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During this period a paper! was presented at the AIAA 10th Applied Aerodynamics
Meeting. Later, the paper was submitted for publication in the AIAA Journal and was accepted.

In addition, an abstract? was submitted to the 24th ALAA Fluid Dynamics Conference. Copy of

the abstract is enclosed.

References

1. Young, T. W., Warren, E. S., Harris, J. E., and Hassan, H. A., "A New Approach for the
Calculation of Translational Flows," AIAA Paper 92-2669, June 1992. To appear in the

AIAA Journal.
2. Robinson, D. F., Harris, J. E., and Hassan, H. A., "Exploiting Similarity in Turbulent Shear

Flows for Turbulence Modeling".



Exploiting Similarity in Turbulent Shear
Flows for Turbulence Modeling

David F. Robinson”
North Carolina State University, Raleigh. North Carolina

Julius E. Harris!
NASA Langley Research Center. Hampton. Virginia

H. A. Hassan *
North Carolina State University, Raleigh, North Carolina

Abstract of Paper Proposed for the
24th ATAA Fluid Dynamics Conference

July 6-9. 1993
Orlando. Florida

Introduction

[t is well known that current k—e models cannot predict the flow over a flat plate
and its wake' %, In an effort to address this issue and other issues associated
with turbulence closure. a new approach for turbulence modeling is proposed
which exploits similarities in the flow field. Thus. if we consider the flow over
a flat plate and its wake, then in addition to taking advantage of the log-law
region. we can exploit the fact that the flow becomes self-similar in the far
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wake. This latter behavior makes it possible to cast the governing equations
as a set of total differential equations. Solutions of this set and comparison
with measured shear stress and velocity profiles yields the desired set of model
constants. Such a set is, in general. different from other sets of model constants.
The rational for such an approach is that if we can correctly model the flow over
a flat plate and its far wake. then we can have a better chance of predicting the
behavior in between. [t is to be noted that the approach does not appeal. in any
way, to the decay of homogeneous turbulence. This is because the asymptotic
behavior of the flow under consideration is not representative of the decay of
homogeneous turbulence.

Approach

The approach will be illustrated by a k —« model. A Similar approach can be
used for a k — e model. For a plane wake. the defect velocity can be represented

a53

Co—u=0f (8) =t (1)

where [, is the free stream velocity, u is the velocity. and [ is a length scale
representative of the width of the wake. For the wake
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The k& and w equations can be written as
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In the above equation. v is the kinematic viscosity. op. 7. Cuy, (2 are model
constants. and the subscript t designates a turbuvlent quantity. Using llquation
(1) and setting k and w as

k=Ulh(n), w="gn) vi==C0— (6)

w
the equations in the far wake reduce to a set of second order total differential
equation in . Two dimensionless parameters appear in these equations v/{’,l
and U,l/U,.z. The first parameter was chosen over the range 107" — 107" The
second parameter can be expressed as

1 U. 1o

U (7,0
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where @ is the momentum thickness. As was indicated in Ref. [1]. the general
concensus is that v,/U,.6 has a value of .032 when v, is assumed constant. In
this work v, is variable. Because of this. the quantity v,,/U. 0. where v, is
the value of v; at the line of symmetry, is assumed to be .032. The boundary

conditions are

=W =¢H)=0 at y=0 (8)
f(n) = hln) = g(n) =0 as n— (9)

Results and Discussion

The above system has four model constants. Because we are interested in model
constants that are suited for tlows over the bodv and its wake. the results of the
log-law region are used to relate some of the model constants. The resulting

equations can be written as

pl
C.,—0C, = - (lO)

where ~ is the Karman constant and (', = .09. Using Equation(10). the re-
maining constants were obtained by finding the "best™ set of constants that
reproduced the shear stress distribution. 1.e.
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and the velocity defect distribution. f(7). Because we are dealing with a two-
point boundary value problem, the nature of the solutions obtained are shown
in Figure (1). The selection of the model constants reduces to selecting the
solution that has the shape labeled “correct solution™ and gives a best fit of
shear and defect velocity distributions. Since v,/ 8 is assumed to be .032.
the values of g(0) and h(0) are related by the relation

- h(0)
vio = CLIU ——
' 9(0)
or.
Vio 1, h(0)
=Cira—— 12
1.0 “1°.6 ¢(0) (12)

The quantity {{/,/L.8 is obtained from Ref. [1] as [(47){n(2)]

The approach outlined above is used to calculate the model constant in a k—
« model. Figure (2) shows the distribution of £. (h(7)) and w. (g(n)). The shear
stress distribution and velority profiles are compared in figure (3) and (4) with
the asymptotic solution, where v, is assumed constant throughout. and with
the experiments of Ramaprian et al.* and Pot®>. A summary of the constants
obtained is given in Table 1. The table contains Wilcox's constants® along
with constants developed by Anderson’. The results obtained by Anderson
employed numerical optimization of computations starting on the flat plate
and extending to £ = 2.5x10° downstream of the plate trailing edge, and by

7
comparison with asvmptotic solution and available experiment.

Proposed Work

The next step in the research is to repeat the procedure for a £ — ¢ model. The
resulting sets of constants will then be used to calculate the How field over the
plate and its wake. Results will be compared with available experiment.
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Table 1. Comparison of Various Model ('onstants

Constant | Anderson | Wilcox | Current
Cuy 0.80 1.5667 | 0.49
Cus 1.1733 1 1.8333| 0.8633
Cu 0.09 0.09 0.09
o, 1.17647 | 2.00 '1.17647
oW 1.42857  2.00 | 1.42857
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Figure 1. Method of Determining Paremeters
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Figure 3. Shear Stress Protile. (i)
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Figure 4. Velocity Defect Profile. t(5)
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