rable temperatures, the crystallization of babingtonite requires more hydrous conditions, lower CO$_2$, and slightly higher O$_2$ fugacities in the fluid phase than ilvaite. Since similar temperatures, CO$_2$ pressures, and oxygen fugacities induced within skarn deposits exist on Venus, ilvaite and perhaps babingtonite could also have formed on the surface of this planet by the interaction of the venusian atmosphere with extruded basaltic rocks. One factor that might mitigate against the formation of these calcic Fe$^{2+}$-Fe$^{3+}$ silicates on Venus, however, are the high abundances of Mg and Al measured during the Venera 13/14 [32] and Vega 2 [33] missions. The Mg$^{2+}$ and Al$^{3+}$ cations are not accepted into the crystal structures of ilvaite and babingtonite.

Discussion: Although magnetite is generally regarded to be the predominant ferric-bearing mineral on Venus, other mixed-valence Fe$^{2+}$-Fe$^{3+}$ minerals known to exist on the surface of Earth could be stable in the venusian atmosphere. Thus, in addition to ilhunite (which is probably metastable) and ilvaite and babingtonite (both of which may be found in rocks depleted of Mg and Al), oxygen fugacities and oxygen-micas may also be major constituents of the venusian surface. The opacities and high electrical conductivities of such mixed-valence Fe$^{2+}$-Fe$^{3+}$ silicate minerals, the properties of which resemble magnetite [34], may also contribute to high radar-reflectivity regions in the highlands of Venus [35].

References:
viscosity of 10^19 Pa s. Zero stress boundary conditions are applied
to all sides of the model region, while no motion perpendicular to
region boundaries are allowed except at the top.

Results: Figure 1 shows a typical result of the computations
modeling the density changes. Density contours (0.1 g/cm^3 spacing)
clearly delineate the slab and its crustal layer. In this case (10^6°C/km
geotherm, 25 km crust, subduction rate of 5 km/m.y.), the net slab
densities in the region above the basalt-eclogite phase transition
are lower than their mantle surroundings (the phase change is set for
the density analysis at 110 km depth). Above the 110-km depth densities
in the crustal portion of the slab are lower than in the mantle
outside the slab. This causes the net slab density to be less than that
in the surrounding mantle. Below the basalt-eclogite phase change,
net slab densities exceed those in the neighboring mantle. Net slab
buoyancy remains positive until the slab has thickened to about
275 km. Thereafter, slabs become negatively buoyant.

Initial finite element results indicate that the positively buoyant
slabs will rise through the mantle at a rate of 5 to 10 km/m.y. This
analysis considers only the instantaneous velocity of the slab and
does not incorporate the full results of the density modeling or the
dynamics of slab subduction.

Discussion: Qualitatively, subduction is likely to be enhanced
by negatively buoyant slabs or hindered by slabs that are positively
buoyant. Positive net buoyancy is found above the basalt-eclogite
phase change, tending to oppose subduction. Negative net slab
buoyancy for the full-length slab was found in all conditions, while
neutral buoyancy was achieved for slabs at a length of about 275 km.
Thus, the slab must penetrate deeply into the mantle before negative
buoyancy can help drive subduction. The rate of the slab's buoyant
rise through the mantle is then important in determining whether the
slab may descend deep enough to become negatively buoyant.

Preliminary results of finite element modeling indicate the slab
may rise at rates between 5 and 10 km/m.y. Thus, subducting slabs
will tend to rise into an underthrusting position if their subduction
rate is slow. However, it may be that moderate to high rates of
subduction will overwhelm the buoyant rise of a slab. This could
lead to slabs being forced through the basalt-eclogite phase transition
and to great enough depths to become negatively buoyant, thus
possibly producing a self-sustaining subduction system.

These initial results must be considered in light of the presum-
tion of subduction made in undertaking the analysis. Some process
still must be found that would carry the slab downward despite its
initial positive buoyancy. Further work will model more closely the
dynamics of the subductive motion of the slab and the effects of the
slab density evolution on slab buoyancy, its rate of rise through the
mantle, and the continuation of subduction.

These results indicate that for all cases of assumed Venus
geotherm a lithospheric slab whose subduction has been initiated
will instead be forced to underthrust the overriding lithosphere if the
subduction rate is slow. This could then lead to crustal thickening,
melting, and volcanism, and possibly provide one model to explain
the association of compressional mountain belts and blocks of high-
standing terrasera, with apparent flexural rises and foredeeps, and
with large volumes of volcanic deposits.

(D. M. Hunten et al., eds.), 159–214, Univ. of Arizona, Tucson.
tions of Continuum Physics to Geological Problems, Wiley, New
2nd edition, Addison-Wesley, Reading, Massachusetts.

Erosion vs. Construction: The Origin of Venusian Channels.
D. B. J. Bussey and J. E. Guest, University of London Observatory,
University College London, London NW7 2QS, UK.

Lava channels are a common feature in the volcanic regions of
the Moon, and have now been observed on Venus [1]. There has been
debate about the origin of lunar channels: Are they the result of
erosional (either thermal or mechanical) or constructional pro-
cesses? It is necessary to determine the criteria to distinguish
between the different types of channels. The clearest evidence is that
the presence of levees indicates that the channel experienced a
constructional phase for a period.

Greeley [2] has proposed that Hadley Rille, on the Moon, was
formed as a leved channel and lava tube system. Evidence for this
is its location along the crest of a ridge. In addition, Hadley Rille
and other lunar mare sinuous rilles are discontinuous, suggesting that
their origin was, in part, a lava tube that has subsequently undergone
that these rilles were produced by lava erosion. For lunar highland
channels, which tend to be larger than their mare counterparts,
mechanical erosion of the megareolith is a possible process.

Channels of several different types have been observed on the
surface of Venus [1]. They are probably formed by more than one
process. They range in size from a few kilometers to over 6000 km
[1]. The relatively short ("radpolelike") channels [5] (e.g., 24 S 347)
appear similar to lunar mare sinuous rilles in morphology. They are
so like certain constructional terrestrial channels (e.g., Kalaupapa,
Hawaii [6]) that it appears reasonable to say that they too are
constructional channels or collapsed lava tube systems.

However, the long sinuous channels referred to by Baker et al. [1]
as "canals" pose a different problem in the understanding of their
formation. One example of a channel of this type in the southeast
region of Aphrodite Terra appears to show both erosional and
constructional characteristics. This channel is represented in Fig. 1.
It is approximately 700 km long with an average width of about 1
km. It drops a distance of 700 m from beginning to end, which means
that the average slope is 0.06°. Its source may have been a graben
situated at the northwest end of the channel. It appears to have
different origins along its length.

The lack of levees near the source suggests that the channel
is erosional in this region. An inferred profile is shown as AA' in
Fig. 1.