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During this period a paper 1 was presented at the AIAA 10th Applied Aerodynamics

Meeting. Later, the paper was submitted for publication in the AIAA Journal and was accepted.

In addition, an abstract 2 was submitted to the 24th AIAA Fluid Dynamics Conference. Copy of

the abstract is enclosed.
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Introduction

It is well known that current k-( models cannot predict tile tlow over a fiat plate

and its wake l-e. In an effort to address this issue and other issues associated

with turbulence closure, a new approach for turbulence modeling is l)roposed

which exploits similarities in the flow field. Thus, if we consider l he ttow over

a flat plate _ind its wake, then in addition to laking advant;age of the log-law -

region, we can exploit the fact that the flow becomes self-similar in 1he far
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wake. This latter behavior makes it possible to cast the governing equations

as a set of total differential equations. Solutions of this set and comparison

with measured shear stress and velocity profiles yields tile desired set of model

constants. Such a set is, in general, different from other sets of model constants.

The rational for such an approach is that if we can correctly model the flow over

a fiat plate and its far wake, then we can have a better chance of predicting the

behavior in between. It is to be noted that the approach does not appeal, in any

way, to the decay of homogeneous turbulence. This is because the asymptotic

behavior of the flow under consideration is not representative of the decay of

homogeneous turbulence.

Approach

The approach will be illustrated by a k - _.' model. A Similar approach can be

used for a k- e model. For a plane wake. the defect velocity can be represented

as 3

where /_'_ is the free stream velocity, u is the velocity, and l is a length scale

representative of the width of the wake. For the wake

1 1

U, _ z-_ l _ .r_ (2)

The k and _., equations can be written as

D---[= 0--_I v + + v, - _."/,:\ o:v)

T. \0:/] (' -

(3)
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The mean velocity, u is governed by
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In the above equation, p is the kinematic viscosity, c:_, c:_, (-'_l, ('_.2 are model

constants, and the subscript t designates a turbt,lent q_lantity. ['sing Equation

(1) and setting k and a,, as

k
k = l:,2h(,l), _: = _9('11, u, = C',- (6)

,.,J

the equations in the far wake reduce to a set of second order total differential

equation in r/. Two dimensionless parameters appear in these equations u/(r_l

and U,,l/U,.z. The first parameter was chosen over the range 10 -4 -- 10 .6 The

second parameter can be expressed as

(:.I b; I 0

g..,.r (_, 0 .r

= 8_rcln(2):_0u_ (7)

where 0 is the momentum thickness. As was indicated in Ref. [l]. the general

concensus is that ut/U_.O has a value of .032 when ut is assumed constant. In

this work v_ is variable. Because of this. the quantity p_o/(',O, where pro is

the value of ut at the line of symmetry, is assumed to be .032. The boundary

conditions are

f'(rl)=h'(,i)=g'('q)=O at '/=0 (8)

f(rl) ---+h(,i) ----+g(rl) .---+0 ,:,.s '1 --" oc (9)

Results and Discussion

The above system has four model constants. I_ecause we are interested in model

constants that are suited for ttows over (he body and ils wake. the results of the

log-law region are used to relate some of the model constants. The resulting

equations can be written as

h- 2

('-._, - ('-.x - :_ (I0)
- :7,,.(_',_

where t,- is the Karman constant and C, = .09. l'sing Equation{ 10). 1he re-

maining constants were obtained by finding )he "'best" set of cons)ants lhat

reproduced the shear stress distribution, i.o.

7"
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and the velocity defect distribution, fiT/). Becausewe arc dealing with a two-
point boundary valueproblem, the nature of the solutionsobtained areshown
in Figure (1). The selectionof the modelconstants reducesto selectingthe
solution that has the shapelabeled "'correctsolution" and gives a best fit of
shearand defect velocity distributions. SinceUto/U,,O is assumed 1o be .032.

the values of g(0) and }1(0) are related bv tile relation

or.

.to _ C l('_ h(O) (12)
/7 0 *' g(O)

The quantity' IU,/U_O is obtained from Ref. [1] as [(4rr)/n(2)] 2

The approach outlined above is used to calculate the model constant in a k-

-' model. Figure (2) shows the distribution of k. (h(r/)) and a;, (g(r/)). The shear

stress distribution and velocity profiles are compared in figure (3) and (4) with

the asymptotic solution, where vt is assumed constant throughout, and with

the experiments of Ramaprian et al. 4 and Pot 5. A summary of the constants

obtained is given in Table 1. The table contains Wilcox's constants _ along

with constants developed by Anderson r. The results obtained bv Anderson

employed numerical optimization of computations starting on the fiat plate

and extending to _ = 2.5x103 downstream of the plate trailing edge, and by

comparison with asymptotic solution and available experiment.

Proposed Work

The next step in the research is to repeat *he procedure for a k - _ model. The

resulting sets of constants will then be used to calculate _he flow field over the

plate and its wake. Results will be compared with available experiment. _ _
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Table 1. Comparison of Various Model Constants

Constant Anderson Wilcox Current

C_ 1

C_ 2

C#

o-k

0"(..d

0.80

1.1733

1.5667

1.8333

0.49

0.8633

0.09

1.17647

1.42857

0.09

2.00

0.09

1.17647

1.42857
!

2.00
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