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ABSTRACT

An update of validation test results confirming the advanced design nickel-
hydrogen cell is presented. An advanced 125 Ali pressure ves-
sel (IPV) nickel-hydrogen cell was designed. The primary function of the
advanced cell is to store and deliver energy for long-term, Low-Earth-Orbit
(LEO) spacecraft missions. The new features of this design, which are not
incorporated in state-of-the-art design cells, are: (a) use of 26 percent
rather than 31 percent potassium hydroxide (KOH) electrolyte, (b) use of
a patented catalyzed wall wick, (c) use of serrated-edge separators to facil-
itate gaseous oxygen and hydrogen flow within the cell, while still main-
taining physical contact with the wall wick for electrolyte management,
and (d) use of a floating rather than a fixed stack (state-of-the-art) to
accommodate nickel electrode expansion due to charge/discharge cycling.
The significant improvements resulting from these innovations are
extended cycle life; enhanced thermal, electrolyte, and oxygen manage-
ment; and accommodation of nickel electrode expansion. Six 125 Ah
flight cells based on this design were fabricated by Eagle-Picher. Three
of the cells contain all of the advanced features (test cells) and three are
the same as the test cells except they do not have catalyst on the wall wick
(control cells). All six cells are in the process of being evaluated in a
LEO cycle life test at the Naval Weapons Support Center, Crane, IN,
under a NASA Lewis Research Center contract. The catalyzed wall wick
cells have been cycled for over 19 000 cycles with no cell failures in the
continuing test. Two of the noncatalyzed wall wick cells failed (cycles
9588 and 13 900).



INTRODUCTION

As part of an overall effort to advance the technology of nickel-hydrogen batteries for use
in a space power system, an advanced design for an IPV battery cell was conceived (1). The
intent of this effort was to improve cycle life at moderate to deep-depths-of-discharge (40 to
80 percent). The approach was to review IPV nickel-hydrogen cell designs and results of cycle
life test conducted in-house and by others to identify areas where improvements could result in
a longer cycle life (2-8). Design philosophies were developed relative to oxygen and electrolyte
management requirements (9). The feasibility of the advanced design was demonstrated using
6 Ah boiler plate cells and 31 percent KOH electrolyte (10). Recently, a breakthrough in LEO
cycle life using state-of-art design boiler plate cells, 26 percent KOH and an accelerated cycle
regime was achieved under a NASA Lewis Research Center contract with Hughes (11-13).

The purpose of this experiment is to validate the advanced cell using flight hardware con-
taining 26 percent KOH and compare cells containing the catalyzed wall wick to cells without
it. Six 125 Ah capacity flight cells based on the advanced design were fabricated by Eagle-
Picher Joplin, MO. Three of the cells contain all of the advanced features (test cells) and three
are the same as the test cells except they do not have catalyst on the wall wick (control cells).
They are undergoing real time LEO cycle life testing at the Naval Weapons Support Center
(NWSC), Crane, IN, under a NASA Lewis contract. In this report, validation test results which
were presented at the 1992 IECEC will be updated (14).

EXPEREMENTAL

Test Facility
The facility is capable of testing 45 battery packs with maximum of 10 cells electrically

connected in series per pack. Each pack has its own charge and discharge power supply which
is controlled by a computer that is programmed to satisfy the particular test requirements. During
testing, each pack is scanned every 2.4 min to compare data such as voltage, temperature and
pressure with programmed limits. If a parameter is out of limit, an alarm will be initiated and
a message will be typed out identifying the cell and parameter. The data is recorded on a
132 MB disk drive and, if requested, can be obtained in report form. The cell temperature during
a test is controlled by a recirculating cooler that circulates a solution of water and ethylene glycol
through a cooling plate.

Cell Description
The six cells are 125 Ah capacity advanced flight IPV nickel-hydrogen cells. They were

fabricated by Eagle Picher, Joplin, MO, according to NASA Lewis specifications using nickel
electrodes fabricated at Eagle Picher, Colorado Springs, CO, and were impregnated with active
material by the alcoholic Pickett process (15). Three of the cells (test cells) contain all of the
advanced design features as described in reference 1. The other three cells (control cells) are the
same as the test cells except they do not have catalyst on the wall wick. All six cells contain
26 rather than 31 percent KOH electrolyte.
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The test cell design is illustrated in figure 1. The new features of this design, which are
not incorporated in the state-of-the-art Air Force/Hughes or Comsat/Intelsat cells, are: (a) use
of 26 percent rather than 31 percent KOH electrolyte, (b) use of catalyzed wall wick, (c) use of
serrated edge separators, and (d) use of a floating rather than a fixed stack (SOA). The 26 per-
cent electrolyte is used to chemically recombine the oxygen generated at the end of charge and
on overcharge with hydrogen to form water. State-of-the-art nickel hydrogen cells recombine the
oxygen on the catalyzed hydrogen electrode surface in the stack. The catalyzed wall wick should
improve oxygen and thermal management (16). The serrated edge separators are used to facili-
tate gaseous oxygen and hydrogen flow within the cell, while still maintaining physical contact
with the wall wick for electrolyte management. The floating stack accommodates some of the
nickel electrode expansion due to charge/discharge cycling. This is accomplished by use of
Belleville disk springs located at each end of the stack. The significant improvements resulting
from these innovations are extended cycle life, enhanced oxygen, thermal and electrolyte manage-
ment, and accommodation of some of the nickel electrode expansion.

Measurements and Procedures
The quantities measured every 2.4 min for each cell during charge and discharge and their

accuracies are: current (±2.0 percent), voltage (±0.001 percent), pressure (±1 percent), and
temperature (±1 percent). Charge and discharge ampere-hour capacities were calculated from
current and time. The charge to discharge ratio (ampere-hours into cell on charge to ampere-
hours out on discharge) are calculated from the charge and discharge ampere-hour capacities.
Cell charge and discharge currents are calculated from measured voltage across a shunt, using
an integrating digital voltmeter. Cell voltage is measured, also using an integrating digital
voltmeter. Cell pressure is measured using a strain gauge located on the cell dome. The tem-
perature is measured using a thermistor located on the center of the pressure vessel dome. The
thermistor is mounted using a heat sink compound to insure good thermal contact.

After completion of activation testing by the manufacturer, the precharge hydrogen pressure
was set to 0 psig (14.5 psia) with the nickel electrodes in the fully discharged state. After com-
pletion of the acceptance testing, the cells were discharged at the C/10 rate (12.5 A) to 0.1 V or
less and the terminals were shorted. The cells were shipped to NWSC, Crane, where they were
stored open circuit, discharge, 0 °C for 52 days. After storage, the discharge ampere-hour capac-
ity acceptance test was repeated. The capacity was measured after charging the cells at the C/2
rate (62.5 A) for 2 hr, then C/10 for 6 hr, followed by a 0.5 hr open circuit stand. The discharge
capacity was measured to 1.0 V for each of the following rates: C/2, C, 1.4C, and 2C.

Prior to undergoing cycle life testing, the capacity retention after a 72 hr open circuit stand
(10 °C) was measured for all cells. For the cycle life test, the cells were connected electrically
in series to form a six cell pack. The cycle regime is a 90 min LEO orbit consisting of a 54 min
charge at a constant 0.69C rate (87 A) followed by 36 min discharge at C rate (125 A). The
charge to discharge ratio was 1.04. The depth-of-discharge was 60 percent of name plate capac-
ity (125 Ali). During the cycle life test, the cooling plate temperature was maintained at
10±2 °C. Cell failure for this test was defined to occur when the discharge voltage degrades to
1.0 V during the course of the 36 min discharge.
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RESULTS AND DISCUSSION

Cell Performance
For a representative 125 Ali catalyzed wall wick nickel-hydrogen flight battery

cell, the voltage and pressure during charge and discharge are shown in figure 2 (beginning of
life). The discharge rate was 0.69C (87 A) and the temperature was a nominal 10 °C. The mid
discharge voltage was 1.248 V. The pressure, as expected, varies linearly with the state-of-
charge. It should be noted, however, that the pressure could increase with charge/discharge
cycling causing a shift in the state-of-charge curve.

The effect of discharge rate on ampere-hour capacity for a representative cell of each type
is shown in figure 3. The capacity decreased slightly (1 percent) over the range of C/2 to 1.4C,
(175 A) after which point it decreases rapidly. In a nickel-hydrogen cell, the gaseous hydrogen
comes into contact with the nickel electrodes resulting in a capacity loss due to self discharge.
The capacity retention of the cells after a 72 hr open circuit stand at 10 °C is shown in figure 4.
The data shows that there is no significant difference in capacity retention between the catalyzed
and wall wick cells. For the catalyzed wall wick cells, on the average, it is 84 percent, and for
noncatalyzed wall wick cells, it is 85 percent.

Storage Test
The effect of storage (52 days, discharged, open circuit, 0 °C) on the capacity of the six,

125 Ali IPV nickel-hydrogen cells is summarized in the figure 5. The spread in the data
shows no significant capacity loss for either the catalyzed or noncatalyzed wall wick cells due
to the 52 day storage. Actually, there was a slight average increase in capacity for both the
catalyzed and noncatalyzed wall wick cells.

Cycle Test
The influence of LEO cycling at 60 percent DOD on the end of discharge voltage for the

125 Ah catalyzed wall wick IPV nickel-hydrogen flight cells is summarized in figure 6. After
19 000 cycles, there has been no cell failure in the continuing test. The influence of cycling on
the end-of-charge pressure for the catalyzed wall wick cells is shown in figure 7. No pressure
for cell 2 is available because the cell had a bad strain gauge. For cells 1 and 3, the pressure
increased relatively rapidly up to about cycle 1400, then decreased to a steady state valve. The
average pressure increase at cycle 1400 is about 11 percent higher than at the beginning of life.

The influence of LEO cycling at 60 percent DOD on the end of discharge voltage for the
125 Ah noncatalyzed wall wick IPV nickel-hydrogen flight cells is shown in figure 8. Two of
the three cells failed (cycles 9588 and 13 900). The failure was characterized by degradation of
end of discharge voltage to 1.0 V. The cells did not fail due to an electrical short. The influence
of cycling on the end-of-charge pressure for the noncatalyzed wall wick cells is shown in fig-
ure 9. The pressure for the three cells increased up to about cycle 2000, then decreased. The
average pressure increase at cycle 2000 is about 9 percent higher than at the beginning of life.

The cycle life testing will continue until cell failure. A post-cycle teardown and failure
analysis will be conducted to evaluate the cause of failure. This information will be used to
effect further improvements.
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CONCLUDING REMARKS

Validation testing of NASA Lewis 125 Ali design IPV nickel-hydrogen flight
cells is being conducted at NWSC, Crane under a NASA Lewis contract. This consists of char-
acterization, storage and cycle life testing. There was no capacity degradation after 52 days of
storage with the cells in the discharged state, on open circuit, 0 °C, and a hydrogen pressure of
14.5 ps;-a. The catalyzed wall wick cells have cycled for over 19 000 cycles with no cell failures
in the continuing test. Two of the noncatalyzed wall wick cells failed (cycles 9588 and 13 900).
These results indicate that the advanced design is an improvement.
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