of Geological Department, Mail Stop 225-225, Laminar, University of London, London NW7 2BU, UK. Department of Geological Department, Mail Stop 225-225, Laminar, University of London, London NW7 2BU, UK.

The table below lists the measurements of volcanic deposits from the MARIA Project:

<table>
<thead>
<tr>
<th>Name</th>
<th>Volume</th>
<th>Height</th>
<th>Length</th>
<th>Width</th>
<th>Age</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.14</td>
<td>1.6</td>
<td>2.3</td>
<td>0.14</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0.16</td>
<td>1.6</td>
<td>2.3</td>
<td>0.14</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0.18</td>
<td>1.6</td>
<td>2.3</td>
<td>0.14</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>0.20</td>
<td>1.6</td>
<td>2.3</td>
<td>0.14</td>
<td></td>
</tr>
</tbody>
</table>

The table includes the following measurements:

- **Name**: The name of the volcanic deposit.
- **Volume**: The volume of the deposit.
- **Height**: The height of the deposit.
- **Length**: The length of the deposit.
- **Width**: The width of the deposit.
- **Age**: The age of the deposit.

The measurements are plotted on a graph to show the distribution of volcanic deposits around the margin.

The table shows that the majority of the deposits are small and have a narrow range of sizes. The deposits are mostly found in the central and eastern parts of the margin, with fewer deposits in the western part.

The data suggests that volcanic activity has been consistent in the area, with no significant changes over time. The deposits are mostly found in the central and eastern parts of the margin, with fewer deposits in the western part.

The data suggests that volcanic activity has been consistent in the area, with no significant changes over time.
On Earth, landslides on volcanic edifices can be triggered by a number of different processes, including those occurring as a result of aseismical crustal deformation, such as oversteepening of slopes due to deformation (possibly resulting from dyke emplacement of magma rise), overloading of the slope (by lavas), excess weight at the top of the slope (due to a large cone or a large area of summit lava), removal of support by explosions on the flanks, and caldera collapse. Failure occurring coseismically can result from structural alteration of the constituent parts of the slope leading to failure, dislodgement of otherwise stable slopes, and fault movement resulting in an increased slope angle [4]. Seismic pumping may also be a major control on slope stability during an earthquake [5].

On Venus, similar processes may operate. The high ambient temperatures may result in development of a weak carapace, which in turn may allow relatively rapid dome growth to occur. If the effusion rates are high, as suggested by the size of the features, then oversteepening would be a likely consequence resulting in failure and collapse. Landslide scars may be modified by continued dome growth. The existence of fractures around the base of some of the collapsed domes and of debris aprons cut by fractures suggests that there has been seismic activity and surface deformation occurring during the period of modification of the dome.

MIXED-VALENCE IRON MINERALS ON VENUS: Fe²⁺-Fe³⁺ OXIDES AND OXY-SILICATES FORMED BY SURFACE-ATMOSPHERE INTERACTIONS. Roger G. Burns and D'Arcy W. Straub, Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge MA 02139, USA.

Background: The oxidation state and mineralogy of iron on the hot surface of Venus are poorly understood [1-3], despite qualitative in situ measurements of oxygen fugacity during the Venera 13/14 missions [4], some reflectance spectral data derived from the