separation of SiF 4 and excess F2

from the 02 product, and the electrolytic recTcling of the

fluorides into F2, are discussed below.

These reactions can also be seen on a barycentric triangular

oxide diagram CaO-AlzO3-F20_l, which is projected through the

composition of (shows phases in equilibrium with) SiO2 or quartz

(Fig. 5). The six reactions (equations 14-19) above correspond

to the six numbered triangular fields of the main triangle. The

arrows indicate the reaction path of increasing fluorination, from

anorthite towards the F20_ ] corner.

F20.

+SiO2
Quartz

F'

c_s,o, / \ ; _ \ A_SiO,
Wollastonite / _ _ Ai-silicate

CaO CaAI2Si2Os At20_

Anorthite

Fig. 5. Stcpv, im fluorination of anorthite. Triangular diagram showing

phases in equilibrium with quartz. Numbered triangular fields 1 to 6

correspond to the six reactiotxs in equations ( 14 ) to (19) in the text.

DETAILS OF THE PROPOSED PROCESS

The anorthite concentrate is fluorinated in at least two steps

(probably in different parts of the same column reactor). The first

(17) step is partial fluorination of pure anorthite, using the F2.02

mixture produced by the main stage of the process [equations

(22) and (23) below]. Because this step removes excess F 2 from

(18) product O2, it is a "scrubbing" step. A typical reaction is

CaAl2Si20 _ (excess) + 2F 2 (in F2-O 2 gas mix)

SJO 2 + 2F 2 : SiF4 + 02 (19)

Quartz Gas mLxture CaF2 + Ai2SiO4F 2 + SiO 2 + O2(g ) (21)
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Final removal of trace F2, should it prove necessary to produce

a breathable 02 product (for propellant use the absolute purity

would be unimportant), is done as in equation (28) below.

The next or main step is complete fluorination of the fluorite-

bearing product of equation (21 ). By using excess F2, this step
produces a mixture of leftover F2, 02, and SiF4. The reaction is

CaF2 + AI2SiO4F2 + SiO2 + 6F z (in excess)

CaAIFs +AIF 3 + 2SiF4(g) + 302(g ) (22)

The SiF4 from the product gas mixture of equation (22) is

scrubbed using NaF to produce Na2SiF6, then the partly purified

gas mixture (no SiF4) is fed back to fresh anorthite to scrub the

F2 [equation (21) above]. The SiF4-scrubbing reaction is

2SiF4 (in O2-F2-SiF4 gas mix) + 4NaF _ 2NazSiF6 (23)

Next, Si is produced by Na-reduction of the Na2SiF 6 (and used

for, e.g., solar cells)

2Na2Sff6 + 8Na_2_ + 12NaF

[Recycle four of the NaFs to equation (23) above; the eight

remaining NaFs go to the electrolysis cell of equation (29)

below.]

Analogously, AI is produced by Na-reduction of the CaAIFs-AIF 3

mixture given by equation (22)

CaAIFs + AIF3 + 6Na _ CaF2(c) + 2Al(i) + 6NaF(I) (25)

[Move the six NaFs to the electrolysis cell of the step in equation

(29).] Some of the Na produced by electrolysis is reacted with

02 to produce Na20

2Na + 1/202 _ Na20

This Na20 is used to recover F from CaF2, producing CaO

1985) and is therefore a potential inert electr(xle material (Buff,

1988). It has a high melting l'x)int and won't dis,solve in the

molten NaF if the bath is a mixture of CaF 2 at its .saturation

concentration and NaE rather than pure NaE This procedure

would, moreover, lower the minimum bath temperature from

990°C for pure NaF to 818°C for the eutectic binary mixture,

thereby assisting electrolysis. A bath consisting of a ternary

eutectic with LiF could have an even lower temperature of 615°C

(Barton et al., 1959, reproduced in Let_n eta/., 1964, Fig. 1544).

Essentially pure Na should be produced at the cathode, inasmuch

as Ca and Li are much better reducing agents than Na in fluoride

baths. The process itself would result in the production of huge

quantities of fluorite, CaF2, so that fluorite use as an electrode

(and perhaps container) material is certainly appealing, if as yet
tmtested

Omitting recycled Na and E the overall reaction is

CaA12Si208 _ CaO + 2Al + 2Si + 7/2 02 (30)

For each mole of anorthite to be processed, the plant is

required to contain 20 moles of NaF (16 for electrolysis, 4 for

(24) scrubbing SiF4), plus a large electric capacity. From formula

weights, each ton of anorthite to be treated per cycle would then

require 3.02 tons of NaF to be brought from Earth. Also bringing

LiF and CaF 2 would lower the temperature of the electrolysis cell;

these components would afterward be nonparticipating.

One could _ve on weight (only 1.86 tons LiF per ton capacity

of anorthite) and obtain a better reducing agent by using LiF and

Li for all the above processes (Burr, 1988 ). Electrolysis of a CaF 2-

IJF eutectic mixture (T----773°C) would, however, probably

produce a Ca-rich Li alloy at the cathode, inasmuch ms Li is nearly

as good a reducing agent as Ca. This might offer a route to

obtaining Ca-metal rather than CaO as a product of the process,

given a method of .separating the Ca from the Li in the alloy. Also

Li, unlike Na, will reduce Mg in fluorides obtained from olivine

(26) or pyroxene, and would therefore offer a route to obtaining

oxygen and metals from these minerals.

CaF2 + Na20 _ CaO + 2NaF (to electrolysis cell) (27)

If necessary, some of this CaO is used to scrub the final traces

of F2 from the 02 product of equation (2 ! )

(trace) F2 (g) + CaO _ CaF 2 + 02 (g) (28)

This CaF 2 is periodically recycled to the step shown in equation
(27). Note that Na20 itself should be even more effective than

CaO at scrubbing traces of F2, but I am assuming that the process

will yield "waste" CaO, easily spared for this purpose (unlike

Na20).

Finally, the NaF generated in the steps shown in equations ( 24 ),

(25), and (27) above is recycled to Na and F2 via electrolysis

16NaF(l) _ 16Na(l) + 8F2(g ) (29)

This electrolysis step represents unproven technology; the main

challenge is to find an electrode material that will not be attacked

by the F2 produced at the anode (fluorine will attack nearly an},

conventional conductor, including platinum and other precious

metals). Lanthanide- or even sodium-doped fluorite, CaF2, is a

fairly good electrical conductor (e.g., Catlow, 1985; /Pessaud,,

SUMMARY AND CONCLUSIONS

The proposed process basically involves stepwise fluorination

of anorthite to release 02, then Na-reduction of the mixed

fluorides to the metals Al and Si, leaving CaO unreduced. In

general, this is a dry, much simpler, high-temperature analog of

Waldron's (1985 and earlier references) HF acid-leach pr(_'es,s.

The pr_x/uct gas is cleansed of SiF 4 by NaF and of excess F2 by

reaction with fresh anorthite (then CaO, if needed). From

CaAl2Si2Os, the pr_:ess prcKluces CaO, 2Al, 2Si, and 7/202 (i.e.,

87.5% recovery of oxygen ). Fluorine is brought from Earth as NaE

An unproven technology is the electrolysis of molten NaF to

regenerate F 2 and Na, using doped CaF 2 as the anode. To save

weight, or for treatment of Mg-bearing minerals, one could

consider analogous prcK-e_ses with LiF in place of NaE Ga.seous

F2 produced by electrolysis is reacted immediately to produce

ox3gen and no fluorine need be stored or handled outside the

plant.

"Ihc exact geometry and nature of the eight reaction vessels

(one per humid'red step) required for such a pr(_:ess are not

yet worked out, and most of the reactions are untested, even in

the latx)rator3, , although the fluorination reactions of equations

(21) anti (22) are tested in stable i_)tope lal_)r'atories every day.

_Jme of the reactions might best be carried out in molten fluoride
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baths, others in the gas phase. Gas-solid reactions could be carried

out in vertical fixed- or fluidized-bed reactors, with opposing

("counter-current") flows of gases and solids.

The main problem that I see with this process, other than its

unproven technology, is that it requires considerable materials

handling--multiple steps in up to eight different reaction vessels.

Nevertheless, the steps might be fully automated, especially if the

reactions occur fast enough. The first step in testing the feasibility

of the process would be to investigate the electrolysis of molten

NaF (and then of various eutectic compositions involving CaF 2

and LiF), using doped CaF2 or finding other inert electrode (and

container) materials.
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