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AWARDS ABSTRACT

The invention relates to symbol lock detector for coherent digital

communication systems after carrier and subcarrier, if any, synchronization

has been achieved in a phase-locked loop employing nonoverlapping symbol

intervals, where symbol data, dk, takes on binary values with equal
probability, and symbol interval T is known.

FIG. 1 is a generic functional block diagram, while FIGs. 2a and 2b

are functional block diagrams of respective prior-art square-law symbol

lock detector (SQOD) and prior-art absolute value symbol lock detector

(AVOD), with integration of overlapping intervals in both cases, thus
requiring separate integrators 21 and 22 in both cases. FIGs. 3a and 3b

are functional block diagrams of a new nonoverlapping square-law symbol

detector SQNOD and a new nonoverlapping absolute value detector AVNOD,

respectively, that process nonoverlapping half symbol intervals (T/2) so

that a single integrator 30 may be used in each case with a multiplexer 32

for routing the inphase data through a half symbol interval delay element

33 to means for forming a difference Xk = Ik2-Qk 2 and accumulating a number,

M, of X k samples to form a statistic Y for threshold detection, all with

functional blocks 26, 27 and 28 in series. A third new signal-power symbol

lock detector (SPED) shown in FIG. 4 omits both the squaring operation 31
and the absolute value operation 31' of the embodiments of FIGs. 3a and 3b

and instead utilizes a multiplexer 41 to connect the inphase data I k

through a delay element 42 to a multiplier 43 and to connect the quadra-

phase data Qk directly to the multiplier 43 to form a product Xk over many
symbol intervals and thresholding an accumulatlon Y of M samples of the

product X k to form a symbol lock decision when the threshold 6 is exceeded.

This provides greater simplicity in the implementation of a symbol lock

detector with better performance when the threshold 6 is set in the pre-

sence of noise only (no signal) than even the prior-art symbol lock detec-

tors which outperform the first two new symbol lock detectors of FIGs. 3a

and 3b when the threshold is set in the presence of a signal. The first

two new symbol lock detectors nevertheless provided sufficiently good per-
formance for them to be considered for DSN communication receivers because

of their advantage of requiring only one integrator. FIGs. 5a and 5b

through FIG. 8 present graphs of analytical data which uphold these
conclusions about performance.

The novelty of the invention resides in reaching a symbol lock deci-

sion by integrating nonoverlapping half symbol intervals so that only one

time-shared integrator is required. An electronic multiplexing switch re-

quired in order to operate with just one integrator is very simple as com-

pared to implementing a second integrator. A further improvement resides

in forming the product (power) of the integrals of nonoverlapping half sym-
bol data instead of first forming the squares or absolute values and then

forming the sum of their differences.



JPL Case No. 18521
NASA Case No. NPO-18521-I-CU
F92143

F,:;-,,.r,';,<<.___f_-_tv--L__-h;.........
PATENT APPLICATION

L:', , :..:_ :,r (:::,'.<:_+;hj,__;b

Paso:d_.i'a CA. f"!. !o,9
ii

(CiW) (S'tc_tc) (_ ip)

SYMBOL LOCK DETECTION IMPLEMENTED

WITH NONOVERLAPPING INTEGRATION INTERVALS

ORIGIN OF INVENTION

The invention described herein was made in the

performance of work under a NASA contract, and is

subject to the provisions of Public Law 96-517 (35 USC

202) in which the contractor has elected not to retain

title.
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TECHNICAL FIELD

This invention relates to symbol lock detectors

for coherent digital communication systems after

carrier and subcarrier synchronization has been

achieved in a phase lock loop, and more particularly

to lock detectors which may be implemented with a

single integrator for processing nonoverlapping symbol

intervals of an incoming signal.
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BACKGROUND ART

Deep space network (DSN) receivers currently

under development use phase locked loops (PLLs) to

track the carrier, subcarrier, and symbol phase. Like

most coherent receivers, the DSN receivers rely on

lock detectors to provide the symbol lock status of

its PLLs. Since carrier, subcarrier, and symbol

synchronization need to be achieved before any mean-

ingful symbol detection can be initiated, symbol lock

detectors play a vital role in the final decision of

accepting or rejecting the detected symbols. In the

past, symbol lock detectors have employed overlapping

symbol intervals in their operations and therefore



F92143 2

5

i0

require two integrators operating over staggered time

intervals.

During operation, a loop is assumed to be locked

when its lock indicator consistently has a positive

status. The carrier and subcarrier lock detectors

currently used in DSN receivers have already been

analyzed. The present invention concerns the analysis

of three new symbol lock detectors which simplify

implementation for DSN receivers and two prior-art

symbol lock detectors for comparison.
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Statement of the Invention

In accordance with the present invention, an

incoming signal that has undergone carrier and subcar-

rier (if any) synchronization is processed to deter-

mine whether or not symbol lock has also been

achieved. The symbol data, dk, takes on the binary

values of a pulse p(t) of a known duration, such as in

a nonreturn-to-zero (NRZ) or Manchester code, where

the probability of the data having a +I is equal to

having a -i (or 0) value, (i.e., the data transition

probability equals one half). While the prior-art

lock detectors employ two integrators for processing

two overlapping symbol intervals, the lock detectors

of the present invention require only one integrator

for processing two nonoverlapping time intervals,

e.g., integration of the last half of one (dk_i/2) and

the first half (dk/2) of the next symbol interval,

followed by integration of the second half (dk/2) of

the next and the first half (dk+I/2) of the following

symbol interval, or the first half of each symbol

interval followed by the second half of each symbol

interval. The receiver is assumed to have perfect
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knowledge of the symbol interval T=kt, where k is the

number of data bits, and t is the data bit interval.

The first integration output is processed and de-

layed a half symbol interval, T/2, for determining

symbol lock by addition to or multiplication with the

following integration output, where the processing of

the first and second integration outputs is a squaring

operation or an absolute value operation, and symbol

lock is determined by addition of the processed second

integration output to the processed first integration

output delayed a half symbol interval and accumulating

the sums. Symbol lock is then determined by repeated-

ly thresholding the accumulated sums every M symbol

intervals. An alternative arrangement for determining

symbol lock is by multiplying the second integration

outputs by the first integration output delayed a half

symbol interval to obtain a signal power estimation,

and after accumulating signal power estimates over M

symbol intervals, thresholding the accumulated esti-

mates.

25
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BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a functinal block diagram common to

symbol lock detectors shown in FXGs. 2a through 4.

FIG. 2a is a functional block diagram of a prior-

art square-law symbol lock detector with integration

of overlapping intervals (SQOD).

FIG. 2b is a functional block diagram of a prior-

art absolute-value symbol lock detector with integra-

tion of overlapping intervals (AVOD).

FIG. 3a is a functional block diagram of a

square-law symbol lock detector with integration of



F92143 4

5

i0

15

2O

25

nonoverlapping intervals (SQNOD) in accordance with

the present invention.

FIG. 3b is a functional block diagram of an

absolute-value symbol lock detector with integration

of nonoverlapping intervals (AVNOD) in accordance with

the present invention.

FIG. 4 is a functional block diagram of a signal-

power symbol lock estimator (SPED) with integration of

nonoverlapping (first and second) halves of incoming

signal symbols in accordance with the presnet inven-
tion.

FIG. 5a and 5b are graphs of the probability

density function of the output Y for the SQOD of FIG.

2a when symbol lock is not present and the output Y

has a high SNR=5dB and a low SNR=-5dB, respectively.

FIG. 6 is a graph of the probability of lock

detection when r is an unknown constant over a deci-

sion interval for symbol lock detection of FIGs. 2a,

2b, 3a, 3b and 4.

FIG. 7 is a graph of the probability of lock

detection versus SNR when r is uniformly distributed

and changing from symbol to symbol for symbol lock

detectors of FIGs. 2a, 2b, 3a, 3b and 4.

FIG. 8 is a graph of the probability of lock

detection versus SNR when the false alarm rate is

computed in the absence of a signal for symbol lock

detectors of FIGs. 2a, 2b, 3a, 3b and 4.

30

DETAILED DESCRIPTION OF THE INVENTION

The symbol lock detectors considered are divided

into two groups. The detectors in the first group are

prior-art symbol lock detectors that process the

overlapping outputs of two symbol data bit integra-
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tors, whereas those in the second group, which depart

from the prior art, use one integrator for two non-

overlapping intervals of an incoming signal to deter-

mine whether or not symbol lock has been achieved.

The first group of symbol lock detectors employ

either the squares of the two overlapping integrator

outputs or the absolute value of the integrator

outputs. The second group consists of three new lock

detectors, two of which use the same mathematical

operations of squaring or taking the absolute values

of integration outputs of nonoverlapping half symbol

intervals but only one integrator, while the third de-

tector, which also uses only one integrator, does not

include either squaring or absolute value operations,

and instead functions as a signal power estimator by

multiplying the two integration outputs of nonoverlap-

ping half symbol intervals.

The five lock detectors are compared based on the

lock-detection probability as a function of the symbol

SNR for a given false-alarm probability and a fixed

observation interval.

Although symbol lock detection has been addressed

before [J.K. Holmes, Coherent Spread Spectrum System,

New York: John Wiley and Sons, 1982 and K.T. Woo,

Shuttle Bit Synch Lock Detector Performance, TRW IOC

No. SCTE 50-76-184/KTW,TRW Corporation, E1 Segundo,

California, April 5, 1976], the analyses have ne-

glected the interdependence between symbol synchro-

nizer bandwidth, and lock detector bandwidth. The

symbol synchronizer bandwith refers to the one-sided

loop noise bandwidth B L of the digital data-transition

tracking loop [M. Simon, "An Analysis of the Steady-

State Phase Noise Performance of a Digital Data-
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Transition Tracking Loop," JPLSpace Programs Summary,

37-55, Vol. 3, Jet Propulsion Laboratory, Pasadena,

California, pp. 54-62, February 28, 1969] used in the

receivers. The lock detector bandwidth is defined as

the frequency at which the lock detector provides a

status signal of being in or out-of-lock. For exam-

ple, the lock detectors considered here indicate loop

status once every M symbols. Consequently, the

bandwidth of these detectors is I/MT, where T is the

symbol interval.

The probability of false alarm, PIa' is defined in

two ways. In the classical sense, it is defined as

the probability of declaring a signal (or target as in

radar applications) to be present when it is not

present. In deep space applications however, it is

more appropriate to define PIa as the probability of

declaring a loop to be in-lock when it is out-of-lock.

That is, declaring the timing error to be zero (in-

lock) when the loop is slipping cycles and operating

with a non-zero timing error (out-of-lock).

In discussion below, the false alarm rate is

shown to be drastically different depending on the

definition used. In addition when the loop is slip-

ping cycles, the false alarm rate is shown to depend

strongly on the ratio of the lock detector bandwidth

to the symbol loop bandwidth. For example, when the

loop is slipping and I/B L << MT the lock detectors

operate with acceptable false alarm rates because

there are several uncorrelated samples of the timing

error i/r within the MT second decision interval. On

the other hand, when I/B L >> MT the false alarm rates

are unacceptable because the timing error is constant

over several decision intervals. Note that a good rule
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of thumb is to assume that the loop provides uncorre-

lated phase estimates every I/B L seconds. As a

result, the symbol timing error at time ti is uncor-

related with the symbol timing error at time tj when

Iti - tjl _ I/B L. This article considers the special

cases of I/B L =MT and I/B L = T. The first case is ana-

lyzed and simulated whereas, the second is simulated

but not analyzed. When the threshold is adjusted in

the presence of noise only, the performance can be

derived from the previous analysis by setting the

signal amplitude to zero.

15

2O

Generic Description of Lock Detectors

FIG. i is a block diagram showing the signal pro-

cessing functions common to the symbol lock detectors

analyzed and discussed below, including both prior-art

lock detectors of FIGs. 2a and 2b, and new lock detec-

tors in accordance with the present invention as shown

in FIGs. 3a, 3b, and 4. The received signal is assumed

to have been mixed with perfect carrier and subcarrier

local reference signals so that the input to the lock

detectors is a baseband signal of the form

r(t) = Ad(t) + n(t) (i)

where A is the signal amplitude and A 2 is the received

data power with

m

d( t) : _ dkp( t-kT)

(2)
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and where n(t) is the additive white Gaussian noise

process with a single-sided power spectral density

(PSD) N 0 (Watts/Hz). The data symbol d k takes on the

binary value +i and -i (or 0) with equal probability,

and p(t) is the received data pulse shape of duration

T seconds. For comparison purposes, only the NRZ pulse

is considered in the analysis but the results can be

extended to any pulse shape, such as Manchester

encoded data. The receiver is assumed to have perfect

knowledge of T, but not the symbol epoch, i.e., the

receiver has estimated perfectly the symbol rate but

not necessarily the start and end of the symbols.

The signal processing functions for the symbol

lock detector i0 in FIG. I depend on the processing of

integration outputs in the detector. Its output X k is

at the symbol rate and typically many samples of X k

are averaged in an accumulator 12 to obtain the

decision statistic Y compared in a block 14 with a

threshold value 6. If Y is greater than the threshold

6, the loop is declared to be in-lock, otherwise it is

declared to be out-of-lock.

The symbol timing error (parameter) r in FIG. 1

is the phase error between the symbol phase and the

phase estimate provided by the symbol synchronizer.

The in-lock case is analyzed by setting the timing

error r to zero. In practice, the error is not

identically zero, but it is a very small value. When

there is a signal present, the out-of-lock model for

depends on the relation between B L and I/(MT). When

B L = I/(MT), r is modeled as an unknown constant over

a decision interval (MT seconds) but independent and

uniformly distributed from one decision interval to

the next.
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Alternatively, when B L = IT, the timing error is

modeled as constant over a symbol interval, T, but

independent and uniformly distributed from symbol to

symbol. In this case, if the decision time MT >> T (as

it usually is), each decision statistic encompasses

the entire range of z. When there is no signal pres-

ent, the model of t is irrelevant because the out-of-

lock performance is independent of r.

The respective prior-art and new detectors consi-

dered and compared below are the square-law detector

with overlapping (SQOD) and non-overlapping (SQNOD)

integrators shown in FIGs. 2a and 3a, the absolute-

value detectors with overlapping (AVOD} and non-over-

lapping (AVNOD) integrators shown in FIGs. 2b and 3b,

and finally the new signal power estimator detector

(SPED) shown in FIG. 4.

In the prior-art SQOD detector, FIG. 2a, the in-

put signal r(t) is integrated over two symbol periods

by two integrators 21 and 22: one in phase with the

estimated symbol interval and the other staggered by

half a symbol duration. The resulting inphase and

quadraphase samples I k and Qk are correlated due to the

overlapping intervals. The quadrature samples I k are

squared in a processor 23 and delayed a half symbol

period by a delay element 24 while the samples Qk are

squared in a processor 25. The delayed (Ik) 2 and the

undelayed (Qk) 2 samples are then combined in a summing

circuit 26 to form an output Xk which are averaged in

an accumulator 27 to obtain the decision statistic Y

which is then compared with a predetermined threshold

6 in a detector 28 to reach a lock decision. The

prior-art AVOD detector, FIG. 2b merely replaces the

squaring operations in FIG. 2a with absolute value
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operations in blocks 23' and 25'. Hence, the I and Q

samples of the prior-art AVOD detector are also cor-

related.

The new SQNOD detector, FIG. 3a, processes the

integration outputs of nonoverlapping half symbol

intervals from a single integrator 30. A single

squaring operation in block 31 produces the square of

the integration outputs from both halves of a symbol

interval, and a multiplexer separates the first and

second half symbol interval integration outputs

sending the first half through a delay element of half

a symbol interval and the second half directly to a

summing circuit 34. Its output X k is then averaged in

an accumulator 35 and its output, and the decision

statistic Y is compared with a threshold 6 in a de-

tector 36. As before, replacing the squaring opera-

tions in FIG. 3a with absolute value operations in

block 31' yields its counterpart the AVNOD detector

shown in FIG. 3b. The integrator outputs in these

cases are uncorrelated because the integrated inter-

vals are nonoverlapping.

The SPED detector shown in FIG. 4, which also

uses a single integrator 40, was considered for symbol

lock detection because it already existed as par t of

a split symbol moment SNR estimator [K.T. Woo, supra]

in DSN receivers used for SNR estimation. The inphase

(Ik) and quadraphase (Qk) integration outputs of the

SPED are obtained by integrating the received signal

over the respective first and second halves of a

symbol interval and separating them by a multiplexer

41. Since the noise in the first and second half are

independent, delaying the inphase integration output,

Ik, in a delay element 42 and then forming the product
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of I k and Qk in a multiplexer 43 and averaging over

number, M, of symbol intervals in an accumulator 44,

provides as a decision statistic Y an estimate propor-

tional to signal power which is then compared to the

value 6 in a threshold detector 45 to provide a lock

decision.

i0
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Performance Analysis

In-lock performance is measured in terms of the

probability of declaring a phase-locked loop (PLL) as

being symbol locked when there is no timing error,

i.e., the probability that the decision statistic Y is

greater than the threshold value 6 when z = 0. Note

that z = 0, or no phase tracking error, is equivalent

to setting the symbol synchronizer loop SNR to infini-

ty. The degradation in detection probability due to

timing jitter (non-infinite loop SNR) is minimal and

has been addressed in the case of carrier lock detec-

tors [A. Mileant and S. Hinedi, "Costas Loop Lock

Detection in the Advanced Receiver," TDA Progress

Report 42-99, Vol. July-September 1989, Jet Propulsion

Laboratory, Pasadena, California pp. 72-89, November

15, 1989]. The out-of-lock performance is measured by

the probability of false alarm, i.e., the probability

of declaring the loop as locked when it is not locked.

The out-of-lock performance in the presence of a

signal is analyzed for the case B L = I/(MT). Note

that, in that case, the timing error z is independent

from one symbol to another and the decision is per-

formed after averaging a number, M, of symbols. On

the other hand when B L = I/(MT), z is an unknown

constant during a decision interval and independent

from one decision to the next. Setting M - i in the
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latter case would imply a decision every symbol, which

is fundamentally different from the case B L = I/T

decision using M symbols. Hence, the performance when

B L = I/T cannot be derived from the case of B L =

I/(MT), simply by setting M = I. The out-of-lock

performance when there is no signal present is also

analyzed.

In this discussion, only the final equations are

shown. Derivations of these equations are set forth

in the various appendices A through F for all five

symbol lock detectors SQOD, SQNOD, AVOD, AVNOD and

SPED which, by this reference, are hereby made a part

hereof. In all cases, the decision statistic can be

expressed as the average of samples X k over M symbol

intervals given by the equation

M Xk (3)
k-1

2O

25

Note that the random variable X k is peculiar to each

detector. When the timing offset z = 0, the adjacent

samples Xk and Xk+ 1 are correlated in the two prior-art

detectors (SQOD and SQNOD), whereas for the three new

detectors (AVOD, AVNOD and SPED) they are uncorre-

lated. In all cases, the random variable X k is not

Gaussian due the nonlinear operations on I k and Qk"

For large M, the random variable Y is modeled as

Gaussian due to the Central Limit Theorem (CLT). The

CLT theorem applies to the sum of correlated random

variables when none of the variables being summed or

multiplied dominates over the others [D. Fraser, Non-

Parametric Methods in Statistics, New York: John

Wiley and Sons, 1957]. This model for Y is justified
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by simulation results. The probability of lock detec-

tion is the probability that the Gaussian random
variable Y surpasses the threshold 6. Hence, it is

given by

1 (4)

where Hy and o_ are the mean and variance of Y when r

is exactly zero. Using the definition of the error

function

2 x
erf(x)=_/o exp (-taldt

(5)

one has

1 1 erf(6-_yl (6)

or

1 1e ff ° (7)

i0 where SNR D denotes the detector SNR defined by

SNRD A ( J*_l2
(8)
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The threshold 6 is chosen to maintain a fixed

probability of false alarm. The probability of false

alarm is the probability that the out-of-lock decision

statistics do not surpass the threshold. Hence, it is

given by

Pla = f;. Jo CY) dy
(9)

i0

15

where Io(Y) is the out-of-lock density of Y. The

threshold 6 is computed by solving Eq. (9) for a fixed

PJa" When there is a signal present and B L = I/(MT),

the statistic Y is no longer Gaussian and Io(Y) must

be obtained numerically or by simulation as shown

below. When there is no signal present, the CLT can

be invoked and the out-of-lock decision statistic can

be modeled as Gaussian. This model is verified by

simulations below. In this case, Eq. (9) can be

written as

P,d 2- 2 L

where _yo and Oyo the out-of-lock mean and variance of

the decision statistic Y. The threshold 6 is given by

(II)

2O

where y = erf-l(l - 2PIa ). Substituting Eq. (ii) into

Eq. (6) relates the probability of detection to the no

signal (classical) false alarm rate, namely,
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P° =--1-12 2 erf(_f_°roY*,iLv_-Itr)_f2Or

(12)

The next five subsections derive the in-lock and

out-of-lock mean and variance for all five detectors

SQOD, SQNOD, AVOD, AVNOD and SPED for comparison.

(I). Square-Law Lock Detector with Overlapping Inter

vals (SQOD)

The SQOD detector is shown in FIG. 2a. For the

input given by Eq. (I), the inphase integrator output

is given by

= f (k,l)r*,I_ Z (t) dt
Jkr., (13)

: d_A(T-x) *dk.IAr+NI (k) +N z (k)

and the quadraphase integrator output is given by

= r(t)dt

m

+N2(k) + Nt(k + 1)

di+,A ("---T2 - r) + dk+_A (r- {)

0<r< T-- T

Z<r<T
2 --

(14)



F92143 16

where • is limited to the interval [O,T], and where

f(k.%)T. (Z5)N z(k) = n(t) dt
J kT_'T

and

= f (k*1) T*z

N 2 (k) J(k._)T., n(t)dt

(16)

Since n(t) is a white Gaussian process with one-sided

PSD No, the Ni's are independent Gaussian random vari-

2
ables with mean zero and variance on=(NoT)/4. The

2 2
samples Xk=Ik-Q k and summing M of them yields Y. From

Appendix A, the in-lock mean and variance of Y are

given by

_sNor (17)

_Y- 2

I0 and

The out-of-lock mean and variance when there is a

signal present and r is an unknown constant over a

decision interval (BL = I/(MT)) are given by
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_yo = 0.0

(19)

2 -- + +2 (M-l)
°z° = 120 24

---- + (M-l) (M-2) 12]X 320 48

(20)

where _s denotes symbol signal-to-noise ratio and is

defined as

(21)

Setting A = 0 in Eq. (20) and substituting the result

in Eqs. (19) and (20) yields the out-of-lock mean and

variance in the no signal case. Hence, the no signal

mean is zero but the no signal variance is given by

(22)

i0

(2). Absolute-Value Lock Detector with Overlapping

Intervals (AVOD)

For the AVOD detector shown in FIG. 2b, absolute

values are used instead of squares. The expressions
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for I k and Qk given by Eqs. (13) and (14) are still

valid but now X k =JIkl - IQkl. From Appendix B, the

in-lock mean and variance are given by

(23)

and

2 1
uy = _ [M Var(X k) +M(M-I) Cov(Xk, Xk÷ z) ]

M _
(24)

5 where

Vat (X k) = (NOT) {_ +l-qs [FI (qs) +F2 (n,) ]

__i_i [exp (-2qs) -2 exp (-q=) +i] - q--£err a (_-_s
4_ 4

s )--_ --_ erf (_) [exp (-qs) -I]

(25)

and

Cov(Xk, Xk,z) = (NoT) {exp (-2qs)2_+exp (-qs)

b
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+ _--_serf2 (_)+[ exp(-_')2 ÷I] erf(_)

xl n-_-̀ _-_[El(n_)+Y2 (n,)]}2

(26)

The out-of-lock mean and variance when

a signal and t0 is constant over M symbols are

by

py(, = 0.0

there is

given

(27)

and

2 1

oyo = -_ [M Varo (X k) +2 (M-l) Covo (Xk, Xk, 1)

+ (M-l)(M-2) COVo(Xk, Xk.2)]

(28)

where

Var o(x k) = (NoT) {_ +l-_s [3Fi (_.) +GI (n,)

H_ (n,)+H2 ('1,)+H3 ('I,)

2

(29)
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Covo(X}.X}+I)=(NoT)( exp(-2_') +27r(_'_ + 8)

<J )xerf2(v_.) + exPC-,.)erf(v6_ + 8_Vr_

"'[r_(,.)+ c3(,.)+ H4(,I.)- c4(,.)- H_(,.)+T

2
(30)

COVo(Xk,Xk+i) = (N- °T'7'.) [F_(_,) + G3(_?,) + H4(?,)

- 2G4Cth)- 2Hs(r/,)] for j > 2 (31)

The functions Fi, Gi and H i in Eqs. (28) through

(31) are defined in Appendix B and plotted in Fig. B.I

versus Os" Setting _s = 0 in Eqs. (28) through (31)

yields the out-of-lock statistics in the no signal

case. The no signal mean is zero but the variance is

given by

, __r,,,oT_[,.,._,,,,1,(_)l°Vo(_l'_=°) _, n 2 )
(32)
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(3). Square-Law Lock Detector with Nonoverlapping

Intervals (SQNOD)

The SQNOD detector is shown in Fig. 2b.For the

input of Eq. (I), The inphase and quadraphase integra-

tor outputs are given by

= f(k+ _)T+T
Ik J(_+_)T+T

w

_-_ + N_(k)

_A (_ -_)

•+J_+,A(_- _) + tc,(k)

T
O_<r<_-

r<r<r

(33)

and

_ /(k+¼)T+r r(i)di

I _,_,A(_ - _)
= +a,A(_ + _)+ Iv,(k) T (34)O_<r<¥

Z<r<Z
4 -- 2

The noises Nl(k ) and N2(k } are given by Eqs. (15) and

(16) after changing the integration limits to those in

Eqs. (33) and (34). As a result, they are independent

Gaussian random variables with zero mean and variance
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2

on=(NoT)/4. The sample X k is the difference of the

-- 2 2
squares (i.e., Xk-Ik-Qk) . From Appendix D, the in-lock

mean and variance of Y are given by

_ n_VoT (35)
_r 8

and

(36)

For the case of false lock with signal present and z

an unknown constant over M symbols, one obtains

p.1,o= 0.0
(37)

and

+M(M-I)60

(38)

10

When there is no signal present the out-of-lock mean

is zero and the variance is given by setting _s = 0 in

Eq. (38). Consequently, the no signal out-of-lock

variance is
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o_o(n,:0):
(39)

(4). Absolute-Value Lock Detector with Nonoverlapplng

Intervals (AVNOD)

This detector shown in FIG. 3b is the same as the

SQNOD detector shown in FIG. 3a with the squaring

operations replaced by absolute value operations.

llence, Eqs. (32) and (33) for Ik and Qk are valid but

now X k : {It{ - {Ok]. From Appendix E, the in-lock

statistics for Y are given by

exp - -i +../6Zerr
PY = _ 2

and

--f- + 2 87r 1 + 5 cxp(-,j,)

10

(41)

The out-of-lock mean and variance when there is a

signal present and r an unknown constant over MT

seconds is given by



F92143 24

Pro = 0.0 (42)

and

2 1
0,% = -_ [MVazo(Xk) +M(M-I) Covo(Xk,Xx, t) ] (43)

5r/., l
Varo(X_) = (NOT) [-_+ 2

(45)

where the function Z is defined in Appendix E and

plotted in Fig. B.2.

For the out-of-lock case with no signal, the mean

is zero and the variance is obtained by setting _s =

0 in Eqs. (43) through (45). Hence, the out-of-lock

variance is given by
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-
(46)

5

(5). Signal-Power Estimator Lock Detector (SPED)

In the detector shown in FIG. 4, denote the inte-

grations over the first half of the assumed symbol

interval as I k and the second half as Q k. Then, the I k

and Qk samples are given by

Ik = dk_+N I (k)
(47)

and

Qk = d,A (T-z)+dk.xAz +N2 (k)

(48)

and X k = IkQ k. From Appendix F, the in-lock mean and

variance of Y are

_ nA T
4

(49)

and

(5O)
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The out-of-lock case with signal present has mean and

variance when r is constant over M symbols is given by

_zo
nA T

(51)

and

02 - N_°T2 5112s+20T]s+12 +M(M-1)
Yo M2 192 192 ]

(52)

5

As before, the out-of-lock variance in the no signal

case is given by

(53)

10

15

Discussion and Simulation Results

Digital simulation was used to verify the forego-

ing analysis. In the out-of-lock state for a long-

time constant B L = I/(MT), the symbol timing error r

is modeled as constant over a decision interval (MT

seconds) but independent and uniformly distributed

over the collection of all decision intervals. The

timing error in the in-lock state is modeled as being

zero. Although the special case of ¢ constant over M

symbols was analyzed for performance comparison pur-

poses, it is not advisable to operate a practical

system under these conditions due to unacceptable

false alarm rates. This case has higher than usual



F92143 27

5

i0

15

false alarm rates because the decision statistic for

small values of r is not significantly different from
the statistic for • = 0. As a result, the out-of-lock

states corresponding to small values of r are fre-

quently declared to be in-lock because they are mista-

ken for the case when r = 0. This problem can be
ameliorated by lengthening the observation time

relative to the time constant of r (i.e., shortening
the time constant of r). In practice, it is recom-
mended that the observation time be at least ten times

longer than the time constant of z. As noted above,

the out-of-lock density function for Y in this case is

not Gaussian. Consider the decision statistic Y when

the loop is out of lock and r is constant over M sym-

bols. In general, it can be written as

X k = Sk(r)+nk+Sk(r)n k (54)

2O

25

3O

where, in all five detectors, the signal term s k is

random and uniformly distributed because r is a

uniformly distributed random variable. The density of

the noise n k depends on the detector being imple-

mented. Summing M samples of Xk, where X k is at the

symbol rate in all cases, yields the decision variable

Y. Since z is constant over the sum, at high SNR

(i.e., for strong signal levels) the density function

of Y approaches a uniform distribution as shown in

FIG. 5a. However, at low SNR the noise term dominates

and the density of Y is Gaussian due to the central

limit theorem as shown in FIG. 5b. The density in

FIGs. 5a and 5b was obtained via numerical integration

as well as simulation. Both methods are seen to agree

very well. The numerical method computed the density
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function of Y, I(Y), by averaging over r the condi-

tional pdf I(y/z). The latter is Gaussian with mean

and variance both a function of z. The simulation

method computed the histogram of Y and then set

5 f(y)=[p(y-A_Y_y+A)]/A, where A is the size of a

histogram bin. The histograms were generated using

1,00,000 million symbols which corresponds to I0,000

decisions (Z's), since there are 100 symbols/decision.

FIG. 6 compares the probability of detection

10 performance of all five detectors for M=100 and PIa =

0.25. Note that the overlapping detectors SQOD and

AVOD, which are identical except for the squaring and

absolute value operations, have nearly identical

performance. As expected, the AVOD is slightly better

15 at high SNR, whereas the SQOD is slightly better at

low SNR. The non-overlapping detectors SQNOD and

AVNOD also have nearly equal performance. Once again,

the absolute value operation yield better results at

higher SNRs. The signal level estimator (SPED) is

20 better than the non-overlapping detectors but worse

than the overlapping detectors. The probability of

detection results in FIG. 6 change when PIa or M

change. For example, increasing the observation

interval increases the detection probability because

2 2
25 it increases the detector SNR = (M[/o;) . Accepting a

higher false alarm rate increases the probability of

detection because it lower the threshold 6. In

generating these curves, 50,000 symbols were simulated

for each value of SNR. Since there are I00 sym-

30 bols/decision, the detection probability for a given

SNR is based on 500 decisions.
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5

10

15

2O

25

3O

In the out-of-lock state for a short-time con-

stant (BL = I/T), the symbol timing error z is modeled

as uniformly distributed random variable that changes

independently from symbol-to-symbol. For this case,

the probabilities of detection for all five detectors

are computed by simulation for M = 100, PIa = 10-2 and

the threshold 6 is set according to Eq. (ii). The

false alarm rate was verified by simulation. The

results are plotted in FIG. 7 versus symbol energy-to-

-noise ratio qs" In these computer simulations, the

detection probability for a given SNR is based on

40,000 decisions.

The results show that, the AVOD performs slightly

better than SQOD at high SNR, whereas they seem to

perform identically at low SNR. The nonoverlapping

detectors SQNOD and AVNOD also have nearly equal

performance at low SNR, but AVNOD performs about 1 dB

better for values of symbol SNR higher than -4 dB. As

far as the SPED, it performs about 2 dB worse than the

overlapping detectors and 3 dB better than the other

two nonoverlapping detectors. Also by simulation, the

false-alarm rate that was used in setting the thresh-

old was verified.

In the situation of no signal, i.e., when there

is no signal present as distinguished from the case

when there is a signal and r = 0, the out-of-lock

statistic is Gaussian with zero mean and the in-lock

statistic is Gaussian with non-zero mean. Probability

of detection results are compared in FIG. 8. Inter-

estingly, the performance of the overlapping and

nonoverlapping detectors are grouped together, but the

signal level detector (SPED) now has the best perfor-
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mance. The interdependence between Pd, Pfa and M is

the same as in the other two cases.

I0

15

20

25

3O

Conclusion

The performance of two prior-art symbol lock

detectors shown in FIGs. 2a and 2b have been compared

with three new ones shown in FIGs. 3a, 3b and 4. They

are the square-law detector with overlapping (SQOD)

compared with nonoverlapping (SQNOD) integrators and

others, the absolute value detectors with overlapping

(AVOD) compared with nonoverlapping (AVNOD) integra-

tors and others, and the signal power estimator

detector (SPED) compared with all others. The analy-

sis considered various scenarios when the observation

interval is much larger or equal to the symbol syn-

chronizer loop bandwidth, which has not been consid-

ered in previous analyses. Also, the case of thresh-

old setting in the absence of signal was considered.

The analysis has shown that the square-law detector

with overlapping integrators (SQOD} outperforms all

others when the threshold is set in the presence of a

signal, independent of the relationship between loop

bandwidth and observation period. The square-law

detector and absolute-value detector with overlapping

integrators outperformed corresponding detectors with

nonoverlapping integrators, but implementation of the

SQOD and AVOD require two separate integrators since

both integrators must operate at the same time due to

overlapping, whereas the SQNOD and AVNOD symbol lock

detectors may use a single interval since the separate

integration operations required do not overlap in

time. On the other hand, the signal-power estimator

detector (SPED) outperforms all others when the
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threshold 6 is set in the presence of noise only, and

it requires only a single integrator for implementa-

tion.
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The performance of five symbol lock detectors are

compared. They are the square-law detector with

overlapping (SQOD) and non-overlapping (SQNOD) inte-

grators, the absolute value detectors with overlapping

and non-overlapping (AVNOD) integrators and the signal

power estimator detector (SPED). The analysis consid-

ers various scenarios when the observation interval is

much larger or equal to the symbol synchronizer loop

bandwidth, which has not been considered in previous

analyses. Also, the case of threshold setting in the

absence of signal is considered. It is shown that the

SQOD outperforms all others when the threshold is set

in the presence of signal, independent of the rela-

tionship between loop bandwidth and observation

period. On the other hand, the SPED outperforms all

others when the threshold is set in the presence of

noise only.
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Appendix A

and for j > 2, this can be shown to be

Wr(X,) = C{{_ - Q_]'} - C'{_ - O_}

= C11_+ Q: - 2I_Q_'}- _,I

and

Cov(Xk,Xk+j) 2 2 (A-3)= c(1_1_+_}+ C{Q_Q_+_} 2_£{lIQk+j} £{ 2 2-- lk+jQk} - p_pk+j

When the loop is in lock, Eqs. (A-l) through (A-3) are evaluated with r set to zero in Eqs. (A-10) through (A-18).
Ilence, the in-lock moments of Xk are given by

Var(XD = A4T4 + 8A2T'o2. + 12o.4 (A-4)

Cov(X_, Xk+t) = -2A2T_a_ - 2o_

Cov(Xk,X_+j) = 0 (A-6)

When the loop is out-of-lock, r is modelled = a uniform random variable.
through (A-18) and substituting the results into Eqs. (A-I) through (A-3) give the out-of-lock mome.ts of Xk. Namely,
(where the additional subscript o denotes out-of-lock),

12"---'-_+ A2T2a_.-t-12cr_ (A-7)

23A4T/ 23 A_T2o2 - 2a_ (A-8)COVo(X_,X_+l)= - 320 _ "

and for j > 2, this can be shown to be

(A-2)

(^-5)

Using this model for r in Eqs. (A-10)

The covariance of Xk with Xk+j is

where/_k = E{Xk).

Derivation of the Mean and Variance of the SQOD

The inphase and quadraphase integrator outputs are given by Eqs. (13) and (14), respectively. The output of the
lock detector X= = 11 - Q_. Consequently,

_,k= _{x_}- C{Q_') (^-l).



A4_
Covo(X_,Xk+i)= 1--_

The following equations were used to compute the variance of Xk and covariance of X_ with X_+L:

(A-9)

6{I_}= A2(T2- 2T£{r} + 2E{r2})+ 2a_

£{Q_}= A_(*_T2_£_{I}-4T£_{r}+ 2£,{r'})+ 2a_£2{I}{ < r< T

(A-t0)

(A-ll)

2 2c{;_} = A'(T _- 4T_C{_}+ t27_C{_2}- 18TE{.3}+ 8e{_(})+ A o.(12T2- 2aTe{,-}+ 24C{_}) + 12_

A'(_c,{1} + 8c, {,-4})

+A2_,_(6T2C,{I}+ 2,t,'_{,.2})+ 12o_'."_{l}
C(Q_,}=

A4(L_£_{1} - 32T_E2 {r} + 48T_E2{r 2 } - 32TE3{r 3} + 8£2{z(})

+A2a_.(30T2£2{I} - 48T£2{r} + 24E2{r2}) + 12a.4£2{I}

o_r<{

Z<r<T

(A-12)

(A-13)

'A'(-_Et { 1}+ 2T_E,{r_} - 8TE,{r _} + BE,{r(})

+ A_"a_(5T_Et{ 1} - 8TE,{r }.+ 16_',{r"_}) + 6a._E,{] }

A'('._{_} - 9T'_,{,} + _ST_,{,_} - _2T_{,-'} + 4_{_'})

+A_d(ZT_{_} - 6T_{,} + 4_{_}) + 6#._{_}

o<_<{

Z<r<T
2 --

(A-14)

E{/_.l_+l} = A'(T _ - 4Tag{r} + 8T_E{T " } - 8Tg{r a} + 4g{r'}) + A_a_.(4T_ - 8Tg{r} + 8L'{r_}) + ,la_

/ A'(T_£_(I} + 2T_Et {r _ } + 4El{r4})

+A_:_(2T_E,{I} + 8Et{r'_}) +,la_£i{l } 0 <_ r < {
EIQ_Q'_+,} = A')(_ _111 - 20TaE_lr} + 26T_L'.,lr 21 - 16TEalr a) + 4£21r"1)

• +A'a,_(10F't_{I} - 16TEa{r} + 8L..,{r-})+ 4a,,Lz{l} .T7< r < T

(A-_S)

(A-16)



2 2{lkQk+l} =

A4(T_£,{I}- Ta£,{r}÷ 3T2:,{r2}- 4TC,{r3}+ 4£,{r4})

+A_a_(3T_£,{l}- 4T£,{v}+ 8£t{r2})+ 4a.4£,{I}

A,(_.-_C2{I}-0T3C2{_}+ IST_C2{:}- 12rr2{:}+ 4c_{_4})

+A2_.2(TT%{l}- 12TC2{,}+ SC,{,2})+ 4_'.C2{I}

o<_<._

T<T<T

(A-17)

c{iL,Q_}=

A4(-_£,{I} - T3£I {r} + 3T2£, {r_} - 4T£z {_.s}+ 4£, {r4})

+A_(ST% {_}- 2T6{r}+ 4E,{:})+6_.'C,{l}

.4'(_': '_} _C2{r} + Z_C_{:}- _STC_{:}+ SC_(,'})-_- _-21 --

+A2_(13T2£_{I} - 24T_{r} + 16£_{T2}) + 6#_£2{I}

0<r< T- T

E<T<T

(A-18)

where, in the above equations

c{/(,)}A_T= /(,')p(,)d,"

6{/(_)}_ _o_- f(r)p(T)dr

T

£_{/(_)}"/_-- f(7")p(7")dr

where p(1")isthe probabiltydensityfunctionof the variableT.

(A-19)

(A-20)

(A-2D



Appendix B

Derivation of the Mean and Variance of the AVOD

Note that the calculations in this appendix incorportate the results of Appendix C. The inphase and quadrapha.se

outputs are given, respectively, by Eqs. (13) and (14). Tile lock detector output Xk = [I_[- [Qk ]. Let #k = £ {[I_[-[Q_ [}.

Then,

Var(X_) = £{[I/d- IQ_I]2} -_

= C{I2 + Ol - 21hQ_l} - _I (B-l)

and

Cov(X_,X_+i) = _'{[Ihl - IQkl- ml[la+_l - IQ_+il- re+A}

= E{I/k/_+il} + e{IQkQ_+_I} - C{l/kQk+il} - t:{I/_+jQkl} -_*m+i (n-_)

The following equations were used to compute the variance of Xk and the covariance of Xk with Xt+t:

[£,{IAT-2At+ A:I}- C={12Ar+ NI}]t:{Xk}= ½[E2{IAT-2A_'+JVl}C2{12AT-2Ar+NI}]
(B-3)

_{IIkQ_l}=

½[Ct{I[AT+ Nt(/_)+ N2(/c)I[AT+ N2(/c)+ N,(k + l)]l}

+£,{I[AT- 2Ar + Nt(k) + N2(I.')I[-2Ar + N,(k) + Nt(k + l)ll}i

¼[E={I[AT + Nt(/_)+ N2(k)I[AT+ N_(k)+ Nt(k + ])]1}

+£,{I[AT + N,(k)+ N,(k)I[2AT- 2At + N,(k)+ N,Ck+ l)ll}

+fz{IIAT - 2Ar + N,(k) + N,(k)][2AT - 2Ar + N_(k) + Nt(t + ])]1}

+£_{][AT - 2mr + N,(k) + N_(k)][AT + N2(k) + N_(k + 1)]1}]

o<,-< _-

Z<r<T
2 --

(B-4)

I

_{la/_+,l} = 4[EZ{IAT+ Nt(k) + N_(_)I}

+ £{I[AT - 2Ar + N,(k) + N,.(k)][AT - 2Ar + Nt(k + 1) + N=(k + _)ll}

+ 2£{IAT + Nt(k) + N_(})I}C{IAT- _A,-+ Nt(} + _) + Ndk + DI}I (B-S)



C{IIt+iQtl} =

¢{IQtQi+,l} =

C{lI_Oktll} =

| q

_lCi{IAT+ N, + _21}+ C,{II2A, + N,(_ + l) + N_(i)l

× [2A, -I-SVt(_+ 2)+ JV2(_+ l)ll}

+_C{IAT"+_v_+ NiliGII2Ar + N_ + N21}]

¼[C/{IAT + Ni + N21}+ E2lll2aV - 2A_ + N,(_ + l) ÷ s%(k)l

x[2AT - 2At + Ui(k + 2) + N_(k + i)]l}

+2£{IAT + Ni + _'21}c_{IZar - 2AT + _', + U_ll]

}[C2(IAT+ Ni + N2I} + G {l[2Ar + N,(t + ]) + N2(I:)I

x[AT - 2at + Ni(k + 2) + Ni(k + ])]l}

+2t'{lAr + A'l + _v21}t',{12At+ Nl + N21}I

¼It'S{lAY+ N_ + N21} + C2{I[AT - 2at + Nl(t + 1) +/%(t)]

x[2Ar - 2At + Nl(k + 2) + Ni(k + 1)]1)

+2t'{lAr + Ni + N21IC{IAT' - 2At + N! + N_I} ]

o_<,-< {-

Z<r<T
2 --

o<,'<}

Z<r<T
2 -

"[Ci{IIAT+Nl(t + 1) + N2(k+ I)I{AT+ ]v',(k + 1) + N_(k)]l}

+Cl {IIAT- 2At + Nl(t + i) + N2(#_+ 1)][AT+ N,(J: + l) + N2(k)ll}

+C.I{I[AT- 2ar + N,(t + 1)+ N2(k + 1)l[2Ar + Nl(k + 1) + N2(t)]l}

+G {IIAT+ N,(t+ i)+ N2(t+ I)][2AT+ N,(k+ I)+ N2(I:)ll}l

½[:...{I[AT- 2A,"+ N,(I:+ I)+ N2(k+ I)][2AT- 2A,"+ N,(#c+ I)+ NKI:)]I}

+t'2{IIAT+ Nifk + 1)+ N_(#:+ 1)][AT+ Nl(k + 1)+ N2(t)ll}]

T
0<r<¥

(D-6)

(B-7)

(n-s)

Z<r<T
2 -

where £1 and £_ are defined in Appendix A. The following functions were defined to obtain the results in Subsection
III.A of the main text.

Y3(0,) _ t'{l(1 -- 2u + en I + cni)(1 - 2u + cna + cn4)l}

Gl(rh) -_ £i{l(l - 2u + cnl + cn2)(2u + cni + cns)[}

a_(O,) *--_.l {l(l - 2u + on, + cni)(1 -I- cn2 + cna)l}



G3(,1.)="C_{l(2u+ cn_+ cn2)(2u+ on.,,+ cn4)l}

C,(,7.) _ C,{1(2,,+ c,',,+ c,',2)(1- 2,,+ c,',:,+ _',)1}

;,r_(_.]-_S2{l(1+ _., + c.2)(2 - 2,,+ ,:,,_+ c,,3)1}

_2(,7.) "= Z'(l(t - 2u+ cnx+ c._)(2 - 2u+ cn2+ c.3)1)

"_(,7.) "= E{ICl- 2. + _,,_+ _._)(1+ _., + c,,_)l}

a'.(,_.) "= Z'{I(2- 2u+ cn_+ cn_)(2- 2u+ on3+ c-4)1]

Hs(_.) -_£'{1(1- 2u+ ,:n,+ cn2)(2- 2u+ cn3+ en4)l} (B-9)

where c = 1/(2_',), the ni's are normal independent random variables with zero mean and unit variance, and u is a
uniform random variable in the range [0, 1]. In Fig. B-l, one plots these functions versus r/,. These functions have been
computed a.s follows: In the F functions, the expectation with respect to u is carried over the entire region [0, 1], wl,ile
in G and H functions, the expectation is carried over [0, 1/2] and [1/2, 1], respectively.



_f

5.00

4.00

U_
z
O 3.00

Z

,p 2.00

1.00

0.00:

2.50 [

2.00

U)
Z
O 1.50

z

" 1.00

0.50

0.00

2.50

2.00

Z_ 1.50

1.00

0.50

I I I
(a)

_f F1 -

/'2

I ! I

(b) I I I /
-1

I-

/-G,

\_'' . G4 G3

I I I

(c)

0.00
-10.00

I I I

m

H1

"_.. H

I I I
-5.00 10.0110.00 5.00

SYMBOL SNR, dB

Fig. B-1. Function versu= symbol SNR |or: (,,) F function|,
(b) G luncllon.., and (c) H tuncllonl.

I I I

0.60

Z

M.

IN 0.40

0.20

0.00
-10.00

i I
-5,00 0.00 5,00

SYMBOL SNR, dB

Fig. B-2. Z luncllon verlu= =ymbol SNR.

tO.O0



, Appendix C

Derivation of the Mean for the Random Variable In +Ln + Cl

Let n be a normal random variable with zero mean and variance a 2, 1" a uniform random variable over (0, T), and c

any constant. Then,

/2 ("')1 In+ ¢le_P -_-_2 dn (C-t)c(I. + c(}=

The above integral can be easily evaluated by breaking it into two integrals over the two regions (-oo, -e) and (-c, oo)
to obtain

£{]n + cl} = exp - 2-'_" + c erf (C-2)

For a fixed r, one can write

( (C-3)V--_ -exp ' 2a, ) +(br+c)erf_,_/

Unconditioning over r yields

[ exp , + (b,+ ¢)erfk_/ d, (C-4)

which, after integration by parts, leads to

£t{In+br+cl}- 2_ erf_/ erf _ +_ +c erfk_/ c'erf

+ V 2_rbT +c exp 2a 2 -cexp _ (C-5)

By applying the above expression, one gets

£, {IAT - 2At + Nt + N211= _ erf(_/_') + erf(_/'_) + _-_

Also, by simple manipulation, it can be shown that

C,{IAT- 2At + N, +/V=l}= e={IAT- 2A, + N, + N=I}

= G{12Ar +/V, +/V21}

= £a{12AT - 2At + IV, + N_I} (C4)



Appendix D

Derivation of the Mean and Variance of the SQNOD

'File samples /k and Qk are given by Eqs. (33) and (34), Tile momenLs of Xk are given by Eqs. (A-l) through (A-3).

Using Eqs. (D-7) through (D-10) with 7"= 0 and Eqs. (A-2) and (A-3) yields the in-lock variance. Namely,

A4T 4 3 A2T2o_ 4o 4
Var(X_) = 0---_ + 2"" " +

(D-])

The covariance can be shown to be, for j > l,

Cov(X_, X_+i) = 0 (D-2)

Similarly, with r modelled a.s uniform over [0, T/2] in Eqs. (D-7) through (D-10), tile out-of-lock moments are fou.d.

ltence,

Varo(Xk) = A+7_6----6-+-SA2T202 + 4o_
-" -- n

(D-3)

Tile out-of-lock covariance can be shown to be, for j _> 1,

A47_ (D-4)
Covo(X_,Xk÷j) = 120

The following equations are used in computing the variance of Xt:

£{/_} IA2(_Ez(]}-2TEz{T}+2£,{T'})+#._Ez{]} T<,< {

(D-5)

2(T_E,{]}+2El{r2})+o.2El{1} 0<1"< _ (D-6)CIQ2} "- (._.1.0.n2)_.2111 T <1"< T

AtT 4 3 2 2 2 4

(,-E-+ _A T o.+ 3_.)&{l} .

g{I_} = A4(I_--_/_g_{l}- 4T3E_{T} + 12T262{r2}- 16TE,{,s}+ 8£,{r4})

+A2_(_T2C_{,}- 12TC2{_}+ nO2{:})+3olC={l}

o<_<_

T-<r< T4 --

(D-7)

T _
A4(-_E, {1} + 8£, {r4}) + A'a_.(_T'£, {1} + 12£,{r=}) + 3a_g, {]}

-T6- + _'* • "-+

o<,< T

T<r<T
4 - 2

(D-S)
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Appendix E

Derivation of the Mean and Variance of the AVNOD

By following the same procedure as in Appendix B and by using

{ c,{l_ +t¢l}c{Ihl} = ½[E,{I_ + NI} + £2(IAT- 2Ar + NIJ]

0<r<Z
-- 4

T_-<r<r
(E-I)

C{IQ_I) =
½[& {1"_ + NI} + C,{12Ar + NI}]
E,{I _r- + NI}

(Z-2)

and

Vat(IrkI- IQkI) =

_C,{t} + 2A_C,{_'} + 2,,._E_{I}

5 2 l 2- ;c, {1"_+ #1} - +E,{12Ar+ NI)

-_:{1_ + NI}E,{12Ar+ NI} 0 _<r < r_4

_%--:-Tae,{l}- _a'Te,(_}+ 2a,e_{__}+ 2_._E,{t}

s 2 l 2-++, {1_ + lVl}- +c2{IAT- 2A,-+ NI}

IPtlAT T <: T <_ T-p- t,T + NI}C2(I,4T- 2At + NI} i - r

(E-3)

one obtains Eqs. (40) through (45) after using the results of Appendix C and lengthy manipulations. The function Z in
Eq. (45) is defined as

z(_,) I- _¢,{l(u+ ent)(. + cn2)l} (E-4)

A

where c = l/(2Vf_f), the ni's are normal independent random variables with zero mean and unit variance, and u is a
uniform random variable in the range (0, 1). In Z, the expectation with respect to u is over the range [0, 1/4] and the
function is plotted in Fig. B-2 versus the symbol SNR. (i;,).



Appendix F

Derivation of the Mean and Variance of the SPED

The samples I_ and Ok are given by Eqs. (47) and (48). Tile output of the lock detector is =, = l, Ok.

straightforward to show that

It is

and

A_T 2 A2T

£{X_} = 4 _ .£(,'} (F-l)

C{Xl}=A,(7" T_e(_} r'C(_'}) , 2,(__ )16 4 + _ + _" + A _. - TC{_I +2c(O1 (V-2)

I A.T _

-w-Vat(r) r_-u(O,_)andj> 1
Cov(Xk, X_+._) =

0 r=O

(_-3)

Equations (49) and (50) follow after letting r = 0 in Eqs. (F-i) through (F-3). Equations (51) and (52) followby letting
r be uniform over [0, T/2].
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