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ANALYSIS AND CONTROL OF ASYMMETRIC VORTEX FLOWS

AND SUPERSONIC VORTEX BREAKDOWN

Osama A. Kandil*

Accomplishments (Dec. 1, 1991-Nov. 30, 1992)

The accomplishments which have been achieved in the present year covering the period

from Dec. 1, 1991 until Nov. 30, 1992 are given. These accomplishments include publications,

national and international presentations, NASA Research Highlig.hts and presentations, and the

research group supported under this grant.

I. Conference Papers, Proceedings and Journal Publications:

l° Kandil, O. A., Kandil, H. A. and Liu, C. H., "Shock4'Vortex Interaction and Vortex Breakdown

Modes," IUTAM Symposium on Fluid Dynamics of High Angle of Attack, Paper No. T. 1.2,

University of Tokyo, Tokyo, Japan, September I3-17, 1992 (Invited), (a copy is enclosed).

. Kandil, O. A., Wong, T. C., Sharaf, H. H. and Liu, C. H., "Recent Advances in Numerical

Simulation and Control of Asymmetric Flows Around Slender Bodies," IUTAM Symposium

on Fluid Dynamics of High Angle of Attack, Paper No. W. 1.2, University of Tokyo, Tokyo,

Japan, September 13-17, 1992 (Invited), (a_copy is enclosed).

° Wong, T. C., Kandil, O. A., and Liu, C. H., "Computation of Wake Vortex Flows and

Control of Their Effects on Trailing Wings," AIAA 4429-92-CP, AIAA Atmospheric Flight

Mechanics Conference, South Carolina, August 1992, Vol. 1, pp. 280-292, (a copy is

enclosed).

. Kandil, O. A., Sharaf, H. H. and Liu, C. H., "Active Control of Asymmetric Vortical Flows

Around Cones Using Injection and Heating," AIAA 92-4426-CP, AIAA Atmospheric Flight

Mechanics Conference, South Carolina, August 1992, Vol. 1, pp. 244-253, (a copy is

enclosed).

. Kandil, O. A., Kandil, H. A. and Liu, C. H., "Critical Effect of Downstream Boundary Con-

ditions on Vortex Breakdown," AIAA 92-2601-CP_ 10th Applied Aerodynamics Conference,

Palo Alto, CA, June 22-24, 1992, pp. 12-26, (a copy is enclosed).

. Kandil, O. A. and Liu, C. H., "Unsteady Vortex Flows and Flow Control Around Slender

Bodies and Delta Wings," Workshop on Supermaneuverability, AFOSR, Lehigh University,

April 9-10, 1992, pp. 383--417.

. Kandil, O. A. and Sharaf. H. H., "Recent Advances in Computational Active Control of

Asymmetric Vortex Flows, "Fourth International Conference for Fluid Mechanics, Alexan-

dria, Egypt, April 28-30, 1992, Vol. I, pp. 237-249.
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15.

Wong, T. C., Kandil, O. A. and Liu, C. H., "Three-Dimensional Computational Study of

Asymmetric Flows Using Navier-Stokes Equations," Proceedings of Asian Pacific Confer-

ence on Computational Mechanics, Hong Kong, December 11-13, 1991, pp. 1365-1371,

(a copy is enclosed).

Liu, C. H., Kandil, O. A. and Wong, T. C., "Computational Study for Passive Control of

Supersonic Asymmetric Vortical Flows around Cones," Impact Journal of Computing in

Science and Engineering, Academic Press, Inc., Vol. 4, pp. 80-96, March, 1992, (a copy

is enclosed).

Kandil, O. A., Wong, T. C. and Liu, C. H., "Numerical Simulation of Unsteady Asymmetric

Flows around Cones," Journal of Fluids and Structures, Academic Press, Vol. 6, pp.

249-265, February 1992, (a copy is enclosed).

Kandil, O. A., Wong, T. C. and Liu, C. H., "Prediction of Steady and Unsteady Asymmetric

Vortical Flow Around Cones," AIAA Journal, Vol. 29, No. 12, December 1991, pp. 1269-

1278, (a copy is enclosed).

Kandil, O. A., Wong, T. C., Kandil, H. A. and Liu, C. H., "Thin-Layer and Full Navier-Stokes

l_z_cally-Conical Asymmetric Solutions," Accepted for Publication to the ASME Journal of

Fluids Engineering, December 17, 1991, log. No. 3303-RKA, to appear in April 1993.

Kandil, O. A., Kandil, H. A. and Liu, C. H., "Supersonic Quasi-Axisymmetric Vortex Break-

down," Accepted for Publication to the ASME Journal of Fluids Engineering, December 17,

1991, Log. No. 3302-RKA, to appear in April 1993.

Kandil, O. A., Wong, T. C. and Liu, C. H., "Three-Dimensional Navier-Stokes Asymmetric

Solutions for Cones and Cone-Cylinder Configurations," Accepted for Publication to the

AIAA Journal, November 1991, to appear in December 1993.

Liu, C. H., Wong, T. C. and Kandil, O. A., "Prediction of Asymmetric Vortical Flows

Around Slender Bodies Using Navier-Stokes Equations," Japanese Journal of Fluid Dynamics

Research, to appear January 1993.

II. National and International Presentations:

.

.

"Unsteady High-a Computational Prediction and Control," Institute for Space and Astronau-

tical Sciences (ISAS), Tokyo, Japan, September 17, 1992. Onvited)

"Shock/Vortex Interaction and Vortex-Breakdown Modes," IUTAM Symposium of Fluid

Dynamics of High Angle of Attack, Tokyo, Japan, September 13-17, 1992.

° "Recent Advances in Numerical Simulation and Control of Asymmetric Flows Around

Slender Bodies," IUTAM Symposium of Fluid Dynamics of High Angle of Attack, Tokyo,

Japan, September 13-17, 1992.
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4. "Computational High-or Aerodynamics," Presentation given to General John Loh (4 star-

general) of langley Air Force Base, ODU, August 31, 1992.

5. "Computation of Vortex Wake Flows and Control of Their Effects on Trailing Wings," AIAA

Atmospheric Flight Mechanics Conference, Hilton Head, SC, August 10-12, 1992.

6. "Active Control of Asymmetric Vortical Flows Around Cones Using Injection and Heating,"

AIAA Atmospheric Flight Mechanics Conference, Hilton Head, SC, August 10-12, 1992.

7. "Computation and Control of Vortex Wake Flows," Directorate Review of Theoretical Flow

Physics Branch, NASA Langley Research Center, Hampton, VA, July 16, 1992.

8. "Critical Effects of Downstream Boundary Conditions on Vortex Breakdown," AIAA 10th

Applied Aerodynamics Conference, Palo Alto, CA, June 22-25, 1992.

9. "Vortex-Wake Flows," Division Review of Theoretical Flow Physics Branch, NASA-Langley

Research Center, Hampton, VA, June 5, 1992.

10. "Recent Advances in Computational Active Control of Asymmetric Vortex Flows," Fourth

International Conference for Fluid Mechanics, Alexandria, Egypt, April 28-30, 1992.

11. "Prediction and Control of Unsteady Flows for Supermanuverability," Taiwan Aeronautical

Research Center- ODU Symposium, MEM Dept., ODU, April 20-21, 1992.

12. "Physical Issues and Numerical Simulation of Supersonic Vortex Breakdown," MEM Dept.

Televised Seminars, ODU, Norfolk, VA, April 171, 1992.

13. "Unsteady Vortex Flows and Flow Control Around Slender Bodies and Delta Wings,"

AFOSR Workshop on Supermanueverability, Lehigh Univ., PA, April 9-10, 1992. Also

Unsteady Aerodynamics Branch Briefing to the Canadian Air Force, NASA Langley, May

26, 1992.

14. "Vortex Research Work" Briefing to AFOSR Program Manager, NASA Langley Research

Center, Hampton, VA, Feb. 12, 1992.

HI. Papers Submitted or Accepted for Presentation:

. Kandil, O. A., Kandil. H. A. and Liu, C. H., "Three-Dimensional Supersonic Vortex

Breakdown," AIAA 93-0526, AIAA 31st Aerospace Sciences Meeting, Reno, Nevada,

January 11-14, 1993.

. Kandil, O. A., Kandil, H. A. and Liu, C. H., "Vortex/Shock Interaction on a 65°-Delta Wing

in Transonic Flow," Submitted to the AIAA Fluids and Plasma Dynamics, Orlando, Florida,

July 6-9, 1993.
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3. Kandil, O. A., Sharaf,H. H. and Liu, C. H., "Active Control of Asymmetric Conical Flow

Using Spinning and Oscillation," submitted to the AIAA Fluids and Plasma Dynamics,

Orlando, Florida, July 6-9, 1993.

IV. NASA Research Highlights:

1. "Three-Dimensional Shock/Vortex Interaction and Vortex Breakdown Modes," Kandil, O.

A., Kandil, H. A. and Liu, C. H., NASA RTOP, July 1992.

2. "Active and Passive Control of Asymmetric Vortical Flows Around Conical Forebodies,"

Kandil, O. A., Sharaf, H. H., and Liu, C. H., NASA RTOP, July 1992.

V. Research Group:

This Principal Investigator is assisted by the following persons in the research group:

1. Dr. T. C. Wong, Research Associate, MEM Dept., Old Dominion University; Prediction

and Control of Wake-Vortex Flows.

2. Mr. Hamdy A. Kandil, Ph.D. Candidate, MEM Dept., Old Dominion University; Internal

and External Shock/Vortex Interaction and Vortex-Breakdown Modes.

3. Mr. Hazem H. Sharaf El-Din, Ph.D. Student, MEM Dept., Old Dominion University; Passive

and Active Control Methods for Asymmetric Flows around Conical Forebodies.
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RECENT ADVANCES IN NUMERICAL SIMULATION AND

CONTROL OF ASYMMETRIC FLOWS AROUND SLENDER BODIES

O. A. Kandil. T.-C. Wong, H. H. Sharaf El-Din

Dept. of Mechanical Engineering and Mechanics

Old Dominion University, Norfolk, VA

C. H. Liu

Theoretical Flow Physics Br.

NASA Langley, Hampton, VA

Summary

The problems of asymmetric flow around slender bodies and its control are formulated using

the unsteady, compressible, thin-layer or full Navier-Stokes equations which are solved using

an implicit, flux-difference splitting, finite-volume scheme. The problem is numerically

simulated for both locally-conical and three-dimensional flows. The numerical applications

include studies of the effects of relative incidence, Mach number and Reynolds number on the

flow asymmetry. For the control of flow asymmetry, the numerical simulation cover passive

and active control methods. For the passive control, the effectiveness of vertical fins placed

in the leeward plane of geometric symmetry and side strakes with different orientations is

studied. For the active control, the effectiveness of normal and tangential flow injection and

surface heating and a combination of these methods is studied.

Introduction

Flow asymmetry around pointed slender cones develops at critical values of relative incidence

(ratio of angle of attack to nose semiapex angle) due to short.duration transient disturbances

or forced disturbances. The origin of the transient disturbances may be a transient side

slip, an acoustic disturbance, or similar disturbances of short duration. The origin of forced

disturbances is geometric imperfections in the nose or similar disturbances of permanent

nature. Flow asymmetry produces side forces, asymmetric lifting forces and corresponding

yawing, rolling and pitching moments that might be larger than those available by the control

system of the vehicle. Currently, research efforts are devoted for eliminating or alleviating

flow asymmetry and its corresponding asymmetric loads. Various methods of passive and

active control are being studied to learn about their control effectiveness.

In several recent papers by Kandil, et al. [1]-[4], the unsteady, thin-layer, compressible

Navier-Stokes equations have been used to simulate steady and unsteady, asymmetric vortex

flows, including their passive control, around cones with different cross-sectional shapes.

The emphasis of these papers was extensive computational studies of the parameters which

influence the as.ymmetric flow phenomenon and its passive control. Since the computational

cost associated with the solution of three-dimensional-flow problems at reasonable flow

resolution is very expensive, all the computational solutions were obtained using a locally-

conical flow assumption. Such an assumption reduces the problem solution to that on



two conical planes, which are in close proximity of each other, and hence it reduces the

computational cost by an order of magnitude. Moreover, such solutions still provide extensive

understanding of the flow physics since one can use very fine grids for reasonable flow

resolution.

In a later paper, by Kandil, et al. [5], the full Navier-Stokes solutions were compared with

the thin-layer Navier-Stokes solutions. It was shown that the full Navier-Stokes solutions

produced thicker free-shear layers and more vortex-core resolution as compared with those

of the thin-layer Navier-Stokes equations. In reference [5], a few tentative three-dimensional

flow solutions were also presented.

Substantialresearch effortshave recently been devoted for eliminatingor alleviatingflow

asymmetry and itscorresponding sideforce.In theexperimental area,severalpassive-control

methods [6]-[8]and active-controlmethods [9]-[13]have bccn investigated.Computational

simulationshave also bccn used to investigatethe effectivenessof severalpassive-control

methods [I]-[5]and active-controlmethods [12],[14], [15]. Various methods of passive

controlwere demonstrated in the above referenceswhich include the use of verticalfins

along the leeward plane of geometric symmetry, thinand thick side strakeswith different

orientations,and rotatableforebody tipswhich have variablecross section(from a circular

shape at itsbase to an ellipticshape at itstip). Itwas shown by Kandil, ct al.[4] that

side-strakescontrolismore practicalthan the vertical-fincontrolsincethe former was more

effectiveover a wide range of angle of attackthan the former. Moreover, side-strakecontrol

provided an additionalliftingforce. However, the effectivenessof the sidc-strakecontrol

terminatesatvery high anglesof attackfortheconsideredstrakegeometry and flow conditions.

Various active-controlmethods have been used which includeforebody blowing and movable

forebody strakes.The fombody blowing methods includeforward blowing, normal blowing,

aftblowing and tangentialblowing. The main concept of forebody blowing istocontrolflow

separationon the forebody and to createyawing forcesand moments which can bc utilize..d

in controllingthe body.

In this paper, we present samples of simulating asymmetric locally-conicaland thre_-

dimensional flows around cones. Next, we presentsamples of simulationfor passivecontrol

using a verticalfinand a side strake.Samples of simulatingactivecontrolusing normal and

tangentialflow injection,surfaceheating and hybrid methods are alsopresented.

Highlights for Formulation and Computational Schemes

Formulation: The asymmeu'ic-flow problems includingtheirpassive and activecontrols

arc formulated using the conservativeform of the unsteady,compressible,thinor fullNavier-



Stokes equations in terms of time-independent, body-conforming coordinates. The equations

are given in Ref. [5] and hence, they are not repeated here.

The boundary and initial conditions vary according to the problem under consideration. The

boundary conditions are explicitly satisfied. In general, they include inflow-outflow conditions

and solid-boundary conditions. For problems of flow asymmetry, where the flow is solved

throughout the whole computational domain, periodic boundary conditions are used at the

plane of geometric symmetry of the problem.

For the asymmetric flow problems around slender bodies and for supersonic inflow-outflow

boundary, the Riemann-invariant boundary conditions are used. They require that the inflow

variables be at the freestream conditions, and the conical shock enclosing the body be captured

as part of the solution. For supersonic outflow boundary, the Riemann-invariant boundary

conditions require that all flow variables be extrapolated from the interior cells. On the solid

boundary, without injection or heating, the no-slip and no-penetration conditions are enforced.

Moreover, the zero normal-pressure gradient and adiabatic boundary conditions are enforced.

For the active control problems, the mass-flow rate is specified at the body surface for the

normal injection control and the temperature distribution is specified at the surface for the

heating control. For the tangential flow injection, the mass flow rate and velocity profile are

specified at the lip exit.

The initial conditions correspond to the uniform flow conditions with ul = u2 = u3 = 0 on

the solid boundary. These conditions are used to obtain the asymmetric flow solution. Next,

the flow control conditions are enforced and the previously obtained asymmetric solution is

used for the initial conditions of the active control problem.

Computational Scheme: The implicit, upwind, flux-difference splitting, finite-volume

scheme is used to solve the unsteady, compressible, full Navier-Stokes equations. The scheme

uses the flux-difference splitting scheme of Roe which is based on the solution of the ap-

proximate Riemann problem. In the Roe scheme, the inviscid flux difference at the interface

of computational cells is split into two parts; left and right flux differences. The splitting is

accomplished according to the signs of the eigenvalues of the Roe averaged-Jacobian matrix

of the inviscid fluxes at the cell interface. The smooth flux limiter is used to eLiminate os-

cillations at locations of large flow gradients. The viscous-and heat-flux terms axe linearized

and the cross-derivative terms are eLiminated in the implicit operator. The viscous terms are

differenced using a second-order accurate central differencing. The resulting difference equa-

tion is approximately factored and is solved in three sweeps in the _1, _2 and _3 directions.

The computational scheme is coded in the computer program "FTNS3D".

For the locally-conical flow solutions, an axial station of xt = 1.0 is selected and the

components of the flowfield vector are forced to be equal between this axial station and



another axial station in close proximity to xl = 1.0. This ensures that the flow variables are

locally independent of the axial direction at Xl = 1.0 (Kandil, et al. [5]).

Computational Applications and Discussion

Asymmetric Steady Flow (locally-conical solution): Figm'e 1 shows the residual error

versus the number of iterations,surface-pressure(SP) coefficient,cross-flow velocityand

total-pressure-loss(TPL) contour for the solutionaround a 5°-semiapcx circularcone. Two

computer codes (CFL3D and ICF3D) which solve the thin-layerNavicr-Stokes equationsaxe

used tovalidatethe asymmetric flow solution.The logarithmic-residual-errorcurve shows t.hc

stagesthrough which the solutiongoes untila stableasymmetric steady solutionisobtained.

A grid of 161x81×2 points in the wrap-around, normal and axial directions,respectively,

with minimum spacing of 10--4, has been used. The computational domain extends around

the body to 21 r where r is the localradius of the cone. For these criticalconditions,the

asymmetry is developed due to random disturbances;such as the machine round-off-error

for the CFL3D solution.

Asymmetric Unsteady Flow (locally.conical solution): Figure 2 shows the results for the

solution of the flow around the same cone using the same grid, where a = 30 °. Here,

the solution is validated by using the thin-layer and full, Navier-Stokes equations using the

flux-difference splitting (FDS) scheme and the flux-vector splitting (FVS) scheme. All the

solutions show asymmetric, periodic flow with vortex shedding. The figures show snapshots

of TPL contours over a haft cycle of periodic response. The periodicity is substantiated by

the, first and last snapshot in each row. It is clearly observed that they are mirror image of

each other over the half cycle.

Asymmetric Steady Flow (three-dimensional solutions): Figures 3 and 4 show the asym-

metric flow results for the flows around a 5°-semiapex cone and a 5°-semiapex cone with

cylindrical after-body configuration. A grid of 161x81x65 points in the wrap-around, nor-

mat and axial directions, respectively, with minimum spacing of 10 .6 has been used. For the

cone solution, the spatial flow asymmetry is qualitatively similar to that of the temporal flow

asymmetry of the locally-conical flow solution of Fig. 2. For the cone-cylinder configuration

at the same angle of attack and Mach number as those of the cone case, it is concluded that

the cylindrical afterbody enhances the flow asymmetry at lower Reynolds number. These

solutions are obtained using the thin-layer Navier-Stokes equations.

Passive Contro! Using Fins and Strakes (locally.conical solutions): Figures 5 and 6

show the solutions using passive flow controls through a vertical fin placed in the leeward

plane of geometric symmetry (Fig. 5) or side snakes (Fig. 6). It is concluded that the fin

height, h, must be at least equal to or greater than the height of the free-shear layers in order



to yield a symmetric flow. The side-strake control is more practical than the fin control since

it is more effective for high angles of attack than the fin, and moreover it provides additional

lifting force. These solutions are obtained using the thin-layer Navier-Stokes equations.

Active-Control Using Normal Flow Injection: Figure 7 shows the historyof the locally-

conicaly fullNavier-Stokes solutionsfor activecontrol around a 5°-semiapex cone. The

controlis achieved by injectingflow from circumferentialportsin the circumferentialangle

range of 0 = + 67.5°. A variablemass-flow-rateinjectionof maximum rateof 0.03 isused.

The mass flow rateisproportionalto the differencein the surfacepressure between the left

and rightsidesof the cone. Figure 8 shows the effectivenessof thisflow injectionas the

angle of attackis increasedup to 30°,where flow asymmetry develops again. The solution

isobtained using the fullNavier-Stokes solver,FTNS-3D code, on a grid of 241 × 81 x2.

Hybrid Active Control Using Heating and Injection: Since normal flow injection failed

to yield asymmetric solutions at angles of attack as high as 30 ° , hybrid methods of active

control are investigated. Figure 9 shows the effectiveness of hybrid surface heating and

variable mass flow normal injection for the same cone as the angle of attack is increased. It

is seen that this method is very promising at high angles of attack. Here, symmetric surface

pressure and not symmetric flow is obtained at c_ = 38 ° and 42 °. The surface temperature is

taken as Ts = 5Tc_ and the maximum mass flow rate is 0.05. The solution is obtained using

the full Navier-Stokes solver, FTNS-3D code, on the same grid as that of Fig. 8.

Active Control Using Tangential Flow Injection: Figure 10 shows the results for active

control using injection of flow from side Lips. The radius of the lower portion is 1.05 that

of the upper portion. The maximum mass flow rate is 0.2 and a parabolic velocity profile

is assumed at the lip exit. The solution is obtained by using the full Navier-Stokes solver,

FTNS-3D, code and a multi-block scheme to grid the lip-flow exit and the upper and lower

flow regions. It is seen that this method is effective up to 30 ° angle of attack.

Concluding Remarks

The unsteady, compressible, thin-layer and full Navier-Stokes equations have been used to

solve for asymmetric steady and unsteady, locally-conical and three-dimensional flows around

circular cones at high angles of attack. Passive and active control methods have been applied

to study their effectiveness to yield either a symmetric flow or a symmetric surface pressure

distribution and hence removing the side forces. Work is underway to use other active control

methods as well as hybrid passive-active control methods.
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Summary

Computational simulationand study of shock/vortexinteractionand vortex-breakdown modes

arc considered for bound (internal)and unbound (external)flow domains. The problem is

formulated using the unsteady, compressible,fullNavier-Stokes (NS) equations which are

solved using an implicit,flux-differencesplitting,finite-volumescheme. For the bound flow

domain, a supersonicswirlingflow isconsidered ina configuredcircularduct and theproblem

is solved for quasi-axisymmctric and three-dimensionalflows. For the unbound domain,

a supersonic swirlingflow issued from a nozzle intoa uniform supersonic flow of lower

Mach number isconsidered forquasi-axisymmctricand three-dimensionalflows.The results

show severalmodes of breakdown; e.g.,no-breakdown, transientsingle-bubblebreakdown,

wansicnt multi-bubble breakdown, periodic multi-bubble multi-frequency breakdown and

hclicalbreakdown.

Introduction

Longitudinalvorter4transvcrscshock-wave interactionsare typicalapplicationswhich appear

in transonicand supersonicflows over a snake-wing configurationat moderate-high angles

of attack,at a supersonic inletinjestinga vortex and insidea supersonic combustor where

fuel is injectedin a swirlingjet to enhance fuel-airmixing [I]-[3]. For the swake-wing

configuration,vortexbreakdown isundesirablesince itresultsin the stallphenomenon, and

hence itsoccurrence need to be delayed. On the otherhand, vortex breakdown for the other

two applicationsisdesirablesinceitenhances mixing and stabilityof the flame [4]-[5],and

hence itsoccurrence need to be conn'ollcdfor the optimum performance. Unfortunately,the

literaturelacksthistypeof analysiswith theexceptionof the preliminarywork of Liu,Krausc

and Menne [6],Copening and Anderson [7],Dclery,et al. [I],Kandil and Kandil [8] and

Meadows, Kumer and Hussaini [9].

The firsttime-accurateNS solutionfor a supersonic vortex breakdown was developed by

the present authors in Ref. [I0]. We considered a supersonic quasi-axisymmetric vortex

flow in a configuredcircularduct. The time-accuratesolutionof the unsteady,compressible

NS equations was obtained using an implicit,upwind, flux-differencesplittingfinite-volume

scheme. A shock wave has been generatednearthe duct inletand unsteady vortexbreakdown

has been predictedbehind the shock. The predictedflow was characterizedby the evolution,

convection merging and shedding of vortexbreakdown bubbles. The Eulcr equations were



also used to solve the same problem. The Euler solution showed larger size and number of

vortex-breakdown bubbles in comparison with those of the NS solutions. The time-accurate

solution was carried out for 3,200 times steps which are equivalent to a dimensionless time

of 16. Only one value of Reynolds number of 10,000 was considered in Ref. [10].

In a later paper [11], we expanded our study of this flow using time-accurate computations

of the NS equations with a fine grid in the shock-vortex interaction region and for longer

computational times. Several issues were addressed in that study. First, we showed the

effect of Reynolds number on the temporal evolution and persistence of vortex-breakdown

bubbles behind the shock. In that stage of computations, the conditions at the downstream

exit were obtained by extrapolating the components of the flowfield vector from the interior

cell centers. Although the flow was supersonic over a large portion of the duct exit, subsonic

flow existed over a small portion of the exit around the duct centerline. Therefore, selected

flow cases were computed using a Riemann-invariant-type boundary conditions as well as

other boundary conditions at subsonic points of the duct exit [12].

In the present paper, we consider shock/vortex interaction and the resulting vortex breakdown

modes for quasi-axisymmetric and three-dimensional flows. This study covers bound and

unbound flow domains. For the bound domain, supersonic swirling flow is considered in a

configured duct, and for the unbound domain supersonic swirling flow that is issued from a

nozzle into a uniform supersonic flow of lower Mach number is considered.

Highlights of Formulation and Computational Scheme

Formulation: The conservative, unsteady, compressible, full Navier-Stokes equations in

terms of time-independent, body-conformed coordinates _1, _2 and _3 are used to solve the

problem. The equations are given in Ref. [11] and hence they are not presented here. Along

with these equations, boundary conditions are specified at the computational-domain inlet,

side wall and downstream exit. The downsueam exit boundary conditions will be presented

and discussed in the next section of the computational results. The initial conditions are also

presented in the next section.

Computational Scheme: The computational scheme used to solve the unsteady, compress-

ible full NS equations is an implicit, upwind, flux-difference splitting, finite-volume scheme.

It employs the flux-difference splitting scheme of Roe which is based on the solution of the

approximate one-dimensional Riemann problem in each of the three directions. In the Roe

scheme, the inviscid flux difference at the interface of a computational cell is split into left

and right flux differences. The splitting is accomplished according to the signs of the eigen-

values of the Roe averaged-Jacobian matrix of the inviscid flux at the cell interface. The

smooth limiter is used to eliminate oscillations in the shock region. The viscous and beat-flux

terms are differenced using second-order spatially accurate central differencing. The resulting



differenceequationis approximately factored and is solved in three sweeps in the _t, _2 and

_3 directions. The scheme is coded in the computer program which is called "FTNS3D".

The quasi-axisymmetric solutions are obtained using the three-dimensional code by forcing

the flowfield vector to be equal on two axial planes, which are in close proximity of each other.

Computational Results and Discussion

a. Quasi.axisymmetric Vortex Breakdown Modes in a Configured Duct: Figure 1 shows

an axial plane of a configured circular duct. The design of the duct configuration is intended to

ensure that the supersonic inflow becomes supersonic at the exit. However, as the computation

will show, a small portion of the duct exit becomes subsonic at certain times for the specified

inflow conditions. A grid of 221x 51 x2 in the axial, radial and circumferential directions,

respectively, is used for the quasi-axisymmetric flow. For the three-dimensional flow, a grid

of 221 x51 x49 in the axial, radial and circumferential directions, respectively, is used. The

minimum grid length is 0.002. The upstream Mach number is kept at 1.75.

The initial profile for the tangential velocity is given by

[ (w ke 1 - exp -
= -;- (I)

where Uoo = 1.74, rm = 0.2 and ke = 0.1. The maximum u,F=, swirl ratio t, is at • =

0.224 and its value is kept at 0.32. The radial velocity, v, at the initial station is set equal

to zero and the radial momentum equation is integrated to obtain the initial pressure profile.

Finally, the density p is obtained from the definition of the speed of sound for the inlet flow.

With these compatible set of profiles, the computations are carried out accurately in time with

At = 0.0025. The wall boundary conditions follow the typical Navier-Stokes solid-boundary

conditions.

Reynolds number, Re = 4,000: Figure 2 shows snapshots of the streamlines and Much

contours for the flow case of Re = 4,000. For this value of Reynolds number, a single

breakdown bubble is seen at t = 5 and it is convected downstreams as time passes. This

breakdown bubble is formed during the downstream motion of the inlet shock, which reaches

its maximum downstream displacement at t = 5. Later on, the shock moves upstream, as

it is seen at t - 8, while the breakdown bubble is convected in the downstream direction.

Thereafter, the shock stays stationary at the inlet. This swirling flow case shows a transient

single-bubble breakdown flow. The conditions at the exit are obtained by extrapolation from

the interior cell centers.

Reynolds number, Re = 20,000: Figure 3 shows snapshots of the streamlines and Mach

contours for this case. These snapshots show a vortex breakdown mechanism of evolution,



convection, merging and shedding of bubbles while the inlet shock is moving downstreams,

then upstmams and finally downstreams. The inlet shock becomes stationary and no more

bubbles arc developed. This swirling flow case shows a transient multi-bubble breakdown

flow.

Reynolds number, Re = 100,000: Figure 4 shows snapshots of the streamlines and Mach

contours for this case. The downstream boundary conditions are obtained by extrapolating

all the flow variables from the cell centers at the exit. The streamlines snapshots show multi-

bubble vortex breakdown evolution, convection, merging and shedding. The time-accurate

integration was carried out up to t = 200 and the solution showed periodic multi-frequency

cycles of vortex-breakdown bubbles [21]. An example of the merging of vortex breakdown

bubbles of same sign of vorticity is shown at t = 17. An example of convection and shedding

of vortex breakdown bubbles is shown at t = 25. Comparing the streamlines solutions at t

= 25 and t = 89, it is seen that the solutions are almost the same which conclusively show

that the breakdown process is periodic. The Mach-contours show the dynamics of inlet shock

motion. In the time range of t = 3-8, the inlet shock moves upstream toward the inlet and

its central portion exists outside the inlet section at t = 8. In the time range of t = 8-25,

the inlet shock moves downstream with corresponding evolution, convection, merging and

shedding of breakdown bubbles. In the time range of t = 25-45, the inlet shock maintains its

motion in the downstream direction at a slower rate than before, while another shock, which

is downstream of the inlet shock, appears and also moves in the downstream direction. The

evolution, convection and shedding slowly continues until t = 66. In the time range of t = 66-

78, the downstream shock disappears and a large vortex-breakdown bubble appears and moves

upstream. This motion of the bubble is accompanied by upstream motion of the inlet shock

(t = 78). Later the inlet shock again moves in the downstream direction and the process is

repeated. An animation movie has been produced for the total dimensionless time of t = 200.

Exit Riemann lnvariant Condition, Pb- 2poo: In this case, the back pressure at the

subsonic points of the duct exit is specified to be Pb = 2poo and the other four variables

are extrapolated from the interior cell centers. Figure 5 shows snapshots of the streamlines

and Mach contours of the solution. Comparing the present solution with the solution of the

previous case (Fig. 4), it is seen that the two solutions are similar with the exception that the

present solution lags that of the first case in time. The reason behind this behavior is that the

back pressure Pb is larger than that of the first case. Moreover, the Riemann invariant type

conditions at subsonic points let the downstream effects propagate upstream as time increases.

The existence of the large back pressure which is felt upstream supports the inlet shock and

keeps it in the inlet region.

b. Three-Dimensional Vortex.Breakdown in a Configured Duct: Figure 6 shows the

streamlines and Mach contours for the three-dimensional vortex breakdown modes in a con-



figuredductwith thesameinflow conditionsasthoseof Fig. 4. At the downstream exit, flow

conditions are extrapolated from the interior cell centers. It is observed from the vertical,

axial planes that the vortex breakdown is a three-dimensional phenomenon. The breakdown

changes from a two-bubble type (t = 2-5) to a multi-bubble type (t = 7-34). At certain

times, t = 11 and 19, it is observed that the multi-bubble breakdown is followed by a spiral

breakdown. Beyond t = 46, the breakdown becomes a single-bubble type.

c. Quasi-axisymmetric Vortex-Breakdown of a Supersonic Flow from a Nozzle: Here, a

supersonic swirling jet at M s = 3.0, which is issued from a nozzle into a supersonic uniform

flow of M_ = 2.0, is considered. A grid of 221x51x2 in the axial, radial and tangential

directions, respectively is considered. The computational domain in an axial plane has the

dimensions of 7.0x3.5 in the axial and radial directions, respectively, where the nozzle exit

radius r = 1. The freestream Reynolds number is 296,000. The inflow profiles are taken

from the experimental data of Ref. [2] and they are used as quasi-axisymmetric profiles [12].

Figure 7 shows snapshots of the streamlines and Mach contours at selected time steps. The

streamline figures show multi-bubble breakdown at the early levels of time. These bubbles

develop due to the shock system existing at the nozzle exit. The shock system consists of

two oblique shocks; one is weak and the other is strong. For t > 55, the shock system and

the breakdown bubble move upstreams and remain there with low frequency oscillation.

d. Three-Dimensional Vortex-Breakdown of a Supersonic Flow from a Nozzle: The flow

of the previous case is considered for three-dimensional computations using a square-cross

flow computational domain and a circular cross-flow computational domain. For the first case,

one-half the square side is 3.5 units and for the second case, the radius is 3.5 units. Three

types of grid are used for the first case (Gird types I, 2 and 3) and one type of grid is used for

the second case (Grid type 4), see Fig. 8. This study shows the dominant effect of the grid

shape and distribution on the vortex breakdown solutions. While grid type I shows two large

breal_down bubbles, Grids 2, 3 and 4 show substantially smaller breakdown bubbles. More-

over, the conical shock system ahead of the breakdown bubbles shows substantial difference

in size, location and shape. This study gives an alarming conclusion to the researchers who

use substantially coarse grids with a rectangular cross-flow domain and a rectangular grid,

and still claim capturing of physical vortex-breakdown flows. In the present study, the vortex

breakdown bubbles of grid type 4 are of the same size order as those of grid type 3, although

the shock system is somewhat different in shape.

Concluding Remarks

Computational simulation and study of shock/vortex interaction and vortex breakdown have

been considered for internal and external supersonic swirling flow. The time-accurate

computation for full Navier-Stokes equations is used to produce all the present cases.



Numerousmodes of vortex breakdown flows have been captured. The results show the effects

of Reynolds number, downstream exit conditions, and grid shape, fineness and distribution.

Three-dimensional vortex breakdown computations show somewhat different results from the

quasi-axisymmetric counter parts since the thr_-dimensional flow provides a flow relicfing

effect in the circumferential direction.
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Figure 2. Streamlines and Mach contours for a swirling flow with a transient single-bubble

breakdown, Moo = 1.75,/3 = 0.32, Re = 4,000.

r _

t-r

Figure 3. Streamlines for a swirling flow with transient multi-bubble breakdown, Moo = 1.75,.

/3 = 0.32, Re = 20,000



Figure 4. Streamlines and Mach contours for a swirling flow with periodic multibubbl¢, multi-

frequency vortex breakdown, extrapolation from interior
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Figure 5. Streamlines and Mach contours for a swirling flow with periodic multibubbl¢, multi-

frequency vortex breakdown, Pb = 2Poo, Riemann invariant B.C.
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Figure 6. Mach contours and streamlines for a swirling three-dimensional flow in a configured

circular duct, Moo = 1.75, Re = 100,000,/3 = 0.32
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Figure 7. Strcamlincsand Mach contours for supcrsomc swirlingjet from a nozzle with low-

frequency almost singlebubble vortexbreakdown, extrapolationfrom intcriorB.C.
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ABSTRACT

The near-vortex-wakeflowofa largeaspect-ratiorect-

angularwing isaccuratelycomputed by using the thin-

layerand fullNavier-Stokes(NS) equations.The chord-

wise section of the wing is a NACA-0012 airfoil and its

tip is round. The computations have been carried out on

a fine C-O grid using an implicit, upwind, flux-difference

splitting, finite-volume scheme. The thin-layer NS results
have been obtained with and without flux limiters and

the full NS results have been obtained without flux lim-

iters. Flow transition from laminar to turbulent is mira-

iced by turning-on the Baldwin-Lomax algebraic model
at an experimentally prescribed chord-station locationof
0.05. Comparison of the computed results with each other

and with the experimental data shows that the full NS
results give the best resolution of the near-vortex-wake
flow. Next, the strength of the wing-tip vortex has been
reduced substantially without reducing the lift coefficient

by using flow-injection from a slot along a portion of the
wing tip. The flow injection is directed in the wing plane

at 45* with the wing-tip chord.

INTRODUCTION

Recently, there has been an alarming rate of increase

of the volume of air civil transport at many airports. With
this status of air traffic congestion, the hazardous effect

of wake vortices emanating from large aircraft on light
aircraft, which pass through these vortices during land-

ing and take-off operations, is becoming a vital concern
for operations safety. These vortices are characterized
with high intensity and turbulence, and may produce high

roiling moments on trailing aircraft which could exceed
the available roll control of the trailing aircraft. More-

over, the trailing aircraft, under the influence of these
vortex trails, could suffer a loss of altitude or clhnb rate

in additionto structuraldamages. These vorticesmay
persistup toseveralmilesand forlong periodsof time

before their decay, and therefore they play a major role
in sequencing landing and take-off operations at busy air-
ports. For example, a minimum safe-separation distance

between aircraft is dictated depending on the vortex inten-
sity, wind shear, atmospheric turbulence and temperature

gradient; among others.

Research Associate,Dept. of Mvclumicml EnS_ and Mvclumica,

Member AIAA.

" Professorand Eminent Scholar,Dept. of Medutmcal Engincaing and

Mechanics, Associate Fellow AIAA.

"" Group Leader, _etical Flow Phymics Branch, Auociate Fellow
AIAA.

The literature shows a few experimental and compu-
tational investigations that attempt to model and analyze

wake vo_x interaction, merging, decay and their haz-
ardous effects on nailing aircraft. Hallock and Eberle l
presented a review of the state of the art of aircraft wake

vortices covering the research efforts in the United States

until the mid-seventies. Experimental wind tunnel and
airport measurements of the vor_x wakes were conducted
by Dee and Nicholas a Harvey and Perry 3, El-Rarely 4,
Wood and McWilliamss,Oardoz_,ClilIoneand Lonzo7,

Olwi and Ohazi m, Liu 9 and Liu et all0.

Mathematical models and computational schemes

were developed using inviscid analysis by Chorin and
Bernard it, Hucket and Evans 12, Yate$13, Iversen and

Bcnlstein14,and Rossow Is. Although an inviscidmodel

cannot describe the wake aging including its diffusion, it

is still capable of producing the wake shape and its dy-
namics. The mathematical modeling used in the above
references were based on the use of the point vortex

method to compute the motion of a finite number of point
vortices which model the vorticity behind a wing. The

first three-dimensional inviscid model was introduced by
Kandil, el. aP e, where the nonlinear vortex-lattice, which

was also developed by Kandil, et. all? was used to com-

pute the interference flow between wings and the vortex
wake hazardous effects.

V'LSCOusmodeling of trailing vortices was first in-
troduced by McCormick, et. al n. Viscous interactions

in vortex wakes and the effects of bac_und turbu-
lence, wind shear and ground on two-dime:nsional vor-

tex pairs were presented by Bilanin, eL a119'20. Liu and
his co-workers at'24 studied the interaction, merging and

decay of vortices in two-dimensional space and of three-
dimensional vortex filaments. To estimate the effects of

density slratitication, turbulence and Reynolds number on

vortex wakes, an ai_roximate model was recently devel-
oped by Greene 25. Later on, Greene and his co-workers _

presentedselectedresultsof aircraftvorticeswhich in-

clude a juncture vortex, a lifting-wing vortex and a wake
vortex.

It is concluded from the above brief literature sur-

vey that the problem contains several vortex flow regions

along with several critical parameters influencing the vor-
tex wake flows. The vortex wake flow of interacting-wing

problems can be divided into three regions. The first re-
gion includes the leading wing and its near-vortex-wake
flow. The second region includes the interseting vortices

in the wake. The third region includes the far-wake flow
along with the wailing-wing flow. In Ref. 27, Kandil,

Copyright @ 1992 by Professor Osama A. Kandil. Published by the

Asnerican Institute of Aeronamicl and Astronautics, Inc. with Permission.



Wong and Liu presented results of the near-vortex-wake
flow for a Large-aspect-ratio rectangular wing using the
thin-layer, Reynolds averaged, NS equations on a C-O
grid.Next,a smallaspect-ratiorectangularwing was in-
troducedin the near-wake of the leading wing and the
problemwas recomputedtodemonstratethe hazardous
effectsofthevortexwake flow.Two interferencecases

were considered.The firstwas calledthe"along-track

penetrationthroughvortexcenter"and thesecondwas
calledthe"along-trackpenetrationbetweenvortices",see
Fig. I. Itwas demonstratedthatinthefirstcase,the

trailingwing experiencedlargerollingmoments and in
thesecondcasethetrailingwingexperiencedlossoflift.

In thepresentpaper,the ncar-vormx-wakeflowis

recomputedusinga finergridthanthegridusedinRef.
27. Moreover,thethin-layerand fullNS equationsare

usedalongwithan upwind scheme,whereintheflux
limitcrofthesolveristurnedon andoff.The goalofthis

partofthepaperistoaccuratelycomputethevortexwake
flowand tostudytheeffectofthenumericaldissipation
ofthefluxlimiteron thecomputedresuRs.Inthesecond

partof thepaper,alleviationof thestrengthof thetip
vortexwithoutreducingtheliftforceisdemonstratedby

usingdirectedflowinjectionfroma slotalonga certain
lengthof thewing tip.

FORMULATION

Full and Thin-Layer Navier-Stokes Equations

The conservativeformoftlmdimensionless,unsteady,

compressible,fullNavier-Stokesequationsin termsof
time-independent,body-conformedcoordinates_i _ and

_3 is given by

aQ 0(L).
+

Ot O_m 0_.

where

=0; m=l-3, s=1-3 (I)

_m __ Cm(xl, X2, X3) (2)

4 1
(_= _ = _[p,pui,pus,pus,#e]' (3)

Em= inviscid flux

1 .i_.k
J

= ._U,,,,puiU= + O_'p, pu2U,.
V

+ _'p, :u3O=+ 03Cp, (pc+ p)o.]' (4)

(E,), - viscousand heat- conductionflux int"
direction

= _[0,0i_,i_,0_t"ri_,0kf',i3,

OkC'(u._ - _)]'; k = 1 - 3, n = 1 - 3
(5)

u= = 0_C'u_ @)

The three momentmn elements of Eq. (5) are given by

• .0uj
+_ _ ; j=l-3 (7)

The last element of Eq. (5) is given by

o_t"( %rl, - oa) - -_ [(0_"0p_"

2 ,., 0ul

+0_('01("up0_

1 o(a')l
1)p,ak ' -j;p = 1-3 (s)

The single [hin-layer approximmions of the full Navicr-
Stokes equmions demand that we only keep the deriva-
tiresinthenormaldirectionto the body,{_, in the viscous
m_dheatfluxuamsinEqs.(I),(7)and(8).Thus,we let

s= 2 fortheterm_ inEq. (I)ands = 2-andn = 2
in eqs. (7) and (g). These equations reducem

OQ OF-_u 0(E,)g : 0 (9)
+ 0_- 0__

(0_{_rt* _ Re (I0)

where

rl 0 ,_
+, +

1 o(,,:)1/
-t .If (II)

1A: _0ut W = 0p_up (12)
¢'1= _,_lai_l, V'= g-.. a'_"

In Eqs. (1)-(12). the dimensionless variables are refer-

enced to their appmwiam fmesumam values. The dimen-
sionlessdensity p, _ velocity componcms u_, u_
and u_, total eneagy per unit rnaas, e, dynamic viscose,/_
and speed of sound, a, are defined as the ratio of u_ cc¢-
reaponding physical quand_,s to those of the fmesueam;
namely, p_, a_, po:a_,po:and aoc;n_ctively. The
pressure, p, is non-dimensimalized by p=e_, and is re-
lated to the total energy for a perfect gas by theequation
of state

P -- (7- 1)p • - _uiui ; j -- 1 - 3 (13)



where 7 istheratioofspecificheatsand itsvalueis1.4.

The viscosity,p, iscalculatedfrom theSutherlandlaw

, = T3/2(1+ c'_
\_-_--_],c = 0.4317 (14)

where T isthetemperaturewhich isnonMimcnsionalized

by T_:. The Prandtlnumber, P, isfixedat0.72. The

Reynolds number isdefinedas Re = po,U_L/l_o: and

the characteristiclength,L, ischosen as the rootchord

of the wing.

In Eqs. (I)-(13),the mdicialnotationis used for

convenience.The subscriptsk,n,p and jare summation

indices,the superscriptor subscripts is a summation

index and the superscriptor subscriptm isa freeindex.

The partialderivative_ isreferredto by Ok.

Turbulent Flow

For the turbulent flow, the Navier-Stokes equations

are transformed to the Reynolds-averaged equations by

replacing the coefficient of molecular viscosity, p, and
the coefficient of thermal conductivity k with

(15)

k,=k+kt=_\ + PP,,] (16)

where Pc isthe effectiveviscosity,k_ the effectivether-

mal conductivity,/_tthe turbulentviscosity,Pr the lanai.

nat Prandtlnumber, P_ theturbulentPrandd number and

Cp the specific heat under constant pressure, The tm'bu-

lent viscosity /_t is obtained by using the two-layer al-
gebraic eddy viscosity model which was first developed
by Cebeci 2s for the boundary-layer equations and modi-

fied later by Baldwin and Lomax 29 for the Navies-Stokes

equations. The details of the turbulent model is given in
Ref. (30) by Wong, Kandil and Liu.

Boundary and Initial Conditions

Boundary conditions are explicitly implemented.
They include the inflow-outflowconditionsand the

solid-boundaryconditions.At the plane of geometric

symmetry, periodicconditionsare used. The inflow-

outflow boundary conditions are implemented using the
one-dimensional Riemann-invariant conditions normal to

these boundaries. On the solid boundaries, the no-slip

and no-penetration conditions are enforced; u] = u2 = u3
= 0, and the normal pressure gradient is set equal to zero.

For the temperature, the adiabatic boundary condition is
enforced at the solid boundaries.

The initial conditions correspond to the freestream
conditions with ut = u2 = u3 = 0 on the solid boundaries.

(17)

COMPUTATIONAL SCHEME

The implicit, upwind, flux-difference splitting,finite-
volume scheme is used w solve the unsteady, com-

pressible, thin-layer and Full Reynolds-averaged, Navier-
Stokes equations. The scheme uses the flux-difference

splitting scheme of Roe which is based on the solution of

the approximate Riemann problem. In the Roe scheme,
the inviscid flux diffca'once at the interface of computa-
tional ceilsisspritintotwo parts; left and right fluxdif-

ferences. The spliuing is accomplished according to the

signs of the eigenvalues of the Roe averaged-Jacobian
man'ix of the inviscid fluxes at the cell inmrface. The

smooth flux limimr is used to eliminate oscill_ons at

locations of large flow gradients. The viscous-and heat-
flux mrms are linearized and the cross-derivative _rms

areeliminatedintheimplicitopoatm'. The viscous terms

are differencedusing a second-order accuratecentraldif-

ferencing.The resultingdifferenceequationisapprox-

imatelyfactored and is solved in three sweeps in the
_t _2 and _3 directions. Tim computationalscheme is
coded in the compute_ program "FTNS-3D "3t.

COMPUTATIONAL RESULTS AND DISCUSSIONS

We consider a rectangular wing of aspect ratio, AR
= 5.9 and a NACA 0012 chordal section, at an angle of

attack of 0--4.64*. The flow Reynolds number, Re is

3.2x1_ (based on the root-chord length) and the Mach
number, Mo, is taken as 0.3 for low speed flows. The

computational domain consists of a hemispherical bound-
ary which is followed by a cylindrical boundary. The

hemisphere cemex is located at the intea_ection of the
wing rooVchord and its wailing edge. Its radius is 15

chords and the cylindrical boundary extends 14 chords in
the downstream direction beyond the trailing edge. A C-

O grid of 231x65x65 grid points in the streamwise wrap-
around, slmnwise and normal directions, respectively, is
generated by using Iransfinim mterpolafiom The min-
imum grid spacings normal to the wing surface at the
leading-edge and lip regions _ chosen tobe I0"s.The

grid points close to the _ edge me clusmred up to 5
chords in the downsUeam direction. The reason is that for

the present work otw interest is focused on the resolution
of the near-vortex-wake flow. Figure 2 shows a typical

grid for the wing and its near wake. The flow is consid-
ered to be laminar until the chord station of 0.05 from

the wing leading edge. Thereafter, the turbulent model is



turnedon tomimic the transitiontoturbulentflow.This

locationof the transitionalflow has been experimentally

determinedby Yip and Shuberd2.

Thin-Layer and Full Navier-Stokes Solutions

The flow around the rectangular wing is solved us-

ing the thin-layer NS equations and the full NS equa-
tions. The computations are carried out three times using

the same grid described above and the implicit upwind
scheme. In the first and second times, the thin-layer NS
equations are solved using the implicit upwind scheme
with and without the smooth flux limiter. In the third

time, the full NS equations are solved using the implicit

upwind scheme without the smooth flux limiter. Next,
we compare the results of these three computions with

each other and with the experimental data of Ref. 32.

Figure 3 shows a comparison of the history of the

logarithmic residual error and the lift coefficient of these

computations. The thin-layer computation with a flux
limiter (TL-limiter) shows a drop of the residual err_ of

about five orders of magnitude after 8000 iteration steps.
The thin-layer computation without a flux limiter (TL-no

limiter) shows a drop of the residual error of the same
order of magnitude as that of the TL-limiter computation
after 10,800 iteration steps. The full Navier-Stokes com-
putation without a flux limiter (FNS-no limiter) shows

a drop of the same order of magnitude as that of the
TL-limiter computation after 8,900 iteration steps. The

lift coefficient of the three computations is 0.34090 CI'L-
limiter), 0.35354 (TL-no limiter) and 0.35250 (FNS-no

limiter). In the next table, we show comparison of the
three computations and the experimental data for the nor-
mal force coefficient, Cry, the pitching-moment coefficient

about the leading edge, CM, and the drag coefficient, CD.

The results of the case of next section for the tip-jet con-
trol are also included in the table. The results show that

CN

TL-limiter 0.34128

TL-no limiter 0.35374

FNS-no limiter 0.35272

Experiment 32 0.35

FNS-no limiter 0.3682

(tipjetcontrol)

CM

-0.07581

-0.08161

-0.08137

-0.0825

-0.08667

CD

0.01857

0.01682

!0.01702

N/A

0.01732

the CN of the FNS-OO limiter computation is the closest
to the experimental CN with an error of +0.78%. The

corresponding error for the TL-no limiter computation is

+1.07% and for the TL-limiter computation is -2.49%.
The error in the computed CM in comparison with the
experimental value is -1.37% for the NS-no limiter com-

putation, -1.08% for the TL-no limiter computation and
-8.11% for the TL-limiter computation.

Figure 4 shows a comparison of the computed surface-
pressure-coefficient distribution in the chordwise direction
at different spanwise stations with the same experimental

data. The _nt comlmted resultsa_ ingood agreeanent

with those of the experimental data with the exception of

the peak suction pressta'e at the wing leadingedge. This

isattributedto the simple modeling of the transitional

flow at this location, wherein a simple algebraic turbulent
model is turned on. At the spanwise station of 0.9883 in

the tipregion,it is noticed that the computed Cv using

the TL-no limiter and FNS-no limiter computations are
in excellent asreement with the experimental data than

that of the TL-limiter computation, particularyin the
chordwise directionas of X/C=0.3.

Figure 5 shows a comparison of the spanwise varia-
tion of the total pressure-losscontoursat chord-stations

range of X/C=0.9-5.0 covering the evolution of vortex

wake. The range of the total pressure-loss contours shows
that the tip vortex re,w, hes its maximum strength very

closeto the downsnmam side of thetrailingedge. Theze-

after, the tip-vortex core expands due to the viscous d/flu.

sionand moves inbom'dswhile growing in size. It isalso
observedthatthewake uhi_ m and moves up-
wards. The TL-no limitaresultsof the vortexcoreand

wake shearlayershow lessviscousdiffusionand more

inboardmotion thanthoseof the TL-limitearesults.The

FNS-no limiter results show a little better resolution of

the vortex em_ and wake shear layer than that of the TL-
no limiter results. However, the inboard motion of the
vortex core and wake shear layer is the same as that of
the TL-no limi_r results. Hence, it is concluded that the

flux limitef is responsible for the vor, ex-cc_e and wake

shear-layer diffusions and their small inboerd motions. In
Fig. 6, the particle traces for the wing tip flow and the
vortex wake flow are shown for the TL-limiter and FNS-

no limiter computations. Again, the TL-limiter results
show the larger diffusion of the tip vortex than that of the
FNS-no limiterresults,

Active Iajection Control of Tip Vm'tex

The hazardous effects of the tip vortex on wailing

aircraft is very sis_ificant as it has been demonstrated in
Ref. 27. Several ideas exist for passive and active control
of the tip vortex in _der to alleviate its harm'dous effects.

The challengingissuehere is to diffuse the tip vo¢_x

withoutdecreasing the lilting fc¢ceoftheleading aircraft.

Our first attempt to accomplish these objectives is to use
active injection from a slot along the wing tip. The slot

islocatedon the wing-tipma'faceand extendsfrom the
chord stationX/C.-_2 tothechord stationX/C=0.6. The

directionof thejetblowing isdownstream at45* which
is measm_ hxan the x-axis. A constaatmass-flow-rate

coefficientof 0.015 is used for thejet blowing through

the wing-tip slot. The solution of this case is obtained
by using the FNS-no limiteg comlmtafion. Two types
of initialconditions have been used. In the fult, the
control starts from the uniform flow conditions while in

the second, the conuol starts from the FNS-no limiter

solutionof the preceding section. The final steady flow



solutionfor bothcases showed the same results. Hexe,

only the results of the first case are shown.

Figure 7 shows the history of the residual error and lift
coefficient for 16,000 iteration steps. The spikes shown

in the residual error graph are due to the step increases
of the mass-flow rate from 0.005 to 0.01 and finally to
0.015. The residual error drops three orders of magnitude
and the lift coefficient shows a value of 0.3680. The lift

coefficient is 4.4% higher than that of the FNS-no fimiter
computation without injection. The values of CN, CM

and CD are included in the table of the preceding section.
The CD coefficient shows 1.76% increase than that of the

FNS-no limiter computation without injection. In Fig. 8,
the pressure coefficient is shown at the spanwisc stations

near the wing tip for comparison with the experimental
data of the case without injection. It is observed that

only the tip-section Cp near the a'ailing edge shows a
slight decrease from that of the experimental data.

Figure 9 shows the spanwise variation of the total

pressure-loss contours at chord stations from X/C=0.95
to X/C=5.0. A comparison of these results with those

of Fig. 5 reveals the excellent effect of the tip-injection
control in dissipating the tip vortex. This is also seen in

Fig. 10 of the particle traces in comparison with those
of Fig. 6.

Figure 11 shows a blow-up of the total pressure-
loss contours at the wing tip coveting chord stations

from X/C=0.2 to X/C=0.9. It is observed that the tip
vortex existing at X/C=0.2 (at the starting location of the

slot) is quickly diffused by the blown jet. However, by
the end of the slot length at X/C=0.6, the tip vortex is
recovering but with small strength. It is concluded that

tip-injection control is effective in diffusing the tip vortex

and moreover it is very important to study the effect of the
injection-slot length in the future. Other parameters need

to be included in the future study such as the direction of
injection, the mass-flow rate and the width of injection.

CONCLUD_G REMARKS

The thin-layer and full NS equtions have been used

to accurately solve for the near-vortex-wake flow around
a large-aspect-ratio rectangular wing. The flow has been

computed by using the thin-layer equations with and with-
out flux limiters and the NS equations without flux lim-
iters, all on the same grid. The results show the substan-

tial effects of the flux limiter in diffusing the tip vortex
and the trailing-edge shear layer and in their small in-

board motions. The full Navier-Stokes computation with-
out flux limiters show the best results in comparison with

the experimental data. Also, it has been demonstrated that
tip-injection conlIol is substantially effective in diffusing

the tip vortex without reduction of the wing lift coef-
ficient. Although the drag coefficient slightly increased

the lift to drag ratio increased. Currently, work is under-
way to conduct an extensive parametric study on the tip-
injection control and to study its effect on a trailing wing.

Passive-control methods are also being investigated.
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Figure1.Types of interference of Trailing Vortex Wake; (1) cross-track penetration, (2)
along-track penetration between tip vortices, and (3) along-track penetration

through tip vortex center.

Figure 2. Typical computational grid for the wing
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ABSTRACT

The effectiveness of certain active-control methods

for asymmetric flows around circular cones is investigated
by using computational solution of the unsteady, com-
pressible fullNavier-Stokesequations.Two mainmeth-
ods of activecontrolwhich includeflowinjectionand

surface heatingareused. For the flow.injection-control
method, flow injection is used either in the normal di-
rection to the surface or in the tangential direction to
the surface. For the surface-heating-control method, the
temperature of the cone surface is increase. The effec-
tiveness of a hybrid method of flow control which com-
bines normal injection with surface heating has also been
studied. The Navier-Stokes equations, subjectedto vari-
oussurface boundary conditions, are solved by using an
implicit, upwind, flux-difference splitting, finite-volume
scheme for locally-conical flow solutions.

INTRODUCTION

The problems of Ixedicdon, analysis and controlof
asymmetricvorticalflows around slender pointed bodies
are ofvitalimportance to the dynamic stability and con-
troll,ability of missiles and fighter aircraft. The onset of
flow asymmetry occurs when the relative incidence (ratio
of angle of attack to nose semi-apex angle) of pointed
forebodies exceeds certain critical values. At these crit-

ical values of relative incidence, flow asymmetry devel-
ops due to natural and/or forced disturbances. The ocigin
of natural disturbances may be a u-msient side slip, an
acoustic disturbance, or similar disua-ba_e of short du-
ration. The origin of forced distmbances is geomeu_
perturbations due to imperfections in the nine geometric
symmetry or similar disturbances of _t nature.
Inaddition to the relative incidence as one of the influ-

ential parameters for the onset of flow asymmetry, the
freestream Mach number, Reynolds number and shape of
the body-cross sectional area ate also imlxxtant param-
eters.

In several mc.cmtpapers by Kandil et aly4, the un-
steady, thin-layer, compressible Navier-Stokes equatio_
have been used to simulate smady and unsteady, asym-
memc vortex flows, including their passive control,
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around cones with different cross-sectional shapes.The
emphasis of these papers was extensive computational
studiesof tim parameterswhich influence the asymmet-
ric flow phenomenon and its passive control. Since the
computational cost associated with the solution of three-
dimensional-flow problems at reasonable flow resolution
is very expensive, all the computadoual solutions were
oblained using a locally-conical flow assumption. Such
an assumptionreducestheproblemsolutionto thaton
two conicalplanes, which are in close proximity of each
other, and hence it reduces the comimtafioual cost by an
order of magnitude. Moreover, such solutions still pro-
vide extensive understanding of the flow physics since
one can use very fine grids for reasonable flow resolu-
tim. These studies showed that asymmetric flow solu-
tions were unique irrespective of the type of flOWdistur-
bance; a random disuatmnce in the form of a machine
round-off error or a controlled disturbance in the form

of a short-duration side-siip dislmbance. Unsteady asym-
metric flow solutions with perfectly periodic vortex shed.
cling were successf_y simulated, and the solutions were
unique irrespective of the compulalional scheme used. It
has also beat shown that as the Mach number was in-

creased, the flowasymmetrywas decreased,and as the
Reynolds number was increased the flow asymmetry was
increased. Mmeover, the cross-sectioual shape of the
cone has been shown to be a very influential parameter
on theflow asymmetry. Circularsections producedvery

strong flow asymmetry and diamond sections produced
relatively-weaker flow asymmetry.

In a later paper, by Kandil et aLs, the full Navier-
Stokes solutions wege companu:! with the thin-layer
Navier-Swkes solutions. It was shown that the full

Navier-Stokes solutions produced thicker free-shear lay-
and more vot'tex.-core resolution as compared with

those of the thin-layer Navier-Stok_ equations. In Ref.
5, a few tentative three-dimensional flow solutions were
also lXesentexL

Substantial research efforts have recently been de-
voted for eliminating or alleviating flow asymmewy
and its corresponding side force. In the experimen.
tal area, several passi_tml metlmdss4 and active-
control metlmds_'t3 have been investigated. Compum-
lional simulations have also been used to investigate the
effectiveness of several passive-conlrol methodsvs and
active-control methods n"1¢ xs. Various methods of pas.
sive control were demonstrated in the above references

whichincludetheuseof vertical fins alongtheleeward

planeof geometricsymmelry, thin and thick side strakes



withdifferentorientations,androtatablefombodytips
whichhavevariablecrosssection (fzom a circular sha_
at its base to an elliptic shape at its tip), It was shown by
Kaodil et al.4 that side-str_es control is more practical
than the vertical-fin control since the former was more ef-

fective overa wide range of ansle of attack than the latter.
Moreover,sicle-strakecontrolprovidedan additionallift-

ingforce.However,theeffectivenessoftheside-strake
controlterminatesatveryhighanglesof attackforthe
consideredsnakegeometryand flowconditions.

Variousactive-controlmethodshavebeenusedwhich

includeforebodyblowingand movableforebodysuakes.

The forebodyblowingmethodsincludeforwardblowing,
normalblowing,aftblowingand tangentialblowing.The

main concept of forebody blowing is to conn-ol flow
separation on the forebody and to create yawing forces
and moments which can be utilized in continUing the
body,

In the present paper, we investigatetheeffectiveness
of two main _ of active control which include flow

injection and surface heating. The study of flow.injection
controlcoversnormaland tangetialinjectim.Moreover,

a hybridmethodofflowcontrolwhichcombinessurface

heating and n(xmal injection methods is also investigated.
At this stage of research, the flow control is aiming at
either ren_g thevortical asymmelricflowsymmelric
or rendering the surface-pressure distribution symmetric.
Computational solution of the unsteady, compressible.
full Navies-Stokes equations is used for the present work
with the exception of the tangential injection. For the
tangential injection, the thin-layer NS equations are used.
The computationalapplications ale focused on circular-
sectioncones,and locally-conicalflowassumptionsare

usedtosubstantiallyreducethecomputationalcost.

FORMULATION AND COMPUTATIONAL SCHEME

Full Nsvter-Stekcm Equatiom

The conservative form of the dimensionless, unsteady,
compressible, full Navler-Stt_ equations in terms of
time-independem, body-confmnod ceerdinaes _, _2 and
_3 is given by

O(_ 4 DE,. O(]_,,), _ O; m --- 1 - 3, s --"1 - 3 (1)
Ot 0_= Op

where

_" = _=(xj,x2,xa) (2)

(3)

E, - inviscidflux

= _[pU,=, pu_U. + Ot_f=p, puzU-

+6{'p, pu3U. + 03_'p, (pe+ p)U.]' (4)

(E,), _. viscousand heat--conductionflux in_'
dizection

= _[0, _,,, _,_" _,:, _t"Tk:,

_C(u,,_'k_- q_)]t;k = I- 3,n = I- 3 (5)

U= = o_=u_ (6)

The three momentum elements of Eq. (5) are given by

1
o .,o ,._Jl

,,., m
The last element Of Eq. (5) is given by

Out

The reference [mmme.,_'sfor the dimensionlessform
of the equationsaxe L, _, L/_,=, p= and p_ for the
length, velocity, time, de_ity and molecular viscosity,
respectively. The Reynolds number is defu_ as Re =
p=V=L/_=, where the cha_tmstic length, L, is the
body length. The pressure, p, is related to the total en.
e_y per unit mass and density by the gas equation

[° 1 ' ]p= (_-_)_ - _(u,+ _ + _I) (9)

The viscosityiscakulamdfm_ntheSutherlandlaw

# _. T,Vz I+C
(T--_--_),C = 0.4317 (10)

and thePmmltlnumberPr- 0.72.InEqs.(I)-(I0),the
indicialnotationisusedforconvenience.

Bo_lwy _ I_tm Cmd_m_

The boundary and initial conditionsvaryaccording
totheproblemunderconsideration. The boundary con-
ditioes are explicitly satisfiod. In general, they include

inaow-oe_owcmditkmsandsolid-boundaryconditions.
Forl_3blemsofflowasymmetry,wheretheflowissolved
tlueeghoet the whole compul domain, periodic
boundary i_ _ usedattheplane of geometric
symmetryof the i_lem.

For the mymmeuic flow problems around slender
bodiesi for"sulggaonic in_ow_w boundary, the
Rienmnn-invmant boundary conditiom are used. They
require that the inflow variables be at the ffeestream con-
ditions, and the conical shock er,closing the body be



capturedaspartof thesolution.For supersonicout-
flowboundary,theRiemann-invariantboundarycondi-
tions require that all flow variables be extrapolated fzom
the interior cells. On the solid boundary, without injec-
tion or heating, the no-slip and no-penewation conditions
are enforced. Moreover, the zero normal-pressure gradi-
ent and adiabatic boundary conditions are enforced. For
the present active control problems, the muss-flow rate
is specified at the body surface for the normal injection
control and the temperature distribution is specified at
the surface for the heating control. For the tangential
flow injection the mass flow rate and velocity profile are
specified at the lip exit (shown in Fig. 10 of next section).

The initial conditions correspond to the uniform flow
conditions with ut = u2 = u3 = 0 on the solid boundary.
These conditions are used to olxain the asymmetric flow
solution. Next, the flow conu'ol conditions are enforced
and the previously obtained asymmetric solution is used
for the initial conditions of the active control problem.

Computational Scheme

The implicit, upwind, flux-difference splitting, finite-
volume scheme is used to solve the unsteady, compress-
ible, full Navier-Stokes equations. The scheme uses the
flux-differencesplitting schemeofRoe whichisbasedon

thesolutionoftheapproximateRiemannproblem.Inthe
Roe scheme,theinviscidfluxdifferenceattheinterfaceof

computationalcellsissplitintotwo parts;leftand right
fluxdifferences,The splittingisaccomplishedaccord-

ingtothesignsoftheeigenvaluesoftheRoe averaged-
Jacobianmatrixoftheinviscidfluxesatthecellinterface.

The smoothfluxI/miterisusedtoeliminateoscillationsat

locations of large flow gradients. The viscous-and heat-
flux terms are linearized and the cross-derivative terms

are eliminated in the implicit operator. The viscous terms
are differenced using a second-order accurate central dif-
ferencing. The resulting difference equation is approxi-
mately factored and is solved in three swee_ m the _1,
_2, and _3 directions. The computational scheme is coded
in the computer program "FFNS3D".

For the locally-conical flow solutions, an axial station
of xt = 1.0 is selected and the components of the flowfield
vector areforcedto be equal between this axial station and
another axial station in close proximity to x_ = 1.0. This
ensuresthat the flow variables aze locally independent of
theaxialdirectionatxl = 1.0(KandiletaLS).

COMPUTATIONAL APPLICATIONS AND DISCUSSION

For all the computationalapplk.atioosshown inthis

section,a 5°-semiapexanglecircularconeat 1.8Math
number and I05 Reynolds number is considere_ These
flow conditionswere considered earlier (Kandil et al.(' s)

for the same cone for asynuneu'ic-flow prediction and
passive-conurol methods. The grid is 241x81x2 points in
the wrap around, normal directions and axial direction,
respectively. The grid is generated using a modified

Jonkowski transformation with a minimum grid size of
104 in the _2 direction at the body surface. For the
tangential flow injection a multi-block grid has been used
and it is explained la_ on.

Asymmetric Flow, a = 20°

Figure 1 shows the locally-conical flow solution with-
out any conm31aroundthecone atan angleof auack
of 20°. The figure shows the tolil-pressure-loss (TPL)
contours and thesurface-pressure(SP) coefficient. The
surface pressure is presented versus the angle 0, which
is measured in the clockwisedirection from the leeward
plane of geometric symmeu'y. This stable asymmeuric
flow solution is obtained after 6,000 iteration steps. The
source of flow disturbance at these critical flow condi-
tions is the mmcation error. As it has beenshown earlier
(Kandil et al.x), this solution is unique irrespective of the
type of source of the flow disturbance.

Normal Injection Control, 0 = - 22.50 ---*- 67.5 °,
m = constant = 0.03, a = 20°

Next, a constant mass-flow injection of m = 0.03 is
applied normal to the cone surface. The circumferential
range of injection ports extends over 0 = -22.5 ° -. --67.5'.
The solution of the previous asymmeu'ic flow case is
used as initial conditions along with modified surface
boundary conditions.Figure 2 shows theTPL contours
and the SP coefficient from the solution of the conlrolled

flow. Although the vortical flow is still asymmetric, as
it is seen from the TPL contours, the SP curve shows
a symmetricdistribution resulling in a zero side force.
The TPL cont_usshow that a primary vortex of smaller
height(incomparisontothecaseofFig.I)isstillexisting

on therightsideand itisconnectedthrougha free-shear

layer with the left side of the body surface. The injection
flow on the left side of the body decreases the suction
pressm'e on that side ma_ng its disu-ibution equal to that
on the right side.

Normal IaJectioa Coatrot, 0 = 0e -* - 67.5°,
•h = constant ffi0.03, a = 20"

In this case, the constant mass-flow injection of m
= 0.03 is kept fixed while the circumferential range of
injection ports is extended to cover the range of 0 = 0°
-. -67.5 °. Figtae 3 shows the TPL contours and SP
coefficient of the solution of the controlled flow. The
vorl/cal flow is gill asymmetricbut the SP curve shows a
symmetric dis_bution, which results in a zero side force.
It is also noticed that the primary vo_ex on the right side
moves to a larger height (in compm'ison with the cases of
Figs. 1 and 2) and the left-side free-shear layer also moves
to the same height level. The SP coefficient curve shows
less negative pressure coefficient on the leeward side
in comparison with the case of Fig. 2, which produces
smaller lifting force.



Normal Injection Coatrot, 0 = - 675" -* + 67.$ °,
Variable Mare-Flow Rate, If..-- = 0.03, a = 20°

In this case, the circumferential range of injec_m
ports is extended to cover a symmetric range of 0 = -
67.5 ° -. +67.5 °. Moreover, the injected mass-flow rate
is made proportional to the difference in the surface pres-
sure between corresponding points on the right and left
side of the body (within 0 ffi- 67.5 °-- +67.5°). The maxi-
mum injected mass-flow rate, m,,., which corresponds to
the maximum pressure difference is remicted m _ =
0.03. Practically, this control method can be achieved by
sensing the pressure difference between the right and left
ports and using it as a feedback conlrol in order to inject
a mass-flow rate which is pn3ponional to that pressure
difference. Figure 4 shows the results of this controlled
flow. The history of the residual error versus the number
of iterations shows the asymmetric solution up to 6,000
iterations and the evolution of the symmetric controlled-
flow soluhon up to 7,200 iterations. The corresponding
curve of the history of the side force shows that the side
force becomes zero at the end of 7,200 iterations. Snap-
shots of the evolution of the symmetric controlled flow
solution, in terms of the TPL contours, are given at the
6,200; 6,400; 6,600;, 6,80_, 7,000 and 7,200 iteration step.
The vortical flow is rendered symmetric using the present
method and the SP coefficient cu_e shows a symrnelric
disu'ibution.

Surface Heating Control, O = e ---, -lSr,
1". =7T_,a=20*

For the heating comrol, the left sin-face temperature
of the cone, in the circumferential range of 0 = 0_ -,
-180 °, has been changed firom the adiabatic condition to
a constant temperature condition of surface temperature,
1", = 7 To_. where To_ is the freesmmm temperature.
Starting from the stable asymmetric flow solution at the
12,000 iteration step, the left sm'face tempemlm_ is raised
to I", = 5T_ and then it is raised f-unher to T, = 7 T_.
Figure 5 shows the results of this case which include

the history of the residoal e,nur gild the _g
history of the side force along with the T_ contours
after24,000iterations. The side-forve curve shows that
thesideforcedecreasesasthetemperatm_increas_until

it vanishes for T, = 7 Tec. Although the side force is zero,
the vortical flow is still asymmetric. This case shows the
effect of increasing the gas viscosity with heating in order
m equalize the mrf_ pressure dimilmtion on the right
and left sides of the hody. This is the f_t time, we know
of, that such an active control method has been applied
m control asymmetric flows.

InJ_ou Flow Control,VariableMare-Flow
Rate.,a = 20° -

Inthiscue, theeffectiveueu of the normal injection
control of the case of Fql. 4 (_m =0.03, a = 20", 0 =
- 67.5 ° -- 67.5 °) is studied for higher angles of attack.
Figm'e6 shows theresultsofthisstudywhichincludes
thehistoryof theresidualerrc¢versusthenumber of
iterations,thecorrespondinghistoryofthesideforceand

theTPL contom'salongwiththeSP-coefficientcurvesfor
a = 22°, 240,260, 28° and30 ". The residual error and the

side-fore curves show the responses for the following
history: First' no conm31 is appfied until the 12,000
iteranon step; second, injection is applied at a = 20°
for 2,000 iterations; third, the angle of attack is increased
2° each 500 iterations until a = 28°; fourth, at a = 30°
injection is continued for 2,000 iterations. The side-force

curve shows zero value in the angle of attack range of _ =
20 • _ 280 (corresponding to the iterations range of 14,000
- 16,000). When the angle of attack reaches 30°, the
normal injection control becomes incapable of achieving
flow symmeu_. It is interesting to study the snapshots of
theTPL contours at these anglesof almck.Itisnoticed
thattheprimaryvotl/cesincreasein sizeinthenormal

directionand theirinnerboundariesapproacheachother.
At a = 280, the inner boundaries of the primary vortices
touch each other, and thereafter at a = 30" the Ix/mary
vordces become asymmetric. The asymmetric response
of the primary v_.ices at a = 30" is believed to be due
to a strong inslability arising due to the slrong intea'action
of the _ shear layers of the primary vc_ices.

At c, = 30°, the injected mass-flow rate in the normal
directionto the bodysurfaceisincreasedto m_ = 0.05,

0.06 and 0.07 in o_ler to recover the flow asymmetry.
Hgure 7 shows the results of these tests. BoththeTPL
contotal and the SP-coefliciem curves show that the flow
is asymmelric and the side force does not vanish. Itis
seen that the flow asymmetry changes from the rightto the
left sides and so does the _de force. Tbetefofe, it is ap-
parent that normal-injection conUol loses its effectiveness
athighanglesofattackfortheconsidewAconditions.

Hybrid B--tt_Iaj_ Coatrul, a = 20° - 42°

In this case, the surface-heating control is followed
by ncnnul-injection control. Fisure 8 shows the results
of this study. The control process is applied as follows:
Fh'St, the whole surface is heated to T, = 5T_ and the
bemin 8 conlrol started at a = 20°, where the number
of iterations is 12,000. Next, the angle of auack is
increased 4° until symmeu_ flow is reco,m_ at the
18,000 itentions. The mgk of alack is then increased
2° each 1000 iteration until the angle of attack reaches
38°. The flow symmelty has been continuously recovered
until the angle of altw.k of 36° where a slight flow
asymmelry appears in the solution. At ¢_= 38°, the flow
mymmea'y becomesstrongerandtheheatingconlrolloses
its effectiveness for T. = 5T=.



At a = 38 °, normal-injection control is applied with
t%m = 0.05 and 0 = - 67.5 ° -. 67.5 °. The angle of
attack is then increased 2° each 3000 iterations. The

history of the residual error and the corresponding zero

side force is shown in Fig. 8. Figure 9 shows snapshots
of the TPL contours and SP-coefficient curves at a = 38 °,

40 ° and 42 °. The TPL contours show asymmetric flows
but the SP-coefficient curves show symmetry resulting
in zero side force. Thus, it is concluded that a hybrid
control of heating and normal injection is very effective

in eLiminating the side force at very high angles of attack.

Tangential-Injection Control, minx = 0.2

In this case, the circular section of the lower portion
of the cone has a raidus larger than that of the upper

portion. The lower local radius is 1.05 that of the upper

one. Flow is injected from the lip of the lower portion in a

direction tangent to the surface of the upper portion. The
maximum mass flow rate, row,, is 0.2 and the velocity
profile at the lip exit is a parabolic one. Figu_ 10 shows

the grid used for the thin-layer computations. Three
grid blocks are used for the present computation. The
first block is 121x19x2, the second is 121x63x2 and the

third is 121x63x2 all in the circumferential, normal and

axial directions, respectively. The tangential flow control
starts from the 20 ° angle of attack. The computations are

carried out until a symmetric flow solution is obtained.
Thereafter, the angle of attack is increased to 30 ° with
a step of 2°. Figure 10 also shows the total pressure-

loss contours for the controled, symmetric flow solutions
at _ = 22 ° , 26 ° and 30° . It is noticed that as the

angle of attack increases the inner shear layers of the
controled symmetric primary vortices approach each other

and hence flow asymmetry might develop again.

CONCLUDING REMARKS

The computational solution of the unsteady, com-

pressible, full Navier-Stokes equations has been used to
study the effectiveness of two active control methods for
asymmetric flows around circular pointed cones. Locally-

conical flow assumptions have been used in order to re-

duce the computational cost of this study by an order of
magnitude in comparison with that of tlne-dimensional
flow solutions. The first active control method is applied

by injecting air normal to the body surface from ports that
are circumferentiaUy distributed within a certain angle.
The injected mass-flow rate is either constant or variable.

The variable injected mass-flow rate is proportional to the

surface-pressure difference between corresponding points
on the right and left sides of the body surface. The results

of this part of the study show that use of normal injection
alone loses its effectiveness at very high angles of attack.

The second active control method is applied by heating
the body surface either partially of totally. The results of

this part of the study show that surface-heating control is
much more effective in comparison with normal-injection

control at very high angles of attack. Next, a hybrid con-
tmi method which includes surface-heating control fol-
lowed by normal-injection conlxoi is applied. The results

of this part of the study shows the superior control e'f-

fectiveness of the hybrid method. Active cont_l using
tangential flow injection is very promising. Work is still

underway to exploit its effectiveness. Simultaneous ap-
plication of passive control and the present active control
methods is also investigated.
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CRITICAL EFFECTS OF DOWNSTREAM BOUNDARY CONDITIONS ON VORTEX BREAKDOWN

Osama A. Kandil* and Hamdy A. Kandil**

Old Dominion University, Norfolk, VA 23529
and

C. H. Liu***

NASA Langley Research Center, Hampton, VA 23665

ABSTRACT

The unsteady, compressible, full Navier-Stokes (NS)

equations are used to study the critical effects of the
downstream boundary conditions on the supersonic vortex

breakdown. The present study is applied to two super-
sonic vortex breakdown cases. In the first case, quasi-

axisymmetric supersonic swirling flow is considered in a

configured circular duct, and in the second case, quasi-
axisymmetric supersonic swirling jet, that is issued from

a nozzle into a supersonic jet of lower Mach number, is
considered. For the configured duct flow, four different

types of downstream boundary conditions are used, and
for the swirling jet flow from the nozzle, two types of
downstream boundary conditions are used. The solutions
are time accurate which are obtained using an implicit,

upwind, flux-difference splitting, finite-volume scheme.

INTRODUCTION

Numerical simulation of vortex breakdown has been

focused in most of the existing literature on incompress-
ible flows. Quasi-axisymmetric, vortex-breakdown sim-

ulations of incompressible swirling flows have been pre-
sented by Grabowski and Berger ]. Hafez, et al.2 Salas
,-rodKuruvilla 3, Menne 4, Wu and Hwang 5 and Menne and

Liu 6. Three-dimensional, vortex-breakdown simulations

of incompressible swirling flows have been presented by
Sp',dl, et al. 7, Hanel s, and Krause 9'1°. Discussion of the ef-

f_ts of side boundary conditions and downstream bound-

ary conditions on vortex breakdown was presented by
Krause in Ref. 10.

Longitudinal vortex/transverse shock-wave interac-

tions are typical applications which appear in transonic

and supersonic flows over a strake-wing configuration
at moderate-high angles of attack, at a supersonic in-
let injesting a vortex and inside a supersonic combustor
where fuel is injected in a swirling jet to enhance fuel-

air mixing TM. For the swake-wing configuration, vortex
breakdown is undesirable since it results in the stall phe-

nomenon, and hence its occurrence need to be delayed.
On the other hand, vortex breakdown for the other two

applications is desirable since it enhances mixing and sta-
bility of the flame t4As, and hence its occurrence need to be
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controlled for the optimum performance. Unfortunately,
the literature lacks this type of analysis with the excep-
tion of the preliminary work of Liu, Krause and Menne tt,

Copening and Anderson ]7, Delery, et al, n Kandil and
KandiP s and Meadows, Kumer and Hussaini tg.

The first time-accurate NS solution for a supersonic
vortex breakdown was developed by the present au-

thors in Ref. 20. We considered a supersonic quasi-

axisymmetric vortex flow in a configured circular duct.
The time-accurate solution of the unsteady, compress-

ible NS equations was obtained using an implicit, up-

wind, flux-difference splitting finite-volume scheme. A
shock wave has been generated near the duct inlet and

unsteady vortex breakdown has been predicted behind
the shock. The predicted flow was characterized by the
evolution, convection and shedding of vortex breakdown

bubbles. The Euler equations were also used to solve the

same problem. The Euler solution showed larger size and
number of vortex-breakdown bubbles in comparison with
those of the NS solutions. The time-accurate solution was

carried out for 3,200 times steps which are equivalent to
a dimensionless time of 16. Only one value of Reynolds
number of 10,000 was considered in Ref. 20.

In a later paper 2_, we expanded our study of this flow

using time-accurate computations of the NS equations
with a fine grid in the shock-vortex interaction region

and for long computational times. Several issues were
addressed in that study. FirsL we showed the effect of

Reynolds number on the temporal evolution and persis-
tence of vortex-breakdown bubbles behind the shock. In

that stage of computations, the conditions at the down-
stream exit were obtained by extrapolating the compo-
nents of the flowfield vector from the interior cell centers.

Although the flow was supersonic over a large portion of
the duct exit, subsonic flow existed over a small portion
of the exit around the duct centerline. Therefore, selected

flow cases were computed using a Riemann-invariant-

type boundary conditions at subsonic points of the duct
exit. Finally, the effect of swirl ratio at the duct inlet

was investigated.

In the present paper, we address the problem of spec-

ifying the downstream boundary conditions and their crit-
ical effects on the supersonic vortex breakdown problem
for internal and external flows. For this purpose, the un-

steady, compressible, full NS equations arc used along

with an implicit, upwind, ftux-diffcxcnce splitting, finite-
volume scheme for the time-accurate solutions. For the



intcrnal flow case, supersonic swirling flow in a config-
ured duct is considered along with four types of down-
strcam boundary conditions. Keeping the duct geometry

and the upstream flow conditions fixed, the exit boundary
conditions are varied. The four exit boundary conditions
include extrapolation of all the five variables from the

interior cell centers, specifying the downstream pressure
and cxtrapolating the other flow conditions from the in-

terior cell centers, specifying the downstream pressure
gradient and extrapolating the other four conditions from

the interior cell centers, and using a disk of specified
radius at the exit section. For the external flow case,
supersonic swirling jet is issued from a nozzle into a su-
personic non-swirling jet of Mach number lower than that

of the swirling jet. Two types of downstream boundary

conditions are considered. In the first type, extrapolation
of all the five variables from the interior cell centers is

used, while in the second type, the standard Riemann-

invariant type boundary condition is used. All the results

presented in this paper have been produced using our full
NS solver which is known as the "FTNS3D" code. The

CRAY-YMP computer of NASA Langley Research Cen-
ter is used for the computations.

tllGHLIGHTS OF THE FORMULATION
AND COMPUTATIONAL SCHEME

The conservative, unsteady, compressible, full Navier-

Stokes equations in terms of time-independent, body-
conformed coordinates _l _2 and _3 are used to solve the
problem. The equations are given in Ref. 21 and hence

they are not shown here. Along with these equations,
boundary conditions are specified at the computational-
domain inlet, side wall and downstream exit. The down-

stream exit boundary conditions will be presented in the
next section of the computational results. The initial con-
ditions will also be presented in the next section.

The computational scheme used to solve the unsteady,

compressible full NS equations is an implicit, upwind,
flux-difference splitting, finite-volume scheme. It em-
ploys the flux-difference splitilng scheme of Roe which is

based on the solution of the approximate one-dimensional
Ricmann problem in each of the three directions. In the
Roe scheme, the inviscid flux difference at the interface

of a computational cell is split into left and right flux dif-

ferences. The splitting is accomplished according to the
signs of the eigenvalues of the Roe averaged-Jacobian
matrix of the inviscid flux at the cell interface. The

smooth limiter is used to eliminate oscillaUons in the

shock region. The viscous and heat-flux terms are lin-
carized and the cross-derivative terms of the viscous Ja-

cohians are dropped in the implicit operator. These terms
arc differenced using second-order spatially accurate cen-
tral differencing. The resulting difference equation is ap-

proximately factored and is solved in three sweeps in the
_l, _2 and _3 directions. The scheme is used for third-

order spatial accuracy and first-order temporal accuracy.

The scheme is coded in the computer program which is
called "FTNS3D".

The quasi-axisymme_c solutions are obtained using
the three-dimensional code by forcing the flowfield vector
to be equal on two axial planes, which are in close
proximity of each other.

COMPUTATIONAL RESULTS AND DISCUSSION

I. Vortex Breakdown in Configured Circular Duct

Figure 1 shows a configured circular duct which con-

sists of a short, straight cylindrical part at the inlet which
is followed by a short divergent cylindrical part until the
axial length of 0.74. The divergence angle is 60 . The duct

radius is then kept constant and a convergent-divergent
nozzle with a throat radius of 0.95 is attached. The duct

exit radius is 0.98 and its total length is 2.9. The diver-

gent part of the duct ensures the stability of the formed

shock in the inlet region. The configuration of the duct is
intended to ensure that the supersonic inflow will become
supersonic at the exit. As the computations will show, a
small portion of the duct exit near its centerline becomes

subsonic at certain times for the specified inflow condi-

tions. This configured duct has also been used by Delery,
ct al. 1= for their Euler equations computations of super-

sonic vortex breakdown in an attempt to computationally
model an experimental set up.

The NS solver is used to compute all the following
flow cases by using a grid of 221 x51 on two axial planes,
where 221 points are in the axial direction and 51 points

are in the radial direction. In the inlet region up to
the 0.74 axial station, I00 grid points are used and the

remaining 121 points are used in the remaining part of the
duct. The grid is also clustered at the centerline (CL) and
the wall. The minimum radial grid size at the CL is 0.002.

The two axial planes are spaced circumferentiaUy at a

certain angle so that the aspect ratio of the minimum grid
size will be less than 2. The upstream Mach number is
kept at 1.75 and the Reynolds number is kept at 100,000.

The initial profile for the tangential velocity is given by

-- = 1 -- exp - (1)
u=

where U_ = 1.74, rm = 0.2 and /c= = 0.1. The max-

imum _I_'_,swirl ratio 8, is at r = 0.224 and its value is
kept at 6.32. The radial velocity, v, at the initial station

is set equal to zero and the radial momentum equation is

integrated to obtain the initial pressure profile. Finally,
the density p is obtained from the definition of the speed

of sound for the inlet flow. With these compatible set
of profiles, the computations are carried out accurately in

time with At = 0.0025. The wall boundary conditions fol-
low the typical Navier-Stokes solid-boundary conditions.
These computations have been carried out on the CRAY

YMP of the NASA Langley Research Center. The CPU
time is 40 _s/grid point/iteration for the NS calculation.



Next, we present the results of the computational

study of this case which covers four types of exit bound-
ary conditions.

1.1. Extrapolation from Interior Cell Centers

Figure 2 shows snapshots of the streamlines and Mach
contours for this case. The downstream boundary condi-
tions are obtained by extrapolating all the flow variables

from the cell centers at the exit. The streamlines snap-
shots show multi-bubble vortex breakdown evolution,

convection, merging and shedding. The time-accurate
integration was carried out up to t -- 200 and the so-
lution showed periodic multi-frequency cycles of vortex-

breakdown bubbles 21. An example of the merging of

vortex breakdown bubbles of same sign of vorticity is
shown at t = 17. An example of convection and shed-

ding of vortex breakdown bubbles is shown at t = 25.

Comparing the streamlines solutions at t = 25 and t =
89, it is seen that the solutions are almost the same which

conclusively show that the breakdown process is periodic.
The Mach-contours show the dynamics of inlet shock mo-

tion. In the time range of t = 3-8, the inlet shock moves
upstream toward the inlet and its central portion exists
outside the inlet section at t = 8. In the time range of

t = 8-25, the inlet shock moves downstream with corre-

sponding evolution, convection, merging and shedding of
breakdown bubbles. In the time range of t = 25-45, the
inlet shock maintains its motion in the downstream di-

rection at a slower rate than before, while another shock,

which is downstream of the inlet shock, appears and also
moves in the downstream direction. The evolution, con-

vection and shedding slowly Continues until t = 66. In
the time range of t = 66-78, the downstream shock disap-

pears and a large vortex-breakdown bubble appears and
moves upstream. This motion of the bubble is accom-

panied by upstream motion of the inlet shock (t = 78).

Later the inlet shock again moves in the downstream di-
rection and the process is repeated. An animation movie

has been produced for the total dimensionless time of t
= 200. Figure 3 shows a blow-up of two snapshots of
the streamlines solutions at t = 84 and t = 87. At t = 84,

we recognize five vortex breakdown bubbles which spa-

tially alternate in their sign of vortex strength. It is also
noticed that six stagnation points exist at the axis. At t

= 87, we recognize seven vortex breakdown bubbles and
seven stagnation points. The figure shows the merging of

two bubbles of same vorticity sign.

1.2. Riemann Invariant Boundary Conditions

with p_ = Poc

In this ease, the back pressure at the subsonic points
of the duct exist, p), is specified to be equal to po: and

the other four variables ate extrapolated form the inte-
rior cell centers. The computations have repeated on the

same grid and for the same flow conditions as that of the
previous case. Figure 4 shows snapshots of the stream-

lines and Mach contours of the solution. Comparing the

present solution with the previous case (Fig. 2), it is seen
that the two solutions are the same until t = 35. There-

after, for t > 35, the inlet shock continuously moves in the
downstream direction with the vortex-breakdown bubbles

moving ahead of the shock. The shock and vortex bubbles

are shed and disappears from the duct at advanced levels
of time. The breakdown mode is termed as "a transient
multi-bubble vortex breakdown." The reason behind dis-

appearance of the shock-vortex-breakdown-bubble sys-
tem is that the back pressure is so low that it cannot sup-
port the inlet shock keeping it in the inlet region. More-
over, the Riemann-invariant type conditions at subsonic

points let the downstream effects propagate upstream as
time increases.

1.3. Riemann Invariant Boundary Conditions

with p = 2p_

In this case, the back pressure at the subsonic points
of the duct exit is specified to be p_ = 2po: and the

other four variables are extrapolated from the interior cell

centers. Figure 5 shows snapshots of the streamlines and
Mach contours of the solution. Comparing the present
solution with the solution of the first case ('Fig. 2), it is

seen that the two solutions arc similar with the exception
that the present solution lags that of the first case in
time. The reason behind this behavior is that the back

pressure pj is larger than that of the first case. Moreover,

the Riemann invariant type conditions at subsonic points
let the downstream effects propagate upstream as time
increases. The existence of the large back pressure which

is felt upstream supports the inlet shock and keeps it in
the inlet region.

1.4. Riemann lnvariant Boundary Conditions

with _ = constant

In this case, the back pressure is obtained from the

condition _ = constant at the subsonic points of the duct
exit. The other flow variables are extrapolated from the

interior cell centers. Figure 6 shows snapshots of the
streamlines and Mach contours of the solution. Compar-

ing the present solution with the solution of the first case
(Fig. 2), it is seen that the two solutions are similar until
t = 22. Thereafter, for t > 22, the inlet shock continu-

ously moves in the downstream direction with the vortex-

breakdown bubbles moving ahead of the shock. Again,
as in the case of Fig. 4, the shock and vortex bubbles

are shed and disappear from the duct at advanced levels
of time. The breakdown is termed as "a transient multi-

bubble vortex breakdown." The reason behind disappear-

ance of the shock-vortex-breakdown-bubble system is that

the back pressure obtained from _ = constant condition
is so low that it cannot support the inlet shock keeping it

in the inlet region. Moreover, the Riemarm-invariant type
conditions at subsonic points let the downsu_am effects

propagate upstream as time increases.



1.5. Placing a Disk at the Exit with r = 0.333

In this case, a circular solid disk of radius r = 0.333 is

placed at the duct exit and solid-boundary conditions are
applied on the disk surface. For the remaining portion

of the exit, the boundary conditions are obtained by
extrapolation from the interior cell centers. Figure 7
shows snapshots of the streamlines and Mach contours
of the solution. It is noticed from the Mach contours

that most of the exit points are subsonic. The streamlines
show that the shock-vortex-breakown-bubble system first

appears behind the duct exit. Thereafter, they move
upstreams until the inlet shock moves outside of the inlet.
The vortex-breakdown bubbles are then locked between

the shock outside of the inlet and the circular disk at the
cxit

II. Supersonic Swirling Jet from a Nozzle

Figure 8 shows the computational domain and a typ-
ical grid for this external flow case. The dimensions of

the computational domain is 7 x3.5 in the axial and radial

directions, respectively. The grid is 221 x 51 × 2 points in
thc axial, radial and tangential directions, respectively.
The grid is clustered at the nozzle exit (x = 0.0) and at
the domain centerline. The dimensionless nozzle radius

is unity, where a supersonic jet of Me: = 3.0 is issued,

and outside the nozzle another jet is issued at M_ = 2.0.
The freestream Reynolds number is 296,000.

Figure 9 shows the inlet flow profiles of the ax-

ial velocity, swirl velocity, radial velocity, pressure and
density, which are taken from the experimental data

of Ref. 12. The initial profiles are used as quasiaxi-
symmetric profiles for the present computations. On the
cylindrical boundary (side wall) of the flow at r = 3.5,

freestream conditions are imposed corresponding to M_

= 2.0. The initial conditions in the computational domain
are also taken as those corresponding to the fi'eestream

conditions at M_ = 2.0. The problem is solved using
two types of exit boundary conditions at x = 7.0; first ex-
trapolation of all five variables from the interior cell cen-

ter and second using the Riemnn-invariunt-type boundary
conditions.

ILl. Extrapolation from Interior Cell Centers

Figure l0 shows snapshots of streamlines and Mach
contours of the solution. The strearnlines show multi-

bubble breakdown at the early levels of time. These bub-

bles develop due to the shock system formed at the nozzle
exit in the vicinity of the centerline. It is noticed that a
strong portion of the shock exists at the centerline which

splits into two oblique shocks, one is a weak shock and

the other is a strong shock. Behind the strong shock, the
vortex breakdown bubbles exisL Thereafter, for t > 5, the
oblique shocks move slowly in the downstream direction

and breakdown the vortex bubble stays in its place. At t
> 55, the shock system moves upslzenm and so does the
vortcx breakdown bubble. The slow motion of the shock

system and the vortex breakdown bubble continues back
and forth between these two locations. No vortex shed-

cling has been captured during the computations of this
case. It is also noticed that most of the exit points are
continuously supersonic and hence no downstream effects

exist with the exception of a very thin-layer around the
centerline.

II.2. Riemann Invarlant Boundary Conditions

Next, the boundary conditions at the exit are replaced
by using the Riemann-invarlam-type boundary conditions
with p_ - po_ at the subsonic points. Figure 11 shows
snapshots of the streamlines and Mach contours of the

solution. By comparing the present solution with the

previous case ofFig. 10. we see that there is very slight

effect of the present boundary condition on the solution.
This is understood since the subsonic region at the exit is

very small and moreover, the exit boundary is far from
the nozzle exit.

Figure 12 shows a blow-up of the Mach contours at t

= 55 for the flow case of Fig. 10. The shock system near
.the nozzle exit is clearly seen.

Concluding Remarks

The unsteady, comlneasible full Navier-Stokes equa-
tions are used to study the critical effects of the down-

stream boundary conditions on the supersonic vortex

breakdown. In the present study, two supersonic swirling
flow cases are considered. The first one is for a super-
sonic swirling flow in a configured circular duct, where

four types of exit boundary conditions are used. The sec-
ond one is for a supersonic swirling jet issued from a

nozzle into another supersonic jet of lower Mach num-

ber. This flow case is a computational simulation to the
experimental case of Ref. 12.

In the first flow case, we have shown that the

downstream exit boundary conditions produce substantial

changes in the vortex breakdown modes, particularly at
advanced time levels. This is due to the effect of the sub-

sonic downslream points on the flow upstream. In the sec-
ond flow case, we have shown that the downstream exit

boundary conditions do not produce substantial changes

in the vortex breakdown modes. This is due to the very
thin subsonic region at the exit and the large distance of
the downstream exit from the nozzle exit.

Acknowledgement

For the first two authors, this research work has

been supported by NASA Langley Research Center un-
der Grant No. NAG-I-994.



References

1. Grabowski, W. J. and Berger, S. A., "Solutions of

the Navier-Stokes Equations for Vortex Breakdown,"
Journal of Fluid Mechanics, Vol. 75, Part 3, 1976,

pp. 525-544.

2. Hafez, M., Kuruvila, G. and Salas, M. D., "Numeri-

cal Study of Vortex Breakdown," Journal of Applied
Numerical Mathematics, No. 2, 1987, pp. 291-302.

3. Salas, M. D. and Kumvila, G,. "Vortex Breakdown

Simulation" A Circumspect Study of the Steady, Lam-
inar, Axisymmetric Model," Computers and Fluids,

Vol. 17, No. 1, 1989, pp. 24%262.

4. Menne, S., "Vortex Breakdown m an Axisymmetric
Flow," AIAA 88-0506, January 1988.

5. Wu, J. C. and Hwang, S., "Computational Study of
Vortex Breakdown in Circular Tube," AIAA 91-1820,

June 1991.

6. Menne, S. and Liu, C. H., "Numerical Simulation of a
Three-Dimensional Vortex Breakdown," Z. Flugwiss.

Weltraumforsch. 14, 1990, pp. 301-308.

7. Spall, R. E., Gatski, T. B. and Ash, R. L., "The
Structur and Dynamics of Bubble-Type Vortex Break-
down," Proc. R. Sot., London, A429, 1990, pp. 613-
637.

8. Breuer, M. and Hanel, D., "Solution of the 3-D In-

compressible Navier-Stokes Equations for the Simu-
lation of Vortex Breakdown," Eight GAMM Confer-
ence, Delft, Netherlands, September 27-29, 1989.

9. Krause, E., "Vortex Breakdown: Physical Issues and

Computational Simulation," Thkd International Con-

gress of Fluid Mechanics, Cairo, Egypt, Janury 1990,

Vol. 1, pp. 335-344.

10. Krause, E., "The Solution of the Problem of Vortex

Breakdown," Invited paper, International Conference
on Numerical Methods for Fluid Dynamics, Oxford,

England, June 1990.

11. Delery, J., Horowitz, E., Leuchter, O. and Solignac,
J. L., "Fundamental Studies of Vortex Flows," La

Recherche A6rospatiale, No. 1984-2, 1984, pp. 1-24.

12. Metwally, O., Settles, G. and Horstman, C., "An

Experimentally Study of Shock Wave/Vortex Interac-
tion," AIAA 89-0082, January 1989.

13. Cutler, A.O .and Levey, B. S., "Vortex Breakdown in
a Supersonic Jet," AIAA 91-1815, June 1991.

14. Rhode, D. L., Lilley, D. G. and McLaughlin, D. K.,
"On the Prediction of Swirling Flowfields Found in
Axisymmetric Combustor Geometries," Transactions
of ASME, Vol. 104, September 1982, pp. 378-384.

15. Altegeld, H., Jones, W. P. and Wilhelmi, "Velocity
Measurements in a Confined Swirl Driven Recircu-

lating Flow," Experiments in Fluids, Springer Verlag,

Vol. I, 1983, pp. 73-78.

16. Liu, C. H., Krause, E. and Menne, S., "Admissible

Upstream Conditions for Slender Compressible Vor-
tices," AIAA 86-1093, 1986.

I7. Copening, G. and Anderson, J., "Numerical Solutions
to Three-Dimensional Shock/Vortex Interaction at Hy-

personic Speeds," AIAA 89-0674° January 1989.

18. Kandil, O. A. and Kandil, H. A., "Computation

of Compressible Quasi-Axisymmetrie Slender Vor-
tex Flow and Breakdown," IMACS 1st International

Conference on Computational Physics, University of

Colorado, Boulder, June 1990, pp. 46-51. Also in

Computer Physics Communications, Vol. 65, North-
Holland, March 1991, pp. 164-172.

19. Meadows, K., Kumar, A. and Hussaini, M., "A Com-

putational Study on the Interaction Between a Vortex
and a Shock Wave," AIAA 89-1043, April 1989.'

20. Kandil, O. A., Kandil, H.A. and Liu, C. H., "Compu-

tation of Steady and Unsteady Comla'essible Quasi-

Axisymmetric Vortex Flow and Breakdown," AIAA
91-0752, January 1991.

21. Kandil, O. A., Kandil, H. A. and Liu, C. H., "Su-

pea'sonic Quasi-Axisymmetric Vortex Breakdown,"
AIAA 91-3311-CP, September 1991, pp. 851-863.



0

r_ -- 0.98
rin _

0.74 2.5

Figure I.Typicalgridfor a supersonicconfig_tex[
circularduct:221x5Ix2

I

Figure 2. Sueamlines and Mach contours for a swirling

flow with periodic multibubble, multif_-
quency vortex breakdown, extrapolation f_om
interior.



Figure 3. Blow-up of streamlines of periodic multibubble, multi-

frequency vortex breakdown, extrapolation from inu_rior

B.C.



= 0.6 II

t-- 12_

t= 171

= 35

t =45

t=65 1

I I

, ,,, t =;81

II

I I

! II i I II I II | _, _ _"

I l lii _ l a llmp

"'--_ ' ' 90
| I " t _

I I I I i ,

I i i i i ii

I

i

Figure 4. Streamlines and Math contours for a swirling
flow with transient multibubble vortex in-care-

down, Pb = P_, Riemann invariant B.C.



w

r = 0.81

t=16

t=25

t = 66

• _ : _ : : _ :t=91i

! •

Figure 5. Streamlines and Mach contours for a swirling

flow with periodic multibubble, multifre-
quency vortex breakdown, Pb = 2Poo, Rie-
mann mvariant B.C.



= 0.6

nl

JR II

• . • I I I ]

L

. |

Figure 6.

78]I I I t_
iI

_lll j
• I I _ j

Streamlines and Mach contours for a swirling

flow with transient multibubble vortex break-

down, _ =' c, Riemann invariant B.C.



I I

I

Figure 7. Streamlines and Mach contours for a swirling flow

with quasi-steadymuRibubblc vortexbreakdown, down-

stream disk of r = 0.333.



3,5
....... I;ILII'ilH!IH_ 111111 iF IHt II _)] IIII Ill b I ii I

IH i !i Li;1, : _ i I I I I I IlllI III IIIU IIII Ill

, i H ii::_I_IIIIiiHWiIIIIIIIIiiiIIII IIII_IIIILIIIIIIIII I IIHH IIIIli
: liih;:II :iIiil m HJI_IIIll I_iIIiIIIIIIIIIHIIIIII)IIIII'IIIIII Ii

i I , iIIil Ill rH I iI IIIJ II Ill I iIIrIIIII h

i I :; IiIi_ii; J hi I _ I,I'III iiI I IIIiIIIII NIII fillIll I

............. I................ IIltl rill +IIHII Illlll Illlll,lt illl

......... ii_i l,ll!!Ili'l+)_II_Ill+llllIlI IIIIIIllil llllllll lll+llillllilli_l_

I ................ I ..... _ I,, ,,., _1,,, fl]
i , i I ii i1.1 :_ ,1/_ Ili!lllM.ii:lrlllrllillllHiI II IIILII I I II Iit11111 III I

....... I.............................. I ,lltll , Ill I..... I,lttll Inn ill
..... iiiii iii:i hi _;ik :1 iI i !1 t i iJitl t 11 i lit ii iii iiii iii i111 Ulnlllll

h . F i_i!_ltL !1,_ i ii I I . i i t111111t lllltl tl i iii i

..... il .................. Iiilltii liiLli0.0

0.0 7.0

Figure 8. Typical grid for supersonic swirling jet/ram
a nozzle, 221xSlx2

1,2 ,,,,i .... i .... _ .... _ .... f .... i .... i .... i .... _ .... i .... _ ....

1.1

1.0

.9

.8

.s

.3

.1

\
/

u_,axialv¢Io_iW

1,1

1.11

.9

.8

-'!

I,I

.9 _

.8

_ .7

"_ .4

.2

.1

i I*ll_.lJ II IIl,,.ll I II iIii H I,I1.1, I,III1_ I Ill JRIH i1_1 A

I I ! I I I I I I I I I i

u_, Radial velocity

1.1

1.1

.9

,7

.6

.S

,4

.3

.1

,.,,..,....

1.2

1.1

1.1

.9

.7

• :i

.4

.:
.I

| •

p, dcmity

Figure 9. Quasi-axisymmctric flow profiles at x = 0.0 for super-

sonic swirling jet from a nozzle.



r=0.695 r= 1.1
t=5

t=8

t=17

t = 36

t = 50!

Figure 10. Streamlines and Mach contours for super-

sonic swirling jet from a nozzle with low-

frequency almost single bubble vortex break-
down. extrapolation from interior B.C.



Figure 10. Continued

Figure 1I.

t=71

r=l.1

t=90

t=36
r=l.l

t=90

Streamlines and Mach contours for super-

sonic swirling jet from a nozzle with low

frequency almost single bubble vortex btc,ak-
down, Rmnann h_variant B.C.



0.11 0E+01

-0.110E+01

0. 000E÷00

.60

1.

0.231E÷01

Figure 12. Blow-up of Mach contours at t = 55 for supersonic

swirling jet from a nozzle with low frequency almost

single bubble vortex breakdown, Riemann invariant

B.C.





i -

i

PROCEEDINGS OF TH E ASIAN PAC! FIC CONFERENCE ON COMPUTATION AL

MECHANICS / HONG KONG / 1 i-13 DECEMBER 1991

N97-

Computational
Mechanics

- >. - .__'.L2_

Edited by

y.K.CHEUNG, J. H.W. LEE & A.Y.T. LEUNG

University of Hong Kong

OFFPRINT

A.A. BALKEMA / ROTTERDAM / BROOKFI ELD / 1991





Computat_,ml Mechanics, Cheuno, Lee & Leung (eds) O 1991 Balkema. Rotterdam. ISBN 90 54 t0 029 X

Three-dimensional computational study of asymmetric flows using

Navier-Stokes equations
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ABSTRACT: The unsteady, compressible, thin-layer Navier-Stokes equations are used to obtain

three-dimensional, asymmetric, vortex-flow solutions around cones and cone-cylinder configura-

tions. The equations are solved using an implicit, upwind, flux-difference splitting, finite-volume

scheme. The computational applications cover asymmetric flows around a 5*semi-apex angle cone

of unit length at various Reynolds number. Next, a cylindrical afterbody of various length is added

to the conical forebody to study the effect of the length of cylindrical afterbody on the flow asymme-

try. All the asymmetric flow solutions are obtained by using a short-duration side-slip disturbance.

1. INTRODUCTION

The problem of asymmetric vortex-flow around slender bodies has received considerable

attention by researchers in the computational fluid dynamics area [1-3] and by researchers in the

experimental fluid dynamics area [4-6]. The problem is of vital importance to the dynamic stability

and controllability of missiles and fighter aircraft. When flow asymmetry develops, it produces

side forces, asymmetric lifting forces and corresponding yawing, rolling and pitching moments that

might be larger than those available by the control system of the vehicle.

In several recent papers by the present authors [1, 2], the unsteady, thin-layer, compressible

Navier-Stokes equations have been used to simulate steady and unsteady, asymmetric vortex flows,

including their passive control, around cones with different cross-sectional shapes. The emphasis of

these papers was extensive computational studies of the parameters which influence the asymmetric

flow phenomenon and its passive control. Since the computational cost associated with the solution

of three-dimensional-flow problems with reasonable flow resolution is very expensive, all the

computational solutions were obtained using a locally-conical flow assumption. Such an assumption

reduces the problem solution to that on two conical planes, which are in close proximity of each

other, and hence it reduces the computational cost by an order of magnitude. Moreover, such

solutions still provide extensive understanding of the flow physics since one can use very fine grids

for reasonable flow resolution. In the present paper, we focus on the three-dimensional asymmetric

flow problem using a very fine grid with high resolution near the solid boundary.

2. FORMULATION AND COMPUTATIONAL SCHEME HIGHLIGHTS

The conservative form of the dimensionless, unsteady, compressible, thin-layer Navier-Stokes

equations in terms of time-independent, body-conformed coordinates are used. The implicit, upwind,

flux-difference splitting finite-volume scheme is used to solve the unsteady, compressible, thin-layer

Navier-Stokes equations. The scheme uses the flux-difference splitting scheme of Roe which is

based on the solution of the approximate Riemann problem. Boundary conditions are explicitly

implemented. At the plane of geometric symmetry, periodic conditions are used. Freestream
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Figure 1. Asymmetric flow solution around a cone of unit length, short-duration side slip.

Figure 2. Asymme_ic flow solution around a cone of unit length, short-duration side slip.
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Figure 3. Unsteady asymmetric locally-conical flow solution at different time steps within one
cycle (cylinder axis is a time axis), At = 10 -3.

conditions are specified at the inflow boundaries and first-order extrapolation of the flow variables

is used at the outflow boundaries. The conical shock enclosing the body is captured as part of the

solution. On the solid boundary, the no-slip and no-penetration conditions are enforced and the

normal pressure gradient is set equal to zero. For the temperature, the adiabatic boundary condition

is enforced at the solid boundary. The initial conditions correspond to the freestream conditions

with the no-slip and no-penetration conditions on the solid boundary.

3. COMPUTATIONAL APPLICATIONS AND DISCUSSIONS

Circular Cone

A 5°-semi-ape x angle circular cone of unit length (cone length is the characteristic length)

is considered. This is the same circular cone which was considered by the authors in Ref. 1 for

the locally-conical flow solutions. A three-dimensional grid of 161x81x65 in the wrap around,

normal and axial directions, respectively, is generated by using a modified Joukowski wansformation

at axial stations. The grid is clustered algebraically in the normal direction of the body using a

geometric series with minimum grid spacing of 10 .6 at the cone vertex and 10 -5 at the axial station

of unit length. The cross-flow grid size of 161x81 is the same grid size which was used for the

locally-conical flow solutions of Ref. 1.

With the flow conditions set at a "-20 °, Moo - 1.8 and Re = 105, which arc the same conditions

as those of the locally-conical flow of Ref. 1, the three-dimensional solution produces a symmetric

steady flow, unlike the locally-conical solution which produces asymmetric steady flow. Next, the

search is directed at obtaining asymmetric flow solutions for the three-dimensional cone flow. In

Fig. 1, we show the solution in the form of total-pressure loss for the same cone at c_ = 40 °, Moo

= 1.4 and Re =4x 106. It is seen that the solution is asymmetric and is nearly self-similar over

a long axial distance of the cone length. This solution is obtained using a short-duration side-slip
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Figure 4. Total-pressure-loss contours and surface-pressure coefficient at different axial stations,
a cone of unit length, _ = 40°, Moo = 1.4, 1% = 8× 106.

Figure 5. Asymmetric flow solution around a cone-cylinder configuration 1:1.

1368



i

m_



17

+1'

Cp

17

.11

JI.

.I

-0.2000:0.3200

o
I

-0. 2000, -0. 0800

O, 0.3200 a._

-0.2OiO , 0.3200

+ t--+L--l.----l__l __L__ J

-0. 2000 ,-0, OBO0

O. 20(

+,. ......... ;i

e+lN

O. 2000,. 0. 0100 -e.lm

o+o=.

*O.OllO0 -*.=_ *,No a;,_

Fig_ 6.

0.201

Surface pressure, total-pressure-loss and Mach contours at differem axial stations,
cone-cylind_ configuration 0.5:0.5, a = 46.1 °, Moo = 1.6, Re = 6.6:< l06, comparison

with experimental data (Ref. 5).

disturbance. When the residual error drops four orders of magnitude, a 2°-side-slip disturbance is

applied for 100 iteration steps, then it is removed. Thereafter, the pseudo time stepping.is continued

until the residual error drops again fe,.rr to five orders of magnitude and a stable asymmetric solution
is obtained.

Figure 2 shows the total-pressure-loss solution for the same cone for a higher Reynolds number,

Re - 8x10 6. The asymmetry of the vortex flow becomes much stronger as compared with the

previous case. The flow asymmetry of this case changes sides along the axial distance and a

complete wave length of flow asymmetry is formed between the third and ninth cross-flow planes.

Strong spatially shed vortices exist in the flowfield. This solution is qualitatively similar to the

unsteady asymmetric local/y-conical flow solution at different time steps [1] which is depicted in

Fig. 3 on a cylinder with the axis of the cylinder representing time. The behavior of the flow

asymmetry over one period in Fig. 3 is qualitatively similar to the behavior of the flow asymmetry

over one wave length in Fig. 2. Figure 4 shows the total-pressure-loss contours and surface-pressure

coefficient at different axial stations for the case of Fig. 2. The solutions at axial stations of X/L =

0.2 and 0.9 are almost the same (the total pressure losses are drawn to a scale given by the ratio of

thecirculardiametersatX/L = I stationand thelocalaxialstation).The flowasymmetry between

thesetwo stationsrepresentsa fullwave length.
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Circular Cone-Cylinder Configurations

To address the issue of the effect of cylindrical a_fterbody length on the flow asymmetry a

cylindrical afterbody of different lengths is added to the unit-length conical forebody. The flow

around the resulting cone-cylinder configurations is solved with the flow conditions of a - 40 °, Moo

---1.4and Re = 4x 106,which arethesame flowconditionsoftheisolatedunit-lengthconeofFig.I.

The lengthsof the cylindricalafterbodyarechosen as I,1.5and 2. The sourceof flowdisturbance

isthesame short-duration2°-side-slipdisturbance.For thecone-cylinderconfigurationof I:I (cone

length:cylinderlength),Fig.5 shows a very strongasymmetric flow on thecone,in comparison

withtheflowasymmetry of theisolatedcone of Fig.I,and on thecylindricalafterbodyas well.It

shouldbe notedthatinsidetheconicalshock surroundingthecone-cylinderconfiguration,subsonic

flowregionsexistand hence thedownstream cylindrical-afterbodyboundary has an upstreameffect.

The cylindricalafterbodyhas dualeffectswhich increasestheflow asymmetry; the firstisdue to

the cone-cyllnderjunctureand the secondisdue to the increaseof the localangle of attackof

the leeward side of the cylinder.Both of theseeffectsincreasethe spatialgrowth of the flow

asymmetry. For the cone-cylinderconfigurationsof I:I.5and 1:2,the asymmetry is strongand

the flow becomes unsteady [Ref. 3].

Next, we show a comparison of the computed results with available experimental data. For this

purpose, we consider the cone-cylinder configuration of 0.5:0.5 which was experimentally tested by

Landrum 5. The configuration angle of attack is 46.1 °, the Maeh number is 1.6 and the Reynolds

number based on the total configuration length (cone + cylinder) is 6.6x 106. The cone semi-

apex angle is 9.5 °. The problem is solved using a grid size of 161x81x65. Figure 6 shows the

surface-pressure coefficient along with the experimentzldata, the total-pressure-loss contours and the

total Mach-number contours at the axial stations of 0.475 and 0.775. The computed and measured

surface-pressure coefficient axe in good agreement on all the axial stations. The asymmetry changes

sides in the downstream direction as it is shown by the results of axial stations at 0.475 and 0.775.

This comparison conclusively validates our computed results and the grid size.

4. CONCLUDING REMARKS

Several important issues are addressed in the present study. By increasing the flow Reynolds

number for flows around a cone, we have shown that the flow asymmetry becomes strong and

changes sides in the downstream direction. For the high-Reynolds flows, the spatial asymmetric

flow develops in a wavy manner, which is qualitatively similar to the temporal asymmetric flow

development of the locally-conical solutions, where the flow asymmetry develops in a periodic

manner. By adding a cylindrical afterbody to the conical forebody, the flow asymmetry becomes

stronger in comparison with that of the isolated cone. As the length of the cylindrical afterbody is

increased, the flow asymmetry becomes stronger and unsteady. Finally, the computed results and

grid used are conclusively validated.
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Steady and unsteady, supersonic asymmetric vortical flows and their passive control around circular cones are

considered in this paper. These problems are formulated by using the unsteady, compressible, single and double,
thin-layer, Navier-Slokes equations. The equations are solved by using an implicit, upwind, flux-difference

splitting, finite-volume scheme, either in a pseudotime stepping or in an accurate time stepping. An implicit,
approximately factored, central-difference, finite-volume scheme has also been used to validate some applica-
tions of the upwind scheme. Local conical flows are assumed for the computational applications presented in
this paper. Steady asymmetric vortical flows have been predicted by using random and controlled disturbances.
Unsteady asymmetric vortex-shedding flows have also been predicted, for the first time, using time-accurale

solutions with two different computational schemes. Control of flow asymmetry has been demonstrated
computationally by inserting a vertical fin in the leeward plane of geometric symmetry.

Introduction

N the high angle of attack (AOA) range, the separated
vortical flow from forebodies of missiles and fighter air-

craft may become asymmetric, producing large abrupt

changes in force and moment coefficients. These abrupt

changes may exceed the available controllability and lead to
missile and aircraft spin. Experimental studies of several re-

searchers TM have identified four distinct flow patterns about

slender bodies through a wide AOA range and zero-degree

side slip. The first pattern develops in the very small AOA
range, where the flow is attached and the axial flow is domi-

nant. In the intermediate AOA range, the crossflow becomes

of the same order of magnitude as that of the axial flow, the

flow separates on the leeward side, and a symmetric vortex

pair is formed. As the AOA reaches a high range, the symmet-

ric vortex pair becomes asymmetric, and the flows stay steady.

For this asymmetric vortex-flow pattern to occur, it is not a
necessary condition to have asymmetric separation lines on the

leeward side of the body. The fourth flow pattern develops at

a very high AOA range, where asymmetric time-dependent

vortex shedding occurs either randomly or periodically, simi-
lar to the von K_irman vortex street in two-dimensional flows

around cylinders.

For isolated pointed forebodies, the onset of vortical flow
asymmetry occurs when the relative incidence (ratio of AOA

to nose semi-apex angle) exceeds a certain value; e.g., for a

pointed circular cone, the relative incidence must be higher
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than two. However, the relative incidence value is not the only

determinable parameter for the onset of vortical flow asym-

metry. The onset of vortical flow asymmetry is also a function
of the freestream Mach number and Reynolds number and the

shape of the body cross-sectional area as well. Asymmetric

vortical flow and vortex shedding have also been documented
for delta wings 12J3 at very high relative incidences and low

subsonic regimes.
For the critical values of the relative incidence, Mach num-

ber and Reynolds number, and the shape of cross-sectional

area, the symmetric flow is unstable. Any small flow distur-

bance in the form of a transient side slip, acoustic disturbance,

or similar source of disturbance causes flow instability that

produces, depending on the flow conditions, either a steady

asymmetric vortical flow or an unsteady asymmetric flow with

vortex shedding. In this paper, we present an extensive compu-
tational study of the steady asymmetric vortical flow and

unsteady asymmetric flow with vortex shedding to address

some of the influential parameters as the relative incidence
and Mach number.

As the experimental work shows, the mechanisms that lead

to asymmetric vortex wake are not well understood. However,

two mechanisms have been established for explaining the evo-

lution of flow asymmetry. _.6.9J° The first mechanism applies

to both laminar and fully turbulent flows. It suggests that flow

asymmetry occurs due to instability of the velocity profiles in
the vicinity of the enclosing saddle point that exists in the

crossflow planes above the body primary vortices. 2.7,t° The

second mechanism suggests that flow asymmetry occurs due to

asymmetric transition of the boundary-layer flow either at the

nose in the axial direction or on both sides of the body in the

crossflow planes. For pointed slender bodies, the first mecha-

nism produces higher side forces than those produced by the

second mechanism. These results have conclusively been
shown through the experimental work of Lamont 8.9 on 2-diam

and 3.5-diam tangent ogive noses with cylindrical afterbody.
An extensive review of the steady and unsteady vortex-induced

asymmetric loads is given by Ericsson and Reding in Ref. 11.

Several attempts have been carried out to computationally

simulate asymmetric vortical flows around slender bodies of

revolution. Early computational work on conical flows has

been published in Refs. 14 and 15. Graham and Hankey 16
presented the first three-dimensional Navier-Stokes computa-
tions for asymmetric flow around a cone-cylinder body aT 30-





2170 KANDIL, WONG, AND LIU AIAA JOURNAL

deg angle of attack, i.6 freestream Much number, and

0.4 × 106 Reynolds number. The MacCormack explicit finite

difference scheme was used for the computations on a rela-

tively coarse grid of 26 x 30 x 60. A very small perturbation is

induced by the truncation error of finite difference algorithm

that triggers an instability of the saddle point above the body

(first mechanism for asymmetry). Hence, the instability is

induced by numerical bias that is physically amplified to pro-

duce flow asymmetry. By switching the order of spatial differ-

encing in the predictor and corrector sweeps, the asymmetry
was reversed.

Degani and Schiff _7 used the thin-layer, Reynolds-averaged,

Navier-Stokes equations to compute asymmetric vortical flow

around an ogive-cylinder body. They found that flow asym-

metry can be obtained by introducing an asymmetric distur-

bance very close to the body nose. The disturbance they used

was in the form of a small jet that was blown from one side of

the body near the nose. However, when the jet was turned off,
the numerical solution unfortunately showed that the flow

recovered its symmetry. The authors of the present paper
believe that the problem is attributed to the smallest scale of

the grid at the solid boundary and the damping effect of the

numerical dissipation in the axial direction, in addition to the

grid-fineness distribution.

Marconi _8 used the Euler equations to solve for supersonic

flow past a circular cone in conjunction with a "forced separa-
tion model," which was used by Dyer, et al. _9 The pseudotime

stepping was carried out until the residual error reached ma-

chine zero while the flow was symmetric. Proceeding with the
time stepping, vortex-flow asymmetry was obtained and

stayed stable thereafter. It is believed that the asymmetry was

triggered by the machine round-off error, which acted as a

disturbance to the saddle point in the flowfleld. In a later

paper, Siclari and Marconi 2° used the full Navier-Stokes equa-

tions to solve for supersonic asymmetric flows around a 5-deg

semiapex angle cone over a wide range of angles of attack.
Very recently, Stab] 2_ conducted experimental studies of the

low-speed flow around a circular cone of 8-deg semiapex angle

circular cone in the angle of attack range of 15-50 deg at a

Reynolds number of 7800 based on the base diameter. The

onset of flow asymmetry was observed at 35-deg angle of

attack. He has shown that the flow asymmetry can be sup-

pressed by inserting a fin along the leeward plane of geometric

symmetry with its edge along a ray through the apex. The

minimum fin height for this purpose was found to be equal to
the local radius of the cone.

In this paper, the supersonic, steady and unsteady, asym-

metric vortical flows around circular cones are studied using

the unsteady, compressible, single thin-layer, Navier-Stokes

equations. Two computational schemes are used to solve the

equations. The first, which is the main scheme used in this

paper, is an implicit, upwind, flux-difference splitting, finite-
volume scheme. The second, which is used to validate certain

cases of the upwind scheme, is an implicit, approximately

factored, central-difference, finite-volume scheme. Pseudo-

time stepping is used for steady flows and time-accurate step-

ping is used for unsteady flows. Some of the influential

parameters for flow asymmetry, such as the relative incidence

and Much number, are addressed. A flow case of passive

control of flow asymmetry is also studied using the unsteady,

compressible, double thin-layer, Navier-Stokes equations.

Formulation

The three-dimensional compressible viscous flow around

the body is governed by the conservative form of the dimen-

sionless, unsteady, compressible, double thin-layer, Navier-

Stokes equations. In terms of time-independent, body-con-
formed coordinates _l, _, and _, the equations are given by

atO + aE+O_s O(E,,)._O_2 a(E,.)_a_3 = o, s = 1,2,3, (1)

where

(2 = _! = "J [P'P"hPl'I2'Pt4:3'Pe ]' (2)

E,,, =' inviscid flux

= (!/J)[Ok _"_e, ] '

= (l/J)[pU,,,putU#, + c_lf_'p,pu2U,, + O2_'_p,ou3U,,

+ O3U'P, (pc + p)U,,]', m = i,2,3 (3)

(E_): _=viscous and head-conduction flux in ,_: direction

= (I/J)[O,Ok_2rkh _,_rk:, 8,_:r,3, dt,_ _"(u_rk.--qk)]' (4)

(E,)3 --_viscous and head-conduction flux in _3 direction

= (l/J)lO,ak_3rkj, C_k_7"k2, tgk_3rk3, tgk_ 3 (u.r,.--qk)]' (5)

U., = ak_'uk (6)

The first element of the three momentum elements of Eq. (5)

is given by

a+'_3r*'"_ t ,/,a,_+ ,_,_.,) (7)

where
.Ou+

e,= a,_3a,_3, @ = ,/,o,_,-E_ (8)

The second and third elements of the momentum elements are

obtained by replacing the subscript 1, everywhere in Eq. (7),

with 2 and 3, respectively. The last element of Eq. (5) is given

by

a,_3(u.r,. -q,) ,, _w + _, v_-_(u, + u_ + u_)

, a(a')]'_
+ (_- _)e. _J) (9)

where

W= a._u. (10)

For Eq. (4), in the case of double thin-layer, Navier-Stokes
equations, the elements are given by equations similar to Eqs.

(7-10) with the exception of replacing _a by _. The double

thin-layer, Navier-Stokes equations are used only for the pas-

sive control of flow asymmetry since the existence of the fin

creates a second thin layer that is perpendicular to the cone

thin layer. The reference parameters for the dimensionless

form of the equations are L, a**, L/a**, 0®, and m. for the

length, velocity, time, density, and molecular viscosity, re-
spectively. The Reynolds number is defined as Re = p., V_L/

_=, and the pressure p is related to the total energy per unit

mass and density by the gas equation

P = iv - l)o le- V_(u?+ u_ + u})] (11)

The viscosity is calculated from the Sutherland law

#= T,:2 (1 + C_ C= 0.4317
\r + c/'

(12)

and the Prandtl number P, = 0.72.

In Eqs. (1-10), the indicial notation is used for convenience.

Hence, the subscript k and n are summation indices, the

superscript or subscript s is a summation index, and the super-
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script or subscript m is a free index. The range of k, n, s, and

m is 1-3, and ak E (a/Ox,).

Boundary conditions are explicitly implemented. They in-
elude inflow-outflow conditions and solid-boundary condi-

tions. At the plane of geometric symmetry, periodic condi-

tions are used for symmetric or asymmetric flow applications

on the whole computational domain (right and left domains).
At the far-field inflow boundaries, freestream conditions are

specified since we are dealing with supersonic flows, whereas
at the far-field outflow boundaries, first-order extrapolation

from the interior points is used. On the solid boundary, the

no-slip and no-penetration conditions are enforced; uj = u2 =

u3 = 0, and the normal pressure gradient is set equal to zero.

For the temperature, the adiabatic boundary condition is en-
forced on the solid boundary. The initial conditions corre-

spond to the uniform flow with u_ = u: = u3 = 0 on the solid

boundary.

For the passive control applications using a vertical fin in

the leeward plane of geometric symmetry, solid-boundary
conditions are enforced on both sides of the fin.

Highlights of Computational Schemes

The first computational scheme used to solve the unsteady

compressible, single or double thin-layer, Navier-Stokes equa-

lions is based on the Roe inviscid flux-difference splitting
scheme. In this scheme, the Jacobian matrices of the inviscid

fluxes, A, = (aEs/Oq), s = I-3, are split into left and right

fluxes according to the signs of the eigenvalues of the inviscid

Jacobian matrices. Flux limiters are used to dampen the nu-

merical oscillations in regions of large changes of the gradients
of the flowfield vector. The viscous and heat transfer terms

are centrally differenced. The resulting equation is solved by

using approximate factorization in the _J, _2, and _J direc-

tions. The computational scheme is coded in the computer

program CFL3D.

The second computational scheme is an implicit, approxi-
mately factored, centrally differenced, finite-volume scheme.::

Added second-order and fourth-order dissipation terms are

used in the difference equation on its right-hand side terms,

which represent the explicit part of the scheme. The Jacobian
matrices of the implicit operator on the left-hand side of the

difference equation are centrally differenced in space, and

implicit second-order dissipation terms are added for the
scheme stability. The left-hand side operator is approximately

factored, and the difference equation is solved in three sweeps

in the /_, _:, and _ directions, respectively. The computa-

tional scheme is coded in the computer program ICF3D. The

1CF3D code is used to verify some of the applications of the

--CFL3D

---ICF3D

-,o

-0,|_00 40 . _ .... / . /

• ,,," CFL3D ",, "
"_ ' It', J1

"[ --CFL3D -°,,_..o.,***

_I ---ICF3D

(3
e

: ."7 it . ii"
;;,;,,i!' Iti,,,,-..

Fig. I Symmetric flow solutions for a circular cone, a : 10 deg, M= = !.8, Re = i0 s (validation case).
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Fig. 2 Steady asymmetric flow solutions for a circular cone due to random disturbances, a = 20 deg, M** = 1.8, R, = l0 s (validation case).
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CFL3D code; namely the cases of Figs. 1 and 2. For the

problem of passive control of flow asymmetry, the double

thin-layer, Navier-Stokes equations have been solved using the
CFL3D code.

Since the applications in this paper cover local-conical flows

only, the three-dimensional scheme is used to solve for locally
conical flows. This is achieved by forcing the conserved com-

ponents of the flow vector field to be equal at two planes of
x = 0.95 and i.0. The validity of local-conical-flow assump-
tion is discussed in the next section.

Validity of the Local-Conical-Flow Assumption

The solutions presented in this paper are called local-conical

solutions, which are obtained by equating the conserved com-
ponents of the flowfield vector, in the three-dimensional

scheme, on two crossflow planes that are in close proximity to

each other at a selected location. Once this location is specified

(x = 1.0 in the present applications), the flow Reynolds num-

ber is determined and the time scale, for time-accurate solu-

tions, is also determined. The resulting solution is a local-con-

ical solution at the specified location, it is not a global-conical

solution. The locally conical equations can be shown by con-

sidering the conservative form of the Navier-Stokes equations

in the Cartesian system

aq O(E-E,,),
+ =0, i= 1-3 (13)

Ot 0 x,

By introducing the conical coordinates

Xj X_ -_
_Ji = --, _2 = -:, _ = XjXj (14)

X3 X3

and using the chain rule to express Eq. 03) in terms of the

conical coordinates, we get

,130Oqot _ O+ -,,(_'-E")_ + _n2 (E-Ev):

_3 O
+ _, 7 (E- E,,h + 2(?- I,,) = 0 (15)

an3

where

0=x[l +n_+___

E1 = El - "qlE3, _ = E2 - _,_E3

/73 = E3 + _IE) + "q2E2

? = L'_

L',,I = E),I - rt)Ev3

(16)

i_,,2 = E,.z - _2E,,_

E,,3 = E,,3 + _jE,,I + _2E_.2

I,, = E_3 (17)

The conical flow condition requires that the flow variables be

independent of the coordinate rta. If this condition is imposed
in Eq. (15), by dropping the derivatives with respect to ,/_, the

equation reduces to

00t + (L:-IF.,.), + (ti-Evh + 2(?-I,) = 0 (18)

It is clearly seen that Eq. (18) still has rt_ dependence in the
unsteady term and the viscous and heat-flux terms (one can see

the explicit dependence of the viscous and heat-flux terms on
r/_ by transforming the elements of these vectors to the conical

coordinates). Hence, Eq. (18) is not self-similar, and there-

fore it does not represent a global-conical flow. However, if r?)
is set equal to a constant c, then one can consider Eq. (18) to

represent a local-conical flow around "0_= c. The resulting
solution using Eq. (18) with rl_= c represents a local-conical
solution with a Reynolds number and a time that are scaled by

the constant c. It should be noted that if the flow is steady and

inviscid, then Eq. (18) becomes self-similar, and hence it rep-

resents a global-conical flow. In the present paper, we indi-

rectly solve Eq. (18) at a fixed location of unity. This is
achieved in the three-dimensional flow equation, Eq. (1), by

equating the elements of the flowfield vector at two planes in
close proximity to each other. In this paper, we selected these

planes to be located at x = 0.95 and 1.0. In other numerical

experiments, we use the plane locations at x = 0.995 and 1.0.

The results of these experiments were in excellent agreement

with those of the present paper.

Computational Studies

Supersonic flows about a 5 deg semiapex angle circular cone

at a Reynolds number of lO 5 have been considered. A grid of

161 x 81 points in the circumferential and normal directions is

used throughout the present applications. The grid is gener-

ated by using a modified Joukowski transformation with a

geometric series for the grid clustering near the solid
boundary. The minimum grid length is i0-'* at the solid

boundary, and the maximum radius of the computational
domain is 21r, where r is the radius of the circular cone at the

axial station of unity.

Steady Symmetric Flows

Figure 1 shows steady symmetric vortical-flow solutions for

the circular cone at 10 deg angle of attack and !.8 freestream

Mach number. In the figure, we show comparisons of the
results of the CFL3D and ICF3D codes. The results include

the residual error versus the number of iterations, the cross-

flow velocity, the total-pressure-loss contours, and the sur-

face-pressure coefficients. It should be noted here that the

angle 0 in the C a figure is measured from the leeward plane of

geometric symmetry in the clockwise direction. The agreement
of the results of the two code is excellent, and the results are

in full agreement with those of Siclari and Marconi. 2°

Steady Asymmetric Flow
Round-Off and Truncation Error Disturbances

The cone angle of attack is increased to 20 deg while all the
other flow conditions are kept fixed. Figure 2 shows the results

of the CFL3D and 1CF3D codes. In the residual error figure,

the CFL3D code shows that the residual error drops l0 orders
of magnitude within 2500 iteration steps. Thereafter, the error

increases by six orders of magnitude. The flow is symmetric

during this 5000 iteration steps. Next, the error drops down by

another six orders of magnitude and stays constant for 2500

iteration steps. The flow becomes asymmetric and stable. The

ICF3D code shows that the residual error drops five orders of

magnitude in the first 3000 iteration steps, increases two or-

ders of magnitude in the next 2000 iteration steps, and then
drops down by three orders of magnitude within the next 5000

iterations. The flow solution goes through a symmetric un-

stable solution and then to an asymmetric stable solution. The

pressure-coefficient figure for the two codes is the same over

the full range of the circumferential angle 0. The suction

pressure in the range of 0 = 0-90 deg is lower than that of the
range of 0 = 270-360 deg. The crossflow velocity and total-
pressure-loss contours for the two codes are also in excellent

agreement. They show the nature of the flow asymmetry and

its details. The results are in complete agreement with those of
Ref. 20.

Since the residual error of the CFL3D code is much smaller

than that of the ICF3D code after the first 2500 iterations, the

disturbance that triggered the asymmetry in the first code is
attributed to the machine round-off error, while the distur-
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bance that triggered the asymmetry in the second code is

attributed to the truncation error of the scheme (since there is

a bias due to the spatial marching direction). Both distur-

bances are random in nature. However, irrespective of the

source of disturbance, the final asymmetric stable solution is
the same.

Controlled Transient Side-Slip Disturbances

In Figs. 3 and 4, we show steady asymmetric flow solutions

due to transient side-slip disturbances of ± 2 and ± 0.5 deg.

The residual-error figures show a drop of seven orders of

magnitude in the first 2000 iterations. At this step, a side-slip

disturbance is imposed for six iteration steps, then it is re-

moved. Irrespective of the magnitude or the sign of the side-
slip disturbance, the residual error increases by six orders of

magnitude, then it drops down very rapidly. A stable asym-

metric flow solution is obtained. The asymmetric solutions

corresponding to the ± 2 deg side-slip disturbances are mirror

images of each other, as can be seen from the figures of the

surface-pressure coefficient, crossflow velocity, and total-
pressure-loss contours. The corresponding asymmetric solu-

tions with the ± 0.5 deg side-slip disturbances are exactly the
same as those of the ± 2 deg side-slip disturbances. Moreover,

the final asymmetric solutions of the ± 2 deg and ± 0.5 deg

side-slip disturbances are the same as those of Fig. 2.

Again, this numerical experiment shows that the same phys-

ical flow asymmetry is obtained.

Unsteady Asymmetric Vortex Shedding

In the present case, the angle of attack is increased to 30 deg

and all the other flow conditions are kept the same as those of
the cases above. Figure 5 shows the results of this case.

Here, we show the history of the residual error and the lift

coefficient up to the 15,700 time step. First, pseudo-time

stepping was used up to 10,000 iterations, and the solution was

monitored every 500 iterations. The solution showed that the

asymmetry was changing from the left side to the right side,

which indicated a possibility of unsteady asymmetric vortex

shedding. The residual error was also oscillating. The compu-

tations were repeated starting from the 3,500 iteration step

using time-accurate calculations with At = 10- _. The residual-
error and lift-coefficient figures show the time history of the
solution. It is seen that the residual error and the lift coeffi-

cient show a transient response that is followed by a periodic

response. Figure 5 shows also snapshots of the time history of
the solution for the total-pressure-loss contours and surface-
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pressure coefficient. The solutions are shown every 100 time
steps starting from the time step of 15,000. At n = 15,000, the

asymmetric flow is seen with an already shed vortex from the

right side. As time passes, the shed vortex is convected in the

flow and the primary vortex on the left side stretches upwards

while the primary vortex on the right gets stronger, as it is seen

from the surface pressure figures. At n = 15,600, the primary
vortex on the left side is about to be shed. At n = 15,700, the

primary vortex on the left side is shed in the flowfield. It

should be noticed that the solution at n = 15,700 is exactly a
mirror image to that at n = 15,000. The solution from 15,000-

15,700 represents the first one-half the cycle of shedding. The

solution from 15,700-16,400 (not shown) represents the sec-

ond one-half the cycle. The periodicity of the shedding motion

is conclusively captured. The period of oscillations is 10- 3 ×

1,400 steps = 1.4 that produces a shedding frequency of 4.400
(Strouhal number). This solution is obtained by using the

flux-difference splitting (FDS) scheme.

Very recently, a researcher in the computational simulation

area of asymmetric flows claimed that he had applied the
flux-vector splitting (FVS) scheme of the CFL3D code to the

present flow case. His solution showed that the flow was

steady and symmetric. A statement of his results was commu-
nicated to us and we were asked to respond. Therefore, we

recomputed the present flow case using the FVS scheme of the

same CFL3D code. In Fig. 6, we show the results of the

time-accurate solutions using the FVS scheme using the same

grid. Using the FVS scheme, the flux limiters were turned on,

and as can be seen from the logarithmic-residual curve, the

solution becomes symmetric and steady after 5000 time steps.

Next, the flux limiters are turned off, and the solution shows

a transient response up to 12,000 time steps. Thereafter, the

solution becomes periodic with periodic asymmetric vortex

shedding. The solution was monitored every 100 time steps,
and the results from n = 13,900-14,600 are shown. Although

the process of adjusting the time instants is difficult to match

those of the FDS solution, it is seen that the captured snap-
shots of the FVS solution almost match those of the FDS

solution. Comparing the FVS solutions at n = 13,900 and

14,600, it is seen that they are mirror images of each other.
Hence, periodic flow response has been achieved with a period

of 1400 x 10-3= 1.4, which is exactly the same period of

shedding as that of the FDS solution. This pinpoints the high
numerical dissipation effect of the FVS scheme when the flux
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limitersare turned on. The resulting numerical dissipation in

the FVS is large enough to dampen the random disturbances

of the flow solution. By turning off the flux limiters in the

FVS scheme, the random disturbances can grow, producing

the asymmetric unsteady vortex shedding. This also shows
that the FDS scheme, even with the flux limiters turned on, is

less dissipative than the FVS scheme. These results conclu-

sively explain the erroneous claim of steady flow made by the

previously mentioned researcher.

Steady Asymmetric Flow at Different Math Numbers (Effec! of M.)

Figure 7 shows the effect of the freestream Much number

(M,_ = 2.2, 2.6, and 3.0) on the convergence history, surface

pressure, crossflow velocity, and total-pressure-loss contours

for the circular cone at 20 deg angle of attack. At M,_ = 2.2,

the residual error shows that the stable asymmetric flow is
obtained within the same number of iterations as that of the

Mo. = 1.8 case. At M** = 2.6, the residual error shows that the

stable asymmetric flow is obtained after a large number of

iterations. And at M,, = 3.0, no asymmetric flow was cap-
tured, the flow stayed symmetrically stable. The surface pres-

sure figures show that the asymmetry gets weaker as the Mach

number is increased. This conclusion is clearly seen from the
crossflow velocity and the total-pressure-loss figures. It should

be noted that since the nature of disturbance is random, flo_

asymmetry changes sides as the Mach number increases until it

disappears.

Passive Control of Flow Asymmetry

Figure 8 shows the passive control of flow asymmetry by

inserting a vertical fin in the leeward plane of geometric sym-

metry. The fin height is equal to the cone local radius r. Here,

the double thin-layer, Navier-Stokes equations are used to

obtain these results. The flow Mach number is kept at 1.8 and

the angle of attack is 20 deg. The flow is completely symmetric
as can be seen from the figures of the surface-pressure coeffi-

cient, total-pressure-loss contours, and crossflow velocity. A

blow-up of the cross-flow velocity at the fin-cone juncture

shows two corner recirculating bubbles of exactly the same

size. This case has been obtained after 24,000 iteration steps.
Again, this is the first time such a computational simulation of
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Fig. 8 Control of asymmetric flow of a circular cone using a vertical fin in the leeward geometric plane of symmetry, a = 20 deg, M® = 1.8,

Re = i0 s, h = r (r m radius of circular section).

the passive control of the flow asymmetry has been presented.

The results are in full agreement with Stahl's experimental

study, zj

Concluding Remarks

This paper presents extensive computational study and sim-

ulation of steady and unsteady asymmetric vortex flow around

circular cones. A systematic study has been carried out to

show the effects of angle of attack and Mach number. The

study shows that the flow asymmetry is independent of the

type or level of the disturbance. For the controlled transient

side-slip disturbance, the solution is unique. For the uncon-

trolled random disturbance, the solution is also unique with

the exception of having the same asymmetry changing sides on

the cone. It conclusively shows that periodic vortex shedding

has been captured at larger angles of attack. The unsteady

asymmetric vortex-shedding solution has been substantiated

by using two different computational schemes. It also shows

that as the Mach number increases, the vortex flow asymmetry

gets weaker until it disappears. The possibility of passive

control of flow asymmetry has also been demonstrated. Many

of the cases presented here are obtained for the first time, in

particular, the asymmetric vortex shedding cases and the cases

of passive control of flow asymmetry.
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The unsteady, compressible, thin-layer, Navier-Stokes (NS) equations are solved to
simulate steady and unsteady, asymmetric, vortical laminar flow around cones at high
incidences and supersonic Mach numbers. The equations are solved by using an implicit,
upwind, flux-difference splitting (FDS), finite-volume scheme. The locally conical flow
assumption is used and the solutions are obtained by forcing the conserved components of
the flowfieid vector to be equal at two axial stations located at 0.95 and 1.0. Computational
examples cover steady and unsteady asymmetric flows around a circular cone and its
control using side strakes. The unsteady asymmetric flow solution around the circular cone
has also been validated using the upwind, flux-vector splitting (FVS) scheme with the
thin-layer NS equations and the upwind FDS with the full NS equations. The results are in
excellent agreement with each other. Unsteady asymmetric flows are also presented for
elliptic- and diamond-section cones, which model asymmetric vortex shedding around
round- and sharp-edged delta wings.

1. INTRODUCTION

AT HIGH ANGLES OF ATTACK, flow separations from the forebodies of missiles and fighter

aircraft may become asymmetric resulting in side forces, yawing moments and rolling

moments which are, in many instances, sufficiently large to trigger missile and aircraft

spin. Experimental studies have shown that it is not necessary for the separation lines

to be asymmetric in order for the separated flow to be asymmetric (Kenner &

Chapman 1977; Peak et al. 1979; Lamont 1980, 1982). These studies have also shown

that unsteady asymmetric flow with vortex shedding may be either random or periodic,
where the latter is similar to the K_irm_in vortex street in two-dimensional flows around

cylinders.

The onset of flow asymmetry occurs when the relative incidence (ratio of angle of

attack to semi-apex angle) of pointed forebodies exceeds certain critical values. At the

critical values of relative incidence, flow asymmetry develops due to natural and/or

forced disturbances. The origin of natural disturbances may be a transient side slip, an

acoustic disturbance, or similar disturbance of short duration. The origin of forced

disturbances is geometric perturbations due to imperfections in the nose geometric

symmetry or similar disturbances of permanent nature. In addition to the relative

incidence as one of the determinable parameters for the onset of flow asymmetry, the
free-stream Math number, Reynolds number and shape of the body cross-sectional

area are important determinable parameters. Asymmetric flow and vortex shedding

0889.-WI46]92/020249 + 17 + $03.00 (_) 1992 Academic Press Limited
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have also been documented for sharp-edged delta wings at very high relative incidences

(Shanks 1963; Rediniotis et al. 1988).
The mechanisms which lead to steady and unsteady asymmetric vortical flows past

wings and bodies at high angles of attack and zero side slip are not well understood.

The experimental studies of these phenomena by several investigators (e.g. Keener &

Chapman 1977; Lamont 1982; Skow & Peake 1982; Peake & Tobak 1982) propose two
mechanisms for explaining the origin of flow asymmetry. The first mechanism suggests

that the asymmetry occurs due to instability of the velocity profiles in the vicinity of the

enclosing saddle point which exists in the cross-flow planes above the body primary
vortices. The second mechanism suggests that the asymmetry occurs due to asymmetric

transition of the boundary-layer flow at the apex, either in the axial direction or on

both sides of the body in the cross-flow plane.

Very recently, several attempts have been carried out to computationally simulate

asymmetric vortical flows around slender bodies of revolution. In a paper by Marconi

(1988), the Euler equations are used along with a "forced separation model", which is
introduced by Fiddes (1989), to solve for supersonic flow past a circular cone. The

pseudo-time stepping is carried out until the residual error reaches machine zero while

the flow is symmetric. Proceeding with the time stepping, vortex-flow asymmetry is

obtained and stays stable thereafter. It is believed that the asymmetry is triggered by

the machine round-off error, which acts as a disturbance to the saddle point in the

flowfield. This work shows that the first mechanism of asymmetric vortex flow is

basically an inviscid mechanism. In a recent paper by Siclari & Marconi (1989), the full

Navier-Stokes equations are used to solve for supersonic asymmetric flows around a

5°-semi-apex angle cone over a wide range of angles of attack.

Kandil et al. (1990a) used the unsteady, thin-layer Navier-Stokes equations along

with two different implicit schemes to simulate asymmetric vortex flows around cones

with different cross-sectional shapes. The numerical investigation focuses on a

5°-semi-apex angle circular cone and locally conical flow is assumed. The first scheme is

an implicit, upwind, flux-difference splitting, finite-volume scheme and the second one

is an implicit, approximately factored central-difference, finite-volume scheme. Keep-

ing the Mach number and Reynolds number constant at 1-8 and 10s, respectively, the

angle of attack is varied from 10 to 30 °. At cr = 10 °, a steady symmetric solution is
obtained and the results of the two schemes are in excellent agreement. At tr = 20 ° and

irrespective of the type or level of the disturbance, a unique steady asymmetric solution
is obtained and the results of the two schemes are in excellent agreement. Two types of

flow disturbances are used: a random round-off error or a random truncation-error

disturbance, and a controlled transient side-slip disturbance with short duration. For

the controlled transient side-slip disturbance the solution is unique, and for the

uncontrolled random disturbance the solution is also unique with the exception of

having the same asymmetry changing sides on the cone. At tr = 30 °, an unsteady

asymmetric solution with vortex shedding is obtained, and the vortex shedding is

perfectly periodic. Next, the angle of attack is kept fixed at 20 ° and the Mach number is
increased from 1.8 to 3.0 with a step of 0.4. The solutions show that the asymmetry

becomes weaker as the Mach number is increased. The flow recovers its symmetry

when the Mach number reaches 3.0. Passive control of the flow asymmetry has also

been tentatively demonstrated by using a fin on the leeward side of the body along the

plane of geometric symmetry.
Experimental research efforts have also been directed to control asymmetric flows

for eliminating or attenuating the asymmetric forces and the resulting moments by

using either passive-control or active-control methods. Passive-control methods include
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the use of a vertical fin on the leeward side along the plane of geometric symmetry

(Stahl 1989), the use of fixed or movable forebody strakes (Skow & Peak 1982; Ng

1989), or the use of a rotatable forebody tip having variable cross-section, from a

circular shape at its base to an elliptic shape at its tip (Moskovitz et al. 1990).

Active-control methods primarily include the use of blowing ports with various blowing

rates and directions on the forebody surface (Ng 1990). Computational simulations

have also been used to study the effectiveness of both passive (Kandil et al. 1990a) and

active control methods (Travella et al. 1990).

In this paper, the unsteady, compressible, laminar, thin-layer, Navier-Stokes

equations are used, along with an implicit, upwind, flux-difference splitting, finite-

volume scheme to solve for steady and unsteady, asymmetric vortex flows around

cones. The steady results include asymmetric flow around a circular cone and its

control using side strakes. The unsteady results include the asymmetric vortex shedding

around circular, elliptic- and diamond-section cones. The unsteady results for the

circular cone are verified by using the FVS with the thin-layer Navier-Stokes equations

and the FDS with the full Navier-Stokes equations.

2. FORMULATION

2.1. GOVERNING EOUATIONS

The three-dimensional compressible viscous flow around the body is governed by the

conservative form of the dimensionless, unsteady, compressible, thin-layer Navier-

Stokes equations. In terms of time-independent body-conformed coordinates _1, _2
and _3 the equations are

where

aO aE, a(E.)
=0, (1)

at a_" a_ 3

Q _ _I 1-j---jIp, pu_, pu_, p,,_, pe]'; (2)

1

Em --- inviscid flux = _ [0*_"'/_k]'

1

=)[pu_, pulU= + a,_'p, pU_tJm+ a_'p, pu_U.

+ 03_mp, (1_ +p)Um] t, m = 1, 2, 3;

(E,,)3 = viscous and heat-conduction flux in _3 direction

1

=7 [0, a,_3_,, a_3_2, a_3_3, a_(un,_- q_)]';

(3)

(4)

Um= _,_mu,.

The first element of the three momentum elements of equation (4) is given by

M®/, ( au,_a*_31rkl Re _0_1_3=-- + _-_),

(5)

(6)
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where
1_ _3 aUk

_b= ak_a ak_ 3, lp = 3'_kS _- (7)

The second and third elements of the momentum elements are obtained by replacing
the subscript 1, everywhere in equation (6), with 2 and 3, respectively. The last

element of equation (4) is given by

ak_'(U,jr_--qk)-------_- e mW + dp "_u.u, + (y_ 1)Pr'-_-'JJ' (8)

where

W = 0,,_j3u,.. (9)

The reference parameters for the dimensionless form of the equations are L, a®, L/a®,

p® and #= for the length, velocity, time, density and molecular viscosity, respectively.

The Reynolds number is defined as Re = p®V®L/#®, and the pressure, p, is related to

the total energy per unit mass, e, and density,/3, by the gas equation

p =(y- 1)p(e - ½u,,u,,). (10)

The viscosity, #, is calculated from the Sutherland law

3/2/1 + C\
# = T [-_--_), C=0.4317, (11)

and the Prandtl number Pr = 0-72.

In equations (1)-(10), the indicial notation is used for convenience. The subscripts k

and n are summation indices, the superscript or subscript s is a summation index and

the superscript or subscript m is a free index. The range of k, n, s and m is 1-3, and

_, _--a/aXk. In equations (1)-(11), u,, is the Cartesian velocity component, U,, the

contravariant velocity component, r, the Cartesian component of the shear stress

tensor, qk the Cartesian component of heat flux vector, a the local speed of sound and

M_ the free-stream Mach number.

2.2. BOUNDARY AND INITIAL CONDITIONS

Boundary conditions are explicitly implemented. They include inflow-outflow condi-
tions and solid-boundary conditions. At the plane of geometric symmetry, periodic

conditions are used for symmetric or asymmetric applications on the whole computa-

tional domain (right and left domains). Since we are dealing with supersonic flows, at

the far-field inflow boundaries, free-stream conditions are specified, and the conical

shock is captured as part of the solution. At the far-field outflow boundaries first-order

extrapolation from the interior points is used. On the solid boundary, the no-slip and

no-penetration conditions are enforced, ul = u2=u3=0, and the normal pressure

gradient is set equal to zero. For the temperature, the adiabatic boundary condition is
enforced on the solid boundary. The initial conditions are set equal to the free-stream

conditions with ul = u2 = u3 = 0 on the solid boundary.

For the passive control application using side strakes, solid-boundary conditions are

enforced on both sides of the strake.

3. COMPUTATIONAL SCHEMES

The principal computational scheme used to solve the governing equations is an

implicit, upwind, flux-difference splitting, finite-volume scheme. It employs the
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flux-difference splitting scheme of Roe. The Jacobian matrices of the inviscid

flux-differences are split into left and right flux differences according to the signs of the

eigenvalues of the inviscid Jacobian matrices. The smooth flux iimiters are used to

eliminate oscillations in the shock region. The viscous and heat-flux terms are centrally

differenced. The resulting difference equation is solved using approximate factorization

along the _1, _2 and _3 directions, respectively. The scheme is third-order accurate in

space and first-order accurate in time. The computational scheme is coded in the

computer program "CFL3D." Details of the scheme are given by Rumsey & Anderson

(1988).

The second scheme is an implicit, approximately factored, central-difference,
finite-volume scheme. Added second-order and fourth-order dissipation terms are used

in the difference equation on its right-hand side terms, which represent the explicit part

of the scheme. The Jacobian matrices of the implicit operator on the left-hand side of

the difference equation are centrally differenced in space, and implicit second-order

dissipation terms are added for the numerical stability. The left-hand side operator is

approximately factored, and the difference equation is solved in three sweeps along the

_1, _2 and _3 directions, respectively. The computational scheme is coded in the

computer program "ICF3D". Details of the scheme are given by Kandil & Chuang

(1989). The ICF3D code is used to verify some cases which are solved by the CFL3D

code. In this paper, the ICF3D code is used to validate the steady asymmetric flow
case.

A third computational scheme is used to validate the unsteady asymmetric vortex

flow around the circular cone at a 30 ° angle of attack. This scheme is the flux-vector

splitting scheme which is based on the van Leer flux-vector splitting scheme (Rumsey

& Anderson 1988). This optional scheme is also coded in the computer program
"CFL3D".

Since the applications in this paper cover locally conical flows only, the three-

dimensional codes are used to solve for locally conical flows at the axial station xl = 1.

This is achieved by forcing the conserved components of the flowfield vector, t_, to be

equal at two planes located at xl = 0.95 and 1.0. The concept of locally conical flow is

explained in the next section.

4. LOCALLY CONICAL FLOWS

Locally conical solutions of the thin-layer or full Navier-Stokes equations are obtained

using one of two methods. In the first method, the governing equations are

transformed using the conical-coordinate transformation. Invoking the conical flow

condition which requires that the flow variables be independent of the radial distance

(or axial distance, depending on the transformation) from the cone apex, equating the

radial distance (or axial distance) which appears in the transformed equations to a

constant (equals to unity in most of the present locally conical solutions), the resulting

equations are solved on one spherical (or cross-flow) surface. In the second method,

the three-dimensional flow equations are solved on two spherical (or cross-flow)

surfaces which are located in the very near proximity of a constant radial (or axial)

distance.

During the pseudo-time or accurate-time stepping, the flowfield vector is forced to

be equal at the corresponding grid centers on the two surfaces. This method is used in

the present paper to obtain locally conical solutions. The resulting solutions from these

two methods are the same locally conical solutions. These solutions correspond to the

specified radial (or axial) distance and hence they change as the radial (or axial)
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distance is changed. The reason behind that is simply because the transformed

equations, according to the first method, are not self-similar and hence they are not

globally conical. This is shown below by developing the transformed equations of the

first method. Considering the unsteady, compressible, Navier-Stokes equations in the

Cartesian coordinates,

aq + a(E - F_), = 0, i = 1-3, (12)
0t _xi

introducing the conical coordinates,

Xl X2

= --, rl2 = --, rl23= xixi, (13)
rh x3 x3

and using the chain rule, equation (12) is transformed to

r/3 aq a _ '/73 _

_--+mOt _ (F" -- F--_o)l + _2 (E- l_'u)2 +_(E- F-'u)3 + 2(I- lu) =0'm2_3 (14)

where

m

_"2 =

|=

F_,2 =

_/1 + 7/2 + r/2, IE, = E1 - T/1E3,

E - 'r/2E3, E3 -- E3 + r/1El + F/2E2,

!_3, F_,vl= E_,1 - '_lEv3,

E,, - Y]2Ev3 , ]Ev3 = Eo3 "_" _lEvl + tl2Ev2,

I u _'_ ]_3 .

(15)

The conical flow condition requires that the flow variables be independent of the

coordinate }73 (radial distance). Invoking this condition in equation (14) by dropping

the derivatives with respect to 173, equation (14) reduces to

rl3aq t----_-a (1E,- F-,v)l +_2 (E- l_-v)2 + 2(I-11,) =0.
m Ot Or/1

(16)

It is obvious that the unsteady term includes 173. Moreover, the viscous terms

OF_qjl/_l, OF.v2/_YI2 and ]o include 173, and hence equation (19) is not self-similar. The

explicit dependence of the viscous terms on r/3 can be shown through one of the
elements of these vectors. For example, we consider

(r_ - rhL_) - /,t 2 -- + r/l +
ar/1 R3 _r/1 0x 3 \ _x 0y _z / \ 3z ax//_1

M®m _ [ ((_ )Oul au, 2OU 2 t/lOU3 2 OU3_ ]-Reo3OrJl  - 0+r/,OO2 30r/2 3arll+3r12 -  2)J " (17)

Thus, the unsteady term and viscous terms are scaled by the radial distance r/3 and

equation (16) does not represent a globally conical flow. The best to be done to make

use of this equation is to select a constant value for r/3, and solve the resulting equation

for what we call "locally conical flow". If r/3 is assigned another constant value, the

resulting equation will have another scale for the unsteady term and viscous terms. It is

concluded that equation (16) becomes globally conical if the unsteady term and viscous

terms vanish, and hence only the steady Euler equations are globally conical.
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5. COMPUTATIONAL APPLICATIONS
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5.1. STEADY ASYMMETRIC FLOW AROUND A CIRCULAR CONE

A grid of 161 x 81 points in the circumferential and normal directions, respectively is

used. The grid is generated by using a modified Joukowski transformation with a

geometric series for the grid clustering near the solid boundary. The minimum grid

spacing at the solid boundary in the normal direction is 10 -4 (the characteristic length

is the conical station at xl = 1). A 5°-semi-apex angle cone at angle of attack, or, of 20 °,
free-stream Mach number, M**, of 1-8 and Reynolds number, Re, of 105 is used. The

maximum radius of the computational domain is 21 r, where r is the cone cross-section

radius at the axial station xt = 1.

Figure 1 shows the residual error versus the number of iterations, the surface-

pressure coefficient, the cross-flow velocity and the total-pressure-loss contours for the

CFL3D and ICF3D codes. In the residual error figure, the CFL3D code shows that the

residual error drops ten orders of magnitude, to machine zero, within 2,500 iteration

steps and the solution is still symmetric. Thereafter, the error increases by six-orders of

magnitude and slightly asymmetric solutions are obtained. The flow is symmetric

during the first 5,000 iteration steps. Next, the error drops down by another six orders

of magnitude, to machine zero again, and stays constant, and a stable steady
asymmetric solution is obtained. It should be noted here that when the residual error

first reaches machine zero, the machine-round-off error acts as a random asymmetric

disturbance to the critically symmetric solution. Thereafter, the disturbance grows
spatially, producing the asymmetric solution. The ICF3D code shows that the residual

error drops five orders of magnitude in the first 3,000 iteration steps, increases two

orders of magnitude in the next 2,000 iteration steps, and then drops down by three

orders of magnitude within the next 5,000 iterations. The flow solution goes through a
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Figure 1. Comparison of steady asymmetric flow solutions around a circular cone, 0r : 20 °, M.: 1.8,
Re = 105.
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symmetric unstable solution and then to the asymmetric stable solution. The pressure
coefficient curves for the two codes are in excellent agreement over the circumferential

angle 0, which is measured from the leeward plane of symmetry. The suction pressure

in the range of 0 = 0-90 ° is lower than that in the range of 0 = 270-360 o. The

cross-flow velocity and total-pressure-loss contours for the two codes are in excellent

agreement. They show the nature of the flow asymmetry and its details.
Since the residual error of the CFL3D code is much smaller than that of the ICF3D

code, the disturbance which triggered the asymmetry in the first code is attributed to
the machine round-off error, while the disturbance which triggered the asymmetry in

the second code is attributed to the truncation error of the scheme. Both disturbances

are random in nature. However, irrespective of the source of disturbance, the final

asymmetric stable solution is unique. Kandil et al. (1990a) have shown that the solution

is still unique if another source of disturbance is applied for the same critical flow

0

-2

-4

"_ -6

-8'

"_ -10
3

-12

-14

-16
0

I I I I

5 I0 15 20

Iterations

25 x los

A '

-10

0 5 I0 15

Iterations

4

2

0

._ -2

I .4
-6

.9 -8

-10

t -12
20 25 x 103 0 5 10 15 20 25 x IOs

Iterations

0-8 ¸

0-4

-0.4 I I I I I I

0

0.8r

0.41

c_

OI

-0.41

60 120 180 240 300 360

O (deg)

3(a) A_,.,. -- 10 -a

0"81

0"4["

i_t Co OF

-0-41

0 60 120 180 240 300 360

O(des)

(b) A_,. = 10-4

0 60 120 180 240 300 360

0 (deg)

(c) a_. = = i0 -_

Figure 2, Effect of minimum grid size on the asymmetric flow solution; ¢r = 20*, M** = 1.8, Re = l0 s.
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conditions; e.g., a 2 ° or 0-5 ° short-duration side-slip disturbance produces the same

flow asymmetry.

In Figure 2, we show the effect of the minimum grid size on the flow asymmetry for

the same flow conditions of the previous case. The figure shows the residual error
versus the number of iterations, the total-pressure-loss contours and the surface-

A_mi, = 10 -3, 10-4 and 10 -s at the cone surface. The historiespressure coefficient for a
of the residual errors are qualitatively of similar behavior. The total-pressure-loss

contours show unique solutions with the exception of having the asymmetry changing
sides. This is understood due to the random nature of the disturbance--a machine

round-off error. The surface-pressure-coefficient curves also show unique solutions.

With all the numerical experiments given above, it is conclusively proven that the

asymmetric solution is not scheme-, numerics- or disturbance-dependent.

5.2. PASSIVE CONTROL OF ASYMMETRIC FLOW USING SIDE STRAKES

Figure 3 shows the results of passive control of flow asymmetry around the circular

cone of Figure 1 by using side strakes of height equal to 0.3 r. The iteration histories of

the residual error, lift coefficient and side-force coefficient show the attenuation of the

flow asymmetry and the final stable symmetric solution. The surface-pressure-

coefficient curve, the cross-flow velocity and the total-pressure-losses contours show the

final symmetric solution and the symmetric vortices associated with this controlled flow.
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Figure 3. Passive control of asymmetric flow around a circular cone using strakes, a: = 20 °, M. = 1.8,
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The side strakes push the primary vortices away from the leeward plane of geometric

symmetry, and hence they prevent communication of the flow disturbance from the

two sides. It should also be noticed that the Cp curves of Figures 1 and 3 show that the

side strakes provide additional lift besides their function of controlling the flow

asymmetry.

5.3. UNSTEADY ASYMMETRIC FLOW AROUND A CIRCULAR CONE

Keeping the Mach number at 1-8 and Reynolds number at 105, the angle of attack is

increased to 30 ° for the flow around the circular cone of Figure 1. Figure 4 shows the

results of this case using the FDS scheme with the thin-layer NS equations,

FVS-scheme with the thin-layer NS equations and the FDS scheme with the full NS

equations. Here, we show the history of the residual error, the lift coefficient and the

total-pressure-loss contours. For the first solution, pseudo-time stepping was used up to
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Figure 4. Comparison of unsteady asymmetric flow solutions with vortex shedding around a circular cone;
periodic flow response; cr = 30 °, M_ = 1.8, Re = l(V, At = 10 -3.
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10,000 iterations and the solution was monitored every 500 iterations. The solution

showed that the asymmetry was changing from the left side to the right side, which

indicated a possibility of unsteady asymmetric vortex shedding. The residual error was

also oscillating. The computations were repeated starting from the 3,500 iteration step

using time-accurate calculations with At = 10 -3. The residual-error and lift-coefficient

curves show the time history of the solution. It is seen that the residual error and the

lift coefficient show a transient response which is followed by a periodic response.

Snapshots of the total-pressure-loss contours are shown at time steps of n = 15,000;

15,200; 15,400 and 15,700. At n = 15,000, the asymmetric flow is seen with an already

shed vortex from the right side. As time progresses, the shed vortex is convected in the

flow and the primary vortex on the left side stretches upwards, while the primary

vortex on the right gets stronger and expands to the left side. At n = 15,700, the

primary vortex from the left side is shed in the flow field. It should be noticed that the

solution at n = 15,700 is exactly a mirror image of that at n = 15,000. The solution

from 15,000-15,700 represents one half the cycle of shedding. The solution from

15,700-16,400 represents the second one half of the cycle (not shown). The periodicity

of the shedding motion is conclusively captured. The period of oscillation is

10 -3 x 1,400 steps = 1.4 which corresponds to a shedding frequency of 4-488.

Figure 4 also shows the results of the FVS scheme with the thin-layer NS equations

for one-half cycle of oscillation. Using the FVS scheme, the flux limiters are turned on

initially and, as can be seen from the logarithmic-residual curve, the solution becomes

symmetric and steady after 5,000 time steps. Next, the flux limiters are turned off, and

the solution shows a transient response up to 12,000 time steps. Thereafter, the

solution becomes periodic with periodic asymmetric vortex shedding. The solution was

monitored every 100 time steps, and we show snapshots of the total-pressure-loss

contours between n = 13,900 and n = 14,600. Although the process of adjusting the

time instants in order to match those of the FDS solution is difficult, it is seen that the

captured snapshots of the FVS solution almost match those of the FDS solution.

Comparing the FVS solutions at n = 13,900 and 14,600, it is seen that they are mirror

images of each other. Hence, periodic flow response has been achieved with a period
of 1,400 x 10 -3 = 1.4; which is exactly the same period of shedding as that of the FDS

solution. This pinpoints the high numerical dissipation effect of the FVS scheme when

the flux limiters are also turned on. The resulting numerical dissipation in the FVS

scheme is large enough to dampen the random disturbances of the flow solution. By

turning off the flux limiters in the FVS scheme, the random disturbances grow,

producing the asymmetric unsteady vortex shedding. This also shows that the FDS

scheme, even with the flux iimiters turned on, is less dissipative than the FVS scheme.

Finally, we show the results of the FDS-scheme with the full NS equations. The

solution conclusively confirms the previous solutions and hence the unsteady solution is

not scheme- or equation-dependent.

Figure 5 shows snapshots of the surface-pressure coefficient using the FDS and FVS

schemes with the thin-layer NS equations. They are in excellent agreement with each

other. The oscillation of the side force is clearly seen in this figure.

5.4. UNSTEADY ASYMMETRIC FLOW AROUND AN ELLIPTIC SECTION CONE, fr = 0"8

Figure 6 shows the solution for an elliptic-section cone with fineness ratio of 0.8. The

residual-error curve shows that the solution produces a symmetric flow through the first

5,000 time steps. Afterwards, the solution shows a transient unsteady flow response for

2,500 time steps which is followed by an unsteady, perfectly periodic, vortex-shedding
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Figure 5. Comparison of snapshots of surface-pressure coefficients around a circular cone; or= 30",
M** = 1.8, Re = 10 s, At = 10 -3.

solution. The lift-coefficient curve shows the same nature of the solution as that of the

residual-error curve. This case is carried out using time-accurate stepping with
At = 10 -3.

We also show snapshots of the total-pressure-loss contours and surface-pressure

coefficients at the time steps of 12,000, 12,500, 13,000, 13,500, 14,000 and 14,500. The

solutions at n = 12,000 and 14,500 are mirror images of each other which confirm that

the solution is periodic. The period of oscillation is 5,000 × 10 -3 = 5 which corresponds

to a shedding frequency of 1-257. At n = 12,000, the total-pressure-loss contours show

that the right-side vortex is stretched, having two vortices; one at the top and the

second one below it. In addition, a secondary vortex is seen at the surface. The

left-side vortex has expanded to the right with two vortices beneath it. At n = 12,500,
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the top vortex on the fight side has been almost shed while the one below it is

expanding. At n = 13,000, the top vortex on the fight side has been shed and
convected with the flow, while the vortex below it is expanding to the left. As time

passes, the vortex on the left side is stretching upwards and the vortex on the fight side

is expanding to the left, as seen from the snapshots at 13,000, 13,500 and 14,000. At

n = 14,500, the vortices on the left side and fight side become mirror images of those

on the right side and left side, respectively, at n = 12,000. Again, this case conclusively

shows that unsteady vortex-shedding flows are captured.
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5.5. UNSTEADY ASYMMETRIC FLOW AROUND AN ELLIPTIC-SECTION CONE, fr ----0"2

(THICK WING CASE)

This case is presented to show that asymmetric vortex shedding also exists for wing-like

sections. Here, the elliptic-section fineness ratio is reduced to 0.2. To obtain this

impressive flow case, we have to decrease the free-stream Mach number to 1-4,

increase the angle of attack to 34 ° and increase the free-stream Reynolds number to

2 x 106. These adjustments have been made to enhance the critical flow conditions for

flow asymmetry. For the same section fineness ratio, same angle of attack and same
free-stream Mach number and for free-stream Reynolds number range of 105-

1.5 x 106, the flow is either symmetric or steady asymmetric. It is unsteady only when

the Reynolds number is increased to 2 x 106.
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Figure 7. Unsteady asymmetric flow solution with vortex shedding around an elliptic-section cone (a thick
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Figure 7 shows the time-accurate (At = 2 × 10 -3) results of this case which includes

the time-history of residual error, the time-history of the lift coefficient, snap shots of

the total-pressure-loss contours and snapshots of the surface-pressure coefficients. The

snapshots at n = 15,000, 15,100, 15,200, 15,300, 15,400 and 15,500 represent ap-

proximately one-half the cycle of the periodic flow response. The total-pressure-loss
contour at n = 15,000 shows that the left-side vortex is stretched, while the right-side

vortex has expanded, covering a large region of the left side of the flow domain over

the wing. Under the right-side vortex, a strong secondary vortex is formed. At
n = 15,100, the left-side vortex shows two regions of vortical flows; one at the top and

another one below it. Both vortex regions of the left vortex rotate in the same

clockwise direction. At n = 15,200, the top vortex is shed into the flow field, while the

one below it gets stronger and stretches upwards. At n = 15,300 and 15,400, the shed
vortex from the left side is convected in the flow, the left vortex is expanding to the

right and convecting vorticity to the right vortex. The right vortex is getting stronger,

shrinking in thickness and stretching upwards. A secondary vortex is forming under the

left vortex, and the secondary vortex under the right vortex is diminishing, at

n = 15,100, the flow is approximately a mirror image of that at n = 15,500. The number

of time steps for one cycle of periodic response is 1050, which gives a period of

• oscillation of 2 × 10 -3 × 1,050 = 2.1 corresponding to a frequency of 2-992.

5.6. UNSTEADY ASYMMETRIC FLOW AROUND A DIAMOND-SECTION CONE, f4 = 0-2 (THICK

Wing CASE)

Figure 8 shows the results of the time-accurate (At = 5 × 10 -4) results for this case

which include snapshots of the total-pressure-loss contours and snapshots of the

surface-pressure coefficients. The snapshots are given at n = 11,500, 12,000, 12,500,

13,000, 13,500 and 14,000. The number of time steps for one cycle of periodic response

is 4,500, which gives a period of oscillation of 5 × 10 -4 × 4,500 = 2.25 corresponding to

a frequency of 2.793. It should be noted here that the angle of attack is 38 °, which is

higher than that of the elliptic-section cone of Figure 7, where the angle of attack is 34 °

and all the other flow conditions are the same. Comparing the surface pressure curves

of the elliptic-section wing (Figure 7) and the diamond-section wing (Figure 8), we

conclude that the diamond-section wing has less asymmetric strength and higher lift

coefficient than those of the elliptic-section wing.

6. CONCLUDING REMARKS

The unsteady, compressible, thin-layer, Navier-Stokes equations are used along with

several computational schemes to numerically simulate steady and unsteady asym-

metric vortex flows around cones. The concept of the locally conical flow assumption

has been developed and discussed. A steady asymmetric flow solutions has been

presented and verified for a circular cone. Passive control of the flow asymmetry has

been demonstrated for the circular cone by using side strakes. Unsteady, asymmetric

vortex flows with periodic vortex shedding have been presented for cones with a

circular section, an elliptic section of fineness ratio of 0.8, an elliptic section of fineness

ratio of 0.2 and a diamond section of fineness ratio of 0-2. The unsteady asymmetric

flow solution for the circular cone has been verified using two schemes with the

thin-layer and full NS equations. The present study shows that, for the same flow

conditions, circular section cones produce the strongest flow asymmetry while the

diamond section cones produce the weakest flow asymmetry. It is conclusive that

unsteady flow asymmetry with vortex shedding has been captured. It should be noted
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Figure 8. Unsteady asymmetric flow solution with vortex shedding around a diamond-section cone (a thick
wing), periodic flow response, or = 38 °, M** = 1.4, Re = 2 x 106, f, = 0-2, At = 5 × 10 -4.

that these solutions are based on the locally conical flow assumption and hence they

must not be used for quantitative comparisons with three-dimensional flow results. The

reason behind such a restriction is the length scale involved with the unsteady and

viscous terms of the locally conical NS equations. However, the solutions are

computationally economical for qualitative and parametric studies of asymmetric flows.
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The unsteady, compressible, thin-layer Navier-Stokes equations are used to numerically study

the passive control of steady and unsteady supersonic asymmetric flows around circular and

noncircular cones. The main computational scheme of the present study is an implicit upwind,

flux-difference splitting, finite-volume scheme. Passive control of flow asymmetry is studied by

using a vertical fin in the leeward plane of geometric symmetry and side strakes with and without

thickness at different orientations. The study focuses on circular-section cones since they are the

most likely section-shapes for strong flow asymmetry. Side-strake passive control is shown to be

more efficient and practical than vertical-fin passive control. © 1992AcademicPress.Inc.

J

INTRODUCTION

In the moderate to high angle-of-attack (AOA) ranges, which are typical

flight conditions for highly maneuverable fighter aircraft and missiles, extensive

regions of vortex-dominated flow develop on the vehicle.

Within these AOA ranges, the cross-flow velocity components and the gra-

dients of other flow variables become of the same order of magnitude as or

higher than those of the axial direction. Consequently, flow separation occurs

and vortices emanate from the three.dimensional separation lines of boundary-

layer flows on wings, strakes, and fuselage of the vehicle. If the vortices are

symmetric and stable, their influence can be exploited favorably to provide

high lift and maneuverability for the vehicle. On the other hand, if the vortices
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become asymmetric or if vortex breakdown occurs, the useful influence of

the vortices is terminated. Large side forces, asymmetric lifting forces, and

corresponding yawing, rolling, and pitching moments, which may be larger

than those provided by the vehicle control system, develop and jeopardize

flight safety. The onset of buffeting due to vortex breakdown is another un-

favorable vortex-induced phenomenon.

Highly swept, round- and sharp-leading-edge wings, and pointed slender

bodies are common aerodynamic components of fighter aircraft and missiles.

The study of vortex-dominated flow around these isolated aerodynamic com-

ponents adds to our basic understanding of vortex-dominated flows. The so-

lution of asymmetric vortex flow about slender bodies in the high AOA range

is vital to the dynamic stability and controllability of fighter aircraft and mis-

siles. The onset of flow asymmetry occurs when the relative incidence (ratio

of angle of attack to nose semiapex angle) of pointed forebodies exceeds certain

critical values. At these critical values of relative incidence, flow asymmetry

develops due to natural and/or forced disturbances. The origin of natural

disturbances may be a transient sideslip, an acoustic disturbance, or a similar

disturbance of short duration. Forced disturbances, however, are caused by

geometric perturbations due to imperfections in the nose geometric symmetry

or similar disturbances of a permanent nature. In addition to the relative

incidence as one of the determinable parameters for the onset of flow asym-

metry, the freestream Mach number, Reynolds number, and body cross-sec-

tion shape are important determinable parameters.

Several computational attempts have been made to simulate asymmetric

vortical flows around slender bodies [1-7]. Kandil, Wong, and Liu [5] used

the unsteady thin-layer Navier-Stokes equations along with two different im-

plicit schemes to simulate asymmetric vortex flows around cones with different

cross-section shapes. The numerical investigation was focused on a 5°-semi -

apex angle circular cone under locally conical flow assumption. The first

computational scheme was an upwind, flux-difference splitting, finite-volume

scheme and the second one was an implicit, central-difference, finite-volume

scheme. The Mach number and Reynolds number being held constant at 1.8

and l05, respectively, the angle of attack (a) was varied from l0 ° to 30 °. At

a = l0 °, a steady symmetric solution was obtained and the results of the two

schemes were in excellent agreement. At a = 20 ° and irrespective of the type

or level of the disturbance, a steady asymmetric solution was obtained and

the results of the two schemes were in excellent agreement. Two types of flow

disturbances were used; a random round-off error or a random truncation-

error disturbance, and a controlled transient sideslip disturbance with short

duration. For the controlled transient sideslip disturbance the solution was

unique, and for the uncontrolled random disturbance the solution was also

unique with the exception of having the same asymmetry changing sides on

the cone. At a = 30 °, an unsteady asymmetric solution with vortex shedding

was obtained, and the vortex shedding was perfectly periodic. Next, the angle
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of attack was kept fixed at 20 ° and the Mach number was increased from 1.8

to 3.0 in increments of 0.4. The solutions showed that the asymmetry became

weaker as the Mach number was increased. The flow recovered its symmetry

when the Mach number reached 3.0. Selected solutions of steady and unsteady

asymmetric flows were also presented for cones with elliptic and diamond
cross-sectional areas.

In a later paper by the present authors [6], several issues related to the

asymmetric flow solutions were addressed. It was shown that a unique asym-

metric flow solution is obtained irrespective of the size of the minimum grid

spacing at the solid boundary. The asymmetry could reverse sides due to the
random nature of the disturbance. It was also shown that for the same flow

conditions and same section fineness ratio, diamond-section cones with sharp

edges have less flow asymmetry than elliptic-section cones. Again, it was also

shown that unsteady periodic asymmetric flow with vortex shedding is pre-
dicted. In Ref. [7] by Kandil, Wong, and Liu, several unsteady, asymmetric

vortex flows with periodic vortex shedding for circular and noncircular-section

cones were presented and studied.

Experimental research efforts have also been made to control asymmetric

flows for eliminating or attenuating the asymmetric forces and the resulting

moments by using either passive-control [8-10] or active-control [ 11-13]
methods. Passive-control methods include the use of a vertical fin on the

leeward side along the plane of geometric symmetry [8], the use of fixed or

movable forebody strakes [9-12], or the use of a rotatable forebody tip having

variable cross section (from a circular shape at its base to an elliptic shape at

its tip [ 10]). Active control methods primarily include the use of blowing ports

with various blowing rates and directions on the forebody surface [11, 12].

Computational simulations have also been used to study the effectiveness of

both passive [5] and active control methods [13].

In the present paper, we present a computational study for passive control

of supersonic asymmetric vortical flows around cones using a vertical fin in

the leeward plane of geometric symmetry and side strakes with and without

thickness at different orientations. Although the present study has been focused

on passive control of circular-section cones, a few applications have been

considered for noncircular-section cones.

FORMULATION

Governing Equations

The three-dimensional, compressible, viscous flow around the body is gov-

erned by the conservative form of the dimensionless, unsteady, compressible

Navier-Stokes equations. Introducing the time-independent body-conforming

coordinates _t, _2, and _3, and applying thin-layer approximations to the gov-

erning equations in _2 and/_3 directions yields the transformed equations

1
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(1)

where

0 = _I = 5 to, pub pu2, Ou3, pelt (2)

/_, -_ inviscid flux

1

= _ [pUs, pul Us -1- Ol_Sp, pu2U$ + 02_Sp, pu3Us + 03_Sp, (pc + p)Os]t;

s= 1,2,3 (3)

(Ev)2 -_ viscous and heat-conduction flux in the _2 direction

1

= j [0, ak_2"rk_,ak_2rk2,Ok_2rk3,,gk_2(U.rk.-- qk)]'

(/_'v)3 --- viscous and heat-conduction flux in the _3 direction

(4)

1

= j [0, Ok_37kl, Ok_3Tk2, Ok_37k3, Ok_3(un'rkn -- qk)] t (5)

Us = 0k_'Uk. (6)

The first of the three momentum elements of Eq. (5) is given by

ok_%,-= _ ,_a,__+ _,_1, (7)

where

1 OUk

The second and third momentum elements are obtained by replacing the

subscript 1, everywhere in Eq. (7), with 2 and 3, respectively. The last element

of Eq. (5) is given by

ak_(U.rk. - qk)

_Moolz{_bcg,,_3u.+4_[lO 1 0(az)]]- Re i_(_ + _ + _)+(-_- 1)Pr _]J (9)

For Eq. (4), in the case of thin-layer approximations applied to the _2 direction,

the elements are given by equations similar to Eqs. (7)-(9) with the exception
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of replacing _3 by _2. This set of thin-layer Navier-Stokes equations is used

only for the passive control cases using a vertical fin since the existence of

the fin creates a second viscous thin layer which is perpendicular to the cone's

thin layer. This viscous layer on the fin is in the/j3 direction. For the passive

control cases using side strakes, thin-layer equations in _2 direction are used

since the viscous layers on the strakes are in the _2 direction due to the method

used to construct the grid around the strakes. The reference parameters for

the dimensionless form of the equations are L, a_, L/a_, p=, and #_ for the

length, velocity, time, density, and molecular viscosity, respectively. The

Reynolds number is defined as Re = po_ Vo_L/_o_, and the pressure, p, is related

to the total energy per unit mass and density by the gas equation

[' ]p = ('r- z)p + + . (10)

The viscosity is calculated from the Sutherland law

u = 7 3/2 1 + C C = 0.4317, (11)

and the Prandtl number Pr = 0.72.

In Eqs. (1)-(9), indicial notation is used for convenience. Hence, the sub-

scripts k and n are summation indices, the superscript or subscript s is a

summation index. The range for k, n, and s is 1-3, and Ok -- O/OXk.

Boundary and Initial Conditions

Boundary conditions are explicitly implemented. They include inflow-

outflow conditions and solid-boundary conditions. At the plane of geometric

symmetry, periodic conditions are used. At the far-field inflow boundaries,

freestream conditions are specified and the outer shock is captured as part of

the solution. At the far-field outflow boundaries first-order extrapolation from

the interior points is used. On the solid boundary, the no-slip and no-pene-

tration conditions are enforced (uj = u2 = u3 = 0) and the normal pressure

gradient is set equal to zero. For the temperature, the adiabatic boundary

condition is enforced on the solid boundary. The initial conditions correspond

to uniform flow with u_ = u2 = u3 = 0 on the solid boundary.

For the passive control applications, solid-boundary conditions are enforced

on both sides of the fin or the strakes.

HIGHLIGHTS OF THE COMPUTATIONAL SCHEME

The main computational scheme used to solve the governing equations is

• an implicit, upwind, flux-difference splitting, finite-volume scheme. It employs
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the flux-difference splitting scheme of Roe, which is based on the solution of

the approximate Riemann problem. The inviscid flux difference at the cell

interface is split into left and fight flux differences according to the signs of

the eigenvalues of the Roe averaged-Jacobian matrices of the inviscid fluxes

As = d/_',/&_; s = I-3. Flux limiters are used to eliminate oscillations in the

shock region. The viscous and heat-flux terms are centrally differenced. The

resulting difference equation is solved using approximate factorization in the

_t, _2, and _3 directions. The computational scheme is coded in the computer

program "CFL3D." In this program, an implicit, flux-vector splitting, finite-

volume scheme, which is based on the Van Leer scheme [14], can also be

used instead of the flux-difference splitting scheme. The flux-vector splitting

scheme is also used to solve for the unsteady asymmetric flow application in

this paper. This application is a validation of the solution obtained previously

[5] for the same application using the flux-difference splitting scheme.

Since the applications in this paper cover conical flows only, the three-

dimensional scheme is used to solve for locally conical flows. This is achieved

by forcing the conserved components of the flow vector field to be equal at

the two axial planes located at xt = 0.95 and 1.0 of the conical grid.

COMPUTATIONAL STUDIES

1. Passive Control For a Circular Cone Using a Vertical Fin, a = 20 °

In this section, we consider the control of steady asymmetric flow around

a 5°-semiapex angle circular cone at an angle of attack a = 20 °, freestream

Mach number M_ = 1.8, and freestream Reynolds number Re = 105. Two

vertical fins of heights h = 0.5r and r are placed in the leeward plane of

geometric symmetry, where r is the cone local radius. Figure 1 shows the

results of this study, which include the total-pressure-loss contours, the surface-

pressure coefficient versus the angle 0 (0 is measured from the leeward plane

of geometric symmetry in the clockwise direction), and the lift coefficient

versus the number of iterations. The figure also shows the results of the asym-

metric flow without a vertical fin [5]. With h = 0.5r, the flow is still strongly

asymmetric after 34,000 iterations. Comparing the case of no fin with the

case of h = 0.5r, it is seen that the asymmetry changed sides. This is due to

the random nature of the disturbance, which is a machine round-off error.

With h = 0.5r, two vortex cores, which are connected to each other and to

the body through free-shear layers, develop from the left side of the body.

From the right side of the body, a free-shear layer develops and crosses over

the fin to the left side of the body. It produces two vortex cores; one at each

comer of the body-fin juncture with secondary separations below them. This

case has been solved accurately in time but it does not show any vortex shed-
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FIG. 1. Passive control of asymmetric flow around a circular cone using a vertical fin. a = 20 °,

M_ = 1.8, Re = 105, h = 0.5r and r (r - cone local radius).

ding or unsteadiness. When the fin height is increased to h = r, perfect flow

symmetry is obtained. The lift-coefficient curves show that when flow asym-

metry develops, the lift coefficient increases over a small number of iterations

and remains constant thereafter. When the flow becomes symmetric, as with

h = r, the lift coefficient does not increase. The reason behind the flow asym-

metry with h = 0.5r is that the free-shear layer from the fight-hand side of

the body is still higher than the fin height, which allows the flow disturbances

from the right and left side to interact.

Figure 2 shows a typical grid for studying passive control using a vertical

fin. It contains 161 × 81 grid points in the wrap-around and normal directions,

respectively. The grid is generated by using a modified Joukowski transfor-

mation with clustering in the normal direction at the cone surface, and clus-

tering in the wrap-around direction at the vertical fin surfaces. The maximum

radius of the computational domain is 21 r. The figure also shows blow-ups

of the cross-flow velocity in the cone-fin-juncture region for h = 0.5r and r.

It is noticed that two small recirculating bubbles exist under the vortex cores.
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FIG. 2. A typical grid for passive control using a vertical fin ( 161 x 81 grid points, z_ff_ = A_3
= l0 _) and blow-ups of cross-flow velocity in the cone-fin juncture (a = 20 °, M® = 1.8, Re =
10_).

2. Passive Control For a Circular Cone Using Side Strakes, a = 20 °

In Fig. 3, control of flow asymmetry for the same flow conditions as in the

first application is considered using sharp-edged thick strakes of height h =

0.3r. The side-strakes render the flow perfectly symmetric since the two primary

vortex cores, left and right, are pushed further apart preventing the flow dis-

turbances of the two sides from interacting. It is easily seen that there are four

vortices on each side; one is a primary vortex and three are secondary vortices.

The pressure-coefficient curve shows jumps at O = 90 ° and 270 °, where the

strakes are located. These jumps change the shape of the Cp-curve in com-

parison with that of the vertical-fin-control case. Moreover, the lift coefficient

of the side-strake-control case is double that of the vertical-fin-control case.
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FIG. 3. Passive control of asymmetric flow around a circular cone using sharp-edged thick
strakes, a = 20 °, M,_ -- 1.8, Re = 10_, h = 0.3r.

It is concluded that side-strake control in comparison with vertical-fin control

not only is efficient in providing higher lift, but also is more practical due to

the strake's shorter height, and hence lesser weight.

3. Passive Control For a Circular Cone Using Side Strakes with and

without Thickness, a = 30"

In this case, the cone angle of attack is increased to 30 ° keeping all the

other flow conditions fixed. This flow application has been solved previously

in Ref. [5] by Kandil, Wong, and Liu using a flux-difference splitting (FDS)

scheme. The results showed unsteady asymmetric flow with periodic vortex

shedding. The total-pressure-loss contours of the time steps from 15,000 to

15,700, representing one-half the cycle during the periodic response, is shown

in Fig. 4. Other unsteady asymmetric flows with periodic vortex shedding

around elliptic-section and diamond-section cones have also been presented

by the authors in Refs. [5, 7]. In all these applications, the FDS scheme was

used. In order to show that the unsteady asymmetric solutions are not scheme

dependent, the effect of computational methodologies and numerical dissi-

pation on the solutions are examined in the present paper. The case of asym-

metric flow around a circular cone has also been computed using the flux-
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FIG. 4. Unsteady asymmetric flow with vortex shedding around a circular cone using FDS
schemes, a = 30 °, M® = 1.8, Re = l05, At = l0 -3.

vector splitting (FVS) scheme of the same code. In Fig. 5, we show the time-

accurate solutions using the FVS scheme on the same grid. Using the FVS

scheme, the flux limiters are turned on, and as can be seen from the logarith-

mic-residual curve, the solution becomes symmetric and steady after 5000

time steps. Next, the flux limiters are turned off, and the solution shows a

transient response up to 12,000 time steps. Thereafter, the solution becomes

periodic with periodic asymmetric vortex shedding. The solution is shown

every 100 time steps starting from time step 13,900 until time step 14,600.

Although the process of adjusting the time instants to match those of the FDS

solution is ditficult, it is seen that the captured snap shots of the FVS solution

almost match those of the FDS solution at time steps 15,000, 15,100, 15,200,

15,300, 15,400, 15,500, 15,600, and 15,700, respectively. Comparing the FVS

solutions at time step of 13,900 with that of 14,600, it is seen that they are

mirror images of each other. Hence, periodic flow response has been achieved

with a period of 1,400 × 10 -3 = 1.4, which is exactly the same period of

shedding as that of the FDS solution. This pinpoints the high numerical dis-

sipation effect of the FVS scheme when the flux limiters are turned on. The

resulting numerical dissipation in the FVS is large enough to dampen the

random disturbances of the flow solution. By turning off the flux limiters in
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FIG. 5. Unsteady asymmetric flow with vortex shedding around a circular cone using FVS
schemes. _ = 30% M_ = 1.8, Re = 105, 2_t = 10 -3.

the FVS scheme, the random disturbances can grow producing the asymmetric

unsteady vortex shedding. This also shows that the FDS scheme, even with

the flux limiters turned on, is less dissipative than the FVS scheme. These

results conclusively show that unsteady asymmetric flows are obtained irre-

spective of the numerical methodologies.

Next, we consider the control of this unsteady asymmetric flow using sharp-

edged thick strakes and flat-plate strakes with different orientations. For all

the strake shapes, the height is kept at 0.3r. Figure 6 shows the results of this

study using sharp-edged and flat-plate strakes at _ = 0 °, I0 °, and - I0 °, where

/i is the angle measured in the counter-clockwise direction from the horizontal

line at P = 90 °. For this angle of attack, all the strake orientations are still

effective in eliminating the unsteady asymmetric vortex shedding and ren-

dering the flow perfectly symmetric. Again the Cp-curves show jumps at the

strakes leading edges at t_ = 90 ° and 270 °. The lift coefficient of all controlled

flow cases, Fig. 7, is higher than that of the asymmetric flow case. With slight

differences in the lift coefficient, the highest lift is produced by the flat-plate

strakes with _i = -10 °, where the primary vortex cores are slightly closer to

the body surface than for the other cases.
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Comparing the results of the sharp-edged thick strakes at a = 30 ° with

those of the sharp-edged thick strakes at a = 20 ° (Fig. 3), we notice that the

primary vortex cores of the former are closer to the plane of symmetry and

higher above the cone surface than those of the latter.

In the bottom row of Fig. 7, we show typical grids for the cases of sharp-

edged thick strakes and the fiat-plate strakes with _ = I0 °. The grids are

generated by using a hyperbolic grid generator with transfinite grid interpo-

lation to refine the grid in the strake region.

4. Passive Control For a Circular Cone Using Sharp-Edged Thick Strakes,

a = 40 °

For this case, the angle of attack is increased to a = 40 ° keeping all the

other flow conditions fixed. The same sharp-edged thick strakes of the previous

case (a = 30*) have been used along with the same grid. Figure 8 shows the

results of this case. It is seen that although the Cp-curve looks perfectly sym-

metric and although the lift coefficient curve does not show any increase after

the time step 4,000, the total-pressure-loss contours show very slight asym-

metry. This indicates that the current height of the strakes might not be suf-
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FIG. 8. Passive control of asymmetric flow around a circular cone using sharlrcdged thick

strakes, a = 40 °, M® = i.8, Re = 10_, h = 0.3r.
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ficient to yield flow symmetry at higher angles of attack. The present solution

shows that the vortical flow substantially stretches upwards.

5. Passive Control For an Elliptic-Section Cone Using a Vertical Fin,

a = 25*

In order to produce a substantial flow asymmetry (of the same order as

that of the circular cone of Fig. 1) for an elliptic-section cone of fineness ratio

fr = 0.6, the angle of attack has been increased to a = 25 °, and the freestream

Mach number has been decreased to M_ = 1.5. Passive control of this flow

has been tested using vertical fins of heights h = 1.5a and 2a, where 2a is the

length of the cross-section minor axis. The grid is 161 × 81 in the wrap-

around and normal directions, and was generated by a modified Joukowski

transformation with minimum grid spacing of A_2 = 10 -4 and A_ 3 = 10 -4

(for the vertical-fin control). The results are shown in Figs. 9 and 10. For the

case with no fin, the lift coefficient shows an increase near step 7,000, and it

remains constant thereafter. For the case with h = 1.5a, the flow is still strongly

asymmetric and the lift coefficient shows an increase near step 8000. The

total-pressure-loss contours show a very long free-shear layer from the left

side. From the fight side, the free-shear layer becomes higher than the vertical

fin and crosses over the fin to the left side. Two primary-vortex cores are
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FIG. 9. Passive control of asymmetric flow around an elliptic-section cone using vertical fin. a

= 25", M_ = 1.5, Re = 10_, fr = 0.6, h = 1.5a and 2a (2a - cone local minor-axis length).
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formed at the cone-fin juncture with secondary separations below them. When

the fin height is increased to h = 2a, perfect symmetric flow is obtained and

the lift coefficient remains constant. The behavior of this vertical-fin control

case is very similar to that of the circular cone. As long as the vertical fin is

high enough as compared to the maximum height of the free-shear layer, flow

symmetry is obtained. Obviously, if side-strakes are used, they will push the

vortex cores further apart preventing disturbance interaction between the two

sides, and flow symmetry will be achieved.

6. Passive Control For a Diamond-Section Cone Using a Vertical Fin,

a = 25 °

For this case, the section fineness ratio is 0.8, the angle of attack is a =

25 °, and the freestream Mach number is 1.5. With the exception of the section

fineness ratio, the flow conditions of this case are the same as those of the

elliptic-section cone. This simply shows that for the same section fineness

ratio and same flow conditions, diamond-section cones with sharp edges pro-

duce less flow-asymmetry strength than that of elliptic-section cones.

Figure 11 shows the results of the diamond-section cone flow with and

without a vertical fin. For the flow-control case, a symmetric flow has been

obtained using a vertical fin of height h = 1.5a, which is shorter than that

required for the elliptic-section case.

CONCLUDING REMARKS

Computational studies for passive control of steady and unsteady, super-

sonic, asymmetric vortical flows have been carried out using vertical fins in

the leeward plane of geometric symmetry, and using side strakes with and

without thickness. The governing equations are the unsteady, compressible,

thin-layer Navier-Stokes equations. The equations have been solved using



J

I



PASSIVE CONTROL OF FLOWS AROUND CONES

0

4

.2

cp
0

-6

No Fin

_60 120 11_ 240 3(XI 360

®

I0

o_

I I _ 2LO I5 10 t$ 25 . 10_

Iter OtlOnS

95

.o i

.4 I

-24
0

I

.2!

-4

-,|

h=l.5a

®

t2

I0

o"
(.J

t
i

t I 1 I
2 _ 4 5110"

Iterot_ons

FiG. l ]. Passive control of asymmetric flow around a diamond-section cone using a vertical
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an implicit, upwind, flux-difference splitting, finite-volume scheme. The flow-

control studies have focused on circular-section cones since they are the best

potential section-shapes for strong flow asymmetry. II has been shown that

side-strake passive control is very effective over a wide range of angle of attack.
It has also been shown that side-strake control is more efficient than vertical-

fin control in producing higher lift. Moreover, it is more practical since the

strakes have shorter height and, hence, less weight in comparison with the
vertical fin.
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