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ANALYSIS AND CONTROL OF ASYMMETRIC VORTEX FLOWS
AND SUPERSONIC VORTEX BREAKDOWN

Osama A. Kandil*

Accomplishments (Dec. 1, 1991-Nov. 30, 1992)

The accomplishments which have been achieved in the present year covering the period

from Dec. 1, 1991 until Nov. 30, 1992 are given. These accomplishments include publications,
national and international presentations, NASA Research Highlights and presentations, and the
research group supported under this grant.

I. Conference Papers, Proceedings and Journal Publications:

1.

o

Kandil, O. A., Kandil, H. A. and Liu, C. H., “Shock/Vortex Interaction and Vortex Breakdown
Modes,” TUTAM Symposium on Fluid Dynamics of High Angle of Attack, Paper No. T.1.2,
University of Tokyo, Tokyo, Japan, September 13-17, 1992 (Invited), (a copy is enclosed).

Kandil, O. A., Wong, T. C., Sharaf, H. H. and Liu, C. H., “Recent Advances in Numerical
Simulation and Control of Asymmetric Flows Around Slender Bodies,” [IUTAM Symposium
on Fluid Dynamics of High Angle of Attack, Paper No. W.1.2, University of Tokyo, Tokyo,
Japan, September 13-17, 1992 (Invited), (a_copy is enclosed).

Wong, T. C., Kandil, O. A., and Liu, C. H., “Computation of Wake Vortex Flows and
Control of Their Effects on Trailing Wings,” AIAA 4429-92-CP, AIAA Atmospheric Flight
Mechanics Conference, South Carolina, August 1992, Vol. 1, pp. 280-292, (a copy is
enclosed).

Kandil, O. A., Sharaf, H. H. and Liu, C. H., “Active Control of Asymmetric Vortical Flows
Around Cones Using Injection and Heating,” AIAA 92-4426-CP, AIAA Atmospheric Flight
Mechanics Conference, South Carolina, August 1992, Vol. 1, pp. 244-253, (a _copy 18
enclosed).

. Kandil, O. A., Kandil, H. A. and Liu, C. H., “Critical Effect of Downstream Boundary Con-

ditions on Vortex Breakdown,” AIAA 92-2601-CP, 10th Applied Aerodynamics Conference,
Palo Alto, CA, June 22-24, 1992, pp. 12-26, (a_copy is enclosed).

Kandil, O. A. and Liu, C. H., “Unsteady Vortex Flows and Flow Control Around Slender
Bodies and Delta Wings,” Workshop on Supermaneuverability, AFOSR, Lehigh University,
April 9-10, 1992, pp. 383-417.

Kandil, O. A. and Sharaf. H. H., “Recent Advances in Computational Active Control of
Asymmetric Vortex Flows, “Fourth International Conference for Fluid Mechanics, Alexan-
dria, Egypt, April 28-30, 1992, Vol. 1, pp. 237-249.







10.

11.

12.

13.

14.

15.

2

. Wong, T. C., Kandil, O. A. and Liu, C. H, “Three-Dimensional Computational Study of

Asymmetric Flows Using Navier-Stokes Equations,” Proceedings of Asian Pacific Confer-
ence on Computational Mechanics, Hong Kong, December 11-13, 1991, pp. 1365-1371,
(a copy is enclosed).

Liu, C. H., Kandil, O. A. and Wong, T. C., “Computational Study for Passive Control of
Supersonic Asymmetric Vortical Flows around Cones,” Impact Journal of Computing in
Science and Engineering, Academic Press, Inc., Vol. 4, pp. 80-96, March, 1992, (a copy

is enclosed).

Kandil, O. A., Wong, T. C. and Liu, C. H., “Numerical Simulation of Unsteady Asymmetric
Flows around Cones,” Journal of Fluids and Structures, Academic Press, Vol. 6, pp.
249-265, February 1992, (a_copy is _enclosed).

Kandil, O. A., Wong, T. C. and Liu, C. H., “Prediction of Steady and Unsteady Asymmetric
Vortical Flow Around Cones,” AIAA Journal, Vol. 29, No. 12, December 1991, pp. 1269-
1278, (a copy is enclosed).

Kandil, O. A., Wong, T. C., Kandil, H. A. and Liu, C. H., “Thin-Layer and Full Navier-Stokes
Locally-Conical Asymmetric Solutions,” Accepted for Publication to the ASME Journal of
Fluids Engineering, December 17, 1991, log. No. 3303-RKA, to appear in April 1993.

Kandil, O. A., Kandil, H. A. and Liu, C. H., “Supersonic Quasi-Axisymmetric Vortex Break-
down,” Accepted for Publication to the ASME Journal of Fluids Engineering, December 17,
1991, Log. No. 3302-RKA, to appear in April 1993.

Kandil, O. A., Wong, T. C. and Liu, C. H., “Three-Dimensional Navier-Stokes Asymmetric
Solutions for Cones and Cone-Cylinder Configurations,” Accepted for Publication to the
AIAA Journal, November 1991, to appear in December 1993.

Liy, C. H,, Wong, T. C. and Kandil, O. A., “Prediction of Asymmetric Vortical Flows
Around Slender Bodies Using Navier-Stokes Equations,” Japanese Journal of Fluid Dynamics
Research, to appear January 1993.

National and International Presentations:

. “Unsteady High-o Computational Prediction and Control,” Institute for Space and Astronau-

tical Sciences (ISAS), Tokyo, Japan, September 17, 1992. (Invited)

. “Shock/Vortex Interaction and Vortex-Breakdown Modes,” [IUTAM Symposium of Fluid

Dynamics of High Angle of Attack, Tokyo, Japan, September 13-17, 1992.

. “Recent Advances in Numerical Simulation and Control of Asymmetric Flows Around

Slender Bodies,” TUTAM Symposium of Fluid Dynamics of High Angle of Attack, Tokyo,
Japan, September 13-17, 1992.
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13.

14.
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3

“Computational High-o Aerodynamics,” Presentation given to General John Loh (4 star-
general) of Langley Air Force Base, ODU, August 31, 1992.

“Computation of Vortex Wake Flows and Control of Their Effects on Trailing Wings,” AIAA
Atmospheric Flight Mechanics Conference, Hilton Head, SC, August 10-12, 1992,

“Active Control of Asymmetric Vortical Flows Around Cones Using Injection and Heating,”
AIAA Atmospheric Flight Mechanics Conference, Hilton Head, SC, August 10-12, 1992.

“Computation and Control of Vortex Wake Flows,” Directorate Review of Theoretical Flow
Physics Branch, NASA Langley Research Center, Hampton, VA, July 16, 1992.

“Critical Effects of Downstream Boundary Conditions on Vortex Breakdown,” AIAA 10th
Applied Aerodynamics Conference, Palo Alto, CA, June 22-25, 1992.

“Vortex-Wake Flows,” Division Review of Theoretical Flow Physics Branch, NASA-Langley
Research Center, Hampton, VA, June 5, 1992.

“Recent Advances in Computational Active Control of Asymmetric Vortex Flows,” Fourth
International Conference for Fluid Mechanics, Alexandria, Egypt, April 28-30, 1992.

“Prediction and Control of Unsteady Flows for Supermanuverability,” Taiwan Aeronautical
Research Center — ODU Symposium, MEM Dept., ODU, April 20-21, 1992.

“Physical Issues and Numerical Simulation of Supersonic Vortex Breakdown,” MEM Dept.
Televised Seminars, ODU, Norfolk, VA, April 171, 1992.

“Unsteady Vortex Flows and Flow Control Around Slender Bodies and Delta Wings,”
AFOSR Workshop on Supermanueverability, Lehigh Univ., PA, April 9-10, 1992. Also
Unsteady Aerodynamics Branch Briefing to the Canadian Air Force, NASA Langley, May
26, 1992.

“Vortex Research Work” Briefing to AFOSR Program Manager, NASA Langley Research
Center, Hampton, VA, Feb. 12, 1992.

Papers Submitted or Accepted for Presentation:

. Kandil, O. A., Kandil. H. A. and Liu, C. H., “Three-Dimensional Supersonic Vortex

Breakdown,” AIAA 93-0526, AIAA 31st Aerospace Sciences Meeting, Reno, Nevada,
January 11-14, 1993,

Kandil, O. A., Kandil, H. A. and Liu, C. H,, “Vortex/Shock Interaction on a 65°-Delta Wing
in Transonic Flow,” Submitted to the AIAA Fluids and Plasma Dynamics, Orlando, Florida,
July 6-9, 1993.
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. Kandil, O. A., Sharaf, H. H. and Liu, C. H., “Active Control of Asymmetric Conical Flow
Using Spinning and Oscillation,” submitted to the AIAA Fluids and Plasma Dynamics,
Orlando, Florida, July 6-9, 1993.

. NASA Research Highlights:

_ “Three-Dimensional Shock/Vortex Interaction and Vortex Breakdown Modes,” Kandil, O.
A., Kandil, H. A. and Liu, C. H., NASA RTOP, July 1992.

. “Active and Passive Control of Asymmetric Vortical Flows Around Conical Forebodies,”
Kandil, O. A., Sharaf, H. H,, and Liu, C. H., NASA RTOP, July 1992.

. Research Group:

This Principal Investigator is assisted by the following persons in the research group:

. Dr. T. C. Wong, Research Associate, MEM Dept., Old Dominion University; Prediction
and Control of Wake-Vortex Flows.

. Mr. Hamdy A. Kandil, Ph.D. Candidate, MEM Dept., Old Dominion University; Internal
and External Shock/Vortex Interaction and Vortex-Breakdown Modes.

. Mr. Hazem H. Sharaf El-Din, Ph.D. Student, MEM Dept., Old Dominion University; Passive
and Active Control Methods for Asymmetric Flows around Conical Forebodies.
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RECENT ADVANCES IN NUMERICAL SIMULATION AND
CONTROL OF ASYMMETRIC FLOWS AROUND SLENDER BODIES

O. A. Kandil. T.-C. Wong, H. H. Sharaf El-Din
Dept. of Mechanical Engineering and Mechanics
Old Dominion University, Norfolk, VA

C. H. Liu
Theoretical Flow Physics Br.
NASA Langley, Hampton, VA

Summary

The problems of asymmetric flow around slender bodies and its control are formulated using
the unsteady, compressible, thin-layer or full Navier-Stokes equations which are solved using
an implicit, flux-difference splitting, finite-volume scheme. The problem is numerically
simulated for both locally-conical and three-dimensional flows. The numerical applications
include studies of the effects of relative incidence, Mach number and Reynolds number on the
flow asymmetry. For the control of flow asymmetry, the numerical simulation cover passive
and active control methods. For the passive control, the effectiveness of vertical fins placed
in the leeward plane of geometric symmetry and side strakes with different orientations is
studied. For the active control, the effectiveness of normal and tangential flow injection and
surface heating and a combination of these methods is studied.

Introduction

Flow asymmetry around pointed slender cones develops at critical values of relative incidence
(ratio of angle of attack to nose semiapex angle) due to short-duration transient disturbances
or forced disturbances. The origin of the transient disturbances may be a transient side
slip, an acoustic disturbance, or similar disturbances of short duration. The origin of forced
disturbances is geometric imperfections in the nose or similar disturbances of permanent
nature. Flow asymmetry produces side forces, asymmetric lifting forces and corresponding
yawing, rolling and pitching moments that might be larger than those available by the control
system of the vehicle. Currently, research efforts are devoted for eliminating or alleviating
flow asymmetry and its corresponding asymmetric loads. Various methods of passive and
active control are being studied to learn about their control effectiveness.

In several recent papers by Kandil, et al. [1]-[4], the unsteady, thin-layer, compressible
Navier-Stokes equations have been used to simulate stcady and unsteady, asymmetric vortex
flows, including their passive control, around cones with different cross-sectional shapes.
The emphasis of these papers was extensive computational studies of the parameters which
influence the asymmetric flow phenomenon and its passive control. Since the computational
cost associated with the solution of three-dimensional-flow problems at reasonable flow
resolution is very expensive, all the computational solutions were obtained using a locally-
conical flow assumption. Such an assumption reduces the problem solution to that on



two conical planes, which are in close proximity of each other, and hence it reduces the
computational cost by an order of magnitude. Moreover, such solutions still provide extensive
understanding of the flow physics since one can use very fine grids for reasonable flow
resolution.

In a later paper, by Kandil, et al. [5], the full Navier-Stokes solutions were compared with
the thin-layer Navier-Stokes solutions. It was shown that the full Navier-Stokes solutions
produced thicker free-shear layers and more vortex-core resolution as compared with those
of the thin-layer Navier-Stokes equations. In reference [5], a few tentative three-dimensional
flow solutions were also presented.

Substantial research efforts have recently been devoted for eliminating or alleviating flow
asymmetry and its corresponding side force. In the experimental area, several passive-control
methods [6]-[8] and active-control methods [91-[13] have been investigated. Computational
simulations have also been used to investigate the effectiveness of several passive-control
methods [1]-[5] and active-control methods [12], [14], [15]. Various methods of passive
control were demonstrated in the above references which include the use of vertical fins
along the leeward plane of geometric symmetry, thin and thick side strakes with different
orientations, and rotatable forebody tips which have variable cross section (from a circular
shape at its base to an elliptic shape at its tip). It was shown by Kandil, et al. [4] that
side-strakes control is more practical than the vertical-fin control since the former was more
effective over a wide range of angle of attack than the former. Moreover, side-strake control
provided an additional lifting force. However, the effectiveness of the side-strake control
terminates at very high angles of attack for the considered strake geometry and flow conditions.

Various active-control methods have been used which include forebody blowing and movable
forebody strakes. The forebody blowing methods include forward blowing, normal blowing,
aft blowing and tangential blowing. The main concept of forebody blowing is to control flow
separation on the forebody and to create yawing forces and moments which can be utilized
in controlling the body.

In this paper, we present samples of simulating asymmetric locally-conical and three-
dimensional flows around cones. Next, we present samples of simulation for passive control
using a vertical fin and a side strake. Samples of simulating active control using normal and
tangential flow injection, surface heating and hybrid methods are also presented.

Highlights for Formulation and Computational Schemes

Formulation: The asymmetric-flow problems including their passive and active controls
are formulated using the conservative form of the unsteady, compressible, thin or full Navier-



Stokes equations in terms of time-independent, body-conforming coordinates. The equations
are given in Ref. [5] and hence, they are not repeated here.

The boundary and initial conditions vary according to the problem under consideration. The
boundary conditions are explicitly satisfied. In general, they include inflow-outflow conditions
and solid-boundary conditions. For problems of flow asymmetry, where the flow is solved
throughout the whole computational domain, periodic boundary conditions are used at the
plane of geometric symmetry of the problem.

For the asymmetric flow problems around slender bodies and for supersonic inflow-outflow
boundary, the Riemann-invariant boundary conditions are used. They require that the inflow
variables be at the freestream conditions, and the conical shock enclosing the body be captured
as part of the solution. For supersonic outflow boundary, the Riemann-invariant boundary
conditions require that all flow variables be extrapolated from the interior cells. On the solid
boundary, without injection or heating, the no-slip and no-penetration conditions are enforced.
Moreover, the zero normal-pressure gradient and adiabatic boundary conditions are enforced.
For the active control problems, the mass-flow rate is specified at the body surface for the
normal injection control and the temperature distribution is specified at the surface for the
heating control. For the tangential flow injection, the mass flow rate and velocity profile are
specified at the lip exit.

The initial conditions correspond to the uniform flow conditions with u; = u; =u3; =0 on
the solid boundary. These conditions are used to obtain the asymmetric flow solution. Next,
the flow control conditions are enforced and the previously obtained asymmetric solution is
used for the initial conditions of the active control problem.

Computational Scheme: The implicit, upwind, flux-difference splitting, finite-volume
scheme is used to solve the unsteady, compressible, full Navier-Stokes equations. The scheme
uses the flux-difference splitting scheme of Roe which is based on the solution of the ap-
proximate Riemann problem. In the Roe scheme, the inviscid flux difference at the interface
of computational cells is split into two parts; left and right flux differences. The splitting is
accomplished according to the signs of the eigenvalues of the Roe averaged-Jacobian matrix
of the inviscid fluxes at the cell interface. The smooth flux limiter is used to eliminate os-
cillations at locations of large flow gradients. The viscous-and heat-flux terms are linearized
and the cross-derivative terms are eliminated in the implicit operator. The viscous terms are
differenced using a second-order accurate central differencing. The resulting difference equa-
tion is approximately factored and is solved in three sweeps in the ¢!, ¢2, and ¢ directions.
The computational scheme is coded in the computer program “FTNS3D”.

For the locally-conical flow solutions, an axial station of x; = 1.0 is selected and the
components of the flowfield vector are forced to be equal between this axial station and



another axial station in close proximity to x; = 1.0. This ensures that the flow variables are
locally independent of the axial direction at x; = 1.0 (Kandil, et al. [5]).

Computational Applications and Discussion

Asymmetric Steady Flow (locally-conical solution): Figure 1 shows the residual error
versus the number of iterations, surface-pressure (SP) coefficient, cross-flow velocity and
total-pressure-loss (TPL) contour for the solution around a 5°-semiapex circular cone. Two
computer codes (CFL3D and ICF3D) which solve the thin-layer Navier-Stokes equations are
used to validate the asymmetric flow solution. The logarithmic-residual-error curve shows the
stages through which the solution goes until a stable asymmetric steady solution is obtained.
A grid of 161x81x2 points in the wrap-around, normal and axial directions, respectively,
with minimum spacing of 104, has been used. The computational domain extends around
the body to 21 r where r is the local radius of the cone. For these critical conditions, the
asymmetry is developed due to random disturbances; such as the machine round-off-error
for the CFL3D solution.

Asymmetric Unsteady Flow (locally-conical solution): Figure 2 shows the results for the
solution of the flow around the same cone using the same grid, where a = 30°. Here,
the solution is validated by using the thin-layer and full, Navier-Stokes equations using the
flux-difference splitting (FDS) scheme and the flux-vector splitting (FVS) scheme. All the
solutions show asymmetric, periodic flow with vortex shedding. The figures show snapshots
of TPL contours over a half cycle of periodic response. The periodicity is substantiated by
the first and last snapshot in each row. It is clearly observed that they are mirror image of
each other over the half cycle.

Asymmetric Steady Flow (three-dimensional solutions); Figures 3 and 4 show the asym-
metric flow results for the flows around a 5°-semiapex cone and a 5°-semiapex cone with
cylindrical after-body configuration. A grid of 161x81x65 points in the wrap-around, nor-
mal and axial directions, respectively, with minimum spacing of 10'® has been used. For the
cone solution, the spatial flow asymmetry is qualitatively similar to that of the temporal flow
asymmetry of the locally-conical flow solution of Fig. 2. For the cone-cylinder configuration
at the same angle of attack and Mach number as those of the cone case, it is concluded that
the cylindrical afterbody enhances the flow asymmetry at lower Reynolds number. These
solutions are obtained using the thin-layer Navier-Stokes cquations.

Passive Control Using Fins and Strakes (locally-conical solutions); Figures 5 and 6
show the solutions using passive flow controls through a vertical fin placed in the leeward
plane of geometric symmetry (Fig. 5) or side strakes (Fig. 6). It is concluded that the fin
height, h, must be at least equal to or greater than the height of the free-shear layers in order



to yield a symmetric flow. The side-strake control is more practical than the fin control since
it is more effective for high angles of attack than the fin, and moreover it provides additional
lifting force. These solutions are obtained using the thin-layer Navier-Stokes equations.

Active-Control Using Normal Flow Injection: Figure 7 shows the history of the locally-
conicaly full Navier-Stokes solutions for active control around a 5°-semiapex cone. The
control is achieved by injecting flow from circumferential ports in the circumferential angle
range of 8 = + 67.5°. A variable mass-flow-rate injection of maximum rate of 0.03 is used.
The mass flow rate is proportional to the difference in the surface pressure between the left
and right sides of the cone. Figure 8 shows the effectiveness of this flow injection as the
angle of attack is increased up to 30°, where flow asymmetry develops again. The solution
is obtained using the full Navier-Stokes solver, FTNS-3D code, on a grid of 241x81x2.

Hybrid Active Control Using Heating and Injection: Since normal flow injection failed
to yield asymmetric solutions at angles of attack as high as 30°, hybrid methods of active
control are investigated. Figure 9 shows the effectiveness of hybrid surface heating and
variable mass flow normal injection for the same cone as the angle of attack is increased. It
is seen that this method is very promising at high angles of attack. Here, symmetric surface
pressure and not symmetric flow is obtained at « = 38° and 42°. The surface temperature is
taken as T, = 5T and the maximum mass flow rate is 0.05. The solution is obtained using
the full Navier-Stokes solver, FTNS-3D code, on the same grid as that of Fig. 8.

Active Control Using Tangential Flow Injection: Figure 10 shows the results for active
control using injection of flow from side lips. The radius of the lower portion is 1.05 that
of the upper portion. The maximum mass flow rate is 0.2 and a parabolic velocity profile
is assumed at the lip exit. The solution is obtained by using the full Navier-Stokes solver,
FTNS-3D, code and a multi-block scheme to grid the lip-flow exit and the upper and lower
flow regions. It is seen that this method is effective up to 30° angle of attack.

Concluding Remarks

The unsteady, compressible, thin-layer and full Navier-Stokes equations have been used to
solve for asymmetric steady and unsteady, locally-conical and three-dimensional flows around
circular cones at high angles of attack. Passive and active control methods have been applied
to study their effectiveness to yield either a symmetric flow or a symmetric surface pressure
distribution and hence removing the side forces. Work is underway to use other active control
methods as well as hybrid passive-active control methods.
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Summary

Computational simulation and study of shock/vortex interaction and vortex-breakdown modes
are considered for bound (internal) and unbound (external) flow domains. The problem is
formulated using the unsteady, compressible, full Navier-Stokes (NS) equations which are
solved using an implicit, flux-difference splitting, finite-volume scheme. For the bound flow
domain, a supersonic swirling flow is considered in a configured circular duct and the problem
is solved for quasi-axisymmetric and three-dimensional flows. For the unbound domain,
a supersonic swirling flow issued from a nozzle into a uniform supersonic flow of lower
Mach number is considered for quasi-axisymmetric and three-dimensional flows. The results
show several modes of breakdown; e.g., no-breakdown, transient single-bubble breakdown,
transient multi-bubble breakdown, periodic multi-bubble multi-frequency breakdown and
helical breakdown.

Introduction

Longitudinal vortex/transverse shock-wave interactions are typical applications which appear
in transonic and supersonic flows over a strake-wing configuration at moderate-high angles
of attack, at a supersonic inlet injesting a vortex and inside a supersonic combustor where
fuel is injected in a swirling jet to enhance fuel-air mixing [1]-[3]. For the strake-wing
configuration, vortex breakdown is undesirable since it results in the stall phenomenon, and
hence its occurrence need to be delayed. On the other hand, vortex breakdown for the other
two applications is desirable since it enhances mixing and stability of the flame [4]-5], and
hence its occurrence need to be controlled for the optimum performance. Unfortunately, the
literature lacks this type of analysis with the exception of the preliminary work of Liu, Krause
and Menne [6], Copening and Anderson [7], Delery, et al. [1], Kandil and Kandil [8] and
Meadows, Kumer and Hussaini [9].

The first time-accurate NS solution for a supersonic vortex breakdown was developed by
the present authors in Ref. [10]. We considered a supersonic quasi-axisymmetric vortex
flow in a configured circular duct. The time-accurate solution of the unsteady, compressible
NS equations was obtained using an implicit, upwind, flux-difference splitting finite-volume
scheme. A shock wave has been generated near the duct inlet and unsteady vortex breakdown
has been predicted behind the shock. The predicted flow was characterized by the evolution,
convection merging and shedding of vortex breakdown bubbles. The Euler equations were



also used to solve the same problem. The Euler solution showed larger size and number of

vortex-breakdown bubbles in comparison with those of the NS solutions. The time-accurate
" solution was carried out for 3,200 times steps which are equivalent to a dimensionless time
of 16. Only one value of Reynolds number of 10,000 was considered in Ref. [10].

In a later paper [11], we expanded our study of this flow using time-accurate computations
of the NS equations with a fine grid in the shock-vortex interaction region and for longer
computational times. Several issues were addressed in that study. First, we showed the
effect of Reynolds number on the temporal evolution and persistence of vortex-breakdown
bubbles behind the shock. In that stage of computations, the conditions at the downstream
exit were obtained by extrapolating the components of the flowfield vector from the interior
cell centers. Although the flow was supersonic over a large portion of the duct exit, subsonic
flow existed over a small portion of the exit around the duct centerline. Therefore, selected
flow cases were computed using a Riemann-invariant-type boundary conditions as well as
other boundary conditions at subsonic points of the duct exit [12].

_In the present paper, we consider shock/vortex interaction and the resulting vortex breakdown

modes for quasi-axisymmetric and three-dimensional flows. This study covers bound and
unbound flow domains. For the bound domain, supersonic swirling flow is considered in a
configured duct, and for the unbound domain supersonic swirling flow that is issued from a
nozzle into a uniform supersonic flow of lower Mach number is considered.

Highlights of Formulation and Computational Scheme

Formulation: The conservative, unsteady, compressible, full Navier-Stokes equations in
terms of time-independent, body-conformed coordinates ¢!, £2 and €3 are used to solve the
problem. The equations are given in Ref. [11] and hence they are not presented here. Along
with these equations, boundary conditions are specified at the computational-domain inlet,
side wall and downstream exit. The downstream exit boundary conditions will be presented
and discussed in the next section of the computational results. The initial conditions are also
presented in the next section.

Computational Scheme: The computational scheme used to solve the unsteady, compress-
ible full NS equations is an implicit, upwind, flux-difference splitting, finite-volume scheme.
It employs the flux-difference splitting scheme of Roe which is based on the solution of the
approximate one-dimensional Riemann problem in each of the three directions. In the Roe
scheme, the inviscid flux difference at the interface of a computational cell is split into left
and right flux differences. The splitting is accomplished according to the signs of the cigen-
values of the Roe averaged-Jacobian matrix of the inviscid flux at the cell interface. The
smooth limiter is used to eliminate oscillations in the shock region. The viscous and heat-flux
terms are differenced using second-order spatially accurate central differencing. The resulting



difference equation is approximately factored and is solved in three sweeps in the 1, €% and
¢3 directions. The scheme is coded in the computer program which is called “FTNS3D”.

The quasi-axisymmetric solutions are obtained using the three-dimensional code by forcing
the flowfield vector to be equal on two axial planes, which are in close proximity of each other.

Computational Results and Discussion

a. Quasi-axisymmetric Vortex Breakdown Modes in a Configured Duct: Figure 1 shows
an axial plane of a configured circular duct. The design of the duct configuration is intended to
ensure that the supersonic inflow becomes supersonic at the exit. However, as the computation
will show, a small portion of the duct exit becomes subsonic at certain times for the specified
inflow conditions. A grid of 221x51x2 in the axial, radial and circumferential directions,
respectively, is used for the quasi-axisymmetric flow. For the three-dimensional flow, a grid
of 221x51x49 in the axial, radial and circumferential directions, respectively, is used. The
minimum grid length is 0.002. The upstream Mach number is kept at 1.75.

The initial profile for the tangential velocity is given by

w ke r?
o= e ()] »

where Uy, = 1.74, rm = 0.2 and k, = 0.1. The maximum U":—o, swirl ratio 3, is at r =
0.224 and its value is kept at 0.32. The radial velocity, v, at the initial station is set equal
to zero and the radial momentum equation is integrated to obtain the initial pressure profile.
Finally, the density p is obtained from the definition of the speed of sound for the inlet flow.
With these compatible set of profiles, the computations are carried out accurately in time with
At = 0.0025. The wall boundary conditions follow the typical Navier-Stokes solid-boundary
conditions.

Reynolds number, Re = 4,000: Figure 2 shows snapshots of the streamlines and Mach
contours for the flow case of Re = 4,000. For this value of Reynolds number, a single
breakdown bubble is seen at t = 5 and it is convected downstreams as time passes. This
breakdown bubble is formed during the downstream motion of the inlet shock, which reaches
its maximum downstream displacement at t = 5. Later on, the shock moves upstream, as
it is seen at t = 8, while the breakdown bubble is convected in the downstream direction.
Thereafter, the shock stays stationary at the inlet. This swirling flow case shows a transient
single-bubble breakdown flow. The conditions at the exit are obtained by extrapolation from
the interior cell centers.

Reynolds number, Re = 20,000: Figure 3 shows snapshots of the streamlines and Mach
contours for this case. These snapshots show a vortex breakdown mechanism of evolution,



convection, merging and shedding of bubbles while the inlet shock is moving downstreams,
then upstreams and finally downstreams. The inlet shock becomes stationary and no more
bubbles are developed. This swirling flow case shows a transient multi-bubble breakdown

flow.

Reynolds number, Re = 100,000: Figure 4 shows snapshots of the streamlines and Mach
contours for this case. The downstream boundary conditions are obtained by extrapolating
all the flow variables from the cell centers at the exit. The streamlines snapshots show mult-
bubble vortex breakdown evolution, convection, merging and shedding. The time-accurate
integration was carried out up to t = 200 and the solution showed periodic multi-frequency
cycles of vortex-breakdown bubbles [21]. An example of the merging of vortex breakdown
bubbles of same sign of vorticity is shown att = 17. An example of convection and shedding
of vortex breakdown bubbles is shown at t = 25. Comparing the streamlines solutions at t
= 25 and t = 89, it is seen that the solutions are almost the same which conclusively show
that the breakdown process is periodic. The Mach-contours show the dynamics of inlet shock
motion. In the time range of t = 3-8, the inlet shock moves upstream toward the inlet and
its central portion exists outside the inlet section at t = 8. In the time range of t = 8-25,
the inlet shock moves downstream with corresponding evolution, convection, merging and
shedding of breakdown bubbles. In the time range of t = 25-45, the inlet shock maintains its
motion in the downstream direction at a slower rate than before, while another shock, which
is downstream of the inlet shock, appears and also moves in the downstream direction. The
evolution, convection and shedding slowly continues until t = 66. In the time range of t = 66-
78, the downstream shock disappears and a large vortex-breakdown bubble appears and moves
upstream. This motion of the bubble is accompanied by upstream motion of the inlet shock
(t = 78). Later the inlet shock again moves in the downstream direction and the process is
repeated. An animation movie has been produced for the total dimensionless time of t = 200.

Exit Riemann Invariant Condition, py, = 2p..: In this case, the back pressure at the
subsonic points of the duct exit is specified to be P» = 2poc and the other four variables
are extrapolated from the interior cell centers. Figure 5 shows snapshots of the streamlines
and Mach contours of the solution. Comparing the present solution with the solution of the
previous case (Fig. 4), it is seen that the two solutions are similar with the exception that the
present solution lags that of the first case in time. The reason behind this behavior is that the
back pressure p, is larger than that of the first case. Moreover, the Riemann invariant type
conditions at subsonic points let the downstream effects propagate upstream as time increases.
The existence of the large back pressure which is felt upstream supports the inlet shock and
keeps it in the inlet region.

b. Three-Dimensional Vortex-Breakdown in a Configured Duct: Figure 6 shows the
streamlines and Mach contours for the three-dimensional vortex breakdown modes in a con-



figured duct with the same inflow conditions as those of Fig. 4. At the downstream exit, flow
conditions are extrapolated from the interior cell centers. It is observed from the vertical,
axial planes that the vortex breakdown is a three-dimensional phenomenon. The breakdown
changes from a two-bubble type (t = 2-5) to a multi-bubble type (t = 7-34). At certain
times, t = 11 and 19, it is observed that the multi-bubble breakdown is followed by a spiral
breakdown. Beyond t = 46, the breakdown becomes a single-bubble type.

c. Quasi-axisymmetric Vortex-Breakdown of a Supersonic Flow from a Nozzle: Here, a
supersonic swirling jet at M; = 3.0, which is issued from a nozzle into a supersonic uniform
flow of M., = 2.0, is considered. A grid of 221x51x2 in the axial, radial and tangential
directions, respectively is considered. The computational domain in an axial plane has the
dimensions of 7.0x 3.5 in the axial and radial directions, respectively, where the nozzle exit
radius r = 1. The freestream Reynolds number is 296,000. The inflow profiles are taken
from the experimental data of Ref. [2] and they are used as quasi-axisymmetric profiles [12].
Figure 7 shows snapshots of the streamlines and Mach contours at selected time steps. The
streamline figures show multi-bubble breakdown at the early levels of time. These bubbles
develop due to the shock system existing at the nozzle exit. The shock system consists of
two oblique shocks; one is weak and the other is strong. For t > 55, the shock system and
the breakdown bubble move upstreams and remain there with low frequency oscillation.

d. Three-Dimensional Vortex-Breakdown of a Supersonic Flow from a Nozzle: The flow
of the previous case is considered for three-dimensional computations using a square-Cross
flow computational domain and a circular cross-flow computational domain. For the first case,
one-half the square side is 3.5 units and for the second case, the radius is 3.5 units. Three
types of grid are used for the first case (Gird types 1, 2 and 3) and one type of grid is used for
the second case (Grid type 4), see Fig. 8. This study shows the dominant effect of the grid
shape and distribution on the vortex breakdown solutions. While grid type 1 shows two large
brealdown bubbles, Grids 2, 3 and 4 show substantially smaller breakdown bubbles. More-
over, the conical shock system ahead of the breakdown bubbles shows substantial difference
in size, location and shape. This study gives an alarming conclusion to the researchers who
use substantially coarse grids with a rectangular cross-flow domain and a rectangular grid,
and still claim capturing of physical vortex-breakdown flows. In the present study, the vortex
breakdown bubbles of grid type 4 are of the same size order as those of grid type 3, although
the shock system is somewhat different in shape.

Concluding Remarks

Computational simulation and study of shock/vortex interaction and vortex breakdown have
been considered for internal and external supersonic swirling flow. The time-accurate
computation for full Navier-Stokes equations is used to produce all the present cases.



Numerous modes of vortex breakdown flows have been captured. The results show the effects
of Reynolds number, downstream exit conditions, and grid shape, fineness and distribution.
Three-dimensional vortex breakdown computations show somewhat different results from the
quasi-axisymmetric counter parts since the three-dimensional flow provides a flow reliefing
effect in the circumferental direction.
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COMPUTATION OF VORTEX WAKE FLOWS AND CONTROL OF THEIR EFFECTS ON TRAILING WINGS

Tin-Chee Wong® and Osama A. Kandil*
Old Dominion University, Norfolk, VA 23529

and

CH. Liu*™
NASA Langley Research Center, Hampton VA 23665

ABSTRACT

The near-vortex-wake flow of a large aspect-ratio rect-
angular wing is accurately computed by using the thin-
layer and full Navier-Stokes (NS) equations. The chord-
wise section of the wing is a NACA-0012 airfoil and its
tip is round. The computations have been carried out on
a fine C-O grid using an implicit, upwind, flux-difference
splitting, finite-volume scheme. The thin-layer NS results
have been obtained with and without flux limiters and
the full NS results have been obtained without flux lim-
iters. Flow transition from laminar to turbulent is mim-
iced by turning-on the Baldwin-Lomax algebraic model
at an experimentally prescribed chord-station location of
0.05. Comparison of the computed results with each other
and with the experimental data shows that the full NS
results give the best resolution of the near-vortex-wake
flow. Next, the strength of the wing-tip vortex has been
reduced substantially without reducing the lift coefficient
by using flow-injection from a slot along a portion of the
wing tip. The flow injection is directed in the wing plane
at 45° with the wing-tip chord.

INTRODUCTION

Recently, there has been an alarming rate of increase
of the volume of air civil transport at many airports. With
this status of air traffic congestion, the hazardous effect
of wake vortices emanating from large aircraft on light
aircraft, which pass through these vortices during land-
ing and take-off operations, is becoming a vital concern
for operations safety. These vortices are characterized
with high intensity and turbulence, and may produce high
rolling moments on trailing aircraft which could exceed
the available roll control of the trailing aircraft. More-
over, the trailing aircraft, under the influence of these
vortex trails, could suffer a loss of altitude or climb rate
in addition to structural damages. These vortices may
persist up to several miles and for long periods of time
before their decay, and therefore they play a major role
in sequencing landing and take-off operations at busy air-
ports. For example, a minimum safe-separation distance
between aircraft is dictated depending on the vortex inten-
sity, wind shear, atmospheric turbulence and temperature
gradient; among others.
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The literature shows a few experimental and compu-
tational investigations that attempt to model and analyze
wake vortex interaction, merging, decay and their haz-
ardous effects on trailing aircraft. Hallock and Eberle!
presented a review of the state of the art of aircraft wake
vortices covering the research efforts in the United States
until the mid-seventies. Experimental wind tunnel and
airport measurements of the vortex wakes were conducted
by Dee and Nicholas? Harvey and Perry’, El-Ramly*,
Wood and McWilliams®, Gardoz®, Cliffone and Lonzo’,
Olwi and Ghazi®, Liu® and Liu et al'°.

Mathematical models and computational schemes
were developed using inviscid analysis by Chorin and
Bemnard!!, Hacket and Evans'?, Yates', Iversen and
Bemstein'4, and Rossow!. Although an inviscid model
cannot describe the wake aging including its diffusion, it
is still capable of producing the wake shape and its dy-
namics. The mathematical modeling used in the above
references were based on the use of the point vortex
method to compute the motion of a finite number of point
vortices which model the vorticity behind a wing. The
first three-dimensional inviscid model was introduced by
Kandil, et. al'$, where the nonlinear vortex-lattice, which
was also developed by Kandil, et. al'?, was used to com-
pute the interference flow between wings and the vortex
wake hazardous effects.

Viscous modeling of trailing vortices was first in-
troduced by McCormick, et. al'®. Viscous interactions
in vortex wakes and the effects of background turbu-
lence, wind shear and ground on two-dimensional vor-
tex pairs were presented by Bilanin, et al'®?. Liu and
his co-workers?!"#* studied the interaction, merging and
decay of vortices in two-dimensional space and of three-
dimensional vortex filaments. To estimate the effects of
density stratification, turbulence and Reynolds number on
vortex wakes, an approximate model was recently devel-
oped by Greene®. Later on, Greene and his co-workers®
presented selected results of aircraft vortices which in-
clude a juncture vortex, a lifting-wing vortex and a wake
vortex.

It is concluded from the above brief literawre sur-
vey that the problem contains several vortex flow regions
along with several critical parameters influencing the vor-
tex wake flows. The vortex wake flow of interacting-wing
problems can be divided into three regions. The first re-
gion includes the leading wing and its near-vortex-wake
flow. The second region includes the interacting vortices
in the wake. The third region includes the far-wake flow
along with the trailing-wing flow. In Ref. 27, Kandil,



Wong and Liu presented results of the near-vortex-wake
flow for a large-aspect-ratio rectangular wing using the
thin-layer, Reynolds averaged, NS equations on a C-O
grid. Next, a small aspect-ratio rectangular wing was in-
troduced in the near-wake of the leading wing and the
problem was recomputed to demonstrate the hazardous
effects of the vortex wake flow. Two interference cases
were considered. The first was called the “along-track
penetration through vortex center” and the second was
called the *“along-track penetration between vortices”, see
Fig. 1. It was demonstrated that in the first case, the
trailing wing experienced large rolling moments and in
the second case the trailing wing experienced loss of lift.

In the present paper, the near-vortex-wake flow is
recomputed using a finer grid than the grid used in Ref.
27. Moreover, the thin-layer and full NS equations are
used along with an upwind scheme, wherein the flux
limiter of the solver is turned on and off. The goal of this
part of the paper is to accurately compute the vortex wake
flow and to study the effect of the numerical dissipation
of the flux limiter on the computed results. In the second
part of the paper, alleviation of the strength of the tip
vortex without reducing the lift force is demonstrated by
using directed flow injection from a slot along a certain
length of the wing tip.

FORMULATION

Full and Thin-Layer Navier-Stokes Equations

The conservative form of the dimensionless, unsteady,
compressible, full Navier-Stokes equations in terms of
time-independent, body-conformed coordinates ¢!, £2 and
& is given by

3 O(E.
9Q , Ok, _(_)==o;m=1-3,s=1-3 0

ogm o

where
£m = fm(Xth,x;) (2)

1
= 5[}’:/’“1:/’“2:9“31/’9]‘ (3)

O
0

E. = inviscid flux
1 . 1t
= j[ac8]
= %[PUm puiUny + 8:6™p, pusUn
+6:£"p, pu3Un + 036™p, (pe + p)Un]* (@)

(E,), = viscous and heat — conduction flux in £
direction

= 310,86, A€ e Ao,

2o — )Y k=1-3, n=1-3
& (Ui = Q)] n ®

Un = &fmuk ©)
The three momentum elements of Eq. (5) are given by

Ouy
o
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The last element of Eq. (5) is given by
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The single thin-layer approximations of the full Navier-
Stokes equations demand that we only keep the deriva-
nvwmthenonmldnrecnontotlwbody,f’ in the viscous
and heat flux terms in Egs. (1), (7) and (8). Thus, we let

s=2 for the term 2~k inEq. (1) and s = 2.and n =2

in Eqgs. (7) and (8). equations reduce to
6Q , 0Ea O(E),
R ®
*hén, = Me (wa E+¢— ) 10)
1 = 1 ¢

Ay - a) = = {yw
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where
Ouy
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In Egs. (1)-(12), the dimensionless variables are refer-
enced to their appropriate freestream values. The dimen-
sionless density p, cartesian velocity components u;, u;
and us, total energy per unit mass, ¢, dynamic viscosity,
and speed of sound, a, are defined as the ratio of the cor-
responding physical quantities to those of the freestream;
namely, poc, Boc, PocBlcs Mo 8NA Goc; Tespectively. The
pressure, p, is non-dimensionalized by p..a3_, and is re-
lated to the total energy for a perfect gas by the equation
of state

p:(‘y—l)p(e—%ujuj);j=l—3 13)

—



where v is the ratio of specific heats and its value is 1.4.
The viscosity, u, is calculated from the Sutherland law

p:Ts/z(,:l[,-:_z),C=0.4317 (14)

where T is the temperature which is non-dimensionalized
by Tx. The Prandd number, P, is fixed at 0.72. The
Reynolds number is defined as R = poc U L/poc and
the characteristic length, L, is chosen as the root chord
of the wing.

In Egs. (1)-(13), the indicial notation is used for
convenience. The subscripts k, n, p and j are summation
indices, the superscript or subscript s is a summation
index and the superscript or subscript m is a free index.
The partial derivative 32 is referred to by &.

Turbulent Flow

For the turbulent flow, the Navier-Stokes equations
are transformed to the Reynolds-averaged equations by
replacing the coefficient of molecular viscosity, u, and
the coefficient of thermal conductivity k with

pe=p+ pe = p(l+ p/p) (15)
Ckrk o HCe () P
ke=k+k =75 (H /-‘Pn) 1

where . is the effective viscosity, ke the effective ther-
mal conductivity, g the turbulent viscosity, P, the lami-
nar Prandtl number, P, the turbulent Prandt number and
C, the specific heat under constant pressure. The turbu-
lent viscosity p, is obtained by using the two-layer al-
gebraic eddy viscosity model which was first developed
by Cebeci?® for the boundary-layer equations and modi-
fied later by Baldwin and Lomax? for the Navier-Stokes
equations. The details of the turbulent model is given in
Ref. (30) by Wong, Kandil and Liu.

Boundary and Initial Conditions

Boundary conditions are explicitly implemented.
They include the inflow-outflow conditions and the
solid-boundary conditions. At the plane of geometric
symmetry, periodic conditions are used. The inflow-
outflow boundary conditions are implemented using the
one-dimensional Riemann-invariant conditions normal to
these boundaries. On the solid boundaries, the no-slip
and no-penetration conditions are enforced; u; = u; = Uy
= 0, and the normal pressure gradient is set equal to zero.
For the temperature, the adiabatic boundary condition is
enforced at the solid boundaries.

The initial conditions correspond to the freestream
conditions with u; = uz = us = 0 on the solid boundaries.

The freestream conditions are given by

P = 8 = T = 1,
Uje = My cO8Q,
e
o T V)
1 M3
=1 = —— fon. 3
Pxc = 1/7, € Gont 2

where « is the angle of attack.

COMPUTATIONAL SCHEME

The implicit, upwind, flux-difference splitting, finite-
volume scheme is used to solve the unsteady, com-
pressible, thin-layer and Full Reynolds-averaged, Navier-
Stokes equations. The scheme uses the flux-difference
splitting scheme of Roe which is based on the solution of
the approximate Riemann problem. In the Roe scheme,
the inviscid flux difference at the interface of computa-
tional cells is split into two parts; left and right flux dif-
ferences. The splitting is accomplished according to the
signs of the cigenvalues of the Roe averaged-Jacobian
matrix of the inviscid fluxes at the cell interface. The
smooth flux limiter is used to eliminate oscillations at
locations of large flow gradients. The viscous-and heat-
flux terms are linearized and the cross-derivative terms
are eliminated in the implicit operator. The viscous terms
are differenced using a second-order accurate central dif-
ferencing. The resulting difference equation is approx-
imately factored and is solved in three sweeps in the
€', €2, and € directions. The computational scheme is
coded in the computer program “FTNS-3D"%!.

COMPUTATIONAL RESULTS AND DISCUSSIONS

We consider a rectangular wing of aspect ratio, AR
= 5.9 and a NACA 0012 chordal section, at an angle of
attack of a=4.64°. The flow Reynolds number, R, is
3.2x10° (based on the rootchord length) and the Mach
number, M, is taken as 0.3 for low speed flows. The
computational domain consists of a hemispherical bound-
ary which is followed by a cylindrical boundary. The
hemisphere center is located at the intersection of the
wing root-chord and its trailing edge. Its radius is 15
chords and the cylindrical boundary extends 14 chords in
the downstream direction beyond the trailing edge. A C-
O grid of 231x65x65 grid points in the streamwise wrap-
around, spanwise and normal directions, respectively, is
generated by using transfinite interpolation. The min-
imum gridspocingsnmnaltomewingsmfaceanhe
leading-edge and tip regions are chosen to be 105, The
gﬁdpoimsclosetomenilingedgemclustereduptos
chords in the downstream direction. The reason is that for
the present work our interest is focused on the resolution
of the near-vortex-wake flow. Figure 2 shows a typical
grid for the wing and its near wake. The flow is consid-
ered to be laminar until the chord station of 0.05 from
the wing leading edge. Thereafter, the turbulent model! is



turned on to mimic the transition to turbulent flow. This
location of the transitional flow has been experimentally
determined by Yip and Shubert2.

Thin-Layer and Full Navier-Stokes Solutions

The flow around the rectangular wing is solved us-
ing the thin-layer NS equations and the full NS equa-
tions. The computations are carried out three times using
the same grid described above and the implicit upwind
scheme. In the first and second tmes, the thin-layer NS
equations are solved using the implicit upwind scheme
with and without the smooth flux limiter. In the third
time, the full NS equations are solved using the implicit
upwind scheme without the smooth flux limiter. Next,
we compare the results of these three computions with
each other and with the experimental data of Ref. 32.

Figure 3 shows a comparison of the history of the
logarithmic residual error and the lift coefficient of these
computations. The thin-layer computation with a flux
limiter (TL-limiter) shows a drop of the residual error of
about five orders of magnitude after 8000 iteration steps.
The thin-layer computation without a flux limiter (TL-no
limiter) shows a drop of the residual error of the same
order of magnitude as that of the TL-limiter computation
after 10,800 iteration steps. The full Navier-Stokes com-
putation without a flux limiter (FNS-no limiter) shows
a drop of the same order of magnitude as that of the
TL-limiter computation after 8,900 iteration steps. The
lift coefficient of the three computations is 0.34090 (TL-
limiter), 0.35354 (TL-no limiter) and 0.35250 (FNS-no
limiter). In the next table, we show comparison of the
three computations and the experimental data for the nor-
mal force coefficient, Cy, the pitching-moment coefficient
about the leading edge, Cw, and the drag coefficient, Cp.
The results of the case of next section for the tip-jet con-
trol are also included in the table. The results show that

Cn CuMm Cp
TL-limiter 0.34128 -0.07581 0.01857
TL-no limiter 0.35374 -0.08161 0.01682
FNS-no limiter  0.35272 -0.08137 0.01702
Experiment32 0.35 -0.0825 N/A
FNS-no limiter  0.3682 -0.08667 0.01732
(lip jet control)

the Cn of the FNS-no limiter computation is the closest
to the experimental Cy with an error of +0.78%. The
corresponding error for the TL-no limiter computation is
+1.07% and for the TL-limiter computation is ~2.49%.
The error in the computed Cy in comparison with the
experimental value is ~1.37% for the NS-no limiter com-
putation, ~1.08% for the TL-no limiter computation and
-8.11% for the TL-limiter computation.

Figure 4 shows a comparison of the computed surface-
pressure-coefficient distribution in the chordwise direction
at different spanwise stations with the same experimental

data. The present computed results are in good agreement
with those of the experimental data with the exception of
the peak suction pressure at the wing leading edge. This
is attributed to the simple modeling of the transitional
flow at this location, wherein a simple algebraic turbulent
model is turned on. At the spanwise station of 0.9883 in
the tip region, it is noticed that the computed C, using
the TL-no limiter and FNS-no limiter computations are
in excellent agreement with the experimental data than
that of the TL-limiter computation, particulary in the
chordwise direction as of X/C=0.3.

Figure 5 shows a comparison of the spanwise varia-
tion of the total pressure-loss contours at chord-stations
range of X/C=0.9-5.0 covering the evolution of vortex
wake. The range of the total pressure-loss contours shows
that the tip vortex reaches its maximum strength very
close to the downstream side of the trailing edge. There-
after, the tip-vortex core expands due to the viscous diffu-
sion and moves inboards while growing in size. It is also
observed that the wake thickness increases and moves up-
wards. The TL-no limiter results of the vortex core and
wake shear layer show less viscous diffusion and more
inboard motion than those of the TL-limiter results. The
FNS-no limiter results show a little better resolution of
the vortex core and wake shear layer than that of the TL-
no limiter results. However, the inboard motion of the
vortex core and wake shear layer is the same as that of
the TL-no limiter results. Hence, it is concluded that the
flux limiter is responsible for the vortex-core and wake
shear-layer diffusions and their small inboard motions. In
Fig. 6, the particle traces for the wing tip flow and the
vortex wake flow are shown for the TL-limiter and FNS-
no limiter computations. Again, the TL-limiter results
show the larger diffusion of the tip vortex than that of the
FNS-no limiter results.

Active Injection Control of Tip Vortex

The hazardous effects of the tip vortex on trailing
aircraft is very significant as it has been demonstrated in
Ref. 27. Several ideas exist for passive and active control
of the tip vortex in order 10 alleviate its hazardous effects.
The challenging issuc here is to diffuse the tip vortex
without decreasing the lifting force of the leading aircraft.
Our first attempt 10 accomplish these objectives is to use
active injection from a slot along the wing tip. The slot
is located on the wing-tip surface and extends from the
chord station X/C=0.2 to the chord station X/C=0.6. The
direction of the jet blowing is downstream at 45° which
is measured from the x-axis. A constant mass-flow-rate
coefficient of 0.015 is used for the jet blowing through
the wing-tip slot. The solution of this case is obtained
by using the FNS-no limiter computation. Two types
of initial conditions have been used. In the first, the
control starts from the uniform flow conditions while in
the second, the control starts from the FNS-no limiter
solution of the preceding section. The final stcady flow



solution for both cases showed the same results. Here,
only the results of the first case are shown.

Figure 7 shows the history of the residual error and lift
coefficient for 16,000 iteration steps. The spikes shown
in the residual error graph are due to the step increases
of the mass-flow rate from 0.005 to 0.01 and finally to
0.015. The residual error drops three orders of magnitude
and the lift coefficient shows a value of 0.3680. The lift
coefficient is 4.4% higher than that of the FNS-no limiter
computation without injection. The values of Cy, Cy
and Cp are included in the table of the preceding section.
The Cp coefficient shows 1.76% increase than that of the
FNS-no limiter computation without injection. In Fig. 8,
the pressure coefficient is shown at the spanwise stations
near the wing tip for comparison with the experimental
data of the case without injection. It is observed that
only the tip-section C, near the trailing edge shows a
slight decrease from that of the experimental data.

Figure 9 shows the spanwise variation of the total
pressure-loss contours at chord stations from X/C=0.95
to X/C=5.0. A comparison of these results with those
of Fig. 5 reveals the excellent effect of the tip-injection
control in dissipating the tip vortex. This is also seen in
Fig. 10 of the particle traces in comparison with those
of Fig. 6.

Figure 11 shows a blow-up of the total pressure-
loss contours at the wing tip covering chord stations
from X/C=0.2 to X/C=0.9. It is observed that the tip
vortex existing at X/C=0.2 (at the starting location of the
slot) is quickly diffused by the blown jet. However, by
the end of the slot length at X/C=0.6, the tip vortex is
recovering but with small strength. It is concluded that
tip-injection control is effective in diffusing the tip vortex
and moreover it is very important to study the effect of the
injection-slot length in the future. Other parameters need
to be included in the future study such as the direction of
injection, the mass-flow rate and the width of injection.

CONCLUDING REMARKS

The thin-layer and full NS equtions have been used
to accurately solve for the near-vortex-wake flow around
a large-aspect-ratio rectangular wing. The flow has been
computed by using the thin-layer equations with and with-
out flux limiters and the NS equations without flux lim-
iters, all on the same grid. The results show the substan-
tial effects of the flux limiter in diffusing the tip vortex
and the trailing-edge shear layer and in their small in-
board motions. The full Navier-Stokes computation with-
out flux limiters show the best results in comparison with
the experimental data. Also, it has been demonstrated that
lip-injection control is substantially effective in diffusing
the tip vortex without reduction of the wing lift coef-
ficient. Although the drag coefficient slightly increased
the lift to drag ratio increased. Currently, work is under-
way 10 conduct an extensive parametric study on the tip-
injection control and to study its effect on a trailing wing.
Passive-control methods are also being investigated.
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Figure 1. Types of interference of Trailing Vortex Wake; (1) cross-track penetration, (2)
along-track penctration between tip vortices, and (3) along-track penetration
through tip vortex center. ’
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Figure 2. Typical computational grid for the wing
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wing and comparison with experimental data.
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ACTIVE CONTROL OF ASYMMETRIC VORTICAL FLOWS AROUND CONES USING INJECTION AND HEATING

Osama A. Kandil® and Hazem H. Sharaf”
Old Dominion University, Norfolk, VA 23529
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NASA Langley Research Center, Hampton VA 23665

ABSTRACT

The effectiveness of certain active-control methods
for asymmetric flows around circular cones is investigated
by using computational solution of the unsteady, com-
pressible full Navier-Stokes equations. Two main meth-
ods of active control which include flow injection and
surface heating are used. For the fiow-injection-control
method, flow injection is used either in the normal di-
rection to the surface or in the tangential direction to
the surface. For the surface-heating-control method, the
temperature of the cone surface is increased. The effec-
tiveness of a hybrid method of flow control which com-
bines normal injection with surface heating has also been
studied. The Navier-Stokes equations, subjected to vari-
ous surface boundary conditions, are solved by using an
implicit, upwind, flux-difference splitting, finite-volume
scheme for locally-conical flow solutions.

INTRODUCTION

The problems of prediction, analysis and control of
asymmetric vortical flows around slender pointed bodies
are of vital importance to the dynamic stability and con-
trollability of missiles and fighter aircraft. The onset of
flow asymmetry occurs when the relative incidence (ratio
of angle of attack to nose semi-apex angle) of pointed
forebodies exceeds certain critical values. At these crit-
ical values of relative incidence, flow asymmetry devel-
ops due to natural and/or forced disturbances. The origin
of natural disturbances may be a transient side slip, an
acoustic disturbance, or similar disturbance of short du-
ration. The origin of forced disturbances is geometric
perturbations due to imperfections in the nose geometric
symmetry or similar disturbances of permanent nature.
In addition to the relative incidence as onc of the influ-
ential parameters for the onset of flow asymmetry, the
freestream Mach number, Reynolds number and shape of
the body-cross sectional arca are also important param-
eters.

In several recent papers by Kandil et al'#, the un-
steady, thin-layer, compressible Navier-Stokes equations
have been used to simulate sieady and unsteady, asym-
metric vortex flows, including their passive control,
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around cones with different cross-sectional shapes. The
emphasis of these papers was extensive computational
studies of the parameters which influence the asymmet-
ric flow phenomenon and its passive control. Since the
computational cost associated with the solution of three-
dimensional-flow problems at reasonable flow resolution
is very expensive, all the computational solutions were
obtained using a locally-conical flow assumption. Such
an assumption reduces the problem solution to that on
two conical planes, which are in close proximity of each
other, and hence it reduces the computational cost by an
order of magnitude. Moreover, such solutions still pro-
vide extensive understanding of the flow physics since
one can use very fine grids for reasonable flow resolu-
tion. These studies showed that asymmetric flow solu-
tions were unique irrespective of the type of flow distur-
bancc;amndomdismrbanccinthcfonnofamchine
round-off error or a controlled disturbance in the form
of a short-duration side-slip disturbance. Unsteady asym-
metric flow solutions with perfectly periodic vortex shed-
ding were successfully simulated, and the solutions were
unique irrespective of the computational scheme used. It
hasalsobeenslnwnﬂmasﬂwMachnumbcrwasin-
creased,meﬂowasymmeu'ywasdecreased.andasthe
Reynolds number was increased the flow asymmetry was
increased. Moreover, the cross-sectional shape of the
cone has been shown to be a very influential parameter
on the flow asymmetry. Circular sections produced very
strong flow asymmetry and diamond sections produced
relatively-weaker flow asymmetry.

In a later paper, by Kandil et al®, the full Navier-
Stokes solutions were compared with the thin-layer
Navier-Stokes solutions. It was shown that the full
Navier-Stokes solutions produced thicker free-shear lay-
ers and more vortex-core resolution as compared with
those of the thin-layer Navier-Stokes equations. In Ref.
5, a few tentative three-dimensional flow solutions were
also presented.

Substantial research efforts have recently been de-
voted for eliminating or alleviating fiow asymmetry
and its corresponding side force. In the experimen-
al arca, several passive-control methods®® and active-
control methods™!? have been investigated. Computa-
tional simulations have also been used to investigate the
effectiveness of several passive-control methods'® and
active-control methods!® 1415, Various methods of pas-
sive control were demonstrated in the above references
which include the use of vertical fins along the leeward
plane of geometric symmetry, thin and thick side strakes



with different orientations, and rotatable forebody tips
which have variable cross section (from a circular
atitsbasc(oanellipﬁcslmpealitstip). It was shown by
Kandil et al.* that side-strakes control is more practical
than the vertical-fin control since the former was more ef-
fective over a wide range of angle of attack than the latter.
Moreover, side-strake control provided an additional lift-
ing force. However, the effectiveness of the side-strake
control terminates at very high angles of attack for the
considered strake geometry and flow conditions.

Various active-control methods have been used which
include forebody blowing and movable forebody strakes.
The forebody blowing methods include forward blowing,
normal blowing, aft blowing and tangential blowing. The
main concept of forebody blowing is 1o control flow
separation on the forebody and to create yawing forces
and moments which can be utilized in controlling the
body.

In the present paper, we investigate the effectiveness
of two main methods of active control which include flow
injection and surface heating. The study of flow-injection
control covers normal and tangetial injection. Moreover,
a hybrid method of flow control which combines surface
heating and normal injection methods is also investigated.
At this stage of research, the flow control is aiming at
either rendering the vortical asymmetric flow symmetric
or rendering the surface-pressure distribution symmetric.
Computational solution of the unsteady, compressible,
full Navier-Stokes equations is used for the present work
with the exception of the tangential injection. For the
tangential injection, the thin-layer NS equations are used.
The computational applications are focused on circular-
section cones, and locally-conical flow assumptions are
used to substantially reduce the computational cost.

FORMULATION AND COMPUTATIONAL SCHEME

Full Navier-Stokes Equations

The conservative form of the dimensionless, unsteady,
compressible, full Navier-Stokes equations in terms of
time-independent, body-conformed coordinates &, 6 and
& is given by

0Q 8Eﬂ a(E'). - . -— —
W+(%_‘-T&—O’ m=1-3,s=1-3 (1)
where
& = £(xy,x3,Xy) @)
A_q_1 t
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En = inviscid flux
1 Y
= 58]
1
= 3[pU.. P Un + 81€™p, pus Uy
+0267p, pusUp, + 55€™p, (pe + PUn]' @

(Ev), = viscous and heat~conduction flux in &
ldirecl;ion
= 3[0'&5'711,5&{'712,5!{"’13,
Al (e ~a)]; k=1-3,0=1-3 (5

Un = 8&™uy (6)
The three momentum elements of Eq. (5) are given by

aen =2t (aeag - taeae) 2

The last element of Eq. (5) is given by

Ay ~ @) = % [(8"6'0’51. - gapf'akf") “r%
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The reference parameters for the dimensionless form
of the equations are L, 8cc, L/ax, poc and p. for the
length, velocity, time, density and molecular viscosity,
respectively. The Reynolds number is defined as Re =
PxcVocL/pioc, Where the characteristic length, L, is the
body length. The pressure, p, is related to the total en-
CTgy per unit mass and density by the gas equation

)];p=1—3(8)

1
P=r-Dofe-j0ivuiri)] o
The viscosity is calculated from the Sutherland law

u= T‘/’G_‘:—g) ,C = 0.4317

and the Prandtl number P, = 0.72. In Egs. (1)-(10), the
indicial notation is used for convenience,

10

Boundary and Initial Conditions

to the problem under consideration.
ditions are explicitly satisfied. In general, they include
inflow-outflow conditions and solid-boundary conditions.
For problems of flow asymmetry, where the flow is solved
throughout the whole computational domain, periodic
boundary conditions are used at the plane of geometric
symmetry of the problem.

For the asymmetric fiow problems around slender
bodies and for supersonic inflow-outflow boundary, the
Riemann-invariant conditions are used. The
require that the inflow variables be at the freestream con-
ditions, and the conical shock enclosing the body be



captured as part of the solution. For supersonic out-
flow boundary, the Riemann-invariant boundary condi-
tions require that all flow variables be extrapolated from
the interior cells. On the solid boundary, without injec-
tion or heating, the no-slip and no-penetration conditions
are enforced. Moreover, the zero normal-pressure gradi-
ent and adiabatic boundary conditions are enforced. For
the present active control problems, the mass-flow rate
is specified at the body surface for the normal injection
control and the temperature distribution is specified at
the surface for the heating control. For the tangential
flow injection the mass flow rate and velocity profile are
specified at the lip exit (shown in Fig. 10 of next section).
The initial conditions correspond to the uniform flow
conditions with u; = uz = us = 0 on the solid boundary.
These conditions are used to obtain the asymmetric flow
solution. Next, the flow control conditions are enforced
and the previously obtained asymmetric solution is used
for the initial conditions of the active control problem.

Computational Scheme

The implicit, upwind, flux-difference splitting, finite-
volume scheme is used to solve the unsteady, compress-
ible, full Navier-Stokes equations. The scheme uses the
flux-difference splitting scheme of Roe which is based on
the solution of the approximate Riemann problem. In the
Roe scheme, the inviscid flux difference at the interface of
computational cells is split into two parts; left and right
flux differences. The splitting is accomplished accord-
ing to the signs of the eigenvalues of the Roe averaged-
Jacobian matrix of the inviscid fluxes at the cell interface.
The smooth flux limiter is used to eliminate oscillations at
locations of large flow gradients. The viscous-and heat-
flux terms are linearized and the cross-derivative terms
are eliminated in the implicit operator. The viscous terms
are differenced using a second-order accurate central dif-
ferencing. The resulting difference equation is approxi-
mately factored and is solved in three sweeps in the £,
€2, and &* directions. The computational scheme is coded
in the computer program “FTNS3D".

For the locally-conical flow solutions, an axial station
of x; = 1.0 is selected and the components of the flowfield
vector are forced to be equal between this axial station and
another axial station in close proximity to x; = 1.0. This
ensures that the flow variables are locally independent of
the axial direction at x; = 1.0 (Kandil et al®).

COMPUTATIONAL APPLICATIONS AND DISCUSSION

For all the computational applications shown in this
section, a 5°-semiapex angle circular cone at 1.8 Mach
number and 10° Reynolds number is considered. These
flow conditions were considered earlier (Kandil et al.* %)
for the same cone for asymmetric-flow prediction and
passive-control methods. The grid is 241x81x2 points in
the wrap around, normal directions and axial direction,
respectively. The grid is generated using a modified

Joukowski transformation with a minimum grid size of
10* in the & direction at the body surface. For the
tangential flow injection a multi-block grid has been used
and it is explained later on.

Asymmetric Flow, a = 20°

Figure 1 shows the locally-conical flow solution with-
out any control around the cone at an angle of autack
of 20°. The figure shows the total-pressure-loss (TPL)
contours and the surface-pressure (SP) coefficient. The
surface pressure is presented versus the angle 4, which
is measured in the clockwise direction from the leeward
plane of geometric symmetry. This stable asymmetric
flow solution is obtained after 6,000 iteration steps. The
source of flow disturbance at these critical flow condi-
tions is the truncation error. As it has been shown earlier
(Kandil et al.!), this solution is unique irrespective of the
type of source of the flow disturbance.

Normal Injection Control, # = - 22.5° — - 67.5°,
th = constant = 0.03, a = 20°

Next, a constant mass-flow injection of th = 0.03 is
applied normal to the cone surface. The circumferential
range of injection ports extends over § = -22.5° — ~67.5°.
The solution of the previous asymmetric flow case is
used as initial conditions along with modified surface
boundary conditions. Figure 2 shows the TPL contours
and the SP coefficient from the solution of the controlled
fiow. Although the vortical flow is still asymmetric, as
it is seen from the TPL contours, the SP curve shows
a symmetric distribution resulting in a zero side force.
The TPL contours show that a primary vortex of smaller
height (in comparison to the case of Fig. 1) is still existing
on the right side and it is connected through a free-shear
layer with the left side of the body surface. The injection
flow on the left side of the body decreases the suction
pressure on that side making its distribution equal to that
on the right side.

Normal Injection Coatrol, & = 0° — - 67.5°,
th = constant = 0.03, o = 20°

In this case, the constant mass-flow injection of rh
= 0.03 is kept fixed while the circumferential range of
injection ports is extended to cover the range of § = 0°
— —67.5°. Figure 3 shows the TPL contours and SP
coefficient of the solution of the controlled flow. The
vortical flow is still asymmetric but the SP curve shows a
symmetric distribution, which results in a zero side force.
It is also noticed that the primary voriex on the right side
moves to a larger height (in comparison with the cases of
Figs. 1 and 2) and the left-side free-shear layer also moves
to the same height level. The SP coefficient curve shows
less negative pressure coefficient on the leeward side
in comparison with the case of Fig. 2, which produces
smaller lifting force.



Normal Injection Control, § = - 67.8° — + 67.5°,
Variable Mass-Flow Rate, g, = 0.03, a = 20°

In this case, the circumferential range of injection
ports is extended to cover a symmetric range of § = —
67.5° — +67.5°. Moreover, the injected mass-flow rate
is made proportional to the difference in the surface pres-
sure between corresponding points on the right and left
side of the body (within 6 = ~ 67.5°— +67.5°). The maxi-
mum injected mass-flow rate, thy,,, which corresponds to
the maximum pressure difference is restricied to mhy,; =
0.03. Practically, this control method can be achieved by
sensing the pressure difference between the right and left
ports and using it as a feedback control in order to inject
a mass-flow rate which is proportional to that pressure
difference. Figure 4 shows the results of this controlled
flow. The history of the residual error versus the number
of iterations shows the asymmetric solution up to 6,000
iterations and the evolution of the symmetric controlled-
flow solution up to 7,200 iterations. The corresponding
curve of the history of the side force shows that the side
force becomes zero at the end of 7,200 iterations. Snap-
shots of the evolution of the symmetric controlled flow
solution, in terms of the TPL contours, are given at the
6,200; 6,400; 6,600; 6,800; 7,000 and 7,200 iteration step.
The vortical flow is rendered symmetric using the present
method and the SP coefficient curve shows a symmetric
distribution.

Surface Heating Control, § = ¢ — -180°,
Ty 27 Ty @ = 20°

For the heating control, the left surface temperature
of the cone, in the circumferential range of § = 0° —
~180°, has been changed from the adiabatic condition to
a constant temperature condition of surface temperature,
T = 7 T, where T is the freestream temperature.
Starting from the stable asymmetric flow solution at the
12,000 iteration step, the left surface temperature is raised
1o T, = 5T, and then it is raised further to T, = 7 T...
Figure 5 shows the results of this case which include
the history of the residual error and the carresponding
history of the side force along with the TPL contours
after 24,000 itcrations. The side-force curve shows that
the side force decreases as the iemperature increases until
it vanishes for T, = 7 To.. Although the side force is zero,
the vortical flow is still asymmetric. This case shows the
effect of increasing the gas viscosity with heating in order
to equalize the surface pressure distribution on the right
and left sides of the body. This is the first time, we know
of, that such an active coatrol method has been applied
to control asymmetric flows.

Injection Flow Control, Variable Mass-Flow
Rate, a = 20° - 30°

In this case, the effectiveness of the normal injection
control of the case of Fig. 4 (fhpe = 0.03, a = 20°, 8 =
- 67.5° — 67.5°) is studied for higher angles of attack.
Figure 6 shows the results of this study which includes
the history of the residual error versus the number of
iterations, the corresponding history of the side force and
the TPL contours along with the SP-coefficient curves for
a=22° 24°,26° 28° and 30°. The residual error and the
side-force curves show the responses for the following
history: First, no control is applied untl the 12,000
iteration step; second, injection is applied at a = 20°
for 2,000 iterations; third, the angle of attack is increased
2° each 500 iterations until a = 28°; fourth, at a = 30°
injection is continued for 2,000 iterations. The side-force
curve shows zero value in the angle of attack range of a =
20° - 28° (corresponding to the iterations range of 14,000
- 16,000). When the angle of attack reaches 30°, the
normal injection control becomes incapable of achieving
flow symmetry. It is interesting to study the snapshots of
the TPL contours at these angles of attack. It is noticed
that the primary vortices increase in size in the normal
direction and their inner boundaries approach each other.
At a = 28°, the inner boundaries of the primary vortices
touch each other, and thereafter at o = 30° the primary
vortices become asymmetric. The asymmetric response
of the primary vortices at a = 30° is believed to be due
t0 a strong instability arising due to the strong interaction
of the inner shear layers of the primary vortices.

At a = 30°, the injected mass-flow rate in the normal
direction to the body surface is increased to e, = 0.05,
0.06 and 0.07 in order to recover the flow asymmetry.
Figure 7 shows the results of these tests. Both the TPL
contours and the SPcoefficient curves show that the flow
is asymmetric and the side force does not vanish. It is
seen that the flow asymmetry changes from the right to the
left sides and so does the side force. Therefore, it is ap-
parent that normal-injection control loses its effectiveness
at high angles of attack for the considered conditions.

Hybrid Heating-Injectioa Control, o = 20° - 42°

In this case, the surface-heating control is followed
by normal-injection control. Figure 8 shows the results
of this study. The control process is applied as follows:
First, the whole surface is heated to T, = 5T and the
heating control started at o = 20°, where the number
of iterations is 12,000. Next, the angle of attack is
increased 4° until symmetric flow is recovered at the
18,000 iterations. The angle of attack is then increased
2° each 1000 iteration until the angle of attack reaches
38°. The flow symmetry has been continuously recovered
until the angle of attack of 36° where a slight flow
asymmetry appears in the solution. At o = 38°, the flow
asymmetry becomes stronger and the heating control loses
its effectiveness for T, = 5T .



At o = 38°, normal-injection control is applied with
Mmay = 0.05 and 6 = - 67.5° — 67.5°. The angle of
attack is then increased 2° each 3000 iterations. The
history of the residual error and the comesponding zero
side force is shown in Fig. 8. Figure 9 shows snapshots
of the TPL contours and SP-coefficient curves at o = 38°,
40° and 42°. The TPL contours show asymmetric flows
but the SP-coefficient curves show symmetry resulting
in zero side force. Thus, it is concluded that a hybrid
control of heating and normal injection is very effective
in eliminating the side force at very high angles of attack.

Tangential-Injection Control, thy,s = 0.2

In this case, the circular section of the lower portion
of the cone has a raidus larger than that of the upper
portion. The lower local radius is 1.05 that of the upper
one. Flow is injected from the lip of the lower portion in a
direction tangent to the surface of the upper portion. The
maximum mass flow rate, My,,, is 0.2 and the velocity
profile at the lip exit is a parabolic one. Figure 10 shows
the grid used for the thin-layer computations. Three
grid blocks are used for the present computation. The
first block is 121x19x2, the second is 121x63x2 and the
third is 121x63x2 all in the circumferential, normal and
axial directions, respectively. The tangential flow control
starts from the 20° angle of attack. The computations are
carried out until a symmetric flow solution is obtained.
Thereafter, the angle of attack is increased to 30° with
a step of 2°. Figure 10 also shows the total pressure-
loss contours for the controled, symmetric flow solutions
at a = 22°, 26° and 30°. It is noticed that as the
angle of attack increases the inner shear layers of the
controled symmetric primary vortices approach each other
and hence flow asymmetry might develop again.

CONCLUDING REMARKS

The computational solution of the unsteady, com-
pressible, full Navier-Stokes equations has been used to
study the effectiveness of two active control methods for
asymmetric flows around circular pointed cones. Locally-
conical flow assumptions have been used in order to re-
duce the computational cost of this study by an order of
magnitude in comparison with that of three-dimensional
flow solutions. The first active control method is applied
by injecting air normal to the body surface from ports that
are circumferentially distributed within a certain angle.
The injected mass-flow rate is either constant or variable.
The variable injected mass-flow rate is proportional to the
surface-pressure difference between corresponding points
on the right and left sides of the body surface. The results
of this part of the study show that use of normal injection
alone loses its effectiveness at very high angles of attack.
The second active control method is applied by heating
the body surface either partially or totally. The results of
this part of the study show that surface-heating control is
much more effective in comparison with normal-injection

control at very high angles of attack. Next, a hybrid con-
trol method which includes surface-heating control fol-
lowed by normal-injection control is applied. The results
of this part of the study shows the superior control ¢f-
fectiveness of the hybrid method. Active control using
tangential flow injection is very promising. Work is still
underway to exploit its effectiveness. Simultaneous ap-
plication of passive control and the present active control
methods is also investigated.

ACKNOWLEDGEMENT

For the first two authors, this research work has been
supported by the NASA Langley Research Center under
Grant No. NAG-1-994. The computational resources pro-
vided by the NASA Langley Research are appreciated.

REFERENCES

1. Kandil, O. A., Wong, T-C. and Liu, C. H., “Prediction
of Steady and Unsteady Asymmetric Vortical Flow
Around Cones,” AIAA 90-0598, 1990. Also in AIAA
Joumnal, Vol. 29, No. 12, pp. 1269-1278, 1991.

2. Kandil, O. A., Wong, T-C. and Liu, C. H,, “Asym-
metric Flow Around Cones with Noncircular Sec-
tions,” AGARD Symposium on Missile Aerodynam-
ics, AGARD CP No. 493, Friedrickshafen, Germany,
pp. 16.1-16.11, 1990.

3. Kandil, O. A., Wong, T-C. and Liu, C. H., “Numerical
Simulation of Steady and Unsteady Asymmetric Vor-
tical Flows,” ASME Symposium on Non-Steady Fluid
Dynamics, FED-Vol. 92, Toronto, Canada, pp. 99-
108, 1990. To appear in the Journal of Fluids and
Structures, 1991.

4. Kandil, O. A., Wong, T-C., Kandil, H., A. and Liu,
C. H., “Computation and Control of Asymmetric Vor-
tex Flow Around Circular Cones Using Navier-Stokes
Equations,” ICAS Paper No. 3.5.3, Vol. 2, Stock-
holm, Sweden, pp. 883893, 1990.

5. Kandil, O. A., Wong, T-C., Kandil, H. A. and Liu,
C. H., “Thin-Layer and Full Navier-Stokes, Locally-
Conical and Three-Dimensional Asymmetric Solu-
tions,” AIAA 91-0547, 1991.

6. Stahl, W., “Suppression of Asymmetry of Vortex
Flow Behind a Circular Cone at High Incidence,” Pro-
ceedings of the AIAA Atmospheric Flight Mechan-
ics Conference, Boston, MA, AIAA 39-3372-CP, pp.
231-236, 1989.

7. Ng, T. T., “On Leading Edge Vortex and Its Con-
trol,” Proceedings of the AIAA Atmospheric Flight
Mechanics Conference, Boston, MA, AIAA 89-3346-
CP, pp. 1-15, 1989.

8. Moskovitz, C., Hall, R. and DeJamette, “Experimen-
tal Investigation of a New Device to Control the
Asymmetric Flowfield on Forebodies at Large Angles
of Auntack,” AIAA 90-0069, 1990.



9.

10.

11

Skow, A. M. and Peake, D. J., “Control of the Fore-
body Vortex Orientation by Asymmetric Air Injec-
tion, (Part B) — Details of the Flow Strucwire,”
AGARD-LS-121, High Angle-of-Attack Aerodynam-
ics, pp. 10.1-10.22, 1982.

Ng. T. T., Suarez, C. J. and Malcolm, N., “Forebody
Vortex Control Using Slot Blowing,” Proceedings of
the AIAA 9th Applied Aerodynamics Conference,
Baltimore, Maryland, AIAA 91-3254-CP, pp. 412-
421, 1991.

Gitner, M. N. and Chokani, N., “An Experimental
Study of the Effects of Aft Blowing on a 3.0 Cal-
iber Tangent Ogive Body at High Angles of Attack,”
Proceedings of the AIAA 9th Applied Aerodynam-
ics Conference, Baltimore, Maryland, AIAA 91-3252-
CP, pp. 390-399, 1991,

12,

14.

15.

Font, G. L, Celik, Z. Z. and Roberts, L., “A Numer-
ical and Experimental Study of Tangential Jet Blow-
ing Applied to Bodies at High Angles of Atuack,”
Proceedings of the AIAA 9th Applied Aerodynam-
ics Conference, Baltimore, Maryland, AIAA 91-3253-
CP, pp. 400411, 1991.

. Ng. T. T., “Aerodynamic Control of NASP-Type Ve-

hicles Through Vortex Manipulation,” AIAA 90-0594,
1990.

Tavella, D. A, Schiff, L. B. and Cummings, R. M.,
“Pneumatic Vortical Flow Control at High Angles of
Attack,” AIAA 90-0098, 1990,

Gee, K., Tavella, D. and Schiff, L. S., “Comptuta-
tional Optimization of a Pneumatic Forebody Flow
Control Concept,” Proceedings of the AIAA 9th Ap-
plied Aerodynamics Conference, Baltimore, Mary-
land, AIAA 91-3249-CP, pp. 370-380, 1991.



-al L | 1 fl ! L )
[} 80 120 180 240 300 &G
o]

Figure 1. Asymmetric flow solution, TPL contours and SP
coefficient; o = 20°, My, = 1.8, R=10°,

-4l L 1 1 1 1 { |
120 180 240 300 360
¢]

Figure 2. Normal-injection control, TPL contours and SP
coefficient; a = 20°, My, = 1.8, R, = 10°, constant

m =003, 6§ = - 22.5° — - 67.5°.

| L Il | J
120 180 240 300 360
c]

Normal-injection control, TPL contours and SP
coefficient; a = 20°, Mo, = 1.8, Re = 10%, const th
=003, 6 =0° — - 67.5°

Figure 3.

Log(Residuat)
%
T

(]
3

|
~
o

B

(¥}

(=]

Cy
o \
Oy 1T Ajggglw‘—r N
B 4

™
7
.

-4 = -3 : :
V\A.-—.
-16 | i -8 ' .
0 2 4 ] ) 10 2 4 6 8 ©g x 123
Iterauons terctions

-2+

el L i ) I ! l 1
0 60 120 180 240 300 360
[]

Figure 4. Normal-injection control; history of residual error
and side force, TPL contours and SP coefficient;
a =20°, My, = 1.8, Re = 10°, variable m, iy, =
0.03, 8 = - 67.5° — +67.5°.



Lag Mesiduet

 PUND EAD DU VUV IO V0 G G VY ST Sy S Sy Tt Beby o e
7008 <a0h 2000 0000 13006 12000 (4500 16160 10000 20000 12008 14008

Mo et liaratiens
" T T T M ' u T T

:.L.\ |

T000 000 V000 GOUU \G00T 12000 14000 10001 \GNIG JOUES 72068 Jeeae
We. nf fterettens

Figure 5. Surface-ﬁeating control, history of residual error

Log(Residual)

-18 1 1 1 I

and side force and TPL contours; a = 20°, Mo
=18, R =10 T, = 5T — T, § =0 — -
180°. 8 x 10

~ ]

2+

(2]
1

b
S0
-2

d

-8

J -8 ! L 11 )
0 5 10 15 20 25x10° g s 10 15 20 25 x 10

Iter gtions iteratione

5-—
K3 ad
[
* a2k .
T \\/\/
2k
~al 1 ! L ! PR
[} 60 120 180 240 300 360
)
-
-yl
-
C
’-2’_
oL
-2b
-4 1 1 1 L 1 1 J
] 80 120 1BO 240 300 160
8
s—

L 1 i i 1 | I}
0 60 120 180 240 300 360

L ! 1 . L 1 J
o} 60 120 B0 240 300 360

6
R
= Sb
ol
-2
- | 1 { i 1 J

O 6 120 180 240 300 360
]

Figure 6. Normal-injection control; history of residual error
and side force, TPL contours and SP coefficient;
a =22° - 30°, M, = 1.8, R, = 105, variable m,
Mmax = 0.03, 8 =~ 67.5° - +67.5°.



I\

I
0 60 120 18O 240 300 360
0

A
J

L L i
a 60 120

[ 1 il i H ! J
0 60 120 180 240 300 360
€]

180 240 300 38C
c]

ar
R
[
<, :
2
o~ .
-2
-4l i i . 1 1 J
O 60 120 180 240 300 360
]
i

Figure 7. Normal-injection control; TPL contours and SP
coefficient, o = 30°, M, = 1.8, Re = 10, variable
th, My, = 0.05, 0.06, 0.07, 8 = - 67.5° - +67.5°.

2300 0000 x 10

Log(Residual)
o

]
-2 2000 0000 I~
-4 1300 0000
-8 Lo 100000001
5000000 [~
S
. _ A L 1 H J
10 0001 120 180 240 300 360
€]
12 500.0001
-14 1000.0001 |-
" Ly 50,0001 G Figure 8. Hybrid heating-injection control (heating part);
2 3 4 sxw" g 1 2 3 & sxiof residual error and side force and TPL contours and
iterations (ter ations

SP coefficient; a = 20° — 38°, M, = 1.8, R, = 10°,

T, =5 T, on whole surface.



B o ar
- 6 s
- R o
c C,
- 4 - 2k
I~ o or
~ -2 -2
Ll 1 1 ! ! i J el L1 1} | | ' , -al 1 4 | ! 1 ! )
O &0 120 180 240 300 360 0 & 120 180 240 300 380 0 e 120 160 240 300 360
] 0

Figure 9. Hybrid heating-injection control (injection part);
TPL contours and SP coefficient; o = 38° — 42°,
Ma = 1.8, R, = 10°, variable th, iy, =0.05, 6 =
- 67.5° - +67.5°.

20,701,700, %9,
000,000,000 00 0,
et 0y e

",

ARORRRS
RN
R 5
IR
WM
R

et

K
CACA
o
5%
)
CACA
%
2%
=2
i
=5
I
-
=

" i
-6.200 .18 ©.100 -0.080 0.000 0.080 0.100 (AL

0.080 f=

~-NwsvavmerEOOmn

-0.100 i I\ -0.100 A 4
-0.20 -0.10 0.00 0.10 020 -0.10 0.00 0.10

Figure 10. Typical multi-block grid and total pressure-loss contours for the
tangential-flow injection control; a = 22°, 26°, 30° M = 1.8, Re
= 10%, parabolic velocity profile at lip exit, nax = 0.2




C /‘U//(/?

- AIAA-92-2601-CP

- CRITICAL EFFECTS OF DOWNSTREAM
BOUNDARY CONDITIONS ON
VORTEX BREAKDOWN

Osama A. Kandil and Hamdy A. Kandil
- Old Dominion University, Norfolk, VA 23529

- C. H. Liu
NASA Langley Research Center, Hampton, VA 23665

- AIAA 10th Applied
Aerodynamics Conference
Palo Alto, CA, June 22-25, 1992

~ For permission 1o copy or repubiish, contact the American Instihute of Aeronautics and Astronautics
370 L'Enfant Promenade, S.W., Washington, D.C. 20024






CRITICAL EFFECTS OF DOWNSTREAM BOUNDARY CONDITIONS ON YORTEX BREAKDOWN

Osama A. Kandil* and Hamdy A. Kandil**
Old Dominion University, Norfolk, VA 23529

and

C. H. Liu***
NASA Langley Research Center, Hampton, VA 23665

ABSTRACT

The unsteady, compressible, full Navier-Stokes (NS)
cquations are used to study the critical effects of the
downstream boundary conditions on the supersonic vortex
breakdown. The present study is applied to two super-
sonic vortex breakdown cases. In the first case, quasi-
axisymmetric supersonic swirling flow is considered in a
configured circular duct, and in the second case, quasi-
axisymmetric supersonic swirling jet, that is issued from
a nozzle into a supersonic jet of lower Mach number, is
considered. For the configured duct flow, four different
types of downstream boundary conditions are used, and
for the swirling jet flow from the nozzle, two types of
downstream boundary conditions are used. The solutions
are time accurate which are obtained using an implicit,
upwind, flux-difference splitting, finite-volume scheme,

INTRODUCTION

Numerical simulation of vortex breakdown has been
focused in most of the existing literature on incompress-
iblc flows. Quasi-axisymmetric, vortex-breakdown sim-
ulations of incompressible swirling flows have been pre-
scnicd by Grabowski and Berger', Hafez, et al.2, Salas
and Kuruvilla?, Menne*, Wu and Hwang® and Menne and
Liu®. Three-dimensional, vortex-breakdown simulations
of incompressible swirling flows have been presented by
Spall, etal.”, Hanel®, and Krause®!°. Discussion of the ef-
fects of side boundary conditions and downstream bound-
ary conditions on vortex breakdown was presented by
Krause in Ref. 10,

Longitudinal vortex/transverse shock-wave interac-
lions are typical applications which appear in transonic
and supersonic flows over a strake-wing configuration
at modcrate-high angles of attack, at a supersonic in-
lct injesting a vortex and inside a supersonic combustor
where fuel is injected in a swirling jet to enhance fuel-
air mixing'!"13. For the strake-wing configuration, vortex
brcakdown is undesirable since it results in the stall phe-
nomenon, and hence its occurrence need to be delayed.
On the other hand, vortex breakdown for the other two
applications is desirable since it enhances mixing and sta-
bility of the flame!4!%, and hence its occurrence need to be
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controlled for the optimurn performance. Unfortunately,
the literature lacks this type of analysis with the excep-
tion of the preliminary work of Liu, Krause and Menne!¢,
Copening and Anderson'?, Delery, et al,'' Kandil and
Kandil'* and Meadows, Kumer and Hussaini'®.

The first time-accurate NS solution for a supersonic
vortex breakdown was developed by the present au-
thors in Ref. 20. We considered a supersonic quasi-
axisymmetric vortex flow in a configured circular duct.
The time-accurate solution of the unsteady, compress-
ible NS cquations was obtained using an implicit, up-
wind, flux-difference splitting finite-volume scheme. A
shock wave has been generated near the duct inlet and
unsteady vortex breakdown has been predicted behind
the shock. The predicted flow was characterized by the
evolution, convection and shedding of vortex breakdown
bubbles. The Euler equations were also used to solve the
same problem. The Euler solution showed larger size and
number of vortex-breakdown bubbles in comparison with
those of the NS solutions. The time-accurate solution was
carricd out for 3,200 times steps which are equivalent to
a dimensionless time of 16. Only one value of Reynolds
number of 10,000 was considered in Ref. 20.

In a later paper®!, we expanded our study of this flow
using time-accurate computations of the NS equations
with a fine grid in the shock-vortex interaction region
and for long computational times. Several issues were
addressed in that study. First, we showed the effect of
Reynolds number on the temporal evolution and persis-
tence of vortex-breakdown bubbles behind the shock. In
that stage of computations, the conditions at the down-
stream exit were obtained by extrapolating the compo-
nents of the flowfield vector from the interior cell centers.
Although the flow was supersonic over a large portion of
the duct exit, subsonic flow existed over a small portion
of the exit around the dict centerline. Therefore, selected
flow cases were computed using a Riemann-invariant-
type boundary conditions at subsonic points of the duct
exit. Finally, the effect of swirl ratio at the duct inlet
was investigated.

In the present paper, we address the problem of spec-
ifying the downstream boundary conditions and their crit-
ical effects on the supersonic vortex breakdown problem
for internal and external flows. For this purpose, the un-
stcady, compressible, full NS equations are used along
with an implicit, upwind, flux-difference splitting, finite-
volume scheme for the time-accurate solutions. For the



intcmal flow case, supersonic swirling flow in a config-
ured duct is considered along with four types of down-
strcam boundary conditions. Keeping the duct geometry
and the upstream flow conditions fixed, the exit boundary
conditions are varied. The four exit boundary conditions
include extrapolation of all the five variables from the
inicrior cell centers, specifying the downstream pressure
and cxtrapolating the other flow conditions from the in-
lerior cell centers, specifying the downstream pressure
gradicnt and extrapolating the other four conditions from
the interior cell centers, and using a disk of specified
radius at the exit section. For the external flow case,
supcrsonic swirling jet is issued from a nozzle into a su-
personic non-swirling jet of Mach number lower than that
of the swirling jet. Two types of downstream boundary
conditions are considered. In the first type, extrapolation
of all the five variables from the interior cell centers is
usced, while in the second type, the standard Riemann-
invariant type boundary condition is used. All the results
presented in this paper have been produced using our full
NS solver which is known as the “FTNS3D” code. The
CRAY-YMP computer of NASA Langley Research Cen-
ter is uscd for the computations.,

HIGHLIGHTS OF THE FORMULATION
AND COMPUTATIONAL SCHEME

The conservative, unsteady, compressible, full Navier-
Stokes equations in terms of time-independent, body-
conformed coordinates £!, £2 and ¢? are used to solve the
problem. The equations are given in Ref. 21 and hence
they are not shown here. Along with these equations,
boundary conditions are specified at the computational-
domain inlet, side wall and downstream exit. The down-
strecam cxit boundary conditions will be presented in the
ncxt scction of the computational results. The initial con-
ditions will also be presented in the next section.

The computational scheme used to solve the unsteady,
compressible full NS equations is an implicit, upwind,
flux-difference splitting, finite-volume scheme. It em-
ploys the flux-difference splitting scheme of Roe which is
bascd on the solution of the approximate one-dimensional
Riemann problem in each of the three directions. In the
Roe scheme, the inviscid flux difference at the interface
of a computational cell is split into left and right flux dif-
fcrences. The splitting is accomplished according 1o the
signs of the eigenvalues of the Roe averaged-Jacobian
matrix of the inviscid flux at the cell interface. The
smooth limiter is used (o eliminate oscillations in the
shock region. The viscous and heat-flux terms are lin-
carized and the cross-derivative terms of the viscous Ja-
cobians are dropped in the implicit operator. These terms
arc differenced using second-order spatially accurate cen-
tral diffcrencing. The resulting difference equation is ap-
proximately factored and is solved in three sweeps in the
€', €% and € directions. The scheme is used for third-
order spatial accuracy and first-order temporal accuracy.

The scheme is coded in the computer program which is
called “FTNS3D".

The quasi-axisymmetric solutions are obtained using
the three-dimensional code by forcing the flowfield vector
lo be equal on two axial planes, which are in close
proximity of each other.

COMPUTATIONAL RESULTS AND DISCUSSION

I. Vortex Breakdown in Configured Circular Duct

Figure 1 shows a configured circular duct which con-
sists of a short, straight cylindrical part at the inlet which
is followed by a short divergent cylindrical part until the
axial length of 0.74. The divergence angle is 6°. The duct
radius is then kept constant and a convergent-divergent
nozzle with a throat radius of 0.95 is attached. The duct
exit radius is 0.98 and its total length is 2.9. The diver-
gent part of the duct ensures the stability of the formed
shock in the inlet region. The configuration of the duct is
intended to ensure that the supersonic inflow will become
supersonic at the exit. As the computations will show, a
small portion of the duct exit near its centerline becomes
subsonic at certain times for the specified inflow condi-
tions. This configured duct has also been used by Delery,
ct al. ! for their Euler equations computatiorts of super-
sonic vortex breakdown in an attempt to computationally
model an experimental set up. '

The NS solver is used to compute all the following
flow cases by using a grid of 221 x51 on two axial planes,
where 221 points are in the axial direction and 51 points
are in the radial direction. In the inlet region up to
the 0.74 axial station, 100 grid points are used and the
remaining 121 points are used in the remaining part of the
duct. The grid is also clustered at the centerline (CL) and
the wall. The minimum radial grid size at the CL is 0.002.
The two axial planes are spaced circumferentially at a
certain angle so that the aspect ratio of the minimum grid
size will be less than 2. The upstream Mach number is
kept at 1.75 and the Reynolds number is kept at 100,000.
The initial profile for the tangential velocity is given by

w k. r
U ?[“”‘" (‘E)] W

where Uy = 1.74, r, = 0.2 and k, = 0.1. The max-
imum g, swirl ratio f, is at r = 0.224 and its value is
kept at 0.32. The radial velocity, v, at the initial station
is set equal to zero and the radial momentum equation is
integrated to obtain the initial pressure profile. Finally,
the density p is obtained from the definition of the speed
of sound for the inlet flow. With these compatible set
of profiles, the computations are carried out accurately in
time with At =0.0025. The wall boundary conditions fol-
low the typical Navier-Stokes solid-boundary conditions.
These computations have been carried out on the CRAY
YMP of the NASA Langley Research Center. The CPU
time is 40 us/grid point/iteration for the NS calculation.



Next, we present the results of the computational
study of this case which covers four types of exit bound-
ary condiuons. '

L.1. Extrapolation from Interior Cell Centers

Figure 2 shows snapshots of the streamlines and Mach
contours for this case. The downstream boundary condi-
tions are obtained by extrapolating all the flow variables
from the cell centers at the exit. The streamlines snap-
shots show multi-bubble vortex breakdown evolution,
convection, merging and shedding. The time-accurate
integration was carried out up to t = 200 and the so-
lution showed periodic multi-frequency cycles of vortex-
breakdown bubbles?'. An example of the merging of
voriex breakdown bubbles of same sign of vorticity is
shown at t = 17. An example of convection and shed-
ding of vortex breakdown bubbles is shown at t = 25.
Comparing the streamlines solutions at t = 25 and t =
89, it is scen that the solutions are almost the same which
conclusively show that the breakdown process is periodic.
The Mach-contours show the dynamics of inlet shock mo-
tion. In the time range of t = 3-8, the inlet shock moves
upstrcam toward the inlet and its central portion exists
outside the inlet section at t = 8. In the time range of
t = 8-25, the inlet shock moves downstream with corre-
sponding evolution, convection, merging and shedding of
brcakdown bubbles. In the time range of t = 2545, the
inlet shock maintains its motion in the downstream di-
rection at a slower rate than before, while another shock,
which is downstream of the inlet shock, appears and also
moves in the downstream direction. The evolution, con-
vection and shedding slowly continues until t = 66. In
the time range of t = 66-78, the downstream shock disap-
pears and a large vortex-breakdown bubble appears and
moves upstrcam. This motion of the bubble is accom-
panicd by upstream motion of the inlet shock (t = 78).
Later the inlet shock again moves in the downstream di-
rection and the process is repeated. An animation movie
has bcen produced for the lotal dimensionless time of t
= 200. Figure 3 shows a blow-up of two snapshots of
the strcamlines solutions att = 84 and t = 87. At t = 84,
we recognize five vortex breakdown bubbles which spa-
tially alternate in their sign of vortex strength. It is also
noticed that six stagnation points exist at the axis. At t
= 87, we rccognize seven vortex breakdown bubbles and
scven stagnation points. The figure shows the merging of
two bubbles of same vorticity sign.

L.2. Riemann Invariant Boundary Conditions
with p, = po

In this case, the back pressure at the subsonic points
of the duct exist, p,, is specified to be equal t0 p.. and
the other four variables are extrapolated form the inte-
rior cell centers. The computations have repeated on the
same grid and for the same flow conditions as that of the
previous case. Figure 4 shows snapshots of the stream-
lines and Mach contours of the solution. Comparing the

present solution with the previous case (Fig. 2), it is seen
that the two solutions are the same until t = 35. There-
after, for t > 35, the inlet shock continuously moves in the
downstream direction with the vortex-breakdown bubbles
moving ahead of the shock. The shock and vortex bubbles
are shed and disappears from the duct at advanced levels
of time. The breakdown mode is termed as “a transient
multi-bubble vortex breakdown.” The reason behind dis-
appearance of the shock-vortex-breakdown-bubble sys-
tem is that the back pressure is so low that it cannot sup-
port the inlet shock keeping it in the inlet region. More-
over, the Riemann-invariant type conditions at subsonic
points let the downstream effects propagate upstream as
time increases.

1.3. Riemann Invariant Boundary Conditions
with p = 2p.

In this case, the back pressure at the subsonic points
of the duct exit is specified to be py = 2p. and the
other four variables are extrapolated from the interior cell
centers. Figure 5 shows snapshots of the streamlines and
Mach contours of the solution. Comparing the present
solution with the solution of the first case (Fig. 2), it is
seen that the two solutions are similar with the exception
that the present solution lags that of the first case in
time. The reason behind this behavior is that the back
pressure p, is larger than that of the first case. Moreover,
the Riemann invariant type conditions at subsonic points
let the downstream effects propagate upstream as time
increases. The existence of the large back pressure which
is felt upstream supports the inlet shock and keeps it in
the inlet region.

L.4. Riemann Invariant Boundary Conditions
with g{ = constant

In this case, the back pressure is obtained from the
condition gf = constant at the subsonic points of the duct
exit. The other flow variables are extrapolated from the
interior cell centers. Figure 6 shows snapshots of the
streamlines and Mach contours of the solution. Compar-
ing the present solution with the solution of the first case
(Fig. 2), it is seen that the two solutions are similar until
t = 22. Thereafter, for t > 22, the inlet shock continu-
ously moves in the downstream direction with the vortex-
breakdown bubbles moving ahead of the shock. Again,
as in the case of Fig. 4, the shock and vortex bubbles
are shed and disappear from the duct at advanced levels
of time. The breakdown is termed as “a transient multi-
bubble vortex breakdown.” The reason behind disappear-
ance of the shock-vortex-breakdown-bubble system is that
the back pressure obtained from gf = constant condition
is so low that it cannot support the inlet shock keeping it
in the inlet region. Moreover, the Riemann-invariant type
conditions at subsonic points let the downstream effects
propagate upstream as time increases.



I.5. Placing a Disk at the Exit with r = 0.333

In this case, a circular solid disk of radius r = 0.333 is
placed at the duct exit and solid-boundary conditions are
applied on the disk surface. For the remaining portion
of the exit, the boundary conditions are obtained by
cxtrapolation from the interior cell centers. Figure 7
shows snapshots of the streamlines and Mach contours
of the solution. It is noticed from the Mach contours
that most of the exit points are subsonic. The streamlines
show that the shock-vortex-breakown-bubble system first
appears behind the duct exit. Thereafter, they move
upstreams until the inlet shock moves outside of the inlet.
The vortex-breakdown bubbles are then locked between
the shock outside of the inlet and the circular disk at the
exit.

I1. Supersonic Swirling Jet from a Nozzle

Figure 8 shows the computational domain and a typ-
ical grid for this external flow case. The dimensions of
the computational domain is 7x3.5 in the axial and radial
directions, respectively. The grid is 221x51x2 points in
the axial, radial and tangential directions, respectively.
The grid is clustered at the nozzle exit (x = 0.0) and at
the domain centerline. The dimensionless nozzle radius
is unity, where a supersonic jet of M, = 3.0 is issued,
and outside the nozzle another jet is issued at M, = 2.0.
The freestream Reynolds number is 296,000.

Figure 9 shows the inlet flow profiles of the ax-
ial velocity, swirl velocity, radial velocity, pressure and
density, which are taken from the experimental data
of Ref. 12. The initial profiles are used as quasiaxi-
symmetric profiles for the present computations. On the
cylindrical boundary (side wall) of the flow at r = 3.5,
{reestream conditions are imposed corresponding to M.
= 2.0. The initial conditions in the computational domain
are also taken as those corresponding to the freestream
conditions at M, = 2.0. The problem is solved using
two types of exit boundary conditions at x = 7.0; first ex-
trapolation of all five variables from the interior cell cen-
ter and second using the Riemnn-invariant-type boundary
conditions.

IL.1. Extrapolation from Interior Cell Centers

Figure 10 shows snapshots of streamlines and Mach
contours of the solution. The streamlines show multi-
bubble breakdown at the early levels of time. These bub-
bles develop due to the shock system formed at the nozzle
cxit in the vicinity of the centerline. It is noticed that a
strong portion of the shock exists at the centerline which
splits into two oblique shocks, one is a weak shock and
the other is a strong shock. Behind the strong shock, the
voriex breakdown bubbles exist. Thereafter, for t > 5, the
oblique shocks move slowly in the downstream direction
and brecakdown the vortex bubble stays in its place. At t
> 55, the shock system moves upstream and so does the
vortex breakdown bubble. The slow motion of the shock

system and the vortex breakdown bubble continues back
and forth between these two locations. No vortex shed-
ding has been captured during the computations of this
case. It is also noticed that most of the exit points are
continuously supersonic and hence no downstream effects
exist with the exception of a very thin-layer around the
centerline.

II.2. Riemann Invariant Boundary Conditions

Next, the boundary conditions at the exit are replaced
by using the Riemann-invariant-type boundary conditions
with p, = pe at the subsonic points. Figure 11 shows
snapshots of the streamlines and Mach contours of the
solution. By comparing the present solution with the
previous case of Fig. 10, we see that there is very slight
effect of the present boundary condition on the solution.
This is understood since the subsonic region at the exit is
very small and moreover, the exit boundary is far from
the nozzle exit.

Figure 12 shows a blow-up of the Mach contours at t
=55 for the flow case of Fig. 10. The shock system near
the nozzle exit is clearly seen.

Concluding Remarks

The unsteady, compressible full Navier-Stokes equa-
tions are used to study the critical effects of the down-
stream boundary conditions on the supersonic vortex
breakdown. In the present study, two supersonic swirling
flow cases are considered. - The first one is for a super-
sonic swirling flow in a configured circular duct, where
four types of exit boundary conditions are used. The sec-
ond one is for a supersonic swirling jet issued from a
nozzle into another supersonic jet of lower Mach num-
ber. This flow case is a computational simulation to the
experimental case of Ref. 12.

In the first flow case, we have shown that the
downstream exit boundary conditions produce substantial
changes in the vortex breakdown modes, particularly at
advanced time levels. This is due to the effect of the sub-
sonic downstream points on the flow upstream. In the sec-
ond flow case, we have shown that the downstream exit
boundary conditions do not produce substantial changes
in the vortex breakdown modes. This is due to the very
thin subsonic region at the exit and the large distance of
the downstream exit from the nozzle exit.
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Figure 2. Streamlines and Mach contours for a swirling
flow with periodic multibubble, multifre-
quency vortex breakdown, extrapolation from
interior.




Figure 3. Blow-up of streamlines of periodic multibubble, multi-
frequency vortex breakdown, extrapolation from interior
B.C.



Figure 4. Streamlines and Mach contours for a swirling
flow with transient multibubble vortex break-
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Figure 5. Streamlines and Mach contours for a swirling
flow with periodic multibubble, multifre-
quency vortex breakdown, P, = 2P, Rie-
mann invariant B.C.
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Figure 6. Streamlines and Mach contours for a swirling
flow with transient multibubble vortex break-
down, & = ¢, Riemann invariant B.C.




— sy BN N

Figure 7. Streamlines and Mach contours for a swirling flow
with quasi-steady multibubble vortex breakdown, down-
stream disk of r = 0.333.
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Figure 9. Quasi-axisymmetric flow profiles at x = 0.0 for super-
sonic swirling jet from a nozzle.



Figure 10. Streamlines and Mach contours for super-
sonic swirling jet from a nozzle with low-
frequency almost single bubble vortex break-
down, extrapolation from interior B.C.
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Figure 11. Streamlines and Mach contours for super-
sonic swirling jet from a nozzle with low
frequency almost single bubble vortex break-
down, Riemann invariant B.C.
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Figure 12. Blow-up of Mach contours at t = 55 for supersonic
swirling jet from a nozzle with low frequency almost
single bubble vortex breakdown, Riemann invariant
B.C.
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Three-dimensional computational study of asymmetric flows using
Navier-Stokes equations

T-C.Wong & O.A. Kandil
Department of Mechanical Engineering and Mechanics, 0ld Dominion University, Norfolk, Va., USA

C.H.Ln
Theoretical Flow Physics Branch, NASA Langley Research Center, Hampton, Va., USA

ABSTRACT: The unsteady, compressible, thin-layer Navier-Stokes equations ar¢ used to obtain
three-dimensional, asymmuetric, vortex-flow solutions around cones and cone-cylinder configura-
tions. The equations are solved using an implicit, upwind, flux-difference splitting, finite-volume
scheme. The computational applications cover asymmetric flows around a 5°semi-apex angle cone
of unit length at various Reynolds number. Next, a cylindrical afterbody of various length is added
10 the conical forebody t0 study the effect of the length of cylindrical afterbody on the flow asymme-
uy. All the asymmerric flow solutions are obtained by using a short-duration side-slip disturbance.

1. INTRODUCTION

The problem of asymmetric vortex-flow around slender bodies has received considerable
attention by researchers in the computational fluid dynamics area [1-3] and by researchers in the
experimental fluid dynamics area [4-6]. The problem is of vital importance to the dynamic stability
and controllability of missiles and fighter aircraft. When flow asymmetry develops, it produces
side forces, asymmetric lifung forces and corresponding yawing, rolling and pitching moments that
might be larger than those available by the control system of the vehicle.

In several recent papers by the present authors [1, 2], the unsteady, thin-layer, compressible
Navier-Stokes equations have been used to simulate steady and unsteady, asymmetric vorex flows,
including their passive control, around cones with different cross-sectional shapes. The emphasis of
these papers was extensive computational studies of the parameters which influence the asymmetric
flow phenomenon and its passive control. Since the computational cost associated with the solution
of threc-dimcnsional-ﬁow problems with reasonable flow resolution is very expensive, all the
computational solutions were obtained using 2 locally-conical flow assumption. Such an assumption
reduces the problem solution to that on two conical planes, which are in close proximity of each
other, and hence it reduces the computational cost by an order of magnitude. Moreover, such
solutions still provide extensive understanding of the flow physics since one can use very fine grids
for reasonable flow resolution. In the present paper, we focus on the three-dimensional asymmetric

flow problem using a very fine grid with high resolution near the solid boundary.

3. FORMULATION AND COMPUTATIONAL SCHEME HIGHLIGHTS

The conservative form of the dimensionless, unsteady, compressible, thin-layer Navier-Stokes
equations in terms of time-independent, body-conformed coordinates are used. The implicit, upwind,
flux-difference splitting finite-volume scheme is used to solve the unsteady, compressible, thin-layer
Navier-Stokes equatons. The scheme uses the flux-difference splitting scheme of Roe which is
based on the solution of the approximate Riemann problem. Boundary conditions arc explicitly
implemented. At the plane of geometric symmetry, periodic conditions are used. Freestream
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Figure 1. Asymmetric flow solution around a cone of unit length, short-duration side slip.

Figure

2. Asymmetric flow solution around a cone of unit length, short-duration side slip.
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Figure 3. Unsteady asymmetric locally-conical flow solution at different time steps within one
cycle (cylinder axis is a time axis), At = 107,

conditions are specified at the inflow boundaries and first-order extrapolation of the flow variables
is used at the outflow boundaries. The conical shock enclosing the body is captured as part of the
solution. On the solid boundary, the no-slip and no-penetration conditions are enforced and the
normal pressure gradient is set equal to zero. For the temperature, the adiabatic boundary condition
is enforced at the solid boundary. The initial conditions correspond to the freestream conditions
with the no-slip and no-penetration conditions on the solid boundary.

3. COMPUTATIONAL APPLICATIONS AND DISCUSSIONS

Circular Cone

A 5°-semi-apex angle circular cone of unit length (cone length is the characteristic length)
is considered. This is the same circular cone which was considered by the authors in Ref. 1 for
the locally-conical flow solutions. A three-dimensional grid of 161 «81x65 in the wrap around,
normal and axial directions, respectively, is generated by using a modified Joukowski transformation
at axial stations. The grid is clustered algebraically in the normal direction of the body using a
geometric series with minimum grid spacing of 106 at the cone vertex and 10-5 at the axial station
of unit length. The cross-flow grid size of 161x81 is the same grid size which was used for the
locally-conical flow solutions of Ref. 1.

With the flow conditions set at a = 20°, Moo = 1.8 andRe = 10°, which are the same conditions
as those of the locally-conical flow of Ref. 1, the three-dimensional solution produces a symmetric
steady flow, unlike the locally-conical solution which produces asymmetric steady flow. Next, the
search is directed at obtaining asymmetric flow solutions for the three-dimensional cone fiow. In
Fig. 1, we show the solution in the form of total-pressure loss for the same cone at o = 40°, M
= 1.4 and R, = 4X 105. It is seen that the solution is asymmetric and is nearly self-similar over
a long axial distance of the cone length. This solution is obtained using a short-duration side-slip
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Figure 4. Total-pressure-loss contours and surface-pressure coefficient at different axial stations,
a cone of unit length, o = 40°, Mo = 1.4, Re = 8x10°.

Figure 5. Asymmetric flow solution around a cone-cylinder configuration 1:1.
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Figure 6. Surface pressure, total-pressure-10ss and Mach contours at different axial stations,
cone-cylinder configuration 0.5:0.5, o = 46.1°, Mo =1.6,Re = 6.6 x 108, comparison
with experimental data (Ref. 5).

disturbance. When the residual error drops four orders of magnitude, a 20_side-slip disturbance is

applied for 100 iteration steps, then it is removed. Thereafter, the pseudo time steppingis continued

until the residual error drops again fcur 10 five orders of magnitude and a stable asymmetric solution

is obtained.

Figure 2 shows the total-pressure-loss solution for the same cone for a higher Reynolds numbef,

Re = gx10°. The asymmetry of the vortex flow becomes much stronger as compared with the

previous case. The flow asymmeuy of this case changes sides along the axial distance and 2

complete wave length of flow asymmetry 1S formed between the third and ninth cross-flow planes.

Strong spatially shed vortices exist in the flowfield. This solution 1is qualitatively similar to the
unsteady asymmetric jocally-conical flow solution at different time St€PS (1] which is depicted in
Fig. 3ona cylinder with the axis of the cylinder representing time. The behavior of the flow
asymmetry over on¢ period in Fig. 3 is qualitatively similar to the behavior of the flow asymmetry
over one wave length in Fig. 2. Figure 4 shows the total-pressure-loss contours and surface-pressure
coefficient at different axial stations for the case of Fig. 2. The solutions at axial stations of X/L =
0.2 and 0.9 are almost the same (the total pressure losses are drawn to scale given by the ratio of
the circular diameters at X/L = 1 staton and the local axial station). The flow asymmetry between

these two stations represents a full wave length.
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Circular Cone-Cylinder Configurations

To address the issue of the effect of cylindrical afterbody length on the flow asymmetry a
cylindrical afterbody of different lengths is added t0 the unit-length conical forebody. The flow
around the resulting cone-cylinder configurations is solved with the flow conditions of a = 40°, M
= 1.4 and Re = 4% 108, which are the same fiow conditions of the isolated unit-length cone of Fig. 1.
The lengths of the cylindrical afterbody are chosen as 1, 1.5 and 2. The source of flow disturbance
is the same short-duration 2°_side-slip disturbance. For the cone-cylinder configuration of 1:1 (cone
length: cylinder length), Fig. 5 shows a very strong asymmetric flow on the cone, in comparison
with the flow asymmeuy of the isolated cone of Fig. 1, and on the cylindrical afterbody as well. It
should be noted that inside the conical shock surrounding the cone-cylinder configuration, subsonic
flow regions exist and hence the downstream cylindrical-afterbody boundary has an upstream effect.
The cylindrical afterbody has dual effects which increascs the flow asymmetry; the first is due to
the cone-cylinder juncture and the second is due to the increase of the local angle of attack of
the leeward side of the cylinder. Both of these cffects increase the spatial growth of the flow
asymmetry. For the cone-cylinder configurations of 1:1.5 and 1:2, the asymmetry is soong and
the flow becomes unsteady [Ref. 3.

Next, we show a comparison of the computed results with available experimental data. For this
purpose, we consider the cone-cylinder configuration of 0.5:0.5 which was experimentally tested by
Landrum®. The configuration angle of attack is 46.1°, the Mach number is 1.6 and the Reynolds
number based on the total configuration length (cone + cylinder) is 6.6x10%. The conc semi-
apex angle is 9.5°. The problem is solved using a grid size of 161x81x65. Figure 6 shows the
surface-pressure coefficient along with the experimental data, the total-pressure-loss contours and the
total Mach-number contours at the axial stations of 0.475 and 0.775. The computed and measured
surface-pressure coefficient are in good agreement On all the axial stations. The asymmetry changes
sides in the downstream direction as it is shown by the results of axial stations at 0.475 and 0.775.
This comparison conclusively validates our computed results and the grid size.

4. CONCLUDING REMARKS

Several important issues are addressed in the present study. By increasing the flow Reynolds
number for flows around a cone, we have shown that the flow asymmetry becomes strong and
changes sides in the downstream direction. For the high-Reynolds flows, the spatial asymmetric
flow develops in a wavy manner, which is qualitatively similar to the temporal asymmetric flow
development of the locally-conical solutions, where the flow asymmetry develops in 2 periodic
manner. By adding 2 cylindrical afterbody to the conical forebody, the flow asymmetry becomes
stronger in comparison with that of the isolated cone. As the length of the cylindrical afterbody is
increased, the flow asymmetry becomes stronger and unsteady. Finally, the computed results and

grid used are conclusively validated.
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Steady and unsteady, supersonic asymmetric vortical flows and their passive control around circular cones are
considered in this paper. These problems are formulated by using the unsteady, compressible, single and double,
thin-layer, Navier-Stiokes equations. The equations are solved by using an implicit, upwind, flux-difference
splitting, finite-volume scheme, either in a pseudotime stepping or in an accurate time stepping. An implicit,
approximately factored, central-difference, finite-volume scheme has also been used to validate some applics-
tions of the upwind scheme. Local conical flows are assumed for the computational applications presented in
this paper. Steady asymmetric vortical flows have been predicted by using random and controlled disturbances.
Unsteady asymmetric voriex-shedding flows have also been predicted, for the first time, using time-accurate
solutions with two different computational schemes. Control of flow asymmeiry has been demonstrated
compulationally by inserting a vertical fin in the leeward plane of geometric symmetry.

Introduction

N the high angle of attack (AOA) range, the separated

vortical flow from forebodies of missiles and fighter air-
craft may become asymmetric, producing large abrupt
changes in force and moment coefficients. These abrupt
changes may exceed the available controllability and lead to
missile and aircraft spin. Experimental studies of several re-
searchers'-!! have identified four distinct flow patterns about
slender bodies through a wide AOA range and zero-degree
side slip. The first pattern develops in the very small AOA
range, where the flow is attached and the axial flow is domi-
nant. In the intermediate AOA range, the crossflow becomes
of the same order of magnitude as that of the axial flow, the
flow separates on the leeward side, and a symmetric vortex
pair is formed. As the AOA reaches a high range, the symmet-
ric vortex pair becomes asymmetric, and the flows stay steady.
For this asymmetric vortex-flow pattern to occur, it is not a
necessary condition to have asymmetric separation lines on the
leeward side of the body. The fourth flow pattern develops at
a very high AOA range, where asymmetric time-dependent
vortex shedding occurs either randomly or periodically, simi-
lar to the von Karman vortex street in two-dimensional flows
around cylinders.

For isolated pointed forebodies, the onset of vortical flow
asymmetry occurs when the relative incidence (ratio of AOA
to nose semi-apex angle) exceeds a certain value; e.g., for a
pointed circular cone, the relative incidence must be higher
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than two. However, the relative incidence value is not the only
determinable parameter for the onset of vortical flow asym-
metry. The onset of vortical flow asymmetry is also a function
of the freestream Mach number and Reynolds number and the
shape of the body cross-sectional area as well. Asymmetric
vortical flow and vortex shedding have also been documented
for delta wings'®!3 at very high relative incidences and low
subsonic regimes.

For the critical values of the relative incidence, Mach num-
ber and Reynolds number, and the shape of cross-sectional
area, the symmetric flow is unstable. Any small flow distur-
bance in the form of a transient side slip, acoustic disturbance,
or similar source of disturbance causes flow instability that
produces, depending on the flow conditions, either a steady
asymmetric vortical flow or an unsteady asymmetric flow with
vortex shedding. In this paper, we present an extensive compu-
tational study of the steady asymmetric vortical flow and
unsteady asymmetric flow with vortex shedding to address
some of the influential parameters as the relative incidence
and Mach number.

As the experimental work shows, the mechanisms that lead
to asymmetric vortex wake are not well understood. However,
two mechanisms have been established for explaining the evo-
lution of flow asymmetry.6%10 The first mechanism applies
to both laminar and fully turbulent flows. It suggests that flow
asymmetry occurs due to instability of the velocity profiles in
the vicinity of the enclosing saddle point that exists in the
crossflow planes above the body primary vortices.’-'* The
second mechanism suggests that flow asymmetry occurs due to
asymmetric transition of the boundary-layer flow either at the
nose in the axial direction or on both sides of the body in the
crossflow planes. For pointed slender bodies, the first mecha-
nism produces higher side forces than those produced by the
second mechanism. These results have conclusively been
shown through the experimental work of Lamont?®® on 2-diam
and 3.5-diam tangent ogive noses with cylindrical afterbody.
An extensive review of the steady and unsteady vortex-induced
asymmetric loads is given by Ericsson and Reding in Ref. 11.

Several attempts have been carried out to computationally
simulate asymmetric vortical flows around slender bodies of
revolution. Early computational work on conical flows has
been published in Refs. 14 and 1S5. Graham and Hankey'®
presented the first three-dimensional Navier-Stokes computa-
tions for asymmetric flow around a cone-cvlinder bodv at 30-
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deg angle of attack, 1.6 freestream Mach number, and
0.4 x 10® Reynolds number. The MacCormack explicit finite
difference scheme was used for the computations on a rela-
tively coarse grid of 26 x 30 x 60. A very small perturbation is
induced by the truncation error of finite difference algorithm
that triggers an instability of the saddle point above the body
(first mechanism for asymmetry). Hence, the instability is
induced by numerical bias that is physically amplified to pro-
duce flow asymmetry. By switching the order of spatial differ-
encing in the predictor and corrector sweeps, the asymmetry
was reversed.

Degani and Schif f17 used the thin-layer, Reynolds-averaged,
Navier-Stokes equations to compute asymmetric vortical flow
around an ogive-cylinder body. They found that flow asym-
metry can be obtained by introducing an asymmetric distur-
bance very close to the body nose. The disturbance they used
was in the form of a small jet that was blown from one side of
the body near the nose. However, when the jet was turned off,
the numerical solution unfortunately showed that the flow
recovered its symmetry. The authors of the present paper
believe that the problem is attributed to the smallest scale of
the grid at the solid boundary and the damping effect of the
numerical dissipation in the axial direction, in addition to the
grid-fineness distribution.

Marconi'? used the Euler equations to solve for supersonic
flow past a circular cone in conjunction with a “forced separa-
tion model,’’ which was used by Dyer, et al.'® The pseudotime
stepping was carried out until the residual error reached ma-
chine zero while the flow was symmetric. Proceeding with the
time stepping, vortex-flow asymmetry was obtained and
stayed stable thereafter. It is believed that the asymmetry was
triggered by the machine round-off error, which acted as a
disturbance to the saddle point in the flowfield. In a later
paper, Siclari and Marconi®® used the full Navier-Stokes equa-
tions to solve for Supersonic asymmetric flows around a 5-deg
semiapex angle cone over 2 wide range of angles of attack.

Very recently, Stahl?! conducted experimental studies of the
low-speed flow around a circular cone of 8-deg semiapex angle
circular cone in the angle of attack range of 15-50 deg at a
Reynolds number of 7800 based on the base diameter. The
onset of flow asymmetry was observed at 35-deg angle of
attack. He has shown that the flow asymmetry can be sup-
pressed by inserting a fin along the leeward plane of geometric
symmetry with its edge along a ray through the apex. The
minimum fin height for this purpose was found to be egual to
the local radius of the cone.

In this paper, the supersonic, steady and unsteady, asym-
metric vortical flows around circular cones are studied using
the unsteady, compressible,- single thin-layer, Navier-Stokes
equations. Two computational schemes are used to solve the
equations. The first, which is the main scheme used in this
paper, is an implicit, upwind, flux-difference splitting, finite-
volume scheme. The second, which is used to validate certain
cases of the upwind scheme, is an implicit, approximately
factored, central-difference, finite-volume scheme. Pseudo-
time stepping is used for steady flows and time-accurate step-
ping is used for unsteady flows. Some of the influential
parameters for flow asymmetry, such as the relative incidence
and Mach number, are addressed. A flow case of passive
control of flow asymmetry is also studied using the unsteady,
compressible, double thin-layer, Navier-Stokes equations.

Formulation
The three-dimensional compressible viscous flow around
the body is governed by the conservative form of the dimen-
sionless, unsteady, compressible, double thin-layer, Navier-
Stokes equations. In terms of time-independent, body-con-
formed coordinates £', £2, and £, the equations are given by

a_Q_ + aEs _ a(E\)Z _ a(E\')J =0

FrAM T TR T =123, D
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where

1

Q = —j [pvpuhpuhpu]!pe]‘ 7 (2)

LSS

E,, = inviscid flux
= (1/D) B« EELY
= (1/DpUmptyUn + 3,t"p ity Up + 367D spUsUn
+3st™p, (pe+ PIUnl, M= 12,3 3)
(E,), = viscous and head-conduction flux in £? direction
= (1/D[0,3¢ i 3k Tize Ok ElTins 3 WaTen— g} B)
(E,); = viscous and head-conduction flux in £ direction
= (1/D10,8¢ 871, 3ETis 3Bk 0k} WaTin— ) )
Up = 9E™ux 6)

The first element of the three momentum elements of Eq. (5)
is given by

Mo, au
BT = —Ise_“ (‘PBIE! + ¢'a_£':'> )
where
35 ¢3 y 30Uk
¢ =3 £0:L, ¥ = A0k L (8)

The second and third elements of the momentum elements are
obtained by replacing the subscript 1, everywhere in Eq. (M,
with 2 and 3, respectively. The last element of Eq. (5) is given
by

Mo a
3,83 (UnTin—Gx) = Teﬁ {’JIW+ (b{'/zé-?(uf + u% + u;z)

1 aa?d)
* G- DP, B ©

where
W= 3,8 un (10)

For Eq. (4), in the case of double thin-layer, Navier-Stokes
equations, the elements are given by equations similar to Eqs.
(7-10) with the exception of replacing £} by £2. The double
thin-layer, Navier-Stokes equations are used only for the pas-
sive control of flow asymmetry since the existence of the fin
creates a second thin layer that is perpendicular to the cone
thin layer. The reference parameters for the dimensioniess
form of the equations are L, Gy L/0cx: Poos and po for the
length, velocity, time, density, and molecular viscosity, re-
spectively. The Reynolds number is defined as Re = PVl /
4w, and the pressure p is related to the total energy per unit

mass and density by the gas equation
p=(y—ple—atul + u} + ud) (an

The viscosity is calculated from the Sutherland law

y=TY <l * C>, C = 0.4317 (12)

and the Prandtl number P, = 0.72.

In Egs. (1-10), the indicial notation is used for convenience.
Hence, the subscript k and n are summation indices, the
superscript or subscript sisa summation index, and the super-
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script or subscript m is a free index. The range of k, n, s, and
mis 1-3, and 9; = (8/9,,).

Boundary conditions are explicitly implemented. They in-
clude inflow-outflow conditions and solid-boundary condi-
tions. At the plane of geometric symmetry, periodic condi-
tions are used for symmetric or asymmetric flow applications
on the whole computational domain (right and left domains).
At the far-field inflow boundaries, freestream conditions are
specified since we are dealing with supersonic flows, whereas
at the far-field outflow boundaries, first-order extrapolation
from the interior points is used. On the solid boundary, the
no-slip and no-penetration conditions are enforced; u, = U =
uy = 0, and the normal pressure gradient is set equal to zero.
For the temperature, the adiabatic boundary condition is en-
forced on the solid boundary. The initial conditions corre-
spond to the uniform flow with u, = u; = u; = 0 on the solid
boundary.

For the passive control applications using a vertical fin in
the leeward plane of geometric symmetry, solid-boundary
conditions are enforced on both sides of the fin.

Highlights of Computational Schemes

The first computational scheme used to solve the unsteady
compressible, single or double thin-layer, Navier-Stokes equa-

~0.2500 40!
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tions is based on the Roe inviscid flux-difference splitting
scheme. In this scheme, the Jacobian matrices of the inviscid
fluxes, A, = (3E,/3q), s = 1-3, are split into left and right
fluxes according to the signs of the eigenvalues of the inviscid
Jacobian matrices. Flux limiters are used to dampen the nu-
merical oscillations in regions of large changes of the gradients
of the flowfield vector. The viscous and heat transfer terms
are centrally differenced. The resulting equation is solved by
using approximate factorization in the £!, £2, and £ direc-
tions. The computational scheme is coded in the computer
program CFL3D.

The second computational scheme is an implicit, approxi-
mately factored, centrally differenced, finite-volume scheme.?
Added second-order and fourth-order dissipation terms are
used in the difference equation on its right-hand side terms,
which represent the explicit part of the scheme. The Jacobian
matrices of the implicit operator on the left-hand side of the
difference equation are centrally differenced in space, and
implicit second-order dissipation terms are added for the
scheme stability. The left-hand side operator is approximately
factored, and the difference equation is solved in three sweeps
in the &', £, and ¢ directions, respectively. The computa-
tional scheme is coded in the computer program ICF3D. The
ICE3D code is used to verify some of the applications of the

~ N
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CFEL3D code; namely the cases of Figs. 1 and 2. For the
problem of passive control of flow asymmetry, the double
thin-layer, Navier-Stokes equations have been solved using the
CFL3D code.

Since the applications in this paper cover local-conical flows
only, the three-dimensional scheme is used to solve for locally
conical flows. This is achieved by forcing the conserved com-
ponents of the flow vector field to be equal at two planes of
x = 0.95 and 1.0. The validity of local-conical-flow assump-
tion is discussed in the next section.

Validity of the Local-Conical-Flow Assumption

The solutions presented in this paper are called local-conical
solutions, which are obtained by equating the conserved com-
ponents of the flowfield vector, in the three-dimensional
scheme, on two crossflow planes that are in close proximity to
each other at a selected location. Once this location is specified
(x = 1.0 in the present applications), the flow Reynolds num-
ber is determined and the time scale, for time-accurate solu-
tions, is also determined. The resulting solution is a local-con-
ical solution at the specified location. Itisnota global-conical
solution. The locally conical equations can be shown by con-
sidering the conservative form of the Navier-Stokes equations

in the Cartesian system
3g OHE—-E,) _ .
aI+ X =0, i=1-3 (13)

By introducing the conical coordinates

X
nm="_» m=""
X3 X3

N

7 = XiX; (14)

and using the chain rule to express Eq. (13) in terms of the
conical coordinates, we get

m aq Ja . - 0 .
M, C(E-En+—(E-E)
0 ar + am( h+ a’)z( )2
9 . . _
B (E-E)+20-1)=0 (15)
6* am;

where
o=1+m+m
E, = E, - mEs, E.=E - nE;
E;= Ey+ mE) + mE»

1=E, (16)

tr

1 mEn

vl = Ev
o= Enx—mEn
Es=Ea+mEa+ nE.;

I.=Ey amn

The conical flow condition requires that the flow variables be
independent of the coordinate 7;. If this condition is imposed
in Eq. (15), by dropping the derivatives with respect to 7s, the
equation reduces to

=3
QD

3 09
FT

|

d . = a - -

L E-E)+—(E-En+20-1)= 0 3
an an

It is clearly seen that Eq. (18) still has »; dependence in the
unsteady term and the viscous and heat-flux terms (one can se¢

the explicit dependence of the viscous and heat-flux terms on
1, by transforming the elements of these vectors to the conical

AIAA JOURNAL

coordinates). Hence, Eq. (18) is not self-similar, and there-
fore it does not represent a global-conical flow. However, if m
is set equal to a constant ¢, then one can consider Eq. (18) to
represent a local-conical flow around 71 =cC. The resulting
solution using Eq. (18) with n;=¢ represents a local-conical
solution with a Reynolds number and a time that are scaled by
the constant ¢. It should be noted that if the flow is steady and
inviscid, then Eq. (18) becomes self-similar, and hence it rep-
resents a global-conical flow. In the present paper, we indi-
rectly solve Eq. (18) at a fixed location of unity. This is
achieved in the three-dimensional flow equation, Eq. (1}, by
equating the elements of the flowfield vector at two planes in
close proximity to each other. In this paper, we selected these
planes to be located at x = 0.95 and 1.0. In other numerical
experiments, we use the plane locations at x = 0.995 and 1.0.
The results of these experiments were in excellent agreement
with those of the present paper.

Computational Studies

Supersonic flows about a 5 deg semiapex angle circular cone
at a Reynolds number of 105 have been considered. A grid of
161 x 81 points in the circumferential and normal directions is
used throughout the present applications. The grid is gener-
ated by using a modified Joukowski transformation with a
geometric series for the grid clustering near the solid
boundary. The minimum grid length is 10-* at the solid
boundary, and the maximum radius of the computational
domain is 217, where r is the radius of the circular cone at the
axial station of unity.

Steady Symmetric Flows

Figure 1 shows steady symmetric vortical-flow solutions for
the circular cone at 10 deg angle of attack and 1.8 freestream
Mach number. In the figure, we show comparisons of the
results of the CFL3D and ICF3D codes. The results include
the residual error versus the number of iterations, the cross-
flow velocity, the total-pressure-loss contours, and the sur-
face-pressure coefficients. It should be noted here that the
angle ¢ in the C, figure is measured from the leeward plane of
geometric symmetry in the clockwise direction. The agreement
of the results of the two code is excellent, and the results are
in full agreement with those of Siclari and Marconi.?®

Steady Asymmetric Flow
Round-Off and Truncation Error Disturbances

The cone angle of attack is increased to 20 deg while all the
other flow conditions are kept fixed. Figure 2 shows the results
of the CFL3D and ICF3D codes. In the residual error figure,
the CFL3D code shows that the residual error drops 10 orders
of magnitude within 2500 iteration steps. Thereafter, the error
increases by six orders of magnitude. The flow is symmetric
during this 5000 iteration steps. Next, the error drops down by
another six orders of magnitude and stays constant for 2500
iteration steps. The flow becomes asymmetric and stable. The
ICF3D code shows that the residual error drops five orders of
magnitude in the first 3000 iteration steps, increases two or-
ders of magnitude in the next 2000 iteration steps, and then
drops down by three orders of magnitude within the next 5000
iterations. The flow solution goes through a symmetric un-
stable solution and then to an asymmetric stable solution. The
pressure-coefficient figure for the two codes is the same over
the full range of the circumferential angle 6. The suction
pressure in the range of 6 = 0-90 deg is lower than that of the
range of 6 = 370-360 deg. The crossflow velocity and total-
pressure-loss contours for the two codes are also in excellent
agreement. They show the nature of the flow asymmetry and
its details. The results are in complete agreement with those of
Ref. 20.

Since the residual error of the CFL3D code is much smaller
than that of the ICF3D code after the first 2500 iterations, the
disturbance that triggered the asymmetry in the first code is
attributed to the machine round-off error, while the distur-
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bance that triggered the asymmetry in the second code is
attributed to the truncation error of the scheme (since there is
a bias due to the spatial marching direction). Both distur-
bances are random in nature. However, irrespective of the

source of disturbance, the final asymmetric stable solution is
the same.

Controlled Transient Side-Slip Disturbances

In Figs. 3 and 4, we show steady asymmetric flow solutions
due to transient side-slip disturbances of +2and +0.5 deg.
The residual-error figures show a drop of seven orders of
magnitude in the first 2000 iterations. At this step, a side-slip
disturbance is imposed for six iteration steps, then it is re-
moved. Irrespective of the magnitude or the sign of the side-
slip disturbance, the residual error increases by six orders of
magnitude, then it drops down very rapidly. A stable asym-
metric flow solution is obtained. The asymmetric solutions
corresponding to the * 2 deg side-slip disturbances are mirror
images of each other, as can be seen from the figures of the
surface-pressure coefficient, crossflow velocity, and total-
pressure-loss contours. The corresponding asymmetric solu-
tions with the = 0.5 deg side-slip disturbances are exactly the
same as those of the = 2 deg side-slip disturbances. Moreover,

the final asymmetric solutions of the =+ 2 deg and 0.5 deg
side-slip disturbances are the same as those of Fig. 2.

Again, this numerical experiment shows that the same phys-
ical flow asymmetry is obtained.

Unsteady Asymmetric Vortex Shedding

In the present case, the angle of attack is increased to 30 deg
and all the other flow conditions are kept the same as those of
the cases above. Figure 5 shows the results of this case.

Here, we show the history of the residual error and the lift
coefficient up to the 15,700 time step. First, pseudo-time
stepping was used up to 10,000 iterations, and the solution was
monitored every 500 iterations. The solution showed that the
asymmetry was changing from the left side to the right side,
which indicated a possibility of unsteady asymmetric vortex
shedding. The residual error was also oscillating. The compu-
tations were repeated starting from the 3,500 iteration step
using time-accurate calculations with At = 10~ 3. The residual-
error and lift-coefficient figures show the time history of the
solution. It is seen that the residual error and the lift coeffi-
cient show a transient response that is followed by a periodic
response. Figure 5 shows also snapshots of the time history of
the solution for the total-pressure-loss contours and surface-
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pressure coefficient. The solutions are shown every 100 time
steps starting from the time step of 15,000. At n = 15,000, the
asymmetric flow is seen with an already shed vortex from the
right side. As time passes, the shed vortex is convected in the
flow and the primary vortex on the left side stretches upwards
while the primary vortex on the right gets stronger, as it is seen
from the surface pressure figures. At n = 15,600, the primary
vortex on the left side is about to be shed. At n = 15,700, the
primary vortex on the left side is shed in the flowfield. It
should be noticed that the solution at n = 15,700 is exactly a
mirror image to that at n = 15,000. The solution from 15,000-
15,700 represents the first one-half the cycle of shedding. The
solution from 15,700-16,400 (not shown) represents the sec-
ond one-half the cycle. The periodicity of the shedding motion
is conclusively captured. The period of oscillations is 103 x

1,400 steps = 1.4 that produces a shedding frequency of 4.400
(Strouhal number). This solution is obtained by using the
flux-difference splitting (FDS) scheme.

Very recently, a researcher in the computational simulation
area of asymmetric flows claimed that he had applied the
flux-vector splitting (FVS) scheme of the CFL3D code to the
present flow case. His solution showed that the flow was

steady and symmetric. A statement of his results was commu-
nicated to us and we were asked to respond. Therefore, we
recomputed the present flow case using the FVS scheme of the
same CFL3D code. In Fig. 6, we show the results of the
time-accurate solutions using the FVS scheme using the same
grid. Using the FVS scheme, the flux limiters were turned on,
and as can be seen from the logarithmic-residual curve, the
solution becomes symmetric and steady after 5000 time steps.
Next, the flux limiters are turned off, and the solution shows
a transient response up to 12,000 time steps. Thereafter, the
solution becomes periodic with periodic asymmetric vortex
shedding. The solution was monitored every 100 time steps,
and the results from n = 13,900-14,600 are shown. Although
the process of adjusting the time instants is difficult to match
those of the FDS solution, it is seen that the captured snap-
shots of the FVS solution almost match those of the FDS
solution. Comparing the FVS solutions at n = 13,900 and
14,600, it is seen that they are mirror images of each other.
Hence, periodic flow response has been achieved with a period
of 1400 x 10-3= 1.4, which is exactly the same period of
shedding as that of the FDS solution. This pinpoints the high
numerical dissipation effect of the FVS scheme when the flux
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limiters are turned on. The resulting numerical dissipation in
the FVS is large enough to dampen the random disturbances
of the flow solution. By turning off the flux limiters in the
FVS scheme, the random disturbances can grow, producing
the asymmetric unsteady vortex shedding. This also shows
that the FDS scheme, even with the flux limiters turned on, is
less dissipative than the FVS scheme. These results conclu-
sively explain the erroneous claim of steady flow made by the
previously mentioned researcher.

Steady Asymmetric Flow at Different Mach Numbers (Effect of Ma)

Figure 7 shows the effect of the freestream Mach number
(M., = 2.2, 2.6, and 3.0) on the convergence history, surface
pressure, crossflow velocity, and total-pressure-loss contours
for the circular cone at 20 deg angle of attack. At My, = 2.2,
the residual error shows that the stable asymmetric flow is
obtained within the same number of iterations as that of the
M., = 1.8 case. At M, = 2.6, the residual error shows that the
stable asymmetric flow is obtained after a large number of
iterations. And at M, = 3.0, no asymmetric flow was cap-
tured, the flow stayed symmetrically stable. The surface pres-
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sure figures show that the asymmetry gets weaker as the Mach
number is increased. This conclusion is clearly seen from the
crossflow velocity and the total-pressure-loss figures. It should
be noted that since the nature of disturbance is random, flow
asymmetry changes sides as the Mach number increases until it
disappears.

Passive Control of Flow Asymmetry

Figure 8 shows the passive control of flow asymmetry by
inserting a vertical fin in the leeward plane of geometric sym-
metry. The fin height is equal to the cone local radius r. Here,
the double thin-layer, Navier-Stokes equations are used to
obtain these results. The flow Mach number is kept at 1.8 and
the angle of attack is 20 deg. The flow is completely symmetric
as can be seen from the figures of the surface-pressure coeffi-
cient, total-pressure-loss contours, and crossflow velocity. A
blow-up of the cross-flow velocity at the fin-cone juncture
shows two corner recirculating bubbles of exactly the same
size. This case has been obtained after 24,000 iteration steps.
Again, this is the first time such a computational simulation of
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voriex shedding for a circular cone during periodic flow response:
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Fig. 8 Control of asymmetric flow of a circular cone using a vertical fin in the leeward geometric plane of symmetry, a = 20 deg, M = L.8,

R. = 105, h = r (r m radius of circular section).

the passive control of the flow asymmetry has been presented.
The results are in full agreement with Stahl's experimental
study.?!

Concluding Remarks

This paper presents extensive computational study and sim-
ulation of steady and unsteady asymmetric vortex flow around
circular cones. A systematic study has been carried out to
show the effects of angle of attack and Mach number. The
study shows that the flow asymmetry is independent of the
type or level of the disturbance. For the controlled transient
side-slip disturbance, the solution is unique. For the uncon-
trolled random disturbance, the solution is also unique with
the exception of having the same asymmetry changing sides on
the cone. It conclusively shows that periodic vortex shedding
has been captured at larger angles of attack. The unsteady
asymmetric vortex-shedding solution has been substantiated
by using two different computational schemes. It also shows
that as the Mach number increases, the vortex flow asymmetry
gets weaker until it disappears. The possibility of passive
control of flow asymmetry has also been demonstrated. Many
of the cases presented here are obtained for the first time, in
particular, the asymmetric vortex shedding cases and the cases
of passive control of flow asymmetry.
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The unsteady, compressible, thin-layer, Navier—Stokes (NS) equations are solved to
simulate steady and unsteady, asymmetric, vortical laminar flow around cones at high
incidences and supersonic Mach numbers. The equations are solved by using an implicit,
upwind, flux-difference splitting (FDS), finite-volume scheme. The locally conical flow
assumption is used and the solutions are obtained by forcing the conserved components of
the flowfield vector to be equal at two axial stations located at 0-95 and 1-0. Computational
examples cover steady and unsteady asymmetric flows around a circular cone and its
control using side strakes. The unsteady asymmetric flow solution around the circular cone
has also been validated using the upwind, flux-vector splitting (FVS) scheme with the
thin-layer NS equations and the upwind FDS with the full NS equations. The results are in
excellent agreement with each other. Unsteady asymmetric flows are also presented for
elliptic- and diamond-section cones, which model asymmetric vortex shedding around

round- and sharp-edged delta wings.

1. INTRODUCTION

AT HIGH ANGLES OF ATTACK, flow separations from the forebodies of missiles and fighter
aircraft may become asymmetric resulting in side forces, yawing moments and rolling
moments which are, in many instances, sufficiently large to trigger missile and aircraft
spin. Experimental studies have shown that it is not necessary for the separation lines
to be asymmetric in order for the separated flow to be asymmetric (Kenner &
Chapman 1977; Peak et al. 1979; Lamont 1980, 1982). These studies have also shown
that unsteady asymmetric flow with vortex shedding may be either random or periodic,
where the latter is similar to the Karman vortex street in two-dimensional flows around
cylinders.

The onset of flow asymmetry OCcurs when the relative incidence (ratio of angle of
attack to semi-apex angle) of pointed forebodies exceeds certain critical values. At the
critical values of relative incidence, fiow asymmetry develops due to natural and/or
forced disturbances. The origin of natural disturbances may be a transient side slip, an
acoustic disturbance, or similar disturbance of short duration. The origin of forced
disturbances is geometric perturbations due to imperfections in the nose geometric
symmetry or similar disturbances of permanent nature. In addition to the relative
incidence as one of the determinable parameters for the onset of flow asymmetry, the
free-stream Mach number, Reynolds number and shape of the body cross-sectional

area are important determinable parameters. Asymmetric flow and vortex shedding
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have also been documented for sharp-edged delta wings at very high relative incidences
(Shanks 1963; Rediniotis et al. 1988).

The mechanisms which lead to steady and unsteady asymmetric vortical flows past
wings and bodies at high angles of attack and zero side slip are not well understood.
The experimental studies of these phenomena by several investigators (e.g. Keener &
Chapman 1977; Lamont 1982; Skow & Peake 1982; Peake & Tobak 1982) propose two
mechanisms for explaining the origin of flow asymmetry. The first mechanism suggests
that the asymmetry occurs due to instability of the velocity profiles in the vicinity of the
enclosing saddle point which exists in the cross-flow planes above the body primary
vortices. The second mechanism suggests that the asymmetry occurs due to asymmetric
transition of the boundary-layer flow at the apex, either in the axial direction or on
both sides of the body in the cross-flow plane.

Very recently, several attempts have been carried out to computationally simulate
asymmetric vortical flows around siender bodies of revolution. In a paper by Marconi
(1988), the Euler equations are used along with a “forced separation model”, which is
introduced by Fiddes (1989), to solve for supersonic flow past a circular cone. The
pseudo-time stepping is carried out until the residual error reaches machine zero while
the flow is symmetric. Proceeding with the time stepping, vortex-flow asymmetry is
obtained and stays stable thereafter. It is believed that the asymmetry is triggered by
the machine round-off error, which acts as a disturbance to the saddle point in the
flowfield. This work shows that the first mechanism of asymmetric vortex flow is
basically an inviscid mechanism. In a recent paper by Siclari & Marconi (1989), the full
Navier-Stokes equations are used to solve for supersonic asymmetric flows around a
5°-semi-apex angle cone over a wide range of angles of attack.

Kandil er al. (1990a) used the unsteady, thin-layer Navier-Stokes equations along
with two different implicit schemes to simulate asymmetric vortex flows around cones
with different cross-sectional shapes. The numerical investigation focuses on a
5°-semi-apex angle circular cone and locally conical flow is assumed. The first scheme is
an implicit, upwind, flux-difference splitting, finite-volume scheme and the second one
is an implicit, approximately factored central-difference, finite-volume scheme. Keep-
ing the Mach number and Reynolds number constant at 1-8 and 10°, respectively, the
angle of attack is varied from 10 to 30°. At o= 10°, a steady symmetric solution is
obtained and the results of the two schemes are in excellent agreement. At a = 20° and
irrespective of the type or level of the disturbance, a unique steady asymmetric solution
is obtained and the results of the two schemes are in excellent agreement. Two types of
flow disturbances are used: a random round-off error or a random truncation-error
disturbance, and a controlled transient side-slip disturbance with short duration. For
the controlled transient side-slip disturbance the solution is unique, and for the
uncontrolled random disturbance the solution is also unique with the exception of
having the same asymmetry changing sides on the cone. At a= 30°, an unsteady
asymmetric solution with vortex shedding is obtained, and the vortex shedding is
perfectly periodic. Next, the angle of attack is kept fixed at 20° and the Mach number is
increased from 1-8 to 3-0 with a step of 0-4. The solutions show that the asymmetry
becomes weaker as the Mach number is increased. The flow recovers its symmetry
when the Mach number reaches 3-0. Passive control of the flow asymmetry has also
been tentatively demonstrated by using a fin on the leeward side of the body along the
plane of geometric symmetry.

Experimental research efforts have also been directed to control asymmetric flows
for eliminating or attenuating the asymmetric forces and the resulting moments by
using either passive-control or active-control methods. Passive-control methods include
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the use of a vertical fin on the leeward side along the plane of geometric symmetry
(Stahl 1989), the use of fixed or movable forebody strakes (Skow & Peak 1982; Ng
1989), or the use of a rotatable forebody tip having variable cross-section, from a
circular shape at its base to an elliptic shape at its tip (Moskovitz et al. 1990).
Active-control methods primarily include the use of blowing ports with various blowing
rates and directions on the forebody surface (Ng 1990). Computational simulations
have also been used to study the effectiveness of both passive (Kandil et al. 1990a) and
active control methods (Travella et al. 1990).

In this paper, the unsteady, compressible, laminar, thin-layer, Navier—Stokes
equations are used, along with an implicit, upwind, flux-difference splitting, finite-
volume scheme to solve for steady and unsteady, asymmetric vortex flows around
cones. The steady results include asymmetric flow around a circular cone and its
control using side strakes. The unsteady results include the asymmetric vortex shedding
around circular, elliptic- and diamond-section cones. The unsteady results for the
circular cone are verified by using the FVS with the thin-layer Navier—Stokes equations
and the FDS with the full Navier—Stokes equations.

2. FORMULATION

2.1. GOVERNING EQUATIONS

The three-dimensional compressible viscous flow around the body is governed by the
conservative form of the dimensionless, unsteady, compressible, thin-layer Navier—
Stokes equations. In terms of time-independent body-conformed coordinates g!, E?
and &, the equations are

3Q  3E, J(E.)_

—a_t_ ags_ 853 —0’ (1)

where

[P’ Pun pqu pu:h Pe]‘; (2)

Sl =

_q_
0 J
o 1 .
E,, = inviscid flux = Y [3:&™E\]

1
= ] [pUmr pulUm + a]&mp, puZUm + a2Emp» puSUm

+3,E™p, (pe + p)U,), m=1,2,3; 3)

(E,)> = viscous and heat-conduction flux in &> direction

1 3 3 3 3 t
=}[O' 3,E3Tu1, OxE>Thz, AuEThzs k8 (UnTicn — q:))s 4)
Um = akgmuk' (5)

The first element of the three momentum elements of equation (4) is given by
M..u ou

E T = Re (11’3153 + 'a—g‘;) , (6)
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where
p=3EE, y=lapro
k kS » 3% 853 (7)

The second and third elements of the momentum elements are obtained by replacing
the subscript 1, everywhere in equation (6), with 2 and 3, respectively. The last
element of equation (4) is given by

, ~ =M l_a— 1 a(az)
U tin — 4= [ ¥W + 95 Yoy v |
where
W = 8,.§3un- (9)

The reference parameters for the dimensionless form of the equations are L, a.., L/a,,,
p. and pu. for the length, velocity, time, density and molecular viscosity, respectively.
The Reynolds number is defined as Re = p..V.L/u., and the pressure, p, is related to
the total energy per unit mass, e, and density, p, by the gas equation

p =(y — Dp(e — 3u,u,). (10)
The viscosity, u, is calculated from the Sutherland law
1+C
= T32 = (-
u=T (T n C>’ C =0-4317, (11)

and the Prandtl number Pr = 0-72.

In equations (1)-(10), the indicial notation is used for convenience. The subscripts k
and n are summation indices, the superscript or subscript s is a summation index and
the superscript or subscript m is a free index. The range of k, n, s and m is 1-3, and
9, =3/3x,. In equations (1)-(11), u, is the Cartesian velocity component, U, the
contravariant velocity component, 7, the Cartesian component of the shear stress
tensor, g, the Cartesian component of heat flux vector, a the local speed of sound and
M., the free-stream Mach number.

2.2. BounDARY AND INITIAL CONDITIONS

Boundary conditions are explicitly implemented. They include inflow-outflow condi-
tions and solid-boundary conditions. At the plane of geometric symmetry, periodic
conditions are used for symmetric or asymmetric applications on the whole computa-
tional domain (right and left domains). Since we are dealing with supersonic flows, at
the far-field inflow boundaries, free-stream conditions are specified, and the conical
shock is captured as part of the solution. At the far-field outflow boundaries first-order
extrapolation from the interior points is used. On the solid boundary, the no-slip and
no-penetration conditions are enforced, u;=u,=u;=0, and the normal pressure
gradient is set equal to zero. For the temperature, the adiabatic boundary condition is
enforced on the solid boundary. The initial conditions are set equal to the free-stream
conditions with 4, = u, = u; =0 on the solid boundary.

For the passive control application using side strakes, solid-boundary conditions are
enforced on both sides of the strake.

3. COMPUTATIONAL SCHEMES

The principal computational scheme used to solve the governing equations is an
implicit, upwind, flux-difference splitting, finite-volume scheme. It employs the
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flux-difference splitting scheme of Roe. The Jacobian matrices of the inviscid
flux-differences are split into left and right flux differences according to the signs of the
eigenvalues of the inviscid Jacobian matrices. The smooth flux limiters are used to
eliminate oscillations in the shock region. The viscous and heat-flux terms are centrally
differenced. The resulting difference equation is solved using approximate factorization
along the &', &2 and &° directions, respectively. The scheme is third-order accurate in
space and first-order accurate in time. The computational scheme is coded in the
computer program “CFL3D.” Details of the scheme are given by Rumsey & Anderson
(1988).

The second scheme is an implicit, approximately factored, central-difference,
finite-volume scheme. Added second-order and fourth-order dissipation terms are used
in the difference equation on its right-hand side terms, which represent the explicit part
of the scheme. The Jacobian matrices of the implicit operator on the left-hand side of
the difference equation are centrally differenced in space, and implicit second-order
dissipation terms are added for the numerical stability. The left-hand side operator is
approximately factored, and the difference equation is solved in three sweeps along the
E', E? and & directions, respectively. The computational scheme is coded in the
computer program “ICF3D”. Details of the scheme are given by Kandil & Chuang
(1989). The ICF3D code is used to verify some cases which are solved by the CFL3D
code. In this paper, the ICF3D code is used to validate the steady asymmetric flow
case.

A third computational scheme is used to validate the unsteady asymmetric vortex
flow around the circular cone at a 30° angle of attack. This scheme is the flux-vector
splitting scheme which is based on the van Leer flux-vector splitting scheme (Rumsey
& Anderson 1988). This optional scheme is also coded in the computer program
“CFL3D”.

Since the applications in this paper cover locally conical flows only, the three-
dimensional codes are used to solve for locally conical flows at the axial station x, = 1.
This is achieved by forcing the conserved components of the flowfield vector, 4, to be
equal at two planes located at x, =0-95 and 1-0. The concept of locally conical flow is
explained in the next section.

4. LOCALLY CONICAL FLOWS

Locally conical solutions of the thin-layer or full Navier—Stokes equations are obtained
using one of two methods. In the first method, the governing equations are
transformed using the conical-coordinate transformation. Invoking the conical flow
condition which requires that the flow variables be independent of the radial distance
(or axial distance, depending on the transformation) from the cone apex, equating the
radial distance (or axial distance) which appears in the transformed equations to a
constant (equals to unity in most of the present locally conical solutions), the resulting
equations are solved on one spherical (or cross-flow) surface. In the second method,
the three-dimensional flow equations are solved on two spherical (or cross-flow)
surfaces which are located in the very near proximity of a constant radial (or axial)
distance.

During the pseudo-time or accurate-time stepping, the flowfield vector is forced to
be equal at the corresponding grid centers on the two surfaces. This method is used in
the present paper to obtain locally conical solutions. The resulting solutions from these
two methods are the same locally conical solutions. These solutions correspond to the
specified radial (or axial) distance and hence they change as the radial (or axial)
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distance is changed. The reason behind that is simply because the transformed
equations, according to the first method, are not self-similar and hence they are not
globally conical. This is shown below by developing the transformed equations of the
first method. Considering the unsteady, compressible, Navier—Stokes equations in the
Cartesian coordinates,

@_+3(E—Eu)i=

at v T (12)
introducing the conical coordinates,
X X2 2
=— =—, = X;X;,
T % N2 X UE (13)

and using the chain rule, equation (12) is transformed to

7399 , 3 - = 9 - = n 8 - = 7%
=24 —(E- +—(E - 22— (E- +20-1,)=0
oy am( E,) a')z(E Ev)2+m23n3(E E,):+2(0-L)=0, (19
where

m=V1+ni+mn; E, =E,—nE;,

E,=E - n,E,, E;=E;+ nE, + n,E,,

2
I=E,, E, =E,, — nE.;, (15)
Euz =E, — n2E,3, Eul’, =E,; + nE,; + n:E,,,
iu= Euz-

The conical flow condition requires that the flow variables be independent of the
coordinate 7); (radial distance). Invoking this condition in equation (14) by dropping
the derivatives with respect to 7;, equation (14) reduces to

79q 9 . - . = -
——=+—(E—- +—(E-E,),+2(I-L)=0.
a5y BB 5 (E- B +20-1) (16)
It is obvious that the unsteady term includes 7;. Moreover, the viscous terms
oE,,/3n,, 9E,,/9n, and L, include 73, and hence equation (19) is not self-similar. The
explicit dependence of the viscous terms on 73 can be shown through one of the
elements of these vectors. For example, we consider

2 = | (2202 (2, 20 ) (ai+ai>>]
on, s R, 9n, # 3x 3\ox QJy o9z T 3z dx

1

M.m 3 4 3 3 20 o 2 0 ;

Mom 3 (2o, B 200 _mdn 2, duy] g,
Ren;on, an, an, 39n, 309n, 3 “om,

3

Thus, the unsteady term and viscous terms are scaled by the radial distance n; and
equation (16) does not represent a globally conical flow. The best to be done to make
use of this equation is to select a constant value for 7;, and solve the resulting equation
for what we call “locally conical flow”. If 5, is assigned another constant value, the
resulting equation will have another scale for the unsteady term and viscous terms. It is
concluded that equation (16) becomes globally conical if the unsteady term and viscous
terms vanish, and hence only the steady Euler equations are globally conical.
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5. COMPUTATIONAL APPLICATIONS

5.1. STEADY AsyMMETRIC FLow AROUND A CIRCULAR CONE

A grid of 161 X 81 points in the circumferential and normal directions, respectively is
used. The grid is generated by using a modified Joukowski transformation with a
geometric series for the grid clustering near the solid boundary. The minimum grid
spacing at the solid boundary in the normal direction is 107* (the characteristic length
is the conical station at x, =1). A 5°-semi-apex angle cone at angle of attack, a, of 20°,
free-stream Mach number, M., of 1-8 and Reynolds number, Re, of 10° is used. The
maximum radius of the computational domain is 217, where r is the cone cross-section
radius at the axial station x, = 1.

Figure 1 shows the residual error versus the number of iterations, the surface-
pressure coefficient, the cross-flow velocity and the total-pressure-loss contours for the
CFL3D and ICF3D codes. In the residual error figure, the CFL3D code shows that the
residual error drops ten orders of magnitude, to machine zero, within 2,500 iteration
steps and the solution is still symmetric. Thereafter, the error increases by six-orders of
magnitude and slightly asymmetric solutions are obtained. The flow is symmetric
during the first 5,000 iteration steps. Next, the error drops down by another six orders
of magnitude, to machine zero again, and stays constant, and a stable steady
asymmetric solution is obtained. It should be noted here that when the residual error
first reaches machine zero, the machine-round-off error acts as a random asymmetric
disturbance to the critically symmetric solution. Thereafter, the disturbance grows
spatially, producing the asymmetric solution. The ICF3D code shows that the residual
error drops five orders of magnitude in the first 3,000 iteration steps, increases two
orders of magnitude in the next 2,000 iteration steps, and then drops down by three
orders of magnitude within the next 5,000 iterations. The flow solution goes through a
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Figure 1. Comparison of steady asymmetric flow so(l)lsxtions around a circular cone, o =20°, M_.=1-8,
: Re=10".
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symmetric unstable solution and then to the asymmetric stable solution. The pressur
coefficient curves for the two codes are in excellent agreement over the circumferemiael
angle 6, which is measured from the leeward plane of symmetry. The suction pressure
in the range of 6= 0-90° is lower than that in the range of 0 =270-360°. The
cross-flow velocity and total-pressure-loss contours for the two codes are in excellent
agreement. They show the nature of the flow asymmetry and its details.

Since the residual error of the CFL3D code is much smaller than that of the ICF3D
code, the disturbance which triggered the asymmetry in the first code is attributed to
the machine round-off error, while the disturbance which triggered the asymmetry in
the second code is attributed to the truncation error of the scheme. Both disturbances
are random in nature. However, irrespective of the source of disturbance, the final
asymmetric stable solution is unique. Kandil er al. (1990a) have shown that the solution
is still unique if another source of disturbance is applied for the same critical flow
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Figure 2. Effect of minimum grid size on the asymmetric flow solution; a = 20°, M_.=1-8, Re= 10°.
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conditions; e.g., a 2° or 0-5° short-duration side-slip disturbance produces the same
flow asymmetry. o

In Figure 2, we show the effect of the minimum grid size on the flow asymmetry for
the same flow conditions of the previous case. The figure shows the residual error
versus the number of iterations, the total-pressure-loss contours and the surface-
pressure coefficient for A&2,, = 107>, 107* and 1075 at the cone surface. The histories
of the residual errors are qualitatively of similar behavior. The total-pressure-loss
contours show unique solutions with the exception of having the asymmetry changing
sides. This is understood due to the random nature of the disturbance—a machine
round-off error. The surface-pressure-coefficient curves also show unique solutions.

With all the numerical experiments given above, it is conclusively proven that the

asymmetric solution is not scheme-, numerics- or disturbance-dependent.

5.2. Passive ConTROL OF ASYMMETRIC FLow UsSING SIDE STRAKES

Figure 3 shows the results of passive control of flow asymmetry around the circular
cone of Figure 1 by using side strakes of height equal to 0-3 r. The iteration histories of
the residual error, lift coefficient and side-force coefficient show the attenuation of the
flow asymmetry and the final stable symmetric solution. The surface-pressure-
coefficient curve, the cross-flow velocity and the total-pressure-losses contours show the
final symmetric solution and the symmetric vortices associated with this controlled flow.
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Figure 3. Passive control of asymmetric flow around a circular cone using strakes, a =20°, M, =18,
Re =10°, h = 0-3r (h and r are local strake height and cone radius, respectively.).
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The side strakes push the primary vortices away from the leeward plane of geometric
symmetry, and hence they prevent communication of the flow disturbance from the
two sides. It should also be noticed that the C,, curves of Figures 1 and 3 show that the
side strakes provide additional lift besides their function of controlling the flow
asymmetry.

5.3. UNSTEADY AsYMMETRIC FLow AROUND A CIRCULAR CONE

Keeping the Mach number at 1-8 and Reynolds number at 10°, the angle of attack is
increased to 30° for the flow around the circular cone of Figure 1. Figure 4 shows the
results of this case using the FDS scheme with the thin-layer NS equations,
FVS-scheme with the thin-layer NS equations and the FDS scheme with the full NS
equations. Here, we show the history of the residual error, the lift coefficient and the
total-pressure-loss contours. For the first solution, pseudo-time stepping was used up to
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10,000 iterations and the solution was monitored every 500 iterations. The solution
showed that the asymmetry was changing from the left side to the right side, which
indicated a possibility of unsteady asymmetric vortex shedding. The residual error was
also oscillating. The computations were repeated starting from the 3,500 iteration step
using time-accurate calculations with At =107>. The residual-error and lift-coefficient
curves show the time history of the solution. It is seen that the residual error and the
lift coefficient show a transient response which is followed by a periodic response.
Snapshots of the total-pressure-loss contours are shown at time steps of n = 15,000;
15,200; 15,400 and 15,700. At n = 15,000, the asymmetric flow is seen with an already
shed vortex from the right side. As time progresses, the shed vortex is convected in the
flow and the primary vortex on the left side stretches upwards, while the primary
vortex on the right gets stronger and expands to the left side. At n=15,700, the
primary vortex from the left side is shed in the flow field. It should be noticed that the
solution at n =15,700 is exactly a mirror image of that at n = 15,000. The solution
from 15,000-15,700 represents one half the cycle of shedding. The solution from
15,700-16,400 represents the second one half of the cycle (not shown). The periodicity
of the shedding motion is conclusively captured. The period of oscillation is
1073 x 1,400 steps = 1-4 which corresponds to a shedding frequency of 4-488.

Figure 4 also shows the results of the FVS scheme with the thin-layer NS equations
for one-half cycle of oscillation. Using the FVS scheme, the flux limiters are turned on
initially and, as can be seen from the logarithmic-residual curve, the solution becomes
symmetric and steady after 5,000 time steps. Next, the flux limiters are turned off, and
the solution shows a transient response up to 12,000 time steps. Thereafter, the
solution becomes periodic with periodic asymmetric vortex shedding. The solution was
monitored every 100 time steps, and we show snapshots of the total-pressure-loss
contours between n =13,900 and n = 14,600. Although the process of adjusting the
time instants in order to match those of the FDS solution is difficult, it is seen that the
captured snapshots of the FVS solution almost match those of the FDS solution.
Comparing the FVS solutions at n = 13,900 and 14,600, it is seen that they are mirror
images of each other. Hence, periodic flow response has been achieved with a period
of 1,400 x 107> = 1.4; which is exactly the same period of shedding as that of the FDS
solution. This pinpoints the high numerical dissipation effect of the FVS scheme when
the flux limiters are also turned on. The resulting numerical dissipation in the FVS
scheme is large enough to dampen the random disturbances of the flow solution. By
turning off the flux limiters in the FVS scheme, the random disturbances grow,
producing the asymmetric unsteady vortex shedding. This also shows that the FDS
scheme, even with the flux limiters turned on, is less dissipative than the FVS scheme.
Finally, we show the results of the FDS-scheme with the full NS equations. The
solution conclusively confirms the previous solutions and hence the unsteady solution is
not scheme- or equation-dependent.

Figure 5 shows snapshots of the surface-pressure coefficient using the FDS and FVS
schemes with the thin-layer NS equations. They are in excellent agreement with each
other. The oscillation of the side force is clearly seen in this figure.

5.4. UNSTEADY ASYMMETRIC FLOow AROUND AN ELLIPTIC SECTION ConE, f, =0-8

Figure 6 shows the solution for an elliptic-section cone with fineness ratio of 0-8. The
residual-error curve shows that the solution produces a symmetric flow through the first
5,000 time steps. Afterwards, the solution shows a transient unsteady flow response for
2,500 time steps which is followed by an unsteady, perfectly periodic, vortex-shedding
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Figure 5. Comparison of snapshots of surface-pressure coefficients around a circular cone; a=30°,
M. =18, Re=10°, Ar=10">.

solution. The lift-coefficient curve shows the same nature of the solution as that of the
residual-error curve. This case is carried out using time-accurate stepping with
Ar=10"".

We also show snapshots of the total-pressure-loss contours and surface-pressure
coefficients at the time steps of 12,000, 12,500, 13,000, 13,500, 14,000 and 14,500. The
solutions at n = 12,000 and 14,500 are mirror images of each other which confirm that
the solution is periodic. The period of oscillation is 5,000 x 1072 =5 which corresponds
to a shedding frequency of 1-257. At n =12,000, the total-pressure-loss contours show
that the right-side vortex is stretched, having two vortices; one at the top and the
second one below it. In addition, a secondary vortex is seen at the surface. The
left-side vortex has expanded to the right with two vortices beneath it. At n=12,500,
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Figure 6. Unsteady asymmetric flow solution with vortex shedding around an elliptic-section cone;
periodic flow response; & =25°, M, =15, Re = 10°, £, =08, Ar=10"".

the top vortex on the right side has been almost shed while the one below it is
expanding. At n= 13,000, the top vortex on the right side has been shed and
convected with the flow, while the vortex below it is expanding to the left. As time
passes, the vortex on the left side is stretching upwards and the vortex on the right side
is expanding to the left, as seen from the snapshots at 13,000, 13,500 and 14,000. At
n = 14,500, the vortices on the left side and right side become mirror images of those
on the right side and left side, respectively, at n = 12,000. Again, this case conclusively
shows that unsteady vortex-shedding flows are captured.
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5.5. UNSTEADY ASYMMETRIC FLOW AROUND AN ELLipTic-SECTION CONE, f, =0-2
(Trick WING CAsSE)

This case is presented to show that asymmetric vortex shedding also exists for wing-like
sections. Here, the elliptic-section fineness ratio is reduced to 0-2. To obtain this
impressive flow case, we have to decrease the free-stream Mach number to 1-4,
increase the angle of attack to 34° and increase the free-stream Reynolds number to
2 x 10°. These adjustments have been made to enhance the critical flow conditions for
flow asymmetry. For the same section fineness ratio, same angle of attack and same
free-stream Mach number and for free-stream Reynolds number range of 10°-
1-5 x 10°, the flow is either symmetric or steady asymmetric. It is unsteady only when
the Reynolds number is increased to 2 x 10°.
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Figure 7 shows the time-accurate (At=2X 1073) results of this case which includes
the time-history of residual error, the time-history of the lift coefficient, snap shots of
the total-pressure-loss contours and snapshots of the surface-pressure coefficients. The
snapshots at n =15,000, 15,100, 15,200, 15,300, 15,400 and 15,500 represent ap-
proximately one-half the cycle of the periodic flow response. The total-pressure-loss
contour at n = 15,000 shows that the left-side vortex is stretched, while the right-side
vortex has expanded, covering a large region of the left side of the flow domain over
the wing. Under the right-side vortex, a strong secondary vortex is formed. At
n = 15,100, the left-side vortex shows two regions of vortical flows; one at the top and
another one below it. Both vortex regions of the left vortex rotate in the same
clockwise direction. At n = 15,200, the top vortex is shed into the flow field, while the
one below it gets stronger and stretches upwards. At n=15,300 and 15,400, the shed
vortex from the left side is convected in the flow, the left vortex is expanding to the
right and convecting vorticity to the right vortex. The right vortex is getting stronger,
shrinking in thickness and stretching upwards. A secondary vortex is forming under the
left vortex, and the secondary vortex under the right vortex is diminishing, at
n = 15,100, the flow is approximately a mirror image of that at n = 15,500. The number
of time steps for one cycle of periodic response is 1050, which gives a period of
. oscillation of 2 X 1073 x 1,050 = 2-1 corresponding to a frequency of 2-992.

5.6. UNSTEADY ASYMMETRIC FLOW AROUND A DiamonD-SECTION CONE, fi = 0-2 (THICK
WING CASE)

Figure 8 shows the results of the time-accurate (At =25X107*) results for this case
which include snapshots of the total-pressure-loss contours and snapshots of the
surface-pressure coefficients. The snapshots are given at n = 11,500, 12,000, 12,500,
13,000, 13,500 and 14,000. The number of time steps for one cycle of periodic response
is 4,500, which gives a period of oscillation of 5 X 107* x 4,500 = 2-25 corresponding to
a frequency of 2:793. It should be noted here that the angle of attack is 38°, which is
higher than that of the elliptic-section cone of Figure 7, where the angle of attack is 34°
and all the other flow conditions are the same. Comparing the surface pressure curves
of the elliptic-section wing (Figure 7) and the diamond-section wing (Figure 8), we

conclude that the diamond-section wing has less asymmetric strength and higher lift
coefficient than those of the elliptic-section wing.

6. CONCLUDING REMARKS

The unsteady, compressible, thin-layer, Navier-Stokes equations are used along with
several computational schemes to numerically simulate steady and unsteady asym-
metric vortex flows around cones. The concept of the locally conical flow assumption
has been developed and discussed. A steady asymmetric flow solutions has been
presented and verified for a circular cone. Passive control of the flow asymmetry has
been demonstrated for the circular cone by using side strakes. Unsteady, asymmetric
vortex flows with periodic vortex shedding have been presented for cones with a
circular section, an elliptic section of fineness ratio of 0-8, an elliptic section of fineness
ratio of 0-2 and a diamond section of fineness ratio of 0-2. The unsteady asymmetric
flow solution for the circular cone has been verified using two schemes with the
thin-layer and full NS equations. The present study shows that, for the same flow
conditions, circular section cones produce the strongest flow asymmetry while the
diamond section cones produce the weakest flow asymmetry. It is conclusive that
unsteady flow asymmetry with vortex shedding has been captured. It should be noted
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Figure 8. Unsteady asymmetric flow solution with vortex shedding around a diamond-section cone (a thick
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that these solutions are based on the locally conical flow assumption and hence they
must not be used for quantitative comparisons with three-dimensional flow results. The
reason behind such a restriction is the length scale involved with the unsteady and
viscous terms of the locally conical NS equations. However, the solutions are
computationally economical for qualitative and parametric studies of asymmetric flows.

ACKNOWLEDGEMENT

This research work is supported by the NASA Langley Research Center under Grants
No. NAS1-18584-71 and NAG-1-994.






ASYMMETRIC VORTICAL FLOW 265

REFERENCES

FiDDEs, S. P. 1989 Recent developments in the prO(:lllCtiOIl of separated flow past slender bodies
at incidence. In Proceedings Royal Aeronautical Society Conferences on Prediction and
Exploitation of Separated Flows, pp. 31.1-31.17, London, U K.

KanpiL, O. A. & CHuanc, H. A. 1989 Unsteady Navier-Stokes computations past oscillating
delta wings at high incidence. AIAA Paper No. 89-081. Also AIAA Journal 28, 1565-1572.

KanpiL, O. A., Wong, T.-C. & Ly, C. H. 19%0a. Prediction of steady and unsteady asymmetric
flows around cones. AIAA Paper No. 90-0598.

KanpiL, O. A., Wong, T.-C. & Liu, C. H. 1990b Asymmetric supersonic flow around cones
with noncircular sections. AGARD Conference Proceedings No. 493, Missile Aerodynamics,

. 16.1-16.11.

KEEﬂg_R, E. R. & Cuapman, G. R. 1977 Similarity in vortex asymmetries over slender bodies
and wings. AIAA Journal 15, 1370-1372.

LamonT, P. J. 1980 Pressure around an inclined ogive cylinder with laminar, transitional and
turbulent separation. AIAA Journal 20, 1492-1499.

LamonT, P. R. 1982 The complex asymmetric flow over a 3.5D ogive nose and cylindrical
afterbody at high angles of attack. AIAA Paper No. 82-0053.

Marconi, F. 1988 Asymmetric flows about sharp cones in a supersonic stream. In Proceedings
of 11th International Conference on Numerical Methods in Fluid Dynamics, Williamsburg,
VA, US.A.

Moskovitz, C., HALL, R. & DeJARNETTE, F. 1990 Experimental investigation of a new device
to control asymmetric flowfield on forebodies at large angles of attack. AIAA Paper No.
90-0069.

No, T. T. 1989 On leading edge vortex and its control. AIAA Paper no. 89-3346-CP.

NG, T. T. 1990 Aerodynamic control of NASP-type vehicles through vortex manipulation.
AIAA Paper No. 90-0594.

Peakg, D. J., Owen, F. K. & HicucH, H. 1979 Symmetrical and asymmetrical separations
about a yawed cone. AGARD CP-247, 16.1-16.27.

PeakE, D. J. & ToBak, M. 1982 Three-dimensional flows about simple components at angle of
attack. AGARD LS-121, High angle-of -attack aerodynamics, 2.1-2.56.

RepinioTis, O., StarounTzis, H. & TEeLioNis, D. P. 1988 Vortex shedding over nonparallel
edges. VPI & SU Engineering Report, VPI-88-39.

RuMmsey, L. C. & AnpErson, W. K. 1988 Some numerical aspects of unsteady Navier—Stokes
computations over airfoils using dynamic meshes. AIAA Paper No. 88-0329.

SHANKS, R. E. 1963 Low subsonic measurements of static and dynamic stability derivatives of six
flat plate wings having leading-edge sweep angles of 70°-84°. NASA TND-1822.

SicLari, M. J. & Marconi, F. 1989 Computations of Navier—Stokes solutions exhibiting
asymmetric vortices. AIAA Paper No. 89-1817.

Skow, A. M. & Peakg, D. J. 1982 Control of forebody vortex orientation by asymmetric air
injection (Part B)—Details of the flow structure. AGARD LS-121, High angle-of -attack
aerodynamics, 10.1-10.22.

STaHL, W. 1989 Suppression of asymmetry of vortex flow behind a circular cone at high
incidence. AIAA Paper No. 89-3372-CP.

TRAVELLA, D. A., SchiFr, L. B. & CummMmings 1990 Pneumatic vortical flow control at high
angles of attack. AIAA Paper No. 90-0098.






I

IMPACT OF COMPUTING IN SCIENCE AND ENGINEERING 4, 80-96 (1992)

W Yr oy G
Ngg'ﬁfbaﬁ
Passive Control of Supersonic Asymmetric ‘

Vortical Flows around Cones

C.H.Lwu

Theoretical Flow Physics Branch, NASA Langley Research Center,
Hampton, Virginia 23665-5225

AND

OsAaMA A. KANDIL AND TIN-CHEE WONG

Department of Mechanical Engineering and Mechanics, Old Dominion University,
Norfolk, Virginia 23529-0247

Received November 27, 1990

C. H. Liu, Osama A. Kandil, and Tin-Chee Wong, Passive Control of Supersonic Asymetric
Vortical Flows around Cones. IMPACT of Computing in Science and Engineering 4, 80-96
(1992).

The unsteady, compressible, thin-layer Navier-Stokes equations are used to numerically study
the passive control of steady and unsteady supersonic asymmetric flows around circular and
noncircular cones. The main computational scheme of the present study is an implicit upwind,
flux-difference splitting, finite-volume scheme. Passive control of flow asymmetry is studied by
using a vertical fin in the leeward plane of geometric symmetry and side strakes with and without
thickness at different orientations. The study focuses on circular-section cones since they are the
most likely section-shapes for strong flow asymmetry. Side-strake passive control is shown to be
more efficient and practical than vertical-fin passive control. © 1992 Academic Press, Inc.

INTRODUCTION

In the moderate to high angle-of-attack (AOA) ranges, which are typical
flight conditions for highly maneuverable fighter aircraft and missiles, extensive
regions of vortex-dominated flow develop on the vehicle.

Within these AOA ranges, the cross-flow velocity components and the gra-
dients of other flow variables become of the same order of magnitude as or
higher than those of the axial direction. Consequently, flow separation Ooccurs
and vortices emanate from the three-dimensional separation lines of boundary-
layer flows on wings, strakes, and fuselage of the vehicle. If the vortices are
symmetric and stable, their influence can be exploited favorably to provide
high lift and maneuverability for the vehicle. On the other hand, if the vortices

80

0899-8248/92 $3.00
Copyright © 1992 by Academic Press, Inc.
All rights of reproduction in any form reserved.

PRECEDING PAGE BLANK HGT FiLMEU







PASSIVE CONTROL OF FLOWS AROUND CONES 81

become asymmetric Or if vortex breakdown occurs, the useful influence of
the vortices is terminated. Large side forces, asymmetric lifting forces, and
corresponding yawing, rolling, and pitching moments, which may be larger
than those provided by the vehicle control system, develop and jeopardize
flight safety. The onset of buffeting due to vortex breakdown is another un-
favorable vortex-induced phenomenon.

Highly swept, round- and sharp-leading-edge wings, and pointed slender

. bodies are common aerodynamic components of fighter aircraft and missiles.

The study of vortex-dominated flow around these isolated aerodynamic com-
ponents adds to our basic understanding of vortex-dominated flows. The so-
lution of asymmetric vortex flow about slender bodies in the high AOA range
is vital to the dynamic stability and controllability of fighter aircraft and mis-
siles. The onset of flow asymmetry occurs when the relative incidence (ratio
of angle of attack to nose semiapex angle) of pointed forebodies exceeds certain
critical values. At these critical values of relative incidence, flow asymmetry
develops due 10 natural and/or forced disturbances. The origin of natural
disturbances may be a transient sideslip, an acoustic disturbance, or a similar
disturbance of short duration. Forced disturbances, however, are caused by
geometric perturbations due to imperfections in the nos¢ geometric symmetry
or similar disturbances of a permanent nature. In addition to the relative
incidence as one of the determinable parameters for the onset of flow asym-
metry, the freestream Mach number, Reynolds number, and body cross-sec-
tion shape are important determinable parameters.

Several computational attempts have been made to simulate asymmetric
vortical flows around slender bodies [1-7]. Kandil, Wong, and Liu [5] used
the unsteady thin-layer Navier-Stokes equations along with two different im-
plicit schemes to simulate asymmetric vortex flows around cones with different
cross-section shapes. The numerical investigation was focused on a 5°-semi-
apex angle circular cone under locally conical flow assumption. The first
computational scheme was an upwind, flux-difference splitting, finite-volume
scheme and the second one was an implicit, central-difference, finite-volume
scheme. The Mach number and Reynolds number being held constant at 1.8
and 10°, respectively, the angle of attack (a) was varied from 10° to 30°. At
a = 10°, a steady symmetric solution was obtained and the results of the two
schemes were in excellent agreement. At a = 20° and irrespective of the type
or level of the disturbance, a steady asymmetric solution was obtained and
the results of the two schemes were in excellent agreement. Two types of flow
disturbances were used; a random round-off error or a random truncation-
error disturbance, and 2 controlled transient sideslip disturbance with short
duration. For the controlled transient sideslip disturbance the solution was
unique, and for the uncontrolied random disturbance the solution was also
unique with the exception of having the same asymmetry changing sides on
the cone. At a = 30°, an unsteady asymmetric solution with vortex shedding
was obtained, and the vortex shedding was perfectly periodic. Next, the angle
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of attack was kept fixed at 20° and the Mach number was increased from 1.8
10 3.0 in increments of 0.4. The solutions showed that the asymmetry became
weaker as the Mach number was increased. The flow recovered its symmetry
when the Mach number reached 3.0. Selected solutions of steady and unsteady
asymmetric flows were also presented for cones with elliptic and diamond
cross-sectional areas.

In a later paper by the present authors [6], several issues related to the
asymmetric flow solutions were addressed. It was shown that a unique asym-
metric flow solution is obtained irrespective of the size of the minimum grid
spacing at the solid boundary. The asymmetry could reverse sides due to the
random nature of the disturbance. It was also shown that for the same flow
conditions and same section fineness ratio, diamond-section cones with sharp
edges have less flow asymmetry than elliptic-section cones. Again, it was also
shown that unsteady periodic asymmetric flow with vortex shedding is pre-
dicted. In Ref. [7] by Kandil, Wong, and Liu, several unsteady, asymmetric
vortex flows with periodic vortex shedding for circular and noncircular-section
cones were presented and studied.

Experimental research efforts have also been made to control asymmetric
flows for eliminating Or attenuating the asymmetric forces and the resulting
moments by using either passive-control [8-10] or active-control [1 1-13]
methods. Passive-control methods include the use of a vertical fin on the
Jeeward side along the plane of geometric symmetry (8], the use of fixed or
movable forebody strakes [9-12], or the use of a rotatable forebody tip having
variable cross section (from a circular shape at its base to an elliptic shape at
its tip [10]). Active control methods primarily include the use of blowing ports
with various blowing rates and directions on the forebody surface [11, 12].
Computational simulations have also been used to study the effectiveness of
both passive [5] and active control methods [13].

In the present paper, We present a computational study for passive control
of supersonic asymmetric vortical flows around cones using a vertical fin in
the leeward plane of geometric symmetry and side strakes with and without
thickness at different orientations. Although the present study has been focused
on passive control of circular-section cones, a few applications have been

considered for noncircular-section cones.

FORMULATION

Governing Equations

The three-dimensional, compressible, viscous flow around the body is gov-
erned by the conservative form of the dimensionless, unsteady, compressible
Navier-Stokes equations. Introducing the time-independent body-conforming
coordinates &', £, and £, and applying thin-layer approximations to the gov-
erning equations in £ and £ directions yields the transformed equations
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(E,), = viscous and heat-conduction flux in the £? direction
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(E,); = viscous and heat-conduction flux in the £ direction
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U, = 08U (6)

The first of the three momentum elements of Eq. (5) is given by

Mon ou
Nl = Re (¢3|E3 + ¢ 5-5—;) , @)
where
1 ou
¢ =aaE, V=30 5;5 : (8)

The second and third momentum elements are obtained by replacing the
subscript 1, everywhere in Eq. (7), with 2 and 3, respectively. The last element

of Eq. (5) is given by

EX(UnThn — )

_ Mop 3 19 1 Q(_a_zl
= [wanf U + ¢[2 P (4 + 1 + 1) + e 5P ]] . )

For Eq. (4), in the case of thin-layer approximations applied to the £ direction,
the elements are given by equations similar to Egs. (7)-(9) with the exception
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of replacing £> by £2. This set of thin-layer Navier-Stokes equations is used
only for the passive control cases using a vertical fin since the existence of
the fin creates a second viscous thin layer which is perpendicular to the cone’s
thin layer. This viscous layer on the fin is in the £* direction. For the passive
control cases using side strakes, thin-layer equations in £ direction are used
since the viscous layers on the strakes are in the £? direction due to the method
used to construct the grid around the strakes. The reference parameters for
the dimensionless form of the equations are L, @y, LIz P> and p. for the
length, velocity, time, density, and molecular viscosity, respectively. The
Reynolds number is defined as Re = poVeol/baos and the pressure, p, 18 related

to the total energy per unit mass and density by the gas equation
1
p=w—1>p[e—§<u%+u%+u%)]. 10)

The viscosity 15 calculated from the Sutherland law

+
p= T3/2(1T+€,) . C=04317, (11)

and the Prandtl number Pr = 0.72.

In Egs. (1)-(9), indicial notation is used for convenience. Hence, the sub-
scripts k and n are summation indices, the superscript or subscript s is a
summation index. The range for k, n, and 5 is 1-3, and 0y = 0/0Xk.

Boundary and Initial Conditions

Boundary conditions are explicitly implemented. They include inflow-
outflow conditions and solid-boundary conditions. At the plane of geometric
symmetry, periodic conditions are used. At the far-field inflow boundaries,
freestream conditions are specified and the outer shock is captured as part of
the solution. At the far-field outflow boundaries first-order extrapolation from
the interior points 18 used. On the solid boundary, the no-slip and no-pene-
tration conditions are enforced (u; = U = U3 = 0) and the normal pressure
gradient is set equal to zero. For the temperature, the adiabatic boundary
condition is enforced on the solid boundary. The initial conditions correspond
to uniform flow with u; = #2 = 43 = 0 on the solid boundary.

For the passive control applications, solid-boundary conditions are enforced
on both sides of the fin or the strakes.

HIGHLIGHTS OF THE COMPUTATIONAL SCHEME

The main computational scheme used to solve the governing equations is
- an implicit, upwind, flux-difference splitting, finite-volume scheme. It employs
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the flux-difference splitting scheme of Roe, which is based on the solution of
the approximate Riemann problem. The inviscid flux difference at the cell
interface is split into left and right flux differences according to the signs of
the eigenvalues of the Roe averaged-Jacobian matrices of the inviscid fluxes
A, = 0E./3G: s = 1-3. Flux limiters are used to eliminate oscillations in the
shock region. The viscous and heat-flux terms are centrally differenced. The
resulting difference equation is solved using approximate factorization in the
£!, £2, and £ directions. The computational scheme is coded in the computer
program “CFL3D.” In this program, an implicit, flux-vector splitting, finite-
volume scheme, which is based on the Van Leer scheme [14], can also be
used instead of the flux-difference splitting scheme. The flux-vector splitting
scheme is also used to solve for the unsteady asymmetric flow application in
this paper. This application is a validation of the solution obtained previously
[5] for the same application using the flux-difference splitting scheme.

Since the applications in this paper cover conical flows only, the three-
dimensional scheme is used to solve for locally conical flows. This is achieved
by forcing the conserved components of the flow vector field to be equal at
the two axial planes located at x; = 0.95 and 1.0 of the conical grid.

COMPUTATIONAL STUDIES

1. Passive Control For a Circular Cone Using a Vertical Fin, a = 20°

In this section, we consider the control of steady asymmetric flow around
a 5°-semiapex angle circular cone at an angle of attack o = 20°, freestream
Mach number M, = 1.8, and freestream Reynolds number Re = 10°. Two
vertical fins of heights # = 0.5r and r are placed in the leeward plane of
geometric symmetry, where r is the cone local radius. Figure 1 shows the
results of this study, which include the total-pressure-loss contours, the surface-
pressure coefficient versus the angle 6 (¢ is measured from the leeward plane
of geometric symmetry in the clockwise direction), and the lift coefficient
versus the number of iterations. The figure also shows the results of the asym-
metric flow without a vertical fin [S]. With A = 0.5r, the flow is still strongly
asymmetric after 34,000 iterations. Comparing the case of no fin with the
case of & = 0.5r, it is seen that the asymmetry changed sides. This 1s due to
the random nature of the disturbance, which is a machine round-off error.
With 4 = 0.5r, two vortex cores, which are connected to each other and to
the body through free-shear layers, develop from the left side of the body.
From the right side of the body, a free-shear layer develops and crosses over
the fin to the left side of the body. It produces two vortex cores; one at each
corner of the body-fin juncture with secondary separations below them. This
case has been solved accurately in time but it does not show any vortex shed-
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FIG. 1. Passive control of asymmetric flow around a circular cone using a vertical fin. a = 20°,
M, =18 Re= 10%, h = 0.5r and r (r = cone local radius).

ding or unsteadiness. When the fin height is increased to h =7, perfect flow
symmetry is obtained. The lift-coefficient curves show that when flow asym-
metry develops, the lift coefficient increases over a small number of iterations
and remains constant thereafter. When the flow becomes symmetric, as with
h = r, the lift coefficient does not increase. The reason behind the flow asym-
metry with A = 0.5r is that the free-shear layer from the right-hand side of
the body is still higher than the fin height, which allows the flow disturbances
from the right and left side to interact.

Figure 2 shows a typical grid for studying passive control using a vertical
fin. It contains 161 X 81 gnd points in the wrap-around and normal directions,
respectively. The grid is generated by using a modified J oukowski transfor-
mation with clustering in the normal direction at the cone surface, and clus-
tering in the wrap-around direction at the vertical fin surfaces. The maximum
radius of the computational domain is 217. The figure also shows blow-ups
of the cross-flow velocity in the cone-fin-juncture region for h=05randr.
It is noticed that two small recirculating bubbles exist under the vortex cores.
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FIG. 2. A typical grid for passive control using a vertical fin (161 X 81 grid points, AR = AE
= 107*) and blow-ups of cross-flow velocity in the cone-fin juncture (o = 20°, M, = 1.8, Re =

10%).

2. Passive Control For a Circular Cone Using Side Strakes, a = 20°

In Fig. 3, control of flow asymmetry for the same flow conditions as in the
first application 18 considered using sharp-edged thick strakes of height 1 =

0.3r. The side-strakes render the flow perfectly

symmetric since the two primary

vortex cores, left and right, are pushed further apart preventing the flow dis-
turbances of the two sides from interacting. Itis easily seen that there are four

vortices on each side; one is a primary Vv
The pressure-coeﬂ'lcient curve shows ju

strakes are located. These jumps
parison with that of the vertical-fi

ortex and three are secondary vortices.
mps at 8 = 90° and 270°, where the

change the shape of the C,-curve in com-
n-control case. Moreover, the lift coefficient
of the side-strake-control case is double that of the vertical-fin-control case.
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EiG. 3. Passive control of asymmetric flow around a circular cone using sharp-edged thick
strakes. a = 20°, M, = 1.8, Re = 10%, h = 0.3r.

It is concluded that side-strake control in comparison with vertical-fin control
not only is efficient in providing higher lift, but also is more practical due to
the strake’s shorter height, and hence lesser weight.

3. Passive Control For a Circular Cone Using Side Strakes with and
without Thickness, o = 30°

In this case, the cone angle of attack is increased to 30° keeping all the
other flow conditions fixed. This flow application has been solved previously
in Ref. [5] by Kandil, Wong, and Liu using a flux-difference splitting (FDS)
scheme. The results showed unsteady asymmetric flow with periodic vortex
shedding. The total-pressure-loss contours of the time steps from 15,000 to
15,700, representing one-half the cycle during the periodic response, is shown
in Fig. 4. Other unsteady asymmetric flows with periodic vortex shedding
around elliptic-section and diamond-section cones have also been presented
by the authors in Refs. [5, 7]. In all these applications, the FDS scheme was
used. In order to show that the unsteady asymmetric solutions are not scheme
dependent, the effect of computational methodologies and numerical dissi-
pation on the solutions are examined in the present paper. The case of asym-
metric flow around a circular cone has also been computed using the flux-
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FiG. 4. Unsteady asymmetric flow with vortex shedding around a circular cone using FDS
schemes. a = 30°, My, = 1.8, Re = 10°, At = 1072

vector splitting (FVS) scheme of the same code. In Fig. 5, we show the time-
accurate solutions using the FVS scheme on the same grid. Using the FVS
scheme, the flux limiters are turned on, and as can be seen from the logarith-
mic-residual curve, the solution becomes symmetric and steady after 5000
time steps. Next, the flux limiters are turned off, and the solution shows a
transient response up to 12,000 time steps. Thereafter, the solution becomes
periodic with periodic asymmetric vortex shedding. The solution is shown
every 100 time steps starting from time Ste€p 13,900 until ime step 14,600.
Although the process of adjusting the time instants to match those of the FDS
solution is difficult, it is seen that the captured snap shots of the FVS solution
almost match those of the FDS solution at time steps 15,000, 15,100, 15,200,
15,300, 15,400, 15,500, 15,600, and 15,700, respectively. Comparing the FVS
solutions at time ste€p of 13,900 with that of 14,600, it is seen that they are
mirror images of each other. Hence, periodic flow response has been achieved
with a period of 1,400 X 10”2 = 1.4, which is exactly the same period of
shedding as that of the FDS solution. This pinpoints the high numerical dis-
sipation effect of the FVS scheme when the flux limiters are turned on. The
resulting numerical dissipation in the FVS is large enough t0 dampen the
random disturbances of the flow solution. By turning off the flux limiters in
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FIG. 5. Unsteady asymmetric flow with vortex shedding around a circular cone using FVS
schemes. a = 30°, M, = 1.8, Re = 10%, At = 1072

the FVS scheme, the random disturbances can grow producing the asymmetric
unsteady vortex shedding. This also shows that the FDS scheme, even with
the flux limiters turned on, is less dissipative than the FVS scheme. These
results conclusively show that unsteady asymmetric flows are obtained irre-

spective of the numerical methodologies.
Next, we consider the control of this unsteady asymmetric flow using sharp-

edged thick strakes and flat-plate strakes with different orientations. For all
the strake shapes, the height is kept at 0.3r. Figure 6 shows the results of this
study using sharp-edged and flat-plate strakes at é = 0°, 10°, and —10°, where
5 is the angle measured in the counter-clockwise direction from the horizontal
line at § = 90°. For this angle of attack, all the strake orientations are still
effective in eliminating the unsteady asymmetric vortex shedding and ren-
dering the flow perfectly symmetric. Again the C,-curves show jumps at the
strakes leading edges at § = 90° and 270°. The lift coefficient of all controlled
flow cases, Fig. 7, is higher than that of the asymmetric flow case. With slight
differences in the lift coefficient, the highest lift is produced by the flat-plate
strakes with 8 = —10°, where the primary vortex cores are slightly closer to
the body surface than for the other cases.
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Comparing the results of the sharp-edged thick strakes at o = 30° with
those of the sharp-edged thick strakes at « = 20° (Fig. 3), we notice that the
primary vortex COres of the former are closer to the plane of symmetry and
higher above the cone surface than those of the latter.

In the bottom row of Fig. 7, we show typical grids for the cases of sharp-
edged thick strakes and the flat-plate strakes with 6 = 10°. The grids are
generated by using a hyperbolic grid generator with transfinite grid interpo-
lation to refine the grid in the strake region.

4. Passive Control For a C ircular Cone Using Sharp-Edged Thick Strakes,
a = 40°

For this case, the angle of attack is increased to o = 40° keeping all the
other flow conditions fixed. The same sharp-edged thick strakes of the previous
case (o = 30°) have been used along with the same grid. Figure 8 shows the
results of this case. It is seen that although the C-curve looks perfectly sym-
metric and although the lift coefficient curve does not show any increase after
the time step 4,000, the total-pressure-loss contours show very slight asym-
metry. This indicates that the current height of the strakes might not be suf-
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FiG. 8. Passive control of asymmetric flow around a circular cone using sharp-edged thick
strakes. a = 40°, M, = 1.8, Re = 10%, h = 0.3r.
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ficient to yield flow symmetry at higher angles of attack. The present solution
shows that the vortical flow substantially stretches upwards.

5. Passive Control For an Elliptic-Section Cone Using a Vertical Fin,
a = 25°

In order to produce a substantial flow asymmetry (of the same order as
that of the circular cone of Fig. 1) for an elliptic-section cone of fineness ratio
fr = 0.6, the angle of attack has been increased to = 25°, and the freestream
Mach number has been decreased to M, = 1.5. Passive control of this flow
has been tested using vertical fins of heights & = 1.5a and 24, where 2a is the
length of the cross-section minor axis. The grid is 161 X 81 in the wrap-
around and normal directions, and was generated by a modified Joukowski
transformation with minimum grid spacing of AE2 = 107* and AE = 107
(for the vertical-fin control). The results are shown in Figs. 9 and 10. For the
case with no fin, the lift coefficient shows an increase near step 7,000, and it
remains constant thereafter. For the case with h = 1.5a, the flow is still strongly
asymmetric and the lift coefficient shows an increase near step 8000. The
total-pressure-loss contours show a very long free-shear layer from the left
side. From the right side, the free-shear layer becomes higher than the vertical
fin and crosses over the fin to the left side. Two primary-vortex cores are

h=1.5a h=2a
8 1] 8
- . 4
2 2 2
c, o <, o Co 0
2 -2 2
4 -4 4
Y IS R D S S S el L4 el L
o e @ 740 300 380 o e 120 1@ 740 300 380 P ED ‘(30 760 300 380

F1G. 9. Passive control of asymmetric flow around an elliptic-section cone using vertical fin.
= 25°, M, =15 Re= 105, fr=06,h = 1.5a and 2a (2a = cone local minor-axis length).
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formed at the cone-fin juncture with secondary separations below them. When
the fin height 18 increased to h = 2a, perfect symmetric flow is obtained and
the lift coefficient remains constant. The behavior of this vertical-fin control
case is very similar to that of the circular cone. As long as the vertical fin 1s
high enough as compared to the maximum height of the free-shear layer, flow
symmetry is obtained. Obviously, if side-strakes are used, they will push the
vortex cores further apart preventing disturbance interaction between the two

sides, and flow symmetry will be achieved.

6. Passive Control For a Diamond-Section Cone Using a Vertical Fin,
a = 25°

For this case, the section fineness ratio is 0.8, the angle of attack isa =
25° and the freestream Mach number is 1.5. With the exception of the section
fineness ratio, the flow conditions of this case are the same as those of the
elliptic-section cone. This simply shows that for the same section fineness
ratio and same flow conditions, diamond-section cones with sharp edges pro-
duce less flow-asymmetry strength than that of elliptic-section cones.

Figure 11 shows the results of the diamond-section cone flow with and
without a vertical fin. For the flow-control case, a symmetric flow has been
obtained using a vertical fin of height h = 1.5a, which is shorter than that
required for the elliptic-section case.

CONCLUDING REMARKS

Computational studies for passive control of steady and unsteady, super-
sonic, asymmetric vortical flows have been carried out using vertical fins in
the leeward plane of geometric symmetry, and using side strakes with and
without thickness. The governing equations are the unsteady, compressible,
‘thin-layer Navier-Stokes equations. The equations have been solved using
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FIG. 11. Passive control of asymmetric flow around a diamond-section cone using a vertical
fin. o = 25°, M, = 1.5, Re = 10, fr = 0.8, h = 1.5a.

an implicit, upwind, flux-difference splitting, finite-volume scheme. The flow-
control studies have focused on circular-section cones since they are the best
potential section-shapes for strong flow asymmetry. It has been shown that
side-strake passive control is very effective over a wide range of angle of attack.
It has also been shown that side-strake control is more efficient than vertical-
fin control in producing higher lift. Moreover, it is more practical since the
strakes have shorter height and, hence, less weight in comparison with the
vertical fin.
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